
Continuous Release of Data Streams under both Centralized
and Local Differential Privacy

Tianhao Wang
∗

Carnegie Mellon University

& University of Virginia

Joann Qiongna Chen

University of California,

Irvine

Zhikun Zhang

CISPA

Dong Su

Alibaba Inc.

Yueqiang Cheng

NIO Security Research

Zhou Li

University of California,

Irvine

Ninghui Li

Purdue University

Somesh Jha

University of Wisconsin,

Madison

ABSTRACT
We study the problem of publishing a stream of real-valued data

satisfying differential privacy (DP). One major challenge is that the

maximal possible value in the stream can be quite large, leading to

enormous DP noise and bad utility. To reduce the maximal value

and noise, one way is to estimate a threshold so that values above it

can be truncated. The intuition is that, in many scenarios, only a few

values are large; thus truncation does not change the original data

much.We develop such amethod that finds a suitable thresholdwith

DP. Given the threshold, we then propose an online hierarchical

method and several post-processing techniques.

Building on these ideas, we formalize the steps in a framework for

the private publishing of streaming data. Our framework consists

of three components: a threshold optimizer that privately estimates

the threshold, a perturber that adds calibrated noise to the stream,

and a smoother that improves the result using post-processing.

Within our framework, we also design an algorithm satisfying the

more stringent DP setting called local DP. Using four real-world

datasets, we demonstrate that our mechanism outperforms the

state-of-the-art by a factor of 6− 10 orders of magnitude in terms of

utility (measured by the mean squared error of the typical scenario

of answering a random range query).

CCS CONCEPTS
• Information systems → Data streams; • Security and pri-
vacy→ Privacy-preserving protocols.

KEYWORDS
Differential Privacy; Local Differential Privacy; Continuous Obser-

vation; Data Stream

ACM Reference Format:
Tianhao Wang, Joann Qiongna Chen, Zhikun Zhang, Dong Su, Yueqiang

Cheng, Zhou Li, Ninghui Li, and Somesh Jha. 2021. Continuous Release

∗
Tianhao did most of the work while at Purdue University.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea.
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8454-4/21/11. . . $15.00

https://doi.org/10.1145/3460120.3484750

of Data Streams under both Centralized and Local Differential Privacy. In

Proceedings of the 2021 ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS ’21), November 15–19, 2021, Virtual Event, Republic of
Korea. ACM, New York, NY, USA, 17 pages. https://doi.org/10.1145/3460120.

3484750

1 INTRODUCTION
Continuous observation over data streams has been utilized in

several real-world applications. For example, security companies

continuously analyze network traffic to detect abnormal Internet be-

haviors [9]. However, analyzing and releasing streams raise privacy

concerns when these data contain sensitive individual information.

Directly publishing raw statistics may reveal individual users’ pri-

vate information. For instance, electricity usage data from smart

meters can reveal whether a user is at home or even what household

appliances are used at some specific time [34].

A promising technique for releasing private statistics is differen-

tial privacy (DP) [17], which has become the gold standard in the

privacy-research community. Informally, any algorithm satisfying

DP has the property that its output distribution on a given database

is close to the output distribution on a similar dataset where any

single record is replaced. The closeness is quantified by a parameter

ϵ , where a smaller ϵ offers a better privacy guarantee.

To publish streams with DP, a widely accepted approach is to

use the hierarchical structure [8, 18]. The idea is to partition the

time series into multiple granularities and then add noise to the

stream to satisfy DP. Because of the additive noise, it is impossible

to accurately publish any single value in the stream. Thus our goal

is to accurately estimate the sum of values over any range of time. One
challenge is that to satisfy DP, the magnitude of the noise should

be proportional to the upper bound of the data, which is typically

large. Perrier et al. [36] (termed PAK in this paper) observed that

data in the stream is often concentrated below a value much smaller

than the upper bound. To exploit this insight, a technique called

contribution limitation is commonly-used [13, 30, 32, 50, 54]. It

truncates the data using a specified threshold θ (i.e., values larger

than θ are replaced by θ). The rationale is to reduce the noise (now

the noise is proportional only to θ) while preserving utility. To find
such a threshold while maintaining DP, PAK developed a method

based on smooth sensitivity [35]. The result can then be applied to

the hierarchical algorithm to publish streams with improved utility.

We find three key limitations in existing work of PAK’s. First, it

tries to privately find the 99.5-th percentile to serve as the threshold

θ . Unfortunately, using the 99.5-th percentile (or any other fixed

percentile) is unlikely to work across all settings of ϵ values and

https://doi.org/10.1145/3460120.3484750
https://doi.org/10.1145/3460120.3484750
https://doi.org/10.1145/3460120.3484750

data distributions. Second, in order to get an analytical upper bound

of the error caused by truncation (this error is also called bias), the

authors further increase the estimated 99.5-th percentile by first

adding a positive term, and then multiplying a coefficient greater

than 1. As a result, the chosen θ is often unnecessarily large. When

ϵ is small (e.g., ϵ ≤ 0.1), the value of θ is usually larger than the

maximal possible value, running against the original purpose of

choosing the threshold. Third, the method directly utilizes a basic

hierarchical approach to output the stream, and does not fully take

advantage of post-processing optimizations. As a consequence, the

accuracy of the output is far from ideal, and the results are worse

when answering range queries with small selectivity.

In this paper, we propose a new approach by addressing the

above-mentioned three limitations. Instead of using a fixed per-

centile, we design a data-dependent method to find the threshold θ
that considers the overall data distribution. Our goal is to minimize

the overall error due to bias and DP noise simultaneously. Given

θ , we then propose a new hierarchical algorithm to obtain accu-

rate results. One major contribution is a novel online algorithm

to enforce consistency over the noisy estimates (i.e., to make sure

the number on any node equal the sum of its children’s, which is

violated if independently sampled noise is added to the hierarchy)

on the hierarchy to provide better utility. While there exists consis-

tency methods that work on the noisy hierarchies, our observation

is that we can pre-compute all the noise, and then make the noise

consistent first. As the true values are naturally consistent, we can

then add the consistent noise to the true values in an online manner

and thus achieve an online consistency algorithm. We prove the

algorithm achieves minimum squared error and also satisfies DP.

Another contribution is that we further extend the algorithm to

prune the lower-level nodes based on an optimization criterion,

based on the observation that the estimates in the lower levels of

the hierarchy tend to be overwhelmed by the noise, leading to a

low signal-noise ratio. Our new hierarchical algorithm is also able

to handle infinite streams.

Next, we generalize the above-mentioned algorithms into a new

framework for streaming data publication. It consists of three com-

ponents: a Threshold optimizer, a Perturber, and a Smoother. The
threshold optimizer consumes a portion of the input stream, and

finds a threshold θ . It then truncates all incoming values by θ and

sends them to the perturber. The perturber adds noise to each in-

coming element of the stream, and releases noisy counts to the

smoother. Finally, the smoother performs further post-processing

on the noisy counts and outputs the final stream. Together with

the new algorithms described above, we call our solution ToPS.
Finally, based on the framework of ToPS, we design an algo-

rithm to output streams while satisfying local DP (LDP), which

protects privacy under a stronger adversary model than DP. We

call the resulting method ToPL. Under LDP, only the users know

the true values and thus removes the dependence on the trusted

central server. In ToPL, we use state-of-the-art LDP mechanisms

for the Threshold optimizer and the Perturber. While the design

of ToPL relies on the findings in ToPS, we also adapt existing LDP

mechanisms to our setting to get better performance.

We implemented both ToPS and ToPL, and evaluated them using

four real-world datasets, including anonymized DNS queries, taxi

trip records, click streams, and merchant transactions. We use the

Mean Squared Error (MSE) over random range queries as the metric

of performance evaluation. The experimental results demonstrate

that our ToPS significantly outperforms the previous state-of-the-

art algorithms. More specifically, the most significant improvement

comes from our new technique to finding θ . It contributes an im-

provement of 4 − 8 orders of magnitude over PAK. Even given

the same reasonable θ , ToPS can answer range queries 100× more

accurately than PAK. Putting the two together, ToPS improves over

PAK by 6 − 10 orders of magnitude in terms of MSE.

Contributions. To summarize, the main contributions of this

paper are threefold:

• We design ToPS for releasing real-time data streams under differ-

ential privacy. Its contributions include an EM-based algorithm

to find the threshold, an online consistency algorithm, the use of

a smoother to reduce the noise, and the ability to handle infinite

streams.

• We extend ToPS to solve the problem in themore stringent setting

of LDP and propose a new algorithm called ToPL.

• We evaluate ToPS and ToPL using several real-world datasets.

The experimental results indicate that both can output streams

accurately in their settings. Moreover, ToPS outperforms the

previous state-of-the-art algorithms by a factor of 6 − 10 orders.

Our code is open sourced at https://github.com/dp-cont/dp-cont.

Roadmap. In Section 2, we present the problem definition and

the background of DP and LDP. We present the existing solutions

and our proposed method in Section 3 and 4. Experimental results

are presented in Section 5. Finally, we discuss related work in Sec-

tion Section 6 and provide concluding remarks in Section Section 7.

2 PROBLEM DEFINITION AND
PRELIMINARIES

We consider the setting of publishing a stream of real values un-

der differential privacy (DP). The length of the stream could be

unbounded. Due to the constraint of DP, it is unrealistic to make

sure every single reading of the stream is accurate, so the goal is to

ensure the aggregated estimates are accurate.

2.1 Formal Problem Definition
There is a sequence of readings V = ⟨v1,v2, . . .⟩, each being a real

number in the range of [0,B]. We publish a private sequence Ṽ of

the same size as V while satisfying DP, with the goal of accurately

answering range queries. Range query is an important tool for

understanding the overall trend of the stream. Specifically, a range

query V (i, j) is defined as the sum of the stream from index i to j,

i.e., V (i, j) =
∑j
k=i vk . We want a mechanism that achieves a low

expected squared error of any randomly sampled range queries,

i.e.,

E

[(
Ṽ (i, j) −V (i, j)

)
2

]
. (1)

2.2 Differential Privacy
We follow the setting of PAK [36] and adopt the notion of event-level
DP [18], which protects the privacy of any value in the stream.

https://github.com/dp-cont/dp-cont

Definition 2.1. (Event-level (ϵ,δ)-DP) An algorithm A(·) satisfies
(ϵ,δ)-differential privacy ((ϵ,δ)-DP), if and only if for any two

neighboring sequences V and V ′ and for any possible output set O ,

Pr [A(V) ∈ O] ≤ eϵ Pr
[
A(V ′) ∈ O

]
+ δ ,

where two sequences V = ⟨v1,v2, . . .⟩ and V
′ = ⟨v ′

1
,v ′

2
, . . .⟩ are

neighbors, denoted by V ≃ V ′, when vi = v ′i for all i except one
index.

For brevity, we use (ϵ,δ)-DP to denote Definition 2.1. When

δ = 0, which is the case we consider in this paper, we omit the δ
part and write ϵ-DP instead of (ϵ, 0)-DP.

