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ABSTRACT
The right to be forgotten states that a data owner has the right to
erase their data from an entity storing it. In the context of machine
learning (ML), the right to be forgotten requires anMLmodel owner
to remove the data owner’s data from the training set used to build
the ML model, a process known as machine unlearning. While orig-
inally designed to protect the privacy of the data owner, we argue
that machine unlearning may leave some imprint of the data in the
ML model and thus create unintended privacy risks. In this paper,
we perform the first study on investigating the unintended infor-
mation leakage caused by machine unlearning. We propose a novel
membership inference attack that leverages the different outputs of
an ML model’s two versions to infer whether a target sample is part
of the training set of the original model but out of the training set of
the corresponding unlearned model. Our experiments demonstrate
that the proposed membership inference attack achieves strong
performance. More importantly, we show that our attack in multi-
ple cases outperforms the classical membership inference attack on
the original ML model, which indicates that machine unlearning
can have counterproductive effects on privacy. We notice that the
privacy degradation is especially significant for well-generalized
ML models where classical membership inference does not perform
well. We further investigate four mechanisms to mitigate the newly
discovered privacy risks and show that releasing the predicted label
only, temperature scaling, and differential privacy are effective. We
believe that our results can help improve privacy protection in
practical implementations of machine unlearning. 1
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1 INTRODUCTION
The right to be forgotten entitles data owners the right to delete their
data from an entity storing it. Recently enacted legislation, such
as the General Data Protection Regulation (GDPR) [1] in the Euro-
pean Union, the California Consumer Privacy Act (CCPA) [2] in
California, and the Personal Information Protection and Electronic
Documents Act (PIPEDA) [3] in Canada, have legally solidified this
right. Google Search has received nearly 3.2 million requests to
delist certain URLs in search results over five years [8].

In themachine learning context, the right to be forgotten requires
that, in addition to the data itself, any influence of the data on
the model disappears [11, 71]. This process, also called machine
unlearning, has gainedmomentum both in academia and industry [6,
10–12, 15, 21, 22, 24, 32, 42, 50, 65, 74]. The most legitimate way
to implement machine unlearning is to remove the data sample
requested to be deleted (referred to as target sample), and retrain
the ML model from scratch, but this incurs high computational
overhead. To mitigate this, several approximate approaches have
been proposed [6, 10, 11, 32].

Machine unlearning naturally generates two versions of ML
models, namely the original model and the unlearned model, and
creates a discrepancy between them due to the target sample’s
deletion. While originally designed to protect the target sample’s
privacy, we argue that machine unlearning may leave some imprint
of it, and thus create unintended privacy risks. Specifically, while
the original model may not reveal much private information about
the target sample, additional information might be leaked through
the unlearned model.
Our Contributions. In this paper, we study to what extent data is
indelibly imprinted in an ML model by quantifying the additional
information leakage caused bymachine unlearning.We concentrate
on machine learning classification, the most common machine
learning task, and assume both original and unlearned models to
be black-box, the most challenging setting for an adversary.

We first propose a novel membership inference attack in the
machine unlearning setting that aims at determining whether the
target sample is part of the training set of the original model. Dif-
ferent from classical membership inference attacks [60, 64] which
leverage the output (posteriors) of a single target model, our attack
leverages outputs of both original and unlearned models. More
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concretely, we propose several aggregation methods to jointly use
the two posteriors from the two models as our attack model’s input,
either by concatenating them or by computing their differences.
Our empirical results show that the concatenation-based methods
perform better in overfitted models, while the difference-based
methods perform better in well-generalized models.

Second, in order to quantify the unintended privacy risks in-
curred by machine unlearning, we propose two novel privacy met-
rics, namely Degradation Count and Degradation Rate. Both of them
quantify how much relative privacy the target has lost due to ma-
chine unlearning. Concretely, Degradation Count calculates the
proportion of cases for which the adversary’s confidence about the
membership status of the target sample is larger with our attack
than with classical membership inference attack. Degradation Rate
calculates the average confidence increase between our attack and
classical membership inference.

We conduct extensive experiments to evaluate the performance
of our attack over a series of ML models, ranging from logistic
regression to convolutional neural networks, with multiple cate-
gorical datasets and image datasets. The experimental results show
that our attack consistently degrades the membership privacy of
the target sample, which indicates machine unlearning can have
counterproductive effects on privacy. In particular, we observe that
privacy is especially degraded because of machine unlearning in the
case of well-generalized models. For example, we observe that the
classical membership inference attack has an accuracy (measured
by AUC) close to 0.5, or random guessing, on the well-generalized
decision tree classifier. On the contrary, the AUC of our attack is
0.89, and the Degradation Count and Degradation Rate are 0.85 and
0.28, respectively, which demonstrates that machine unlearning
can have a detrimental effect on membership privacy even with
well-generalized models. We further show that we can effectively
infer membership information in more practical scenarios, includ-
ing the scenario where there are multiple intermediate unlearned
models, the scenario where a group of samples (instead of a single
one) are deleted together from the original target model, and the
online learning scenario where there are samples to be deleted and
added simultaneously.

Finally, in order to mitigate the privacy risks stemming from
machine unlearning, we propose four possible defense mechanisms:
(1) publishing only the top-𝑘 confidence values of the posterior vec-
tor, (2) publishing only the predicted label, (3) temperature scaling,
and (4) differential privacy. The experimental results show that our
attack is robust to the top-𝑘 defense, even when the model owner
only releases the top-1 confidence value. On the other hand, publish-
ing only the predicted label, temperature scaling, and differential
privacy can effectively prevent our attack.

To summarize, we show that machine unlearning degrades the
privacy of the target sample in general. This discovery sheds light
on the risks of implementing the right to be forgotten in the ML
context. We believe that our attack and metrics can help develop
more privacy-preserving machine unlearning approaches in the
future. The main contributions of this paper are four-fold:

• We take the first step to quantify the unintended privacy
risks in machine unlearning through the lens of membership
inference attacks.

• We propose several practical approaches for aggregating the
information returned by the two versions of the ML models.

• We propose two novel metrics to measure the privacy degra-
dation stemming from machine unlearning and conduct ex-
tensive experiments to show the effectiveness of our attack.

• We propose four defense mechanisms to mitigate the privacy
risks stemming from our attack and empirically evaluate
their effectiveness.

Roadmap. In Section 2, we introduce some background knowledge
about machine learning and machine unlearning, and the threat
model. Section 3 presents the details of our proposed attack. We
propose two privacy degradation metrics in Section 4. We conduct
extensive experiments to illustrate the effectiveness of the proposed
attack in Section 5 and Section 6. In Section 7, we introduce several
possible defense mechanisms and empirically evaluate their effec-
tiveness. We discuss the related work in Section 8 and conclude the
paper in Section 9.

2 PRELIMINARIES
2.1 Machine Learning
In this paper, we focus on machine learning classification, the most
common ML task. An ML classifier M maps a data sample 𝑥 to
posterior probabilities P, where P is a vector of entries indicating
the probability of 𝑥 belonging to a specific class 𝑦 according to the
modelM . The sum of all values in P is 1 by definition. To construct
an ML model, one needs to collect a set of data samples, referred to
as the training set D . The model is then built through a training
process that aims at minimizing a predefined loss function with
some optimization algorithms, such as stochastic gradient descent.

2.2 Machine Unlearning
Recent legislation such as GDPR and CCPA enact the “right to be
forgotten”, which allows individuals to request the deletion of their
data by the model owner to preserve their privacy. In the context
of machine learning, e.g., MLaaS, this implies that the model owner
should remove the target sample 𝑥 from its training setD . Moreover,
any influence of 𝑥 on the modelM should also be removed. This
process is referred to as machine unlearning.
Retraining from Scratch. The most legitimate way to implement
machine unlearning is to retrain the whole ML model from scratch.
Formally, denoting the original model asM𝑜 and its training dataset
as D𝑜 , this approach consists of training a new model M𝑢 on
dataset D𝑢 = D𝑜 \ 𝑥 .2 We call thisM𝑢 the unlearned model.

