
AIGEN: Random Generation
of Symbolic Transition Systems

Swen Jacobs1 and Mouhammad Sakr1,2

1 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
2 Saarland University, Saarbrücken, Germany

jacobs@cispa.de,sakr@react.uni-saarland.de

Abstract. AIGEN is an open source tool for the generation of tran-
sition systems in a symbolic representation. To ensure diversity, it em-
ploys a uniform random sampling over the space of all Boolean func-
tions with a given number of variables. AIGEN relies on reduced ordered
binary decision diagrams (ROBDDs) and canonical disjunctive normal
form (CDNF) as canonical representations that allow us to enumerate
Boolean functions, in the former case with an encoding that is inspired
by data structures used to implement ROBDDs. Several parameters al-
low the user to restrict generation to Boolean functions or transition
systems with certain properties, which are then output in AIGER for-
mat. We report on the use of AIGEN to generate random benchmark
problems for the reactive synthesis competition SYNTCOMP 2019, and
present a comparison of the two encodings with respect to time and
memory efficiency in practice.

1 Introduction

Verification and synthesis algorithms require benchmark problems that can be
used for testing and evaluation. Unfortunately, a diverse set of benchmarks is
very hard to obtain. This is a problem not only for tool developers, but also for
organizers of competitions [8,3,4,11] that need to evaluate tools on a wide range
of benchmarks, and to regularly search for new meaningful benchmarks.

If done properly, the generation of random benchmarks can be a solution
to this problem by providing the best possible diversity and by generating new
benchmarks whenever needed. On the other hand, random benchmarks come
with a few caveats. First of all, completely random generation is usually not
desired, since it could result in many benchmarks that, while drawn from a
diverse set, are not interesting, e.g., they may be too easy or too difficult to solve
for existing tools. Secondly, users may be interested in how their implementation
handles benchmarks with specific properties, for instance those that require long
chains of computations to reach a conclusion. Finally, if users know how realistic
benchmarks for a certain type of verification or synthesis problem usually look
like, they may want to restrict the random generation to such benchmarks, e.g.,
by forcing them to comply with certain conditions on their structure.

2 Swen Jacobs and Mouhammad Sakr

In this paper we present AIGEN, a tool for random generation of transition
systems in a symbolic representation. We generated transition systems with par-
titioned transition relation, i.e., consisting of sets of Boolean functions. We en-
sure diversity at the level of individual Boolean functions by requiring a uniform
random sampling over all Boolean functions with a given number of variables.

While for some application areas there exist tools that generate random
Boolean functions in a specific form (e.g. randomly generated propositional for-
mulas in CNF [9,16]), to the best of our knowledge none of these supports uni-
formly random distributions. The obvious benefit of this approach is that random
samplings allow to make statements about the actual space of Boolean functions,
instead of statements about a specific representation of the functions, and these
benefits extend to the random generation of transition systems.

To ensure uniform random sampling, we rely on an enumeration of all Boolean
functions with a given number of variables, based on their truth tables. From the
truth tables one can generate in a straightforward way standard canonical repre-
sentations of the functions, e.g., in canonical disjunctive normal form (CDNF) or
canonical conjunctive normal form. As a more memory-efficient alternative, we
developed an encoding that is inspired by data structures used for implementing
reduced ordered binary decision diagrams (ROBDDs).

AIGEN implements our ROBDD-based algorithm and a CDNF-based al-
gorithm. Development of AIGEN was motivated by the evaluation of reactive
synthesis tools [13], and it was used to generate benchmarks for the reactive
synthesis competition (SYNTCOMP) [11,12]. Since the existing benchmark li-
brary of SYNTCOMP consists mostly of benchmarks that were hand-crafted by
tool developers, the diversity of benchmarks is limited, and their choice may be
skewed towards problems or encodings that are well-suited for the existing tools.
Hence, as an addition to the existing hand-crafted examples, random benchmarks
are a valuable source of insight into the performance of synthesis algorithms.