Justification of Event-Level DP. Although event-level DP only

protects one value, it is a suitable guarantee in many cases. For

example, individuals might be happy to disclose their routine trip to

work while unwilling to share the occasional detour. Note that the

data model is general andV can also come from multiple users. For

example, V consists of the customers’ expenditure from a grocery

store, and we want to protect some unusual transaction. Moreover,

our model is a generalization of the basic model where every value

is binary [8, 21], and can be used in building private algorithms

with trusted hardware [7].

Extension to Event-Level LDP. We also work in the local ver-

sion of DP [28]. Compared to the centralized setting, local DP offers

a stronger trust model, because each value is reported to the server

in a perturbed form. Privacy is protected even if the server is mali-

cious. For each value v in the stream of V , we have the following
guarantee:

Definition 2.2 ((ϵ,δ)-LDP). An algorithmA(·) satisfies (ϵ,δ)-local
differential privacy ((ϵ,δ)-LDP), if and only if for any pair of input

values v,v ′, and any set O of possible outputs of A, we have

Pr [A(v) ∈ O] ≤ eϵ Pr
[
A(v ′) ∈ O

]
+ δ .

Typically, δ = 0 in LDP [33, 41, 45, 49] (one reason is that many

LDP protocols are built on randomized response [49], which ensures

δ = 0). Thus we simplify the notation and call it ϵ-LDP. The notion
of LDP differs from DP in that each user perturbs the data before

sending it out and thus do not need to trust the server under LDP.

2.3 Mechanisms of Differential Privacy
We first review primitives proposed for satisfying DP. We defer the

descriptions of LDP primitives to Appendix E as our LDP method

mostly uses the LDP primitives as blackboxes.

Laplace Mechanism. The Laplace mechanism computes a func-

tion f on the input V in a differentially private way, by adding to

f (V) a random noise. The magnitude of the noise depends on GSf ,
the global sensitivity or the L1 sensitivity of f , defined as,

GSf = max

V≃V ′
| | f (V) − f (V ′)| |1.

When f outputs a single element, such a mechanism A is given

below:

Af (V) = f (V) + Lap
(
GSf
ϵ

)
.

In the definition above, Lap (β) denotes a random variable sampled

from the Laplace distribution with scale parameter β such that

Pr [Lap (β) = x] = 1

2β e
−|x |/β

, and it has a variance of 2β2. When

f outputs a vector, A adds independent samples of Lap
(
GSf
ϵ

)
to

each element of the vector.

Noisy Max Mechanism. The Noisy Max mechanism (NM) [20]

takes a collection of queries, computes a noisy answer to each query,

and returns the index of the query with the largest noisy answer.

More specifically, given a list of queries q1,q2, . . ., where each
qi takes the data V as input and outputs a real-numbered result,

the mechanism computes qi (V), samples a fresh Laplace noise

Lap
(
2GSq
ϵ

)
and adds it to the query result, i.e.,

q̃i (V) = qi (V) + Lap
(
2GSq
ϵ

)
, (2)

and returns the index j = argmaxi q̃i (V). Here GSq is the global

sensitivity of queries and is defined as:

GSq = max

i
max

V≃V ′
|qi (V) − qi (V

′)|.

Dwork and Roth prove this satisfies ϵ-DP [20] (recently Ding et

al. [14] proved using exponential noise also satisfy DP). Moreover,

if the queries satisfy the monotonic condition, meaning that when

the input dataset is changed fromV toV ′, the query results change

in the same direction, i.e., for any neighboring V and V ′(∃i qi (V)<qi (V ′)) =⇒ (∀i′ qi′(V)≤qi′(V ′)) .
Then one can remove the factor of 2 in the Laplace noise. This

improves the accuracy of the result.

2.4 Composition Properties
The following composition properties hold for both DP and LDP

algorithms, each commonly used for building complex differentially

private algorithms from simpler subroutines.

Sequential Composition. Combining multiple subroutines that

satisfy DP for ϵ1, · · · , ϵk results in a mechanism that satisfies ϵ-DP
for ϵ =

∑
i ϵi .

Parallel Composition. Given k algorithms working on disjoint

subsets of the dataset, each satisfying DP for ϵ1, · · · , ϵk , the result
satisfies ϵ-DP for ϵ = maxi ϵi .

Post-processing. Given an ϵ-DP algorithm A, releasing д(A(V))
for any д still satisfies ϵ-DP. That is, post-processing an output of a

differentially private algorithm does not incur any additional loss

of privacy.

3 DIFFERENTIALLY PRIVATE STREAMS
For privately releasing streams and supporting range queries over

the private stream, the most straightforward way is to add indepen-

dent noise generated through the Laplace distribution. However,

this results in a cumulative error (following the tradition, we use

absolute error here, which measures the difference from the true

sum) of O(
√
n) after n observations.

The Hierarchy Approach. To get rid of the dependency on

√
n,

the hierarchical method was proposed [8, 18]. Given a stream of

length n, the algorithm first constructs a tree: the leaves are labeled

{1}, {2}, . . . , {n} and the label of each parent node is the union of

labels from its child nodes. Given h = logn layers, the method adds

Laplace noise with ϵ/h in each layer. To obtain the noisy count

Ṽ (i, j), we find at most logn nodes in the hierarchy, whose labels

are disjoint and their union equals [i, j]. Given that the noise added

to each node is O(logn), this method has an error of O(log1.5 n).
In the online setting, where the stream data come one-by-one,

we want to release every node in the hierarchy promptly. To do

so, at any time index t , we publish all nodes that contain t as the
largest number in their labels.

3.1 Existing Work: PAK
To satisfy DP in the hierarchy method, one needs to add noise pro-

portional to B, the maximal possible value in the stream, and B can

be quite large in many cases. Perrier et al. [36] (we call it by the

authors’ initials, PAK, for short) observed that in practice, most of

the values are concentrated below a threshold much smaller than B
(e.g., the largest possible purchase price of supermarket transactions

is much larger than what an ordinary customer usually spends),

and proposed a method to find such a threshold and truncate data

points below it to reduce the scale of the injected Laplace noises.

In particular, the firstm values are used to estimate the threshold

θ with differential privacy. After obtaining θ , the following values
in the stream are truncated to be no larger than θ . Reducing the

upper bound from B to θ reduces the DP noise (via reducing sensi-

tivity). The hierarchical method is used for estimating the stream

statistics with the remaining n −m values (PAK assumes there are

n observations).

Finding the Threshold. To obtain θ , PAK proposed a specially

designed algorithm based on Smooth Sensitivity (SS) [35] to get the

p-quantile (or p-percentile) as θ , i.e., p% of the values are smaller

than θ . SS was used to compute the median with DP in the original

work [35], and SS can also be easily extended to privately release

the p-quantile. PAK proved that the result of SS is unbiased, but

they further wanted to make sure the result is always larger than

the real p-quantile. This is because if the estimated percentile is

smaller than the real one, the truncation in the next phase will

introduce greater bias. Thus PAK modified the original SS method

to guarantee that the result is unlikely to be smaller than the real

p-quantile. As the details of the method are not directly used in the

rest of the paper, we defer the details of both SS and the algorithm

itself to Appendix A and B.

There are two drawbacks of this method. First, it requires a p
value to be available beforehand. But a good choice of p actually

depends on the dataset, ϵ , andm. PAK simply uses p = 99.5. As

shown in our experiment in Section 5.4, p = 99.5 does not perform

well in every scenario. Second, to ensure that θ is no smaller than

the real p-quantile, PAK introduces a positive bias to θ .

3.2 Overview of Our Approach
The design of PAK was guided by asymptotic analysis. Unfortu-

nately, for the parameters that are likely to occur in practice, the

methods and parameters chosen by asymptotic analysis can be far

from optimal, as such analysis ignores important constant factors.

Instead, we use concrete analysis to guide the choice of methods

and parameters.

In this section, we first deal with the threshold selection problem

using the Noisy Max mechanism (NM, introduced in Section 2.3),

which satisfies DP with δ = 0. Empirical experiments show its

superiority especially in small ϵ scenarios (which means compared

to PAK, we can achieve the same performance with better privacy

guarantees). We then introduce multiple improvements for the

hierarchical methods including an online consistency method, and

a method to reduce the noise in the lower levels of the hierarchy.We

integrate all the components in a general framework, ToPS, which
consists of a Threshold optimizer, a Perturber, and a Smoother:
• Threshold optimizer: The threshold optimizer uses a small portion

of the input stream to find a threshold θ for optimizing the errors

due to noise and bias. It then truncates any incoming values by

θ and releases them to the perturber.

• Perturber: The perturber adds noise to the truncated stream, and

releases noisy counts to the smoother.

• Smoother: The smoother performs further post-processing on the

noisy counts and outputs the final stream.

While design of ToPS is inspired by PAK, we include unique

design choices to handle the problem. In particular, PAK has two

phases, the threshold finder and the hierarchical method. We im-

prove both phases. Note that as we use NM [20], our algorithm

satisfies ϵ-DP while PAK satisfies (ϵ,δ)-DP. Moreover, we intro-

duce a smoother that further improves accuracy. The fundamental

reason that our method works better is that we design our method

focusing on a good empirical performance rather than theoretical

bounds.

3.3 Threshold Optimizer
Different from PAK [36] that focuses on bias when choosing the

threshold θ , our approach is to consider both bias and variance

(due to DP noise). As bias and variance go in opposite ways (i.e.,

when θ is large, bias will be small, but variance will go large, vice

versa), there will be an optimal θ that minimizes the overall error.

Note that the overall error depends on the whole distribution of the

data, which might be too much information to accurately estimate

with DP. To handle this issue, we choose to use the Noisy Max

mechanism (NM) [20], which looks into the data privately and

outputs only a succinct information of θ . In what follows, we first

examine the error.

A Basic NM Query Definition. We first consider the expected

squared error of estimating a single value v . Assuming that ṽ is the

estimation of v , it is well known that the expected squared error is

the summation of variance and the squared bias of ṽ :

E
[
(ṽ −v)2

]
= Var [ṽ] + Bias [ṽ]2 . (3)

Note that Bias [ṽ] equals E [ṽ]−v . Given a threshold θ and privacy

budget ϵ , Bias [ṽ] = max(v − θ , 0) and Var [ṽ] = 2θ 2

ϵ 2 (because we

add Laplace noise with parameter θ/ϵ).
Since we are using the hierarchical method to publish streams

for answering range queries, we use the error estimations of the

hierarchical method to instantiate Equation 3. Qardaji et al. [37]

show that there are approximately (b − 1) logb (r) nodes to be esti-

mated given any random query of range smaller than r , where b
is the fan-out factor of the hierarchical method; and the variance

of each node is log
2

b (r)
2θ 2

ϵ 2 . For bias, within range limitation r , a

random query will cover around
r
3
leaf nodes on average [37] (We

assume a random query can take any range in [1, r]. Thus there

are r (r + 1)/2 possible range queries. Among them, for any range

of length j ∈ [1, r], there are r − j + 1 such ranges. The expected

length of a random query is

∑r
j=1 j(r−j+1)
r (r+1)/2 = r+2

3
≈ r

3
). Denote ft

as the frequency of value t , the combined error of the hierarchical

method for answering random range queries would be:

(b − 1) log3b (r)
2θ2

ϵ2
+

(
r

3

∑
θ<t<B

ft (t − θ)

)
2

. (4)

The Final NM Query Definition. For NM to be effective, the

queries should have low sensitivity, meaning that changing one

value perturbs the queries by a tiny amount. However, if we directly

use Equation 4 as the queries, the sensitivity is large: a change

of value from 0 to B will result in the increase of Equation 4 by

(B − θ)2/9. Thus we choose to approximate the mean squared error

by defining the queries in the following ways.

