
Isomorphism Testing for Graphs Excluding Small Minors

Martin Grohe, Daniel Wiebking
RWTH Aachen University

Aachen, Germany
Email: {grohe,wiebking}@informatik.rwth-aachen.de

Daniel Neuen
CISPA Helmholtz Center for Information Security

Saarbrücken, Germany
Email: daniel.neuen@cispa.saarland

Abstract—We prove that there is a graph isomorphism test
running in time npolylog(h) on n-vertex graphs excluding some
h-vertex graph as a minor. Previously known bounds were
npoly(h) (Ponomarenko, 1988) and npolylog(n) (Babai, STOC
2016). For the algorithm we combine recent advances in
the group-theoretic graph isomorphism machinery with new
graph-theoretic arguments.

Keywords-graph isomorphism problem, excluded minors,
structure of automorphism group

I. INTRODUCTION

Determining the computational complexity of the Graph
Isomorphism Problem (GI) is one of best-known open
problems in theoretical computer science. GI is obviously
in NP, but neither known to be NP-complete nor known
to be solvable in polynomial time. In a recent breakthrough
result, Babai [1] presented a quasipolynomial-time algorithm
(i.e., an algorithm running in time npolylog(n)) deciding
isomorphism of two graphs, significantly improving over
the best previous algorithm running in time nO(

√
n/ logn)

[2]. For his algorithm, Babai greatly extends the group-
theoretic isomorphism machinery dating back to Luks [3]
as well as our understanding of combinatorial methods like
the Weisfeiler-Leman algorithm (see, e.g., [4], [5]). Still, the
question of whether the Graph Isomorphism Problem can be
solved in polynomial time remains wide open.

Polynomial-time algorithms are known for restrictions of
the Graph Isomorphism Problem to several important graph
classes (e.g., [6], [7], [8], [9], [10], [3], [11], [12]). In par-
ticular, Luks [3] gave an isomorphism algorithm running in
time nO(d) on input graphs of maximum degree d. Building
on Luks’s techniques and refinements due to Miller [13],
Ponomarenko [12] designed an isomorphism test running
in time npoly(h) for all graph classes that exclude a fixed
graph with h vertices as a minor. Later, it was shown that
the polynomial-time bound can be pushed to graph classes
excluding a fixed topological subgraph [8].

For the algorithms mentioned above the exponent of
the polynomial always depends at least linearly on the
parameter in question. In light of Babai’s quasipolynomial-
time algorithm it seems natural to ask for which parameters

these dependencies can be improved to polylogarithmic.
In [14] it was shown that Luks’s original isomorphism test

for bounded-degree graphs can be combined with Babai’s
group-theoretic techniques. By using a novel normalization
technique, Schweitzer and the first two authors of this
paper provided an isomorphism algorithm for graphs of
maximum degree d running in time npolylog(d). Recently,
it was shown that the group-theoretic techniques used for
bounded-degree graphs can be extended to isomorphism
testing of hypergraphs [15]. This was used as an important
subroutine in an isomorphism test for graphs of Euler genus
g running in time npolylog(g). Another branch of research
deals with the question how Babai’s and Luks’s group-
theoretic techniques can be combined with graph decom-
position techniques [16] (see also [17], [18]). This series of
papers led to an isomorphism test for graphs of tree-width
at most k running in time npolylog(k).

In this work, we assemble the recent advances in the
group-theoretic machinery developed in [14], [15], [16]
and combine it with new structural results for graphs with
excluded minors. Recall that a graph H is a minor of a
graph G if H is isomorphic to a graph that can be obtained
from a subgraph of G by contracting edges. If H is not
a minor of G, we say that G excludes H as a minor. For
example, all planar graphs exclude the complete graph K5

and the complete bipartite graph K3,3 as a minor, and in
fact this characterizes the planar graphs [19]. Other natural
classes of graphs excluding some fixed graph as a minor are,
for example, classes of bounded genus, bounded tree-width,
and the class of graphs linklessly embeddable in 3-space
[20].

We present a new isomorphism test for graph classes that
exclude a fixed graph as a minor, improving the previously
best algorithm for this problem due to Ponomarenko [12]
running in time npoly(h).

Theorem I.1. There is a graph isomorphism algorithm
running in time npolylog(h) on n-vertex graphs that exclude
some h-vertex graph as a minor.

Note that a graph G excludes some h-vertex graph as a
minor if and only if G excludes the complete graph Kh on h
vertices as minor. Hence, for the remainder of this work, we
restrict ourselves to the case where the input graphs exclude

c© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE
must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

M. Grohe, D. Wiebking and D. Neuen, ”Isomorphism Testing for Graphs Excluding
Small Minors,” 2020 IEEE 61st Annual Symposium on Foundations of Computer
Science (FOCS), 2020, pp. 625-636, DOI: 10.1109/FOCS46700.2020.00064.

Kh as minor.
The maximum h such that Kh is a minor of G is known as

the Hadwiger number hd(G) of G (this means G excludes
Khd(G)+1 as a minor). Thus, an equivalent formulation of
our result is that we design an isomorphism test for n-vertex
graphs running in time npolylog(hd(G)).

Our proof heavily builds on the recently developed group-
theoretic machinery (the dependencies on the main previ-
ous results are shown in Figure 1). The main technical
contributions of the present paper are of a graph-theoretic
nature. However, we are not using Robertson-Seymour-style
structure theory for graphs with excluded minors [21], as one
may expect given the previous results for graphs of bounded
genus and of bounded tree-width. Instead, our results can be
viewed as a structural theory for the automorphism groups
of such graphs; we find that graphs excluding Kh as a
minor have an isomorphism-invariant decomposition into
pieces whose automorphism groups are similar to those of
bounded-degree graphs (Theorem IV.4 is the precise state-
ment). This structural result may be of independent interest.
The only deeper graph-theoretic result we use is Kostochka’s
and Thomason’s theorem stating that graphs excluding Kh

as a minor have an average degree of O(h log h) [22], [23].
On a high level, our algorithm follows a decomposition

strategy. Given two graphs G1 and G2 excluding Kh as
a minor, the goal is to find isomorphism-invariant subsets
D1 ⊆ V (G1) and D2 ⊆ V (G2) such that one can control the
interplay between the subsets and its complement and one
can significantly restrict the graph automorphisms on the two
subsets. Note that it is crucial to define the subsets D1 and
D2 in an isomorphism-invariant fashion as to not compare
two graphs that are decomposed in structurally different
ways. To capture the restrictions on the automorphism group,
we build on the well-known class of Γ̂d-groups, which are
groups all whose composition factors are isomorphic to a
subgroup of Sd (the symmetric group on d points). However,
to prove the restrictions on the automorphism group, we
mostly use combinatorial and graph-theoretic arguments.

In particular, the algorithm heavily uses the 2-dimensional
Weisfeiler-Leman algorithm, a standard combinatorial algo-
rithm which computes an isomorphism-invariant coloring of
pairs of vertices. In a lengthy case-by-case analysis depend-
ing on the color patterns computed by the 2-dimensional
Weisfeiler-Leman algorithm, we are able to find initial
isomorphism-invariant subsets X1 ⊆ V (G1) and X2 ⊆
V (G2) such that (Aut(Gi))vi [Xi] (the automorphism group
of Gi restricted to Xi after fixing some vertex vi ∈ Xi)
forms a Γ̂t-group where t ∈ O((h log h)3).

In order to get control of the interplay between the subsets
and their complement, we define a novel closure operator
that builds on t-CR-bounded graphs, which were recently
introduced in the context of isomorphism testing for bounded
genus graphs [15]. This operator increases the subsets X1

and X2 in an isomorphism-invariant fashion and leads to

(possibly larger) sets Di := clGi
t (Xi) ⊇ Xi, i ∈ {1, 2}. A

feature of this operator is that a given Γ̂t-group defined on
the initial set Xi can be extended to a Γ̂t-group defined on
the superset Di (see Theorem III.7). This provides us a Γ̂t-
group on the closure Di (after fixing a point) which allows
the use of the group-theoretic techniques from [14], [15].

The second main feature of the closure operator is that,
in a graph G that excludes an h-vertex graph as a minor,
the closure D := clGt (X) of any set X ⊆ V (G) can only
stop to grow at a separator of small size. More precisely, we
show that for every vertex set Z of a connected component
of G−D, it holds that |NG(Z)| < h. This key result shows
that the interplay between D and its complement in G is
simple and allows for the application of the group-theoretic
decomposition framework from [17], [18], [16].

We remark that our proof strategy is quite different from
that used by Ponomarenko [12] in his isomorphism test for
graphs with excluded minors, because we could not improve
Miller’s [13] “tower-of-Γ̂d-groups” technique to meet our
quasipolynomial time demands.

