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ABSTRACT

Continuous delivery of cloud systems requires constant running
of jobs (build processes, tests, etc.). One issue that plagues this
continuous integration (CI) process are intermittent failures—non-
deterministic, false alarms that do not result from a bug in the
software or job specification, but rather from issues in the underly-
ing infrastructure. At MoziLLa, such intermittent failures are called
oranges as a reference to the color of the build status indicator.
As such intermittent failures disrupt CI and lead to failures, they
erode the developers’ trust in the entire process. We present a novel
approach that automatically classifies failing jobs to determine
whether job execution failures arise from an actual software bug
or were caused by flakiness in the job (e.g., test) or the underlying
infrastructure. For this purpose, we train classification models using
job telemetry data to diagnose failure patterns involving features
such as runtime, CPU load, operating system version, or specific
platform with high precision. In an evaluation on a set of Mozilla
CI jobs, our approach achieves precision scores of 73%, on average,
across all data sets with some test suites achieving precision scores
good enough for fully automated classification (i.e., precision scores
of up to 100%), and recall scores of 82% on average (up to 94%).

CCS CONCEPTS
«» Software and its engineering — Software testing and de-
bugging.
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1 INTRODUCTION

Continuous integration (CI) is a practice used to ensure software
quality by continuously testing and deploying code changes [28, 46].
Typically, CI systems run a multitude of build scripts, static code
checks, automated tests, and deployment scripts—called jobs in
what follows. Testing and assessing the software continuously and
fast is crucial to the integrity and timely delivery of the software
under test [18, 28]. In practice, developers spend a lot of time and
resources on writing and maintaining jobs, in particular, tests [27].

A common assumption is that jobs should be deterministic,
meaning that a job, no matter when or how it is executed, always
produces the same result as long as the code is not changed. In
practice, however, this is not always the case [31, 52]. Some tests
and, thus, jobs have non-deterministic behavior. This behavior
can have several causes, such as resource availability and concur-
rency issues [38]. Tests showing such behavior are called flaky
tests [5, 32, 47]. While flaky tests have a significant impact on CI,
any CI job may fail because of non-determinism. Such failing jobs
are referred to as intermittent failures or, in case of MOZILLA, oranges.
A simple cause for an intermittent failure may be a temporary net-
work outage, resulting in a build and deployment job to occasionally
fail or to create executables that later fail tests. Intermittent failures
have been reported to be a frequent issue in practice [3, 20, 26, 51].

Intermittent failures weaken the developers’ trust in CI and its
jobs drastically, as developers often cannot distinguish between real
and intermittent failures. Also, they make developers’ lives harder
as they do not know whether a failure is caused by a software
change or some non-deterministic influence, thus compromising
the entire testing and CI process. Furthermore, intermittent failures
result in wasted resources: unnecessary waiting times, re-runs, or
even manual investigation. Even if engineers recognize an inter-
mittent failure, the failure still prevents them from integrating and
getting their changes published.
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At MoziLLA, 53% of all job failures are classified as intermittent
(Table 2); at GOOGLE, 84% of the transitions from passing to failing
are related to flakiness [39]. These high numbers are the result of
various, partially hard-to-reproduce issues causing intermittent job
failures. Examples of such root causes include:

Network resources. Jobs relying on networking might fail inter-
mittently due to the network being unavailable, being sig-
nificantly slower than usual, or because network resources
might not be available [38].

Job dependencies. Jobs frequently depend on earlier jobs to com-
plete; test and deployment, for instance, require build first.
Although tests are expected to be independent of other tests,
in practice, this often is not the case [4, 20, 38, 49]. Some
tests rely on other (previously executed) tests to change the
environment in order to run properly. If the order of tests
changes, these assumptions can be violated and result in a
test failure [21, 22, 53].

Concurrency. Using multiple threads in a job can cause intermit-
tent failures caused by data races or deadlocks [38].

The literature lists additional causes for flaky tests and inter-
mittently failing jobs such as asynchronous wait, resource leaks,
I/O, and floating point operations, but even this list is not exhaus-
tive [17, 20, 38]. Even if properly identified, fixing the cause for
non-determinism can be extremely complicated, time-consuming,
and hard to achieve overall [38]. Therefore, it is difficult to effi-
ciently mitigate the impact of intermittent failures by fixing the
test itself.

To prevent real bugs from escaping into delivered software sys-
tems [44], where they are substantially more costly to fix [12, 48],
it is crucial to be able to reliably distinguish between (1) actual
failures caused by bugs and (2) intermittent failures. Common ap-
proaches to classify failures as intermittent include (1) running
jobs multiple times, with intermittent jobs being those that pass
and fail at least once under the same configuration [20, 39], (2)
using coverage data to identify flaky tests and, thus, intermittent
failures [8], and (3) having dedicated engineers (called sheriffs at
Mozirra) classify job failures by hand in shifts around the clock.
Clearly, repeated execution of jobs and manual classification is ex-
pensive; and state-of-the-art approaches such as DeFlaker [8] only
apply to tests, require code instrumentation, and do not generalize
to arbitrary CI jobs.

To address these issues, we devise a novel approach that predicts
intermittency using only data from existing job runs. We make use of
job telemetry data collected in the CI process to train classification
models for intermittent failures. These models allow us to detect and
identify intermittent failures right from the start, without requir-
ing repeated job runs, differential coverage, or expensive manual
classification.

