
Saarland University

Faculty of Mathematics and Computer Science

Department of Computer Science

OS Support For Capabilities In Android

Masterarbeit im Fach Informatik

Master’s Thesis in Computer Science

von / by

Abdallah Dawoud

angefertigt unter der Leitung von / supervised by

Dr. Ing. Sven Bugiel

begutachtet von / reviewers

Dr. Ing. Sven Bugiel

Prof. Dr. Christian Rossow

03.01.2018

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides Statt, dass ich die vorliegende Arbeit selbstständig verfasst

und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement in Lieu of an Oath

I hereby confirm that I have written this thesis on my own and that I have not used any

other media or materials than the ones referred to in this thesis.

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in die

Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible to the public

by having them added to the library of the Computer Science Department.

Saarbrücken, January 2018 Abdallah Dawoud

Erklrung

Ich erkläre hiermit, dass die vorliegende Arbeit mit der elektronischen Version übereinstimmt.

Statement

I hereby confirm the congruence of the contents of the printed data and the electronic

version of the thesis.

Saarbrücken, January 2018 Abdallah Dawoud

Abstract

Android’s security model utilizes a combination of low-level and high-level security

mechanisms, such as the user-based protection model, SELinux, and permission system,

to control access to system resources. However, this model has two limitations: First,

it does not apply the principle of least privilege (PoLP) among app’s components and,

second, it fails short in tracking transitive invocations. The first limitation introduces

the problem of malicious 3rd-party libraries, whereas the second limitation enables the

confused deputy attacks.

To address the problems caused by both limitations, we extended Android’s security

model with new security features borrowed from capability-based security model. Specif-

ically, we introduced capabilities into Android’s middleware with kernel support. The

goal is to come up with a functional prototype that enables different components of the

same app to run with different access rights on the high-level system services, respecting

the PoLP. Additionally, the prototype must provide a clear path to mitigate confused

deputy attacks targeting system services through channels that have deliberately exposed

by the deputies.

Along the line, we use the Binder framework, which is used for IPC in Android, as

the building block for creating and communicating capabilities of system services. We

also rely on kernel’s security guarantees to prevent forging capabilities. Additionally, we

employ Android’s permission model to reflect the dynamic high-level security decisions

made by end users in order to encode the correct access rights into issued capabilities. As

a result, we fulfill our goal without significantly increasing the attack surface or causing

a performance degrade. In fact, our design shows a performance gain in specific places.

Acknowledgements

This master thesis would not have been possible without the support of many people.

So, I would like to pay special thankfulness, gratitude, and appreciation to the persons

below who made my research successful and assisted me, personally and professionally,

at every point to achieve the goal:

My supervisor Dr. Ing. Sven Bugiel, who has always been very supportive and

welcoming. Thank you for your valuable insights and discussions during this amazing

experience. I feel fortunate to work with you.

Prof. Dr. Christian Rossow for accepting to review this thesis. Thank you.

My colleague and officemate Dhiman Chakraborty, who helped me a lot when I

started working on this project. Thank you for being so friendly and supportive.

My colleagues and friends Jonas Cirotzki and Wadah Al-Hamadi, with whom with I

had very interesting discussions.

My sisters, brothers, sisters-in-law, brothers-in-law for being there when I needed

you.

My wife for her love, encouragement, and the unconditional support during the past

four years. Thank you Eslam for being so understanding. I will be grateful forever for

your love. Also, thank you my little kids Layan and Amro, for being the hugest source of

happiness to me.

Finally and for most, Mom and Dad, whom I miss so much. Thank you for your

unconditional support and love. Thank you for your prayers and encouragement. Any

accomplishment I ever had, or I will have, will be credited back to you.

ix

Contents

Abstract vii

Acknowledgements ix

Contents xi

List of Figures xiii

Listings xv

List of Tables xvii

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis Structure . 2

2 Technical Background and Problem Statement 3

2.1 Android platform . 3

2.1.1 System Services . 6

2.2 Android’s Security Model . 8

2.2.1 Application Sandboxing . 8

2.2.1.1 User-Based Model . 9

2.2.1.2 Security-Enhanced Linux 11

2.2.2 Android’s Permission System . 13

2.3 Binder Framework . 18

2.3.1 Context Manager . 25

2.4 Problem Statement . 29

3 Related Work 31

3.1 Object-Capabilities . 31

3.2 Capsicum: Capabilities in UNIX Systems 32

xi

xii CONTENTS

4 Design and Implementation 35

4.1 Design Decisions . 36

4.2 Big Picture . 37

4.3 Management of Capabilities . 42

4.3.1 Capabilitys Access Rights . 42

4.3.2 Acquiring Capabilities . 45

4.3.3 Capability Invocation . 46

4.3.4 Capability Delegation . 48

4.3.5 Revocation of Capabilities . 51

4.4 Implementation . 52

4.4.1 Scope and Limitations . 52

4.4.2 Changes on AOSP and Kernel . 54

5 Security Analysis 57

5.1 Assumptions . 57

5.2 Attacker Model . 58

5.3 Attack Scenarios . 59

5.3.1 Mitigated Attacks . 59

5.3.1.1 Confused deputy . 59

5.3.1.2 Inclusion of Malicious Library 60

5.3.2 Attacks Against Our Design . 62

5.3.2.1 Collude attacks . 62

5.3.2.2 Overwriting Access Rights 63

6 Discussion and Evaluation 65

6.1 Performance Analysis . 65

6.1.1 Configurations and Setup . 65

6.1.2 Experiments and Results . 66

6.2 Coverage and Effectiveness . 69

6.3 SELinux vs. Capabilities . 72

7 Future Work 77

8 Conclusion 81

Bibliography 83

List of Figures

2.1 Android’s Software Stack . 4

2.2 Direct/Indirect Access of Kernel Resources 6

2.3 Global Access Control Enforcement by DAC, MAC, and Permissions [29] 13

2.4 Granting And Revoking Permissions . 14

2.5 Binder Framework . 19

2.6 High-Level View on Proxy and Stub Classes 24

2.7 Registering System Services . 27

3.1 Capabilities and Objects . 32

4.1 Abstract Flows For Acquiring, Invoking, and Delegating Capabilities . . . 40

4.2 Reporting Permissions . 44

4.3 Requesting Capabilities . 47

4.4 Transferring Binder Handles Between Apps 49

5.1 Mitigating The Confused Deputy Attack 60

5.2 Mitigating The Problem of 3rd-party Library 61

6.1 Time Measurement Components . 66

xiii

Listings

2.1 File’s UID and GID . 10

2.2 Process Status Information . 10

2.3 SELinux Rules . 12

2.4 Reference Monitor In Wi-Fi Service . 17

2.5 Transaction Data . 21

2.6 Portions Of Binder Node Structure . 22

2.7 Portions of Binder Reference Structure . 23

2.8 Portions of Binder Process Structure . 23

4.1 Reference Monitor On Capabilities . 48

4.2 Reflection To Extract Binder Handle From Manager And Constructing
The Manager Again . 50

6.1 SELinux Allow Rules . 73

xv

List of Tables

2.1 Permissions Enforced By DAC and MAC 18

2.2 Permissions That Protect Sensitive Broadcast Messages 18

4.1 Permissions Required Per Service . 45

4.2 LoCs Introduced By Our Design . 54

4.3 Newly Introduced Methods . 55

6.1 AOSP and Kernel Build Information . 66

6.2 Permissions Can Be Enforced By Capabilities 71

6.3 Permissions That Is Not Supported By Our Design 72

xvii

Chapter 1

Introduction

1.1 Motivation

As Android devices are rapidly evolving in power and capacity, they are gradually

becoming an indispensable element in our lives. As of May 2017, Android has reached

2 billion monthly active devices globally [1]. Naturally, an open platform, with such a

huge population, would attract malicious developers who would search every corner for

an exploit to launch attacks endangering security and privacy of this great mass.

The current security model of Android aggravates the problem as it fails short to

apply the principle of least privilege among app’s components. In other words, each

component running inside an app, would have the exact same privilege as any other.

This opens the door for the infamous problem of malicious 3rd-party libraries which

announce specific functionalities (and, thus, get included in apps) but perform other

undeclared malicious operations misusing the power given to them.

Another shortcoming of the current security model of Android is its inability to

track transitive invocations. In other words, the system would serve requests based on

the identity of the last caller. This disregards the fact that the request might have been

originated by an entity other than the last caller, which might not have the required

privilege to access the resource. This opens the door for the confused deputy and collude

attacks.

For both limitations, researchers have been introducing several novel techniques that

vary from being application-level or platform-level solutions. However, we believe we can

contribute to the solution by extending the current security model with new security

concepts which are borrowed from another security model, namely, object capabilities.

1

2 Chapter 1 Introduction

1.2 Thesis Structure

This thesis is structured as follows. In Chapter 2 Technical Background and Problem

Statement, we start by introducing Android’s architecture and the security features

contributing to its security model. Then we elaborate on the Binder framework which

represents the building block of our design. We end the chapter by the problem statement

that illustrates, in details, the problem we are trying to solve in this work. In Chapter

3 Related Work, we present a brief introduction about capabilities and then present

Capsicum project, which brings capabilities into UNIX systems. In Chapter 4 Design

and Implementation, we present the details of our design and discuss its limitations. We

also show some stats on type and amount of changes introduced by our implementation.

In Chapter 5 Security Analysis, we discuss how we can employ the security features

provided by our design in leveraging system’s security. In Chapter 6 Discussion and

Evaluation, we evaluate our design against stock and discuss whether it is possible for

SELinux provide the same advantages of capabilities. In Chapter 7 Future Work, we

present our ideas on how to improve our design and address about open issues. We

finally conclude the thesis in Chapter 7 Conclusion.

Chapter 2

Technical Background and

Problem Statement

In this chapter, we present the technical background that paves the way for introducing

our design. We begin by presenting Android’s platform and discussing the cornerstones

of Android’s security model. Then, we elaborate, in details, on the Binder framework,

which forms the building block of our design. Based on the presented knowledge, we end

the chapter by stating the problem we are addressing in this work.

2.1 Android platform

Figure 2.1 shows a high-level view of Android platform [6], which is also known as

Android’s software stack. At the very bottom of the stack, we find a modified Linux

kernel which, in addition to the conventional functionalities of any UNIX kernel, provides

special drivers for GPS, camera, audio, Bluetooth, graphics, among others. The most

important driver for this work is the Binder, which enables an efficient inter-process

communication (IPC).

On top of the kernel, there is the Hardware Abstraction Layer (HAL). This layer

acts as a bridge between kernel space and user space. HAL provides interfaces for the

kernel drivers, called HAL modules, which must be implemented by hardware vendors.

The contract on how these interfaces are invoked by user space processes is well-defined.

However, the underlying implementation could differ from one device to another.

3

4 Chapter 2 Technical Background and Problem Statement

Figure 2.1: Android’s Software Stack

In Android, each app runs in its own process with a private instance of Android

Runtime (ART). The ART is responsible for translating the Dalvik Executable (DEX)1

bytecode into machine code. DEX files result from compiling Android apps (which are

written in Java) using build toolchains, such as Jack [10]. Android Runtime includes

Java and Android core libraries, such as packages of java.*, javax.*, and android.*. These

libraries provide most of the functionalities of the Java programming language (such

as string handling, files management, and networking) in addition to the libraries that

are specific for Android development (such as the libraries used for building interfaces,

accessing hardware, and sharing data among apps).

Next, we see the native C and C++ libraries which are used heavily by HAL modules

and ART. Some functionalities of these native libraries are exposed to the application

framework using Java Native Interface (JNI). Examples of these functionalities are:

Creating internet sockets, accessing files [19], storing persistent data in relational SQLite

databases, compressing data, and rendering 2D/3D graphics.

The application framework provides APIs to a wide range of system services. Develop-

ers rely on these services to enrich their apps with complex functionalities, such as access

to location, camera, sensors, and telephony services. The application framework also

provides APIs that enable apps to access data stored by the system (such as contacts, and

1In Android 5.0, ART came as a replacement for Dalvik virtual machine. Nevertheless, the abbreviation
DEX still refers to Dalvik.

Chapter 2 Technical Background and Problem Statement 5

calendar entries) and data stored by other apps as a form of data sharing between apps

via what is called ”Content Providers”. It worth noting that the application framework

implements a considerable amount of its functionalities in native code and accesses it

through JNI.

At the very top of Android’s software stack, we find system and 3rd-party apps.

Examples of system apps are the Settings (for modifying and viewing settings of system

and installed apps, changing permissions of apps, among other functionalities), Contacts

(which uses the contacts provider to perform CRUD operations on the contacts address

book), and Dialer (for making and receiving phone calls). Users can install 3rd-party

apps from Google Play and arbitrary other sources. Each app has a manifest file called

AndroidManifest.xml that defines app’s behavior and capabilities. App developers can

compile C/C++ code into static libraries and include them into app’s package, e.g., using

Android’s Native Development Kit (NDK). As mentioned earlier, these libraries can then

be accessed from Java code using JNI.

Android apps are composed of four basic components, which are:

• Activities: The user interface which users can interact with.

• Services: Components that execute long-running operations in the background.

A service provides the means for other apps to bind with it in order to use its

exported methods.

• Content Providers: Implement a mechanism for apps to share data among each

other using SQLite-like interfaces.

• Broadcast Receivers: Resemble mailboxes for broadcast Intent2 messages.

It worth noting that all app processes are forked from a process called Zygote [5].

Zygote is a pre-warmed process that includes common framework code and resources but

not the operational code of the apps. After Zygote forks an app’s process, it loads app’s

code into the process and starts it. As a consequence, all processes forked from Zygote

share the memory blocks allocated for framework code and resources. This technique is

meant for speeding up the launch time of apps and optimizing memory usage.

Finally, we should mention that the complete Android’s software stack resides in two

projects: Android Open Source Project (AOSP) [7] and the Goldfish kernel project [17].

For all discussions and code tracing throughout this thesis, we use AOSP of

version 7.1.2 r33 (code name Nougat or N for short) and Goldfish of version

3.4 as references (unless stated otherwise).

2An intent describes an operation to be performed against components of self and other apps. For
example, it is used to start activities, send broadcasts, and start or bind with services.

6 Chapter 2 Technical Background and Problem Statement

Figure 2.2: Direct/Indirect Access of Kernel Resources

2.1.1 System Services

As shown in Figure 2.2, Android provides several kernel resources that can be accessed

by Android apps to perform specific functionalities, such as retrieving GPS coordinates,

downloading data from the internet, and capturing audio and video. Based on the form

of access, these resources are divided into two main categories:

• Resources Accessed Directly: Android apps can access this type of resources

either by issuing direct system calls from app’s native code or by invoking high-level

APIs from the application framework3. In either case, it is the app’s process that

issues the system calls. Examples of this type of resources are files, internet sockets,

and Bluetooth sockets4 [21][14][15].

• Resources Accessed Indirectly: Android comes with two highly-privileged

processes called system server and mediaserver [9]. Both processes expose some of

the low-level functionalities to be invoked by apps over IPC. Similar functionalities

are wrapped in what is called a ”System Service”. Although the system server

3The application framework uses native code of its own to issue system calls to the corresponding
kernel modules. For example, an app uses the File.java from the application framework to open a file,
referenced by its full path. The call passes through different classes and layers until it eventually reaches
libcore io Posix.cpp [19] which issues a system call that opens a file and returns its file descriptor. This
native library can also be used to create IPv6 and IPv4 sockets.

4There have been some efforts in bypassing the official Bluetooth APIs provided by the application
framework to access Bluetooth functionalities from native code. Supported by the fact that Android
maps Bluetooth permissions into groups (more on this later in this chapter), we believe this resource
falls into both categories and therefore, can be accessed directly and indirectly.

Chapter 2 Technical Background and Problem Statement 7

manages its own drivers (see the drivers colored with the light blue in the Figure

2.2), both system server and mediaserver processes use another level of indirection

to have access to more kernel drivers. For example, the mediaserver instructs

the cameraserver process to obtain video frames from the camera device (through

an HAL module) and return the frames in a buffer queue [11]. Moreover, the

system server communicates with rild (Radio Interface Layer daemon) over local

sockets to query information about the telephony services, register listeners for

changes on phone state, among other functionalities. The introduction of system

services reduces the programming effort on app developers who can access the

low-level functionalities through high-level APIs from the Java code.

By introducing system services, the kernel has to authorize a bounded number of

processes to access its resources in comparison to what would have been the case if each

app’s process would access the kernel resources itself. This significantly reduces the

management overhead caused by the enforcement of access control in the kernel. However,

to preserve stability of the system, the system server, mediaserver, and other processes

that host system services have to authorize apps which invoke their functionalities,

resembling the access control as it would have been enforced by the kernel. In turn,

the kernel would authorize these processes. Although most of the access control logic

is moved to the middleware, the kernel would still have to authorize apps when they

attempt to access the resources exposed directly to them, such as accesses to files and

internet sockets.

In Android, the list of system services gets longer with each release5. As of Android

7.1.2, the number of all system services is about 1156. However, about 83 of the total

number of system services are exposed to app developers [4] while the rest is meant to

be used internally by the Android framework.

App developers can access most system services in a unified fashion. Specifically,

developers use the getSystemService(String name) API from app’s context [8] to retrieve

a manager for the remote system service that is referenced by the name supplied to

the call. Developers then invoke methods of the manager. In turn, the manager passes

the request to the remote system service over IPC. Based on the sensitivity of invoked

method, the system service checks authorization of the caller process, executes the desired

method if the request is legit (e.g., process is authorized and parameters are as expected),

and return a result, if any.

5It worth noting that different Android vendors can also add more system services than what exists
in the AOSP.

6This information was retrieved by running the shell command: adb shell service list against the
default Android emulator of AOSP. It worth noting that some services cannot be emulated, e.g., the
bluetooth service [20], and therefore they do not appear in the service list.

8 Chapter 2 Technical Background and Problem Statement

Examples of the services that can be retrieved by 3rd-party apps are: Activity-

ManagerService (AMS), LocationManagerService (LMS), WifiService, CameraService,

PowerManagerService, and WindowManagerService. Some system services, such as the

PackageManagerService (PMS), require to be bound to the app’s context and, therefore,

they should be retrieved using other API, namely, getPackageManager() from app’s

context.

Android enables app developers to create their own services and expose them to

other apps. Those services are called bounded services. Although both system and

bounded services use IPC, the mechanics on how apps connect to bounded services (from

middleware perspective) is different from how apps retrieve handles (connect) to system

services. What makes system services really special is the fact that they are registered

with a component called the Context Manager (process name is servicemanager). As we

will discuss later in Subsection 2.3.1 Context Manager, this technique is used to expose

system services to apps and other middleware processes.