Retraining from scratch is easy to implement. However, when
the size of the original datasetD𝑜 is large and the model is complex,
the computational overhead of retraining is too large. To reduce
the computational overhead, several approximate approaches have
been proposed [6, 10, 11, 32].
SISA. SISA [10] works in an ensemble style, which is an effi-
cient and general method to implement machine unlearning. The
training dataset D𝑜 in SISA is partitioned into 𝑘 disjoint parts
D1

𝑜 ,D2
𝑜 , · · · ,D𝑘

𝑜 . The model owner trains a set of original ML mod-
els M1

𝑜 ,M2
𝑜 , · · · ,M𝑘

𝑜 on each corresponding dataset D𝑖
𝑜 . When

2Note that we also study the removal of more than one sample in our experimental
evaluation, but for simplicity we formalize our problem with one sample only.



the model owner receives a request to delete a data sample 𝑥 , it
just needs to retrain the sub-modelM𝑖

𝑜 that contains 𝑥 , resulting
in unlearned model M𝑖

𝑢 . Sub-models that do not contain 𝑥 remain
unchanged. Notice that the size of dataset D𝑖

𝑜 is much smaller than
D𝑜 ; thus, the computational overhead of SISA is much smaller than
the “retraining from scratch” method.

At inference time, the model owner aggregates predictions from
the different sub-models to provide an overall prediction. The most
commonly used aggregation strategy is majority vote and posterior
average. In our experiments, we use posterior average as aggrega-
tion strategy.

2.3 Threat Model
Adversary’s Goal. Given a target sample 𝑥 , an original model,
and its unlearned model, the adversary aims to infer whether 𝑥 is
unlearned from the original model. In other words, the adversary
aims to know that the target sample is in the training dataset of the
original model but it is not in the training dataset of the unlearned
model. While the goal of unlearning 𝑥 is to protect 𝑥 ’s privacy,
a successful attack considered here can show unlearning instead
jeopardizes 𝑥 ’s privacy (especially when 𝑥 ’s membership leakage
risk is not severe on the original model before machine unlearning).

We focus on membership privacy as it is one of the most estab-
lished method on quantifying privacy risks of ML models [64].
Knowing that a specific data sample 𝑥 was used to train a partic-
ular model may lead to potential privacy breaches. For example,
knowing that a certain patient’s clinical records were used to train
a model associated with a disease (e.g., to determine the appropriate
drug dosage or to discover the genetic basis of the disease) can re-
veal that the patient carries the associated disease. Unlike classical
membership inference, which only leverages the output of a target
ML model, our adversary can exploit information of both original
and unlearned models to perform their attack.
Other Cases. Besides the samples that are in the original model’s
training dataset but not in the unlearnedmodel’s training dataset, re-
ferred to as ⟨𝑖𝑛, 𝑜𝑢𝑡⟩, there are other three cases, including ⟨𝑜𝑢𝑡, 𝑜𝑢𝑡⟩,
⟨𝑖𝑛, 𝑖𝑛⟩, ⟨𝑜𝑢𝑡, 𝑖𝑛⟩. Samples in the ⟨𝑜𝑢𝑡, 𝑜𝑢𝑡⟩ category are considered
as the negative cases for the adversary to train their attack model
(see Section 3.2). For the ⟨𝑖𝑛, 𝑖𝑛⟩ samples, their membership pri-
vacy can be quantified by a classical membership inference attack.
The difference is that the attack model can leverage both origi-
nal and unlearned models’ information (see Section 6.4). It is also
possible that during the unlearning process, the unlearned model
unlearns samples from the target model and updates itself with
other new samples (referred to as incremental learning). In such
cases, we have ⟨𝑜𝑢𝑡, 𝑖𝑛⟩ samples. To infer the membership status
of such samples, the adversary can similarly perform a classical
membership inference attack on the unlearned model. Note that
the privacy of ⟨𝑜𝑢𝑡, 𝑖𝑛⟩ samples are not directly related to the pri-
vacy risks caused by machine unlearning, and the current literature
on machine unlearning [10] also does not consider such cases. In
Section 6.3, we evaluate our attack when unlearning and updating
are both performed on the target model simultaneously.
Adversary’sKnowledge. Weassume that the adversary has black-
box access to an original ML model and its unlearned model. This
is realistic as the target black-box model can be queried at any time,

such as in the setting of MLaaS, and all of the query results can
be stored locally by the adversary; this also follows the assump-
tion of previous works [7, 59, 60, 64, 68]. As such, when there are
no changes on the target sample’s outputs from two consecutive
queries, then the unlearning did not happen and the adversary
does not need to launch the attack. On the other hand, when the
adversary observes changes on the target sample’s outputs, they
know that the target model has been updated. In most parts of the
paper, we consider the scenario where the original model and the
unlearned model differ only by one sample. However, we further
show that when the two models differ by multiple samples, the
adversary can still mount their attack effectively (see Section 6).

We also assume that the adversary has a local shadow dataset
which can be used to train a set of shadow models to mimic the
behavior of the target model. The shadow models are then used
to generate training data for the attack model (see Section 3 for
more details). The shadow dataset can either come from the same
distribution as the target dataset or from a different one.We evaluate
both settings in Section 5.

Difference with Updates-Leak [59]. There are recent studies
aiming to quantify the information leakage in the model updating
process. Salem et al. [59] show that in the online learning applica-
tions, where an ML image classifier is updated by new data samples,
the adversary can reconstruct the updated samples by exploiting
information from two versions of the target ML model (before and
after the updating). Brockschmidt et al. [7] show similar results
in the natural language models as well as the data deletion sce-
nario. This line of work is related to our attack in the sense that we
all study the unintended information leakage in model updating
processes. However, the attack goals are different.

Our attack focuses on membership inference while Salem et
al. [59] propose two attacks (in the single-sample setting), includ-
ing single-sample reconstruction and single-sample label inference.
The former (single-sample reconstruction) can only reconstruct a
data sample that is “similar” to the updated sample; but it cannot
further determine the membership status of the target sample by
simply comparing the difference between the reconstructed sam-
ple and the target sample, and concluding the membership status
with a predefined threshold. One reason is that it is unclear which
metric is the best to measure two samples’ similarity. Updates-Leak
uses MSE, which is not ideal. A possible way to address this is
to involve humans in the loop to judge samples’ similarities vi-
sually. Nevertheless, besides the scalability issues, the qualitative
results presented in [59] show that the reconstructed samples are
not very visually close to the original ones (see Figure 8 of [59]).
Another reason is that Updates-Leak relies on a pretrained autoen-
coder which may introduce biases to the reconstructed sample.
The latter (single-sample label inference) is a coarser-grained attack
aiming at “class-level” inference, while the membership inference
attack in this paper is a finer-grained attack aiming at “sample-level”
inference. We emphasize that membership inference is the most
well-established privacy attack and arguably constitutes a bigger
privacy threat [13, 28, 30, 37, 46, 48, 60, 66, 67, 75] than class-level
attacks, such as the attacks in [7, 59] and model inversion [18, 19].
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Figure 1: A schematic view of the general attack pipeline.
The membership status of the target sample 𝑥 is leaked due
to the two versions of model.

3 MEMBERSHIP INFERENCE IN MACHINE
UNLEARNING

3.1 Attack Pipeline
The general attack pipeline of our attack is illustrated in Figure 1. It
consists of three phases: posteriors generation, feature construction
and (membership) inference.
Posteriors Generation. The adversary has access to two versions
of the target ML model, the original model M𝑜 and the unlearned
modelM𝑢 . Given a target sample 𝑥 , the adversary queriesM𝑜 and
M𝑢 , and obtains the corresponding posteriors, i.e., P𝑜 and P𝑢 , also
referred to as confidence values [64].
Feature Construction. Given the two posteriors P𝑜 and P𝑢 , the
adversary aggregates them to construct the feature vector F. There
are several alternatives to construct the feature vector. We discuss
five representative methods in Section 3.3.
Inference. Finally, the adversary sends the obtained F to the attack
model, which is a binary classifier, to determine whether the target
sample 𝑥 is in the training set of the original model. We describe
how to build the attack model in Section 3.2.