Outline. We introduce BDDs and ROBDDs in Section 2. In Section 3 we present
our basic idea for the random generation of symbolic transition systems, based on
enumerating Boolean functions. In Section 4, we present a detailed description of
the ROBDD-based algorithm, and in Section 5 the algorithm based on CDNF.
Finally, in Section 6 we present a comparison between the ROBDD and the
CDNF approaches, and we give details about our implementation and how to
effectively use the tool to produce diverse benchmarks.

2 Canonical Representation of Boolean Functions

A Binary Decision Diagram (BDD) over a set of variables X is a directed acyclic
graph G = (V,E) with V ⊂ N, exactly one root vr ∈ V , and a labeling on nodes.
Each terminal node v ∈ V is labeled with a value val(v) ∈ {0, 1}. Each non-
terminal node v ∈ V is labeled with a variable var(v) ∈ X and has exactly
two outgoing edges, leading to nodes that are denoted by high(v) ∈ V and
low(v) ∈ V , respectively. Note that if v ∈ V is a non-terminal node, then the

AIGEN: Random Generation of Symbolic Transition Systems 3

directed acyclic graph rooted in v is also a BDD. It is called the sub-BDD of G
with root v.

A BDD G(V,E) over a set of variables X is ordered if on every path from
the root to a terminal node, variables in node labels occur in the same order and
each variable occurs at most once. A BDD is reduced if it does not contain any
of the following:

– non-terminal nodes v 6= w ∈ V with var(v) = var(w), low(v) = low(w) and
high(v) = high(w),

– terminal nodes v 6= w ∈ V with val(v) = val(w),
– a non-terminal node v ∈ V with low(v) = high(v).

Any ordered BDD can be transformed into a reduced BDD by using the
isomorphism and Shannon reductions (cp. [10]). A BDD that is reduced and
ordered is called a Reduced Ordered Binary Decision Diagram (ROBDD).

Note that in an ROBDD, a triple (x, high(v), low(v)) of a node v, where
x = var(v), uniquely defines a sub-ROBDD. This implies that ROBDDs are a
canonical representation of Boolean functions [10], i.e., for a fixed variable order
there is a unique ROBDD representation for every Boolean function.

3 Enumerating Boolean Functions

Based on a canonical representation of Boolean functions, we define an enumer-
ation, i.e., a bijective mapping from natural numbers to Boolean functions (or
ROBDDs), such that any procedure that produces uniformly random natural
numbers (in some range) can be used to produce uniformly random Boolean
functions (in some range, see below for details).

To define our mapping, we first describe the data structure for ROBDDs
that is used by various BDD packages. Then we will illustrate the data structure
we use for ROBDDs and how it guarantees canonicity and uniform random
distribution. In the following, we assume that X = {x1, . . . , xm} is a set of
variables with a fixed order.

Unique Table. BDD packages use the so-called unique table as a data structure
for storing ROBDD nodes. The unique table of a BDD G = (V,E) over a set of
variables X is a hash table that establishes a bijection between nodes v ∈ V and
triples (x, h, l) ∈ X × V × V that uniquely identify them, where x = val(v) if v
is a terminal node, and x = var(v) otherwise, h = high(v) and l = low(v).

Virtual ROBDD Table. We will use the ideas from the unique table that is
used in BDD packages to define the virtual ROBDD table that enumerates all
possible ROBDDs with respect to our variable order. This table can of course
not be constructed explicitly, but the idea of this table can be used to define
a (bijective) mapping from natural numbers to ROBDDs. We want to generate
random Boolean functions that are based on a uniform distribution. For this
reason the algorithm generates randomly a natural number bddID ≤ 22

m

(since
there are 22

m

different Boolean functions of type Bm → B), then computes a

4 Swen Jacobs and Mouhammad Sakr

unique triple similar to the one above that corresponds to bddID, and then
iteratively builds the complete ROBDD.

For the sake of illustrating how the algorithm computes the triple, assume
that there exists a table, called Virtual ROBDD Table (or short: VRT), that
maps natural numbers to ROBDDs, identified by a triple of variable index, and
high and low children. In other words, every entry in the table maps uniquely a
number bddID ∈ N (i.e. a BDD node) to a triple (level, high, low) where level is
a variable index, high = high(bddID), and low = low(bddID). Like the unique
table, none of the entries (i.e., ROBDDs) appears twice. However, in contrast
to the unique table, the VRT is based on the fixed variable order, and uses the
variable index in this order instead of the variable itself. Table 1 depicts a sketch
of the VRT.