The paper is structured as follows. After introducing some
basic preliminaries in the next section, we review the recent
advances on the group-theoretic isomorphism machinery
from [15], [16] in Section III. Then, we present the main
results in Section IV and also give an overview on the proofs
of the main technical theorems. For technical details we refer
to the full version of this paper [24].

II. PRELIMINARIES

A. Graphs

A graph is a pair G = (V (G), E(G)) consisting of
a vertex set V (G) and an edge set E(G) ⊆

(
V (G)

2

)
:={

{u, v}
∣∣u, v ∈ V (G), u 6= v

}
. All graphs considered in this

paper are finite, undirected and simple (i.e., they contain no
loops or multiple edges). For v, w ∈ V , we also write vw as
a shorthand for {v, w}. The neighborhood of v is denoted
by NG(v). The degree of v, denoted by degG(v), is the
number of edges incident with v, i.e., degG(v) = |NG(v)|.
For X ⊆ V (G), we define NG(X) :=

(⋃
v∈X N(v)

)
\ X .

If the graph G is clear from context, we usually omit the
index and simply write N(v), deg(v) and N(X).

For a set A ⊆ V (G), we denote by G[A] the induced
subgraph of G on the vertex set A. Also, we denote by
G−A the subgraph induced by the complement of A, that
is, the graph G − A := G[V (G) \ A]. A graph H is a
subgraph of G, denoted by H ⊆ G, if V (H) ⊆ V (G)
and E(H) ⊆ E(G). A set S ⊆ V (G) is a separator of
G if G − S has more connected components than G. A
k-separator of G is a separator of G of size k.

An isomorphism from G to a graph H is a bijection
ϕ : V (G) → V (H) that respects the edge relation, that is,
for all v, w ∈ V (G), it holds that vw ∈ E(G) if and only if
ϕ(v)ϕ(w) ∈ E(H). Two graphs G and H are isomorphic,

written G ∼= H , if there is an isomorphism from G to H .
We write ϕ : G ∼= H to denote that ϕ is an isomorphism
from G to H . Also, Iso(G,H) denotes the set of all
isomorphisms from G to H . The automorphism group of
G is Aut(G) := Iso(G,G). Observe that, if Iso(G,H) 6= ∅,
it holds that Iso(G,H) = Aut(G)ϕ := {γϕ | γ ∈ Aut(G)}
for every isomorphism ϕ ∈ Iso(G,H).

A vertex-colored graph is a tuple (G,χ) where G is a
graph and χ : V (G) → C is a mapping into some set C
of colors, called vertex-coloring. Similarly, an arc-colored
graph is a tuple (G,χ), where G is a graph and χ : {(u, v) |
{u, v} ∈ E(G)} → C is a mapping into some color set
C, called arc-coloring. We also consider vertex- and arc-
colored graphs (G,χV , χE) where χV is a vertex-coloring
and χE is an arc-coloring. Also, a pair-colored graph is a
tuple (G,χ), where G is a graph and χ : (V (G))2 → C is a
mapping into some color set C. Typically, C is chosen to be
an initial segment [n] of the natural numbers. Isomorphisms
between vertex-, arc- and pair-colored graphs have to respect
the colors of the vertices, arcs and pairs.

B. Graph Minors and Topological Subgraphs

Let G be a graph. A graph H is a minor of G if H
can be obtained from G by deleting vertices and edges of
G as well as contracting edges of G. More formally, let
B = {B1, . . . , Bh} be a partition of V (G) such that G[Bi]
is connected for all i ∈ [h]. We define G/B to be the graph
with vertex set V (G/B) := B and E(G/B) := {BB′ | ∃v ∈
B, v′ ∈ B′ : vv′ ∈ E(G)}. A graph H is a minor of G if
there is a partition B = {B1, . . . , Bh} of connected subsets
Bi ⊆ V (G) such that H is isomorphic to a subgraph of
G/B. A graph G excludes H as a minor if H is not a minor
of G. The following theorem states the well-known fact
that graphs excluding small minors have bounded average
degree. This was observed by Mader before Kostochka and
Thomason independently proved an optimal bound on the
average degree.

Theorem II.1 ([25], [22], [23]). There is an absolute
constant a ≥ 1 such that for every h ≥ 1 and ev-
ery graph G that excludes Kh as a minor, it holds that

1
|V (G)|

∑
v∈V (G) degG(v) ≤ ah log h.

A graph H is a topological subgraph of G if H can
be obtained from G by deleting edges, deleting vertices
and dissolving degree 2 vertices (which means deleting
the vertex and making its two neighbors adjacent). More
formally, we say that H is a topological subgraph of G if
a subdivision of H is a subgraph of G (a subdivision of a
graph H is obtained by replacing each edge of H by a path
of length at least 1). Note that every topological subgraph
of G is also a minor of G.

C. Weisfeiler-Leman Algorithm

The Weisfeiler-Leman algorithm, originally introduced by
Weisfeiler and Leman in its two-dimensional form [5], forms
one of the most fundamental subroutines in the context of
isomorphism testing. The algorithm presented in this work
crucially builds on the 1-dimensional Weisfeiler-Leman al-
gorithm, also known as the Color Refinement algorithm, as
well as the 2-dimensional Weisfeiler-Leman algorithm.

Let χ1, χ2 : V k → C be colorings of the k-tuples of
vertices of G, where C is some finite set of colors. We say
χ1 refines χ2, denoted χ1 � χ2, if χ1(v̄) = χ1(w̄) implies
χ2(v̄) = χ2(w̄) for all v̄, w̄ ∈ V k. The two colorings χ1

and χ2 are equivalent, denoted χ1 ≡ χ2, if χ1 � χ2 and
χ2 � χ1.

The Color Refinement algorithm (i.e., the 1-dimensional
Weisfeiler-Leman algorithm) is a procedure that, given a
graph G, iteratively computes an isomorphism-invariant col-
oring of the vertices of G. In this work, we actually require
an extension of the Color Refinement algorithm that apart
from vertex-colors also takes arc-colors into account. We
describe the mechanisms of the algorithm in the following.
For a vertex- and arc-colored graph (G,χV , χE) define
χ1
G,0 := χV to be the initial coloring for the algorithm.

This coloring is iteratively refined by defining χ1
G,i+1(v) :=

(χ1
G,i(v),Mi(v)) where

Mi(v) :=
{{(
χ1
G,i(w), χE(v, w), χE(w, v)

) ∣∣ w ∈ NG(v)
}}

(and {{. . . }} denotes a multiset). By definition, χ1
G,i+1 �

χ1
G,i for all i ≥ 0. Thus, there is a minimal i such that
χ1
G,i+1 is equivalent to χ1

G,i. For this value of i we call
the coloring χ1

G,i the stable coloring of G and denote it by
χ1
WL[G]. The Color Refinement algorithm takes as input a

vertex- and arc-colored graph (G,χV , χE) and returns (a
coloring that is equivalent to) χ1

WL[G]. The procedure can
be implemented in time O((m+ n) log n) (see, e.g., [26]).

Next, we define the 2-dimensional Weisfeiler-Leman
algorithm. For a vertex-colored graph (G,χV) let
χ2
G,0 : (V (G))2 → C be the coloring where each pair is

colored with the isomorphism type of its underlying ordered
subgraph. More formally, χ2

G,0(v1, v2) = χ2
G,0(v′1, v

′
2) if and

only if χV (vi) = χV (v′i) for both i ∈ {1, 2}, v1 = v2 ⇔
v′1 = v′2 and v1v2 ∈ E(G)⇔ v′1v

′
2 ∈ E(G). We then recur-

sively define the coloring χ2
G,i obtained after i rounds of the

algorithm. Let χ2
G,i+1(v1, v2) := (χ2

G,i(v1, v2),Mi(v1, v2))
where

Mi(v1, v2) :=
{{(
χ2
G,i(v1, w), χ2

G,i(w, v2)
) ∣∣w ∈ V (G)

}}
.

Again, there is a minimal i such that χ2
G,i+1 is equivalent to

χ2
G,i and for this i the coloring χ2

WL[G] := χ2
G,i is the stable

coloring of G.
Note that the algorithm can easily be extended to arc-

colored and pair-colored graphs by modifying the defi-
nition of the initial coloring χ2

G,0 accordingly. However,

in contrast to the Color Refinement algorithm, the 2-
dimensional Weisfeiler-Leman algorithm is only applied to
vertex-colored graphs throughout this paper.

The 2-dimensional Weisfeiler-Leman algorithm takes as
input a (vertex-, arc- or pair-)colored graph G and returns
(a coloring that is equivalent to) χ2

WL[G]. This can be
implemented in time O(n3 log n) (see [27]).

D. Group Theory

In this subsection, we introduce the group-theoretic no-
tions required in this work. For a general background on
group theory we refer to [28], whereas background on
permutation groups can be found in [29].