To evaluate our approach, we collect almost four months of
Mozirra job data amounting to over 2 million job execution runs
with an average of 67% failing job executions manually marked as
intermittent failures (Table 2). We train a number of classification
models on these data with the goal of classifying job failures as in-
termittent or regular. Our approach also provides means to explain
the causes of intermittent failures. Specifically, we can identify the
features that have the largest effect on the classification to guide
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developers in finding the actual root cause of the failure. In coop-

eration with MoziLLA sheriffs and engineers, we interpret found

patterns and assess the capabilities and feedback of our approach.
This paper makes the following contributions:

(1) We collect telemetry data of over 2 million job execution
runs (Section 3), including a ground truth for intermittent
failures, at MoziLLA. This data set provides important in-
sights into how and when jobs fail in an industrial setting.
The data set is publicly available.

We present a novel approach to detect and diagnose in-
termittent job failures based on telemetry data. Our ap-
proach creates recommendations (Section 4) on how to clas-
sify job failures and provides engineers with the most impor-
tant features behind these decisions. We investigate whether
there are common patterns that affect the predictive power
of the classification model. In contrast to other approaches,
our approach works on arbitrary jobs independent of test
executions.

We evaluate our approach on MoziLra job data (Sec-
tion 5). Our approach achieves high precision and recall
scores when classifying failures as intermittent and accu-
rately classifies failures for arbitrary jobs independent of
tests, code changes, or configuration changes. Based on the
insights gained from the patterns that we have identified,
we evaluate how our approach can point to underlying root
causes.

—
N
~

To foster open science, the whole data set used for this study is
publicly available, including a Jupyter notebook that allows to run
and assess all classifications:

http://bit.ly/IntermittentJobs

2 CONTINUOUS INTEGRATION AT MOZILLA

We chose MoziLLA as industry partner, because all of their code is
open source, and all of their data are publicly available and, thus,
can be mined. Furthermore, the project size (i.e., developers and
code) as well as the software development process reflect software
development in industry.

2.1 The Mozilla CI Process

The CI process at MozILLA consists of multiple communicating
services. We will explain the interaction (Figure 1) of those ser-
vices with the help of the following scenario: MozILLA engineers
develop using a Mercurial-based version control (Hg) system [2]
at hg.mozilla.org. Hg contains most of MozILLA’s repositories. For
some projects, MozirLa also uses GiITHuB. However, these projects
are not connected to this integration process. Changes pushed to
hg.mozilla.org are tested and deployed using TASKCLUSTER, the
Moziira in-house CI system. Its main functionality is to schedule
builds, execute tests, and deploy artifacts. Furthermore, it is respon-
sible for emitting test telemetry. Test telemetry data are temporarily
stored within TREEHERDER. TREEHERDER is a web service that lets
developers monitor their test results. It is also used by sheriffs to
classify test failures. TREEHERDER holds approximately four months
of data in an internal SQL database. All failures that occur during
MoziLra’s CI process are reported to BucziLLa, and a bug_id is
either created or an existing one linked to the build. If a failure
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occurs, sheriffs investigate these failures and classify them as either 2.2 Why the State of the Art does not Suffice
oranges or regular failures. Currently, there is a team of 16 sheriffs
with, at least, one of them monitoring the tree at any given time. If
a failure is classified as an intermittent failure, it is reported to Or-

The setup at MoziLLA and interviews with their engineers also
taught us three important lessons:

ANGEFACTOR where MoziLLA stores records of intermittent failures. e MoziLLA uses a distributed CI process. Such a distributed
All these services communicate using the MozILLA message queue process—while delivering a much faster build—is also more
service Pulse. The interaction between those services is depicted prone to fail intermittently. Nodes becoming unavailable,
in Figure 1. and networking issues are common problems that lead to

intermittent job failures. Because of this, it is not sufficient
to only look at jobs that fail because of flaky tests in an
industrial setting. There is also a need to identify jobs as
intermittent that failed for other reasons.

e MoziLraA uses—like many other companies—test case selec-
tion. With test case selection, one tries to only run tests on
the part of the code that was recently changed. Because of
this, approaches to identify flaky tests based on differential
coverage (e.g., DeFlaker) will struggle to do so.

S3 Storage e While the majority of MoziLLA jobs indeed run tests, there is

a large variety in what CI jobs do. Build jobs can fail, deploy

jobs can fail, static checkers can fail—and all intermittently

so. Hence, approaches that focus on test jobs alone will not
suffice.

Mercurial

©

Taskcluster

o

(5)

These observations motivated us to design an approach that
would be able to predict and diagnose intermittent failures for all
Sheriffs kinds of jobs, and using a minimum of assumptions regarding their
applicability.