Table 1. VRT: Entries in the table are in ascending order over bddID. Each row is
annotated with a level and a sublevel. Li denotes the ith level, containing all triples
with variable index i. The sublevel slij denotes the jth sublevel of Li which contains
all triples of Li in which j is the high or the low child, and the other child j′ is a
bddID that belongs to a level Li′ with i′ < i such that [j.j′] has not appeared before
in Li. Each cell in a row annotated with Li and slij is of the form (bddID)[high.low]

where bddID is the unique identifier of the triple (i, high, low). Let Y1 = 22i−1

and

Y2 =
j−1∑
m=1

2(22i−1

−m).

L0 (1)[0] (2)[1]

L1 sl11 (3)[1.2] (4)[2.1]

L2 sl21 (5)[1.2] (6)[2.1] (7)[1.3] (8)[3.1] (9)[1.4] (10)[4.1]

sl22 (11)[2.3] (12)[3.2] (13)[2.4] (14)[4.2]

sl23 (15)[3.4] (16)[4.3]

...
...

...

Li sli1 (Y1+1)[1.2] (Y1+2)[2.1] . . . (Y1+2(Y1−1))[Y1.1]
...

...

slij (Y1+Y2+1)[j.j+1] . . . (Y1+Y2+2(Y1−j))[Y1.j]
...

...

sliY1−1

...
...

Note that a bddID between 1 and 22
m

corresponds to a Boolean function with
at most m input variables, and a bddID between 22

m−1

+1 and 22
m

corresponds
to a function with exactly m input variables. Thus, to uniformly sample Boolean
functions, we can use a random number generator that uniformly samples natural
numbers in such a range.

AIGEN: Random Generation of Symbolic Transition Systems 5

(16)[4.3]

(4)[2.1] (3)[1.2]

(1)[0] (2)[1]

2:

1:

0:

Fig. 1. BDD generated for number 16. Equivalent to boolean function: x2x1 + x̄2x̄1.
The numbers on the left of the BDD represent the level i.e. corresponding variable
indices.

It is important to remember that the VRT is not constructed explicitly.
Instead, given a number of variables m, and based on the predefined order-
ing of ROBDD in the VRT (22

m

ROBDDs), the algorithm generates first a
random number bddID ≤ 22

m

, then computes the triple (level, high, low) to
which bddID maps. We note: level (or i) is equal to dlog2(log2(bddID))e. Let

Y1 = 22
i−1

, then we solve the following system of equations to compute x which
is equivalent to the sublevel:
Y1 + 2(Y1 − 1) + . . . + 2(Y1 − x) < bddID
Y1 + 2(Y1 − 1) + . . . + 2(Y1 − (x + 1)) ≥ bddID

High and low are then computed according to what is given in the table, see
Section 4 for more details. Figure 1 shows the BDD generated for bddID = 16
which is equivalent to: x2x1 + x̄2x̄1.

4 Random Generation of (Controllable) Transition
Systems

In this section we present our algorithm for generating random transition sys-
tems, represented as AIGER circuits [5]. We use a generalization of the usual
notion of transition systems that allows some of the input signals to be declared
as controllable. This is useful to define synthesis problems, i.e., a synthesis pro-
cedure can define how these inputs should behave depending on the state and
uncontrollable inputs of the system.

A controllable transition system (or short: controllable system) TS is a 6-

tuple (L,Xu, Xc, ~F ,BAD, q0), where L is a set of state variables (also called
latches), Xu is a set of uncontrollable input variables, Xc is a set of controllable

input variables, ~F = (f1, ..., f|L|) with fi : BL × BXu × BXc → B is a vector of
update functions for the latches, BAD : BL → B is the set of unsafe states, and
q0 is the initial state where all latches are initialized to 0.

Then, the idea of our tool for random generation of transition systems can
be summarized in the following way:

– The user input determines parameters of the system, such as the number of
latches and controllable or uncontrollable inputs.

