
The State of the SameSite: Studying the Usage,
Effectiveness, and Adequacy of SameSite Cookies

Soheil Khodayari, Giancarlo Pellegrino
CISPA Helmholtz Center for Information Security

Saarbrücken, Germany
soheil.khodayari@cispa.saarland, pellegrino@cispa.de

Abstract—Chromium-based browsers now restrict cookies’
scope to a same-site context by changing the default policy
for cookies, thus requiring developers to adapt their websites.
The extent of the adoption and effectiveness of the SameSite
policy has not been studied yet, and, in this paper, we undertake
one of the first evaluations of the state of the SameSite cookie
policy. We conducted a set of large-scale, longitudinal, both
automated and manual measurements of the Alexa top 1K,
10K, 100K, and 500K sites across the main rollout dates of the
SameSite policies, covering both SameSite usage and cross-site
functionality breakage caused by the new default policy. Also,
we performed an extensive evaluation of threats against the new
Lax-by-default policy’s effectiveness, looking at the adequacy of
the coverage provided by the Lax policy and bypass caused by
website developers’ mistakes.

Our study shows that the growth of sites using a SameSite
policy has slowed down considerably after the enforcement dates.
Then, the new Lax-by-default policy has affected about 19% of
the functionalities implemented via cross-site requests without
an explicit SameSite policy, most of which are for online ads.
Third, our study observes a significant mismatch between the
request contexts covered by Lax and the ones actually used
by websites in the wild, making it possible to perform XS
attacks also against popular websites such as Tumblr, Twitch,
SoundCloud, Mailchimp, and Pixiv. Even when using Lax or
Strict policies, much of their effectiveness depends on developers’
awareness of SameSite policies’ implications, who could introduce
vulnerabilities or inconsistent policies, leading to SameSite policy
bypasses. For example, we identified bypass in IMDB, Paypal,
and Meetup. Also, we discovered a widespread SSO IdP abuse
that attackers could use to attack target websites even when using
stricter SameSite policies. Finally, in this paper, we also look at
SameSite implementations in popular browsers and the default
configuration in web frameworks.

Index Terms—SameSite Cookies, Cross-Site Request Forgery,
Cross-Site Information Leakage

I. INTRODUCTION

Limiting the scope of cookies to first-party context is a
long known countermeasure [1] to protect web applications
from cross-site attacks (XS attacks), such as cross-site infor-
mation leakage (XS-Leaks) [2–5] or cross-site request forgery
(CSRF) [6–9], by stripping authentication cookies from cross-
site requests the user nor the web application intended to initi-
ate. Existing solutions require installing additional components
such as HTTP proxies [1] or browser extensions [10], limiting
their impact considerably. However, only very recently, Google
revamped the idea of same-site policies for cookies by propos-
ing and implementing in Chrome a new cookie attribute [11],

the SameSite attribute. The SameSite attribute introduces
three pre-defined same-site policies (None, Lax, and Strict)—
one of which is the new default policy—each defining a set of
cross-site requests contexts where the browser will not include
cookies. By switching to a same-site policy by default, the
hope is that XS attacks become old news [2, 12–17].

The radical change introduced by the SameSite attribute
is that browsers no longer include cookies in all cross-site
requests by default. As such a change can disrupt existing
websites and to help developers transition to the new policy,
Google rolled out SameSite’s features, spreading them over
a period of four years, starting from April 2016, where it
introduced the support for explicitly-defined SameSite poli-
cies, till July 2020 with the enforcement of the new default
policy. As the new policies will play a major role to the
security of the web platform, in this paper, we take a closer
look at the status of SameSite attribute before and after the
enforcement of the new default SameSite policy. In this paper,
we conduct, to the best of our knowledge, the first evaluation
of the SameSite cookie policy, systematically covering the
trend of its usage, the impact of its new default, and the threats
against its effectiveness. We collect and examine the security
risks as a result of the way developers are adapting to the new
changes, and systematize the threats that can undermine the
Lax protection, with the overarching purpose of studying the
adequacy of the new default SameSite cookie policy.

Adoption and Breakage. Starting with a longitudinal analysis
of the SameSite cookie usage from June 2019 to March 2021
on the top 500K sites, we show that, even with a four-year
rollout plan, only 18.94% of sites adopted one of the three
policies, with a steep increase of +203.54% and +18.95% at
the two dates of the new policy enforcement, respectively.
Interestingly, 3.7% of the sites disable the SameSite protection
using the None policy, with a significant increase towards
more popular websites, i.e., 18% for the top 1K sites. Then,
as the new Lax-by-default policy can break functionalities, in
this paper, we provide one of the first systematic analyses to
identify and quantify functionality breakage in the wild due
to the Lax policy. Our results show that, after the rollout of
the new policy, about 19% of functionalities implemented via
cross-site requests no longer work, most of which (77.5%) are
for online advertisement.

Threats to Effectiveness. In this paper, we also take a look

1

at the adequacy of the Lax policy to protect existing websites.
In particular, we explore the tension between the protected
contexts and the contexts that are used by existing websites to
implement security-sensitive operations. In our evaluation, we
first review academic and non-academic literature, and identify
ten distinct threats, including three new threats inspired by
prior work [18, 19]. Then, we assess their prevalence and
practicality in the wild, showing a rather concerning scenario.