2.2 Android’s Security Model

There are several technologies that contribute to the security model of Android, some of

which are directly inherited from the Linux kernel (e.g., user-based model, SELinux7,

virtual memory, ASLR, and DEP) while others have been introduced and adapted

specifically for Android (e.g., Android’s permission system and Binder framework for

IPC). All of these technologies aim to provide storage and memory isolation, mitigate

software exploitations, control access to resources, allow for secure and efficient IPC,

among other goals.

In this section, we limit the discussion to application sandboxing, a technique that

is used to limit the capabilities of the environment in which a process is executing,

and Android’s permission system, that is used to control access beyond boundaries of

sandboxes. We dedicate Section 2.3: Binder Framework for a detailed discussion on the

Binder framework for its importance to our work.

2.2.1 Application Sandboxing

In Android, users install arbitrary 3rd-party apps which might contain bugs, security

vulnerabilities, and malware. To prevent malicious apps from sabotaging other apps and

the host system, Android utilizes the user-based protection model to lay the ground rules

7The user-based model and SELinux enforce Discretionary Access Control (DAC) and Mandatory
Access Control (MAC), accordingly.

Chapter 2 Technical Background and Problem Statement 9

for application sandboxing and uses SELinux to further limit the capabilities of each

sandbox. As a result, each app would run in a restricted environment with a limited set

of resources and confined access rights on these resources.

Although it is called ”application” sandboxing, the techniques discussed here are

also applied to all processes in the system, including middleware processes (system server

and mediaserver), daemons (rild), and some other highly-privileged processes, such as

Zygote. This is crucial to mitigate attacks targeting the system through these processes.

2.2.1.1 User-Based Model

Traditional Linux systems rely on the user-based protection model, which enforces

Discretionary Access Control (DAC), to support multiple users, where each physical user

is assigned a unique user ID (UID). Such systems assume that different users should not

trust each other. Therefore, each UID is allocated a subset of the resources in the system.

Processes that run under the same UID share the same resources assigned to it but

cannot, by default, access resources allocated to other users. Android takes advantage

of this model and implements sandboxing, unconventionally, by assigning each app a

unique UID at app’s installation time. As a result, processes of different apps would run

with isolation of each other on two levels:

• Resource Isolation: Each app has its own private storage that can be accessed

only by its processes. Moreover, processes are prevented from accessing most of

the system services and kernel resources. For example, an app’s process cannot, by

default, create internet sockets nor retrieve coordinates from the location service.

• Memory Isolation: When Zygote forks an app process, it assigns it the UID

of the owning sandbox. This guarantees memory protection for all app processes

because two processes of different sandboxes would be assigned unique UIDs.

It worth noting that Android supports multi-user feature where the user in this

context is called a profile. However, this feature is disabled, by default, and has to be

enabled by device manufacturers [12][46].

Android’s implementation of sandboxing allows multiple processes of the same app

to run under one sandbox8. Hence, they have access to the same resources. When

a sandboxed process fails or gets compromised, other processes running in the same

sandbox would be affected as they share the same resources. However, the effect remains

contained and does not propagate to outside processes.

8Two processes of different apps can share the same sandbox if their apps were signed by the same
signature [2], whereas processes of the same app run, by default, in the same sandbox.

10 Chapter 2 Technical Background and Problem Statement

Following our discussion in Subsection 2.1.1 System Services, the kernel resources

that can directly be accessed by apps are assigned to app sandboxes using standard

Linux facilities, namely, the UID and group ID (GID). Examples of these resources are

the virtual file system and network sockets. To better understand how the kernel control

access to such resources, we discuss how an app is assigned, by default, a private directory

with read and write access rights on it.

When an app is installed, the package manager service instructs the installd daemon

over sockets [18] to create a directory for the newly installed app. As a consequence, a

directory with app’s package name is create under the directory ”/data/data/”. Files

stored in the new directory are private to the owner app. The Listing 2.1 shows the result

of stat command on a file named private file that is created and stored in a directory

assigned to an app with a package name ”com.test.app”. We can observe that this file is

owned by the user with UID of 10070 and its main group is also 10070 (line 4), which

happens to be the UID of the newly installed app with the package name ”com.test.app”.

The access rights allow the owner or processes that join the group 10070 to read and

write the file (660 access rights, line 4). However, other processes which are not the

owner nor has joined the specified group cannot perform any operation on the file.

When Zygote forks a process for the newly installed app, it sets the UID, main GID,

and supplementary GIDs of the process. The Listing 2.2 shows the status information of

app’s main process. We can see that this process is, in fact, the owner of the file (line

4). Therefore, it can read and write it. We can also see that it joins two supplementary

groups (line 7). The first group (9997) is given to all apps of the same profile while

the second group (50070) is shared across all profiles for the same app. The supple-

mentary groups reflects extra permissions assigned to the process. For example, if a

process has the 3003 group, then it is allowed to create IPv4 and IPv6 internet sockets [21].

1 # stat /data/data/com.test.app/files/private_file

2 File: ‘private_file ’

3 {...}

4 Access: (660/ -rw -rw ----) Uid: (10070/ u0_a70) Gid: (10070/ u0_a70)

5 {...}

Listing 2.1: File’s UID and GID

1 # cat /proc/{PID}/ status

2 Name: com.test.app

3 {...}

4 Uid: 10070 10070 10070 10070

5 Gid: 10070 10070 10070 10070

6 FDSize: 64

Chapter 2 Technical Background and Problem Statement 11

7 Groups: 9997 50070

8 {...}

Listing 2.2: Process Status Information

2.2.1.2 Security-Enhanced Linux

Application sandboxing using DAC sets the foundations for storage and memory isolation.

However, DAC fails short to apply fine-granular permissions on resources. For example,

a process can either execute all functionalities of file or none based on wether the process

has the execute permission on the file or not, accordingly. Moreover, processes that run

under the same UID enjoy the same access rights on the resources allocated to them.

Thus, the problem of gaining full access to system’s resources boils down to exploiting

one vulnerable root process.

Integrating SELinux in Android enforces a Mandatory Access Control (MAC) policies

that confine access to files and network resources [26]. SELinux overcomes the limitations

of the DAC by defining policies for accessing resources at the level of a single operation.

The enforcement of policies enables privilege segregation across processes running under

the same UID. This means even root processes (processes that run under UID of 0) are

not equal in privilege [22]. In fact, the notion of users does not exist in SELinux. The

absence of a policy is interpreted as an access denial. Therefore, explicit policies must

be defined to cover all legit access scenarios. Using SELinux does not eliminate DAC.

Instead, both mechanisms complement each other as SELinux policies are checked after

DAC permits the access.

SELinux policies are static in the sense that when they are defined, they cannot

be changed. In Android, SELinux policies are compiled and shipped as a single binary

file that is used by the Linux Security Module (LSM) to regulate accesses to resources

(SELinux is implemented as part of the LSM framework). Adding a new policy requires

installing a new compiled policy file, which include the new policy, into the system. In

other words, a new ROM needs to be installed on the device to apply new policies.

LSM Hooks

The LSM hooks of SELinux are special security functions which are placed in kernel

and user space code where access control checks are needed. For example, LSM hooks

reside in Android middleware (e.g., service manager.c and DrmManagerService.cpp),

the kernel-level Binder driver (binder.c), among other critical places where operations

on files and socket, or accesses of resources of other processes are done. The LSM of

SELinux uses the security contexts of both subject and object along with the action to

decide whether to allow an operation or not (based on the defined policies).

12 Chapter 2 Technical Background and Problem Statement

Security Contexts

SELinux relies on the concepts of subjects, objects, and actions. Subjects are processes

trying to perform actions on objects, whereas objects are resources managed by the

kernel such as files, sockets, and processes. Each subject and object must belong to

a security context. The security context is composed of four components: User, role,

type, and level. These four components enable Role-Based Access Control (RBAC),

Multi-Level Access Control (MLS), and Type-Based enforcement (TE). For this thesis,

we only focus on TE as a mean for privilege confinement.

Type-Based Enforcement

Each subject and object must have a single type, which is defined in the associated security

context. Types must be created statically by the system administrator. Nonetheless, the

administrator can also define transition rules that define the new types of subjects and

objects based on a specific event, namely, executing a file. Another way of assigning

types is with forking as child processes inherit types of parents. Rules use types to define

access rights on resources. LSM makes sure that only accesses with defined policies are

permitted.

To better understand how SELinux is used to confine privileges of processes, we

consider the rules listed in Listing 2.3. In the first line, we see a rule that constitutes

that a process of type ”system server” can execute ”add” and ”find” functions from

an object of type system server service and of class service manager9. Based on the

policy, invoking another function (e.g., list) will fail. An LSM hook that enforces the first

rule would ideally be placed in the place where the service manager receives a request

from another process to add or find a service maintained by it. The LSM hook will

retrieve the security contexts of both parties and consult an entity, namely, the Security

Server, that can decide whether the request should be permitted or not. The second

Line shows another policy that defines what operations the process Zygote (that has a

type of zygote) can perform on a directory labeled with zygote. It worth noting that

labeling and assigning classes to subjects and objects happen when the system boots up.

The more defined rules imply more fine-grained access rights. However, that would

cause more overhead as policies are compiled into a single binary file. Although LSM

implements caching of policies to enhance performance, the number of policies is preferred

to be as minimal as possible.

1 allow system_server system_server_service:service_manager { add find };

2 allow zygote zygote : dir { ioctl read getattr lock search open } ;

9Android defines several object classes in system/sepolicy/security classes and defines the possible
operations on them in the file system/sepolicy/access vectors. Examples of these classes are file, socket,
dir, process, and service manager. The former class defines three operations: add, get, and list.

Chapter 2 Technical Background and Problem Statement 13

Listing 2.3: SELinux Rules

Figure 2.3: Global Access Control Enforcement by DAC, MAC, and Permissions [29]

2.2.2 Android’s Permission System

As discussed in Subsection 2.1.1 System Services, Android has introduced system services

which manage several kernel resources. Apps have no other option but to go through these

system services to access the kernel resources managed by them. As a consequence, the

kernel has to authorize system services, conventionally, using UIDs and GIDs permissions

in addition to SELinux policies. In turn, the system services must authorize calling apps

using Android’s high-level permission system (see Figure 2.3). Along the line, the new

permission system comes with extra benefits:

• It grants the system more control on what functionalities can be exposed or hidden

to/from 3rd-party apps because the access control happens in the middleware which

has the high-level semantic that is missing in the kernel. For example, the system

prevents 3rd-party apps from adding new location providers while allowing system

apps to do so.

• This design enables dynamic permissions in the sense that apps can be granted

permissions while they are running without the need to restart them. This is one of

the advantages over the POSIX permissions that are enforced by GIDs and UIDs

which require the restart of the running app so the permissions become effective.

14 Chapter 2 Technical Background and Problem Statement

Figure 2.4: Granting And Revoking Permissions

• The system uses the permission system to protect data accessible through content

providers. Such as contacts address book and calendar entries.

• It is generic enough to be used between apps. For example, an app can define a

permission and protect a service it provides.

In the new permission model, system services protect their methods by permissions,

which are unique strings that denote the ability to perform specific methods [33]. App

developers have to request permissions in order to invoke the protected methods of

system services. The decision on whether to grant, or revoke the permissions is placed in

the hands of the end users. If the end user denied the request of granting permission,

the app cannot trigger execution of the protected methods.

Permissions Management

Android keeps a database of all permissions granted or denied in the file /data/system/-

packages.xml. One of the many tasks provided by PMS is to maintain this file at runtime.

Whenever a permission is granted or denied, the package manager reflects the change

into this file. Permissions are stored in the database along with the package name and

the corresponding UID of the sandbox.

The package manager provides APIs to query wether a specific sandbox has a specific

permission or not. This is heavily used by system services to decide on whether to serve

or reject the incoming invocation.

Chapter 2 Technical Background and Problem Statement 15

Requesting/Acquiring/Revoking Permissions

The app developer has to decide in prior what permissions are needed in her app so she

would request them in the AndroidManifest.xml file. Based on the permission type, the

end user will be asked either at the install time or at the runtime to grant the permission

to the app. Figure 2.4(a) shows a typical permission dialog asking to grant (App1) the

permission to access the location. Permissions can also be revoked using the Setting app,

see Figure 2.4(b).

Permission Levels

System and user-defined permissions can take one of the following protection levels [23]:

• Normal : They are of low-risk to the system, apps, and end user.

• Dangerous: They are sensitive in terms of security and privacy because they grant

the app access over user’s private data and device which, if put in wrong hands,

would cause severe impact on the user.

• Signature: This type of permissions is only granted if the requesting app is signed

with the same signature used to sign the app that defined the permission.

• signatureOrSystem: This type of permissions is similar to the signature. However,

it is also granted to applications that are in the Android system image.

Permission Types

Starting from Android 6 [24], permissions are divided into two types:

• Install permissions: This type of permission is granted at install time and cannot

be revoked. Install-time permissions include normal and signature permissions.

• Runtime permissions: In general, dangerous permissions are granted at runtime.

However, unlike install-time permissions, runtime permissions can be revoked using

the Settings system app.

User-Defined Permissions

Although it is out of our scope in this thesis, it worth noting that Android enables app

developers to define permissions in order to protect app’s components. For example,

the developer has the option to only allow the apps that have a specific user-defined

permission to start an activity of her app, bind with a service her app offers, send a

16 Chapter 2 Technical Background and Problem Statement

broadcast which she creates a receiver for, or access a content provider her app maintains.

Permission Groups

Starting from Android 6 [24], all dangerous permissions belong to groups. These groups

are: CALENDAR, CAMERA, CONTACTS, LOCATION, MICROPHONE, PHONE,

SENSORS, SMS, and STORAGE. When an app requests a dangerous permission declared

in its manifest file, the system handles the request in two different ways depending on

whether the app is already granted a permission from the same group or not. First, if

the app is not granted a permission from the same group, then the user is prompt with

the permission dialog message. As shown in Figure 2.4(a), the permission group is stated

rather than the permission itself. Second, if the app is granted a permission from the

same group, the system grant the permission to the app silently without any interaction

with the user. This means, app developers would still have to declare all dangerous

permissions individually in the manifest file and end users grant and revoke permissions

per group.

Permission Enforcement

For the sake of relevance, we only discuss the permissions that are used to protect

functionalities of system services. This means we refrain from discussing the enforcement

of custom permissions defined by app developers and permissions that protect content

providers.

As mentioned earlier, each system service protects its sensitive methods with per-

missions. When a protected method is invoked, the service extracts the UID and

PID of the incoming request (which can be retrieved using Binder.getCallingUid() and

Binder.getCallingPid(), accordingly) and use them to query the PMS to decide if the

caller process has the required permission to access the desired method. In turn, the

PMS uses the UID of the caller process to locate its permissions and return PERMIS-

SION GRANTED if the required permission is granted or PERMISSION DENIED if it

is denied. The system service acts based on this information by either allowing method’s

execution (if permission is granted), or raising a SecurityException (if permission is

denied).

Listing 2.4, shows how LMS protects the getLastLocation() method. First, the

method gets the resolution level through getCallerAllowedResolutionLevel() which ex-

tracts caller’s PID and UID (lines 11-12) from the request and then passes the control

to getAllowedResolutionLevel() where the computation of the resolution level actually

happens. The former method computes the resolution level after consulting the PMS

Chapter 2 Technical Background and Problem Statement 17

through service’s context (lines 16-17). The resolution level is then injected in checkRes-

olutionLevelIsSufficientForProviderUse() (line 5) which would raise a SecurityException

if the caller does not hold the required resolution to access the required provider.

1 public Location getLastLocation(LocationRequest request , String packageName) {

2 {...}

3 int allowedResolutionLevel = getCallerAllowedResolutionLevel ();

4 {...}

5 checkResolutionLevelIsSufficientForProviderUse(allowedResolutionLevel ,

6 request.getProvider ());

7 {...}

8 }

9

10 private int getCallerAllowedResolutionLevel () {

11 return getAllowedResolutionLevel(Binder.getCallingPid (),

12 Binder.getCallingUid ());

13 }

14

15 private int getAllowedResolutionLevel(int pid , int uid) {

16 if (mContext.checkPermission(android.Manifest.permission.

17 ACCESS_FINE_LOCATION , pid , uid) ==

18 PackageManager.PERMISSION_GRANTED) {

19 return RESOLUTION_LEVEL_FINE;

20 }

21 {...}

22 }

Listing 2.4: Reference Monitor In Wi-Fi Service

Although most permissions are enforced in similar fashion to what we have discussed

above, some permissions are enforced in other ways:

• As of Android 7.1.2, there are five permissions available to 3rd-party apps which are

mapped, when granted, to GIDs [14], and therefore enforced by DAC and MAC, as

discussed in Subsection 2.2.1 Application Sandboxing. Those permissions are listed

in Table 2.1. The first three permissions cannot be revoked once granted, while

the last two can be revoked using the settings app but require app to be restarted,

only if it was running [13].

• Another set of permissions, shown in Table 2.2, are enforced by the system when

it delivers broadcast Intent messages to apps that define these permissions and

implement broadcast receivers that matche specific actions. For example, the system

allows apps that define the normal permission RECEIVE BOOT COMPLETED

and implement a receiver with action of android.intent.action.BOOT COMPLETED

to receive a broadcast when the system finishes booting.

18 Chapter 2 Technical Background and Problem Statement

Table 2.1: Permissions Enforced By DAC and MAC

No. Permission Level

1 BLUETOOTH ADMIN normal

2 BLUETOOTH normal

3 INTERNET normal

4 READ EXTERNAL STORAGE dangerous

5 WRITE EXTERNAL STORAGE dangerous

Table 2.2: Permissions That Protect Sensitive Broadcast Messages

No. Permission Level

1 RECEIVE BOOT COMPLETED normal

2 PROCESS OUTGOING CALLS dangerous

3 RECEIVE SMS dangerous

4 RECEIVE WAP PUSH dangerous

5 RECEIVE MMS dangerous

2.3 Binder Framework

The process isolation is a desired feature in any operating system. However, processes

need to communicate, e.g., to exchange data and invoke operations from each other.

Communication across processes, or IPC, holds a higher significance in Android than

any other traditional system, considering the platform design choices, where services

and components are decoupled from each other for modularity and security reasons.

For example, unlike most applications running on traditional operating systems, the

simplest action of switching between two activities in Android, even within the same

app’s process, requires an IPC to another process, e.g., to let the AMS (which resides on

the system server process) handle the request.