6 Swen Jacobs and Mouhammad Sakr

– For every latch, we generate a random Boolean function that determines how
this latch is updated based on the current state and input of the system,
represented as ROBDD as described in Section 3.

– Additionally, we generate a random Boolean function that determines the
set of unsafe states of the system.

– The system composed of these functions is then encoded into an AIGER
circuit.

4.1 Random Generation Algorithm

The procedure GenerateRandomAiger takes as input the number of latches
l, uncontrollable inputs u, controllable inputs c, the bound o, optionally a list of
seeds (i.e., natural numbers used to initialize a pseudorandom number genera-
tor). As output it produces a file in AIGER format.

Lines 3-6 generate for every latch a random ROBDD that represents an
update function Bl+c+u → B for the latch, i.e., a function that takes all current
values of inputs and latches as input, and returns a new value for the given
latch. Line 4 generates a random integer with 2vars random bits, i.e., a natural
number between 1 and 22

vars

. All the seeds used for generating the random
integers will be written in the comment section at the end of the generated file.
These seeds can be fed to the algorithm in order to regenerate the same instance.
Line 5 constructs the ROBDD that corresponds to the generated number. Line
6 converts the constructed ROBDD into an AIG (And-Inverter Graph) relying
on the fact that a BDD can be seen as a network of multiplexers.

Lines 8-10 construct the ROBDD of the function fBAD : Bo → B which
uses o ≤ l latch variables. The set of unsafe states BAD is then defined as
f(xi1 , . . . , xio) ∧

∧
j∈{1,...,l}\{i1,...,io} xj where the indices {i1, . . . , io} are also

picked randomly. Line 11 creates the AIGER file that corresponds to the total
number of variables and to the update functions that were randomly generated.
Line 12 uses the ABC [7] tool to reduce the size of the generated AIGER file.

ConstructBDD is a recursive procedure for constructing all the nodes of
the ROBDD that corresponds to the unique ID bddID. It starts with the root
node and recursively proceeds to the child nodes until it reaches the nodes 0 or
1. Line 14 checks if the node was already created. If not, Line 15 computes the
triple (level, high, low) that uniquely represent the node and adds it to the table
robddTable. Lines 18-17 construct the child nodes. Note that the robddTable is
initialized with the IDs 1 and 2 which correspond respectively to nodes 0 and 1.

Given an ID, procedure GetChildren computes the triple (level, high, low).
Line 20 computes the level. Lines 21-24 compute the sublevel. Note that, as
depicted in Table 1, a sub-level sij has size 2(22

i−1 − j), where 22
i−1

is the sum
of the sizes of all levels that are smaller than i. To compute the sublevel, we have
to compute the single solution of the system of inequations in Lines 22,23, to see
that check the VRT table. Line 25 computes the ID of the left-most bit in the
sub-level. Lines 26-27 compute the ID of the second child node, and Lines 28-30
check which node is the low edge and which node is the high edge.

AIGEN: Random Generation of Symbolic Transition Systems 7

Algorithm 1 Generate Random Aiger

1: procedure GenerateRandomAiger(l, u, c, o)
2: vars← l + u + c, l′ = l, robddTable = [(1, 0), (2, 1)]
3: while l′ > 0 do
4: rand fct ID = random.getrandbits(2vars) + 1
5: ConstructBDD(rand fct ID, robddTable)
6: aigerTable[rand fct ID] =ConvertToAIG(rand fct ID, robddTable)
7: l′ ← l′ − 1

8: bad ID = random.getrandbits(2o) + 1
9: ConstructBDD(bad ID, robddTable)

10: aigerTable[bad ID] =ConvertToAIG(bad ID, robddTable)
11: aigerF ilePath←CreateAiger(aigerTable)
12: abcMinimize(aigerF ilePath)

13: procedure ConstructBDD(bddID, robddTable)
14: if bddID 6∈ robddTable then
15: (level, high, low)← GetChildren(bddID)
16: robddTable[bddID]← (level, high, low)
17: ConstructBDD(high)
18: ConstructBDD(low)

19: procedure GetChildren(bddID)
20: level = dlog2(log2(bddID))e
21: n← 22level−1