©

) 3 DATA EXTRACTION AND FEATURE

ENGINEERING
3.1 Data Extraction

For this approach, we relied on two main data-sources at MozILLA:
TREEHERDER and ORANGEFACTOR. While the latter was only used
as a means to label job failures, the former provided us with the
needed telemetry data to do our analysis and to train classifiers.
When we started this study, MoziLrLa worked with us to acquire
TREEHERDER data, which covered all jobs on the mozilla-inbound
repository starting March 14t 2018 until July 11t 2018. In this

ol O Ol

&

0. Ol Ol Sl

Success

Figure 1: The Mozilla CI system. Incoming changes (1) are
being pushed to the mozilla-inbound repository (2). The
TASKCLUSTER (3) service commissions machines and per- time frame, the number of jobs appears to be stable with MozirLa
forms the build and test tasks. The results are persisted running between 5,000 (on weekends) and 40,000 (during the week)

to AWS $3 storage in JSON format and emitted as teleme- jobs a day (Figure 2). The obtained data contains the features shown
in Table 1.

try via Pulse (5). TREEHERDER processes the telemetry data,
Furthermore, we were provided with ORANGEFACTOR data for

stores them in an internal SQL database and provides an

interactive Web view showing and the same period of time containing the manual classification results
jobs. Mozilla sheriffs inspect and decide whether of the investigations by the sheriffs. )
those are real or The raw TREEHERDER data were not suitable for a thorough anal-

ysis given that it included test suites with too few runs presenting
each passing and failing results. The investigation of the test suites

To better understand how intermittent failures manifest in the showed that they were also relatively short-lived, which led us to
Moziira CI process, we interviewed developers and sheriffs. They the assumption that they might only have been used to test new
explained to us that there are a couple of common causes for inter- configurations. MoziLLA developers confirmed this. Therefore, we
mittent job failures, e.g., timeouts, or missing permissions. Timeouts removed all those short lived test suites. This left us with a total of
can be caused by jobs that require large sets of files to be processed 20 test suites, which corresponded to almost 2 million jobs in total.
first, or jobs waiting for resources to become available. Both of The flakiness ratio of these test suites ranges between 22.92% and
these issues will not result in a single test failing, but the entire test 87.51% for failing test suite runs. An overview of the data is given
suite. in Table 2.
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Table 1: Overview of the feature of our data set.

Feature Description Type
job_id the ID of a job, assigned by TREEHERDER Integer
start_time the time the job was started Timestamp
end_time the time the job ended Timestamp
result the result of the job Varchar
push_id the ID of the push Integer
machine_name the name of the machine on which the job was run as a hash ~ Varchar
submit_time the time the job was submitted to TASKCLUSTER Timestamp
submitted_by the email address of the developer who submitted the job Varchar
job_type_name includes the platform as well as the test suite Varchar
system the platform on which the job was executed e.g. macOS Varchar
platform_option the platform option for this job i.e. opt, debug, asan or pgo Varchar
cpu_load the average CPU load during the execution Double
suite the test suite that was executed Varchar

3.2 Feature Engineering

A major goal of our study is to inform the development of a tool
that is capable of classifying intermittent job failures while pro-
viding developers with reasons as to why a job was classified as
intermittently failing. For this purpose, we first analyze our data
and only use features having an explainable relationship with in-
termittency instead of training a model with all available features.
The first feature we investigated was run_time. run_time was
constructed using the start_time and end_time columns of the
data set. We found that there is a significant run-time difference
between regularly failing jobs and intermittently failing jobs (T-test
at a 95% confidence interval). For many of the test suites this hinted
to high run_time being a good indicator for a job failing intermit-
tently. When presenting this finding to MoziLLA’s developers, they
explained this correlation with the fact that the most frequently
occurring intermittent failures are caused by timeouts.

A related feature we investigated was cpu_load. This feature
also has a relationship with flakiness in a similar way as run_time.
According to MoziLLa employees, system appears to be another
good indicator, since it is quite common that jobs executed on the
WINDOWS operating system fail intermittently because of broken

paths. Furthermore, MoziLrA engineers hinted us to platform_option

as a good indicator because of multi-threading being handled dif-
ferently depending on the platform_option.

Another feature we assumed to be worth investigating is the
machine on which a certain job was executed. We assume that
depending on the machine tests might be more or less likely to fail
(e.g., because of resource starvation). Unfortunately, almost every
machine_name in our data was just a hash of a virtual machine,
making it impossible to recover a link to respective specifications.
Furthermore, every hash occurs only once, which left us with no
choice but to remove machine_name from our feature set.

There was no evidence showing that the person submitting a
change to be tested was somehow correlated to jobs failing inter-
mittently. Hence, we removed submitted_by from our feature set.
Since job_type_name includes systemas well as platform_option,
we decided to not take this feature into consideration since it would
have only introduced redundancy. We used suite as well as result
to filter the jobs for further investigation. Therefore, we decided
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not to keep them in our feature set since they are already implicitly
included.

This leaves us with run_time, cpu_load, platform_option,
and system as features selected to train classifiers with.

4 METHODOLOGY

Our data set contains the test suite telemetry data explained in
the previous sections, as well as the manual classification by the
Mozirira sheriffs. We discard all test suites that did not present at
least 40 intermittent and 40 regular, failing runs (complying to the
One in Ten Rule [24, 25]). This ensures that we have at least 10 in-
termittent and regular failures for each feature to avoid overfitting.

4.1 Classification

To process the remaining test suites, we implement a classification
pipeline using the Python Scikit-learn library [42]. For the purpose
of this study we choose XGBoost [15], LightGBM [16, 30] and
random forests [13] as our classification models to build a predictor
for intermittent job failures. All three classification models are well
established libraries that provide regularization against overfitting.
We choose tree-based models as we have the means to quickly
explain them. This is important as the goal is to give suggestions
whether and why a failing job failed intermittently or not in as little
time as possible. It is not our goal to train the best classification
model possible.