Since Android uses a Linux kernel, it ideally supports all traditional IPC mechanisms

offered by the kernel, such as signals, shared memory, files, message queues, and sockets

[33]. Some of these mechanisms are used in Android. For example, system server uses

local sockets to communicate with the radio daemon, the mediaserver uses buffer queues

to receive video frames from the cameraserver [11], and apps can naively communicate

through public files. Nonetheless, Android relies heavily on another IPC mechanism that

is lightweight, secure, and enables synchronous remote10 procedure calls (RPC); this

mechanism is the Binder.

10The Binder does not support communications over the network and, therefore, ”remote” in this
context refers to services that run on other processes but within the system.

Chapter 2 Technical Background and Problem Statement 19

Figure 2.5: Binder Framework

The Binder is a term that is used to describe the overall IPC architecture, and it

is a synonym for Binder framework. The core concept behind the Binder is inspired

from OpenBinder project by Be Inc and later Palm Inc. In fact, portions of OpenBinder

project was used in initial bringsup of Android [37]. However, the Binder framework,

as implemented in Android, is completely specific to Android and has been adapted,

extended, and integrated deeply into the platform. For example, Binder IPC is the

primary, IPC mechanism used between apps and system processes (such as system server

and servicemanager) and between the apps themselves [32]. Moreover, Android 8 (Oreo)

extends the Binder framework by introducing Binderized HALs which support Binder

IPC between Android framework and HALs [25][39].

As shown in Figure 2.5, the Binder framework consists of many components that

span over the kernel and the user space. In this section, we present those components and

elaborate on their roles. Throughout the discussion, we use client and server to denote

two processes, where the client wants to invoke an operation from a service offered by the

server. The server, in turn, handles the request and returns a result, if any, to the client.

Binder Driver

The Binder driver is the most pivotal component in the Binder framework. It serves

as a broker between any two communicating processes facilitating the client-server

communication model. All processes willing to communicate over Binder IPC have to

register IPC threads with the driver. Thus, the servers register worker IPC threads which

20 Chapter 2 Technical Background and Problem Statement

block waiting for requests from clients to serve. The clients, on the other hand, register

IPC threads and use them afterward to initiate IPC requests to servers.

Assume a client wants to invoke an operation from a server, the flow of communication

goes as follow:

1. The client uses an IPC thread to issue an ioctl call to the driver. This system call

accepts a pointer to a data structure (called binder write read) as a parameter.

This data structure contains a reference to the transaction data stored in the

address space of client’s IPC thread. As shown in Listing 2.5, the transaction data

contains a handle to the target service (line 3), code of the target method to be

invoked (line 7), and a data buffer with control information (lines 11-19). The data

buffer holds method’s parameters wrapped in a special object called a parcel [47].

2. The driver handles the ioctl call coming from client’s IPC thread by saving client’s

thread information (to be used later on for returning the result) and copying

transaction data to the kernel space (using copy from user system call). To

associate the IPC request with the client, the driver injects client’s identity (UID

and PID) into the transaction data (lines 9-10). Using the handle of the remote

service (line 3), the driver identifies the target server, populates the transaction data

with specific information about the target service (lines 4 and 6), selects a thread

from server’s pool of available workers, and copies the transaction data (which,

now, carries client’s identity) to the address space of the selected thread (using

copy to user system call). Finally, the driver wakes up (unblocks) the selected

thread and passes it a reference to the transaction data stored in its address space.

3. The wakened thread reads transaction data from its address space, identifies the

target object that need to be invoked (using the information in line 6), retrieves

parameters and method information, and invokes the required method. If the IPC

is one-way (this information is encoded in line 8), the IPC transaction ends at this

point. However, if it is a two-way IPC, then the flow proceeds to the next, and

last, step.

4. The server’s thread issues an ioctl call to the driver and passes it a reference to

the result in its address space. The driver copies the result from the address space

of server’s thread to the address space of client’s thread that initiated the request

(which is blocked waiting for a result). The driver then wakes up client’s thread

and passes it a reference to the result in its address space. At this point, server’s

thread blocks again waiting for further requests to serve, while client’s thread is

free to issue new IPC requests.

Chapter 2 Technical Background and Problem Statement 21

1 struct binder_transaction_data {

2 union {

3 __u32 handle;

4 binder_uintptr_t ptr;

5 } target;

6 binder_uintptr_t cookie;

7 __u32 code;

8 __u32 flags;

9 pid_t sender_pid;

10 uid_t sender_euid;

11 binder_size_t data_size;

12 binder_size_t offsets_size;

13 union {

14 struct {

15 binder_uintptr_t buffer;

16 binder_uintptr_t offsets;

17 } ptr;

18 __u8 buf [8];

19 } data;

20 };

Listing 2.5: Transaction Data

It worth noting that the transaction data stored in the address space of server’s IPC

thread is actually stored in a private memory block called Thread Local Storage (TLS).

Each thread in Android has its TLS. The TLS guarantees that IPC threads, even those

which belong to the same process, would not overwrite transactions data of each other

[41].

Parcel

The parcel is a special container that is used to carry parameters between processes over

Binder IPC. If a client wants to send the string ”foo” to a server, the client has to create

a parcel object and call writeString(”foo”) on it. Then, Android framework serializes

parcel objects and attaches them into the transaction data. While handling the IPC

request, the Binder driver copies the serialized parcel object from client’s address space

to the server’s address space (as part of the transaction data). On the other side, the

server reconstructs the parcel and calls readString() to get ”foo”. Parcel class supports

all primitive types, such as int, string, float, and boolean, in addition to other complex

classes, such as IBinder, Serializable, and Parcelable.

Binder Object

The high-level services (written in Java) that need to be accessible over the Binder

framework have to extend a special java class, called Binder.java. Methods of this class

enable services to identify callers, e.g., through getCallingPid() and getCallingUid() which

22 Chapter 2 Technical Background and Problem Statement

return the PID and the UID of the calling process, accordingly11. Additionally, this class

provides a default implementation of a very important method, namely, onTransact().

This method is triggered whenever the service receives an IPC request. Services have to

override this method to provide appropriate unmarshalling of transactions, more on this

in Subsection 2.3.1 Context Manager

The Java classes of system services, such as LocationManagerService.java, Package-

ManagerService.java, and WifiService.java, extend the Binder.java class. As discussed

earlier, these services, and more, are managed by the system server process which, while

booting up, creates an instance (Binder object) from each service class it manages and

register it with the Context Manager (CM) to expose it to other apps. More on this later

in the next section.

Each Binder object has a driver-level representation called Binder node (binder node,

see Listing 2.6). The Binder node contains information about the owning process (line 3)

and references to the Binder object in server’s address space (lines 5-6). When a server

creates a Binder object and communicates it through the Binder driver (e.g., to register it

with the CM), the driver creates a binder node entry and stores it in the Binder process

of the server.

1 struct binder_node {

2 {..}

3 struct binder_proc *proc;

4 {...}

5 binder_uintptr_t ptr;

6 binder_uintptr_t cookie;

7 {...}

8 };

Listing 2.6: Portions Of Binder Node Structure

Binder Handle

Binder handles are similar to file descriptors in UNIX systems. A handle is a key that

references a low-level data structure. This data structure references a resource, namely,

a Binder node. Binder handles are created and issued to user space processes (only upon

their demand) by the Binder driver. On an abstract level, the client that possesses a

Binder handle can use it to access an arbitrary operation from the remote Binder object

referenced by the handle. The Binder driver resolves the handle and locates the server

11This is possible while the service is handling the IPC request and within the scope of the service. If
these conditions are not met, the getCallingPid() getCallingUid() would return the PID and UID of the
service process [41].

Chapter 2 Technical Background and Problem Statement 23

responsible for handling the request. The request is then forwarded to the server which

invokes the required operation on the Binder object.

The Binder handle, as viewed from the user space, is merely a 32-bit integer value

that is unique per process. However, Android framework builds an abstraction around

this Binder handle and the result is an object of type IBinder. This object can be used

to issue IPC requests to the remote service by calling its transact() method with the

required parameters (which are encoded into a parcel object) and the code of the target

method. When a transact method is called on an IBinder object, the Android framework

extracts the Binder handle from the IBinder object and injects it, along with method’s

code and the parcel that holds the method’s parameters, into the transaction data. Then,

the client uses an IPC thread to issue an ioctl call to the driver which, in turn, transfer

transaction data to server’s side.

From the perspective of the Binder driver, each Binder handle is associated with

a data structure that is called a Binder reference (binder ref, see Listing 2.7), which

contains information about the owner process (Line 3), the 32-bit handle value (Line 5),

and the target Binder node (Line 4).

1 struct binder_ref {

2 {...}

3 struct binder_proc *proc;

4 struct binder_node *node;

5 uint32_t desc;

6 {...}

7 };

Listing 2.7: Portions of Binder Reference Structure

Binder Process

Each user space process involved in Binder IPC has a corresponding structure in the

Binder driver called Binder process (binder proc, see Listing 2.8). The Binder process

references the user space process by its PID (line 6) and maintains three red-black binary

trees for Binder references (line 5), Binder nodes (line 4), and IPC threads registered

with it (line 3). The tree of Binder references contains all the Binder handles a process

ever obtained, whereas the tree of Binder nodes references all Binder objects a process

ever created. This entails that a process can be both a client and a server at the same

time. In Subsection 2.3.1 Context Manager, we explore the relation between Binder

references, nodes, and processes in more details.

1 struct binder_proc {

2 {...}

3 struct rb_root threads;

24 Chapter 2 Technical Background and Problem Statement

4 struct rb_root nodes;

5 struct rb_root refs_by_desc;

6 int pid;

7 {...}

8 };

Listing 2.8: Portions of Binder Process Structure

Figure 2.6: High-Level View on Proxy and Stub Classes

Proxies and Stubs

To abstract developers away from the low-level details on how Binder IPC transactions

are handled, Android introduced Proxy and Stub classes. Everything starts with the

remote service creating an interface that defines all of its remotely accessible methods.

Both the Proxy that resides on client’s side and the Stub that resides on server’s side

have to implement this interface.

The implementation of the Proxy marshals parameters of each method by encoding

them into a parcel object. Then for each method, the proxy invokes transact() API

(proxy classes extend IBinder class which provides a native implementation for this API).

The Stub has to override the onTransact() method to unmarshal the data of incoming

requests, by extracting parameters from the parcel, and then invoke the actual methods

that implement the business logic of the service.

To understand how Proxies and Stubs are used, we consider a high-level scenario

(depicted in Figure 2.6) in which an app uses the getSystemService() API to retrieve

Chapter 2 Technical Background and Problem Statement 25

a hypothetical manager (e.g., FooManager) that establishes an IPC connection with a

hypothetical remote system service (e.g., FooService which exposes a single method).

The manager encloses a proxy inside it. The proxy encloses an IBinder object which

carries the handle value of the remote system service and offer the transact() method.

When the foo() method is invoked from the manager, the call is passed to the proxy

which creates a parcel object and inject method’s parameters in it. Then, the proxy calls

the transact() method with method’s code and data parcel as the first two parameters.

On server’s side, the request is received in onTransact(). Based based on method’s code,

the method extracts parameters and invoke the service which implements the required

business logic.

It worth noting that if the operation is two-way (requires a result), then the transact()

method blocks waiting for the result preventing the IPC thread from issuing other IPC

requests. Moreover, the method’s code passed in transact() (e.g., foo code) is number

which must be in sync between client and server. This number should be unique for each

method in the same interface.

2.3.1 Context Manager

The primary prerequisite for processes to reach system services over the Binder framework

is to possess Binder handles to them. For security and performance reasons, processes

are granted handles to remote system services only upon their request. One approach

to enable this design is to create a central unit that acts as a bookkeeper of system

services. Processes on the other hand, must invoke this central unit and ask explicitly to

be granted Binder handles to the desired system services. In Android, this central unit

is the Context Manager (CM) or alternatively called the Service Manager.

The CM is a native daemon process that starts very early in the boot process of

Android. While CM is booting up, it starts a loop with a handler function that listens

on incoming IPC requests from remote processes through the Binder driver. The handler

function supports a small set of commands, such as adding a service, getting a handle of

a service, listing all registered services, etc.

Before executing any command, the CM checks the authorization level associated

with the caller using SELinux and based on UIDs of callers. Depending on the result

of the check, the CM will either reject or allow the execution of the command. For

example, system processes (including system server, drmserver, surfaceflinger, etc.) can

add system services, whereas apps are explicitly prohibited from adding services; however,

they can get handles of registered services. Additionally, isolated processes (which run

26 Chapter 2 Technical Background and Problem Statement

using a range of special UIDs [21]) are prevented from retrieving Binder handles.

Accessing The Context Manager

Although handles of system services are obtained through the CM, the handle of the CM

service must be priorly known to all processes. While the CM is booting up, it instructs

the Binder driver, over an ioctl call, to register itself as the only CM in the system. The

Binder driver then creates a special Binder node, called binder context mgr node, which

holds a reference to the CM. Processes that need to invoke a function from the CM must

set the target handle in the transaction data to 0. When an IPC transaction with a

handle of 0 reaches the Binder driver, the driver uses the special Binder node of the CM

to retrieve a reference to the CM. Thus, the Binder driver passes the transaction to the

CM, which in turn handles the request. This is especially important for processes when

it comes to service registration and discovery, as processes can communicate with the

CM directly using its universally known handle value.

In a more detailed level, Binder processes start with an empty tree of Binder refer-

ences. In other words, a process starts with zero Binder handles in its possession. When

a client process makes its first call to the CM, e.g. to add or get a service, the Binder

driver queries the tree of Binder references for an entry with a handle of 0. Since the

CM has not been used before, no entry with a handle of 0 will be found. Therefore, the

Binder driver creates a new Binder reference that points at the Binder node of the CM,

sets its handle value to 0, and inserts it into the tree. This happens only once during the

life time of the caller process.

Registering System Services

As discussed in Subsection 2.1.1 System Services, system services are run and managed

by a handful of middleware processes. When those processes start, they register their

services in the CM. This serves as an announcement of their availability to be invoked

by apps. One of the most important processes that does so is the system server which is

the focus of the following discussion.

To understand how services are registered in the CM, we need to distinguish between

two data structures. The first one is the already known tree of Binder references that is

stored inside the Binder process in the driver. The second data structure is a linked list

that holds high-level information about services and stored in the user space of the CM

process. Each entry in the service list of the CM contains a handle value, a name, and

other control fields (see Figure 2.7).

Chapter 2 Technical Background and Problem Statement 27

Figure 2.7: Registering System Services

When the system server is ready, it instantiates an object (Binder object) for each

service it manages. Then, for each Binder object, the system server initiates an IPC to

the CM. The transaction data will contain a Binder handle of value 0 (indicating that

the CM is the target process of this transaction). Additionally, it will include a memory

pointer to the Binder object, the name of the system service (and it should be unique

over all services registered in the CM), the command code for adding services in the CM,

among other data.

As shown in Figure 2.7, when transaction reaches the Binder driver, a new Binder

node for the Binder object is created. The driver then updates the Binder node to

reference the Binder object in the user space. The Binder node then gets inserted into

the tree of Binder nodes that is specific to Binder process of the system server (step 1©).

The CM must possess a Binder reference to the newly created Binder node. Thus, a new

Binder reference is created with a handle ”H” (step 2©). Since the Binder driver acts

merely as an intermediary and operations that require a high-level semantic should not

be implemented in it, the high-level information such as the name of the service must be

stored in the service list of the CM. Therefore, the Binder driver locates the CM and

passes the transaction, including the handle value ”H”, to it. If the service has not been

registered before, the CM creates a new entry in the list of services (step 3©). The entry

must include the handle value ”H” and the name of the service. We observe that handle

28 Chapter 2 Technical Background and Problem Statement

values in the service list and the tree of Binder references of the Binder process of the

CM must be in sync to reference the right Binder node. Additionally, handle values of

system services must start from 1 as the 0-handle is reserved to the CM.

It worth noting that Android defines SELinux policies to control who can register

services into the CM and what services are allowed to be registered. Thus, only a few

processes are allowed to execute the command used for adding services in the CM. For

example, system server is the only process that can add the location service (and a bunch

of other services), whereas surfaceflinger is the only process allowed to add surfaceflinger

service. This security enforcement is essential, as untrusted processes cannot register

malicious services and trick other processes into using their services as if they were the

actual system services.

Retrieving Binder Handles

Clients that want to have access to system services have to go through the CM to

retrieve Binder handles for those services. App developers can use the high-level API

getSystemService() and pass it a name for the desired service. This API will take care of

invoking the CM with the correct transaction data.

When the IPC request arrives the Binder driver, it forwards the request to the CM,

which, in turn, searches its list of services for an entry with the desired name. If an entry

is found, the CM returns the Binder handle (H) that is associated with the found entry

to the driver. The driver searches the tree of Binder references of the CM for an entry

with a Binder handle of value (H). When the entry is found, the driver duplicates it,

assigns it a new handle value (the new handle value is calculated by adding one to the

last issued handle), and inserts it into the tree of Binder references of the Binder process

that belongs to the client. Finally, the driver returns the handle to the client.

Accessing Remote System Services

A client can access a system service if it possesses a valid Binder handle for it. The

mechanics on how the driver handles service invocation is identical to the flows discussed

earlier between clients/system server and the CM. However, we think it is important to

stress the point that system services can retrieve the UID and the PID of the calling

process through getCallingUid() and getCallingPid() static methods of the Binder class,

accordingly. Services use this information to check the permissions associated with each

caller.

Chapter 2 Technical Background and Problem Statement 29

2.4 Problem Statement

In Android, processes and components of the same app share the same resources granted

to the sandbox they belong to. This model possesses a risk as one buggy or vulnerable

process/component could end up leaking sensitive information about the end user (e.g.,

leaking location, messages, and contacts) or performing unauthorized operations on her

behalf (e.g., dialing phones, sending SMS, and altering files). To understand the extent

of this problem, we consider the problem of 3rd-party libraries.

Nowadays, developers tend to rely heavily on 3rd-party libraries for app monetization,

analytics, gaming, or reducing programming effort. Such libraries would run with the

same privileges as of any other component in the sandbox. Given that such libraries

come from arbitrary sources, there is a high probability that some libraries would misuse

the power given to them, which in fact happens so frequently. Researchers [49][57] have

detected some ad. libraries that access more resources than they publicly announce to

developers and end users. Although several solutions have been proposed to address this

problem, we believe there is still room for improvement.

As Android seeks to find a balance between security and usability for Android’s

permission system, they have introduced the concept of groups. Specifically, each

dangerous permission must belong to a group. In turn, developers define the permissions

they need from those groups. The system would grant all defined permissions of a

group to an app if, at least, one member permission is explicitly granted by the user.