22: sli←ComputeASol(n + 2(n− 1) + . . . + 2(n− x) < bddID,
23: n + 2(n− 1) + . . . + 2(n− (x + 1)) ≥ bddID)
24: child1 ← sli + 1
25: sl 1 ID ← n + 2(n− 1) + . . . + 2(n− sli)
26: sle← bddID − sl 1 ID
27: child2 ← child1 + dsle/2e
28: if sle mod 2 6= 0 then
29: return (level, child1, child2)

30: return (level, child2, child1)

5 CDNF-based Algorithm

An obvious alternative to our ROBDD approach is to make use of the canonical
disjunctive or conjunctive normal forms to generate random Boolean functions.
Algorithm 2 employs CDNF as it is easier to convert to And-Inverter graph.
CDNF is usually constructed directly from a truth table by taking the OR of all
satisfying assignments. To convert a Boolean formula fi = cl1 ∨ cl2 ∨ . . .∨ cln in
CDNF to AIG, we consider its equivalent f ′

i = ¬(¬cl1 ∧ ¬cl2 ∧ . . . ∧ ¬cln).

The procedure DNFGenerateRandomAiger takes as input the number
of latches l, uncontrollable inputs u, controllable inputs c, the bound o, and
produces a file in AIGER format as output. Lines 3-6 generate a random update
function for every latch. Line 4 generates a random bit vector of size 2vars.

8 Swen Jacobs and Mouhammad Sakr

Algorithm 2 Random Aiger generation using DNF approach

1: procedure DNFGenerateRandomAiger(l, u, c, o)
2: vars← l + u + c, l′ ← 0
3: while l′ < l do
4: truthTable = random.getrandbits(2vars)
5: dnfFormula = ConstructDNF(truthTable, vars)
6: aigerTable[l′] = ConvertToAIG(dnfFormula)
7: l′ ← l′ + 1

8: badTruthTable = random.getrandbits(2o)
9: badDnfFormula = ConstructDNF(truthTable, o)

10: aigerTable[l′] = ConvertToAIG(badDnfFormula)
11: aigerF ilePath← CreateAiger(aigerTable)
12: ABCMinimize(aigerF ilePath)

13: procedure ConstructDNF(bitV ec, vars)
14: dnfFormula← True, i← 0
15: while i < bitV ec.size() do
16: if bitV ec[i] = 1 then
17: clauseBitvec←ToBinary(i, vars)
18: dnfClause←ToClause(clauseBitvec)
19: dnfFormula← dnfFormula ∧ negate(dnfClause)

20: return negate(dnfFormula)

This bit vector represents the valuation of all the minterms3 of the truth table
that represents the random function fi. For instance, if the left-most bit of the
bit vector is equal to 1, then xc0 = 0, . . . , xc|c|−1

= 0, xu0
= 0, . . . , xu|u|−1

=
0, xl0 = 0, . . . , xl|l|−1

= 0 is a satisfying assignment of fi. Similarly, if the last
element of the bit vector is equal to 1, then xc0 = 1, . . . , xc|c|−1

= 1, xu0
=

1, . . . , xu|u|−1
= 1, xl0 = 1, . . . , xl|l|−1

= 1 is a satisfying assignment of fi. Line
5 builds the random function that corresponds to the generated bit vector, and
Line 6 converts it to AIG. Lines 8-10 generate the output random function, and
Lines 11, 12 creates the AIGER file and call ABC to minimize it.

The procedure ConstructDNF takes as input a bit vector and the number
of variables and generates the corresponding Boolean function. Line 14 initializes
the DNF function to be created. For every element in the bit vector, if the
ith element is equal to 1 (Line 15) then, in order to obtain the corresponding
minterm, Line 17 converts the positive integer i to binary. For instance if i =
3 and vars = 3, then the minterm xc ∧ ¬xu ∧ xl is created. Line 18 creates
the corresponding minterm. Line 19 negates the created clause and adds is to
the DNF formula. Line 20 returns the negation of the constructed formula. As
mentioned earlier, as the formula represented by the truth table is in DNF, we
need to generate its equivalent that includes only AND and NOT logical gates.
For instance giving a formula fi = cl1 ∨ cl2 ∨ . . .∨ cln in CDNF, we construct its
equivalent f ′

i = ¬(¬cl1 ∧ ¬cl2 ∧ . . . ∧ ¬cln).