For example, we showed that 10.3% of state-changing
requests of the top 1K sites (i.e., 721 out of 6,951) are
still implemented via GET requests, which are not protected
by the Lax policy, and in 2.6% of them, we successfully
verified that CSRF attacks are possible (including popular
sites like Mailchimp and Pixiv). Then, we discovered 1,302
distinct information leakage vulnerabilities (XS-Leaks) that
leak the user’s login status or identity leveraging window
properties and postMessage, via requests that are not protected
by the Lax policy. These XS-Leak attacks affect 40 websites
of Alexa top 500, including popular ones such as Tumblr,
Twitch, and SoundCloud. When looking at the requests that
are protected by the policy, we identified known and new
vulnerabilities in web applications hampering the SameSite
cookies effectiveness. For example, we discovered that 1.5%
of the sensitive state-changing POST requests can be exploited
for CSRF attacks by switching the method to GET. Among
the vulnerable sites we found IMDB, PayPal, and Meetup.
Also, we discovered a wide-spread behavior of Single Sign-
On identity providers that can be used to abuse the exceptional
SameSite policy used by Chrome (i.e., Lax+POST) to refresh
session cookies and perform XS attacks within two minutes
of the cookie refresh. The affected IdPs, among which we
have Google, Facebook and Linkedin, are used by 49% of
the top 10K Alexa sites. Finally, we observed three different
incorrect and inconsistent use of the SameSite attribute, that
can be exploited by attackers in XS attacks, i.e., different
policies between mobile and desktop, cookies with different
policies across web pages, and duplicated cookies with differ-
ent SameSite attributes.

Browsers and Web Frameworks. Finally, in this paper,
we also conduct a comprehensive analysis of 14 popular
web browsers (both mobile and desktop) with regards to
the SameSite cookies, and observed that none of them fully
complies with the RFC 6265bis specification [20], exposing
a total of seven divergent behaviours when enforcing the
SameSite cookie policy. Even if browsers offer a Lax-by-
default SameSite cookie protection, we show that 24% of the
top five web frameworks of top five programming languages
can downgrade that protection by default when the developer
sets a cookie via one of the frameworks’ offered APIs (e.g.,
in Django [21] or Pyramid [22]).

Insights. Overall, our study provides the following insights
about the current state of the SameSite attribute. As ex-
pected, after a rapid increment of sites using one of the Same-
Site policies around the enforcement dates, we now observe
a rather moderate, yet steady, growth. Second, about 19% of

the functionalities implemented via cross-site requests without
an explicit SameSite policy does not work after the Lax-by-
default enforcement, of which the vast majority are requests
for advertisement online services. Third, uncustomizable, pre-
packaged policies like the SameSite policy are making it
particularly challenging for a significant fraction of websites to
benefit from their protections without substantially revisiting
websites’ designs and implementations. For example, while
the Lax policy can considerably reduce the attack surface of
cross-site exploitations, we observed a significant mismatch
between the cross-site request contexts covered by Lax and
the ones used by websites in the wild, making it possible to
perform XS attacks. Such a mismatch may suggest that a user-
customizable, per-contexts same-site policy could be more
beneficial for these websites. Forth, even when using Lax or
Strict policies, much of their effectiveness depends on devel-
opers who may introduce inconsistent or conflicting policies,
leading to SameSite policy bypasses. Finally, we observed
that popular mobile and desktop browsers exhibit inconsistent
behaviors when processing and enforcing SameSite policies
and handling exceptional cases.
Contributions. To summarize, this paper makes the following
contributions:

• We conduct, to the best of our knowledge, the first
security evaluation of the SameSite cookie policy, sys-
tematically studying the trend of its usage from June 2019
to March 2021 on the top 500K Alexa sites.

• We study the impact of the new default SameSite cookie
policy, and present an overview of the number of affected
services and websites by systematically analyzing top 500
Alexa websites.

• We comprehensively review the threats against SameSite
cookies, and identify seven known and propose three new
threats inspired by prior work. We quantify the impact
and prevalence of vulnerabilities of each threat in the
wild by designing large-scale experiments.

• We conduct a comprehensive analysis of 14 popular
web browsers, identifying seven divergent ways on how
browsers enforce the SameSite cookie policy. We ana-
lyze top five web frameworks of top five programming
languages, and show that 24% of the frameworks offer
APIs that, by default, downgrade the new default Lax
protection offered by browsers.

II. BACKGROUND

Before presenting our research questions, we briefly in-
troduce the building blocks of this paper. §II-A provides an
overview of the family cross-site attacks, and then §II-B shows
how same-site policies can help to mitigate them.

A. Cross-Site (XS) Attacks

Cross-site attacks are a family of web attacks where at-
tackers lure users into visiting a malicious web page that
tricks the user’s web browser to send authenticated cross-site
HTTP requests to a vulnerable target website. One of the first
instances of cross-site attacks is Cross-Site Request Forgery

2

Fig. 1: Example of a COSI and CSRF attack.

(CSRF) [6–9, 23, 24], where attackers leverage cross-site re-
quests to perform security-sensitive, server-side state-changing
operations, such as user credential reset (see, e.g., [25–27])
or money transfers [28], without user’s consent or awareness.
Malicious cross-site requests can also target the users making
these requests by leaking sensitive information about user’s
login status [29–31], account type [2], age range [32], or user’s
identity (i.e., deanonymization attack) [2, 5]. These attacks
are often called cross-site information leakage (XS-Leaks) or
Cross-Origin State Inference (COSI) attacks [2–5, 32–36].