We encode the categorical data (system, platform_option) us-
ing one-hot encoding to set it apart from the real-valued data. This
transforms the system feature into up to 17 one-hot columns encod-
ing the target operating system (e.g., system_linux64, system_wi
ndows10-64, and system_macosx64-qr), the feature platform_
option encodes into 4 new columns representing different build
types: asan (Address Sanitizer [45], a memory error detector for
clang), pgo (Profile-Guided Optimization'), debug (using debug-
ging symbols), and opt (optimized/production).

We evaluate our approach on unseen data only. To do this, we
split the data into 85% development and 15% evaluation (hold-out)
parts. We sort the data set by timestamp to not predict past events

Lhttps://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/Build
Instructions/Building_with_Profile-Guided_Optimization
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Figure 2: MozILLA’s job runs per day. On average, the number of builds appears to be stable. On week-ends (highlighted in
gray), the number drops to about 5,000. During the week, MozILLA runs up to ~40,000 test jobs a day.

Table 2: Overview of the data sets: Test suite runs in MoziLLA’s TREEHERDER database.
Job results in Success/Failure refer to test suite execution results. Retries reflect automatic retries
in certain error scenarios. Test suite runs with an exception represent an error in the build system.

Test Suite #Success #Failure #Retry #Exception #Flaky %Flaky Total
mochitest-plain-chunked 261,765 6,218 6 0 4,255 68.43 267,989
mochitest-browser-chrome-chunked 230,116 9,505 2 0 7,121 74.92 239,623
mochitest-mochitest-devtools-chrome-chunked 172,806 4,967 4 0 3,392 68.29 177,777
reftest-reftest 171,501 2,455 5 0 1,429 58.21 173,961
reftest 153,457 1,141 1,073 103 445 39.00 155,774
mochitest 135,108 1,815 3,088 102 1,148 63.25 140,113
mochitest-mochitest-gl 126,853 688 73 0 335 48.69 127,614
xpeshell-xpcshell 119,596 2,158 1 0 760 35.22 121,755
mochitest-chrome 105,465 1,567 1,026 48 1,141 72.81 108,106
Jsreftest 103,024 475 976 139 182 38.32 104,614
reftest-reftest-no-accel 87,953 902 9 1 610 67.63 88,865
marionette 66,747 870 452 74 600 68.97 68,143
mochitest-mochitest-media 59,990 3,418 0 2,991 87.51 63,411
xpeshell 48,982 754 111 0 472 62.60 49,847
reftest-crashtest 35,704 397 5 0 91 22.92 36,106
mochitest-ally 23,766 417 0 320 76.74 24,183
reftest-reftest-fonts 19,170 229 4 0 128 55.90 19,403
mochitest-media 15,297 371 173 10 252 67.92 15,851
reftest-reftest-no-accel-fonts 10,710 131 6 0 106 80.92 10,847
reftest-reftest-gpu-fonts 2,970 118 5 0 93 78.81 3,093
Total 1,950,980 38,596 7,022 477 25,871 67.03 1,997,075
using future data. The evaluation part remains unseen during train- Data Set Split
e Development >t Evaluation —=|

ing and validation of the hyper-parameters, and models and is only
used in the final evaluation. Figure 3 visualizes our approach handle
the data for training and evaluation.

As each data set is highly imbalanced, we resample the data
before training the models. For this purpose, we use over- and
under-sampling techniques (specifically Smote+Tomek [7, 14]). We
apply the sampling strategies after the split in the development parts
to avoid data duplication across training and test sets. As under-
sampling potentially removes crucial data points from the majority
class, we only undersample the validation part and oversample in
the training part.

To improve the performance of our classification models, we
optimize their hyper-parameters. We evaluate the performance
of hyper-parameter combinations in a 10-fold Monte-Carlo cross-
validation using stratified ShuffleSplits of the development set and
perform a grid search [9] as well as Bayesian optimization [11, 50]

Over-sampling Under-sampling * ~ _

Train t Validation ————>4

}
>

T

10-fold stratified shuffle splits
------------- Refit Tteell . fe— Evaluation —={

Figure 3: Training and evaluation of a classifier.

to tune hyper-parameters. While grid search exhaustively com-
bines hyper-parameters from a predefined grid of valid hyper-
parameters [10], Bayesian optimization uses a probability model to
find a new and potentially better set of hyper-parameters before
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fitting and evaluating the model on these parameters and updat-
ing the model. During cross-validation, we optimize for precision
(in contrast to the usual accuracy or ROC) as we are interested
in a low false-positive rate in exchange for lower recall. Our goal
is to provide engineers with a classifier that can be used to pass
builds reliably without missing real test alarms. We accept that we
potentially find less flaky failures and only classify build failures
as intermittent with higher confidence. Once we optimized the
hyper-parameters, we choose the best performing classifier and
refit it using the optimized hyper-parameters on the development
set. These classifiers will be used in the final pipeline.