Apparently, this enhances usability because users would not bother to know the details

of each permission, and would not be confronted with security decisions now and then.

On the downside, this model aggravates the problem discussed above, causing apps to

live in overprivileged sandboxes (without user’s consent for most of it) which make them

attractive targets for exploitations by malicious 3rd-party libraries.

Another shortcoming of the current security model of Android is its inability to track

transitive invocations [30]. For example, when an app (A) invokes an interface (exposed

unintentionally or deliberately) by another app (B) which, in turn, invokes an operation

from a system service, the service will handle the request with the authority of app (B).

This disregards the fact the app (A) might not have the required privilege to execute

the operation itself. Malicious apps use this limitation to exploit unprotected (or poorly

protected) interfaces offered by privileged apps (called confused deputy). Users of apps

rely on app developers to protect their interfaces from being misused in such a way. In

turn, app developers define permissions and require other apps to hold those permissions

to be able to call their interfaces. This approach requires a high sense of security and

30 Chapter 2 Technical Background and Problem Statement

well understanding of Android’s permissions system (which might not exist on some app

developers).

From what we have presented in this section, we can easily come to the conclusion

that the current security model of Android does not apply the principle of least privilege

among components of the same app, which constitutes that a component/process should

be given the least privilege required to achieve its functionality. In this work, we provide

a new approach for limiting privileges of 3rd-party apps on system services. We also

propose a new mechanism that enables app developers to easily protect their interfaces

that are deliberately exposed to other apps. Moreover, this work is moving towards

reducing the effect of ambient authority that causes several problems in Android, such

as the confused deputy.

Chapter 3

Related Work

In this section, we present a quick overview on object capabilities which serves as a

preamble for introducing a hybrid system, called Capsicum, that leverages DAC, MAC,

and capabilities to establish more confined sandboxes.

3.1 Object-Capabilities

A capability is a token that references an object and defines access rights on it [40], as

shown in Figure 3.1. A subject that possesses a capability is qualified to access the object

referenced by the capability. The access rights, associated with the capability, dictate

what operations can the subject perform on the object. For example, a subject that has

a capability to a file might be able to read it but not write it.

Each subject, e.g., user, process, or procedure, in a capability system is associated

with a list of capabilities. This list contains all the capabilities ever issued to the subject.

The system must protect the capability lists from being tampered with by any entity in

the system. This is necessary to prevent subjects from escalating their privileges, e.g., by

modifying the access rights or change the reference of the capability to access another

object. Only the OS [48][45], or the hardware [51], can modify entries of capability lists.

To use a capability, the subject has to pass the index (handle) of the capability in

an operation, e.g., WRITE(cap handle, data). The system then retrieves the capability

referenced by the handle cap handle and decides, using the capability’s access rights,

whether the operation WRITE is allowed on the object or not. We can easily observe

that the identity of the caller does not contribute to the decision. Thereby, capability

systems eliminate the effect of ambient authority.

31

32 Chapter 3 Related Work

Processes can obtain capabilities through controlled channels with respect to the

principle of least privilege. For example, a process can receive a capability after calling

an OS routine. A capability can also be received by another process in the system (dele-

gation). The system allow more operations on capabilities such as deletion (revocation),

downgrading, and upgrading the access rights.

Finally, it worth noting that most modern operating systems provide implementations

that resemble capabilities. For example, file descriptors in UNIX systems are considered

capabilities. Each process has its own file descriptors list that is maintained by the OS.

However, none of those systems is designed to support operations on capabilities, such

as delegation, revocation, and access rights enforcement.

Figure 3.1: Capabilities and Objects

3.2 Capsicum: Capabilities in UNIX Systems

According to the authors of Capsicum project, Capsicum is a lightweight operating system

capability and sandbox framework which extends, rather than replacing, UNIX APIs,

providing new kernel primitives, namely, sandboxed capability mode and capabilities

[50].

The motive behind this project is that UNIX systems are poor in applying the

principle of least-privilege for running programs. The solution to this problem resides in

using capabilities which define way more fine-grained access control than conventional

UNIX systems. However, pure capability systems suffer from poor adoption, whereas

UNIX systems are widely deployed. Therefore, the pragmatic solution is to introduce

capabilities into UNIX systems as an extension forming a hybrid system that uses

DAC, MAC, and capabilities for access control. This approach preserves existing UNIX

APIs and performance, and presents application authors with an adoption path for

capability-oriented design.

Chapter 3 Related Work 33

Capsicum extends UNIX file descriptors which possess some of the properties of

object-capabilities as described in the literature: they are unforgeable tokens of authority,

can be inherited by a child process, and passed between processes over IPC. Capsicum

provides an API, namely cap new, that takes a file descriptor and a mask of rights to

create a capability. Each capability would encode roughly 60 possible mask rights. Each

bit of this mask represents a permission, i.e., CAP READ, CAP SEEK, and CAP IOCTL.

Capsicum enables two modes of operation: the normal mode, and the capability

mode (which activated upon calling cap enter). In the capability mode, processes are

denied from accessing global namespaces (process IDs, sysctl, shm open for named shared

memory segments), in addition to other interfaces (i.e., /dev, ioctl, reboot and kldload).

Access to system calls in the capability mode is restricted. For example, system calls

that require access to global names spaces are prevented, while others (sysctl, openat,

unlinkat, renameat) are constrained so that they can only operate on objects relative

(but cannot contain ..) to the passed descriptor.

Upon invoking a system call on a capability, the kernel uses fget to retrieve the

struct of a file descriptor which extended to hold access rights of the capability. This

API serves as a single entry point for resolving file descriptors into references. Therefore,

all operations on capabilities are guaranteed to be checked for access rights first. If the

access rights allow the operation, then the execution will proceed. Otherwise, an error is

reported and the API call fails.

As a straightforward example, we illustrate how Capsicum is used to sandbox the

tcpdump application. The authors analyzed the program and found one system call,

namely pcap loop, that serves as a single entry point for processing packets from the

network. The authors applied two changes; First, they modified pcap loop to define the

access rights which the passed file descriptors should have, i.e., writing operation requires

CAP WRITE. Second, they modified the tcpdump itself to confine the capability (which

in fact is the file descriptor which pcap loop will work on) and strip away unnecessary

access rights from it before passing it to pcap loop. When pcap loop invokes a system

call on the capability, the system uses fget API to resolve the target desired operation and

required access rights. Then it retrieves the actual access rights the capability possess.

Finally, it compares the acquired access rights, set (A), against the required access rights,

set (B). If (A) is a subset of (B), then the access is allowed, and the execution proceeds,

otherwise, it is prevented.

This approach has also been applied to other more complex applications, such as

chromum, hdclient, and gzip.

Chapter 4

Design and Implementation

In this chapter, we introduce our design for supporting capabilities for system services

with kernel-level enforcement. The design extends the current security model with new

security features which are derived from capabilities as tokens of authority. Our goal is

to mitigate the effect of ambient authority and effectively apply the principle of least

privilege among app’s components which require access to system services.

The security and efficiency of the proposed design are tied to the technologies

presented in Chapter 2 Technical Background and Problem Statement. Specifically,

we use the Binder framework as the building block for creating and communicating

capabilities. We also rely on kernel’s security guarantees to prevent forging capabilities.

Additionally, we employ Android’s permission model to reflect the dynamic high-level

security decisions made by end users in order to encode the correct access rights into

issued capabilities for system services. As a result, we fulfill our goal without significantly

increasing the attack surface or causing a performance degrade.

We start the chapter by highlighting and justifying the key decisions which shaped

our design. Then, we introduce the ”big picture” that conveys the design and covers the

prerequisite knowledge required to understand the following sections. Afterwards, we dive

into the details related to the management of capabilities. Particularly, we discuss how

capabilities of system services are created, delegated, revoked, and used for invocation.

We end the chapter by talking about the different aspects of our implementation, such

as the size of changes, scope, and limitations.

35

36 Chapter 4 Design and Implementation

4.1 Design Decisions

As discussed in Section 2.3 Binder Framework, the Binder framework uses a distinguished

architecture that produces unforgeable and transferable tokens, called Binder handles

which are used as references to access Binder services. The unforgeability of Binder

handles is guaranteed by the kernel, namely, the Binder driver, which we assume to be

trusted and fortified against attacks. Although Binder handles are merely 32-bit integers

(as viewed from the user space), processes can only communicate them over the Binder

framework. Any attempt to transfer Binder handles over files, sockets, or any other

IPC mechanism will be meaningless as the Binder driver would not be able to resolve

the Binder handle when used for accessing Binder services. In other words, it is the

kernel-level data structures maintained by the Binder driver that enables the usage of

Binder handles as references.

All the aforementioned characteristics of Binder handles lead us to the realization

that a Binder handle is, in fact, a capability that entails two states: The process can either

access the Binder service or it cannot, based on either the process possesses a Binder

handle to the Binder service or not, accordingly. This binary state is very coarse-grained

in terms of access control. Therefore, for a Binder handle to be a fully fledged capability,

it needs to encode the access rights of the owning process for the target Binder service.

Most Binder services are protected by high-level permissions. The owner of the device

decides whether to grant an app, and transitively its processes, a specific permission or

not. We sought that it would be for the best that we re-use those permissions to encode

the access rights of the capabilities. The reason behind that is because we do not want

to re-invent the wheel. Instead, we aim to instrument the current technologies to refine

the access control mechanisms.

Following our discussion in Section 2.3 Binder Framework, system services are

exposed using the same mechanism, i.e., they are registered with the CM which acts as

a bookkeeper that processes must query to retrieve Binder handles to system services.

On the other hand, bounded services are not registered with the CM. Due to time and

effort limitations, we have decided to only support capabilities for system services and

use Android’s permissions to define the access rights of those capabilities. This decision

does not roll out the possibility of supporting capabilities for bounded services (using

user-defined permissions) because they all use the same technologies (e.g., Binder IPC

and PMS). However, the design we are proposing is centric around the fact that system

services are registered with the CM.

Moreover, other low-level resources which are accessed directly using system calls

(such as file system and internet sockets) or using different IPC mechanisms than the

Chapter 4 Design and Implementation 37

Binder IPC (such as local sockets and shared memory) are not considered for this work.

Protecting low-level resources with capabilities requires low-level drastic changes to

the system which need to be done carefully. Supporting capabilities for the high-level

resources, such as system services, using the Binder framework can be considered as a

complementary work to any effort for supporting low-level capabilities. Although it is

not yet ported to Android, Capsicum is the best candidate for enforcing capabilities on

low-level resources (see Chapter 7 Future Work).

In general, our design tends to borrow and reuse ideas from stock Android. For

example, we slightly extended the Parcel class and used bounded services to delegate

capabilities and revoke them afterward. In addition to reducing efforts, reusing and

slightly extending components to achieve our goal comes with some benifits. Specifically,

the proposed design keeps the attack surface almost intact and introduce unnoticeable

performance overhead at some places. This performance overhead is evened, or even

overcome, by performance gain at other places, later on this in Section 6.1 Performance

Analysis.

Finally, throughout the following discussions we use Binder handles and capa-

bilities interchangeably.

4.2 Big Picture

The goal of our design is to support capabilities for system services and provide a

functional prototype. To effectively achieve this goal, we have to fulfill the following

requirements:

• The system must be able to create capabilities for system services and delegate

them to processes, only upon their request. However, the system must preserve the

ability to upgrade and downgrade access rights of capabilities at runtime (this is

necessary to keep up with dynamic permissions already used in Android).

• The capabilities which are delegated by the system1 must encode the most up-to-

date permissions of the recipient processes at any time. This is fundemental to

prevent privilege escalation through capabilities.

• A process can have multiple capabilities that uniquely map to different system

services. The access rights of one capability must encode the high-level permissions

1A capability can be delegated by the system and the processes. For the second case, the process
that receives the delegated capability usually does not hold the permissions encoded in the capability.
Otherwise, it can request its own capability from the system.

38 Chapter 4 Design and Implementation

which are related to the system service referenced by this capability. For example,

only the permissions that are related to the WifiService are used to encode the

access rights of the capability issued for the wifi system service.

• A process must be able to use the capabilities it possesses as references to system

services in order to access their functionalities. A system service, in turn, must

be able to decode the access rights of the capability associated with the incoming

request to decide whether to allow or reject the request. The implementation of

this access control is solely based on the access right of the capability.

• Given capability’s characteristics presented in Section 3.1 Object Capabilities,

processes must be able to delegate capabilities to other processes to grant them a

restricted access to system services. Moreover, the design must enable processes to

revoke the capabilities delegated directly by them.

• As a good-to-have requirement, the design is preferred to provide the means for

applying policies that control who can delegate, whether a delegated capability can

be delegated again, and how the system should handle revocation of a delegated

capability that has been re-delegated to other processes.

Before presenting the abstract communication flows of our design, we present four

components that appear frequently throughout the discussion. Those components are:

Applications

Apps are active components that initiate all communication flows in our design. Processes

of apps should explicitly ask the system to grant them capabilities for remote system

services they wish to access. If a process has no permission to a specific system service

and still asks for a capability for it, the system will issue it a capability with zero access

rights. This means the process can only invoke the public2 methods of the remote system

service. Invoking a protected method in this case will raise a security exception. The

moment an app receives a capability with non-zero access rights, it can use it to execute

the protected methods of corresponding remote system service, or delegate it to another

process with less or the same access rights of the capability.

System Server

Although system services are distributed among several processes (see Subsection 2.1.1

System Services), the system server hosts most of these services and, therefore, we

consider it for all communication flows. In our design, each system service must implement

a reference monitor that merely relies on the access rights of the capabilities associated

with the incoming requests. This is similar to the conventional approach for permission

2Public methods are normally security and privacy insensitive.

Chapter 4 Design and Implementation 39

enforcement (discussed in Section 2.2.2 Android’s Permission System), where system

services implement a per-method reference monitor. However, in the conventional

permission system, system services use the UID and PID of the incoming request and

consult another system service, namely, the PMS, to decide whether to allow the request

or not. On the other hand, capabilities enable in-place access control without relying

on any knowledge stored anywhere other than the access rights associated with the

capability of the incoming request. The check itself is cheap and performed using bitwise

operations on the access rights. Throughout the following discussion, we assume that all

system services are already registered into the CM.

Context Manager

In stock Android, the Binder driver requests3 a handle value from the CM for a specific

service name and for a specific process. In turn, the CM returns the handle value of

that service. We extend this flow by making the CM return the handle value and the

access rights which the process’s sandbox has on the target system service referenced

by the handle. We extend the functionalities of the CM to supply it with the high-level

permissions necessary to compute the access rights of the capabilities issued to processes.

Our design makes sure that changes on the high-level permissions is reflected directly in

the CM. This guarantees that the computed access rights are up-to-date and no privilege-

escalation or downgrading would unintentionally happen. For the sake of brevity in this

section, we assume that all permission information granted to all sandboxes is already

reported to the CM which is now able to compute the correct access rights for issued

capabilities.

Binder Driver

Each IPC transaction in the Binder framework goes through the Binder driver, see

Section 2.3 Binder Framework. This makes the Binder driver the perfect component to

introduce our changes for capability management (more on this later in this section),

such as delegation, revocation, and assigning access rights to capabilities. However,

the changes need to be lightweight to not affect the overall performance of the Binder

framework. The Binder driver is keeps track of all capabilities and the associated access

rights issued to each process. This enables the delegation and revocation of capabilities.

We should mention that we have two modes of operation: capability and normal

modes. The mode of operation is applied globally based on a boolean value, namely,

isCapMode. For example, in the capability mode, all processes that acquire service

handles to the LMS would be subject to access control using capabilities as opposed to

permissions access control in normal mode.

3This request is made on behalf of the calling process.

40 Chapter 4 Design and Implementation

(a) Acquiring a capability for
a system service

(b) Invoking the system service using
the acquired capability

(c) Capability Delegation

Figure 4.1: Abstract Flows For Acquiring, Invoking, and Delegating Capabilities

Next, we present the abstract communication flows for acquiring, delegating, revoking,

and invoking capabilities. In this section, we refrain from discussing some corner cases

that require special handling by our design. Instead, we discuss those special cases in

the in the next section.

Acquiring Capability

The Figure 4.1a, depicts the abstract communication flow used to acquire a capability

for a system service. The flow starts by a process invoking the getSystemService() API

from the application framework (step 1©), which initiates an IPC to the CM process.

In stock Android, this API returns a Binder handle to the system service (see Section

2.3.1 Context Manager). In our design, this API still returns a Binder handle but with

more fine-grained access rights associated with it, forming a fully fledged capability. The

Chapter 4 Design and Implementation 41

Binder driver, as an intermediary for all IPC calls, intercepts the call, injects callers

identity (PID and UID), and forwards the request to the CM process (steps 2© and 3©).

The CM uses its up-to-date database of permissions to compute the access rights of

the process on the desired system service which is referenced by its name (step 5©) and

returns the handle of the service along with the computed access rights to the kernel

(step 6©). Finally, the kernel creates a new Binder handle (internally, it is a Binder

reference), injects the access rights returned from the CM inside it (step 7©), and returns

the Binder handle to the calling process (step 7©). Eventually, the app process will have

a Binder handle (step 8©) that references a remote system service and encodes access

rights in it.

Capability Invocation

As shown in Figure 4.1b, app’s process can now use the handle it received from the CM

to access the target system service. For simplicity, we assume the handle (or capability)

is for the LMS. The flow of invoking a method from the LMS starts with the process

initiating an IPC to the system server process (step 1©). However, the request passes

through the Binder driver which injects callers access rights, and identity (PID and

UID), into the request before forwarding it to the system server (steps 2© and 3©).

The system server dispatches the request to the LMS. The LMS then uses the newly

introduced API getCallingCapability() to retrieve the bit mask that encodes caller’s access

rights. Then, it performs an in-place check (step 4©) to decide whether the calling process

has the required permission to execute the target method or not. Finally, the request

is either served and the result gets back to the caller, if any, or a security exception is

raised indicating that the caller does not have the required permission.

Capability Delegation

Any process that possesses a capability with non-zero access rights can delegate it to

other processes over the Binder framework. The Figure 4.1c shows how the process (A)

delegates the capability (H) to the process (B). The outcome of this operation must

be that process (B) has a capability (H”) which references the same object referenced

by the original capability with the same or less access rights of the original capability.

Capabilities can only be transferred (delegated) over the Binder framework. Therefore,

both processes, (A) and (B), have to establish a client-server Binder IPC channel. The

process (B) is the server while process (A) is the client. Additionally, process (B) have

to expose an API for process (A) so the capability can be sent through it. If everything

is set, the flow of delegation goes as following: Process (A) invokes the interface exposed

by process (B) and attaches the capability and the desired access rights (step 1©). The

Binder driver intercepts the transaction and check for validity of the delegation request.