Permutation groups: A permutation group acting on a
set Ω is a subgroup Γ ≤ Sym(Ω) of the symmetric group.
The size of the permutation domain Ω is called the degree
of Γ. If Ω = [n], then we also write Sn instead of Sym(Ω).
For γ ∈ Γ and α ∈ Ω we denote by αγ the image of α
under the permutation γ. The set αΓ = {αγ | γ ∈ Γ} is the
orbit of α.

For α ∈ Ω the group Γα = {γ ∈ Γ | αγ = α} ≤ Γ is the
stabilizer of α in Γ. The pointwise stabilizer of a set A ⊆ Ω
is the subgroup Γ(A) = {γ ∈ Γ | ∀α ∈ A : αγ = α}. For
A ⊆ Ω and γ ∈ Γ let Aγ = {αγ | α ∈ A}. The set A is
Γ-invariant if Aγ = A for all γ ∈ Γ.

For A ⊆ Ω and a bijection θ : Ω → Ω′ we denote by
θ[A] the restriction of θ to the domain A. For a Γ-invariant
set A ⊆ Ω, we denote by Γ[A] := {γ[A] | γ ∈ Γ} the
induced action of Γ on A, i.e., the group obtained from Γ by
restricting all permutations to A. More generally, for every
set Λ of bijections with domain Ω, we denote by Λ[A] :=
{θ[A] | θ ∈ Λ}.

Let Γ ≤ Sym(Ω) and Γ′ ≤ Sym(Ω′). A homomorphism
is a mapping ϕ : Γ → Γ′ such that ϕ(γ)ϕ(δ) = ϕ(γδ)
for all γ, δ ∈ Γ. A bijective homomorphism is also called
isomorphism. For γ ∈ Γ we denote by γϕ the ϕ-image of
γ. Similarly, for ∆ ≤ Γ we denote by ∆ϕ the ϕ-image of
∆ (note that ∆ϕ is a subgroup of Γ′).

Algorithms for permutation groups: We review some
basic facts about algorithms for permutation groups. For
detailed information we refer to [30].

In order to perform computational tasks for permutation
groups efficiently the groups are represented by generating
sets of small size. Indeed, most algorithms are based on so-
called strong generating sets, which can be chosen of size
quadratic in the size of the permutation domain of the group
and can be computed in polynomial time given an arbitrary
generating set (see, e.g., [30]).

Theorem II.2 (cf. [30]). Let Γ ≤ Sym(Ω) and let S be
a generating set for Γ. Then the following tasks can be
performed in time polynomial in n and |S|:

1) compute the order of Γ,
2) given γ ∈ Sym(Ω), test whether γ ∈ Γ,

3) compute the orbits of Γ, and
4) given A ⊆ Ω, compute a generating set for Γ(A).

Groups with restricted composition factors: In this
work, we shall be interested in a particular subclass of per-
mutation groups, namely groups with restricted composition
factors. Let Γ be a group. A subnormal series is a sequence
of subgroups Γ = Γ0 D Γ1 D · · · D Γk = {id}. The
length of the series is k and the groups Γi−1/Γi are the
factor groups of the series, i ∈ [k]. A composition series
is a strictly decreasing subnormal series of maximal length.
For every finite group Γ all composition series have the same
family (considered as a multiset) of factor groups (cf. [28]).
A composition factor of a finite group Γ is a factor group
of a composition series of Γ.

Definition II.3. For d ≥ 2 let Γ̂d denote the class of
all groups Γ for which every composition factor of Γ is
isomorphic to a subgroup of Sd.

We want to stress the fact that there are two similar
classes of groups that have been used in the literature both
typically denoted by Γd. One of these is the class introduced
by Luks [3] that we denote by Γ̂d, while the other one
used in [31] in particular allows composition factors that
are simple groups of Lie type of bounded dimension.

Lemma II.4 (Luks [3]). Let Γ ∈ Γ̂d. Then
1) ∆ ∈ Γ̂d for every subgroup ∆ ≤ Γ, and
2) Γϕ ∈ Γ̂d for every homomorphism ϕ : Γ→ ∆.

III. GROUP-THEORETIC TECHNIQUES FOR
ISOMORPHISM TESTING

Next, we present several group-theoretic tools in the
context of isomorphism testing which are exploited by our
algorithm testing isomorphism for graph classes that exclude
a fixed minor. The dependencies between the main results
leading to this paper are shown in Figure 1.

A. Hypergraph Isomorphism

Two hypergraphs H1 = (V1, E1) and H2 = (V2, E2) are
isomorphic if there is a bijection ϕ : V1 → V2 such that
E ∈ E1 if and only if Eϕ ∈ E2 for all E ∈ 2V1 (where Eϕ :=
{ϕ(v) | v ∈ E} and 2V1 denotes the power set of V1). We
write ϕ : H1

∼= H2 to denote that ϕ is an isomorphism from
H1 to H2. Consistent with previous notation, we denote by
Iso(H1,H2) the set of isomorphisms from H1 to H2. More
generally, for Γ ≤ Sym(V1) and a bijection θ : V1 → V2,
we define

IsoΓθ(H1,H2) := {ϕ ∈ Γθ | ϕ : H1
∼= H2}.

The set IsoΓθ(H1,H2) is either empty, or it is a coset
of AutΓ(H1) := IsoΓ(H1,H1), i.e., IsoΓθ(H1,H2) =
AutΓ(H1)ϕ where ϕ ∈ IsoΓθ(H1,H2) is an arbitrary
isomorphism. As a result, the set IsoΓθ(H1,H2) can be
represented efficiently by a generating set for AutΓ(H1) and

GI in time nO(d) [3]

GI in quasipolynomial time [1]

GI in time npolylog(d) [14]

GI parameterized by
tree-width in FPT [10]

Group-theoretic GI test for
bounded tree-width [17]

Hypergraph Isomorphism
for Γ̂d-groups [15]

Decompositions with
labeling cosets [18], [16]

This paper

Figure 1. Dependencies between the main results leading to this paper.

a single isomorphism ϕ ∈ IsoΓθ(H1,H2). In the remainder
of this work, all sets of isomorphisms are represented in this
way.

Theorem III.1 ([15, Corollary 16]). Let H1 = (V1, E1)
and H2 = (V2, E2) be two hypergraphs and let Γ ≤
Sym(V1) be a Γ̂d-group and θ : V1 → V2 a bijection. Then
IsoΓθ(H1,H2) can be computed in time (n + m)O((log d)c)

for some absolute constant c where n := |V1| and m := |E1|.

B. Coset-Labeled Hypergraphs

Actually, for the applications in this paper, the Hypergraph
Isomorphism Problem itself turns out to be insufficient.
Instead, we require a generalization of the problem that is,
for example, motivated by graph decomposition approaches
to graph isomorphism testing (see, e.g., [17], [16]). Let G1

and G2 be two graphs and suppose that an algorithm has
already computed sets D1 ⊆ V (G1) and D2 ⊆ V (G2) in an
isomorphism-invariant way, i.e., each isomorphism from G1

to G2 also maps D1 to D2. Moreover, assume that G1−D1

is not connected and let Zi1, . . . , Z
i
` be the connected com-

ponents of Gi − Di (without loss of generality G1 − D1

and G2 − D2 have the same number of connected com-
ponents, otherwise the graphs are non-isomorphic). Also,
let Sij := NGi(Z

i
j) for all j ∈ [`] and i ∈ {1, 2}. A

natural strategy for an algorithm is to recursively compute
representations for Iso(G1[Z1

j1
∪S1

j1
], G2[Z2

j2
∪S2

j2
]) for all

j1, j2 ∈ [`]. Then, in the second step, the algorithm needs to
compute all isomorphisms ϕ : G1[D1] ∼= G2[D2] such that
there is a bijection σ : [`]→ [`] satisfying

1) (S1
j)ϕ = S2

σ(j), and
2) the restriction ϕ[S1

j] extends to an isomorphism from
G1[Z1

j ∪S1
j] to G2[Z2

σ(j) ∪S
2
σ(j)] (in the natural way)

for all j ∈ [`].

Let us first discuss a simplified case where S1
j1
6= S1

j2
for all distinct j1, j2 ∈ [`]. In this situation the first
property naturally translates to an instance of the Hypergraph
Isomorphism Problem (in particular, the bijection σ is unique
for any given bijection ϕ). However, for the second property,
we also need to be able to put restrictions on how two
hyperedges can be mapped to each other. Towards this
end, we consider hypergraphs with coset-labeled hyperedges
where each hyperedge is additionally labeled by a coset.

A labeling of a set V is a bijection ρ : V → {1, . . . , |V |}.
A labeling coset of a set V is a set Λ consisting of labelings
such that Λ = ∆ρ := {δρ | δ ∈ ∆} for some group ∆ ≤
Sym(V) and some labeling ρ : V → {1, . . . , |V |}. Observe
that each labeling coset ∆ρ can also be written as ρΘ :=
{ρθ | θ ∈ Θ} where Θ := ρ−1∆ρ ≤ S|V |.