3 A minterm of n variables is a product (logical AND) of the variables in which each
appears exactly once in uncomplemented or complemented form.

AIGEN: Random Generation of Symbolic Transition Systems 9

10.11.2
8.8.4

6.4.8
9.9.4

4.4.7
4.5.7

6.7.6
0

200

400

600
BDD

DNF

Fig. 2. Average running times.

10.11.2
8.8.4

6.4.8
9.9.4

4.4.7
4.5.7

6.7.6
0

1 · 107

2 · 107
BDD

DNF

Fig. 3. Average number of AND gates.

10.11.2
8.8.4

6.4.8
9.9.4

4.4.7
4.5.7

6.7.6
0

10,000

20,000

30,000
BDD

DNF

Fig. 4. Average running time in seconds including the time needed to minimize the
generated Aiger circuit using ABC tool.

6 Implementation and Evaluation

AIGEN is implemented in Python, and a virtual machine with the tool ready to
run is available at https://doi.org/10.5281/zenodo.4721314 [14]. The source
code of AIGEN is also publicly available at https://github.com/mhdsakr/

AIGEN-Tool, allowing interested users to add functionality, e.g., in order to add
further parameters to generate only Boolean functions or transition systems with
certain properties. It uses the mpmath [15] library together with GMPY [1] to
deal with large numbers. By default, mpmath uses Python integers, however
if GMPY is also installed on the operating system, mpmath will automatically
detect it and use gmpy integers intead. This makes mpmath perform much faster,
particularly at high precision (approximately above 100 digits). Furthermore,
AIGEN uses ABC [7], and the AIGER tool set[6] to post-process AIGER circuits.

AIGEN has been used to generate thousands of random transition systems.
Figures 2,3,4 shows average times and sizes for generating systems where, for
example, 4.3.7 denotes systems with 4 controllable inputs, 3 uncontrollable in-
puts, and 7 latches (o = l = 7). These times were measured on a laptop with
quad-core i7-6600U CPU at 2.6 GHz and 20 GB RAM.

Figures 2 and 3 compare average running time and average number of AND-
gates between the ROBDD and DNF approaches. These results are without

https://doi.org/10.5281/zenodo.4721314
https://github.com/mhdsakr/AIGEN-Tool
https://github.com/mhdsakr/AIGEN-Tool

10 Swen Jacobs and Mouhammad Sakr

the use of the ABC tool (i.e. the command “ABCMinimize(aigerFilePath)” was
skipped). Figure 2 shows that the DNF approach was faster in all cases which was
expected due to the fact that generating a random ROBDD is much more com-
plex than generating a truth table. Figure 3 shows that the ROBDD approach
is much better in all cases. Figure 4 compares average running time between the
ROBDD and DNF approaches, including the time needed for the ABC tool to
minimize the generated transition system. Benchmarks 8.8.4, 9.9.4, and 10.11.2
timed out for the DNF approach(we used 10 hours as a time limit). Obviously
the ABC tool needed a lot of time to process these benchmarks. After a thor-
ough inspection, the reason was, in addition to the huge size of these circuits,
the incredibly long chains of AND-gates for every generated Boolean function.
This figure shows that the total running time of the tool was way better when
used with the ROBDD approach.

The effect of parameters. Although the benchmarks are randomly generated,
AIGEN allows the user to choose the input parameters to obtain benchmarks
with certain properties that correspond to their needs, for example:

– The degree of the generated graph (i.e., the transition system) is equal to
2u+c, therefore increasing the ratio (u + c)/l will make the graph more con-
gested and consequently more complex.

– The parameter o gives the user the ability to determine the size of the set of
unsafe states, i.e., the number of unsafe states cannot exceed 2o. Accordingly,
increasing the ratio o/l will increase the probability that the error set is
reachable, and decreasing this ratio will lower the probability.