If the delegation is permissible, a new capability (H”) is created for process (B) with the

passed access rights (step 2©). Then, the driver sends the new capability to process (B)

42 Chapter 4 Design and Implementation

(step 3©). Finally, process (B) receives the capability (H”) and can use it to access the

associated system service as described earlier with respect to the access rights associated

with it.

Capability Revocation

When it comes to the revocation of capabilities, we have to consider two scenarios caused

by two different events:

1. Revoking capabilities by the system: This scenario happens when the user revokes

a permission group from an app using the the ”Settings” system app. For this

scenario, the revoked permissions are reported to the CM and the app is restarted,

only if it was already running (this actually happens in stock Android). Since

capabilities are bound to processes, killing a process will delete all the capabilities

associated with it. Therefore, the restarted process has to request new capabilities

for system services. At this point, it is guaranteed that any new issued capabilities

will reflect the most up-to-date privileges granted to the requester process.

2. Revoking capabilities by apps: This scenario happens when a process (A) delegates

a capability to another process (B) and then wants to revoke it. In this case,

revocation is not implemented through deletion but as reducing of access rights.

For example, process (A) can use ”0” as the new access rights, dictating that

process (B) no longer can access the protected methods of the target system service.

It worth noting that this method can also be used to upgrade the access rights of

the capabilities delegated by processes.

4.3 Management of Capabilities

In this section, we cover in details how capabilities are obtained and how access rights

are computed and attached to it. Further, we discuss how to delegate, revoke, and invoke

capabilities.

4.3.1 Capabilitys Access Rights

While presenting the ”big picture” of our design, we assumed that the CM has the most

up-to-date knowledge that is necessary to encode the high-level permissions into access

rights for the capabilities issued to every process. In this subsection, we elaborate on

how this is done and why the CM has been chosen for this task in the first place.

Chapter 4 Design and Implementation 43

The process of creating capabilities requires some logic for encoding the high-level

permissions into a limited-size variable which is attached to each capability. The entity

responsible of the task of encoding access rights, needs to possess information about all

the high-level permissions granted to each app. This seems very fitting task for the PMS

which maintains a hash-map of all apps and their permissions. However, capabilities are

issued per-process while the PMS stores permissions per-UID, and its logic for mapping

PID to apps is not straightforward (has to go through the AMS). Furthermore, the PMS

is not involved in the process of acquiring a capability, and consequently, the driver must

initiates an IPC to the PMS which, in fact, this drastic changes because the driver is a

passive component that only forwards requests and do not initiate IPC requests itself.

Based on that, the PMS is no longer a candidate for the task of encoding access rights.

The next component to consider is the Binder driver which only deals with processes

and does not have any information about high-level permissions associated with apps.

Therefore, if Binder driver should handle the task of encoding access rights, we have

to supply it with the high-level information and it should store that information in the

kernel space. However, since the Binder driver is involved in all Binder IPC transactions,

it should not contain any complex logic that could possibly cause unnecessary overhead

on all Binder IPC transactions. Moreover, it is a bad practice to encode high-level

semantic in kernel drivers. Therefore, the Binder driver cannot be considered for this

task.

This leaves us with the CM, which has been chosen for this task for several reasons:

1. It has a notion of processes and apps at the same time. For example, the CM in

stock Android prevents isolated processes that run with special UIDs.

2. Even though it does not have any information about the high-level permissions, it

can be extended easily so this information is supplied to it.

3. It acts as a single entry point for processes that require handles to system services

registered with it. The point of time when a Binder handle is returned should

logically be the time when the access right is computed.

The aforementioned reasons, makes the CM the perfect component to compute the

access rights of each process. Therefore, the next task would be to supply it with the

knowledge of the high-level permissions assigned to each app.

We have extended the CM to support a new command (in addition to the commands

used for registering and getting services). Similar to how services are registered and

retrieved, the PMS invokes the new command of the CM whenever a new permission is

44 Chapter 4 Design and Implementation

Figure 4.2: Reporting Permissions

granted or revoked. The parameters for this call are the UID of the app, the permission

name, and a boolean value that indicates whether the action is granting or revoking.

The CM maintains a linked list that holds only granted permissions reported from

the CM, without duplication. If a permission is granted then revoked, its corresponding

entry in the list maintained by the CM is removed. Given that the PMS get notified

when an app is deleted, it revokes all permissions associated with the app. Therefore, it

is guaranteed that the CM will keep permission information for installed apps only.

The Figure 4.2, shows a high-level view on how permissions are reported from app

and settings app to the CM.

Access Rights Encoding

When all permissions for each app is reported to the CM, then it becomes feasible for the

CM to compute the access rights for each process on the target capability. Our design

imposes a limitation on the size of the variable where the access rights will be encoded

in, specifically, it is 32 bits. This means, only 32 permissions can be encoded per service

where each bit represents a granted/not granted state of a high-level permission.

Chapter 4 Design and Implementation 45

For the CM to be able to encode the access rights, it has to know what permissions

are used in each service. Therefore, we ran through the LMS (and associated classes)

and found that it uses 6 permissions to control access to its methods. We have done the

same for another WifiService and found that is uses only three permissions (see Table

4.1). We made those groups available to the CM by statically writing them in its code.

The order for which those permissions decides the encoded access rights. For example,

assume an app is granted permission (1), (3), and (6). Then, the equivalent bitwise

access right is 0xA200. The logic of encoding of the access rights in the CM must be

in sync with the decoding logic on the service side. Otherwise, undesired side effects of

privilege escalation and prevention will occur.

We should mention that permissions are stored with the service name as registered

in the CM. This enables the CM to identify only the permission for a specific service.

Table 4.1: Permissions Required Per Service

Service Index Permission

LMS (location)

0 ACCESS COARSE LOCATION
1 ACCESS FINE LOCATION
2 ACCESS LOCATION EXTRA COMMANDS
3 CONTROL LOCATION UPDATES
4 INSTALL LOCATION PROVIDER
5 LOCATION HARDWARE

WifiService (wifi)
0 ACCESS WIFI STATE
1 CHANGE WIFI MULTICAST STATE
2 CHANGE WIFI STATE

4.3.2 Acquiring Capabilities

When the system is in the capability mode, processes use the getSystemService() API

which invokes the getService() API from the ServiceManagerProxy to acquire a capability

for the desired remote system service referenced by a name supplied to the API. The

same API is used, when the system is in the normal mode, to acquire a Binder handle

to a system service. In both cases, the returned result is the same, which is merely a

handle to a system service. However, when the system is in the capability mode, a special

kernel-level arrangements are done on the Binder handle to turn it into a capability.

Those arrangements include extending the structure of the Binder handle to hold the

access rights of the owning process, and introducing more computational logic on the

extended Binder handle (i.e., for delegation, revocation, and invocation).

Figure 4.3 depicts the detailed flow for acquiring the capability for the LMS. The

flow builds on the knowledge we have accumulated so far. Specifically:

46 Chapter 4 Design and Implementation

1. The system server process instantiates all of its services and registers those instances

(called Binder objects) into the CM to make them accessible over the Binder

framework. We assume all services, including the LMS, have already been registered.

2. The client process in this flow, namely the app, can access the CM directly. However,

it cannot yet access the LMS because it does not possess a Binder handle to it.

3. A Binder handle is simply a Binder reference that points to the target Binder node.

The Binder reference is stored in a special data structure on clients Binder process.

4. The CM collects the information needed to compute the access rights of the

capabilities issued to each calling process. This information is always up-to-date to

ensure the correctness of the computed access rights.

Compared to the process of acquiring a Binder handle to a remote system service

(as discussed in Subsection 2.3 Binder Framework), only two changes are introduced by

our design. Those changes are as follow:

1. When the getSystemService() request reaches the CM, it uses the UID of the caller

to retrieve all permissions associated with the desired service name. Then, for

each permission, it sets or clears the corresponding bit in the a 32-bit variable that

would eventually encode all access rights. Finally, the CM returns the encoded

access rights and the handle value of the desired service to the Binder driver.

2. The Binder driver searches the tree of Binder references, stored in the Binder

process of the CM, and locates the Binder reference that has a handle equivalent

to the handle value returned from the CM. The Binder driver then duplicates this

Binder reference, injects the access rights returned from the CM into it, changes

the handle value of the new Binder reference, and then inserts it inside the tree

of Binder references that belong to apps Binder process. Finally, it returns the

handle value to apps process.

App’s process can now use the handle to invoke methods of the LMS. Next, we

discuss how the Binder driver facilitates that.

4.3.3 Capability Invocation

In comparison to the flow discussed in Subsection 2.3 Binder Framework, accessing a

remote system service in the capability mode has two significant differences. Those

differences go as follow:

Chapter 4 Design and Implementation 47

Figure 4.3: Requesting Capabilities

1. The driver intercepts the invocation call from the app’s process, locates the Binder

reference associated with the Binder handle of the request, retrieves the access

rights and the reference of the target service from the Binder reference (step 1©),

locates an available IPC thread for the target service, injects caller’s identity into

the transaction data (including the access rights), and finally copies transaction

data into the TLS of the server’s IPC thread (step 2©). The transaction data then

becomes available to the IPC thread handling the request on the server side.

2. When the request reaches the system server, it dispatches the transaction to the

LMS. While handling the request, the LMS can call the Binder.getCallingCapability()

API to retrieve the access rights of the calling process from the TLS of the IPC

thread that carried the transaction (step 3©). The LMS performs bit-wise opera-

tions on the access rights of the calling process to see if the caller can execute the

target method.

As opposed to the conventional reference monitoring on the server side which requires

consulting the PMS4, only one cheap arithmetic operation is needed in the proposed

4the system server hosts both the LMS and PMS which means no IPC is required for this case.
However, other services, such as CameraService, could live on another process causing an IPC request to
issued for each permission check.

48 Chapter 4 Design and Implementation

design to decide on allowing or rejecting the request (see Listing 4.1).

1 int ACCESS_COARSE_LOCATION_MASK = 0x0001;

2 int ACCESS_FINE_LOCATION_MASK = 0x0002;

3 int ACCESS_LOCATION_EXTRA_COMMANDS_MASK = 0x0004;

4 int CONTROL_LOCATION_UPDATES_MASK = 0x0008;

5 int INSTALL_LOCATION_PROVIDER_MASK = 0x0010;

6 int LOCATION_HARDWARE_MASK = 0x0020;

7

8 private int getAllowedResolutionLevel(int pid , int uid) {

9 int capability = Binder.getCallingCapability ();

10 if ((capability & ACCESS_FINE_LOCATION_MASK) != 0) {

11 return RESOLUTION_LEVEL_FINE;

12 } else if ((capability & ACCESS_COARSE_LOCATION_MASK) != 0) {

13 return RESOLUTION_LEVEL_COARSE;

14 } else {

15 return RESOLUTION_LEVEL_NONE;

16 }

17 }

Listing 4.1: Reference Monitor On Capabilities

4.3.4 Capability Delegation

In stock Android, a process can transfer a Binder handle to another process over the

Binder framework. It would be very beneficial if we can re-use the same flow of transferring

Binder handles for capability delegation for the following reasons: First, we would benefit

from the security model of the Binder framework that prevents malicious processes from

interfering in the IPC, e.g., by changing the target of the delegation and access rights.

Second, the performance of the delegation process would be nearly as efficient as any

Binder IPC transaction.

The application framework enables the transmission of Binder handles by providing

the writeStrongBinder()5 API from Parcel class which takes an object of type IBinder.

This API attaches the IBinder object to the parcel that carries other transaction data

which need to be sent to the target process. Figure 4.4 depicts the flow which takes place

when a process sends a Binder handle to another process. The flow goes as follow:

1. Both sender and receiver of the Binder handle must establish a Binder IPC channel.

The sender (client) holds a proxy for the remote Binder object that encapsulates

the service offered by the receiver (server).

5In addition to transferring Binder handles, app developers can use this API to transfer Binder objects
between processes. In both cases, the API does not write the object itself. However, it writes the value of
the Binder handle or the token that references the Binder object in the user space of the owner process.
The receiver process will get a Binder handle regardless of what the sender has originally sent.

Chapter 4 Design and Implementation 49

Figure 4.4: Transferring Binder Handles Between Apps

2. The client attaches the Binder handle to the parcel that needs to be sent to the

receiver process using writeStrongBinder(), and then invokes an operation from the

remote Binder object using its local proxy (step 1©). This operation expects to

receive a Binder handle.

3. The request reaches the Binder driver which recognizes that transaction data

contains a Binder handle which the receiver process should have. Thus, the driver

searches the tree of Binder references of the sender Binder process. Then, it locates

the Binder reference (R) that has a handle value that is equal to the value of the

transmitted Binder handle. Then, the driver duplicates (R) into (R”), changes the

handle of the duplicated entry, and inserts (R”) into the tree of Binder references

of the receiver Binder process (step 2©).

4. The Binder driver then forwards the request to the receiver process which in turn

extracts the Binder handle from the parcel (step 3©).

Enabling app developers to use this mechanism for delegating capabilities imposes

three challenges:

First, the application framework builds a manager around the Binder handle that

references the system service. The framework hides the methods used to extract Binder

50 Chapter 4 Design and Implementation

handles from the managers. However, we need such functionalities from application

framework to enable delegation. Thus, we used Java reflection to extract the Binder

handle from a manager at sender’s side. On receiver’s side, we use the reverse operation

using reflection to build the manager. We preferred not to expose the hidden methods

from application framework as that would be a bad practice and might open the door

for security issues. In Listing 4.2, we present the code used in extract Binder handles

from the WifiManager and build the managers again.

Second, we need to create an API that is similar to writeStrongBinder() but accepts

an extra parameter that represents the access rights to be delegated. The new API is

called writeDelegatedStrongBinder(). Note that cannot simply attach the access rights as

a parameter in the parcel because then it would be serialized in a data buffer because

the Binder driver then, has to look inside the buffer to extract the access rights, which

would be inefficient. Instead, we attach the access rights to the transaction data as a

separate attribute.

Third, we need to introduce the delegation logic in the Binder driver, in which the

driver does not only create a Binder reference in the receivers Binder process, but also

attaches the new access rights after checking them for validity into it. The validity check

makes sure that the set of delegated access rights is a subset of the original access rights

acquired by the sender.

1 public IBinder extractBinderHandle(WifiManager wifiManager) {

2 IBinder binder = null;

3 try {

4 Class wifiManagerClass = wifiManager.getClass ();

5 Field mServicefield = wifiManagerClass.getDeclaredField("mService");

6 mServicefield.setAccessible(true);

7 Object proxy = mServicefield.get(wifiManager);

8 Field mRemotefield = proxy.getClass (). getDeclaredField("mRemote");

9 mRemotefield.setAccessible(true);

10 binder = (IBinder) mRemotefield.get(proxy);

11 } catch (Exception e) {

12 e.printStackTrace ();

13 }

14 return binder;

15 }

16

17 public WifiManager constructWifiManager(IBinder binder) {

18 WifiManager wm = null;

19 try {

20 Class iwmStub = Class.forName("android.net.wifi.IWifiManager$Stub");

21 Method [] aMethods = iwmStub.getDeclaredMethods ();

22 for (Method method : aMethods) {

23 if ("asInterface".equals(method.getName ())) {

24 method.setAccessible(true);

25 Object iwm = method.invoke(null , binder);

Chapter 4 Design and Implementation 51

26 Class wmClass = Class.forName("android.net.wifi.WifiManager");

27 for (Constructor constructor : wmClass.getDeclaredConstructors ()) {

28 wm = (wm) constructor.newInstance(

29 RemoteService.this.getBaseContext (),

30 iwm , null);

31 break;

32 }

33 }

34 }

35 } catch (Exception e) {

36 e.printStackTrace ();

37 }

38 return wm;

39 }

Listing 4.2: Reflection To Extract Binder Handle From Manager And Constructing

The Manager Again

As a prerequisite for the delegation, the process that is willing to delegate must have

a notion of the access rights associated with the Binder capability it possesses. This can

be done by calling a getAccessRights() API which returns a bit-mask that encodes the

access rights.

This implementation can be extended to keep track of each delegated capability (by

extending the Binder reference with the parent/children). This is especially helpful for an

advanced logic of revocation, i.e., revoking a capability results in revoking all capabilities

that have been instantiated from it. Additionally, Binder capabilities can be extended to

carry a flag that prevents delegation.

The same channel used for delegation can be used again to downgrade or upgrade the

access rights of the delegated capability. As we will discuss next, we use the downgrading

of access rights as a special form of revocation.

As a final note, we can observe that the CM is not involved in the delegation flow

and it is up to the delegator process to decide what access rights can be transferred to

the receiver process. In turn, it is the responsibility of the Binder driver to correctly

compute the access rights of the receiver of the delegation based on the access rights of

the sender.

4.3.5 Revocation of Capabilities

There are two techniques for revocation triggered by two different events in the system.

The first technique is through actual capability deletion. The second technique is

through downgrading the access rights of the delegated capability to zero. Implementing

52 Chapter 4 Design and Implementation

revocation through downgrading of access rights implies that a process would still have a

reference to the remote system service. However, it cannot access its protected methods.

Revoking Capabilities via Settings App

As discussed in Subsection 2.2.2 Android’s Permission System, starting from Android 6,

Android allows users to revoke permissions by groups. When the user decides to revoke

a permission group, the app is killed, gracefully. Before the app is killed, the system

takes memory snapshots of the running processes of the app and then kills all of them.

The system then instructs the PMS to revoke all permissions of the group. The PMS

would then report this change in permissions to the CM which would remove all revoked

permissions from its list). If the app is opened again, the system forks a new process

from zygote, loads apps code, and restores the corresponding memory snapshot into the

memory.

Revoking/Downgrading Delegated Capabilities

Processes that delegate a capability to another process can change the access rights

associated with the delegated capability based on an internal logic using the same channel

used for delegation. If the access rights are set to zero, then we call that a revocation of

the capability.

To change the access rights of a delegated capability, the process has to use the

already established delegation channel. This means, the delegator process have to use the

writeDelegatedStrongBinder() for the same Binder handle but with new access rights. This

method works because each process can only have one capability for each system service

at any point of time. The new access rights which is passed in the API will overwrite

the access rights which the target process originally has, if any, on the corresponding

system service. The Binder driver has to make sure that the new degraded access rights

are a subset of the access rights that the delegator process originally has.

4.4 Implementation

In this section, we present the scope of our design and the limitations imposed by our

implementation. Then, we provide a brief analysis of the amount and type of changes we

introduced.