CSRF and COSI attacks have a similar two-phases attack
pattern: preparation and attack. Figure 1 exemplifies the threat
model of these attacks. In the preparation step, the attacker
prepares a malicious webpage referring to resources from the
target site. These can be, for example, a hidden, self-submitting
HTML form to reset the user password at the target site or
a JavaScript file hosted by the target site. During the attack
phase, the user visits the attack page (step 1). As a result of the
included resource, the user’s browser sends a cross-site request
to the target website, and the browser automatically attaches
the user’s authenticated session cookies to this request (step
2). The target website receives and processes the request (step
3). In the case of CSRF, the server will perform the requested
operation, e.g., by resetting the user password with an attacker-
controlled one. In case of a COSI attack, the attack page uses
browser side-channels to leak sensitive information about the
user. For example, consider a cross-origin HTTP request that
returns a 200 response code when the user is logged in and a
404 otherwise.

B. SameSite Cookie Policy

Same-Site Policies. A distinctive feature of XS attacks is
that browsers include existing valid cookies in all outgoing
requests, regardless of the context of the requests (e.g., user
click on anchor tags or asynchronous HTTP fetch operation)
or the origin of the page performing the requests (e.g., same-
site or cross-site requests). An effective solution to XS attacks
is limiting the scope of cookies by defining the context in
which browsers can include cookies.

Limiting the scope of cookies to prevent XS attacks is
not a new idea. For example, in 2006, Johns et al. proposed
Request Rodeo [1], an HTTP proxy for browsers that can
detect and remove cookies from cross-site requests that the
user did not initiate when interacting with the webpage. More
recently, in 2016, Google revamped a similar idea by intro-
ducing in Chrome a new cookie attribute [11], the SameSite
attribute for the Set-Cookie HTTP response header (see
RFC 6265bis [20]), allowing developers to pick one out of

None Lax Strict Context Example

3 3 - Anchor GET
3 3 - Form GET <form method=GET action=u>
3 3 - Link prerender GET <link rel=prerender href=u/>
3 3 - Link prefetch GET <link rel=prefetch href=u/>
3 3 - win.open() GET window.open(u)
3 3 - win.location GET window.location.href=u

3 3(∗) - Form POST <form method=POST action=u>
3 - - Iframe GET <iframe src=u>
3 - - Object GET <object data=u>
3 - - Embed GET <embed src=u>
3 - - Image GET
3 - - Script GET <script src=u>
3 - - StyleSheet GET <link rel=stylesheet href=u>
3 3(∗) - Async Reqs. Any xmlhttp.open("POST", u)

TABLE I: Contexts where the three SameSite policies apply. We use (∗)

for the Lax+POST exceptional policy, and 3to show contexts where cookies
are included in the cross-site HTTP request.

three pre-defined cookie policies, namely, the None, Lax, and
Strict policies [20, 37].

SameSite Cookies. The SameSite attribute introduces three
pre-defined cookie policies. The None policy specifies that
cookies are attached to all outgoing requests, including cross-
site ones. This policy corresponds to the default policy before
the introduction of the SameSite attribute. At the other end
of the spectrum, we have the Strict policy that stipulates that
cookies are restricted to the same-site only, i.e., cookies are
never attached to any cross-site request. Finally, the Lax policy
is the new default policy for cookies, and it defines the contexts
where browsers can include cookies for cross-site requests.
For example, browsers include cookies to same-site requests
and top-level navigation requests (e.g., clicking on an anchor
link) with safe HTTP methods [38]. However, browsers will
not include cookies to cross-site requests with unsafe HTTP
methods. Table I summarizes the context where the same-site
policies apply.

New Default Policy and Exception. Starting from July 2020,
Google Chrome set the new default policy to Lax [39],
meaning that when the SameSite attribute is missing, the
browser will enforce the Lax policy. Other browser vendors
adopted [40, 41] or are planning to adopt [42] the same new
default policy.

Unfortunately, enforcing a default Lax policy may break
web application functionalities that rely on cross-site commu-
nications and cookies. For example, web-based Single Sign-
On (SSO) implementations, such as OpenIDConnect or SAML
SSO implementations, optimize user experience by avoid-
ing user re-authentication when valid authenticated session
cookies are included in the cross-site requests. Such requests
are often implemented via POST asynchronous requests or
HTML POST forms. The new default Lax policy forbids
browsers from sending cookies with these requests, breaking
these functionalities. To counter that, Chrome introduced an
exception to the Lax policy—called Lax+POST—where, for
all cookies without the SameSite attribute, Chrome applies
the None policy only for the first two minutes after the cookie
is set. Then, Chrome switches to the Lax policy. Table I lists
the contexts covered by SameSite cookies.

3

III. PROBLEM STATEMENT

Despite the recent surge of attention toward SameSite
cookies, little has been done to understand how they are used
by application developers (see, e.g., [43]) and the hurdles
when using them in practice together with different web
application functionalities. This paper takes the first step in
this direction and explores the security and effectiveness of
SameSite cookies by quantifying their usage in the wild,
and also by highlighting known and introducing new web
attacks that can circumvent SameSite cookies, and ultimately
compromise web applications’ security. In this paper, we aim
to answer the following questions:

(RQ1) Trend Analysis of SameSite Cookie Usage. The main
benefit of the SameSite attribute is the new default cookie
policy, which can disrupt existing websites. To help developers
transition to the new default policy, Google introduced three
gradual changes to Chrome, introduced in 2016, 2019, and
2020. First, in April 2016, Chrome 51 introduced support
for the new attribute without modifying the default policy.
Later, in September 2019, Chrome 77 started showing console
warning messages for cookies without the SameSite attribute.
The final step of this transition took place in 2020, with
Chrome 80. First, in February 2020, Chrome set Lax+POST
the new default policy. However, shortly after, Google rolled
it back (April 2020) to ease developers’ transition to the new
policy in light of the COVID-19 pandemic. The Lax-by-default
was then restored in July 2020 with Chrome 84 [39, 43].