– Increasing the ratio c/u will increase the probability that the benchmark is
realizable, and decreasing it will serve the opposite goal. Moreover, if this
ratio is close to 1 the realizability check will be harder, since the probability
of realizability will be roughly equal to the probability of unrealizability.

To demonstrate the effect of these parameters, Table 2 shows the running
time and results (realizable or unrealizable) of the synthesis tool SimpleBDD-
Solver on selected benchmarks, generated using the ROBDD-based approach, in
SyntComp 2019. SimpleBDDSolver has won all previous iterations of the Synt-
comp competition. A benchmark name contains the parameters that were used
to generate the file, e.g., random n 19 1 3 15 14 1 abc means that the bench-
mark has in total 19 variables with 1 controllable input, 3 uncontrollable inputs,
15 latches, and o = 14. The table shows that the example benchmarks with
ratio c/u = 1/3 or c/u = 1/5 were unrealizable, the benchmarks with ratio
c/u = 2 were realizable, while benchmarks with ratio c/u = 1/2 were difficult
to solve for the tool, which timed out while trying to solve them. Note that a
benchmark with c/u = 1/5 can still be realizable, and one with c/u = 2 can be
unrealizable—it is just unlikely that this is the case for a randomly generated
benchmark.

AIGEN: Random Generation of Symbolic Transition Systems 11

Table 2. Results of SimpleBDDSolver on selected random benchmarks generated by
AIGEN in SyntComp 2019 [2]

Benchmark Time (s) Result

random n 19 1 3 15 14 1 abc 3412.41 UNREALIZABLE

random n 19 1 5 13 13 2 abc 1361.39 UNREALIZABLE

random n 19 1 2 16 14 8 abc Timeout -

random n 19 1 4 14 13 11 abc Timeout -

random n 19 4 2 13 12 11 abc 43.68 REALIZABLE

random n 19 4 2 13 12 12 abc 35.71 REALIZABLE

random n 19 4 2 13 12 3 abc 240.61 REALIZABLE

random n 19 4 2 13 12 62 abc 299.5 REALIZABLE

random n 19 4 2 13 12 95 abc 258.92 REALIZABLE

7 Conclusion

We have presented AIGEN, a tool for the generation of random transition sys-
tems in a symbolic representation, using either ROBDDs or CDNF for represent-
ing Boolean functions. Although the ROBDD based approach generates much
smaller symbolic transition systems, the CDNF approach is faster when ABC
minimization procedure is disabled. In contrast to the ROBDD approach, to gen-
erate a random formula in CDNF, no complex computation is needed. However,
when using minimization, the huge size of these formulas becomes a problem for
ABC as it has to deal and inspect all the generated AND-gates.

In future work, instead of using a fixed variable order, we will also allow
to use a random order. The drawback of a fixed order is that some Boolean
functions only have a large ROBDD representation, even though smaller ones
exist with different orderings, and vice versa. Going further, we plan to include
variable reorder techniques to find an order that leads to small ROBDDs at
runtime. Finally, we also plan to investigate the use of AIGEN for finding bugs
in verification and synthesis tools.

References

1. Gmpy. https://pypi.python.org/pypi/gmpy2/
2. Online results of SYNTCOMP 2019, https://www.starexec.org/starexec/

secure/details/job.jsp?id=35621

3. Barrett, C.W., de Moura, L.M., Stump, A.: Design and results of the first satis-
fiability modulo theories competition (SMT-COMP 2005). J. Autom. Reasoning
35(4), 373–390 (2005). https://doi.org/10.1007/s10817-006-9026-1

4. Beyer, D.: Competition on software verification - (SV-COMP). In: TACAS. LNCS,
vol. 7214, pp. 504–524. Springer (2012). https://doi.org/10.1007/978-3-642-28756-
5 38

https://pypi.python.org/pypi/gmpy2/
https://www.starexec.org/starexec/secure/details/job.jsp?id=35621
https://www.starexec.org/starexec/secure/details/job.jsp?id=35621
https://doi.org/10.1007/s10817-006-9026-1
https://doi.org/10.1007/978-3-642-28756-5_38
https://doi.org/10.1007/978-3-642-28756-5_38