4.4.1 Scope and Limitations

The capabilities introduced by our design are specific to the system services that fulfill

the following condition: they are registered in the CM and accessible over the Binder

Chapter 4 Design and Implementation 53

framework using the getSystemService() API. Consequently, the design does not support

capabilities for services that are not registered in the CM, such as user-defined services.

Moreover, the getSystemService() API does not retrieve all services registered with the

CM. For example, developers have to use the ContentResolver to access the content

system service, and to record audio, developers use the RecordAudio class (which uses

the surfaceflinger service).

Among all system services that fulfill the condition mentioned above, we decided

to adapt the LMS and WifiService to use capabilities for access control. We have built

two apps that serve as a prototype. The first app request all dangerous and normal

permissions to both services and delegate access to both to the second app. The second

app makes calls to those services which control the access using permissions. Due to

time limitations, we could not adapt more services. However, we performed an analysis

on all system services protected by permissions, and the results show that we can apply

capabilities on 18 other system service which are protected by 60% of the permissions

defined in the system. More on this in Subsection 6.2 Coverage and Effectiveness

Since we rely on Android’s permission system for creating access rights on capabilities,

we report all granted and revoked permission from PackageManagerService to the CM. We

do not exclude any permission from being reported even though some normal permissions,

like android.permission.INTERNET, are enforced by DAC Subsection 2.2.2 Android’s

Permission System.

On another point, we do not implement a global switch that controls what mode the

system is in, i.e., capability mode or normal mode. This switch is currently distributed

between kernel and user space components. Furthermore, we do not implement switching

between modes at runtime. Instead, the system (kernel and AOSP) must be configured

to use a specific mode before building it.

Regarding acquiring capabilities, the developer should request a capability, using

getSystemService() API, after she is granted the permission(s) to the target service. This

is because access rights of the capability is attached to Binder reference in the kernel

only upon calling this API.

As for revoking delegated capabilities, we do not implement a way for actually

deleting the delegated capability. Instead, we enable the app developer to reduce the

access rights of the delegated capability to 0 based on apps logic.

We do not enforce a policy for delegation across apps. This magnifies some attack

scenarios as we would discuss in the following chapter. Another less serious issue related

to the fact that when a capability is delegated, the sender has to take care of extracting

the Binder handle from the manager using reflection before sending the handle to the

54 Chapter 4 Design and Implementation

receiver who, in turn, must reconstruct the manager out of the delegated capability,

also using reflection. This requires a detailed knowledge of the class structure of the

manage. We did not have time to implement a simpler way to extract Binder handles

and reconstruct manager without using reflection.

During early stages of this work, we tried to build the Goldfish kernel of version

4.4 and use it with AOSP of Android 7. Although both builds succeed, we could not

manage to run the default Android emulator of AOSP. We tried several configurations

and versions with the same failing outcome. Eventually, we managed to run goldfish v.3.4

against AOSP of Android 6.1 and Android 7.1.2. We observed that no drastic changes

are done on the Binder kernel module. Therefore, we believe our approach would work

on any version of Goldfish. However, we have not tested that.

4.4.2 Changes on AOSP and Kernel

Before we started the implementation phase, we minutely explored Android’s platform

and kernel. This helped us afterward to reduce the amount of code used to come

up with a working prototype. Since we touched several layers of Android’s software

stack, we had to write code in three programming languages. In total, we have writ-

ten 756 lines on codes (LoCs). Table 4.2 shows the number of LoC per language and

project. We calculated the number of LoCs manually after extracting the patch files

from AOSP (using repo) and kernel (using git). As we excluded comments and lines

of code used for logging, we believe our prototype will not work without any of these lines.

Table 4.2: LoCs Introduced By Our Design

Project Language LoC

AOSP
Java 310
C++ 156
C 260

Goldfish Kernel C 30

In general, changes in Java introduce new APIs to app developers used for acquiring

a capability, attaching a capability in a parcel delegation, query about access rights of a

capability (see Table 4.3). Other internal APIs are used for reporting permissions to the

CM, extracting access rights from IPC threads, etc. C++ changes, in most cases, are

meant to transfer requests made from Java to the kernel and back. One of the important

changes are those made to the IPCThreadState.cpp which provide the necessary API for

the system services to call, over JNI, to retrieve the access rights of the calling process

from the IPC thread.

Chapter 4 Design and Implementation 55

C changes in AOSP are used to extend the servicemanager daemon process to

accept the permissions reported from application framework. They also adapt the

get servicefunctionality to compute capabilities of the caller process and return it to the

Binder driver.

Changes in the kernel are straightforward. They attach capabilities to the invocation

requests. They also assign capabilities to new handles upon capability acquiring and

delegation. A simple logic based on the access rights of the source and target takes place

to decide if the delegation request is valid.

Part of the reasons behind the mass adoption of Android is its high usability from

end user’s perspective. Our design maintains this usability intact. In fact, end users

cannot tell whether they are using the system in the capability or the normal mode.

Table 4.3: Newly Introduced Methods

Method Return Description

getSystemService(String
name)

Binder handle In the capability mode, this function
causes the CM to compute access rights
of the caller over the service, referenced
by the name. The Binder driver then
injects the access rights in the Binder
reference and return the handle that
references the Binder reference to the
caller process. The application frame-
work builds a proxy around that han-
dle. The proxy then gets wrapped by a
manger. In both operating modes, this
API returns a manager.

getAccessRights() Integer Used on the service manager object
to retrieve the access rights associated
with the capability. This helps the de-
veloper to decide what access rights can
be delegated.

writeDelegatedStrongBinder
(IBinder binder, int delegated-
Capability)

void Used to delegate a capability to a pro-
cess that listens on the other side. This
API is called on the parcel sent to the
target process. The same API is used to
revoke access to a capability by setting
the delegatedCapability to 0.

Chapter 5

Security Analysis

In this section, we analyze the new security features introduced by our design. We first

start by laying out our assumptions concerning Android’s permission system and Binder

framework. Then we present the attacker model illustrating attackers capabilities and

goals. Later, we discuss known attack scenarios against stock Android and shed light

on how we can employ the new security features to prevent those attacks. We also

present other attack scenarios introduced, or became more easier to establish, by our

implementation.

5.1 Assumptions

To reasonably argue about the benefits and the shortcomings of our design from a security

point of view, we need to establish a few assumptions that remain true throughout this

discussion.

First, we assume that the Binder framework guarantees the unforgeability and

uniqueness of Binder handles. Thereby, Binder capabilities are also guaranteed to be

unforgeable and unique for each process. We further assume that data transferred over

Binder IPC is confidential and tamper-proof. Thus, we roll out root-based attacks

against the Binder framework [27] or even the kernel [52][55] from our consideration.

Such attacks have devastating impacts on the whole system and would trivially break

our assumptions. We also exclude attacks that aim to jeopardize system functionality by

misusing the Binder framework, i.e., the DoS attack described by Huan Feng et al. [35].

Additionally, we assume system services and their host processes are immune to attacks

and implement bug-free access control (this assumption rolls out the attack against

system server process [3]).

57

58 Chapter 5 Security Analysis

We further assume that Androids permission system cannot be bypassed. This means

all installed apps, either through app managers or ADB, would have to declare required

permissions in their manifest files. Permissions will be granted to the apps only upon

the consent of the end user, either at runtime or install time. Therefore, Attacks that

trick end user to grant permissions to malicious apps using overlay UIs [54] and phishing

techniques are also excluded from our analysis.

In general, we focus on attacks that circumvent the permission system or take

advantage of the Binder framework, i.e., for communication and remote code execution,

to cause privilege escalation and violate the principle of least privilege.

5.2 Attacker Model

The attacker in our case is capable of writing malicious code and hiding it inside apps

and 3rd-party libraries. Such malicious code will eventually run on the mobile devices of

the end users, i.e., by installing the malicious apps or including the malicious libraries in

other installed benign apps. We assume the attacker has multiple malicious apps owned

by her that could run on user’s device. For simplicity, we disregard the case of running

multiple benign apps that include different malicious libraries owned by attacker as it

would have the same effect of running two malicious apps owned by the attacker.

The ultimate goal of the attacker is to leak protected sensitive information of end

users without risking of being discovered and getting labeled as malicious. Otherwise,

end users will not install her malicious apps, and other app developers will not include

her malicious libraries in their benign apps.

We also assume the attacker to be smart and not to request permissions that deemed

unreasonable to end users based on the announced functionalities of the apps or libraries.

We further assume the attacker is aware of the continuous endeavors of app developers

and end users to limit her privileges on devices resources. Therefore, we assume the

attacker would try to circumvent those measures to achieve her goals. This is essential

when we discuss our approach for sandboxing malicious 3rd-party library using capabilities.

Finally, we assume the attacker to be knowledgeable of other apps running on the

system and expert enough to discover and exploit exposed services of those apps. This

assumption is a necessary to launch confused deputy attacks.

Chapter 5 Security Analysis 59

5.3 Attack Scenarios

In the following, we present two categories of attacks. The first category consists of

attacks that can be prevented or mitigated by our design. The second category includes

attacks that have been introduced or became, even more, easier to establish in our design.

5.3.1 Mitigated Attacks

In this subsection, we present two attack scenarios which can be mitigated by our design.

5.3.1.1 Confused deputy

In this attack scenario, a benign app (called a deputy) is tricked into executing a sensitive

operation on attackers behalf who does not have the required permissions to execute

the operation herself. Androids security model cannot prevent this type of privilege

escalation because it cannot reveal the identities of the apps involved in the transitive

invocations.

Several solutions have been proposed to mitigate this attack [43][34]. Michael Dietz

Wu et al. [31] proposed to keep track of the call chain enabling apps to authenticate

the chain at runtime and dropping the call in case one app does not have the required

permission. Another work by Bugiel et al. [30] which also relies on the call chain, provides

a reference monitor that enforces transitive policies on IPC between apps and system

services.

We mitigate this attack using capabilities. However, our solution assumes that the

app developer has some degree of security awareness and is willing to invest more efforts

in hardening her app. We further assume that the deputy is deliberately exposing an

interface to other processes. This interface makes a call to a protected operation from a

system service. Only processes possessing a specific access right/permission can execute

this operation through the interface.

To illustrate our approach for mitigating the confused deputy problem, we present

Figure 5.1 which depicts three processes, i.e., (A), (B), and (C), and a service (S). Process

(A) is under the control of the app developer. It exposes an interface that implements a

complex functionality which invokes the operation (O) from the service (S). The service

(S) requires processes willing to call operation (O) to possess a capability to it with

access rights of (0x1). Processes (B) and (C) hold capabilities to (S) with access rights

of 0x0 and 0x3 accordingly. The goal is to permit (C) to access operation (O) through

(A)’s interface while preventing the same operation for (B).

60 Chapter 5 Security Analysis

Figure 5.1: Mitigating The Confused Deputy Attack

We can achieve the aforementioned requirement through capability delegation. Both

processes (B) and (C) have to delegate their capabilities, for service (S), to process (A).

In turn, process (A) will use the delegated capabilities to invoke the operation (O). Notice

that (A) does not have to enforce any type of access control as it moves this task to the

service. Consequently, the service will allow process (C) to access the service, as it has

the required access rights, and reject deny the request from (B).

5.3.1.2 Inclusion of Malicious Library

Developers rely on 3rd-party libraries for reducing the programming effort, providing

analytics, and monetizing apps. All included 3rd-party libraries run inside apps sandbox

and share the same privileges granted to the app. Additionally, such libraries tend

to request even more permissions putting users privacy and security at risk of being

compromised [28][42][36]. Based on our attack model, we assume that 3rd-party libraries

can be malicious by themselves and must not run with the full authority of the parent

sandbox. Instead, 3rd-party libraries must be granted the least privileges they require

and deemed to be reasonable to app developers.

Several approaches have been proposed to address this issue and they vary from

completely blocking 3rd-party libraries [53], especially advertisements libraries, to com-

partmentalizing them [44][56]. One novel approach that does not break the same origin

policy of apps nor requires firmware changes is what Jie Huang et al. [38] have proposed

Chapter 5 Security Analysis 61

(a) Library Runs In The Main Process (b) Library Runs In An Isolated Process

Figure 5.2: Mitigating The Problem of 3rd-party Library

of isolating the advertisements library into a separate app at compile time and assign it

the minimum permissions required. As a result, new Binder IPC protocol needs to be

established between the original app and the app which runs the library.

Our design addresses this problem through delegation of capabilities. Before present-

ing the approach, we setup a scenario of the problem and define our goals. As depicted in

Figure 5.2a, we consider a case of an app (A) that runs a 3rd-party library (L). There are

two system services (S1) and (S2) which are protected by (Cap1) and (Cap2), accordingly.

These capabilities are granted to the app (A). We assume that library (L) requires the

(Cap1) to access the service (S1) to perform some functionality. Since the library (L)

runs inside the sandbox of the app (A), it can access both services (S1) and (S2). The

goal is to prevent that from happening and only allowing the library (L) to access the

service (S1).

Our proposed solution requires the app developer to be effectively involved in the

process of hardening the app. According to the attacker model, we assume that the

developer of the library is willing to cooperate with app developers so that she would look

honest while hiding her malicious intentions. As depicted in Figure 5.2b, our solution

constitutes that library (L) must run in an isolated process, while the rest of the app

runs in the main process. Isolated processes are prevented from accessing any resource

because they can not acquire permissions nor possess capabilities directly from the CM.

The main process would acquire two capabilities to (Cap1) and (Cap2) and only delegate

62 Chapter 5 Security Analysis

the capability for (S1) to the isolated process. This is technically possible as no SELinux

policies are enforced to prevent the Binder driver from transmitting Binder handles (and

capabilities) to isolated processes. The access rights of the delegated capability must

be instrumented to only grant the least privilege required by the library to function

properly.

As mentioned earlier, this approach requires cooperation from the developers of

3rd-party libraries as they need to implement special interfaces to receive the delegated

capabilities. They additionally need to adapt their code to use the delegated capabilities

instead of requesting their own (which will not be possible).

5.3.2 Attacks Against Our Design

In this subsection, we present two types of attacks that have been introduced or became

more easier to establish due to our implementation.

5.3.2.1 Collude attacks

Similar to the confused deputy attack, collude attacks benefit from the shortcomings of

Androids permission system and its inability to detect and enforce policies on transitive

invocations. Colluding apps normally belong to the same attacker and use overt and covert

channels for communications between them. The challenge, from attackers perspective,

is how to employ two or more apps that acquire different permissions to collaboratively

leak sensitive information about the end users.

For example, one app, called (A), has permission to users phone book but does not

have permission to use the internet. Another app, called (B), can access the internet.

Both apps are under attackers control. The collude attack can be easily established by

retrieving users phone book in the app (A), sending it to the app (B) which, in turn,

sends it to a remote server breaking end users privacy.

This attack becomes more severe in our design because colluding apps can commu-

nicate capabilities between each other causing privilege escalation for all of them. The

countermeasure is to prevent delegation among apps and limit it to processes of the same

app. Our design does not yet implement this mitigation technique. In Chapter 7: Future

Work, we present an idea on how we can implement this extension to prevent this type

of attacks.

Chapter 5 Security Analysis 63

5.3.2.2 Overwriting Access Rights

This attack is directly introduced by our design due to the simplified implementation of

the delegation process we have decided to adopt. To understand the attack, we consider

a hypothetical scenario of a malicious process (A) that wants to delegate a capability for

a system service (S) to a benign process (B). Assuming both processes reside on different

app sandboxes. The current implementation enables process (A) to downgrade the access

rights of all the capabilities possessed by the process (B).

Process (A) establishes the attack by creating capabilities to all services in the

system, including service (S). Then, delegate those capabilities to process (B) with zero

access rights. Since the Binder driver keeps only one capability for each system service,

the easiest way to realize the delegation of capabilities is through overwriting the access

rights while keeping the references of capabilities intact. As a result, process (B) would

have capabilities to all system services with zero access rights on them.

This attack becomes meaningless if delegation among apps is prohibited, or if

process (B) does not accept delegation (e.g., it does not expose interfaces for delegation).

Moreover, process (B) can overcome this attack by invalidating old capabilities and

requesting new ones by calling getSystemService(). This guarantees that the CM will

compute the most up-to-date access rights and overwrite the value delegated from process

(A).

Chapter 6

Discussion and Evaluation

In this chapter, we evaluate our design in three aspects: Performance (to see how much

overhead/gain our design introduces), coverage and effectiveness (by evaluating how close

our implementation is to enable capabilities for all system services), and usability (to

check whether our changes would affect developer’s and user’s experience while using the

system or developing apps). We end the chapter by holding a discussion on whether it is

possible to utilize SELinux to achieve the same outcomes of our design.

6.1 Performance Analysis

In this section, we conduct three time-measurement experiments that show the perfor-

mance gain and overhead caused by our design. We start by presenting the setup for

those experiments, then we explain, in details, how they are conducted before presenting

the results.

6.1.1 Configurations and Setup

Table 6.1 shows versions and configurations used to build the AOSP and the Goldfish

kernel. For some experiments, we built each project twice, one build includes our changes

that implement our approach, and the other build is kept without any modifications

(except for the time measurement code and testing apps). We used the default ARM

Android emulator shipped with AOSP for all experiments.

65

66 Chapter 6 Discussion and Evaluation

Table 6.1: AOSP and Kernel Build Information

AOSP
version 7.1.2
branch android-7.1.2 r33
target build full-eng

Goldfish Kernel
version 3.4
config goldfish armv7 defconfig

Figure 6.1: Time Measurement Components

6.1.2 Experiments and Results

Our goal in these experiments is to measure the execution time for three operations:

capability acquiring, delegation, and invocation. Given that delegation and revocation of

capabilities use the same technique, both operations have exactly the same execution

time, and it is adequate to only measure one of them.

To accurately measure the aforementioned operations, we need to isolate them from

other operations that might affect the results. For example, we cannot measure the

invocation time from the client side by simply capturing the time before the invocation

is made and after the result is back, and then subtract both measurements from each

other. This is because the results would highly depend on the workload on the system.

For example, it is possible that the Binder driver delays the invocation request because

it handles other IPC requests that have higher priorities or simply arrived earlier. Since

we cannot guarantee that all requests will be handled on-time, without delays, we have

to find another solution.

We can assume that the cost paid while the request is traveling from one endpoint to

the Binder driver, and from the Binder driver to the target endpoint remains constant for

all IPC requests. This travel time (TT) appears as single-pointed red arrow in Figure 6.1.