3.2 Attack Model Training
We assume the adversary has a local dataset, which we call the
shadow dataset D𝑠 . The shadow dataset can come from a different
distribution than the one used to train the target model. To infer
whether the target sample 𝑥 is in the original model or not, our core
idea is to train an attack model M

𝐴
that captures the difference

between the two posteriors. The intuition is that, if the target sample
𝑥 is deleted, the two models M𝑜 and M𝑢 will behave differently.
Figure 2 illustrates the training process of the attack model, and
the detailed training procedure is presented as follows.
Training Shadow Models. To mimic the behavior of the tar-
get model, the adversary needs to train a shadow original model
and a set of shadow unlearned models. To do this, the adversary
first partitions D𝑠 into two disjoint parts, the shadow negative
set D𝑠

𝑛 and the shadow positive set D𝑠
𝑝 . The shadow positive set

D𝑠
𝑝 is used to train the shadow original model M𝑠

𝑜 . The shadow
unlearned model M𝑠

𝑢 is trained by deleting samples from D𝑠
𝑝 . For

ease of presentation, we assume the shadow unlearned model M𝑠
𝑢

is obtained by deleting exactly one sample. We will show that our
attack is still effective for group deletion in Section 6.2. The adver-
sary randomly generates a set of deletion requests (target samples)
R𝑝 = {𝑥1𝑝 , 𝑥2𝑝 , · · · , 𝑥𝑚𝑝 } and train a set of shadow unlearned models

M𝑠,1
𝑢 ,M𝑠,2

𝑢 , · · · ,M𝑠,𝑚
𝑢 , where the shadow unlearned modelM𝑠,𝑖

𝑢

is trained on dataset D𝑠
𝑝 \ 𝑥𝑖𝑝 .

Obtaining Posteriors. At the posteriors generation phase, the
adversary feeds each target sample 𝑥𝑖𝑝 ∈ R𝑝 to the shadow original
modelM𝑠

𝑜 and its corresponding shadow unlearned model M𝑠,𝑖
𝑢 ,

and gets two posteriors P𝑖𝑜 and P𝑖𝑢 .
Constructing Features. The adversary then uses the feature con-
struction methods discussed in Section 3.3 to construct training
cases for the attack model. In classical membership inference, pos-
teriors of 𝑥𝑖𝑝 ∈ R𝑝 serve as member cases of the attack model.
But in the machine unlearning setting, 𝑥𝑖𝑝 ∈ R𝑝 is member of the
shadow original model M𝑠

𝑜 and non-member of the shadow un-
learned modelM𝑠

𝑢 . To avoid confusion, we call the samples related
to 𝑥𝑖𝑝 ∈ R𝑝 positive cases instead of member cases for the attack
model.

To train the attack model, the adversary also needs a set of
negative cases. This can be done by sampling a set of negative
query samples R𝑛 from the shadow negative dataset D𝑠

𝑛 and query
the shadow original model and unlearned model. To get a good
attack model generalization performance, the adversary needs to
ensure that the number of positive cases and the number of negative
cases of the attack model are balanced, i.e., |R𝑝 | = |R𝑛 |, where | · |
is the cardinality of the sample set.
Improving Diversity. To improve the diversity of the attack
model, the adversary obtains multiple shadow original models by
randomly sampling multiple subsets of samples from the shadow
positive datasetD𝑠

𝑝 . For each shadow original model, the adversary
randomly generates a set of deletion requests and trains a set of
shadow unlearned models. In Section 5.5, we conduct empirical
experiments to show the impact of the number of shadow original
models on the attack performance.
Training the Attack Model. Given sets of positive cases with
features and negative cases with features, we adopt four standard
and widely used classifiers as our attack model: Logistic regression,
decision tree, random forest, and multi-layer perceptron.

3.3 Feature Construction
Given the two posteriors, a straightforward approach to aggregate
the information is to concatenate them, i.e., P𝑜 | |P𝑢 , where | | is
the concatenation operation. This preserves the full information.
However, it is possible that the concatenation contains redundancy.
In order to reduce redundancy, we can instead rely on the difference
between P𝑜 and P𝑢 to capture the discrepancy left by the deletion
of the target sample. In particular, we make use of the element-wise
difference P𝑜 − P𝑢 and the Euclidean distance



P𝑜 − P𝑢



2.

In order to better capture the level of confidence of themodel, one
may also sort the posteriors before the difference or concatenation
operations [20]. Specifically, we sort the original posteriors P𝑜 in
descending order and get the sorted original posteriors P𝑠𝑜 . We
then rearrange the order of the unlearned posteriors P𝑢 to align its
elements with P𝑜 , and get the sorted unlearned posteriors P𝑠𝑢 .

To summarize, we adopt the following five methods to construct
the features for the attack model:

• Direct concatenate (DirectConcat), i.e., P𝑜 | |P𝑢
• Sorted concatenate (SortedConcat), i.e., P𝑠𝑜 | |P𝑠𝑢
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Figure 2: Training process of the attack model. The shadow dataset D𝑠 is split into disjoint shadow positive dataset D𝑠
𝑝 and

shadow negative dataset D𝑠
𝑛 . The shadow positive dataset D𝑠

𝑝 is used to train the shadow original model M𝑠
𝑜 . The shadow

unlearned model M𝑠,𝑖
𝑢 is trained on D𝑠

𝑝 \ 𝑥𝑖𝑝 , where 𝑥𝑖𝑝 ∈ D𝑠
𝑝 . In the inference phase, the adversary first uses target sample 𝑥𝑖𝑝

to query the original and unlearned models simultaneously to generate the positive features. Then they use a random sample
𝑥𝑖𝑛 ∈ D𝑠

𝑛 to query the corresponding models to generate the negative features. Finally, they use the positive and negative
features to train the attack model M

𝐴
.

• Direct difference (DirectDiff), i.e., P𝑜 − P𝑢 .
• Sorted difference (SortedDiff), i.e., P𝑠𝑜 − P𝑠𝑢 .
• Euclidean distance (EucDist), i.e.,



P𝑜 − P𝑢
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In Section 5.3, we conduct empirical experiments to evaluate
the performance of the above methods and provide a high-level
summary of the best features to use depending on the behavior of
the underlying ML model.

4 PRIVACY DEGRADATION MEASUREMENT
In this paper, we aim to evaluate to what extent machine unlearning
may degrade the membership privacy of an individual whose data
sample has been deleted from the training set (we also call this
the target sample). Specifically, we want to quantify the additional
privacy degradation our attack brings over classical membership
inference (or the improvement of membership inference) in order to
measure the unintended information leakage due to data deletion in
machine learning. To this end, we propose two privacy degradation
metrics that measure the difference in the confidence levels of our
attack and classical membership inference when predicting the
correct membership status of the target sample.

Given 𝑛 target samples 𝑥1 to 𝑥𝑛 , define 𝑝𝑖𝑢 as the confidence of
our attack in classifying 𝑥𝑖 as a member, and 𝑝𝑖𝑚 as the confidence
of classical membership inference. Let 𝑏𝑖 be the true status of 𝑥𝑖 ,
i.e., 𝑏𝑖 = 1 if 𝑥𝑖 is a member, and 𝑏𝑖 = 0 otherwise. With that, we
define the following two metrics:

• DegCount. DegCount stands for Degradation Count. It cal-
culates the proportion of target samples whose true member-
ship status is predicted with higher confidence by our attack
than by classical membership inference. Formally, DegCount
is defined as

𝐷𝑒𝑔𝐶𝑜𝑢𝑛𝑡 =
1
𝑛

𝑛∑
𝑖

[
𝑏𝑖1𝑝𝑖𝑢>𝑝

𝑖
𝑚
+ (1 − 𝑏𝑖 )1𝑝𝑖𝑢<𝑝𝑖𝑚

]

where 1𝑃 is the indicator function which equals 1 if 𝑃 is true,
and 0 otherwise. Higher DegCount means higher privacy
degradation.

• DegRate. DegRate stands for Degradation Rate. It calculates
the average confidence improvement rate of our attack pre-
dicting the true membership status compared to classical
membership inference. DegRate can be formally defined as

𝐷𝑒𝑔𝑅𝑎𝑡𝑒 =
1
𝑛

𝑛∑
𝑖

[
𝑏𝑖 (𝑝𝑖𝑢 − 𝑝𝑖𝑚) + (1 − 𝑏𝑖 ) (𝑝𝑖𝑚 − 𝑝𝑖𝑢 )

]
Higher DegRate means higher privacy degradation.