When looking at the SameSite rollout timeline, one of the
first questions we intend to address is understanding the long
rollout approach’s effectiveness by quantitatively measuring
how website developers adapted to the upcoming new policies
across the main rollout milestones. In particular, we intend to
quantify the websites that picked one of the three pre-defined
SameSite policies and those that rely on the new default
behavior. Also, as supporting the SameSite attribute requires
modifying the server-side component’s code, developers may
make mistakes and use non-existing policies (see, i.e., [44]),
inadvertently resulting in deploying a different policy than the
intended one. We answer these questions in §IV.

(RQ2) Functionality Breakage. Starting from July 2020,
the new default policy for cookies without the SameSite
attribute is Lax [39, 43]. Changing the default policy for
cookies can interfere with cross-site communications between
web services. For example, services such as Single Sign-On
(see, i.e., [45–48]) rely on asynchronous authenticated requests
to exchange authentication tokens. Another example is Oracle
APEX, a web application that can run inside iframes (see,
i.e., [49]). According to the Lax policy, browsers will not
include cookies in requests originated in iframes, preventing
Oracle APEX from sending authenticated requests. Despite
this anecdotal evidence, we lack a comprehensive overview
of the websites whose cross-site functionalities may no longer
work due to the new default policy. This paper intends to
fill this gap, by identifying types of affected functionality and

providing a first quantification of the affected websites. We
answer these questions in §VI-A.

(RQ3) Lax Adequacy and Threats. The radical change
introduced by the SameSite attribute is that browsers no longer
include cookies to all cross-site requests by default, but only to
those originating from predefined lists of same-site contexts.
These lists capture those contexts typically used in XS attacks.
For example, the Lax policy forbids including cookies in cross-
site POST submissions as they are typically used in CSRF
attacks. However, prior works (e.g., [2, 5, 8]) suggest that
the Lax policy’s coverage may not be adequate. Developers
do not strictly obey the distinction between safe and unsafe
HTTP methods and implement state-changing or state-leaking
operations via, for example, GET requests.

One of the questions that we intend to answer in this
paper is about the adequacy of the new same-site policies
and their effectiveness. In particular, we want to focus on the
tension between the contexts protected by the new policies
and the contexts used by existing websites to implement
security-sensitive operations. Second, non-academic security
reports (see, e.g., [50–52]) have shown that, in certain cases,
implementation mistakes can cause a bypass of the protec-
tion offered by the new SameSite policy. For example, web
applications may not distinguish between different HTTP
methods when processing incoming HTTP requests, allowing
adversaries to forge protected requests, such as POST, by
changing the HTTP method to non-protected methods, such as
GET [51, 52]. However, it is somewhat unclear whether these
vulnerabilities are outliers or widespread security problems. In
this paper, we intend to provide a comprehensive evaluation
of threats against web applications that rely on the same-
site policies and determine their severity by looking for their
prevalence in the wild. We answer these questions in §VI.

(RQ4) Browser Inconsistencies and Web Frameworks’
Defaults. Our last research question investigates how con-
sistent different (i) web browsers and (ii) web frameworks
apply SameSite cookies on cross-site requests, and what are
the divergent aspects among them. For example, the default
policy in Chrome is Lax, whereas Firefox enforces the None
policy. Even when browsers enforce a default Lax policy, web
frameworks’ APIs may downgrade it to None by default.

IV. SAMESITE COOKIE USAGE

The first part of this paper addresses RQ1, where we intend
to measure how website developers adapted to the new cookie
policies. In this section, we first review the methodology that
we used to perform our measurements. Then, we present our
findings.

Methodology. The methodology of this section consists in
grabbing the cookie response headers of the Alexa top 500K
sites (fetched in June 2020), and then extracting and counting
the number of unique cookie attributes. Instead of conducting
live measurements, we used the websites’ copies stored by
the Internet Archive, allowing us to retrieve past data en-
abling a longitudinal analysis of the usage of the SameSite.

4

Fig. 2: SameSite Cookies usage (June 2019 - March 2021). The vertical lines R1 and R2 mark the two rollouts of the new default policy by Chrome.

In total, we submitted queries to the Internet Archive for
the response headers of the 500K domains archived from
June 2019 to March 2021 with a three-months time interval.
Fetching headers for 500K took in average six days. We
divided the data collection in two periods: September 2020
and March 2021. At the end of each period, we performed
a live measurement of the 500K domains to estimate the
accuracy of Internet Archive’s data. In both measurements,
live measurements resulted in at most +0.5% more successful
responses.

Trend Analysis. Figure 2 shows the usage of the different
SameSite policies from June 2019 to March 2021. As of
March 2021, 80.7% of the sites rely on the default cookie
policy (i.e., 347,251) whereas 18.94% of them adopted one of
the three valid policy. When looking at the trend, the rollout
dates R1 and R2 seem to have played a relevant role with
a steep increase of SameSite attribute usage, especially for
the None policy within the top 1K sites. A small, yet non-
negligible fraction of sites set an invalid policy (1,430 sites,
i.e., 0.33%). An invalid policy is a string that does not match
any of the three known policies, such as SameSite=1, which
are most likely developers’ mistakes. Invalid policies should
be treated as the None policy by web browsers according to
RFC 6265bis [20]. We refer interested readers to Table XIII
of Appendix B that shows the top ten popular invalid policies.
Finally, for at most 69,823 sites, a request to Internet Archive
failed due to timeout.