The double-pointed arrows denote double of the TT, e.g., acquiring a capability costs

4×TT . This assumption simplifies the measurements as we only have to measure the

Chapter 6 Discussion and Evaluation 67

operations that happen at the endpoints and in the Binder driver. Our design introduces

two operations that take place at the endpoints. Those operations are: Encoding the

access rights from the local permissions stored in the using compute capability() in the

CM 1 (for the operation of acquiring capabilities) and performing access control on

system services using capabilities (for capability invocation). The operations that happen

at the Binder driver are: attaching the capability to the request (for invocation and

delegation) and saving the capability in a Binder reference (for capability acquiring and

delegation).

As a result of this simplification, we can measure the time needed for acquiring a

capability as following: 4×TT + time(compute capability) + time(assigning access rights

to a Binder reference). Notice that Figure 6.1 shows the point of time when the Binder

gets involved in the operation (e.g., when the red arrow touches one of the two boxes in

the Binder driver)

Measurements At The Context Manager

In stock Android, the getSystemService() API caches all live Binder handles retrieved

through it. This is meant to reduce the number of IPC requests made to the CM and,

consequently, improve performance. For the sake of this experiment, we disabled the

caching to make sure that all requests reach the CM.

Our goal in this experiment is to measure the execution time of the function com-

pute capability() from service manager.c. We conducted the experiment by running three

apps that request all ten normal and dangerous permissions to the four different system

services (location, wifi, connectivity, and wallpaper). When permissions are granted, each

application requests a capability for each system service. In total, the compute capability()

function was executed about 1000 times. Since permissions are stored in a linked list, we

chose the ten requested permissions carefully to trigger traversal of almost all nodes in

the permissions list. In total, the list contained about 180 permissions for 41 apps.

This experiment shows that the average time of computing access rights is 1.7ms with

a standard deviation of 2.1ms. The time measurements were done using gettimeofday()

function from <sys/time.h>. The experiment shows a pressing need for re-implementing

the compute capability() function and associated data structures to reduce the time and

storage overhead.

1Since permissions change infrequently, we neglect the overhead caused by reporting permissions from
the PMS to the CM because the reporting is done over Binder IPC and carry parameters of primitive
types. Therefore, reporting a permission costs only 2×TT since it is one-way Binder IPC

68 Chapter 6 Discussion and Evaluation

Measurements At System Services

In our design, system services perform in-place access control using cheap bitwise

arithmetic operations on the access rights associated with the capabilities of calling

processes. This comes with a performance gain as services of stock Android rely on the

PMS to check for caller’s authorization for each invocation to the protected methods.

We conducted the experiment by build two images of AOSP. One image uses the

conventional reference monitoring using the PMS, whereas the other includes our changes

and implements an access control based on capabilities instead of using the PMS. Each

image includes an app that requests the ACCESS FINE LOCATION permission. When

the permission is granted by the user, both apps acquire a capability to the LMS and

call the getLastLocation(). We use System.nanoTime() to measure the execution time of

the permission/access rights checking in both images.

After invoking the reference monitor of both implementation a 1000 time, the results

show that our approach outperforms the conventional permission checking by a factor of

approximately 4.5. The average time overhead caused by our approach is about 20µs

and with a standard deviation of approximately 15.5µs. On the other side, the average

execution time of the permission check logic is about 87µs with a standard deviation of

about 153µs.

It worth noting the LMS that hosts the getLastLocation() resides in the same process

of the PMS (which is the system server as discussed earlier). This causes a local call

to the Binder object of the PMS for permission check. We believe that the amount of

time required for checking camera permissions (from mediaserver process) would show a

significant increase in the execution time as the check would be performed over an IPC.

However, we did not make this experiment for time limitations.

Measurements At The Binder Driver

As shown in the Figure 6.1 and following our discussion on Section 4.3 Capability

Management, the Binder is extended to support two tasks: First, it attaches the access

rights of the calling process to the IPC thread that carries the transaction data to the

system service (see the light green rectangle in Figure 6.1). Second, when a process

delegates a capability to another process or when the CM returns a capability to a

process that requested it, the Binder driver assigns the access rights of the capability

to the Binder reference that is newly created for the receiver process (see the light blue

rectangle in Figure 6.1). Notice that the Binder driver handles the capability returned

from the CM to the requester process as a special form of delegation. Therefore, it is

handled with the same function used to validate delegation requests.

Chapter 6 Discussion and Evaluation 69

The first task does not produce any performance overhead, in comparison to stock

Android, as it is exactly similar to how the Binder attaches caller’s UID and PID to the

IPC thread of the system server. However, the second task yields on average an overhead

of about 2.69µs with a standard deviation of about 1.47µs. This overhead is caused by

the logic used for deciding if the delegation is valid. We have derived those results by

conducting the following experiment: Process (A) delegates the capability (for LMS) to

the process (B). This operation is repeated a 1000 time with different access rights to

make sure that only 50% of the delegation requests comply with the delegation rules and,

therefore, are successful.

6.2 Coverage and Effectiveness

During the development phase and while we were examining the possibility for applying

capabilities on all system services (so access to system services can be delegated, revoked,

and enforced by the access rights of capabilities) we came across five categories of

permissions that differ based on the time and place of enforcement.

1. Permissions enforced by system services by calling protected methods using service

managers: This type of permissions is the focus of this work. Although the

permission check could happen in the native code (e.g., CameraService.cpp [16]

enforces the permission CAMERA), enforcement of this type of permissions can

easily be replaced by capability checks and access to system services (for almost all

permissions) can be delegated and revoked. See Table 6.2 for a complete list of

permissions for this category.

2. Permissions enforced by content providers2: Content providers manage access to a

repository of data. Developers can access this data through a ContentResolver object

that is retrieved from app’s context. The ContentResolver composes a handle for the

ContentProvider, which is retrieved through the CM. The ContentResolver can be

used to perform CRUD operations on contacts, calendar, and SMS data. Developers

specify a URI to the repository they wish to access and the ContentProvider makes

two authorization checks. The first is made to the PMS to decide if the caller has

read or write permissions (e.g., READ CONTACTS and WRITE CONTACTS).

The second is made to the AMS to decide if the app has access to the data source

(referenced by its URI). Although we can use capabilities to replace the first check,

we cannot get rid of the second check. The AMS keeps a database of all packages

2We only consider content providers offered by the system, e.g., to access the contacts, calendar, and
SMS messages.

70 Chapter 6 Discussion and Evaluation

and URIs assigned to them3, this database is modified only when an app is granted

a permission by the user to a specific resource. Consequently, if we delegated access

to content providers to other processes, the first check could pass (as it would rely

on the access rights of the delegated capability). However, the second check will

always fail because the receiver did not explicitly acquire the permission.

3. Permissions enforced by the AMS upon delivering broadcast messages: Most

permissions are enforced when apps make interactions with the system, e.g., a

background service invokes a protected method of a system service, a user clicks a

button that retrieves data from system services, etc.). However, some permissions

are enforced when the system issues broadcast messages. For example, when an

SMS message is received or when the system finishes booting up. Those broadcasts

are issued by the AMS which checks the permissions of each app to decide whether

to deliver the broadcast message to it or not. The current implementation does not

provide a solution on how to make the authorization check based on capabilities.

4. Permissions enforced by system services when apps send broadcasts or start activities

using Intents: In the current implementation, enforcement of this type of permissions

cannot be replaced by capabilities.

5. Permissions mapped to GIDs and enforced by the kernel.

For the complete list of permissions that are not supported by our design, see Table

6.3. Notice that permissions are associated with a category that corresponds to one of

the five categories above.

The percentage of permissions that can be enforced using capabilities is about 60%.

We support eight dangerous permissions out of 20 defined in the system. As a proof of

concept, we believe we have achieved good coverage. However, the current approach is

far away from being complete.

3This facilitates sharing data between apps. For example, an app can allow another app to access a
specific record but not the whole database by exposing a URI to that record.

Chapter 6 Discussion and Evaluation 71

Table 6.2: Permissions Can Be Enforced By Capabilities

Name Level Manager

ACCESS FINE LOCATION dangerous LocationManager

ACCESS COARSE LOCATION dangerous LocationManager

SEND SMS dangerous SmsManager

USE SIP dangerous SipManager

READ PHONE STATE dangerous TelecomManager

CALL PHONE dangerous TelecomManager

(*) BODY SENSORS dangerous SensorManager

(*) CAMERA dangerous CameraManager

READ SYNC SETTINGS normal ContentResolver

READ SYNC STATS normal ContentResolver

WRITE SYNC SETTINGS normal ContentResolver

BROADCAST STICKY normal ActivityManager

KILL BACKGROUND PROCESSES normal ActivityManager

REORDER TASKS normal ActivityManager

SET TIME ZONE normal AlarmManager

MODIFY AUDIO SETTINGS normal AudioManager

ACCESS NETWORK STATE normal ConnectivityManager

CHANGE NETWORK STATE normal ConnectivityManager

TRANSMIT IR normal ConsumerIrManager

USE FINGERPRINT normal FingerprintManager

DISABLE KEYGUARD normal KeyguardManager

ACCESS LOCATION EXTRA COMMANDS normal LocationManager

ACCESS NOTIFICATION POLICY normal NotificationManager

WAKE LOCK normal PowerManager

EXPAND STATUS BAR normal StatusBarManager

VIBRATE normal Vibrator

SET WALLPAPER normal WallpaperManager

SET WALLPAPER HINTS normal WallpaperManager

ACCESS WIFI STATE normal WifiManager

CHG WIFI MULTICAST STATE normal WifiManager

CHANGE WIFI STATE normal WifiManager

(**) GET PACKAGE SIZE normal PackageManager

(***) BLUETOOTH normal BluetoothManager

(***) BLUETOOTH ADMIN normal BluetoothManager

* Permission check happens in native code
** We could not successfully extract the handle out of the PackageManager to delegate it.
Therefore, we assume that access to the PMS cannot be delegated.
*** Permission is also mapped to GID and enforced by DAC and MAC.

72 Chapter 6 Discussion and Evaluation

Table 6.3: Permissions That Is Not Supported By Our Design

Category Name Level

2 ADD VOICEMAIL dangerous

2 READ CALL LOG dangerous

2 WRITE CALL LOG dangerous

2 READ CONTACTS dangerous

2 WRITE CALENDAR dangerous

2 WRITE CONTACTS dangerous

2 READ CALENDAR dangerous

2 READ SMS dangerous

3 PROCESS OUTGOING CALLS dangerous

3 RECEIVE SMS dangerous

3 RECEIVE WAP PUSH dangerous

3 RECEIVE MMS dangerous

3 RECEIVE BOOT COMPLETED normal

4 INSTALL SHORTCUT normal

4 UNINSTALL SHORTCUT normal

4 REQUEST IGNORE BATTERY OPTIMIZATIONS normal

4 SET ALARM normal

4 REQUEST INSTALL PACKAGES normal

5 READ EXTERNAL STORAGE dangerous

5 WRITE EXTERNAL STORAGE dangerous

5 INTERNET normal

unknown RECORD AUDIO dangerous

unknown NFC normal

6.3 SELinux vs. Capabilities

Capabilities introduce new security concepts that exist in neither DAC nor MAC. Specif-

ically, capabilities define fine-grained access rights on resources. A process that holds a

capability can delegate access to other processes and then revoke it. Ideally, the system

can also upgrade and downgrade access rights of issued capabilities without interrupting

processes or causing them to restart.

Given that SELinux, as a MAC, was introduced to cover the shortcomings of DAC

by defining fine-grained access rights through policies, one interesting question is raised:

Is it possible for SELinux to provide the same security features which are enabled by

capabilities? We answer this question using the existing functionalities offered by SELinux

framework as implemented in Android.

First, we start with a simple case where Android, hypothetically, has only one object

which provides N functionalities that need to be protected. Using capabilities, each

process acquires a unique capability token that has N bits which encode access rights on

Chapter 6 Discussion and Evaluation 73

the N functionalities of the object. The object, in turn, implements access control by

performing bit-masking on the access rights of the capabilities associated with callers.

One way to establish the same security enforcement using SELinux is to create 2N

types4 which encode every variation of the N permissions. Each process will be assigned

a security context with the type that corresponds to the permissions it acquires. Creating

this amount of types is inevitable because we do not know what permissions each process

will exactly acquire during its lifespan. For example, a process might start with zero

permissions, then acquire more permissions at runtime (as app processes in Android

which are granted permissions by the end user at runtime). Therefore, all possible

variations of the N permissions must be created beforehand. The object, on the other

hand, must be assigned a type that never changes5.

For each of the 2N types, a rule must be defined to govern the functions which can

be accessed for each type. The Listing 6.1 shows an example of the rules that need to

be created for an object that offers only two functionalities (func1, and func2). One

important observation from that listing is that no rule has to be defined to prevent

an unprivileged process from accessing the object because the absence of such rule is

interpreted as a prevention by default. The first rule means that processes of the type

”perm1 1” can execute both functions of the object that has the type ”object type” and

of class ”object class”

1 allow perm1_1 object_type:object_class *;

2 allow perm0_1 object_type:object_class func2;

3 allow perm1_0 object_type:object_class func1;

Listing 6.1: SELinux Allow Rules

So far, one important question is unanswered; Who assigns types to processes in

Android, and when? By default, forked process inherits the security context of the parent

process. To enable switching between security contexts, SELinux enables privileged

processes to change types of self and others, using API exposed from SELinux framework.

For example, Zygote executes selinux android setcontext() on newly forked processes to

change their security contexts, and init.c calls setcon() to change its type.[33]. Another

way for changing security contexts is through transition rules (type transition).

4SELinux is for whitelisting accesses. Therefore, the absence of a rule implies prevention. Consequently,
the number of types and rules is, in fact, 2N - 1 because processes that have no access rights can be
assigned a type that is not associated with any rule.

5As discussed in Subsection 2.2.1 Application Sandboxing, rules rely on the types of subjects and
objects. Changing object’s type would prevent access to it unless other rules with the new type are
defined

74 Chapter 6 Discussion and Evaluation

Transition rules are checked when a process executes a special file. The execution, if

allowed, causes the security context of the caller process to change. The new security

context is defined based on the original type and the type of the file executed by the

process. The file represents an entry point to a type transition (this is defined in a rule),

and it is protected by a permission. The process can only cause a change of security

context if it is allowed by another rule to execute the file (granted the permission).

Therefore, for each type transition policy, three rules need to be defined, and one

executable file should be created and assigned a type [26]. Next, we need to employ one

of these techniques to grant permissions, at runtime, to processes.

Since policies should be created, compiled, and attached to Android images before

distribution, the system administrator must create 2N×(2N -1) executable files (and the

same number of types assigned to those file) and triple that number of rules to define

transition policies that enable a process to move from any of the 2N security contexts

to any other context realizing privilege escalation or degrading6. To prevent processes

from illegitimately escalate their privileges, the system7 exposes the executable file to be

executed by the process only when a change of permission associated with the process

occurs. The problem resides on how to force a process to execute a file that degrades

its privileges assuming the process is curious or malicious and would not do that by

itself. Apparently, this approach can easily scale up to become impractical to implement.

Therefore, it is not considered as a solution.

This leaves us with the APIs exposed by SELinux framework. In fact, this approach

deems to be more reasonable. However, the process that causes a change of security

context of another process must be 1) trusted to prevent unintended privilege escalation,

and 2) able to accurately compute the right security contexts for the processes that

reflect permissions acquired by them at runtime. In Android middleware, Zygote can be

modified to fulfill the second requirement and, therefore, protect system services similar to

what we have done in this work. For example Zygote gets notified whenever a permission

is granted/revoked to/from an app and then, it changes the type of running processes of

that app; or when a new process is started, it queries the permissions associated with its

app and assigns the new process to the type accordingly. Since permission change at

runtime is specific to app processes, this solution could work out.

6Another solution could be to create an intermediary type that all processes willing to change types
have to go through it. This reduces the number of executable file to 2×2N . For example, to change type
X to Z, the process has to change its type to Y first. Thus, transition rules allowing moving from X to Y
and, then from Y to Z are required. However, this assumes the system can hide the files that allow a
process of type Y to move into Z” context, where Z” has more privileges than Z.

7The process that decides what to expose/hide should have a notion of the permissions assigned each
process has and should next have.

Chapter 6 Discussion and Evaluation 75

The discussion so far considers Android with only one service to protect. However,

in practice, Android offers a huge number of objects that need to be protected. We have

introduced 2N types for a single object that offer N functionalities. When a process

gets assigned a type from those types, it can access only that object with respect to the

encoded permission in the type. However, processes should be able to have access to

multiple types simultaneously. Given that a process can only have one type and rules

define a relation between types of subjects and objects. All objects must have the same

type. Therefore, the sum of all permissions offered by all objects in the system is N ′.

Considering that the number of types and rules is 2N
′
, the system could easily become

impractical to implement, if not even impossible.

Chapter 7

Future Work

In this section, we present a few ideas on how to push current design towards the adoption

of capabilities globally. We also discuss a few modifications that are necessary to harden

the security of our design.

Global Capabilities

To support global capabilities, we have to address three challenges:

First Challenge: the first challenge would be to sandbox all processes that issue

direct system calls to the kernel (this includes system services and daemons) and only

grant them the least access rights needed. One conceivable solution would be to borrow

the concept of UNIX capabilities from Capsicum project and apply it at this low-level.

However, given the huge number of daemons and server processes, the real challenge

would be to 1) decide exactly what access rights each process needs, and 2) get to know

the system calls that have to be capability-aware.

Second Challenge: When app developers create bounded services, they normally

define permissions to protected their functionalities. Other apps willing to use this

service, have to acquire the necessary permissions. The service, in turn, would act as

a reference monitor that uses the PMS to query whether the calling process has the

required permissions or not. Although user-defined services are accessible over Binder

IPC, they are not registered in the CM. As a result, they are not supported by our design.

The flow on how processes acquire a Binder handle to a user-defined service is yet to be

discovered. If we managed to encode user-defined permissions, defined for the service,

into a mask of access rights and attach it to the Binder handle of the bounded service,

we would solve the second challenge towards applying global capabilities.

77

78 Chapter 7 Future Work

Third Challenge: Some highly privileged processes, such as SurfaceFlinger, run in

the ”system” sandbox with UID of 1000. Such services require some functionalities from

other system services registered with the CM. System services are designed such that

they allow calls that originate from processes with specific UIDs (e.g., 1000, indicating

that it is a system process) to pass without permission check. This, in fact, is the third

challenge. One conceivable solution to this issue would be that system processes have

to identify themselves (using an identifier other than UID) when calling the CM asking

for a capability to a system service. The CM, in turn, have to maintain a static list of

access rights for each system process to all required system services. In turn, system

services will enforce access control using capabilities for all requests, including requests

from system processes.