Denotem as the number of values to be used in NM, andmθ as

the number of values that are smaller than θ from thesem values:

mθ = |{i | vi ≤ θ , i ∈ [m]}|, (5)

where [x] = {1, 2, . . . ,x} and |X | denotes the cardinality of set X .
The first approximation method we use is to replace the variance

and squared bias with their squared roots (standard deviation and

bias). Second, we use c ·mθ /m (c is a constant to be discussed later)
to approximate

∑
θ<t<B ft (t − θ). Third, we multiply both the

standard deviation and bias errors by − 3m
c ·r to ensure the sensitivity

is 1, and the query result of the target is the highest. Thus we have:

qθ (V) = −
3m

c · r

√
(b − 1) log3b (r)

2θ2

ϵ2
−mθ

= −
3mθ

crϵ

√
2(b − 1) log3b (r) −mθ . (6)

The first term is a constant depending on θ but independent of the

private data, while the second term has a sensitivity of 1.

Running NM. To run NM, the set of possible θ values considered

in the queries qθ (V) should be a discrete set that covers the range

[0,B]. The granularity of the set is important. If it is too coarse-

grained (e.g., θ ∈ {0,B/2,B}), the method is inaccurate, because the

desired value might be far from any possible output. On the other

hand, if it is too fine-grained, the NM algorithm will run slowly,

but it does not influence the accuracy. In the experiment, we use all

integers in the range of [B] = {1, 2, . . . ,B} as the possible set of θ .
One unexplained parameter in Equation 6 is c . There are two

factor that contributes to c: (1) Using mθ /m to approximate the

bias term

∑
θ<t<B ft (t − θ) leads to underestimation. (2) As we

will describe later in Section 3.4 and 3.5, the actual squared error

will be further reduced by our newly proposed method. While c
intends to be a rough estimation of the underestimation, it does

not need to be chosen based on one particular dataset. One can run

experiments with a public dataset of similar nature under different

parameters, the best level of error that can be achieved is usually a

good indicator of c . When a public dataset is unavailable, one can

generate a synthetic dataset under some correlation assumption

and run experiments. In experiments conducted for this paper, we

choose c = 60, and use it for all datasets and settings.

Figure 1: Empirical comparison of approximated query re-
sults (Equation 6) and the true squared errors and their min-
imum points θq and θt on a real-world datasets (DNS). We
use ϵ = 0.1,m = 2

16, r = 2
20. The x-axis is the possible value

of θ , and they-axis is the query result or themeasured error.

Verify the Approximation. Figure 1 illustrates the distribution
of Equation 6 and measured errors on a dataset that is used in

the experiments in Section 5. The dataset is a network streaming

dataset, called DNS. We use ϵ = 0.1,m = 2
16, r = 2

20
, which are the

same as those parameters used in experiments. From Figure 1, we

can see that the distributions between the truly measured errors

(Equation 4) and the corresponding Equation 6 on two datasets

are very close. The figure also illustrates the bias and variance

factors of Equation 6. The two factors grow in opposite directions

which makes a global minimum where the target θ lies. In addition,

we also show that the threshold θq that minimizes our queries

Equation 6 is close to the target threshold θt which minimizes the

real measured errors (Equation 4). Therefore, the above empirical

evaluation results show the capability of the threshold optimizer in

finding accurate θ values.

3.4 Perturber
The perturber inherits the hierarchical idea [8, 18] (also described

in Section 3.1). In this section, we start from the binary hierarchy

used in PAK and put together three improvements to it to obtain a

solution that is practical across a wide range of datasets.

1. Better Fan-out. According to Qardaji et al. [37], using a fan-

out b = 16 instead of 2 in the hierarchy can give better utility. The

result of optimal fan-outb = 16 is derived by analyzing the accuracy

(variance) of answering range queries. In particular, we assume the

range query is random and all layers in the hierarchy receive the

same amount of privacy budget. We then measure the expected

accuracy (measured by variance) of answering the range query.

The optimal value b = 16 is obtained by minimizing the variance.

It does not change on different datasets because the analysis is

data-independent. We thus use fan-out b = 16 by default.

2. Handling Infinite Streams. PAK requires a fixed length n a

priori in order to build the hierarchy. As a result, their algorithm

stops after n observations. In order to support infinite streams,

Chan et al. [8] proposed to have an infinitely high hierarchy, and

each layer receives a privacy budget inversely proportional to the

height of the layer. For example, the bottom layer receives 0.9ϵ ,

then its parent layer receives 0.92ϵ , and so on. While this ensures

the overall privacy budget will never exceed ϵ , the higher layers
are essentially receiving a tiny amount of privacy budget.

In this paper, we note that most of the queries focus on limited

ranges, and propose to have an upper bound on the query range

denoted by r and then split ϵ equally to the h = ⌈logb r⌉ layers.
The value of r stands for a limit below which most queries’ ranges

fall, and is determined externally (e.g., if we receive one value per

minute, then it is unlikely that a query spans over a year). For each

chunk of r observations, we output a height-h hierarchy. We note

that each hierarchy handles a disjoint sub-stream of observations

and thus this extension does not consume additional privacy budget

because of the parallel composition property of differential privacy.

In the evaluation, we choose r = 2
20
.

3. Online Consistency. Given a noisy hierarchy, Hay et al. [26]

proposed an efficient algorithm for enforcing consistency among

the values in it. By enforcing consistency, the accuracy of the hier-

archy can be improved. Note that this is a post-processing step and

does not consume any privacy budget. Unfortunately, the algorithm

is off-line and requires the whole hierarchy data to be available. Here
we propose an online version of the enforce-consistency algorithm,

so that we can output the noisy streams promptly.

Our method is built on the work of Hay et al. [26]. Due to space

limitation, we provide details of the algorithm in Appendix C. The

intuition is that, if we have two estimations of the same value, their

(weighted) average would be closer to the true value.

Knowing that the noisy estimates can be decomposed into true

values and pure noise, our method generates all required noise

in advance, followed by the consistency enforcement. In this way,

the consistent off-line noise can be directly added to the incoming

true values during online publishing. Because of the consistency

of both the true values and the noise, the noisy estimates will also

be consistent. Moreover, we prove that the result of our online

algorithm is equivalent to that of the off-line algorithm (the proof

is deferred Appendix C).

Theorem 3.1. The online consistency algorithm gives identical
results as the off-line consistency algorithm.

This together with the fact that the off-line consistency algorithm

can be seen as post-processing and thus satisfies DP, we can argue

that our online algorithm also satisfies DP.

3.5 Smoother
In this section, we introduce a smoother to further improve the

utility of the algorithm. Assuming the hierarchy from perturber

has h layers, the smoother is designed to replace the values from

the first s lower-level layers with predictions, which are based on

previous estimations. The first question is how to choose s .

Optimizing s. Selecting s is important. A larger s results in smaller

noise errors: because there are now h − s layers in the hierarchy,

each layer will receive more privacy budget according to sequential

composition (given in Section 2.4). On the other hand, a larger s
probably leads to a larger bias (because we are only doing the actual

estimate once every bs values; other estimates are from predictions

based on previous values, thus are independent of the true values

and less accurate). Choosing a good value of s thus is a balance

between noise errors and bias. Note that we already have noise error

term from Equation 4, but we need to calculate the bias introduced

by the smoother (the truncation bias in Equation 4 already exists

and does not change with s).
To estimate the smoothing bias, we assume that for each value,

the bias amount is approximately θ/3. We then assume there are

approximately bs/2 values in a query. Then the average squared

bias is approximated by
b2s

4

θ 2

9
. Therefore, we use the following

equation to approximate the squared error:

(b − 1)
(
logb (r) − s

)
3 2θ2

ϵ2
+
b2s

4

θ2

9

. (7)

Given ϵ and r , s can be computed by minimizing the above error.

Smoothing Method. Given s , we now describe choices of imple-

menting the smoother. We consider a set of methods proposed in

the literature, and present their details in Appendix D. Among them,

the most straightforward one is “Recent” smoother, which predicts

the next values based on the most recent estimation. In evaluation,

we find it works the best, probably because the dataset we use is

spiky.

3.6 Summary and Discussions
In summary, our method takes the raw stream V = ⟨v1,v2, . . .⟩ as
input and outputs a private stream Ṽ = ⟨ṽ1, ṽ2, . . .⟩. Algorithm 1

gives the details of our method: We first cache the firstm values and

obtain θ . Then for each of the following values, we first truncate it

and then use the hierarchical method together with the smoother

to output the noisy value.

In this paper, we focus on the setting used in PAK, where the

threshold optimizer does not publish the firstm values, but uses

them to obtain θ . After the firstm values, it sends θ to the perturber

and truncates any incoming value by θ . The perturber then outputs

values using the hierarchical method, and there is a smoother that

further processes the result. Our method is also flexible and can

work in other settings. We will discuss more about the flexibility of

ToPS in Section 7.

We claim that ToPS satisfies ϵ-DP. The perturber uses ϵ/h to

add Laplace noise to each layer of the hierarchical structure. By

sequential composition, the overall data structure satisfies ϵ-DP. To
find the threshold, ToPS uses a disjoint set ofm observations and

runs an ϵ-DP algorithm. Due to the parallel composition property of

DP, the threshold optimizer and the perturber together satisfy ϵ-DP.
The online consistency algorithm and the smoother’s operations are

post-processing procedures and do not affect the privacy guarantee.

4 PUBLISHING STREAMS IN LDP SETTING
In this section, we introduce ToPL for publishing streaming data

under local DP (LDP). To the best of our knowledge, this is the first

algorithm that deals with this problem under LDP.

In LDP, users perturb their values locally before sending them

to the server, and thus do not need to trust the server. Applying to

the streaming values in our setting, each value should be perturbed

before being sent to the server. What the server does is only post-

processing of the perturbed reports.