5 EVALUATION
In this section, we conduct extensive experiments to evaluate the
unintended privacy risks of machine unlearning. We first conduct
an end-to-end experiment to validate the effectiveness of our attack
on multiple datasets using the most straightforward unlearning
method, i.e., retraining from scratch. Second, we compare different
feature construction methods proposed in Section 3.3 and provide
a summary of the most appropriate to choose depending on the
context. Third, we evaluate the impact of overfitting and of differ-
ent hyperparameters. Fourth, we conduct experiments to evaluate
dataset and model transferability between shadowmodel and target
model. Finally, we show the effectiveness of our attack against the
SISA unlearning method. We leave the evaluation of our attack in
other scenarios to Section 6.

5.1 Experimental Setup
Target Models. In our experiments, we evaluate the vulnerabil-
ity of both simple machine learning models, including logistic re-
gression (LR), decision tree (DT), random forest (RF), and 5-layer
multi-layer perceptron (MLP), and the state-of-the-art convolu-
tional neural networks, including SimpleCNN (implemented by
us), DenseNet [31], and ResNet50 [29]. For reproducibility purpose,
we provide the hyperparameter settings for the simple machine
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Figure 3: Privacy degradation level on the Scratch method for three categorical datasets. Rows stand for different metrics,
columns stand for different datasets. In each subfig, the groups in x-axis represent different target models, and the legends (in
different colors) represent different attack models. For the AUC metric, the right bars (transparent ones) stand for the AUC
value of classical membership inference.

Table 1: Dataset statistics.

Dataset Type Feature Dimension #. Classes #. Samples

Adult Categorical 14 2 50,000
Accident Categorical 30 3 3,000,000
Insta-NY Categorical 169 9 19,215
Insta-LA Categorical 169 9 16,472
MNIST Image 28*28*1 10 42,000
CIFAR10 Image 32*32*3 10 60,000
STL10 Image 32*32*3 10 13,000

learning models in Appendix B, and the implementation details
of SimpleCNN in Appendix C. All the convolutional networks are
trained for 100 epochs.

Datasets. We run experiments on two different types of datasets:
categorical datasets and image datasets. The categorical datasets
are used to evaluate the vulnerability of simple machine learning
models, while the image datasets are used to evaluate the vulnera-
bility of the convolutional neural networks. Due to space limitation,
we defer the detailed description of these datasets to Appendix A.
The statistics of all datasets used in our experiments are listed in
Table 1. Note that the Insta-NY and STL10 datasets are only used
for data transferring attack in Section 5.6.

Metrics. In addition to the two privacy degradation metrics pro-
posed in Section 4, we also rely on the traditional AUC metric
to measure the absolute performance of our attack and classical
membership inference. To summarize, we have the following three
metrics:

• AUC. It is a widely used metric to measure the performance
of binary classification in a range of thresholds [5, 19, 27,
36, 56, 60]. An AUC value equals to 1 shows a maximum
performance while an AUC value of 0.5 shows a performance
equivalent to random guessing.

• DegCount. It stands for Degradation Count, which is de-
fined in Section 4.

• DegRate. It stands for Degradation Rate, which is defined
in Section 4.

Experimental Settings. We evenly split each dataset D into
disjoint target dataset D𝑡 and shadow dataset D𝑠 . In Section 5.6,
we will show that the shadow dataset can come from a different
distribution than the target dataset. The shadow dataset D𝑠 is
further split into shadow positive dataset D𝑠

𝑝 and shadow negative
dataset D𝑠

𝑛 (80% for D𝑠
𝑝 and 20% for D𝑠

𝑛). We randomly sample 𝑆𝑜
subsets of samples fromD𝑠

𝑝 , each containing 𝑆𝑟 samples, to train 𝑆𝑜
shadow original models. For each shadow original model M𝑠,𝑖

𝑜 , we
train 𝑆𝑢 shadow unlearned models on D𝑠,𝑖

𝑜 \ 𝑥 . We split the target
dataset D𝑡 in a similar way as the shadow dataset D𝑠 .
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Figure 4: Privacy degradation level on the Scratch method for image datasets. In each subfig, the groups in x-axis stand for
different attack models, the legends (in different colors) stand for different datasets and the corresponding target models. For
the AUC metric, the right bars (transparent ones) stand for the AUC value of classical membership inference.

By default, we set the hyperparameters of the shadow models to
𝑆𝑜 = 20, 𝑆𝑟 = 5000, 𝑆𝑢 = 100, and the corresponding hyperparam-
eters of the target models to 𝑇𝑜 = 20,𝑇𝑟 = 5000,𝑇𝑢 = 100. These
hyperparameters have shown to achieve good balance between
computational overhead and attack performance in Section 5.5.
Implementation. All algorithms are implemented in Python 3.7
and the experiments are conducted on a Ubuntu 19.10 LTS server
with Intel Xeon E7-8867 v3 @ 2.50GHz and 1.5TB memory.

5.2 Evaluation of the ScratchMethod
In this subsection, we conduct end-to-end experiments to evaluate
our attack against the most straightforward approach of retraining
the ML model from scratch.
Setup. We start by considering the scenario where only one sample
is deleted for each unlearned model. The scenario where multiple
samples are deleted before the ML model is retrained will be evalu-
ated in Section 6.2. We conduct the experiment on both categorical
datasets and image datasets with three evaluation metrics, namely
AUC, DegCount, DegRate, and report the results with the optimal
features as explained in Section 5.3.
Results for Categorical Datasets. Figure 3 depicts the attack
performance of categorical datasets. In general, we observe that
our attack performs consistently better than classical membership
inference on all datasets, target models, attack models, and metrics.
Compared to classical membership inference, our attack achieves up
to 0.48 improvement of the AUC. The best DegCount and DegRate
values are of 0.94 and 0.40, respectively. This indicates that our
attack indeed degrades membership privacy of the target sample
in the machine unlearning setting. Comparing the performance
of different target models, we observe that decision tree is the
most vulnerable ML model. We posit this is due to the fact that
the decision tree forms a tree structure and deleting one sample
could explicitly change its structure; thus the posterior difference
of decision tree’s original model and unlearned model is more
significant, leading to a better attack performance.
Results for Image Datasets. Figure 4 illustrates the performance
for the image datasets and complex convolutional neural networks.
We keep the same attack models as categorical datasets, and use
the SimpleCNN model for MNIST, use the ResNet50 and DenseNet
models for CIFAR10. In general, we also observe that our attack

outperforms classic membership inference attack in all settings.
Besides, CIFAR10 trained with DenseNet shows the highest privacy
degradation, while MNIST dataset trained with SimpleCNN shows
the lowest. The reason behind is that the overfitting level of CIFAR10
trained with DenseNet is the largest. To further confirm this, we
list the overfitting level of different models in Table 2. We observe
that the overfitting level of CIFAR10 trained with DenseNet is 0.439,
while theMNIST dataset trained with SimpleCNN has an overfitting
level smaller than 0.05.

5.3 Finding Optimal Features
Figure 5 illustrates the attack AUC of different feature construction
methods. We compare two different types of target models: (a)
the well-generalized model logistic regression (trained on Insta-NY
dataset), and (b) the overfitted model ResNet50 (trained on CIFAR10
dataset). We then apply the 5 different feature construction methods
proposed in Section 3.3 to 4 different attack models, resulting in
20 combinations. For comparison, we also include the classical
membership inference as a baseline.
Concatenation vs. Difference. Concatenation-based methods
(DirectConcat, SortedConcat) directly concatenate the two posteri-
ors to preserve the full information, while difference-based methods
capture the discrepancy between two versions of posteriors. We
use two approaches to capture this discrepancy: element-wise dif-
ference (DirectDiff, SortedDiff) and Euclidean distance (EucDist).