4.2 Feature Impact

After successfully training tree ensembles for all 20 remaining test
suites, we analyze the structure of the models to understand what
affects their decisions. We compute and plot the feature impacts
using SHAP (SHapley Additive exPlanations) [34, 36, 37]. The tree-
explainer [35] computes how much each feature contributes to
pushing the model output from the base value to the actual output.
The base value is the average output over the whole training set. In
this case, an output around or lower than 0 means regular failure,
whereas 1 and above refers to an intermittent failure. Using force
plots ordering samples by similarity, we identify certain areas or
patterns giving insight on the contribution of the features towards
the model output. To find these patterns, we cluster the SHAP values
of the models using density-based spatial clustering of applications
with noise (DBSCAN [19]), which is perfectly suitable for SHAP
values. They present a non-flat geometry with uneven cluster sizes.
DBSCAN groups together closely related points, i.e., points with
lots of nearby neighbors, while at the same time finding low-density
regions to flag outliers. Clustering SHAP values instead of feature
values allows us to identify patterns where the same features have a
similar impact on the decision even if the feature values are different.
This knowledge will in turn help us when informing the developer
about the feature that drove the decision.

As an example for a pattern, consider the force plot for the
marionette test suite in Figure 4. Here, we find three dominant
patterns—all featuring cpu_load and run_time as most impacting
features, which even have sole decision power. These patterns only
represent the model impact, but not the actual values of the features.
To find the pattern itself, we perform inner clustering and variance
analysis on the actual feature values within the clusters to find
representative insights, such as: “high runtime and high cpu load
are always symptoms for flakiness in test suite A”. We investigate
representatives of these patterns and track these instances back to
the original bug reports. With these bug reports, we investigate the
underlying root cause of the failure and how it manifested itself.
This way, we gain insights on whether we just found a coincidental
correlation or can track the effect down to an observable cause with
potential actionable insight.

4.3 Recommendations

As described in Section 1, we do not only want to provide developers
with decisions, but also with reasons behind these decisions. For
this purpose, we fit a SHAP-tree-explainer for each of our classifiers
(Section 4.1). Using this explainer, we are now able to extract the
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SHAP-values, that is, feature importances for each decision our
classifier makes. With these feature importances, we are now able
to identify all features that actually contribute to the decision. These
features are called impacting features.

Definition 4.1. Let F be the set of features for a single decision.
Define the set of positive features as

F+:{f|f€F/\shap(f)>0},

and the set of negative features as

F-={fI|f€F Ashap(f)<0}.

We define ¢, the set of impacting features for positive decisions,
as

¢+

min |X]|,
XeSt

with

Z shap(x)) + ( Z shap(y))) >t

S+={X|XCF+ A b+
x€X yeF~

|

and ¢, the set of impacting features for negative decisions, as

~ = min |X|,
¢ XES’| |

with

Z shap(y)) + ( Z shap(x))) <t

5‘={X|XcF‘ A(e+(
yeF* x€X

where b is the base value of the classifier, shap(x) the SHAP-value
of feature x, and t the decision threshold.

For each decision we make, we now report the positive or neg-
ative impacting features alongside the decision and the original
feature values.

5 EVALUATION

In this section, we evaluate our ability of classifying failing jobs as
intermittent by computing precision-scores for all trained classifica-
tion models, as well as our ability to find patterns, and our ability to
infer reasons to our classification that help diagnosing the underly-
ing root cause. For the evaluation, we only use the hold-out data as
shown in Figure 3. Additionally to evaluating the performance of
our classifiers, we conducted interviews with MozirLA sheriffs to
validate our findings and gain more insight into the nature of inter-
mittent failures. In this section, we answer the following research
questions:

RQ1: Can one classify job failures as intermittent achieving
high precision scores using job telemetry data only?

RQ2: Can one identify intermittent job failures that are not
caused by a flaky test?

RQ3: Can one infer patterns for intermittent failures based on
the features used for the classification to diagnose the underlying
root cause?

RQ4: Can one automatically infer reasons hinting at underly-
ing root causes for intermittent failures?
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Figure 4: Feature impact visualization for test suite reftest. The partial visualization of the stacked force plot presents three
different patterns. The patterns 1 and 2 push the model output towards an output of zero resulting in a strong confidence for
regular failures while pattern 3 pushes the output close to 1.0, strongly suggesting an intermittent failure.

Table 3: Results of the classification experiments. Many test suites
present high precision values while still maintaining high recall values.

Test Suite Precision Recall F-Score Support
mochitest-plain-chunked 41.47% 80.52% 0.54 589/344
mochitest-browser-chrome-chunked 68.51% 85.13% 0.75 511/915
mochitest-mochitest-devtools-chrome-chunked 77.42% 81.44% 0.79 245/501
reftest-reftest 69.56% 66.66% 0.68 129/240
reftest 92.98% 91.90% 0.92 14/173
mochitest 72.12%  93.14% 0.81 113/175
mochitest-mochitest-gl 81.48% 81.48% 0.81 50/54
xpeshell-xpcshell 34.69% 61.81% 0.34  269/55
mochitest-chrome 78.01% 82.32% 0.80 62/181
Jjsreftest 86.30% 80.77% 0.83 15/78
reftest-reftest-no-accel 71.26% 84.93% 0.77  63/73
marionette 57.14% 87.50% 0.69  78/64
mochitest-mochitest-media 80.56% 93.48% 0.86 114/339
xpeshell 94.67% 81.61% 0.88 27/87
reftest-crashtest 50.00% 50.00% 050 56/4
mochitest-ally 50.00% 85.18% 0.63  36/27
reftest-reftest-fonts 100.00% 85.00% 092 15/20
mochitest-media 55.56% 83.33% 0.67 52/6
reftest-reftest-no-accel-fonts 100.00% 85.00% 0.90 0/20
reftest-reftest-gpu-fonts 100.00% 94.44% 0.97 0/18
5.1 Classification chosen features perform especially well on these test suites. This