Algorithm 1: ToPS
Input: V = ⟨v1, v2, . . .⟩, ϵ ,m, upper bound on query range r
Output: Ṽ = ⟨ṽ1, ṽ2, . . .⟩

1 Vm ← ⟨v1, . . .vm ⟩ ; // Cache the first m values

2 for θ = 1 to B do
3 mθ ← |{i | vi ≤ θ, i ∈ [m]} | ; // Equation 5

4 qθ (Vm) ← − mθ
20rϵ

√
2(b − 1) log3b (r) −mθ ; // Equation 6

5 q̃θ (V) = qθ (Vm) + Lap
(
1

ϵ
)
; // GSд = 1, q is monotonic

6 θ ← argmaxθ q̃θ (V) ; // Find θ via Noisy Max (Section 2.3)

/* The previous part of the code finds θ. */

/* Now we are ready to release the stream. */

7 h ← log
16
r ;

8 s ← argmins

[
15

(
log

16
(r) − s

)
3 2θ 2

ϵ2
+ 16

2s
4

θ 2
9

]
; // Equation 7

9 u ← 16
s θ
2

;

10 build ← True ; // Indicator to build a tree

11 foreach i > m do
12 vi ← min(vi , θ) ; // Truncate

13 if build then
14 Init an (h − s)-layer hierarchy with fan-out 16 ;

15 Assign 0 to all nodes ; // Build the virtual tree

16 Add Lap
(
h−s
ϵ

)
to each node ;

17 Make the tree consistent ; // Appendix C

18 cur_node ← left-most noisy node on tree ;

19 build ← False ;

20 if (i −m) mod r = 0 then
21 build ← True ; // Time to build another tree

22 if (i −m) mod 16s = 0 then
23 Output cur_node − u × (16s − 1) ;
24 ut ← cur_node ;

25 cur_node ← next noisy node on tree ;

26 else
27 Output u/16s ; // ‘‘Recent’’ smoother in Appendix D

28 cur_node ← cur_node + vi ;

ToPL follows the design framework of ToPS. There is a threshold

optimizer to find the threshold based on the optimal estimated

error, and the threshold is used to truncate the users’ values in the

later stage. Different from the centralized DP setting, in the local

setting, the obtained threshold will be shared with the users so

that they can truncate their values locally. The perturber section

is also run within each user’s local side, because of the privacy

requirement that no other parties other than the users themselves

can see the true data. There is no smoother section. In what follows,

we describe the construction for the threshold optimizer and the

perturber.

4.1 Design of the Threshold Optimizer
In LDP, each user only has a local view (i.e., they only know their

own data; no one has a global view of the true distribution of all

data), thus there is no Noisy Max mechanism (NM) (described in

Section 2.3) that we can use as in the DP setting. Instead, most

existing LDP algorithms rely on frequency estimation, i.e., estima-

tion of how many users possess each value, as what the Laplace

mechanism does in DP. We also rely on the frequency estimation

to find the optimal threshold. Although the distribution estima-

tion is more informative, it is actually less accurate than the Noisy

Max mechanism because (to publish more information) more noise

needs to be added.

Frequency Estimation in LDP. Li et al. [33] propose the Square
Wave mechanism (SW for short) for ordinal and numerical domains.

It extends the idea of Randomized Response [49] in that values near

the true value will be reported with high probability, and those

far from it have a low probability of being reported. The server,

after receiving the reports from users, runs a specially designed

Expectation Maximization algorithm to find an estimated density

distribution that maximizes the expectation of observing the output.

For completeness, we describe details about SW in Appendix E.1.

Optimized Threshold with Estimated Distribution. To find

the threshold, the baseline method is to find a specific percentile

as the threshold θ . This method is used for finding frequent item-

set [45]. Based on the lessons learned from the threshold optimizer

in the DP setting, we use the optimization equation given in Equa-

tion 3 to find θ .
Specifically, denote

˜f as the estimated distribution where
˜ft

is the estimated frequency of value t . Here the set of all possible
t to be considered can no longer be [B] = {1, 2, . . . ,B}. Instead,
we sample 1024 values uniformly from [B]. This is because SW

uses the Expectation Maximization algorithm, and a large domain

size makes it time- and space-consuming. Similar to Equation 4

considered in the DP setting, we use an error formula:

r

3

· Var [ṽ] +
r2

24

(∑
θ<t<B

˜ft (t − θ)

)
2

. (8)

Here Var [ṽ] denotes the variance of estimating v , which we will

describe later. It is multiplied by
r
3
because in expectation, a random

range query will involve
r
3
values, and each of them is estimated

independently. For the second part of Equation 8, it can be calculated

directly with SW. The multiplicative coefficient
r 2
24

is the averaged

case over all possible range queries. That is, denote j as the range of
a query, there are r − j + 1 range-j queries within a limit r . In total,

there are

∑r
j=1(r − j+1) possible queries. For each of them, we have

a j2 coefficient in the squared bias. Thus, we have

∑r
j=1(r−j+1)j

2

2r (r+1) =

(r+1)(2r+1)
12

−
r (r+1)

8
≈ r 2

24
as the average-case coefficient.

Using SW as a White Box. To find a reasonable threshold using

SW, we make the following modifications. First, we eliminate the

smoothing step from SW, because we observe that in some cases,

smoothing will “push” the estimated probability density to the

two ends of the range. If some density is moved to the high end,

the chosen threshold θ can be unnecessarily large.

Second, we add a post-processing step to prune the small densi-

ties outputted by SW. In particular, we find the first qualified value

w , whose next 5 consecutive estimates are all below 0.01%. This is

a signal that the density afterw will converge to 0. We thus replace

the estimated density afterw with 0. In the experiment, we observe

that the two steps help to find a more accurate θ .

4.2 Design of the (Local) Perturber
After obtaining the threshold θ , the server sends θ to all users.

When a user reports a value, it will first be truncated. The user

then reports the truncated value using the Hybrid mechanism.

Table 1: Dataset Characteristics

Dataset n max p85 p95 p99.5 p100 avg

DNS 1141961 2000 63 85 135 617 37.9

Fare 8704495 30000 440 1036 2037 26770 279.9

Kosarak 990002 41270 10 28 133 2498 8.1

POS 515597 1657 13 21 39 165 7.5

The method is described in Appendix E.2. It can estimate v with

worst-case variance given in Equation 14, which can be plugged

into Equation 8 to find θ . Note that the reports are unbiased by

themselves. So to answer a range query, we just need to sum up

values from the corresponding range, and there is no need for a

smoother.

5 EXPERIMENTAL EVALUATION
The experiment includes four phases. First, we give a high-level

end-to-end evaluation of the whole process. Second, we evaluate

the performance of the hierarchical method with a fixed truncation

threshold. Third, we fix the hierarchical method and test differ-

ent algorithms that give the threshold. Fourth, we evaluate the

performance in the local setting.

5.1 Evaluation Setup

Datasets. A total of four real-world datasets are examined.

• DNS: This dataset is extracted from a set of DNS query logs

collected by a campus resolver with all user ids and source IP

addresses removed
1
. It includes 14 days of DNS queries. The

network administrator can use the number of queries to assess

Internet usage in a region. We take number of queries as the

stream in the evaluation.

• Fare [2]: New York City taxi travel fare. We use the Yellow Taxi

Trip Records for January 2019.

• Kosarak [1]: A dataset of clickstreams on a Hungarian website

that contains around 10
6
users and 41270 categories. We take it

as streaming data and use the size of click categories as the value

of the stream.

• POS [56]: A dataset containing merchant transactions of half a

million users and 1657 categories. We use the size of the transac-

tion as the value of the stream.

Table 1 gives the distribution statistics of the datasets.

Metrics. To evaluate the performance of different methods, we

use the metric of Mean Squared Error (MSE) to answer randomly

generated queries. In particular, we measure

MSE(Q) =
1

|Q |

∑
(i, j)∈Q

[
Ṽ (i, j) −V (i, j)

]
2

. (9)

where Q is the set of the randomly generated queries. It reflects

the analytical utility measured by Equation 1 from Section 2.1 (to

demonstrate the actual accuracy, we also have results for mean

absolute error in Appendix F). We set r = 2
20

as the maximal range

of any query.

1
The data collection process has been approved by the IRB of the campus.

Methodology. The prototype was implemented using Python 3.7.3

and NumPy 1.15.3 libraries. The experiments were conducted on

servers running Linux kernel version 5.0 with Intel Xeon E7-8867

v3 CPU @ 2.50GHz and 576GB memory. For each dataset and each

method, we randomly choose 200 range queries and calculate their

MSE. We repeat each experiment 100 times and report the result of

mean and standard deviation. Note that the standard deviation is

typically very small, and barely noticeable in the figures.

5.2 End-to-end Comparison
First, as a case study, we visualize the estimated stream of our

method ToPS on the DNS dataset (Figure 2). The top row shows

the performance of ToPS while the bottom row shows that of PAK.

We run algorithms once for each setting to demonstrate the real-

world usage. Similar to the setting of PAK, in ToPS, we use the

firstm = 65, 536 observations to obtain the threshold θ (we will

show later that ToPS does not need this largem observations to

be held). Figure 2 indicates that our method ToPS can give fairly

accurate predictions when ϵ is very small. On the other hand, PAK,

though under a larger ϵ , still performs worse than ToPS. Note that

to obtain the threshold θ , PAK satisfies (ϵ,δ)-DP while our ToPS

satisfies pure ϵ-DP during the whole process.

We then compare the performance of ToPS and PAK with our

metric of MSE given in Equation 9, and show the results in Fig-

ure 3. Between ToPS and PAK, we also include two intermediate

methods that replace Phase 1 (finding θ) and Phase 2 (hierarchical

method) of PAK by our proposed method NM-E (used in threshold

optimizer) and Ĥc
16

(used for the perturber and smoother together),

respectively, to demonstrate the performance boost due to our new

design (we will evaluate the two phases in more details in later

subsections). From the figure, we can see that the performance of

all the algorithms gets better as ϵ increases, which is as expected.

Second, our proposed ToPS can outperform PAK by 7 to 11 orders

of magnitude. Third, the effect (in terms of improving utility) using

NM-E is much more significant than using Ĥc
16
. Interestingly, the

performance of ToPS and NM-E is similar in the Fare and Kosarak

datasets. This is because in these cases, the bias (due to truncation

by θ) is dominant.

5.3 Comparison of Stream Publication Phase
Several components contribute to the promising performance of

ToPS. To demonstrate the precise effect of each of them, we next

analyze them one by one in the reverse order. We first fix other

configurations and compare different smoothers and perturbers.

Subsequently, we analyze the methods of obtaining the threshold θ
in Section 5.4. To make the comparison clear, we set θ to be the 95-

th percentile of the values. Moreover, we assume the true values are

no larger than θ (the ground truth is truncated). We will compare

the performance of different methods in obtaining θ in Section 5.4.