Overall, Figure 5 shows that, on one hand, concatenation-based
methods perform better on the overfitted model, i.e., ResNet50. On
the other hand, the difference-based methods perform better on
the well-generalized model, i.e., logistic regression. We suspect
this is due to the fact that the concatenation-based methods rely
on the plain posterior information, which can provide a strong
signal for membership inference on the overfitted target model.
This is consistent with the conclusion of previous studies [60, 64]
that classical membership inference (which uses plain posterior
information) performs well on overfitted target models. While we
can also exploit the difference-based methods to mount the attack
on the overfitted target models, the attack signal is not as strong as
that of the concatenation-based methods as shown in Figure 5b. For
the well-generalized target models, exploiting the plain posterior
information has shown to perform poorly in terms of membership
inference [60, 64]. In this case, the discrepancy information between
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Figure 5: Attack AUC for different feature construction
methods for target models (a) logistic regression (trained on
Insta-NY) and (b) ResNet50 (trained on CIFAR10). DC, SC,
DD, SD, ED stand for DirectConcat, SortedConcat, DirectDiff,
SortedDiff, EucDist, respectively. BL stands for the baseline,
i.e., classical membership inference.

two versions of the posteriors captured by the difference-based
methods is more informative than the concatenation-based feature
construction methods.
Sorted vs. Unsorted. Comparing DirectConcat to SortedConcat
and DirectDiff to SortedDiff in Figure 5, we observe that the attack
AUC of both concatenation-based method and difference-based
method are clearly better after sorting. These results confirm our
conjecture that sorting could improve the confidence level of the
adversary.
Feature Selection Summary. Our empirical comparison provides
us with the following rules for the feature construction methods:
(1) use concatenation-based methods on overfitted models; (2) use
difference-based methods on well-generalized models; (3) sort the
posteriors before the concatenation and difference operations.

5.4 Impact of Overfitting
Overfitting measures the difference of accuracy between training
and testing data. Previous studies [45, 64, 75] have shown that
overfitted models are more susceptible to classical membership
inference attacks, while well-generalized models are almost im-
mune to them. In this subsection, we want to revisit the impact of
overfitting on our attack.

Table 2 depicts the attack AUC for different overfitting levels.
We use random forest as attack model, and use SortedDiff and
SortedConcat as feature construction method for well-generalized

Table 2: Attack AUC in different overfitting levels.

Dataset M𝑜 Train / Test Acc. Overfitting AUC / Base-AUC

LR 0.795 / 0.782 0.013 0.600 / 0.505
DT 0.853 / 0.834 0.019 0.882 / 0.497
RF 0.852 / 0.843 0.009 0.659 / 0.459Ad

ul
t

MLP 0.767 / 0.763 0.004 0.506 / 0.503

LR 0.702 / 0.698 0.002 0.538 / 0.494
DT 0.722 / 0.701 0.021 0.929 / 0.501
RF 0.730 / 0.709 0.021 0.78 / 0.499

Ac
ci
de
nt

MLP 0.670 / 0.644 0.026 0.513 / 0.493

LR 0.508 / 0.439 0.069 0.983 / 0.490
DT 0.404 / 0.373 0.031 0.941 / 0.503
RF 0.523 / 0.442 0.081 0.685 / 0.551

In
st
a-
N
Y

MLP 0.738 / 0.483 0.255 0.619 / 0.553

MNIST SimCNN 0.954 / 0.951 0.003 0.511 / 0.496

DenseNet 0.942 / 0.477 0.465 0.881 / 0.630CIFAR10
ResNet50 0.975 / 0.592 0.383 0.719 / 0.548

and overfitted target model, respectively. In general, our attack con-
sistently outperforms the classicial membership inference on both
well-generalized and overfitted models. On the overfitted models,
i.e., CIFAR10 datasets with ResNet50 and DenseNet as target model,
we can observe that the classical membership inference also works.
However, our attack can achieve much better performance. On the
other hand, the experimental results show that our attack can still
correctly infer the membership status of the target sample
in well-generalized models. For example, when the target model
is a decision tree, the overfitting level in Adult (Income) dataset
is 0.019, thus decision tree can be regarded as a well-generalized
model. While the performance of classical membership inference
on this model is equivalent to random guessing (AUC = 0.497), our
attack performs very well, with an AUC of 0.882.

In summary, our attack performance is relatively independent
of the overfitting level.

5.5 Ablation Study
We now evaluate the impact of the hyperparameters on the per-
formance of our attack. Specifically, we focus on the number of
shadow original models 𝑆𝑜 , the number of samples 𝑆𝑟 per shadow
original model, and the number of unlearned models 𝑆𝑢 per shadow
original model. The corresponding hyperparameters of the target
models are fixed (as defined at the end of Section 5.1), since only
the hyperparameters of the shadow models can be tuned to launch
the attack.

We conduct the experiments on Adult (Income) dataset with
decision tree as target model. Following our findings in Section 5.3,
we evaluate the attack AUC of different combinations of attack
models, i.e., decision tree, random forest and logistic regression,
and difference-based feature construction methods, i.e., DirectDiff,
SortedDiff, EucDist.
Number of Shadow Original Models 𝑆𝑜 . Figure 6a depicts the
impact of 𝑆𝑜 , which varies from 1 to 100. The figure shows that the
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Figure 6: Attack AUC sensitivity to different hyperparameters on Adult (income) dataset with decision tree as target model.
The legends stand for 5 combinations of attack models and feature construction methods guided by Section 5.3.

Table 3: Attack AUC for dataset and model transfer. Names
in the left of arrows stand for configurations of shadow
model. Values in the parentheses stand for the attack AUC
of the classical membership inference. Columns stand for
dataset transfer, rows stand for model transfer.

Shadow→Target Insta-NY→Insta-NY Insta-NY→Insta-LA

DT→DT 0.944 (0.491) 0.931 (0.503)
DT→LR 0.964 (0.494) 0.974 (0.513)
LR→LR 0.986 (0.505) 0.982 (0.511)
LR→DT 0.927 (0.502) 0.926 (0.508)

Shadow→Target CIFAR10→CIFAR10 CIFAR10→STL10

DenseNet→DenseNet 0.881 (0.630) 0.813 (0.621)
DenseNet→ResNet50 0.847 (0.624) 0.805 (0.632)
ResNet50→ResNet50 0.719 (0.548) 0.687 (0.550)
ResNet50→DenseNet 0.721 (0.523) 0.675 (0.542)

attack AUC sharply increases when 𝑆𝑜 increases from 1 to 5, but
remains quite stable for greater values of 𝑆𝑜 . This indicates that
setting 𝑆𝑜 = 5 is enough for the diversity of the shadow original
models.
Number of Samples 𝑆𝑟 per Model. Figure 6b illustrates the im-
pact of 𝑆𝑟 ∈ {500, 1000, 2000, 5000, 10000}. When 𝑆𝑟 increases from
500 to 1000, the attack AUC with SortedDiff increases from 0.67
to 0.83, while the attack AUC with EucDist increases from 0.73
to 0.86, except for logistic regression. However, adding more than
1000 samples does not help improve the attack performance further.
Number of UnlearnedModels 𝑆𝑢 per ShadowOriginalModel.
Figure 6c illustrates the impact of 𝑆𝑢 , which varies from 1 to 100.
We observe that 𝑆𝑢 has negligible impact on the attack AUC. This
indicates that using a few unlearned models is sufficient to achieve
a high attack performance.

5.6 Attack Transferability
In practice, the adversary might not able to get the same distribu-
tion dataset or same model structure to train the shadow models.
We next validate the dataset and model transferability between
shadow model and target model. That is, we evaluate whether the
adversary can use a different dataset and model architecture than
the target model to train the shadow models. We evaluate on both
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Figure 7: Attack AUC for the SISA method on the Insta-NY
dataset. The transparent bars stand for the classical mem-
bership inference.

categorical datasets with simple model structure and image dataset
with complex model structure.

Dataset Transferability. Comparing the AUC values of the trans-
fer setting with that of the non-transfer setting, i.e., bold rows in
column Insta-NY→Insta-LA and CIFAR10→STL10, we only ob-
serve a small performance drop for all target models. For instance,
when the target model is decision tree, the attack AUC of transfer
setting and non-transfer setting are 0.944 and 0.931, respectively.
The attack AUC only drops by 1%.

Model Transferability. For model transferring attack, we eval-
uate the pairwise transferability among decision tree and logistic
regression. In Table 3, unbold rows in column Insta-NY→Insta-NY
and CIFAR10→CIFAR10 illustrate the performance of model trans-
fer. The experimental results show that model transfer only slightly
degrades the attack performance of our attack. For example, when
the shadow model and target model are both LR, the attack AUC
equals to 0.986. When we change the target model to decision tree,
the attack AUC is still of 0.927.