None policy. In total, 18,640 sites use the None policy (i.e.,
3.7%). However, we observe that the fraction of sites using
None policy increases with the sites’ popularity, from about
one out of 10 among the top 10K sites (8.1%) to one out of
five sites within the top 1K sites (i.e., 18%), making the None
policy the most used policy among the top 1K sites.

Stricter policies. Then, 62,856 sites make it stricter with
either the Strict policy or by explicitly setting the Lax policy.

However, we note that the Strict policy is seldomly used (1,854
sites) when compared to the explicitly-set Lax policy, which
covers almost all cases (61,002 sites, i.e., 97%).

V. FUNCTIONALITY BREAKAGE

As we have shown in the previous section, 80.7% of the sites
did not set the SameSite attribute, thus may rely on the new
default policy which could break cross-site functionalities. In
this section, we first identify the functionalities implemented
via cross-site requests and then we provide a first measurement
of the requests and websites that are affected. Before showing
our results, we present the methodology of our analysis.
Methodology. Websites can use cross-site requests to imple-
ment various functionalities, e.g., advertising, social media
buttons, etc. Identifying the functionality starting from a cross-
site request is not trivial, and we are not aware of an automated
technique able to do that. Accordingly, we design this section’s
experiments considering a human in the loop.

As we may need to evaluate requests manually, we limit
our analysis to Alexa top 500 sites. We exclude duplicate
sites (e.g., google.com and google.co.uk), sites that are not
available in English (i.e., language barrier), and sites that do
not offer free account creation and user login, resulting in
211 websites. Then, we register a user account for each site
and crawl all sites using a browser enforcing the pre-SameSite
default policy, searching for cross-site requests with cookies.
We developed a JavaScript-enabled web crawler leveraging
Puppeteer [53] and Chrome DevTools Protocol (CDP) [54].
Our crawler uses Chrome 83.0.4103.61, which does not en-
force the new default Lax policy. Instead, it warns via the CDP
Audits [55] when a cookie is attached to the request without
specifying the SameSite, thus potentially breaking after the
enforcement of the new default Lax policy. The seed URLs are
the login pages, and after performing the user login with the
manually-created credentials, the crawler follows a breadth-
first visiting strategy to collect new URLs. The crawler stops

5

After R2
Functionality # Requests # Broken # Patched
Advertising / User Tracking 374 93 281
Single-Sign On 81 1 80
Social Media Like / Share 76 11 65
Live Chat Frames 62 8 54
PDF Embed APIs 13 4 9
(Re-) CAPTCHA 12 2 10
Content Servers / CDNs 9 0 9
Survery/Rating Services 6 1 5

Total 633 120 513

Legend: R2= The Second Lax-by-Default Policy Rollout.

TABLE II: Overview of the affected functionalities.

when one of the two criteria is met first: it doesn’t find new
URLs, or the maximum of 200 URLs is reached. In total, our
crawler collected 22,992 cross-site HTTP requests without a
SameSite, which were initiated from 9,073 unique URLs.

To determine each request’s high-level purpose, we first
label our requests using the WebShrinker API [56]—a URL
categorization service based on the industry-standard IAB
taxonomy. The WebShrinker API is limited in regard to
the short-lived, continuously changing advertisement domains.
Accordingly, we also match the request URLs against the
EasyList [57], Host BlackList [58], and Host BlockList [59]—
three popular blocklists specialized for advertisement domains.
Finally, we derive a more fine-grained list of functionalities
by manually inspecting the requests. We pick 633 random
requests out of the 22,992, three from each of the 211 websites,
and manually identify the exact functionality implemented by
the cross-site request. Then, we forcefully remove the cookies
to observe whether the functionality is broken. Broken requests
are marked as affected.

To precisely evaluate functionality breakage after the new
policy’s enforcement, we execute our experiments before and
after the second rollout R2. In June 2020, before R2, we
identified and collected cross-site requests as presented in this
section. Then, in February 2021, after R2, we revisited the
affected requests to confirm whether the new policy has indeed
broken the functionality.

Categorization. The mapping between affected cross-site re-
quests and IAB categories is in Table XII (Appendix B). In
total, our crawler identified 22,992 cross-site HTTP requests
without a SameSite, for a total of 9,073 unique URLs. The
mapping identified 16 high-level categories of websites, pro-
viding 32 different types of functionalities. The vast majority
of affected requests are for those sites offering technology
and computing functionalities (e.g., file sharing, or live chat)
or business services (e.g., advertising, marketing, or analyt-
ics), accounting for over 43.6% and 27.6% of the requests,
respectively. For 303 requests of 17 websites, WebShrinker
only matches the uncategorized category (see Table XII), thus
we used EasyList, Host BlackList, and Host BlockList, and
observed that all the 303 requests are for undesired content,
e.g., ads.

While the IAB categorization provides insights about the
type of the service provided by third-party sites, it does
not help to identify the exact functionality implemented with
cross-site requests. The manual investigation of 633 requests

identified eight functionalities, as shown in Table II. Ad-
vertising and user tracking is the first type of functionality
implemented via cross-site requests, covering 59% of the
requests. Then, 12.8% of the requests are for Single Sign-On
services, 12% for social media buttons, and 9% for embedded
live chat services (e.g., livechat.com). The remaining groups
are embedded PDF readers (e.g., Adobe Audience Manager),
CAPTCHAs, CDNs (e.g., Gigya), and survey/rating services
(e.g., surveymonkey.com).