is also supported by findings of intermittent failures often being
caused by timeouts or resource starvation, as confirmed by MozirLa
developers. For the other test suites, we still see that there is some
predictive power by the features used in this study. Another fact
that can be observed in our results in Table 3 is that amongst the
worst performing test suites are chunked test suites. Chunked test
suites refer to test suites for which the number of tests contained
exceeds a certain threshold. These exist to facilitate test selection
and lower the total number of tests that need to be executed. There-
fore, these tests are chunked into smaller test suites. These chunks,
however, are volatile. Whenever a new test is added to a chunked
test suite or an old one is removed, chunks might change as tests
can move between chunks. This means that, in contrast to all other
test suites, the baseline can change resulting in a drastic effect on
the cpu_load/run_time making these metrics incomparable.

Table 3 contains the results of the classification. The table shows
high precision and recall values for most test suites. Some test
suites (e.g., reftest-crashtest, and xpcshell-xpcshell) performed ex-
ceptionally bad. This suggests that the features we used are not
suitable to classify intermittent failures for these test suites. For
reftest-crashtest, further investigation into its nature and repeated
discussions with MoziLLa engineers led to the following expla-
nation: reftest-crashtest is a test suite that has a significantly less
complicated setup than other test suites and is therefore less influ-
enced by networking issues or missing permissions than other test
suites. Since this test suite is no longer undergoing changes, it is
safe to assume that the chosen features are simply not suitable to
classify intermittent failures. For reftest, or reftest-reftest-fonts, we
observe exceptionally high precision values. This shows that the
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Figure 5: Summary plot for the marionette test suite. The
real-valued features run_time and cpu_load dominate the de-
cision of the classifier whereas the categorical values have
barely any effect. Red represents a high feature value, blue
a low feature value.

Answer to RQ1:  Automated methods for classifying job fail-
ures achieve precision scores of up to 100% (73% on average) as
well as recall scores of up to 94% (82% on average). This shows
that our selected features have predictive power. Furthermore,
test suites for which the precision is exceptionally high, fully au-
tomated intermittent failure classification can be made available.
For other test suites, one should use our feedback as guidance,
when manually classifying job failures.

5.2 Model Inspection

Using SHAP, we compute the feature importances for our classifi-
cations. This is done to identify the features driving the decisions.
We cluster the computed feature importances as described in Sec-
tion 4.2. The resulting patterns show that, for most test suites, the
two real-valued features run_time and cpu_load have by far the
highest impact in the models. After performing inner clustering,
we see that high run_time and low cpu_load are the strongest
indicators, by far. The case for cpu_load can be inverted. Figure 7
shows a summary plot for the regression test suite mochitest, con-
taining JavaScript tests. As we can see, flaky tests tend to have
a high cpu_load and run_time. Given these patterns, we investi-
gated BugzirLa bug-reports for the classified failures and asked
Mozirra engineers whether these patterns would help them un-
derstand the underlying issue. Our investigations as well as the
conversations with engineers yield the following explanations:

Long Run Time MoziLLA engineers pointed out that many of the
intermittent test failures observed by them are resulting
from tests timing out. This is in line with our observations.
Timeouts can be caused by a number of underlying root
causes, including networking issues, overloaded VM’s, or
resources being unavailable.

Low CPU Load In our interviews with MozILLA engineers, we
were often pointed to tests failing early because required
permissions were missing. This turned out to be one of the
main issues MoziLLA has with regards to intermittent fail-
ures.
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High CPU Load When studying bug reports on intermittent fail-
ures, we were regularly confronted with test jobs failing in-
termittently when processing large numbers of files. MoziLLa
engineers pointed us to bug reports showing that the testing
engine was often crashing under these circumstances. This
means that there is not necessarily a specific test failing, but
rather the testing framework itself.

The explanations we obtained from MoziLLa, show that it is not
always a flaky test itself causing jobs to fail intermittently. In many
cases the test infrastructure itself is responsible for the failure at
hand. With this finding, we are able to answer RQ2:

Answer to RQ2: Many intermittent failures are caused by
missing permissions, timeouts, and the like. This means that
there is not always a specific test responsible for the failure at
hand. Our classifiers are able to detect intermittent job failures
even and especially in cases where the root cause cannot be traced
back to a flaky test itself. This is somethings other tools are not
able to do by design.