Definition III.2 (Coset-Labeled Hypergraph). A coset-
labeled hypergraph is a tuple H = (V, E , p) where V is
a finite set of vertices, E ⊆ 2V is a set of hyperedges,
and p is a function that associates with each E ∈ E a pair
p(E) = (ρΘ, c) consisting of a labeling coset of E and a
natural number c ∈ N.

Two coset-labeled hypergraphs H1 = (V1, E1, p1) and
H2 = (V2, E2, p2) are isomorphic if there is a bijection
ϕ : V1 → V2 such that

1) E ∈ E1 if and only if Eϕ ∈ E2 for all E ∈ 2V1 , and
2) for all E ∈ E1 with p1(E) = (ρ1Θ1, c1) and

p2(Eϕ) = (ρ2Θ2, c2) we have c1 = c2 and

ϕ[E]−1ρ1Θ1 = ρ2Θ2. (1)

In this case, ϕ is an isomorphism from H1 to H2, denoted
by ϕ : H1

∼= H2. Observe that (1) is equivalent to c1 = c2,
Θ1 = Θ2 and ϕ[E] ∈ ρ1Θ1ρ

−1
2 . For Γ ≤ Sym(V1) and a

bijection θ : V1 → V2 let

IsoΓθ(H1,H2) := {ϕ ∈ Γθ | ϕ : H1
∼= H2}.

Note that, for two coset-labeled hypergraphs H1 and
H2, the set of isomorphisms Iso(H1,H2) forms a coset
of Aut(H1) and therefore, it again admits a compact rep-
resentation. Indeed, this is a crucial feature of the above
definition that again allows the application of group-theoretic
techniques.

The next theorem is an immediate consequence of [32,
Theorem 6.6.7] and Theorem III.1.

Theorem III.3. Let H1 = (V1, E1, p1) and H2 =
(V2, E2, p2) be two coset-labeled hypergraphs such that for
all E ∈ E1 ∪ E2 it holds |E| ≤ d. Also let Γ ≤ Sym(V1) be
a Γ̂d-group and θ : V1 → V2 a bijection.

Then IsoΓθ(H1,H2) can be computed in time (n +
m)O((log d)c) for some absolute constant c where n := |V1|
and m := |E1|.

C. Multiple-Labeling-Cosets

The last theorem covers the problem discussed in the
beginning of the previous subsection assuming that all
separators of the first graph are distinct, i.e., S1

j1
6= S1

j2
for all distinct j1, j2 ∈ [`]. In this subsection, we consider
the case in which S1

j1
= S1

j2
for all j1, j2 ∈ [`]. In order

to handle the case of identical separators, we build on a
framework considered in [18], [16]. (The mixed case in
which some, but not all, separators coincide can be handled
by a mixture of both techniques.)

Definition III.4 (Multiple-Labeling-Coset). A multiple-
labeling-coset is a tuple X = (V,L, p) where L =
{ρ1Θ1, . . . , ρtΘt} is a set of labeling cosets ρiΘi, i ∈ [t],
of the set V and p : L → N is a function that assigns each
labeling coset ρΘ ∈ L a natural number p(ρΘ) = c.

Two multiple-labeling-cosets X1 = (V1, L1, p1) and X2 =
(V2, L2, p2) are isomorphic if there is a bijection ϕ : V1 →
V2 such that (

ρΘ ∈ L1 ∧ p1(ρΘ) = c
)

⇐⇒
(
ϕ−1ρΘ ∈ L2 ∧ p2(ϕ−1ρΘ) = c

) (2)

for all labeling cosets ρΘ of V and all c ∈ N. In this case, ϕ
is an isomorphism from X1 to X2, denoted by ϕ : X1

∼= X2.
Observe that (2) is equivalent to |L1| = |L2| and for each
ρ1Θ1 ∈ L1 there is a ρ2Θ2 ∈ L2 such that p1(ρ1Θ1) =
p2(ρ2Θ2) and Θ1 = Θ2 and ϕ ∈ ρ1Θ1ρ

−1
2 . Let

Iso(X1,X2) := {ϕ : V1 → V2 | ϕ : X1
∼= X2}

Again, the set of isomorphisms Iso(X1,X2) forms a coset
of Aut(X1) := Iso(X1,X1) and therefore, it again admits a
compact representation.

Theorem III.5 ([16]). Let X1 = (V1, L1, p1) and X2 =
(V2, L2, p2) be two multiple-labeling cosets.

Then Iso(X1,X2) can be computed in time (n +
m)O((logn)c) for some absolute constant c where n := |V1|
and m := |L1|.

D. Allowing Color Refinement to Split Small Color Classes

In order to be able to apply the decomposition framework
outlined above, an algorithm first needs to compute an
isomorphism-invariant subset D ⊆ V (G) such that NG(Z)
is sufficiently small for every connected component Z of
the graph G − D. Moreover, the application of Theorem
III.3 additionally requires a Γ̂d-group that restricts the set
of possible automorphisms for the set D. Both problems are
tackled building on the notion of t-CR-bounded graphs. This
class of graphs has been recently introduced by the second
author of this paper [15] and has already been exploited for
isomorphism testing of graphs of bounded genus which form
an important subfamily of graph classes excluding a fixed
graph as a minor.

Intuitively speaking, a vertex-colored graph (G,χ) is t-
CR-bounded, t ∈ N, if it possible to obtain a discrete vertex-
coloring (a vertex-coloring is discrete if each vertex has
a distinct color) for the graph by iteratively applying the
following two operations:
• applying the Color Refinement algorithm, and
• picking a color class [v]χ := {w ∈ V (G) | χ(v) =
χ(w)} for some vertex v ∈ V (G) where |[v]χ| ≤ t and
individualizing each vertex in that class (every vertex
in that color class is assigned a distinct color).

In this work, we exploit the ideas behind t-CR-bounded
graphs to define a closure operator. Given an initial set X ⊆
V (G), all vertices from X are first individualized before
applying the operators of the t-CR-bounded definition. The
closure of the set X (with respect to the parameter t) then
contains all singleton vertices after the refinement procedure
stabilizes.

Definition III.6. Let (G,χV , χE) be a vertex- and arc-
colored graph and X ⊆ V (G). Let (χi)i≥0 be the sequence
of vertex-colorings where

χ0(v) :=

{
(v, 1) if v ∈ X

(χV (v), 0) otherwise
,

χ2i+1 := χ1
WL[G,χ2i, χE] and

χ2i+2(v) :=

{
(v, 1) if |[v]χ2i+1

| ≤ t

(χ2i+1(v), 0) otherwise

for all i ≥ 0. Since χi+1 � χi for all i ≥ 0 there is some
minimal i∗ such that χi∗ ≡ χi∗+1. We define

cl
(G,χV ,χE)
t (X) := {v ∈ V (G) | |[v]χi∗ | = 1} .

For a sequence of vertices v1, . . . , vk ∈ V (G) we also de-
note cl

(G,χV ,χE)
t (v1, . . . , vk) := cl

(G,χV ,χE)
t ({v1, . . . , vk}).

We usually omit the vertex- and arc-colorings and simply
write clGt instead of cl

(G,χV ,χE)
t .

For applications in graph classes with an excluded minor it
turns out to be useful to combine the concept of clGt with the
2-dimensional Weisfeiler-Leman algorithm. More precisely,
in order to increase the scope of the set clGt , information
computed by the 2-dimensional Weisfeiler-Leman algorithm
are taken into account. Since the 2-dimensional Weisfeiler-
Leman algorithm computes a pair-coloring, we extend the
definition of clGt to pair-colored graphs. For a pair-colored
graph (G,χ) we define cl

(G,χ)
t := cl

(Kn,χ̃)
t where Kn

is the complete graph on the same vertex set V (G) and
χ̃(v, w) = (atp(v, w), χ(v, w)) where atp(v, w) = 0 if
v = w, atp(v, w) = 1 if vw ∈ E(G), and atp(v, w) = 2
otherwise. This allows us to take all pair-colors into account
for the Color Refinement algorithm, but also still respect the
edges of the input graph G.

It can be shown that for each t-CR-bounded graph G
it holds that Aut(G) ∈ Γ̂t. Moreover, there is an algo-
rithm that, given a graph G, computes a Γ̂t-group Γ ≤
Sym(V (G)) such that Aut(G) ≤ Γ in time npolylog(t) where
n is the number of vertices of G. It is important for our
techniques that this statement generalizes to t-CR-bounded
pairs (G,X) for which we already have a good knowledge
of the structure of X in form of a Γ̂t-group of Γ ≤ Sym(X)
as stated in the following theorem.