Breakage. For each of the 633 requests, we manually confirm
whether the new policy for cookies breaks the implemented
functionality. We conduct these experiments in February 2021.
First, we visit the affected site using a Chrome version enforc-
ing the new Lax-by-default policy. Then we check whether
the developers of the affected websites adopted one of the
three SameSite policies to avoid service discontinuity. About
81% of the affected cross-site requests are correctly patched,
and we do not observe breakage of functionality. However,
we observe that the functionalities implemented by 19% of
the affected requests are broken. Out of these, 77.5% of the
requests are directed to advertisement networks, 9.2% to social
media platforms, and 13.3% for the remaining functionalities.

VI. NEW DEFAULT POLICY ADEQUACY AND THREATS

This section evaluates the adequacy of the new default
policy in protecting websites in the wild and an extensive
analysis of threats that can hamper the effectiveness of the
new same-site policies.

Methodology. The first step of our analysis is identifying a
list of threats, distinguishing them in threats leveraging cross-
site requests that are not covered by the Lax policy and
threats covered by the Lax policy. We systematically review
academic literature (i.e., [2, 8, 9, 18, 19, 60–63]), the Stack
Exchange [64] and the Dev [65] security communities, and 21
non-academic resources (i.e., [50–52, 66–83]). We searched
for non-academic resources via Google search (up to page
eight of the results). We used the search term “SameSite
cookie” in combination with “bypass”, “attack”, and “vul-
nerability”, and ignored irrelevant or redundant entries. We
consider in scope those threats that can be exploited by a
web attacker, and those that are relevant for SameSite cookies
according to the identified resources (see, e.g., [2, 9, 23, 50,
51, 84]). Our review identified seven known threats. We also
defined three new threats that are inspired by prior work. We
present the threats in §VI-A. The second step of our analysis
is determining the severity of the threats by looking at their
prevalence in the wild. As each threat requires an ad-hoc
testing procedure, we describe our tests in §VI-B.

A. Threats

We now present ten threats, of which four are against server-
side end-points that are not protected by the Lax policy, and
six due to vulnerabilities introduced by developers that can
hamper the effectiveness of the SameSite attribute. Table III
shows an overview of the threats.

6

Attack Evaluation
Category Threat COSI CSRF Reference Testbed % Vuln. # Uniq. AV # Apps
Not Protected By Lax Replaying State-changing GET [52, 72, 75, 76, 79, 80] Top 1K 2.6% G-SCRs 7 4

Window Properties Leak [2, 78, 85] Top 500 18.48% 1021 39
postMessage Leak [2, 86, 87] Top 500 1.9% 11 4
Pervasive Monitoring [37, 88] Top 500K 0.4% 2,080 2,080

Protected By Lax Forging State-changing POST [51, 73, 74] Top 1K 1.5% P-SCRs 7 6
SSC SSO Redirects Bypass [50, 60, 83] Top 10K 49.3% 6 4,935
SSC Intra-Page Inconsistency* [89, 90] Top 500 1.4% 3 3
SSC Inter-Page Inconsistency* [18] Top 500 3.3% 11 7
SSC User-Agent Inconsistency* [18, 19, 63] Top 500K 1.8% 9,215 9,215
Client-side CSRF vulnerability [9, 91] - - - -

Legend: = threat applicable; = threat not applicable; SSC= SameSite Cookie; AV= Attack Vectors ; G/P-SCR= GET/POST-based State-Changing Request.

TABLE III: Overview of threats to SameSite cookies, grouped by those not covered by Lax (top part) and those covered by Lax (bottom part). Threats marked
with * are new, yet inspired by prior work.

1) Threats not Covered by the Lax Policy:

Replaying State-changing GET Requests. The new default
policy does not prevent the inclusion of cookies in top-level
navigation requests. If web applications use GET requests
for security-sensitive state-changing operations, attackers can
forge authenticated, cross-origin HTTP requests on behalf
of victims, e.g., leveraging the window.open() JavaScript
API (see Table I).

Window Properties Leak. Attackers can issue a top-level
navigation request, and read the number of frames in a target
web page using the length property of the opened JavaScript
window objects. By comparing the frame count, attackers can
leak the user state. For example, using this side-channel, it
was to possible leak sensitive information about a user and
their friends on Facebook [85], or to determine if a user owns
a specific profile in Linkedin (i.e., user deanonymization) [2].

postMessage Leak. Similarly to the previous threat,
attackers can issue top-level navigation requests using
window.open(), listen to broadcasted postMessages from
the opened web page, and leak the user state by comparing
the set of observed messages [2].

Pervasive Monitoring. Third-party cookies are widely used
to track users online, and they often contain sensitive data.
If websites do not set the Secure attribute for these
cookies, a viable threat is pervasive monitoring at network
level. To mitigate this issue, Chromium-based browsers reject
SameSite=None cookies without the Secure attribute [37,
84], but other browsers (e.g., Firefox and Safari) do not.

2) Threats Bypassing Protection of Lax or Strict Policy:

Forging State-changing POST Requests. One of the funda-
mental limitations imposed with the new default Lax policy is
that an attack page cannot submit cross-site POST requests to a
third-party context with the victim cookies attached. However,
some applications are vulnerable in the sense that a state-
changing POST request can be replayed and forged with a
GET request interchangeably. In other words, the vulnerable
application still processes the incoming request regardless of
the HTTP verb used to submit the request. In this setting,
the new default SameSite policy can be bypassed, e.g., by
replaying the request using a top-level navigation GET request.