In some cases, the categorical features barely have any influence
on the classification and do not contribute to the model output as
shown in the summary plot in Figure 5. The plot shows, that while
there is a clear separation between classes for most categorical
features, their impact is rather small. However, there are some test
suites where a single categorical feature significantly influences
the decision of the classifier (Figure 6). We assume that differences
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system_windows10-64

run_time

Figure 6: Partial summary plot for the mochitest-chrome
test suite. The run_time shows no consistent contribution
towards the models output, but the tests running on Win-
dows10 64bit is consistently the strongest indicator.
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Figure 7: Summary plot for the mochitest test suite. A high
cpu_load pushes the model output towards an intermittent
failure verdict.

in test suites also lead to differences in the root causes of their in-
termittent failures. These root causes might not be resource related.
At MoziL1a, the test suites are very different. The mochitest test
suite tests APIs accessible to Web pages, whereas reftest is testing
the layout rendering by comparing images, and jsreftest tests the
JavaScript compliance. crashtest loads scenarios that caused crashes
in previous versions of the browser.
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Answer to RQ3: While we did not identify an overarching
pattern that holds for all test suites, we are able to automatically
infer patterns for intermittent failures using our trained models.
These patterns capture an important aspect of the underlying
issue and can thus help to diagnose the root cause of the failure
at hand. Furthermore, as there is no overarching pattern for all
test suites, being able to identify these patterns automatically is
important.

In our interviews, MozirLa engineers confirmed that insights we
obtained from our patterns will be helpful when trying to identify
root causes of intermittent failures. It helps also in assessing the
validity of the classification.

Answer to RQ4: We are able to infer patterns for our classifi-
cations. These patterns are in line with problem causes identified
by MoziLLa and capture an important aspect of the root cause
of an intermittent failure. When we compute SHAP-values for
a new failure classification, these values follow the same pat-
terns as shown before. This, in turn, can help sheriffs identify the
underlying root cause as confirmed by interviews at MozILLA.

6 DISCUSSION

Our evaluation shows that we are not just able to classify failures
as intermittent, but also that we can gain insights into the origin
of the intermittent failure. In this section, we want to discuss our
findings of this paper in terms of their potential impact on practice,
as well as the generalizability of our findings.

6.1 Impact at Mozilla

As of today, classification of job failures at MoziLLA relies heavily
on the help of sheriffs, who investigate failures and classify them
as intermittent or regular. Table 4 shows that this classification can
take a significant amount of time. As seen in Table 3, we achieved
high precision for some test suites for which we are able to classify
test failures reliably within less than one second and thus signifi-
cantly faster than sheriffs will ever be. This approach also allows
engineers to optimize the performance of the models by choosing
a different threshold for the classification model. While precision
values for some test suites allow fully for automated job failure
classification, others still need sheriffs to make the final decision.
For these jobs, we can observe high recall values. High recall values
are desirable in this context as they will notify sheriffs about most
of the jobs that may have failed intermittently. For these classifi-
cations, sheriffs can now rely on the patterns we identified. We
conclude that our approach would considerably speed up the clas-
sification and assist sheriffs by providing relevant information and
insights to facilitate their work which would in turn lead to a faster
recognition of real failures. Furthermore, engineers are hinted into
a direction as to why a job failed intermittently and might thus
be able to fix the underlying problem faster. We conclude that our
approach has the potential to significantly improve the MoziLLa
CI process in terms of dealing with job failures as a whole.

6.2 Generalizability

While for many test suites, run_time and cpu_load are good and
reliable predictors, the reason for these two features predicting
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intermittent failures at MoziLLA varies between test suites. Other
features might actually be better predictors for intermittent fail-
ures as run_time or cpu_load depending on the test suite we are
currently working with. This shows that there is no clear, overarch-
ing pattern for intermittently failing jobs as we have confirmed at
Mozirra. Hence, the results for good predictors and the underlying
root causes do not generalize. Still, despite working with a very
diverse set of test suites, we are able to extract recurring patterns
for failing test suites. These patterns can be used as a means to
find the underlying root cause of the failure. Early results with data
from other companies indicate that this approach will also work
outside of MozILLA.

7 THREATS TO VALIDITY

Our study showed that we are able to classify intermittent test
failures using solely telemetry data, and that it is possible to use
this classification to get insights into the actual reason for the test
to fail intermittently. While these results look very promising, let
us point out limitations and threats to validity.

External validity. The whole research presented in this paper is
solely based on MoziLLa test data, the MoziLra CI process,
and insights gained from talking to MoziLra employees. This
could be a limiting factor when applying this approach to
other CI processes. While we are confident that it is pos-
sible to classify job failures as intermittent in other setups
as well, given enough telemetry data are collected, we have
no insight to which extent we would be able to gain knowl-
edge on the actual cause of an intermittent failure. Still, we
are confident that our observations on the CI process and
their requirements also hold for other high-profile industrial
software development.

Internal validity. We assume that all manual classifications done
by sheriffs are correct. We, however, lack the means to eval-
uate how good a manual classification by humans is. This
would require a user study on the accuracy of the classifica-
tion performed by multiple sheriffs or independent engineers
and investigate their agreement, which was not feasible with
our arrangement at MOZILLA.

8 RELATED WORK

Surveys of Job Flakiness. Luo et al. conducted a study on the root
causes of flaky tests [38]. They found that async wait, concurrency,
and test order dependencies are among the most common root
causes for flaky tests. Another finding was that most of the root
causes were platform independent. Most flaky failures caused by
concurrency, are due to concurrent memory access, while about
half of test order dependency issues are caused by dependencies
on external resources. Jiang et al. [29] use information retrieval
techniques to find test alarm causes. In 2017, Guan et al. presented
an approach to suppress false alarms, which was based on k-nearest
neighbor [23]. Listfield searched for correlations between test size,
RAM usage and flakiness in GOOGLE’s tests [33]. He found that 1.5%
of the test runs at GoogtE fail intermittently, and that test size as
well as the tool, with which the tests are written strongly correlate
with flakiness. The present work enriches our knowledge by adding
an additional set of data points from industrial practice.
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Table 4: Overview of the classification time for sheriffs.