Comparison of Different Smoothers. Fixing a threshold θ and

the hierarchical method optimized in Section 3.4, we now compare

the performance of five smoother algorithms listed in Section 3.5

(note that the smoothers will replace the 16
s
values where s is given

in Equation 7). Figure 4 shows the MSE of the smoothers given

ϵ from 0.01 to 0.1. As ϵ increases, that is, privacy budget loosens,

(a) ToPS, ϵ = 0.01 (b) ToPS, ϵ = 0.05

(c) PAK, ϵ = 0.1 (d) PAK, ϵ = 0.5

Figure 2: Visualizations of theDNS stream. The x-axes correspond to time (we partition the 14-day timeframe into 120 intervals,
so each point corresponds to the mean of roughly 9000 values or 1.4 hours), and y-axes denotes the moving average. Our ToPS
at ϵ = 0.01 can output predictions that are pretty close to the ground truth. PAK gives noisier result even with larger ϵ values.

(a) Fare (b) DNS (c) Kosarak (d) POS

Figure 3: Comparison between PAK and ToPSwhen answering range queries.We also include two intermediatemethods NM-E
(our proposed threshold optimizer) and Ĥc

16
(our proposed the perturber and smoother) that replace the corresponding two

phases of PAK to demonstrate the performance boost due to our new design.

(a) Fare (b) DNS (c) Kosarak (d) POS

Figure 4: Evaluation of different smoothing techniques. We vary ϵ from 0.01 to 0.1 in the x-axis. The y-axis shows the query
accuracy (MSE).

the overall performance improves although the difference is very

small in Fare and Kosarak datasets. This is because there is no

clear pattern in these datasets. In the DNS dataset, Recent performs

better than others, as the data is stable in the short term. In POS,

the method of Mean and Median performs worse than the other

three. This is because Mean and Median consider all the history

(all the previous ui values given from the hierarchy, as described in

Section 3.5), while the other methods consider more recent results.

Methods that utilize the recent output (i.e., the more recent ui) will
perform better due to the stability property in the dataset (similar

(a) Fare (b) DNS (c) Kosarak (d) POS

Figure 5: Evaluation of different methods of outputting the stream. We vary ϵ from 0.01 to 0.1 in the x-axis and plot the query
accuracy (MSE) in the y-axis.

to the case of DNS). Since Recent performs the best in DNS, and is

among the best in other datasets, we use it as the default smoother

algorithm.

Note that large MSE does not always mean poor utility. Here

MSE is large because (1) the original values are large (e.g., >1000),

(2) the range query takes the sum, and (3) the square operation

further enlarges the values. We also have results for mean absolute

error (MAE) and mean query results to better demonstrate the

utility in Appendix F.

Comparison ofDifferentHierarchicalAlgorithms. To demon-

strate the precise effect of each design detail, we line up several

intermediate protocols for the hierarchy and threshold, respectively.

For the hierarchy component, we evaluate:

• H2: Original binary tree used in PAK.

• H16: The optimal fan-out b = 16 is used in the hierarchy.

• Hc
16
: H16 with consistency method.

• Ĥc
16
: We use the hat notation to denote the Recent smoother. It is

built on top of Hc
16
.

• Base: A baseline method that always outputs 0. It is used to

understand whether a method gives meaningful results.

Figure 5 gives the result varying ϵ from 0.01 to 0.1. First of all, all

methods (except the baseline) yield better accuracy as ϵ increases,

which is as expected. Moreover, the performance of all methods

(except Ĥc
16
) increases by a factor of 100×when ϵ increases from 0.01

to 0.1. This observation is consistent with the analysis that variance

is proportional to 1/ϵ2. Comparing each method, using the optimal

branching factor (H16 versus H2) can improve the performance by

5×. Moreover, we have approximately another 2× (Hc
16

versus H16)

of accuracy boost by adopting the consistency algorithm. For Ĥc
16
, a

constant 10× improvement can be observed over Hc
16

except in the

DNS dataset, where Ĥc
16

performs roughly the same as Hc
16

when

ϵ > 0.08. The reason is that the error of Ĥc
16

is composed of two

parts. One is the noise error from the constraint of DP, the other

the bias error of outputting the predicted values. When ϵ is large,
the bias dominates the noise in the DNS dataset.

5.4 Comparison of Threshold Phase
After examining the performance of different methods of outputting

the stream, we now switch gear to look at the algorithms for finding

the threshold.

Setup. Following PAK’s method [36], we use the first m values

to obtain the threshold. To eliminate the unexpected influence of

(a) m = 4096, smaller ϵ range (b) m = 65536, smaller ϵ range

(c) m = 4096, larger ϵ range (d) m = 65536, larger ϵ range

Figure 6: MSE of answering range queries using Ĥc
16

on DNS
dataset. The true p-th percentile for different p values are
evaluated. We also include NM-E, which uses ϵ = 0.05.

distribution change, we use the same m values for now to build

the hierarchy using Ĥc
16

(with the best smoothing strategy called

Recent smoother).

No Single Quantile Works Perfectly for All Scenarios. To

show that no single p-quantile can work perfectly for all scenarios,

we choose the true p-quantile for p ∈ {85, 90, 95, 99.5, 99.9} and
test in different scenarios (with different ϵ andm values). We also

include our threshold optimizer (NM-E) which is introduced to

find a threshold only based on the estimated error and set ϵ =
0.05 for it. Figure 6 shows the results of answering range queries

given these true percentiles and it reveals several findings. First,

the performance improves as ϵ increases for all p values. Second,

in some cases, the performance improvement is negligible with

respect to ϵ (e.g., p = 80 and 85 in Figure 6(b) and p = 85, 90 and

95 in Figure 6(d)). This is because p is too small in these scenarios,

which makes the bias dominate the noise error. Third, our threshold

optimizer with ϵ = 0.05 can achieve similar performance with the

optimal p-quantile.

Varying ϵ . We then compare three methods that output θ :

• NM-E: The threshold optimizer in ToPS. It does not require a

percentile.

(a) Fare (b) DNS (c) Kosarak (d) POS

Figure 7: Evaluation of different methods to find the threshold θ . We vary ϵ from 0.01 to 0.1 in the x-axis. The y-axis shows the
MSE of answering range queries using Ĥc

16
(to make comparison clear, we use a fixed ϵ = 0.05 for it). Base is a baseline method

that always outputs 0.

(a) Fare (b) DNS (c) Kosarak (d) POS

Figure 8: LDP evaluation of different methods of outputting the threshold. We vary ϵ from 0.2 to 2 in the x-axis. The y-axis
shows the query accuracy (MSE).

Figure 9: Visualizations of the DNS stream. The x-axes corre-
spond to the time, and they-axes denote themoving average.
Our ToPL at ϵ = 1 can output predictions that are pretty close
to the ground truth.

• S-PAK: The smooth sensitivity method used by PAK. We use

p = 99.5, as used by PAK.

• S-P: The original smooth sensitivity method. Similar to S-PAK,

we also use p = 99.5.

In Figure 7, we compare with existing differentially private methods

on finding the threshold θ . We vary the value of ϵ for obtaining

θ , and use Ĥc
16

to answer range queries. Note that to make the

comparison clearer, we fix ϵ = 0.05 in Ĥc
16
. In all the datasets, our

proposed NM-E performs much better than existing methods in

terms of MSE. Moreover, the performance does not change much

when ϵ increases. The reason is that the output of NM-E is stable

even with small ϵ . Finally, both S-PAK and S-P perform worse than

the baseline method, which always give 0 regardless of input values,

indicating the θ given by them is too large.

5.5 Performance of ToPL
In this section, we evaluate the LDP algorithm ToPL. We first check

the methods to find θ . Following the setting of ToPS, we use the first
m = 65, 536 observations to obtain the threshold θ . The difference
from the DP setting is that we vary ϵ in a larger range (from 0.2 to

2) due to the larger amount of noise of LDP. Our method finds θ by

using the SquareWave (SW)mechanism to estimate the distribution,

and then minimizing Equation 8. Moreover, our approach (the final

part of Section 4.1) modifies SW to exploit the prior knowledge that

the distribution is skewed. We use SW-W to denote this method. In

addition, we include another method for comparison, which uses

SW as a black box (and we use SW to denote it).

Figure 8 shows the performance of finding θ in ToPL. We vary

the ϵ used to find θ from 0.2 to 2 while fixing ϵ used to output

the stream to 1. The performance of SW improves with ϵ in all

four datasets. The performance of our method is less stable and not

improving with ϵ , but SW-W can still outperform SW as well as

the baseline in all the four datasets. In the Fare and DNS datasets,

the advantage of SW-W is not significant when ϵ ≥ 1.6. But in

the Kosarak and POS datasets, the performance of SW-W can be

as large as 3 orders of magnitude (measured by MSE of answering

random range queries) compared to SW.

In Figure 9, we visualize the estimated stream of our method

ToPL on the DNS dataset using ϵ = 1. We run algorithms only once

to demonstrate real-world usage. Clearly, ToPL and ground truth

are on similar trajectories in the figure which means our method

ToPL can give pretty accurate predictions.

6 RELATEDWORK
6.1 Dealing with Streaming Data in DP
A number of solutions have been proposed for solving the problem

of releasing real-time aggregated statistics under differential privacy

(DP). Here, besides the PAK’s approach [36], we briefly describe

several other related works.

Event-level DP. The first line of work is the hierarchical method

for handling binary streams, proposed concurrently by Dwork

et al. [18] and Chan et al. [8]. Event-level DP is satisfied in this

case. Both works assumed each value in the stream is either 0 or

1 and proposed a differentially private continual counter release

algorithm over a fixed-length binary stream with a bounded error

O
((
log

1.5 n
)
/ϵ

)
at each time step, where n is the stream length. In

addition, Chan et al. [8] extend the binary tree method to handle

unlimited streams. There is also an online consistency method: for

each time slot, if its estimation is no bigger than the previous one,

output the previous one; otherwise, increment the previous one by

1. We note that this method handles the binary setting, and thus

focuses on ensuring each value is an integer, while our method

works on the more general non-binary setting and minimizes the

overall noise error.

In a follow-up work by Dwork et al. [19], the authors further

assumed the number of 1’s in the stream is small, and proposed

an online partition algorithm to improve over the previous bound.

Chen et al. [10] used the similar idea but worked in a different set-

ting (i.e., each value can be any number instead of a binary number).

The method partitions the stream into a series of intervals so that

values inside each interval are “stable”, and publishes the median

of each interval. While Chen et al. [10] works in the non-binary

setting, similar to our paper and PAK’s , it makes two assumptions

that lead to a quite different design. First, as mentioned above,

Chen et al. [10] made the stability assumption so that partition-

ing the stream gives better utility; second, it works in a different

scenario (i.e., each value is composed of multiple users, and each

user contribute at most 1) and the sensitivity is 1, and therefore,

the threshold for truncation is not needed.