Theorem III.7 ([15]). Let G1, G2 be two graphs and let
X1 ⊆ V (G1) and X2 ⊆ V (G2). Also, let Γ ≤ Sym(X1)
be a Γ̂t-group and θ : X1 → X2 a bijection. Moreover, let
Di := clGi

t (Xi) for i ∈ {1, 2} and define Γ′θ′ := {ϕ ∈
Iso((G1, X1), (G2, X2)) | ϕ[X1] ∈ Γθ}[D1].

Then Γ′ ∈ Γ̂t. Moreover, there is an algorithm computing
a Γ̂t-group ∆ ≤ Sym(D1) and a bijection δ : D1 → D2

such that Γ′θ′ ⊆ ∆δ in time nO((log t)c) for some absolute
constant c where n := |V (G1)|.

IV. EXPLOITING THE STRUCTURE OF GRAPHS
EXCLUDING A MINOR

A. Overview

In the following, we give a more detailed description of
the high-level strategy for building a faster isomorphism test
for graph classes that exclude a fixed minor. In particular,
we state the two main technical theorems which build the
groundwork for the isomorphism test.

The basic idea for our isomorphism test is to follow the
decomposition framework outlined in the previous section.
Let G1 and G2 be two connected graphs that exclude Kh

as a minor (note that it is always possible to restrict to
connected graphs by considering the connected components
of the input graphs separately). To apply the decomposition
framework outlined in the previous section, we need to
compute subsets Di ⊆ V (Gi), i ∈ {1, 2}, such that

Xi

Di

Zi1

Zi2

Zi3

Si1

Zi4

Si4

Zi7

Zi6

Zi5

Si5

Figure 2. Visualization of the graph decomposition.

1) the subsets D1, D2 are isomorphism-invariant, i.e.,
Dϕ

1 = D2 for all ϕ ∈ Iso(G1, G2),
2) for each connected component Zi of Gi−Di it holds
|NGi

(Zi)| < h and,
3) one can efficiently compute a Γ̂d-group ∆ ≤

Sym(D1) and a bijection δ : D1 → D2 such that
Iso(G1, G2)[D1] ⊆ ∆δ.

In such a setting, the decomposition framework can be
applied as follows (see also Figure 2). For every pair of
connected components Z1

j1
and Z2

j2
of G1−D1 and G2−D2,

respectively, the algorithm recursively computes the set of
isomorphisms from G1[Z1

j1
∪ S1

j1
] to G2[Z2

j2
∪ S2

j2
] where

Siji := NGi(Z
i
ji

), i ∈ {1, 2}. Then, the set of isomorphisms
from G1 to G2 can be computed by combining Theorem
III.5 and III.3. Recall that Theorem III.5 handles the case in
which S1

j1
= S1

j2
for all connected components Z1

j1
, Z1

j2
of

G1−D1. To achieve the desired running time for this case,
we exploit Property 2. For Theorem III.3, which handles the
case of distinct separators S1

j1
6= S1

j2
, we require sufficient

structural information of the sets D1 and D2. More precisely,
we require Property 3 to ensure the desired time bound.

Now, we turn to the question how to find the sets D1 and
D2 satisfying Property 1, 2 and 3. The central idea is to
build on the closure operator clGi

t (where t is polynomially
bounded in h). We construct the sets by computing the
closure Di := clGi

t (Xi) for some suitable initial set Xi.
The first key insight is that this process of growing the sets
Xi can only be stopped by separators of small size which
ensures Property 2.

Theorem IV.1. Let G be a graph that excludes Kh as a
topological subgraph and let X ⊆ V (G). Let t ≥ 3h3 and
define D := clGt (X). Let Z be the vertex set of a connected
component of G−D. Then |NG(Z)| < h.

Observe that the theorem addresses graphs that only
exclude Kh as a topological subgraph which is a weaker
requirement than excluding Kh as a minor. As a central tool,
it is argued that graphs, for which all color classes under the

Color Refinement algorithm are large, contain large numbers
of vertex-disjoint trees with predefined color patterns. The
vertex-disjoint trees then allow for the construction of a
topological minor on the vertex set NG(Z).

In order to ensure Property 3, we need sufficient structural
information for the sets Di, i ∈ {1, 2}. Using Theorem III.7,
we are able to extend structural information in form of a Γ̂d-
group from the sets Xi to the supersets Di ⊇ Xi, i ∈ {1, 2}.

Hence, the main task that remains to be solved is
the computation of the initial isomorphism-invariant sets
X1 and X2 as well as suitable restrictions on the set
Iso(G1, G2)[X1] = {ϕ[X1] | ϕ ∈ Iso(G1, G2)}. Ideally,
one would like to compute a Γ̂d-group Γ ≤ Sym(X1) and
a bijection θ : X1 → X2 such that Iso(G1, G2)[X1] ⊆ Γθ.
But this is not always possible. For example, for a cycle Cp
of length p where p is a prime number, it is only possible
to choose X = V (Cp) (because Cp is vertex-transitive) and
Aut(Cp) /∈ Γ̂d for all p > d.

However, we are able to prove that there are isomorphism-
invariant sets X1 and X2 such that, after individualizing
a single vertex v1 ∈ X1 and v2 ∈ X2 in each input
graph, the set Iso((G1, v1), (G2, v2))[X1] = {ϕ[X1] | ϕ ∈
Iso(G1, G2), vϕ1 = v2} has the desired structure. This is
achieved by the next theorem which forms the second main
technical contribution of this paper and again relies on the
closure operator clGt . Recall the definition of the constant a
from Theorem II.1. Without loss of generality assume a ≥ 2.

Theorem IV.2. Let t ≥ (ah log h)3. There is a polynomial-
time algorithm that, given a connected vertex-colored graph
G, either correctly concludes that G has a minor isomorphic
to Kh or computes a pair-colored graph (G′, χ′) and a set
X ⊆ V (G′) such that

1) X = {v ∈ V (G′) | χ′(v, v) = c} for some color
c ∈ {χ′(v, v) | v ∈ V (G′)},

2) X ⊆ cl
(G′,χ′)
t (v) for every v ∈ X , and

3) X ⊆ V (G).

Moreover, the output of the algorithm is isomorphism-
invariant with respect to G.

Observe that Property 1 and 2 of the theorem imply that
(Aut(G))v[X] ∈ Γ̂t for all v ∈ X by Theorem III.7.

For technical reasons, the theorem actually provides a
second graph (G′i, χ

′
i) for both input graphs Gi. Intuitively

speaking, one can think of G′i as an extension of Gi which
allows us to build additional structural information about Gi
into the graph structure of G′i.

Following the general strategy outlined above and build-
ing on both theorems, we can show the main result of this
paper.

Theorem IV.3. Let h ∈ N. There is an algorithm that, given
two connected vertex-colored graphs G1, G2 with n vertices,
either correctly concludes that G1 has a minor isomorphic

to Kh or decides whether G1 is isomorphic to G2 in time
nO((log h)c) for some absolute constant c.

We remark that, by standard reduction techniques, there
is also an algorithm computing a representation for the set
Iso(G1, G2) in time nO((log h)c) assuming G1 excludes Kh

as a minor.
The proof of the last theorem also reveals some insight

into the structure of the automorphism group of a graph that
excludes Kh as a minor.

Let G be a graph. A tree decomposition for G is a pair
(T, β) where T is a rooted tree and β : V (T)→ 2V (G) such
that
(T.1) for every e ∈ E(G) there is some t ∈ V (T) such that

e ⊆ β(t), and
(T.2) for every v ∈ V (G) the graph T [{t ∈ V (T) | v ∈

β(t)}] is non-empty and connected.
The adhesion-width of (T, β) is maxt1t2∈E(T) |β(t1) ∩
β(t2)|.

Theorem IV.4. Let G be a graph that excludes Kh as a
minor. Then there is an isomorphism-invariant tree decom-
position (T, β) of G such that

1) the adhesion-width of (T, β) is at most h− 1, and
2) for all t ∈ V (T) there exists v ∈ β(t) such that

(Aut(G))v[β(t)] ∈ Γ̂d for d := d(ah log h)3e.

In the remainder of this section we provide some details
on the proofs of Theorem IV.1 and IV.2 which build the
main technical results of this work.

B. Finding Separators of Small Size

The proof of Theorem IV.1 relies on the following lemma.
For a vertex-colored graph (G,χ) and W ⊆ V (G) define

G[[χ,W]] to be the graph with vertex set V (G[[χ,W]]) :=
χ(W) and edge set E(G[[χ,W]]) := {χ(w1)χ(w2) |
w1w2 ∈ E(G[W])}.