Single Sign-On HTTP Redirects Bypass. The Lax+POST ex-
ceptional policy (see §II) provides a time window of two min-
utes where Lax protection is not enforced, which is counted
starting from the time of setting of a cookie. A possible attack
consists of installing new cookies using cross-site requests and
using the two-minute window to exploit XS vulnerabilities.
Fresh cookies could be installed, for example, by abusing
Single Sign-On Identity Providers (IdPs) that allow for user
auto re-login via HTTP GET requests and without requiring
user interaction (e.g., CAPTCHAs) [50]. The attack against
a target site is the following. First, the attacker convinces a
user to visit an attack page. Via the window.open() API,
the page asks the IdP to re-login the user at the target site.
As a result of the SSO login, the target site establishes a new
authenticated session with the user’s browser. Since the cookie
is not older than two minutes, Lax protection of the target site
is not enforced, enabling the attacker to mount XS attacks.

Listing 1: A vulnerable example of a duplicate cookie setting.
// for incompatible clients
Set-cookie: 3pc-legacy=value;
// for newer clients
Set-cookie: 3pc=value; SameSite=Strict;

SameSite Cookie Intra-page Inconsistency (new). When
developing web applications, providing support for older web
browsers that are incompatible with the SameSite cookie
policy is challenging. In such incompatible clients, a cookie
marked with a SameSite attribute or an unsupported Same-
Site policy may be rejected and not set, thus breaking the
application functionality. As a workaround, developers may
set redundant cookies, both with and without the SameSite
attribute [89, 90], or with different SameSite policies.
However, this can introduce vulnerabilities if not properly
applied. For example, Listing 1 shows a vulnerable cookie
setting that can be exploited to mount a CSRF attack. In this
example, the application sets two duplicate cookies, namely
3pc and 3pc-legacy, with Strict and no SameSite policy,
respectively, and resorts to the 3pc-legacy if the 3pc
cookie is not included in the request. For a victim vising a
CSRF attack page using a modern client, the 3pc cookie
is not attached to the cross-origin CSRF request, but the
3pc-legacy cookie is still automatically attached to the

7

request, both when assuming a client enforcing a default None
or default Lax policy (i.e., using top-level navigation requests),
enabling CSRF on server-side.

SameSite Cookie Inter-Page Inconsistency (new). This
vulnerability occurs when a web application sets two
different SameSite cookie policies for the same cookie
with the same Path attribute across two different web
pages. For example, if an application sets 3pc=value;
SameSite=Strict; Path=/ when visiting URL1 and
3pc=value; SameSite=None; Path=/ when visiting
URL2, then the Strict policy for this cookie can be bypassed.
In this example, the bypass happens by issuing a top-level
navigation request to URL2, which overwrites the cookie with
the SameSite=None attribute, relaxing the SameSite policy.

SameSite Cookie User-Agent Inconsistency (new). This
vulnerability arises when an application set inconsistent cookie
policies when using two different user agents. For example,
a web application may enforce the Strict or Lax policy for
a sensitive cookie when the user is using a desktop browser,
but enforce the None policy if the user uses a mobile browser
(or vice versa). One reason for such inconsistency is that the
mobile and the desktop version are two different applications
exposing themselves to the public based on the request user-
agent. In such circumstances, CSRF and COSI attacks are
possible provided that the victim uses a user agent with the
less stricter SameSite policy to visit the target website.

Client-side CSRF. When an attacker-controllable input of
client-side JavaScript program is used to generate same-site
requests, a web application is exposed to client-side CSRF
attacks. As these requests are same-site, the browser will attach
cookies, even when using the Strict policy. In this paper, we
do not examine the prevalence of this threat as it has been
extensively studied in a recent work (see, i.e., [9]).

B. Threats Prevalence in the Wild

Starting from the threats of §VI-A, we now quantify their
impact and prevalence in the wild.

Summary of Findings. Our evaluation shows that the cov-
erage of the new default SameSite cookie policy (i.e., Lax)
is not sufficient to protect web applications from a noticeable
set of CSRF and COSI attacks. More specifically, as we show
later, the first category of attacks presented in this section
leverage cross-site request contexts that are not covered by the
Lax policy. Then, the second category of attacks demonstrate
the prevalence of cases where the protection of Lax can be
circumvented. Table III summarizes our findings.

Lax Adequacy. In our evaluation, we identified both CSRF
and COSI attacks against popular websites. First, GET re-
quests (not covered by the Lax policy) are still prevalently used
for state-changing operations—accounting for over 10.3% of
the total state-changing requests in top 1K Alexa websites,
2.6% of which can be leveraged for mounting CSRF attacks
by replaying the request (e.g., in Mailchimp or Pixiv). Second,
we discovered 1,032 distinct information leakage (i.e., COSI)

Method POST GET Total
Reqs 6,230 (89.6%) 721 (10.3%) 6,951
URLs 1,870 251 2,121 / 42,571
Apps 602 (65.2%) 88 (9.5%) 690 / 922

TABLE IV: State-chaning GET and POST requests in Alexa top 1K websites.

vulnerabilities affecting 40 websites of Alexa top 500, includ-
ing Tumblr, Twitch and SoundCloud, that leak the user’s login
status or identity leveraging window properties and postMes-
sage side-channels. We detail these threats in Sections VI-B1
to VI-B3.