User-levelDP. Compared to Event-level DPwhich protects against

the change of one single event, the user-level definition models

the change of the whole data possessed by the user. Because the

user-level DP is more challenging, proposals under this setting rely

more on the auxiliary information. In particular, Fan et al. [24]

proposed to release perturbed statistics at sampled timestamps and

uses the Kalman filter to predict the non-sampled values and cor-

rect the noisy sampled values. It takes advantage of the seasonal

patterns of the underlying data. Another direction is the offline

setting, where the server has the global view of all the values first,

and then releases a streaming model satisfying DP. In this setting,

Acs and Castelluccia [3] propose an algorithm based on Discrete

Fourier Transform (DFT). Rastogi and Nath [39] further incorporate

sampling, clustering, and smoothing into the process.

w-event-level DP. To balance the privacy loss and utility loss

between user-level and event-level privacy models, relaxed privacy

notions are proposed. Bolot et al. [6] extended the binary tree

mechanism on releasing perturbed answers on sliding window

sum queries over infinite binary streams with a fixed window size

and using a more relaxed privacy concept called decayed privacy.

Kellaris et al. [29] proposew-event DP and two new privacy budget

allocation schemes (i.e., split ϵ into individual events) to achieve it.

More recently, Wang et al. [42] work explicitly for spatiotemporal

traces, and improve the schemes of Kellaris et al. by adaptively

allocating privacy budget based on the similarity of the data sources;

Fioretto and Hentenryck [25] improve the schemes by using a

similar approach of Fan et al. [24]: sampling representative data

points to add noise, and smoothing to reconstruct the other points.

In our work, we follow the event-level privacy model and dealing

with a more extended setting where data points are from a bounded

range instead of the binary domain, and publish the stream in an

online manner. Moreover, we do not rely on any pattern to exist in

the data; and we propose methods for both DP and LDP.

6.2 Dealing with Streams in Local DP
In the local DP setting, most existing work focus on estimating

frequencies of values in the categorical domain [5, 23, 43, 47, 53].

These techniques can be applied to other applications such as heavy

hitter identification [4, 40, 46] frequent itemset mining [38, 45],

multi-dimension data estimation [11, 12, 44, 51, 52, 55]. In the nu-

merical/ordinal setting, previous work [15, 41] mostly focused on

estimating mean. Recently, Li et al. [33] proposed the square wave

mechanism for the more general task of estimating the density.

There are two methods [22, 27] that deal with streaming data in

the user-level LDP, and their data models are different from ours.

In particular, Erlingsson et al. [22] assume the users’ values are

integers. Each user’s value can change at most a few times, and each

change can be either +1 or −1. The authors proposed a hierarchical

method (similar to Phase II of PAK) to estimate the average change

over time and thus get the average value by accumulating the

changes. Joseph et al. [27] assume at each time, the users’ values

are a sequence of bits drawn from several Bernoulli distributions,

and the goal is to estimate the average of all the bits held by all

users (or the average of the Bernoulli parameters). The authors

proposed a method to efficiently control each user’s contribution

when the server’s guess (previous estimation) is accurate, and thus

save privacy budget. The authors extend the method to a categorical

setting and use it to find the most frequent value held by the users.

There is also a parallel work [48] that works onw-event, metric-

based LDP. The proposed protocol assumes there is a pattern in

each user’s streaming data, and lets each user sample the turning

point to report.

7 CONCLUSION AND DISCUSSION
We have presented a privacy-preserving algorithm ToPS to contin-

ually output a stream of observations. ToPS first finds a threshold

to truncate the stream using the exponential mechanism, consid-

ering both noise and bias. Then ToPS runs an online hierarchical

structure and adds noise to the stream to satisfy differential privacy

(DP). Finally, the noisy data are smoothed to improve utility. We

also design a mechanism ToPL that satisfies the local version of DP.

Our mechanisms can be applied to real-world applications where

continuous monitoring and reporting of statistics, e.g., smart meter

data and taxi fares, are required. The design of ToPS and ToPL are

flexible and have the potential to be extended to incorporate more

properties of the data. We list some as follows.

Shorten the Holdout of the Stream. We follow the setting of

PAK [36] and use the firstm values to output the threshold θ . If
we want to start outputting the stream sooner, we can use our

Threshold optimizer with only fewer observations to find a rough

threshold. During the process of outputting the stream, we can use

sequential composition (in Section 2.4) to fine-tune the threshold.

Update θ . We follow the setting of PAK and assume the distri-

bution stays the same. If the distribution changes, we can have

the Threshold optimizer run multiple times (using either sequen-

tial composition to update θ while simultaneously outputting the

stream, or the parallel composition theorem to block some values

to update θ).

Utilizing Patterns of the Data. If there is further information,

such that the data changes slowly (e.g., the current value and the

next one differ in only a small amount), or the data changes regularly

(e.g., if the values show some Diurnal patterns), are given, we can

potentially utilize that to improve the performance of our method

as well.

ACKNOWLEDGEMENTS
This project was supported by NSF 1931443, 2047476, a Bilsland Dis-

sertation Fellowship, a Packard fellowship, and gift from Cisco and

Microsoft. The authors are thankful to the anonymous reviewers

for their supportive reviews.

REFERENCES
[1] Frequent itemset mining dataset repository. http://fimi.ua.ac.be/data/.

[2] New york taxi trip record data. https://www1.nyc.gov/site/tlc/about/tlc-trip-

record-data.page.

[3] G. Acs and C. Castelluccia. A case study: Privacy preserving release of spatio-

temporal density in paris. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 1679–1688, 2014.

[4] R. Bassily, K. Nissim, U. Stemmer, and A. G. Thakurta. Practical locally private

heavy hitters. In NIPS, 2017.
[5] R. Bassily and A. D. Smith. Local, private, efficient protocols for succinct his-

tograms. In STOC, 2015.
[6] J. Bolot, N. Fawaz, S. Muthukrishnan, A. Nikolov, and N. Taft. Private decayed

predicate sums on streams. In Proceedings of the 16th International Conference on
Database Theory, pages 284–295. ACM, 2013.

[7] T. H. Chan, K.-M. Chung, B. M. Maggs, and E. Shi. Foundations of differen-

tially oblivious algorithms. In Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 2448–2467. SIAM, 2019.

[8] T.-H. H. Chan, E. Shi, and D. Song. Private and continual release of statistics.

ACM Transactions on Information and System Security (TISSEC), 14(3):1–24, 2011.
[9] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey. ACM

computing surveys (CSUR), 41(3):1–58, 2009.
[10] Y. Chen, A. Machanavajjhala, M. Hay, and G. Miklau. Pegasus: Data-adaptive

differentially private stream processing. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pages 1375–1388. ACM,

2017.

[11] G. Cormode, S. Jha, T. Kulkarni, N. Li, D. Srivastava, and T. Wang. Privacy at

scale: Local differential privacy in practice. In SIGMOD, 2018.
[12] G. Cormode, T. Kulkarni, and D. Srivastava. Answering range queries under local

differential privacy. PVLDB, 2019.
[13] W.-Y. Day, N. Li, and M. Lyu. Publishing graph degree distribution with node

differential privacy. In Proceedings of the 2016 International Conference on Man-
agement of Data, pages 123–138, 2016.

[14] Z. Ding, D. Kifer, T. Steinke, Y. Wang, Y. Xiao, D. Zhang, et al. The permute-and-

flip mechanism is identical to report-noisy-max with exponential noise. arXiv
preprint arXiv:2105.07260, 2021.

[15] J. C. Duchi, M. I. Jordan, and M. J. Wainwright. Local privacy and statistical

minimax rates. In FOCS, 2013.
[16] J. C. Duchi, M. I. Jordan, and M. J. Wainwright. Minimax optimal procedures

for locally private estimation. Journal of the American Statistical Association,

113(521):182–201, 2018.

[17] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity

in private data analysis. In TCC, 2006.
[18] C. Dwork, M. Naor, T. Pitassi, and G. N. Rothblum. Differential privacy under

continual observation. In Proceedings of the forty-second ACM symposium on
Theory of computing, pages 715–724, 2010.

[19] C. Dwork, M. Naor, O. Reingold, and G. N. Rothblum. Pure differential privacy

for rectangle queries via private partitions. In International Conference on the
Theory and Application of Cryptology and Information Security, pages 735–751.
Springer, 2015.

[20] C. Dwork and A. Roth. The algorithmic foundations of differential privacy.

Foundations and Trends in Theoretical Computer Science, 9(3-4), 2014.
[21] C. Dwork, G. N. Rothblum, and S. Vadhan. Boosting and differential privacy.

In 2010 IEEE 51st Annual Symposium on Foundations of Computer Science, pages
51–60. IEEE, 2010.

[22] Ú. Erlingsson, V. Feldman, I. Mironov, A. Raghunathan, K. Talwar, andA. Thakurta.

Amplification by shuffling: From local to central differential privacy via

anonymity. arXiv preprint arXiv:1811.12469, 2018.
[23] Ú. Erlingsson, V. Pihur, and A. Korolova. RAPPOR: randomized aggregatable

privacy-preserving ordinal response. In CCS, 2014.
[24] L. Fan and L. Xiong. An adaptive approach to real-time aggregate monitoring

with differential privacy. IEEE Transactions on knowledge and data engineering,
26(9):2094–2106, 2013.

[25] F. Fioretto and P. Van Hentenryck. Optstream: releasing time series privately.

Journal of Artificial Intelligence Research, 65:423–456, 2019.
[26] M. Hay, V. Rastogi, G. Miklau, and D. Suciu. Boosting the accuracy of differentially

private histograms through consistency. PVLDB, 3(1), 2010.
[27] M. Joseph, A. Roth, J. Ullman, and B. Waggoner. Local differential privacy for

evolving data. In Advances in Neural Information Processing Systems, pages
2375–2384, 2018.

[28] S. P. Kasiviswanathan, H. K. Lee, K. Nissim, S. Raskhodnikova, and A. Smith.

What can we learn privately? SIAM Journal on Computing, 40(3):793–826, 2011.
[29] G. Kellaris, S. Papadopoulos, X. Xiao, and D. Papadias. Differentially private

event sequences over infinite streams. Proceedings of the VLDB Endowment,
7(12):1155–1166, 2014.

[30] I. Kotsogiannis, Y. Tao, X. He, M. Fanaeepour, A. Machanavajjhala, M. Hay, and

G. Miklau. Privatesql: a differentially private sql query engine. Proceedings of the
VLDB Endowment, 12(11):1371–1384, 2019.

[31] J. Lee, Y. Wang, and D. Kifer. Maximum likelihood postprocessing for differential

privacy under consistency constraints. In KDD, 2015.
[32] N. Li, W. Qardaji, D. Su, and J. Cao. Privbasis: Frequent itemset mining with

differential privacy. Proceedings of the VLDB Endowment, 5(11):1340–1351, 2012.
[33] Z. Li, T. Wang, M. Lopuhaä-Zwakenberg, B. Skoric, and N. Li. Estimating numer-

ical distributions under local differential privacy. In SIGMOD, 2020.
[34] A. Molina-Markham, P. Shenoy, K. Fu, E. Cecchet, and D. Irwin. Private memoirs

of a smart meter. In Proceedings of the 2nd ACM workshop on embedded sensing
systems for energy-efficiency in building, pages 61–66, 2010.