Lemma IV.5. Let h ≥ 1. Let G be a graph and V (G) =
V1] V2 be a partition of the vertex set of G. Also let χ be
a vertex-coloring of G and suppose that

1) G excludes Kh as topological subgraph,
2) G[[χ, V2]] is connected,
3) |V1| ≥ h and NG(V2) = V1,
4) |[v]χ| = 1 for all v ∈ V1, and
5) χ is stable with respect to the Color Refinement

algorithm.
Then there is some w ∈ V2 such that |[w]χ| < 3h3.

Let us first give a proof for Theorem IV.1 based on Lemma
IV.5.

Proof of Theorem IV.1: Let χ be the final vertex-
coloring that is stable under the t-CR-bounded algorithm
with respect to the initial set X . Let Z be a connected
component of G−D and assume for sake of contradiction
that |NG(Z)| ≥ h. Let V2 := {v ∈ V (G) | χ(v) ∈ χ(Z)}

and V1 := NG(V2) and define H := G[V1 ∪ V2]. Since H
is a subgraph of G, the graph H also excludes Kh as a
topological subgraph. Moreover, |V1| ≥ |N(Z)| ≥ h. Also,
|[v]χ| = 1 for all v ∈ V1 ⊆ D = clGt (X). Finally, χ|H is
stable under the Color Refinement algorithm for the graph
H and H[[χ|H , V2]] is connected since G[Z] is connected.
By Lemma IV.5 there is some w ∈ V2 such that |[w]χ| <
3h3 ≤ t. This means that |[w]χ| = 1 since each vertex in
a color class of size smaller than t is assigned a distinct
color by the t-CR-bounded procedure. Therefore, [w]χ ⊆ D
which contradicts the fact that w ∈ V2 ⊆ V (G) \D.

Next, let us turn to Lemma IV.5. For the proof we assume
that |[w]χ| ≥ 3h3 for all w ∈ V2 and aim to construct a
topological subgraph Kh. The vertices of the topological
subgraph are located in the set V1. This leaves the task to
construct disjoint paths between vertices from V1 using the
vertices from the set V2. Actually, it turns out to be more
convenient to construct a large number of disjoint trees each
of which can be used to obtain a single path connecting two
vertices in V1.

Let G be a graph, let χ : V (G)→ C be a vertex-coloring
and let T be a tree with vertex set V (T) = C. A subgraph
H ⊆ G agrees with T if χ|V (H) : H ∼= T , i.e., the coloring
χ induces an isomorphism between H and T . Equivalently,
H agrees with T if |V (H)∩χ−1(c)| = 1 for every c ∈ C and
c1c2 ∈ E(T) if and only if H[χ−1(c1), χ−1(c2)] contains
an edge for all c1, c2 ∈ C. Observe that each H ⊆ G that
agrees with a tree T is also a tree.

The main step for proving Lemma IV.5 is the next lemma
that guarantees the existence of a large number of vertex-
disjoint trees with a predefined color pattern.

For a tree T we define V≤i(T) := {t ∈ V (T) | deg(t) ≤
i} and V≥i(T) := {t ∈ V (T) | deg(t) ≥ i}. It is well known
that for trees T it holds that |V≥3(T)| ≤ |V≤1(T)|.

Also, for a graph G and two disjoint sets A,B ⊆
V (G) let G[A,B] be the bipartite graph with vertex set
V (G[A,B]) := A ∪ B and E(G[A,B]) := {vw | v ∈
A,w ∈ B, vw ∈ E(G)}. A bipartite G = (V,W,E) is
biregular if deg(v1) = deg(v2) for all v1, v2 ∈ V and
deg(w1) = deg(w2) for all w1, w2 ∈W .

Lemma IV.6. Let G be a graph, let χ : V (G) → C
be a vertex-coloring and let T be a tree with vertex set
V (T) = C. Assume that G[χ−1(c1), χ−1(c2)] is a non-
empty biregular graph for every c1c2 ∈ E(T). Let m :=
minc∈C |χ−1(c)| and let ` := 2|V≤1(T)|+ |V≥3(T)|.

Then there are (at least) bm` c pairwise vertex-disjoint
trees in G that agree with T .

A proof of this lemma can be found in the full version
[24].

Proof of Lemma IV.5: Consider the graph H :=
G[[χ, V2]] which is connected. Let v1, . . . , vh ∈ V1 be
distinct vertices and let w1, . . . , wh ∈ V2 such that viwi ∈
E(G). Note that [wi]χ ⊆ N(vi) for all i ∈ [h] since χ

is stable with respect to the Color Refinement algorithm.
Also define ci = χ(wi). Now let T ⊆ H be a Steiner tree
for {c1, . . . , ch}, i.e., a tree that contains all the vertices
c1, . . . , ch and is minimal with respect to the subgraph
relation. Hence, T is a tree with c1, . . . , ch ∈ V (T) and
|V≤1(T)| ≤ h. This also implies that |V≥3(T)| ≤ h.

Now let ` := 2|V≤1(T)| + |V≥3(T)| ≤ 3h. Assume for
the sake of contradiction that m := minc∈V (T) |χ−1(c)| ≥
3h3. Also note that G[χ−1(t1), χ−1(t2)] is biregular and
non-trivial for all t1t2 ∈ E(T). By Lemma IV.6, there are
k := bm` c ≥ h2 pairwise vertex-disjoint trees H1, . . . ,Hk

that agree with T . But this gives a topological subgraph
Kh of the graph G. For each unordered pair vivj , i, j ∈
[h], and each Hp, p ∈ [k], there is a path in the graph
Hp from a vertex w′i ∈ [wi]χ ⊆ N(vi) to a vertex w′j ∈
[wj]χ ⊆ N(vj). Therefore, for each unordered pair vivj ,
i, j ∈ [h], there is a path from vi to vj in G and these paths
are internally vertex disjoint (since H1, . . . ,Hk are pairwise
vertex-disjoint trees).

C. Finding an Initial Color Class
Next, we give an overview on the proof of Theorem IV.2.

The proof builds on the 2-dimensional Weisfeiler-Leman
algorithm and requires some additional notation. Let G be
a graph and let χ := χ2

WL[G] the coloring computed by
the 2-dimensional Weisfeiler-Leman algorithm. We refer to
CV := CV (G,χ) := {χ(v, v) | v ∈ V (G)} as the set of ver-
tex colors and CE := CE(G,χ) := {χ(v, w) | vw ∈ E(G)}
as the set of edge colors. For a vertex color c ∈ CV (G,χ),
we define Vc := Vc(G,χ) := {v ∈ V (G) | χ(v, v) = c}
as the set of all vertices with color c. Similar, for an edge
color c ∈ CE(G,χ) we define Ec := Ec(G,χ) := {v1v2 ∈
E(G) | χ(v1, v2) = c}. Let c ∈ CE be an edge color. We
define the graph G[c] with vertex set

V (G[c]) :=
⋃
e∈Ec

e

and edge set
E(G[c]) := Ec.

Note that the endvertices of all c-colored edges have the
same vertex colors, that is, for all edges vw, v′w′ ∈ E(G)
with χ(v, w) = χ(v′, w′) = c we have χ(v, v) = χ(v′, v′)
and χ(w,w) = χ(w′, w′). This implies 1 ≤ |CV (G[c], χ)| ≤
2. We say that G[c] is unicolored if |CV (G[c], χ)| = 1.
Otherwise G[c] is called bicolored.

For the moment, suppose there is an edge color c ∈ CE
such that G[c] is connected. First assume G[c] is unicolored.
Then G[c] is d-regular for some natural number d. Moreover,
d ≤ ah log h by Theorem II.1. Then V (G[c]) = cl

G[c]
t (v) ⊆

cl
(G,χ)
t (v) for all v ∈ V (G[c]) and t ≥ d. Hence, setting

(G′, χ′) := (G,χ) and X := V (G[c]) proves Theorem IV.2.
A similar strategy also works if there is some edge color

c ∈ CE such that G[c] is bicolored and connected as the
next lemma indicates.

Lemma IV.7. Let t ≥ (ah log h)2. Let G = (V1, V2, E) be
a connected bipartite graph that excludes Kh as a minor
and define χ := χ2

WL[G]. Suppose that χ(v1, v2) = χ(v′1, v
′
2)

for all (v1, v2), (v′1, v
′
2) ∈ V1 × V2 with v1v2, v

′
1v
′
2 ∈ E.

Also assume that |V1| ≤ |V2|. Then V1 ⊆ cl
(G,χ)
t (v) for all

v ∈ V1 ∪ V2.

Now let c ∈ CE be an edge color and let A be the vertex
set of a connected component of G[c]. We define a size
parameter for the graph G[c] as

s(c) := min
d∈CV (G[c],χ)

|A ∩ Vd|.

Note that this is well-defined since every two connected
components of G[c] are equivalent with respect to the 2-
dimensional Weisfeiler-Leman algorithm.

Proof Sketch of Theorem IV.2: The above arguments
already handle the case in which G[c] is connected for some
edge color c. Hence, we can assume that for all edge colors
c the graph G[c] is not connected. We distinguish two cases.