Dataset and Model Transferability. Unbold rows of unbold
columns show the attack AUC when we transfer both the dataset
and the model simultaneously. Even in this setting, our attack can
achieve pretty good performance. This result shows robust trans-
ferability of our attack, when the adversary do not have access to
same distribution data and same model architectures.
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Figure 8: AttackAUCunder different scenarios on Insta-NY. The dashed lines stand for the attackAUCof classicalmembership
inference. Due to space limitation, we omit the results for other models and datasets that hold similar conclusions.

5.7 Evaluation of the SISAMethod
The unlearning algorithm we focused on so far is retraining from
scratch, which can become computationally prohibitive for large
datasets and complex models. Several approximate unlearning al-
gorithms have been proposed to accelerate the training process. In
this subsection, we evaluate the performance of our attack against
the most general approximate unlearning algorithm, SISA [10].
Setup. We remind the readers that the main idea of SISA is to split
the original dataset into 𝑘 disjoint shards and train 𝑘 sub-models.
In the inference phase, the model owner aggregates the prediction
of each sub-model to produce the global prediction using some
aggregation algorithm. In this experiment, we set 𝑘 = 5 and use
posterior average as aggregation algorithm. Figure 7 illustrates the
attack AUC on the Insta-NY dataset. We report the experimental
results of four different target models and four different attack
models. For each attack model, we select the best features following
the principles described in Section 5.3.
Results. The experimental results show that our attack perfor-
mance drops compared to the Scratch algorithm. We posit this is
because the aggregation algorithm of SISA reduces the influence
of a specific sample on its global model. This observation further
motivates the deployment of unlearning methods such as SISA in
real-world applications.

6 ATTACK UNDER DIFFERENT SCENARIOS
Next, we evaluate the effectiveness of our attack in different sce-
narios that might exist in practice. We first focus on the case when
there exists multiple intermediate versions of unlearned models.
Second, we consider when a group of samples are deleted. Third,
we investigate the online learning setting when multiple samples
are deleted and added simultaneously. Finally, we evaluate the im-
pact of unlearning on remaining samples’ membership privacy. The
experimental setup is the same as in Section 5.

6.1 Multiple Intermediate Unlearned Models
Intermediate Models. As discussed in the threat model (Sec-
tion 2.3), the adversary gains access to the original model and
unlearned model by continuously querying the black-box target
model. In practice, the adversary obtains access to two consecutive
versions of models by two consecutive queries. However, the model
owner would produce an unlearned model every time when it re-
ceives deletion requests; thus, there might be multiple unlearned

models between these two consecutive queries that is unknown to
the adversary. We call these models intermediate models. Here, we
evaluate the effectiveness of our attack when multiple intermediate
unlearned models exist.
Setup. Due to space limitation, we concentrate on the Insta-NY
dataset with three different target models, while the conclusions
are consistent for other datasets. We use LR as the attack model
and select the best features following the principles described in
Section 5.3. Figure 8a depicts the results. The x-axis represents
the number of intermediate unlearned models we studied, i.e.,
{1, 10, 50, 100, 250}.
Results. The experimental results show that our attack consis-
tently degrades privacy of the target sample comparing with the
classical membership inference. In addition, the attack AUC drops
when the number of intermediate models increases. This is ex-
pected since the impact of the target sample is masked by previously
deleted samples. That is, if there exist multiple intermediate models,
the discrepancy information between the original model and the
unlearned model is contributed by both the target sample and other
deleted samples corresponding to the intermediate models. In other
words, the impact of the target sample and other deleted samples is
entangled with each other, making the inference of the membership
status of the target sample more difficult.

Note that the data samples are unlikely to be revoked very fre-
quently in practice, and the number of intermediate models are
unlikely to be very large, which means our attack is still effective
in real-world settings. For instance, our attack AUC can achieve at
least 0.84 when the number of intermediate models are less than
10 when the target model is LR.

6.2 Group Deletion
In practice, there could exist cases where a group of samples are
deleted at once before generating the unlearned model. This can
happen when multiple data owners request the deletion at the same
time, or when the model owner caches the deletion requests and
updates the model only when he has received numerous requests
to save computational resources.
Setup. We conduct experiments on our attack in the group deletion
scenario. We randomly delete a group of data samples from each
original model to generate the unlearned model. The ratio of sam-
ples in each group takes value from {0.02%, 0.2%, 1%, 2%, 5%}. We
delete at most 5% of the data samples since in practice it is unlikely



that more than 5% of users revoke their data. We evaluate our attack
on the Insta-NY dataset with three target models. Notice that the
unlearned model of the group deletion is the same as in Section 5.7
when the group size equals the number of intermediate unlearned
models. The difference is that in group deletion, we consider all
samples in the group as target samples.
Results. Figure 8b shows that our consistently outperforms classi-
cal membership inference attack, demonstrating extra information
leakage in group deletion. However, the attack performance of
group deletion is slightly worse than single sample deletion, even
though our attack is still effective when the group size is smaller
than 0.2%. For example, when the target model is LR, the attack AUC
of single deletion and group deletion (0.2% target samples) are 0.972
and 0.842, respectively. The reason is that a single sample could be
hidden among the group of deleted samples, thereby preserving its
membership information. This result reveals that conducting group
deletion could mitigate, to some extent, the impact of our attack.

In practice, we believe 0.2% might already be too large for un-
learning. The results of [8] show that 3.2 million requests for remov-
ing URLs have been issued to Google for 5 years which certainly
constitutes less than 0.2% of the total URLs Google indexes.

6.3 Online Learning
In real-world deployments, ML models are often updated with
new samples, which is known as online learning or incremental
learning. Next, we evaluate the performance of our attack in online
learning settings where multiple samples are deleted and added
simultaneously.
Setup. To set up the experiment, we delete a group of target sam-
ples from the original dataset and add the same number of new
samples; then we retrain the model from scratch to obtain the un-
learned model. We conduct experiments on Insta-NY with different
target models and use LR as the attack model.
Results. Figure 8c show that adding samples to the target model in
the unlearning process has slight impact on our attack. For example,
compared with purely deletion, the attack AUC only slightly drops
from 0.972 to 0.940 when the target model is LR and the number of
unlearned samples equals to 10 (0.2%).

6.4 Impact on Remaining Samples
In the end, we evaluate whether deleting the target sample can
influence the privacy of other remaining samples.
Setup. We use the same attack pipeline described in Section 3.1
to mount the attack. Concretely, we use data samples that reside
in both the original model and unlearned model as positive cases,
and use shadow/target negative dataset as negative cases. We con-
centrate on the Insta-NY dataset with four target models and four
attack models where one data sample is deleted.
Results. Figure 9 shows that the attack AUC of our attack is higher
than that of the classical membership inference, which only exploit
information of the original model, indicating deleting the target
sample also degrades privacy, to some extent, of the remaining
samples. However, the attack AUC of all target models are less than
0.6, meaning the remaining samples are less sensitive to our attack.
This is expected due to the fact that the remaining samples are
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Figure 9: Attack AUC of the remaining samples on the Insta-
NY dataset. The transparent bars stand for the classical
membership inference.

members of both the original model and unlearned model. Deleting
other data samples has some but limited impact on their posteriors
in the unlearned model.

6.5 Takeaways
Through our extensive experiments in Section 5 and Section 6, we
have made the following important observations:

• Our attack consistently degrades the membership privacy of
the Scratch unlearning method compared to classical mem-
bership inference. The attack performance drops for the SISA
unlearning method, which motivates the deployment of un-
learning methods such as SISA in real-world applications.

• We obtain the following rules for selecting the feature con-
struction methods: (1) use concatenation-based methods on
overfitted models; (2) use difference-based methods on well-
generalized models; (3) sort the posteriors before the con-
catenation and difference operations.

• Our transferring attacks show that our attack is still effective
when the shadow model is trained on different-distributed
datasets and different architecture from the target model.

• When the number of unlearned/updating samples represents
less than 0.2% of the training dataset, our attack is still ef-
fective in the scenarios of multiple intermediate unlearned
models, group deletion, and online learning.