[35] K. Nissim, S. Raskhodnikova, and A. Smith. Smooth sensitivity and sampling in

private data analysis. In Proceedings of the thirty-ninth annual ACM symposium
on Theory of computing, pages 75–84. ACM, 2007.

[36] V. Perrier, H. J. Asghar, and D. Kaafar. Private continual release of real-valued

data streams. ndss, 2019.
[37] W. H. Qardaji, W. Yang, and N. Li. Understanding hierarchical methods for

differentially private histograms. PVLDB, 6(14), 2013.
[38] Z. Qin, Y. Yang, T. Yu, I. Khalil, X. Xiao, and K. Ren. Heavy hitter estimation over

set-valued data with local differential privacy. In CCS, 2016.
[39] V. Rastogi and S. Nath. Differentially private aggregation of distributed time-

series with transformation and encryption. In Proceedings of the 2010 ACM
SIGMOD International Conference on Management of data, pages 735–746, 2010.

[40] N. Wang, X. Xiao, Y. Yang, T. D. Hoang, H. Shin, J. Shin, and G. Yu. Privtrie:

Effective frequent term discovery under local differential privacy. In ICDE, 2018.
[41] N. Wang, X. Xiao, Y. Yang, J. Zhao, S. C. Hui, H. Shin, J. Shin, and G. Yu. Collecting

and analyzingmultidimensional datawith local differential privacy. In Proceedings
of IEEE ICDE, 2019.

[42] Q. Wang, Y. Zhang, X. Lu, Z. Wang, Z. Qin, and K. Ren. Real-time and spatio-

temporal crowd-sourced social network data publishing with differential privacy.

IEEE Transactions on Dependable and Secure Computing, 15(4):591–606, 2016.
[43] T. Wang, J. Blocki, N. Li, and S. Jha. Locally differentially private protocols for

frequency estimation. In USENIX Security, 2017.
[44] T. Wang, B. Ding, J. Zhou, C. Hong, Z. Huang, N. Li, and S. Jha. Answering

multi-dimensional analytical queries under local differential privacy. In SIGMOD,
2019.

[45] T. Wang, N. Li, and S. Jha. Locally differentially private frequent itemset mining.

In SP, 2018.
[46] T. Wang, N. Li, and S. Jha. Locally differentially private heavy hitter identification.

IEEE TDSC, 2019.

http://fimi.ua.ac.be/data/
 https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
 https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

[47] T. Wang, Z. Li, N. Li, M. Lopuhaä-Zwakenberg, and B. Skoric. Consistent and

accurate frequency oracles under local differential privacy. In NDSS, 2020.
[48] Z. Wang, W. Liu, X. Pang, J. Ren, Z. Liu, and Y. Chen. Towards pattern-aware

privacy-preserving real-time data collection. In IEEE INFOCOM 2020-IEEE Con-
ference on Computer Communications, pages 109–118. IEEE, 2020.

[49] S. L. Warner. Randomized response: A survey technique for eliminating evasive

answer bias. Journal of the American Statistical Association, 60(309), 1965.
[50] R. J. Wilson, C. Y. Zhang, W. Lam, D. Desfontaines, D. Simmons-Marengo, and

B. Gipson. Differentially private sql with bounded user contribution. In Inter-
national Symposium on Privacy Enhancing Technologies Symposium. Springer,

2020.

[51] M. Xu, B. Ding, T. Wang, and J. Zhou. Collecting and analyzing data jointly from

multiple services under local differential privacy. VLDB, 2020.
[52] J. Yang, T. Wang, N. Li, X. Cheng, and S. Su. Answering multi-dimensional range

queries under local differential privacy. VLDB, 2021.
[53] M. Ye and A. Barg. Optimal schemes for discrete distribution estimation under

locally differential privacy. IEEE Transactions on Information Theory, 2018.
[54] C. Zeng, J. F. Naughton, and J.-Y. Cai. On differentially private frequent itemset

mining. Proceedings of the VLDB Endowment, 6(1):25–36, 2012.
[55] Z. Zhang, T. Wang, N. Li, S. He, and J. Chen. Calm: Consistent adaptive local

marginal for marginal release under local differential privacy. In CCS, 2018.
[56] Z. Zheng, R. Kohavi, and L. Mason. Real world performance of association rule

algorithms. In Proceedings of the seventh ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 401–406. ACM, 2001.

A SUPPLEMENTARY MECHANISMS OF DP
We review the method of smooth sensitivity that PAK [36] use for

estimating the percentile.

Smooth Sensitivity. Rather than the global sensitivity that con-

siders any pair of neighboring sequences, the local sensitivity fixes

one datasetV and only considers all possible neighboring sequence

V ′ around V .

LSV (f) = max

V ′:V ′≃V
| | f (V) − f (V ′)| |1.

The advantage of using local sensitivity is that we only need

to consider neighbors of V which could result in lower sensitivity

of the function f , and consequently lower noise added to the true

answer f . Unfortunately, replacing the global sensitivity with local

sensitivity directly (e.g., in the Laplace mechanism) violates DP.

This is handled by using smooth sensitivity [35] instead.

For b > 0, the b-smooth sensitivity of f at V ∈ V , denoted by

SSV ,b (f), is defined as

SSV ,b (f) = max

V ′

{
LSV ′(f) · e

−b ·d (V ,V ′)
}
,

where d(V ,V ′) denotes the hamming distance between V and V ′.
The method of smooth sensitivity is given below:

A(V) = f (V) +
SSV ,b

a
· Z ,

where Z is a random variable from some specified distribution. To

obtain (ϵ, 0)-DP, Z is drawn from the Cauchy distribution with

density ∝ 1

1+ |z |γ for γ > 1. But to use an exponentially decaying

distribution (which gives good accuracy), such as standard Laplace

or Gaussian distribution, one can only obtain (ϵ,δ)-DP. For both,
we set b ≤ ϵ

−2 log(δ) as the smoothing parameter. If we use the

Laplace distribution with scale 1, a = ϵ
2
. When the noise is standard

Gaussian, then a = ϵ√
− ln δ

[35].

B MORE DETAILS ABOUT PAK
PAK computes the smooth sensitivity of the empirical p-quantile,
i.e., x̂p , as

SSV ,b (x̂p) = max

k=0,1, ...,m+1{
e−bk · max

t=0,1, ...,k+1
[V s (P + t) −V s (P + t − k − 1)]

}
.

Here,V s
is the sorted string of the firstm values ofV in ascending

order, where V s (i) = 0 if i < 1 and B if i > m. And P is the rank of

x̂p . After computing the smooth sensitivity, Nissim et al.[35] sets

the threshold θ as

θ = x̂p +
SSV ,b (x̂p)

a
· Z ,

where Z is a random variable from some specified distribution in

order to satisfy DP.

PAK [36] propose to bound Pr
[
θ < xp

]
to be arbitrarily small

(by an arbitrary β) and thus uses

θ = x̂p +
κSSV ,b (x̂p)

a
· (Z +G−1

ns
(1 − β)),

where κ is a positive real number

(
1 −

(eb−1)G−1
ns
(1−βlt)

a

)−1
and Gns

denotes the CDF of the distribution of Z .
The threshold θ released via the above mechanism is differen-

tially private since κSSV ,b (x̂p) is a smooth upper bound of x̂p and

κ only depends on public parameters.

In their evaluation, the authors aim to get the 99.5-percentile

and set p = 99.575, β = 0.3 · 0.02, and δ = 1/n2.

C CONSISTENCY ALGORITHM

Off-line Consistency [26]. We use x to denote a node on the

hierarchy H , and let ℓ(x) to be the height of x (the height of a leaf

is 1; and root is of height h). We also denote prt(x), chd(x), and
sbl(x) to denote the children, parent, and siblings of x , respectively.
We use H (x) to denote the value corresponding to node x in the

hierarchy. The first step updates the values in H from bottom to

top. The leaf nodes remain the same; and for each height-ℓ node x ,
where ℓ iterates from 2 up to h, we update it

H (x) ←
bl − bl−1

bl − 1
H (x) +

bl−1 − 1

bl − 1

∑
y∈chd(x)

H (y). (10)

We then update the values again from top to bottom. This time

the value on root remains the same, and for each height-ℓ node x ,
where ℓ iterates from h − 1 down to 1, we update it

H (x) ←
b − 1

b
H (x) +

1

b

©«H (prt(x)) −
∑

y∈sbl(x)

H (y)
ª®¬ . (11)

An Online Algorithm. We decompose the noisy values in H
into two parts: the true values and the pure noises, denoted as T
and N , respectively. N is the independent noise from the Laplace

mechanism (described in Section 2.3).T is defined by induction: for

a leaf x , T (x) corresponds to one true value v , and for a node x in

a higher level, T (x) =
∑
y∈chd(x)T (y). The true values from T are

consistent naturally. Thus if N is consistent, H is also consistent.

To see it, consider any internal node x ,

H (x) = T (x) + N (x)

=
∑

y∈chd(x)

T (y) +
∑

y∈chd(x)

N (y)

=
∑

y∈chd(x)

(T (y) + N (y)) =
∑

y∈chd(x)

H (y).

In the online consistency algorithm, we internally generate the

noise hierarchy N and run the steps given in Equation 10 and Equa-

tion 11 to make N consistent. After this pre-processing step, we

can ignore the higher-layers of the hierarchy, and use only the leaf

nodes which add consistent noise to each individual value. This is

because the results from the higher-layers are already consistent

with those from the leaves, thus it suffices to only output the most

fine-grained result.

The online consistency algorithm satisfies DP as long as it gives

identical output distribution as the offline algorithm [26]. Now we

prove this fact. We first restate the theorem (Theorem 3.1):

Theorem C.1. The online consistency algorithm gives identical
results as the off-line consistency algorithm.

Proof. We first examine the bottom-up update step. According

to Equation 10, the updated N (x) equals to

bl − bl−1

bl − 1
N (x) +

bl−1 − 1

bl − 1

∑
y∈chd(x)

N (y).

Adding T (x) to it, we have the updated H (x) equals to

bl − bl−1

bl − 1
N (x) +

bl−1 − 1

bl − 1

∑
y∈chd(x)

N (y) +T (x)

=
bl − bl−1

bl − 1
(N (x) +T (x)) +

bl−1 − 1

bl − 1

©«
∑

y∈chd(x)

N (y) +T (x)
ª®¬

=
bl − bl−1

bl − 1
(N (x) +T (x)) +

bl−1 − 1

bl − 1

∑
y∈chd(x)

(N (y) +T (y)) (12)

=
bl − bl−1

bl − 1
H (x) +

bl−1 − 1

bl − 1

∑
y∈chd(x)

H (y).

Equation 12 is because of the consistency of T so that T (x) =∑
y∈chd(x)T (y). This gives the same result as if we run the off-line

consistency algorithm. Similarly, during the top-down update step

(in Equation 11), we have the updated N (x) equals to

b − 1

b
N (x) +

1

b

©«N (prt(x)) −
∑

y∈sbl(x)

N (y)
ª®¬ .