First suppose there is some edge color c ∈ CE such that
s(c) ≤ ah3 (where a is the constant from Theorem II.1).
In this case the algorithm works by recursion. Choose an
edge color c ∈ CE such that s(c) ≤ ah3 (to ensure that the
color in CE is chosen in an isomorphism-invariant way, the
algorithm chooses the smallest color in CE ⊆ N according
to the ordering of natural numbers) and let A1, . . . , A` be
connected components of G[c]. Also, let F be the graph ob-
tained from G by contracting each of the sets Ai to a single
vertex. The algorithm recursively computes an isomorphism-
invariant graph (F ′, χ′F) and a set XF ⊆ V (F ′) that satisfies
Properties 1, 2 and 3 with respect to the input graph F . (If
F contains a minor Kh, then G also contains a minor Kh

since F is a minor of G.) If XF ⊆ V (G), then the algorithm
simply returns (F ′, χ′F) and the set XF .

Otherwise, XF ∩ {A1, . . . , A`} 6= ∅. Let d :=
argmind∈CV (G,χ),Ai∩Vd 6=∅ |Ai ∩ Vd| for some i ∈ [`]. This
means s(c) = |Ai ∩Vd|. The algorithm constructs G′ where

V (G′) := V (F ′)]
⋃

A∈XF∩{A1,...,A`}

(A ∩ Vd)

and

E(G′) := E(F ′)

∪ {Av | A ∈ XF ∩ {A1, . . . , A`}, v ∈ A ∩ Vd}.

Also, χ′(v, w) := (χ′F (v, w), 0) for every v, w ∈ V (F ′),
χ′(w, v) = χ′(v, w) := (1, 1) for all distinct v ∈ V (G′),
w ∈ V (G′) \ V (F ′), and χ′(v, v) := (0, 1) for every
v ∈ V (G′) \ V (F ′). Clearly, (G′, χ′) is constructed in
an isomorphism-invariant manner. The algorithm returns
(G′, χ′) together with set X := V (G′) \ V (F ′). It is easy
to verify that all desired properties are satisfied.

In the other case s(c) ≥ ah3 for all edge colors c ∈
CE . Let d := argmind∈CV

|Vd| and define X := Vd to

be a smallest color class (as before, if this color is not
unique, then the algorithm chooses the smallest color in
CV ⊆ N with minimal color class size). Now suppose that
(G′, χ′) := (G,χ) together with the set X does not satisfy
Property 2 (otherwise the algorithm is done since Properties
1 and 3 are clearly satisfied). The central claim is that in
this situation one can compute a vertex-coloring λ that is
strictly finer than the one induced by χ. The algorithm then
updates the coloring χ taking the vertex-colors according
to λ into account and running the 2-dimensional Weisfeiler-
Leman algorithm again. Note that this procedure can only
be repeated at most n−1 times which means that eventually
one of the other cases must be satisfied giving the desired
outcome.

The basic idea for computing the coloring λ builds on
Theorem IV.1. Let c ∈ CE be an edge color such that
X ⊆ V (G[c]) and let A1, . . . , A` be the vertex sets of
the connected components of G[c]. Also let v ∈ Ai ∩ X .
Then Ai ∩ X ⊆ cl

(G,χ)
t (v) by Lemma IV.7. In particular,

Di := cl
(G,χ)
t (v) = cl

(G,χ)
t (v′) for all v′ ∈ Ai ∩ X .

Moreover, either Aj ∩ X ⊆ Di or Aj ∩ Di = ∅ for all
j ∈ [`] by Lemma IV.7.

For simplicity assume that the second option is satisfied
for all i, j ∈ [`] with i 6= j. The general proof strategy
is similar, but slightly more involved. Also observe that
the second option has to be satisfied at least once by our
assumption that X 6⊆ cl

(G,χ)
t (v) for some v ∈ X .

Now each pair i, j ∈ [`], i 6= j, can be associated with
the set Sij := NG(Zij) where Zij denotes the connected
the component of G−Di which contains Aj . Observe that
|Sij | < h by Theorem IV.1.

In order to describe the coloring λ, the algorithm aims at
collecting a small family of these sets. Towards this end, we
define an isomorphism-invariant minor H of G with vertex
set V (H) := {A1, . . . , A`}. In turn, this allows us to define
an isomorphism-invariant set

Y :=
⋃

AiAj∈E(H)

Sij ∪ S
j
i .

Crucially,

|Y | < 2 · |E(H)| ·h ≤ ah2 log h · ` ≤ ah2 log h · |X|
ah3
≤ |X|

by Theorem II.1 and the fact that s(c) ≥ ah3. Since X
was defined to be the smallest color class this implies that
the vertex-coloring induced by χ can be refined to a vertex-
coloring λ by taking membership in Y into account. More
precisely, define λ(v) := (χ(v, v), 1) for all v ∈ Y and
λ(v) := (χ(v, v), 0) for all v ∈ V (G) \ Y . Then

min
d∈im(λ)

|λ−1(d)| ≤ |Y | < |X| = min
d∈CV (G,χ)

|Vd|

which implies that λ strictly refines the vertex-coloring
induced by χ as desired.

As before, all missing details can be found in the full
version [24].

V. CONCLUSION

We presented an isomorphism test for graph classes that
exclude Kh as a minor running in time npolylog(h). The
algorithm builds on group-theoretic methods from [15],
[16] as well as novel insights on the isomorphism-invariant
structure of graphs excluding the minor Kh.

A number of interesting questions remain. The first ques-
tion concerns the isomorphism problem for graph classes
that exclude Kh as a topological subgraph. We conjecture
that there is an algorithm solving this problem in time
npolylog(h). Actually, most of the techniques developed in
this work also extend to classes that only exclude Kh as a
topological subgraph rather than as a minor. In particular,
this includes Theorem IV.1. Indeed, the only part of the
algorithm that exploits closure under taking minors is the
subroutine from Theorem IV.2 which provides the initial set
X together with sufficient structural information on this set.

The second question is whether the graph isomorphism
problem parameterized by the Hadwiger number (the maxi-
mum h such that Kh is a minor) is fixed-parameter tractable.
Note that our result is independent of such an fpt result,
because our algorithm is obviously not fpt, but it also has
no exponential dependence on h as a typical fpt-algorithm
running in time f(h) · nc has. Running times of the form
npolylog(k) for parameterized problems with input size n
and parameter k so far seem to be quite specific to the
isomorphism problem. It may be worthwhile to study them
more systematically in a broader context.

Our final question regards the structure of the automor-
phism group of graphs excluding Kh as a minor. Babai [33]
conjectured that all composition factors of such groups are
cyclic groups, alternating groups, or their size is bounded by
f(h) for some function f . Our new insights, summarized in
Theorem IV.4, significantly restrict the automorphism group
of graphs excluding Kh and could be an important step
towards proving Babai’s conjecture.

REFERENCES

[1] L. Babai, “Graph isomorphism in quasipolynomial time
[extended abstract],” in Proceedings of the 48th Annual
ACM SIGACT Symposium on Theory of Computing, STOC
2016, Cambridge, MA, USA, June 18-21, 2016, D. Wichs
and Y. Mansour, Eds. ACM, 2016, pp. 684–697. [Online].
Available: https://doi.org/10.1145/2897518.2897542

[2] L. Babai, W. M. Kantor, and E. M. Luks, “Computational
complexity and the classification of finite simple groups,”
in 24th Annual Symposium on Foundations of Computer
Science, Tucson, Arizona, USA, 7-9 November 1983. IEEE
Computer Society, 1983, pp. 162–171. [Online]. Available:
https://doi.org/10.1109/SFCS.1983.10

[3] E. M. Luks, “Isomorphism of graphs of bounded valence
can be tested in polynomial time,” J. Comput. Syst. Sci.,
vol. 25, no. 1, pp. 42–65, 1982. [Online]. Available:
https://doi.org/10.1016/0022-0000(82)90009-5

[4] J. Cai, M. Fürer, and N. Immerman, “An optimal lower
bound on the number of variables for graph identification,”
Combinatorica, vol. 12, no. 4, pp. 389–410, 1992. [Online].
Available: https://doi.org/10.1007/BF01305232

[5] B. Weisfeiler and A. Leman, “The reduction of a graph to
canonical form and the algebra which appears therein,” NTI,
Series 2, 1968, english transalation by G. Ryabov available at
https://www.iti.zcu.cz/wl2018/pdf/wl paper translation.pdf.