Test Suite Count Mean Std  Min Q1 Median Q3 Max
mochitest-plain-chunked 4,255 64.01m 8.15h 7s 3.64m 1095m 28.80m 6.41d
mochitest-browser-chrome-chunked 7,121  63.06m 6.11h 8s 348m 10.58m 29.32m 7.17d
mochitest-mochitest-devtools-chrome-chunked 3,392 59.10m 6.74h 7s 342m 1032m 29.82m 6.20d
reftest-reftest 1,429 438h  2087h 11s 442m 1438m 4440m  7.55d
reftest 445 80.28 m 5.60h 13s  455m 11.57m 44.63m 2.80d
mochitest 1,148 30.32m  95.60m 6s 3.01lm 10.25m 26.04m 41.16h
mochitest-mochitest-gl 335 87.53m 472h  13s 597m 1815m 60.13m  2.33d
xpeshell-xpeshell 760  45.50m 350h 19s 440m 13.12m 37.10m  3.35d
mochitest-chrome 1,141 41.11m 6.09h 16s 3.03m  872m 2510m  6.29d
Jjsreftest 182 324h 1843h 16s 3.86m 11.65m 3592m  6.70d
reftest-reftest-no-accel 610 52.44m 238h 17s 501lm 1591m 46.23m 31.07h
marionette 600 2.62h  2500h 13s 478m 17.27m 58.95m 24.27d
mochitest-mochitest-media 2,991 45.90m 360h 10s 3.69m 11.75m 32.72m 490d
xpeshell 472 36.15m 234h  13s 3.13m  897m 2551m 46.43h
reftest-crashtest 91 59.88m 2.07h 25s 384m 1527m 4940m 11.42h
mochitest-ally 320 44.58m 231h  23s 3.12m 9.50m 33.33m 16.17h
reftest-reftest-fonts 128 4579m 94.08m 30s 524m 19.85m 43.65m 13.36h
mochitest-media 252 3324m 88.59m 12s 266m  8.17m 28.18m 16.53h
reftest-reftest-no-accel-fonts 106  78.69m 2.84h 37s 6.04m 1852m 56.23m 20.15h
reftest-reftest-gpu-fonts 93 5191m 1.74h  36s 4.12m 1448m 43.25m 10.03h
Total 25,871 71.11m 834h 6.0s 338m 11.12m 31.42m 24.27d

Quarantining. One approach to mitigating flaky tests would be
disabling tests known to be flaky (also referred to as quarantin-
ing) [20]. At GOOGLE, the two most frequently used techniques are
quarantining and rerunning flaky tests [39]; 16% of tests are flaky
tests and they spend up to 16% of their computing resources on re-
running flaky tests [40]. While quarantining may be a workaround
for intermittently failing tests, the problem is that tests covering
critical behavior of the software system may be skipped and that
this behavior might not be covered by other tests. Furthermore,
quarantining entire jobs, rather than single tests, is not an option,
which we address in this work.

Automated Detection & Classification. Bell et al. presented DeFlaker,
a tool to automatically detect flaky tests [8]. Their approach is
based on differential coverage, without re-running the test. Other
approaches not requiring re-runs are [6, 43], both using machine
learning techniques to classify tests as flaky. Other approaches like
the one presented in [41], or chaos mode [1] try to create an envi-
ronment in which a newly introduced test is stress tested in order
to reveal flakiness. All these approaches focus on identifying flaky
tests while we focus on the classification of intermittent failures.
Furthermore, intermittent failures can also be caused by reasons
other than a flaky test. Our approach is also be able to deal with
jobs that fail for reasons other than flaky tests.

9 CONCLUSION AND FUTURE WORK

Intermittent failures are a significant obstacle in continuous integra-
tion (CI) processes. Using job telemetry data, we are able not only
to classify job failures as intermittent, but also to derive indicators
towards the underlying root cause. We showed that even simple
correlations between certain features and flakiness are sufficient
to classify failures with a high degree of precision and virtually no
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resources or time consumed at the time the failure occurs. While
the classification models still need to be trained, this can be done
independently of the running CI pipelines. Our evaluation indicates
that our approach would significantly improve over state of the art
when applied complementary to current approaches.

Intermittent failures and flaky tests are plaguing developers for
years and we are aware that there is no single optimal solution for it.
During the course of our work, we discovered follow-up questions
and challenges that need further investigation:

As test suites continuously change, models will inevitably depre-
cate over time. Further research is required to understand the pace
at which the models are deprecating and how frequently they need
to be retrained to keep up with changes in the test suites or to the
ecosystem. Using larger data sets, we might be able to understand
how often models have to be re-trained. Furthermore, with more
features, we might be able to predict intermittent failures for test
suites that do not have a good predictor yet. In addition to building
a full-fledged classification pipeline integrated into Mozirra’s CI
process, we also want to use telemetry data from other companies
to verify that this approach will also be applicable in their CI pro-
cess. Early experiments indicate that using this approach we will
also be able to identify patterns for intermittent failures at other
companies as well.
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