12 Swen Jacobs and Mouhammad Sakr

5. Biere, A.: AIGER Format and Toolbox, http://fmv.jku.at/aiger/
6. Biere, A.: The AIGER And-Inverter Graph (AIG) format version 20071012. Tech.

rep., FMV Reports Series, Institute for Formal Models and Verification, Johannes
Kepler University, Altenbergerstr. 69, 4040 Linz, Austria (2007)

7. Brayton, R.K., Mishchenko, A.: ABC: An academic industrial-strength ver-
ification tool. In: CAV. LNCS, vol. 6174, pp. 24–40. Springer (2010).
https://doi.org/10.1007/978-3-642-14295-6 5

8. Cabodi, G., Loiacono, C., Palena, M., Pasini, P., Patti, D., Quer, S., Ven-
draminetto, D., Biere, A., Heljanko, K., Baumgartner, J.: Hardware model checking
competition 2014: An analysis and comparison of solvers and benchmarks. Journal
on Satisfiability, Boolean Modeling and Computation 9, 135–172 (2016)

9. Cheeseman, P.C., Kanefsky, B., Taylor, W.M.: Where the really hard prob-
lems are. In: IJCAI. pp. 331–340. Morgan Kaufmann (1991), http://ijcai.org/
Proceedings/91-1/Papers/052.pdf

10. Drechsler, R., Becker, B.: Binary decision diagrams: theory and implementation.
Springer Science & Business Media (2013)

11. Jacobs, S., Bloem, R., Brenguier, R., Ehlers, R., Hell, T., Könighofer, R., Pérez,
G.A., Raskin, J., Ryzhyk, L., Sankur, O., Seidl, M., Tentrup, L., Walker, A.: The
first reactive synthesis competition (SYNTCOMP 2014). STTT 19(3), 367–390
(2017). https://doi.org/10.1007/s10009-016-0416-3

12. Jacobs, S., Bloem, R., Colange, M., Faymonville, P., Finkbeiner, B., Khalimov,
A., Klein, F., Luttenberger, M., Meyer, P.J., Michaud, T., Sakr, M., Sickert, S.,
Tentrup, L., Walker, A.: The 5th reactive synthesis competition (SYNTCOMP
2018): Benchmarks, participants & results. CoRR abs/1904.07736 (2019), http:
//arxiv.org/abs/1904.07736

13. Jacobs, S., Sakr, M.: A symbolic algorithm for lazy synthesis of eager strate-
gies. In: ATVA 2018. Lecture Notes in Computer Science, vol. 11138, pp.
211–227. Springer (2018). https://doi.org/10.1007/978-3-030-01090-4 13, https:

//doi.org/10.1007/978-3-030-01090-4_13

14. Jacobs, S., Sakr, M.: AIGEN: Random generation of symbolic boolean functions
and transition systems (2021), https://doi.org/10.5281/zenodo.4721314

15. Johansson, F., et al.: mpmath: a Python library for arbitrary-precision floating-
point arithmetic (version 0.18) (December 2013), http://mpmath.org/

16. Mitchell, D.G., Selman, B., Levesque, H.J.: Hard and easy distributions of SAT
problems. In: AAAI. pp. 459–465. AAAI Press / The MIT Press (1992), http:

//www.aaai.org/Library/AAAI/1992/aaai92-071.php

http://fmv.jku.at/aiger/
https://doi.org/10.1007/978-3-642-14295-6_5
http://ijcai.org/Proceedings/91-1/Papers/052.pdf
http://ijcai.org/Proceedings/91-1/Papers/052.pdf
https://doi.org/10.1007/s10009-016-0416-3
http://arxiv.org/abs/1904.07736
http://arxiv.org/abs/1904.07736
https://doi.org/10.1007/978-3-030-01090-4_13
https://doi.org/10.1007/978-3-030-01090-4_13
https://doi.org/10.1007/978-3-030-01090-4_13
https://doi.org/10.5281/zenodo.4721314
http://www.aaai.org/Library/AAAI/1992/aaai92-071.php
http://www.aaai.org/Library/AAAI/1992/aaai92-071.php

	AIGEN: Random Generation of Symbolic Transition Systems