Finally, it worth noting that, addressing the aforementioned three challenges on the

current design leads to complete abandon of UIDs. This means the ambient authority

would no longer exist.

Security Enhancements

The current design allows delegation among apps. This makes it easy for malicious app

developers to collude with other apps of her own to sabotage users privacy and security.

The solution to this problem would be to only allow delegation among processes of the

same app. We have two conceivable paths that can be implemented in the Binder driver;

First, upon capability delegation, abort the operation if the sender and receiver have two

different UIDs. Second, introduce SELinux policies and hooks in the Binder to prevent

delegation between processes of different types. The first solution is undesirable given

that we are trying to eliminate the reliance on UIDs in the system even though it might

be the easiest to implement.

Finally, although defining fine-grained access rights on system services may lead

to confusion for end users and reduce usability, it would undoubtedly improve security.

However, we can leave the Android’s permissions intact while empowering app developers

by defining more fine-grained access rights on system services which are enforced only

when the calling capability is delegated. For example, a service provides two sensitive

methods protected by a permission. In the capability mode, have performs two types

of access control. First, when a request with a capability issued by the system arrives,

it would allow execution of both methods if the first bit of access rights is set. The

second case is when a request with a delegated capability1 arrives, then it would allow

execution of both methods only if the first two bits are set. This way, the app developer

1The kernel can be extended to provide this information

Chapter 7 Future Work 79

can delegate access to individual methods to other processes, which will not be able to

access other methods not included in the delegated capability.

Chapter 8

Conclusion

In this thesis, we presented our approach for supporting capabilities in Androids middle-

ware. The approach extends Androids security model with new security features and

gets the overall system a little bit closer towards applying the principle of least privilege.

The extension we have presented allows the system to work in two modes: normal

mode, and capability mode. In the capability mode, conventional high-level permission

enforcement on system services is disabled and access control based on capabilities

becomes effective. Thus, the capability mode eliminates the effect of ambient authority

and services no longer care on who is calling. Instead, they check whether the request

has the required access rights or not.

We used the Binder framework as the core building block for capabilities. Based

on that, we showed how to extend Binder handles with access rights to form fully-

fledged capabilities. Then, we illustrated how Binder capabilities are used in service

invocation, delegation, and revocation. The rationale behind using Binder handles to build

capabilities resides in the fact that Binder handles are unforgeable and communicable

tokens of authority. Those characteristics are the minimum requirements that must hold

true for capability tokens.

We further discussed how using the Binder framework limits the scope of capabilities

to only resources that are accessible through the CM. However, even with the presence

of this limitation, we managed to address two issues: The confused deputy attack, and

inclusion of malicious 3rd-party libraries. We showed how app developers need to be

more security-aware as they are given more power to limit the privileges of untrusted

components of their apps. However, we also discussed how our design aggravates the

effect of collude attack and open the door for new attack caused by implementational

limitation. Nevertheless, we presented our conception on how to prevent those attacks.

81

82 Chapter 8 Conclusion

Finally, we performed a performance analysis and showed that the overhead intro-

duced by creating capabilities is hardly observed. We further showed how the in-place

access rights check outperforms the conventional permission checking in PackageMan-

agerService. We argued whether SELinux can achieve the same objectives accomplished

by our approach and showed it might be impractical, or even infeasible, for SELinux to

do so.

In conclusion, hybrid systems (which rely on DAC, MAC, and capabilities, such as

Capsicum and our proposed design) reduce the effect of ambient authority, and show high

potential in confining sandboxes and effectively applying the principle of least privilege.

Bibliography

[1] Android: Celebrating a big milestone together with you. https://blog.google/products/

android/2bn-milestone/.

[2] Android documentation - app manifest. https://developer.android.com/guide/topics/

manifest/manifest-element.html#uid.

[3] Bitunmap: Attacking android ashmem. https://googleprojectzero.blogspot.de/2016/

12/bitunmap-attacking-android-ashmem.html. Author: Ben, Last check 27.12.2017.

[4] Github - system services retrievable by third-party apps. https://gist.github.com/

abdawoud/630c4ecaca35cdb419b41249fb453def.

[5] Google. android developers - overview on android memory management. https://developer.

android.com/topic/performance/memory-overview.html.

[6] Google. android developers - platform architecture. https://developer.android.com/

guide/platform/index.html.

[7] Google. android source - android open source project. https://source.android.com/

setup.

[8] Google. android source - application context. https://developer.android.com/

reference/android/content/Context.html.

[9] Google. android source - hal architecture. https://source.android.com/devices/

architecture.

[10] Google. android source - jack build toolchain. https://source.android.com/setup/jack.

[11] Google. android source - media server. https://source.android.com/devices/media/

framework-hardening#mediaserver-changes.

[12] Google. android source - multiple users. https://source.android.com/devices/tech/

admin/multi-user.

[13] Google. android source - storage permissions. https://source.android.com/devices/

storage/.

[14] Google. android source code. https://android.googlesource.com/platform/

frameworks/base/+/android-7.1.2_r33/data/etc/platform.xml.

83

https://blog.google/products/android/2bn-milestone/
https://blog.google/products/android/2bn-milestone/
https://developer.android.com/guide/topics/manifest/manifest-element.html#uid
https://developer.android.com/guide/topics/manifest/manifest-element.html#uid
https://googleprojectzero.blogspot.de/2016/12/bitunmap-attacking-android-ashmem.html
https://googleprojectzero.blogspot.de/2016/12/bitunmap-attacking-android-ashmem.html
https://gist.github.com/abdawoud/630c4ecaca35cdb419b41249fb453def
https://gist.github.com/abdawoud/630c4ecaca35cdb419b41249fb453def
https://developer.android.com/topic/performance/memory-overview.html
https://developer.android.com/topic/performance/memory-overview.html
https://developer.android.com/guide/platform/index.html
https://developer.android.com/guide/platform/index.html
https://source.android.com/setup
https://source.android.com/setup
https://developer.android.com/reference/android/content/Context.html
https://developer.android.com/reference/android/content/Context.html
https://source.android.com/devices/architecture
https://source.android.com/devices/architecture
https://source.android.com/setup/jack
https://source.android.com/devices/media/framework-hardening#mediaserver-changes
https://source.android.com/devices/media/framework-hardening#mediaserver-changes
https://source.android.com/devices/tech/admin/multi-user
https://source.android.com/devices/tech/admin/multi-user
https://source.android.com/devices/storage/
https://source.android.com/devices/storage/
https://android.googlesource.com/platform/frameworks/base/+/android-7.1.2_r33/data/etc/platform.xml
https://android.googlesource.com/platform/frameworks/base/+/android-7.1.2_r33/data/etc/platform.xml

84 BIBLIOGRAPHY

[15] Google. android source code - bluetooth system service. https://android.googlesource.

com/platform/frameworks/base/+/android-7.1.2_r33/services/core/java/com/

android/server/BluetoothManagerService.java.

[16] Google. android source code - cameraservice. https://android.googlesource.

com/platform/frameworks/av/+/android-7.1.2_r33/services/camera/

libcameraservice/CameraService.cpp.

[17] Google. android source code - goldfish kernel. https://android.googlesource.com/

kernel/goldfish.

[18] Google. android source code - install daemon. https://android.googlesource.com/

platform/frameworks/native/+/android-7.1.2_r33/cmds/installd/installd.cpp.

[19] Google. android source code - libcore-io-posix library. https://android.googlesource.

com/platform/libcore/+/android-7.1.2_r33/luni/src/main/native/libcore_io_

Posix.cpp.

[20] Google. android source code - system server. https://android.googlesource.com/

platform/frameworks/base/+/android-7.1.2_r33/services/java/com/android/

server/SystemServer.java.

[21] Google. android source code - uids and gids of system daemon and ser-

vices. https://android.googlesource.com/platform/system/core/+/android-7.1.2_

r33/include/private/android_filesystem_config.h.

[22] Google. google source - selinux. https://source.android.com/security/selinux/.

[23] Google. permission levels. https://developer.android.com/guide/topics/manifest/

permission-element.html#plevel.

[24] Google. security enhancements in android (runtime permissions). https://source.android.

com/security/enhancements/enhancements60.

[25] Hal types, android source. https://source.android.com/devices/architecture/

hal-types.

[26] Selinux - centos wiki. https://wiki.centos.org/HowTos/SELinux.

[27] Nitay Artenstein and Idan Revivo. Man in the binder: He who controls ipc, controls the

droid. 2014.

[28] Theodore Book, Adam Pridgen, and Dan S. Wallach. Longitudinal analysis of android ad

library permissions. CoRR, abs/1303.0857, 2013.

[29] Sven Bugiel. Establishing Mandatory Access Control on Android OS. PhD thesis, Saarland

University, 2015.

[30] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Thomas Fischer, Ahmad-Reza Sadeghi,

and Bhargava Shastry. Towards taming privilege-escalation attacks on Android. In 19th

Annual Network & Distributed System Security Symposium (NDSS’12), Feb 2012.

https://android.googlesource.com/platform/frameworks/base/+/android-7.1.2_r33/services/core/java/com/android/server/BluetoothManagerService.java
https://android.googlesource.com/platform/frameworks/base/+/android-7.1.2_r33/services/core/java/com/android/server/BluetoothManagerService.java
https://android.googlesource.com/platform/frameworks/base/+/android-7.1.2_r33/services/core/java/com/android/server/BluetoothManagerService.java
https://android.googlesource.com/platform/frameworks/av/+/android-7.1.2_r33/services/camera/libcameraservice/CameraService.cpp
https://android.googlesource.com/platform/frameworks/av/+/android-7.1.2_r33/services/camera/libcameraservice/CameraService.cpp
https://android.googlesource.com/platform/frameworks/av/+/android-7.1.2_r33/services/camera/libcameraservice/CameraService.cpp
https://android.googlesource.com/kernel/goldfish
https://android.googlesource.com/kernel/goldfish
https://android.googlesource.com/platform/frameworks/native/+/android-7.1.2_r33/cmds/installd/installd.cpp
https://android.googlesource.com/platform/frameworks/native/+/android-7.1.2_r33/cmds/installd/installd.cpp
https://android.googlesource.com/platform/libcore/+/android-7.1.2_r33/luni/src/main/native/libcore_io_Posix.cpp
https://android.googlesource.com/platform/libcore/+/android-7.1.2_r33/luni/src/main/native/libcore_io_Posix.cpp
https://android.googlesource.com/platform/libcore/+/android-7.1.2_r33/luni/src/main/native/libcore_io_Posix.cpp
https://android.googlesource.com/platform/frameworks/base/+/android-7.1.2_r33/services/java/com/android/server/SystemServer.java
https://android.googlesource.com/platform/frameworks/base/+/android-7.1.2_r33/services/java/com/android/server/SystemServer.java
https://android.googlesource.com/platform/frameworks/base/+/android-7.1.2_r33/services/java/com/android/server/SystemServer.java
https://android.googlesource.com/platform/system/core/+/android-7.1.2_r33/include/private/android_filesystem_config.h
https://android.googlesource.com/platform/system/core/+/android-7.1.2_r33/include/private/android_filesystem_config.h
https://source.android.com/security/selinux/
https://developer.android.com/guide/topics/manifest/permission-element.html#plevel
https://developer.android.com/guide/topics/manifest/permission-element.html#plevel
https://source.android.com/security/enhancements/enhancements60
https://source.android.com/security/enhancements/enhancements60
https://source.android.com/devices/architecture/hal-types
https://source.android.com/devices/architecture/hal-types
https://wiki.centos.org/HowTos/SELinux

BIBLIOGRAPHY 85

[31] Michael Dietz, Shashi Shekhar, Yuliy Pisetsky, Anhei Shu, and Dan S. Wallach. Quire:

Lightweight provenance for smart phone operating systems. In Proceedings of the 20th

USENIX Conference on Security, SEC’11, pages 23–23, Berkeley, CA, USA, 2011. USENIX

Association.

[32] Xuhua Ding Zhoujun Li Dong Shen, Zhangkai Zhang and Robert H. Deng. H-binder: A

hardened binder framework on android systems. 2016.

[33] Nikolay Elenkov. Android Security Internals: An In-Depth Guide to Android’s Security

Architecture. No Starch Press, 2014.

[34] Adrienne Porter Felt, Helen J. Wang, Alexander Moshchuk, Steven Hanna, and Erika

Chin. Permission re-delegation: Attacks and defenses. In Proceedings of the 20th USENIX

Conference on Security, SEC’11, pages 22–22, Berkeley, CA, USA, 2011. USENIX Association.

[35] Huan Feng and Kang G. Shin. Understanding and defending the binder attack surface in

android. In Proceedings of the 32Nd Annual Conference on Computer Security Applications,

ACSAC ’16, pages 398–409, New York, NY, USA, 2016. ACM.

[36] Xing Gao, Dachuan Liu, Haining Wang, and Kun Sun. Pmdroid: Permission supervision for

android advertising. 2015 IEEE 34th Symposium on Reliable Distributed Systems (SRDS),

pages 120–129, 2015.

[37] Dianne Hackborn. Discussion on binder. https://lkml.org/lkml/2009/6/25/3.

[38] Jie Huang, Oliver Schranz, Sven Bugiel, and Michael Backes. The art of app compart-

mentalization: Compiler-based library privilege separation on stock android. In CCS,

2017.

[39] Iliyan Malchev Keun Soo Yim and Dave Burke. A taste of android oreo (v8.0) device

manufacturer. Technical report, Google, 2017.

[40] Henry M. Levy. Capability-Based Computer Systems. Digital Press, 1984.

[41] Sebastian Gerling Michael Backes, Sven Bugiel. Scippa: System-centric ipc provenance on

android. 2014.

[42] Gabriel Núñez and Anthony D. Joseph. Party pooper: Third-party libraries in android.

2011.

[43] Machigar Ongtang, Stephen McLaughlin, William Enck, and Patrick McDaniel. Semantically

rich application-centric security in android. In Proceedings of the 2009 Annual Computer

Security Applications Conference, ACSAC ’09, pages 340–349, Washington, DC, USA, 2009.

IEEE Computer Society.

[44] Paul Pearce, Adrienne Porter Felt, Gabriel Núñez, and David A. Wagner. Addroid: privilege

separation for applications and advertisers in android. In ASIACCS, 2012.

[45] S. A. Rajunas, Norman Hardy, Allen C. Bomberger, William S. Frantz, and Charles R.

Landau. Security in keykos. In IEEE Symposium on Security and Privacy, 1986.

[46] Paul Ratazzi, Yousra Aafer, Amit Ahlawat, Hao Hao, Yifei Wang, and Wenliang Du. A

systematic security evaluation of android’s multi-user framework. CoRR, abs/1410.7752,

2014.

https://lkml.org/lkml/2009/6/25/3

86 BIBLIOGRAPHY

[47] Thorsten Schreiber. Android binder - android interprocess communication, 2011.

[48] Jonathan S. Shapiro, Jonathan M. Smith, and David J. Farber. Eros: a fast capability

system. In SOSP, 1999.

[49] Ryan Stevens, Clint Gibler, Jon Crussell, Jeremy Erickson, and Hao Chen. Investigating

user privacy in android ad libraries. 2012.

[50] Robert N. M. Watson, Jonathan Anderson, Ben Laurie, and Kris Kennaway. Capsicum:

Practical capabilities for unix. In USENIX Security Symposium, 2010.

[51] Jonathan Woodruff, Robert N. M. Watson, David Chisnall, Simon W. Moore, Jonathan

Anderson, Brooks Davis, Ben Laurie, Peter G. Neumann, Robert Norton, and Michael

Roe. The cheri capability model: Revisiting risc in an age of risk. 2014 ACM/IEEE 41st

International Symposium on Computer Architecture (ISCA), pages 457–468, 2014.

[52] Wen Xu and Yubin Fu. Own your android! yet another universal root. In 9th USENIX

Workshop on Offensive Technologies (WOOT 15), Washington, D.C., 2015. USENIX Associ-

ation.

[53] Wenbo Yang, Yuanyuan Zhang, Juanru Li, Hui Liu, Qing Wang, Yueheng Zhang, and Dawu

Gu. Show me the money! finding flawed implementations of third-party in-app payment in

android apps, 01 2017.

[54] Simon P. Chung Yanick Fratantonio, Chenxiong Qian and Wenke Lee. Cloak and dagger:

From two permissions to complete control of the ui feedback loop. IEEE ’17. ACM, 2017.

[55] Hang Zhang, Dongdong She, and Zhiyun Qian. Android root and its providers: A double-

edged sword. In Proceedings of the 22Nd ACM SIGSAC Conference on Computer and

Communications Security, CCS ’15, pages 1093–1104. ACM, 2015.

[56] Xiao Zhang, Amit Ahlawat, and Wenliang Du. Aframe: isolating advertisements from mobile

applications in android. In ACSAC, 2013.

[57] Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang. Hey, you, get off of my market:

Detecting malicious apps in official and alternative android markets. In NDSS, 2012.

	Abstract
	Acknowledgements
	Contents
	List of Figures
	Listings
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Thesis Structure

	2 Technical Background and Problem Statement
	2.1 Android platform
	2.1.1 System Services

	2.2 Android's Security Model
	2.2.1 Application Sandboxing
	2.2.1.1 User-Based Model
	2.2.1.2 Security-Enhanced Linux

	2.2.2 Android's Permission System

	2.3 Binder Framework
	2.3.1 Context Manager

	2.4 Problem Statement

	3 Related Work
	3.1 Object-Capabilities
	3.2 Capsicum: Capabilities in UNIX Systems

	4 Design and Implementation
	4.1 Design Decisions
	4.2 Big Picture
	4.3 Management of Capabilities
	4.3.1 Capabilityâ��s Access Rights
	4.3.2 Acquiring Capabilities
	4.3.3 Capability Invocation
	4.3.4 Capability Delegation
	4.3.5 Revocation of Capabilities

	4.4 Implementation
	4.4.1 Scope and Limitations
	4.4.2 Changes on AOSP and Kernel

	5 Security Analysis
	5.1 Assumptions
	5.2 Attacker Model
	5.3 Attack Scenarios
	5.3.1 Mitigated Attacks
	5.3.1.1 Confused deputy
	5.3.1.2 Inclusion of Malicious Library

	5.3.2 Attacks Against Our Design
	5.3.2.1 Collude attacks
	5.3.2.2 Overwriting Access Rights

	6 Discussion and Evaluation
	6.1 Performance Analysis
	6.1.1 Configurations and Setup
	6.1.2 Experiments and Results

	6.2 Coverage and Effectiveness
	6.3 SELinux vs. Capabilities

	7 Future Work
	8 Conclusion
	Bibliography