Adding T (x) to it, we have the updated H (x) equals to

b − 1

b
N (x) +

1

b

©«N (prt(x)) −
∑

y∈sbl(x)

N (y)
ª®¬ +T (x)

=
b − 1

b
(N (x) +T (x)) +

1

b

©«N (prt(x)) −
∑

y∈sbl(x)

N (y) +T (x)
ª®¬

=
b − 1

b
H (x) +

1

b

©«H (prt(x)) −
∑

y∈sbl(x)

H (y)
ª®¬ . (13)

which is the same result as if we run the off-line consistency algo-

rithm. Equation 13 also holds because of the consistency of T so

that T (x) = T (prt(x)) −
∑
y∈sbl(x)T (y). □

D SMOOTHING METHODS
Denote u1,u2, . . . as the noisy estimates given by the leaves of the

perturber (or the (s + 1)-th levels of the original hierarchy). Each ui
is the noisy sum of bs values. Let u0 =

1

2
bsθ (initially there are no

estimations from the hierarchy; we thus use half of the threshold

as mean). The smoother will take the sequence of u and output

the final result ṽi for each input value. Let t = ⌈i/bs ⌉, we consider
several functions:

(1) Recent smoother: ṽi = ut /b
s
. It takes the mean of the most

recent output from the perturber.

(2) Mean smoother: ṽi =
1

bs t
∑t
j=0 uj . It takes the mean of the

output from the perturber up until the moment.

(3) Median smoother: ṽi = median(u1, . . . ,ut). Similar to the mean

smoother, the median smoother takes the median of the output

from the perturber up until the moment.

(4) Moving average smoother: ṽi =
1

bsw
∑t
j=t+1−w uj . Similar to

the mean smoother, it takes the mean over the most recentw
outputs from the perturber. When t +1 < w , we use the average

of the first t + 1 values of u divided by bs as ṽi .
(5) Exponential smoother: ṽi =

u0
bs if t = 0, and ṽi = α ut

bs + (1 −

α)ṽi−bs if t > 0, where 0 ≤ α ≤ 1 is the smoothing parameter.

The exponential smoother put more weight on the more recent

values from the hierarchy.

E MECHANISMS OF LOCAL DIFFERENTIAL
PRIVACY

In this subsection, we review the primitives proposed for LDP. We

use v to denote the user’s private value, and y as the user’s report

that satisfies LDP. In this section, following the notations in the

LDP literature, we use p and q to denote probabilities.

E.1 Square Wave Mechanism for Density
Estimation

Li et al. [33] propose an LDP method that can give the full density

estimation. The intuition behind this approach is to try to increase

the probability that a noisy reported value carries meaningful infor-

mation about the input. Intuitively, if the reported value is the true

value, then the report is a “useful signal”, as it conveys the extract

correct information about the true input. If the reported value is

not the true value, the report is in some sense noise that needs to

be removed. Exploiting the ordinal nature of the domain, a report

that is different from but close to the true valuev also carries useful

information about the distribution. Therefore, given input v , we
can report values closer to v with a higher probability than values

that are farther away from v . The reporting probability looks like a

squared wave, so the authors call the method Square Wave method

(SW for short).

Without loss of generality, we assume values are in the domain of

[0, 1]. To handle an arbitrary range [ℓ, r], each user first transforms

v into
v−ℓ
r−ℓ (mapping [ℓ, r] to [0, 1]); and the estimated result is

transformed back. Define the “closeness” measure b = ϵeϵ−eϵ+1
2eϵ (eϵ−1−ϵ) ,

the Square Wave mechanism SW is defined as:

∀y ∈ [−b, 1 + b], Pr [SW(v) = y]=
{
p, if |v − y | ≤ b ,
q, otherwise .

By maximizing the difference between p and q while satisfying

the total probability adds up to 1, we can derive p = eϵ
2beϵ+1 and

q = 1

2beϵ+1 .

After receiving perturbed reports from all users, the server runs

the Expectation Maximization algorithm to find an estimated den-

sity distribution that maximizes the expectation of observing the

output. Additionally, the server applies a special smoothing re-

quirement to the Expectation Maximization algorithm to avoid

overfitting.

E.2 Candidate Methods for the Perturber
As we are essentially interested in estimating the sum over time,

the following methods that estimate the mean within a population

are useful. We first describe two basic methods. Then we describe

a method that adaptively uses these two to get better accuracy in

all cases. Our perturber will use the final method.

Stochastic Rounding. This method uses stochastic rounding to

estimates the mean of a continuous/ordinal domain [16]. We call it

Stochastic Rounding (SR for short). Assume the private input value

v is in the range of [−1, 1] (otherwise, we can first projected the

domain into [−1, 1]), the main idea is to roundv tov ′ so thatv ′ = 1

with probability p1 =
1

2
+ v

2
andv ′ = −1w/p 1−p1. This stochastic

rounding step is unbiased in that E [v ′] = v . Then given a value

v ′ ∈ {−1, 1}, the method runs binary random response to perturb

v ′ into y. In particular, let p = eϵ
eϵ+1 and q = 1 − p = 1

eϵ+1 , y = v
′

w/p p, and y , v ′ w/p q. The method has variance

(
eϵ+1
eϵ−1

)
2

−v2.

Piecewise Mechanism. Wang et al. [41] proposed piecewise

mechanism. It is also used for mean estimation, but can get more

accurate mean estimation than SR when ϵ > 1.29. In this method,

the input domain is [−1, 1], and the output domain is [−s, s], where

s = eϵ/2+1
eϵ/2−1

. For each v ∈ [−1, 1], there is an associated range

[ℓ(v), r (v)] where ℓ(v) = eϵ/2 ·v−1
eϵ/2−1

and r (v) = eϵ/2 ·v+1
eϵ/2−1

, such that

with input v , a value in the range [ℓ(v), r (v)] will be reported

with higher probability than a value outside the range. The high-

probability range looks like a “piece” above the true value, so the

authors call the method Piecewise Mechanism (PM for short). The

perturbation function is defined as

∀y∈[−s,s] Pr [PM(v) = y] =
{

p = eϵ/2
2

z, if y ∈ [ℓ(v), r (v)]

q = 1

2eϵ/2
z, otherwise.

where z = eϵ/2−1
eϵ/2+1

. Compared to SR, this method has a variance of

v2

eϵ/2−1
+ eϵ/2+3

3(eϵ/2−1)2
[41].

Hybrid Mechanism. Both SR and PM incurs a variance that de-

pends on the true value, but in the opposite direction. In particular,

when v = ±1, the variance of SR is lowest, but the variance of PM

is highest. Wang et al. [41] thus propose a method called Hybrid

Mechanism (HM for short) to achieve good accuracy for any v . In

particular, define α = 1 − e−ϵ/2, when ϵ > 0.61, users use PM w/p

α and SR w/p 1 − α . When ϵ ≤ 0.61, only SR will be called. It is

proved by Wang et al. [41] HM gives better accuracy than SR and

PM. In particular, the worst-case variance is

Var [ṽ] =

(
eϵ+1
eϵ−1

)
2

, when ϵ ≤ 0.61

1

eϵ/2

[(
eϵ+1
eϵ−1

)
2

+ eϵ/2+3
3(eϵ/2−1)

]
, when ϵ > 0.61.

(14)

F MORE RESULTS
Denote Q as the set of the 200 randomly generated queries, we

show the results of Mean Absolute Error (MAE):

MAE(Q) =
1

|Q |

∑
(i, j)∈Q

��Ṽ (i, j) −V (i, j)��.
Moreover, we also show results for the normalized results, or the

mean of range queries, namely,

MMSE(Q) =
1

|Q |

∑
(i, j)∈Q

[
Ṽ (i, j)

j − i
−
V (i, j)

j − i

]2
,

MMAE(Q) =
1

|Q |

∑
(i, j)∈Q

����Ṽ (i, j)j − i
−
V (i, j)

j − i

����.
Figure 10 gives results on these metrics. Let us first look at the

first row, which gives MAE results. The overall trend is similar to

that of MSE (Figure 3). One notable difference is that the better hi-

erarchical method does not give a better overall result (ToPS versus

NM-E and Ĥc
16

versus PAK). This is because the better hierarchical

method (especially the consistency step) is optimizing the squared

error. We note that Lee et al. [31] proposed methods for optimizing

absolute error (L1 error), and they can be used in our setting if the

target is to minimize absolute errors.

For the second and third row of Figure 10, which corresponds

to MMAE and MMSE, respectively, we can see the overall trend

and the relative performance of different methods are similar to

the case of MAE and MSE. The results are less stable though: this

is because the range of the query here introduces another factor of

randomness. That is, due to the usage of the hierarchy, the larger

the range, the smaller the error will be. For the MMAE metric,

the results of our proposed ToPS can be as small as 1, while the

existing work of PAK [36] gives errors of 10
3
to 10

4
, depending

on the dataset. Comparing with the flat method, where a Laplace

noise on the order of B/ϵ (where B is the upper bound of the data)

or θ/ϵ (if some technique of finding θ is applied) is added to each

count, ToPS significantly improves over it. Finally, the results of

MMSE show similar trends as that of MSE. These evaluation results

further confirm the superiority of ToPS regardless of the evaluation

metrics.

(a) Fare, MAE (b) DNS, MAE (c) Kosarak, MAE (d) POS, MAE

(e) Fare, MMAE (f) DNS, MMAE (g) Kosarak, MMAE (h) POS, MMAE

(i) Fare, MMSE (j) DNS, MMSE (k) Kosarak, MMSE (l) POS, MMSE

Figure 10: Comparison of different methods on MAE (first row), MMAE (second row) and MMSE (third row).

	Abstract
	1 Introduction
	2 Problem Definition and Preliminaries
	2.1 Formal Problem Definition
	2.2 Differential Privacy
	2.3 Mechanisms of Differential Privacy
	2.4 Composition Properties

	3 Differentially Private Streams
	3.1 Existing Work: PAK
	3.2 Overview of Our Approach
	3.3 Threshold Optimizer
	3.4 Perturber
	3.5 Smoother
	3.6 Summary and Discussions

	4 Publishing Streams in LDP Setting
	4.1 Design of the Threshold Optimizer
	4.2 Design of the (Local) Perturber

	5 Experimental Evaluation
	5.1 Evaluation Setup
	5.2 End-to-end Comparison
	5.3 Comparison of Stream Publication Phase
	5.4 Comparison of Threshold Phase
	5.5 Performance of ToPL

	6 Related Work
	6.1 Dealing with Streaming Data in DP
	6.2 Dealing with Streams in Local DP

	7 Conclusion and Discussion
	References
	A Supplementary Mechanisms of DP
	B More Details about PAK
	C Consistency Algorithm
	D Smoothing Methods
	E Mechanisms of Local Differential Privacy
	E.1 Square Wave Mechanism for Density Estimation
	E.2 Candidate Methods for the Perturber

	F More Results