• Deleting the target sample also degrades privacy of the re-
maining samples to some extent; however, the remaining
samples are less sensitive to our attack.

7 POSSIBLE DEFENSES
In this section, we explore four possible defense mechanisms and
empirically evaluate their effectiveness. The former two mecha-
nisms reduce the information accessible to the adversary [64], and
the latter two eliminate the impact of a single sample on the output
of the ML models.
Publishing the Top-𝑘 Confidence Values. This defense reduces
the attacker’s knowledge by only publishing top𝑘 confidence values
of the posteriors returned by both original and unlearned models.
Formally, we denote the posterior vector as P = [𝑝1, 𝑝2, · · · , 𝑝ℓ ],
where ℓ is the number of classes of the target model and 𝑝𝑖 is
the confidence value of class 𝑖 . When the target model receives



Table 4: Attack AUC of the defense mechanisms. We list the
attack performance of no defense mechanisms (ND), pub-
lishing the Top-k confidence values (Top-1, Top-2, Top-3),
label-only defense (Label), temperature scaling (TS) based
defense, and differential privacy (DP) based defense. D𝑜 ,
M

𝑇
, and M

𝐴
stand for original dataset, target model and

attack model, respectively. For DP, we set 𝛿 = 10−5, 𝜖1 =

4.64, 𝜖2 = 0.7.

D𝑜 (M
𝑇
) M

𝐴
ND Top-1 Top-2 Top-3 Label TS DP[𝜖1] DP[𝜖2]

RF 0.916 0.899 0.906 0.911 0.501 - - -
DT 0.918 0.903 0.906 0.910 0.506 - - -
LR 0.918 0.904 0.907 0.911 0.506 - - -

Ad
ul
t(
D
T)

MLP 0.918 0.904 0.909 0.907 0.493 - - -

RF 0.937 0.930 0.931 0.942 0.506 - - -
DT 0.938 0.932 0.932 0.943 0.502 - - -
LR 0.928 0.923 0.927 0.926 0.502 - - -

In
st
a-
N
Y
(D
T)

MLP 0.928 0.923 0.927 0.929 0.505 - - -

RF 0.976 0.947 0.965 0.965 0.546 0.635 0.519 0.477
DT 0.972 0.946 0.961 0.961 0.546 0.654 0.524 0.500
LR 0.969 0.948 0.960 0.962 0.546 0.610 0.519 0.500

In
st
a-
N
Y
(L
R)

MLP 0.970 0.948 0.960 0.966 0.453 0.653 0.506 0.504

a query, the model owner calculates posteriors P and sorts them
in descending order, resulting in P𝑠 = [𝑝𝑠1, 𝑝

𝑠
2, · · · , 𝑝

𝑠
ℓ
]. The model

owner then publishes the first 𝑘 values in P𝑠 , i.e., [𝑝𝑠1, 𝑝
𝑠
2, · · · , 𝑝

𝑠
𝑘
].

In the machine unlearning setting, the top 𝑘 confidence values
of the original model and the unlearned model may not correspond
to the same set of classes. To launch our attack, the adversary
constructs a pseudo-complete posterior vector for both original model
and unlearned model. The pseudo-complete posteriors take the
published confidence values for their corresponding classes, and
evenly distributes the remaining confidence value to other classes,
i.e., for 𝑗 ∈ {𝑘 + 1, . . . , ℓ}, 𝑝𝑠

𝑗
=

1−(𝑝𝑠1+𝑝𝑠2+···+𝑝𝑠𝑘 )
ℓ−𝑘 . The adversary can

then launch our attack using the pseudo-complete posteriors.
Table 4 shows the experimental results of Top-1, Top-2 and Top-3

defenses on Insta-NY and Adult. For the Adult dataset, we report
the results of decision tree as the target model; for the Insta-NY
dataset, we report the results of decision tree and logistic regression
as the target model. We report the performance of 4 different at-
tack models, each selecting the best feature following the principle
described in Section 5.3. The results show that publishing top 𝑘
confidence value cannot effectively mitigate our attack.
Publishing the Label Only. This defense further reduces the
information accessible to the adversary by only publishing the pre-
dicted label instead of confidence values (posteriors). To launch our
attack, the adversary also needs to construct the pseudo-complete
posteriors for both the original model and unlearned model. The
main idea is to set the confidence value of the predicted class as 1,
and set the confidence value of other classes as 0. Table 4 illustrates
the performance of the “label only” defense. The experimental set-
ting is similar to Top-𝑘 defense. The experimental results show that
the “label only” defense can effectively mitigate our attack in all

cases. The reason is that deleting one sample is unlikely to change
the output label of a specific target sample.

It is worth noting that recent studies have shown that an adver-
sary can recover to a large extent the posteriors from the label with
the so-called sampling attack [40, 58]. In this case, our membership
inference attack is still effective. We leave the investigation of the
improved attack in the presence of label-only publishing defense
as future work.
Temperature Scaling. Temperature scaling divides the logits vec-
tor by a learned scaling parameter, which is a simple yet effective
approach to eliminate the over-confident problem of the output
posteriors of neural networks [25]. This defense reduces the impact
of a single sample on the output posteriors.

Table 4 illustrates the performance of the “temperature scaling”
defense. We report the performance of 4 different attack models,
each selecting the best feature following the principle described in
Section 5.3. The experimental results show that temperature scaling
is an effective defense mechanism. However, this method is only
applicable to neural networks whose last layer is softmax. Logistic
regression in our experiment can be regarded as a neural network
with one input layer and one softmax layer.
Differential Privacy (DP). DP [9, 16, 39, 49, 55] guarantees that
any single data sample in a dataset has limited impact on the output.
Previous studies have shown DP can effectively prevent classical
membership inference attacks [34, 44]. To validate whether DP can
prevent ourmembership inference attack in themachine unlearning
setting, we train both the original model and unlearned model in a
differentially private manner.

We experiment with Differentially-Private Stochastic Gradient
Descent (DP-SGD) [4], the most representative DP mechanism for
protecting machine learning models. The core idea of DP-SGD is
to add Gaussian noise to the gradient 𝑔 during the model training
process, i.e., 𝑔 = 𝑔 + N

(
0,Δ2

𝑓
𝜎2I

)
. We use the Opacus library3

developed by Facebook to conduct our experiments. Note that,
since DP-SGD can only be applied to the ML models that encounter
gradient updating in the training process, we only report the results
for logistic regression. The last two columns of Table 4 illustrate
the effectiveness of the DP defense. The experimental results show
that DP can effectively prevent our membership inference attack.
It worth noting that DP can inevitably degrade the target model’s
accuracy. We need carefully tune the privacy budget parameters to
strike a trade-off between privacy and model utility in practice.

We leave the in-depth exploration of more effective defense
mechanisms against our attack as a future work.

8 RELATEDWORK
Machine Unlearning. The notion of machine unlearning is first
proposed in [11], which is the application of the right to be forgot-
ten in the machine learning context. The most legitimate approach
to implement machine unlearning is to remove the revoked samples
from the original training dataset and retrain the ML model from
scratch. However, retraining from scratch incurs very high compu-
tational overhead when the dataset is large and when the revoke
requests happen frequently. Thus, most of the previous studies in
3https://github.com/pytorch/opacus

https://github.com/pytorch/opacus


machine unlearning focus on reducing the computational overhead
of the unlearning process [6, 10, 11, 32].

For instance, Cao et al. proposed to transform the learning algo-
rithms into summation form that follows statistical query learning,
breaking down the dependencies of training data [11]. To remove a
data sample, the model owner only needs to remove the transfor-
mations of this data sample from the summations that depend on
this sample. However, this algorithm is not applicable to learning
algorithms that cannot be transformed into summation form, such
as neural networks. Bourtoule et al. [10] proposed a more general
algorithm named SISA. The main idea of SISA is to split the training
data into disjoint shards, with each shard training one sub-model.
To remove a specific sample, the model owner only needs to retrain
the sub-model that contains this sample. To further speed up the
unlearning process, the authors proposed to split each shard into
several slices and store the intermediate model parameters when
the model is updated by each slice.