[6] I. S. Filotti and J. N. Mayer, “A polynomial-time algorithm
for determining the isomorphism of graphs of fixed genus
(working paper),” in Proceedings of the 12th Annual ACM
Symposium on Theory of Computing, April 28-30, 1980, Los
Angeles, California, USA, R. E. Miller, S. Ginsburg, W. A.
Burkhard, and R. J. Lipton, Eds. ACM, 1980, pp. 236–243.
[Online]. Available: https://doi.org/10.1145/800141.804671

[7] M. Grohe and P. Schweitzer, “Isomorphism testing for graphs
of bounded rank width,” in IEEE 56th Annual Symposium
on Foundations of Computer Science, FOCS 2015, Berkeley,
CA, USA, 17-20 October, 2015, V. Guruswami, Ed. IEEE
Computer Society, 2015, pp. 1010–1029. [Online]. Available:
https://doi.org/10.1109/FOCS.2015.66

[8] M. Grohe and D. Marx, “Structure theorem and isomorphism
test for graphs with excluded topological subgraphs,” SIAM
J. Comput., vol. 44, no. 1, pp. 114–159, 2015. [Online].
Available: https://doi.org/10.1137/120892234

[9] J. E. Hopcroft and R. E. Tarjan, “Isomorphism of planar
graphs,” in Proceedings of a symposium on the Complexity
of Computer Computations, held March 20-22, 1972, at
the IBM Thomas J. Watson Research Center, Yorktown
Heights, New York, USA, ser. The IBM Research Symposia
Series, R. E. Miller and J. W. Thatcher, Eds. Plenum
Press, New York, 1972, pp. 131–152. [Online]. Available:
https://doi.org/10.1007/978-1-4684-2001-2\ 13

[10] D. Lokshtanov, M. Pilipczuk, M. Pilipczuk, and S. Saurabh,
“Fixed-parameter tractable canonization and isomorphism
test for graphs of bounded treewidth,” SIAM J. Comput.,
vol. 46, no. 1, pp. 161–189, 2017. [Online]. Available:
https://doi.org/10.1137/140999980

[11] G. L. Miller, “Isomorphism testing for graphs of bounded
genus,” in Proceedings of the 12th Annual ACM Symposium
on Theory of Computing, April 28-30, 1980, Los Angeles,
California, USA, R. E. Miller, S. Ginsburg, W. A. Burkhard,
and R. J. Lipton, Eds. ACM, 1980, pp. 225–235. [Online].
Available: https://doi.org/10.1145/800141.804670

[12] I. N. Ponomarenko, “The isomorphism problem for classes
of graphs closed under contraction,” Journal of Soviet
Mathematics, vol. 55, no. 2, pp. 1621–1643, Jun 1991.
[Online]. Available: https://doi.org/10.1007/BF01098279

[13] G. L. Miller, “Isomorphism of k-contractible graphs. A
generalization of bounded valence and bounded genus,”
Information and Control, vol. 56, no. 1/2, pp. 1–20, 1983.
[Online]. Available: https://doi.org/10.1016/S0019-9958(83)
80047-3

[14] M. Grohe, D. Neuen, and P. Schweitzer, “A faster
isomorphism test for graphs of small degree,” in 59th IEEE
Annual Symposium on Foundations of Computer Science,
FOCS 2018, Paris, France, October 7-9, 2018, M. Thorup,
Ed. IEEE Computer Society, 2018, pp. 89–100. [Online].
Available: https://doi.org/10.1109/FOCS.2018.00018

[15] D. Neuen, “Hypergraph isomorphism for groups with
restricted composition factors,” in 47th International
Colloquium on Automata, Languages, and Programming,
ICALP 2020, July 8-11, 2020, Saarbrücken, Germany
(Virtual Conference), ser. LIPIcs, A. Czumaj, A. Dawar, and
E. Merelli, Eds., vol. 168. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2020, pp. 88:1–88:19. [Online].
Available: https://doi.org/10.4230/LIPIcs.ICALP.2020.88

[16] D. Wiebking, “Graph isomorphism in quasipolynomial
time parameterized by treewidth,” in 47th International
Colloquium on Automata, Languages, and Programming,
ICALP 2020, July 8-11, 2020, Saarbrücken, Germany
(Virtual Conference), ser. LIPIcs, A. Czumaj, A. Dawar, and
E. Merelli, Eds., vol. 168. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2020, pp. 103:1–103:16. [Online].
Available: https://doi.org/10.4230/LIPIcs.ICALP.2020.103

[17] M. Grohe, D. Neuen, P. Schweitzer, and D. Wiebking, “An
improved isomorphism test for bounded-tree-width graphs,”
ACM Trans. Algorithms, vol. 16, no. 3, pp. 34:1–34:31,
2020. [Online]. Available: https://doi.org/10.1145/3382082

[18] P. Schweitzer and D. Wiebking, “A unifying method
for the design of algorithms canonizing combinatorial
objects,” in Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2019, Phoenix,
AZ, USA, June 23-26, 2019, M. Charikar and E. Cohen,
Eds. ACM, 2019, pp. 1247–1258. [Online]. Available:
https://doi.org/10.1145/3313276.3316338

[19] K. Wagner, “Über eine Eigenschaft der ebenen Komplexe,”
Math. Ann., vol. 114, no. 1, pp. 570–590, 1937. [Online].
Available: https://doi.org/10.1007/BF01594196

[20] N. Robertson, P. D. Seymour, and R. Thomas, “Linkless
embeddings of graphs in 3-space,” Bull. Amer. Math. Soc.
(N.S.), vol. 28, no. 1, pp. 84–89, 1993. [Online]. Available:
https://doi.org/10.1090/S0273-0979-1993-00335-5

[21] N. Robertson and P. D. Seymour, “Graph minors I–XXIII,”
Journal of Combinatorial Theory, Series B 1982–2012.

[22] A. V. Kostochka, “Lower bound of the hadwiger number
of graphs by their average degree,” Combinatorica, vol. 4,
no. 4, pp. 307–316, 1984. [Online]. Available: https:
//doi.org/10.1007/BF02579141

[23] A. Thomason, “An extremal function for contractions of
graphs,” Math. Proc. Cambridge Philos. Soc., vol. 95,
no. 2, pp. 261–265, 1984. [Online]. Available: https:
//doi.org/10.1017/S0305004100061521

[24] M. Grohe, D. Neuen, and D. Wiebking, “Isomorphism
testing for graphs excluding small minors,” CoRR, vol.
abs/2004.07671, 2020. [Online]. Available: https://arxiv.org/
abs/2004.07671

[25] W. Mader, “Homomorphieeigenschaften und mittlere
Kantendichte von Graphen,” Math. Ann., vol. 174,
no. 4, pp. 265–268, 1967. [Online]. Available:
https://doi.org/10.1007/BF01364272

[26] C. Berkholz, P. S. Bonsma, and M. Grohe, “Tight lower
and upper bounds for the complexity of canonical colour
refinement,” Theory Comput. Syst., vol. 60, no. 4, pp.
581–614, 2017. [Online]. Available: https://doi.org/10.1007/
s00224-016-9686-0

[27] N. Immerman and E. Lander, “Describing graphs: A first-
order approach to graph canonization,” in Complexity Theory
Retrospective: In Honor of Juris Hartmanis on the Occasion
of His Sixtieth Birthday, July 5, 1988, A. L. Selman, Ed. New
York, NY: Springer New York, 1990, pp. 59–81. [Online].
Available: http://dx.doi.org/10.1007/978-1-4612-4478-3 5

[28] J. J. Rotman, An Introduction to the Theory of Groups,
4th ed., ser. Graduate Texts in Mathematics. Springer-
Verlag, New York, 1995, vol. 148. [Online]. Available:
https://doi.org/10.1007/978-1-4612-4176-8

[29] J. D. Dixon and B. Mortimer, Permutation Groups,
ser. Graduate Texts in Mathematics. Springer-Verlag,
New York, 1996, vol. 163. [Online]. Available: https:
//doi.org/10.1007/978-1-4612-0731-3

[30] A. Seress, Permutation Group Algorithms, ser. Cambridge
Tracts in Mathematics. Cambridge University Press,
Cambridge, 2003, vol. 152. [Online]. Available: https:
//doi.org/10.1017/CBO9780511546549

[31] L. Babai, P. J. Cameron, and P. P. Pálfy, “On the orders
of primitive groups with restricted nonabelian composition
factors,” J. Algebra, vol. 79, no. 1, pp. 161–168, 1982.
[Online]. Available: https://doi.org/10.1016/0021-8693(82)
90323-4

[32] D. Neuen, “The power of algorithmic approaches to the graph
isomorphism problem,” Ph.D. dissertation, RWTH Aachen
University, Aachen, Germany, 2019. [Online]. Available:
https://doi.org/10.18154/RWTH-2020-00160

[33] L. Babai, “On the abstract group of automorphisms,” in
Combinatorics (Swansea, 1981), ser. London Math. Soc.
Lecture Note Ser. Cambridge Univ. Press, Cambridge-New
York, 1981, vol. 52, pp. 1–40.