Another line of machine unlearning study aims to verify whether
the model owner complies with the data deletion request. Sommer
et al. [65] proposed a backdoor-based method. The main idea is to
allow the data owners to implant a backdoor in their data before
training the ML model in the MLaaS setting. When the data owners
later request to delete their data, they can verify whether their data
have been deleted by checking the backdoor success rate.

The research problem in this paper is orthogonal to previous
studies. Our goal is to quantify the unintended privacy risks for the
deleted samples in machine learning systems when the adversary
has access to both original model and unlearned model. To the best
of our knowledge, this paper is the first to investigate this problem.
Although quantifying privacy risks of machine unlearning has not
been investigated yet, there are multiple studies on quantifying the
privacy risks in the general right to be forgotten setting. For exam-
ple, Xue et al. [74] demonstrate that in search engine applications,
the right to be forgotten can enable an adversary to discover deleted
URLs when there are inconsistent regulation standards in different
regions. Ellers et al. [17] demonstrate that, in network embeddings,
the right to be forgotten enables an adversary to recover the deleted
nodes by leveraging the difference between the two versions of the
network embeddings.

Membership Inference. Shokri et al. [64] presented the first
membership inference attack against ML models. The main idea
is to use shadow models to mimic the target model’s behavior
to generate training data for the attack model. Salem et al. [60]
gradually removed the assumptions of [64] by proposing three
different attack methods. Since then, membership inference has
been extensively investigated in various ML models and tasks, such
as federated learning [46], white-box classification [48], generative
adversarial networks [13, 28], natural language processing [67], and
computer vision segmentation [30]. Another line of study focused
on investigating the impact of overfitting [37, 75] and of the number
of classes of the target model [63] on the attack performance.

To mitigate the threat of membership inference, a plethora of
defense mechanisms have been proposed. These defenses can be
classified into three classes: reducing overfitting, perturbing posteri-
ors, and adversarial training. There are several ways to reduce over-
fitting in the ML field, such as ℓ2-regularization [64], dropout [60],

and model stacking [60]. In [38], the authors proposed to explicitly
reduce the overfitting by adding to the training loss function a
regularization term, which is defined as the difference between the
output distributions of the training set and the validation set. Jia
et al. [36] proposed a posterior perturbation method inspired by
adversarial example. Nasr et al. [47] proposed an adversarial train-
ing defense to train a secure target classifier. During the training
of the target model, a defender’s attack model is trained simultane-
ously to launch the membership inference attack. The optimization
objective of the target model is to reduce the prediction loss while
minimizing the membership inference attack accuracy.
Attacks against Machine Learning. Besides membership infer-
ence attacks, there exist numerous other types of attacks against ML
models [20, 26, 33, 35, 37, 41, 43, 51–54, 57, 59, 61, 62, 69, 70, 72, 73].
Ganju et al. [20] proposed a property inference attack aiming at
inferring general properties of the training data (such as the pro-
portion of each class in the training data). Model inversion at-
tack [18, 19] focuses on inferring the missing attributes of the
target ML model. A major attack type in this space is adversarial
examples [52–54, 69]. In this setting, an adversary adds carefully
crafted noise to samples aiming at misleading the target classifier.
A similar type of attack is the backdoor attack, where the adversary
as a model trainer embeds a trigger into the model for them to
exploit when the model is deployed [23, 43, 73]. Another line of
work is model stealing, Tramèr et al. [70] proposed the first attack
on inferring a model’s parameters. Other works focus on inferring
a model’s hyperparameters [51, 72]. An interesting future work
will be evaluating these attacks under machine unlearning.

9 CONCLUSION
This paper takes the first step to investigate the unintended informa-
tion leakage in machine unlearning through the lens of membership
inference. We propose several feature construction methods to sum-
marize the discrepancy between the posteriors returned by original
model and unlearned model. Extensive experiments on five real-
world datasets show that our attack in multiple cases outperform
the classical membership inference attack on the target sample,
especially on well-generalized models. We further show that we
can effectively infer membership information in other scenarios
might exist in practice, including the scenario where there are mul-
tiple intermediate unlearned models, the scenario where a group
of samples (instead of a single one) are deleted together from the
original target model, and the online learning scenario where there
are samples to be deleted and added simultaneously. Finally, we
present four defense mechanisms to mitigate the newly discovered
privacy risks. We hope that these results will help improve privacy
in practical implementation of machine unlearning.
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A DATASETS
• UCI Adult4. This is a widely used categorical dataset for
classification. It is a census dataset that contains around
50, 000 samples with 14 features. The classification task is to
predict whether the income of a person is over $50𝑘 , which
is a binary classification task.

• USAccident5. This is a countrywide traffic accident dataset,
which covers 49 states of the United States. This dataset
contains around 3M samples. We filter out attributes with
too many missing values and obtain 30 valid features. The
valid features include temperature, humidity, pressure, etc.
The classification task is to predict the accident severity level
which contains 3 classes.

• Insta-NY [5]. This dataset contains a collection of Insta-
gram users’ location check-in data in New York. Each check-
in contains a location and a timestamp; and each location
belongs to a category. We use the number of check-ins that
happened at each location in each hour on a weekly basis
as the location feature vector. The classification task is to
predict each location’s category among 9 different categories.
After filtering out locations with less than 50 check-ins, we
get 19,215 locations for Insta-NY dataset. Later in the sec-
tion, we also make use of check-ins in Los Angeles, namely
Insta-LA [5], for evaluating the data transferring attack. This
dataset includes 16,472 locations.

• MNIST6. MNIST is an image dataset widely use for clas-
sification. It is a 10-class handwritten digits dataset which
contains 42,000 samples, each being formatted into a 28× 28-
pixel image.

• CIFAR107. CIFAR10 is the benchmark dataset used to eval-
uate image recognition algorithms. This dataset contains
60,000 colored images of size 32 × 32, which are equally dis-
tributed on the following 10 classes: airplane, automobile,
bird, cat, deer, dog, frog, horse, ship, and truck. There are
50,000 training images and 10,000 testing images.

• STL10 [14]. STL10 is a 10-class image dataset with each
class containing 1,300 images. Classes include airplane, bird,
car, cat, deer, dog, horse, monkey, ship, and truck.

B HYPERPARAMETER SETTINGS OF SIMPLE
MODELS

We use multiple ML models in our experiments. All models are im-
plemented by sklearn version 0.22 except for the logistic regression
4https://archive.ics.uci.edu/ml/datasets/adult.
5https://www.kaggle.com/sobhanmoosavi/us-accidents
6http://yann.lecun.com/exdb/mnist/
7https://www.cs.toronto.edu/~kriz/cifar.html
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classifier. For reproduction purpose, we list their hyperparameter
settings as follows:

• Logistic Regression. We implement a single linear logis-
tic regression classifier with PyTorch. Training with Adam
optimizer for 100 epochs.

• Decision Tree. We use Gini index as criterion, set parame-
ter max_leaf_nodes as 10, and set other hyperparameters as
default.

• Random Forest. We use Gini index as criterion, use 100
estimators, set min_samples_leaf=30, and set other hyperpa-
rameters as default.

• Multi-layer Perceptron. For multi-layer-perceptron clas-
sifier, we use Adam optimizer and Relu activation function.
And set the hidden layer size and learning rate to 128 and
0.001, respectively.

C IMPLEMENTATION OF SIMPLECNN
The architecture of our SimpleCNN is illustrated in Table 5. We
train the SimpeCNN for 100 epochs, and use SGD optimizer with
learning rate of 0.001.

Table 5: SimpleCNN structure and hyperparameter. For the
MNIST dataset, input_channel 𝐶𝑖 = 1, image width𝑊 and
height 𝐻 are both 28. The kernel_size of convolution layer
𝐾𝑐 and Max-pooling layer 𝐾𝑚 are 3 and 2, respectively.

Layer Hyperparameters

Conv2D_1 (𝐶𝑖 , 32, 𝐾𝑐=3, 1)
Relu -

Conv2D_2 (32, 𝐻 , 𝐾𝑐 , 1)
Maxpolling2D 𝐾𝑚=2
Dropout_1 (0.25)
Flatten 1
Linear_1 (𝐻 × (𝑊 /2 − 𝐾 + 1) × (𝐻/2 − 𝐾 + 1), 128)
Relu -

Dropout_2 0.5
Linear_2 (128, #classes)
Softmax dim=1
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