Bypassing Lax. We identified a wide range of attacks that
hamper the effectivenss of the Lax policy. For example, we
discovered that 1.5% of the sensitive state-changing POST
requests can be exploited for a CSRF attack by using the GET
HTTP method instead. We found instances of these CSRF
attacks in popular websites, e.g., IMDB, PayPal, or Meetup.
Also, we discovered six unprotected SSO IdPs, including
Google, Facebook and Linkedin, that enable trivial bypass
of the Lax policy on over 49% of the top 10K Alexa sites,
leveraging the exceptional Lax+POST policy. When looking
at SameSite cookie policy inconsistencies, our evaluation of
popular Alexa top 500 websites revealed seven vulnerable
sites with inter-page policy inconsistencies, including Vimeo,
AliExpress and Office365, as well as three vulnerable sites
with intra-page policy inconsistencies, i.e., GitHub, CNN, and
Yahoo. Finally, we discovered 9,951 vulnerable websites with
inconsistent SameSite cookie policies for different user-agents,
by systematically testing half a million Alexa sites, which can
be used to bypass the constraints of the new SameSite cookie
setting. We detail these threats in Sections VI-B4 to VI-B8.

1) Replaying State-changing GET Requests: In this section,
we show that state-changing requests that use the GET method
and that are not protected by the new default SameSite cookie
policy are prevalent, and we demonstrate real-world CSRF
exploitations in popular websites leveraging such requests.

Quantification of Request Types. Our methodology to
quantify the prevalence of state-changing GET requests are as
follows. We use the web crawler of JAW [9] to crawl Alexa top
1K websites. The crawler stores a JavaScript-enabled, DOM
snapshot of the web page after ten seconds. To identify state-
changing requests at large-scale, we create a script that finds
all HTML forms in the DOM snapshots with an anti-forgery
token—an indication that the HTTP request would change the
server-side state when the form is submitted. Then, the script
filters all forms based on their HTTP method, quantifying their
prevalence. We note that, even if these requests are seemingly
protected by a CSRF token, the implementation of the defense
may have been wrong (e.g., faulty token verification when
overriding the HTTP request method [92, 93])—a mistake that
may have acted as a contributing factor for the introduction
of the new SameSite cookie setting. Finally, we compare our
findings with prior work, i.e., the data of Mitch [8].

Table IV summarizes the results. In total, the crawler finds
42,571 URLs for 922 websites. In these pages, our script
identifies a total of 6,951 state-changing requests. Out of this
number, the majority, i.e., 6,230 are POST-based requests.

8

Rank Website Replay Req. Forge Method Total Req.
58 imdb.com 0 2 2
81 fandom.com 0 2 2
102 paypal.com 0 1 1
289 ilovepdf.com 0 1 1
300 investing.com 2 0 2
427 meetup.com 0 2 2
524 mailchimp.com 1 1 2
586 brilio.net 3 0 3
627 pixiv.net 1 0 1

Total Vuln. 9 / 690 7 / 264 9 / 602 16 / 866

TABLE V: Summary of CSRF vulnerabilities discovered for a set of randomly
selected requests of Alexa top 1K websites.

Still, a noticeable fraction of all identified state-changing
requests are based on the GET HTTP method, i.e., over 10.3%,
which as we will show, is in line with prior research [8].
Specifically, we use the dataset of Mitch [94] to confirm our
findings. The dataset contains a total of 58,828 HTTP requests
for 60 popular Alexa websites. Out of this number, we observe
that 938 requests contain an anti-forgery token, an indication
that the request is state-changing. From 939 requests, 121 use
the GET HTTP method, i.e., 12.8%, which is statistically close
to our finding of 10.3%. Therefore, GET requests are still used
in practice for state changes, despite the fact that they are not
protected with the default SameSite cookie policy.

Exploitations. We manually explored the collected data
to detect concrete GET-based CSRF exploitations. Given the
scale of our data, we randomly selected three GET requests
from each web application for which we detected a GET
request, i.e., 88 applications (see Table IV), resulting in a
total of 264 requests. Then, for each selected request, we
checked if the CSRF token verification is performed correctly
by replaying it. Table V presents our findings. In total, we
discovered that seven out of the 264 GET requests (i.e., 2.6%)
are forgeable due to faulty CSRF token verification, affecting
four websites, i.e., Mailchimp, Brillo, Investing, or Pixiv. We
created a working proof-of-concept exploit for each vulnerable
web application. The exploits allow an attacker to delete user
sketches in Pixiv, delete articles, videos and pictures (i.e., user-
generated content) in Brillo, create or remove user portfolios
in Investing, and finally change user settings’ defaults (e.g.,
notifications) in Mailchimp.

2) Window Properties and postMessage Leaks: We inves-
tigate the prevalence of window properties and postMessage
XS-Leaks using the data of our crawl of §V on the Alexa
top 500 websites, i.e., 9,073 URLs of 211 websites. We
automatically explore the presence of login detection and user
deanonymization attack vectors leveraging dynamic analysis.
Specifically, we create a script that, for each URL in our
dataset, loads a candidate test web page inside the browser in
two different user states, i.e., logged and not logged for login
detection and logged as two different users for deanonymiza-
tion. For window properties leak, the test web page opens
the URL in a new window leveraging the window.open()
API, and reads the length property of the opened window,
repeating this process for both user states under test. Similarly,
the same process is performed for postMessage leaks, but
instead of reading the number of frames in the opened window,

XS-Leak Login Det. Deanonym. Total
PM # Apps 4 1 4

URLs 9 2 11

WP # Apps 39 8 39
URLs 986 35 1,021

Total # Apps 40 8 40
URLs 995 37 1,032

TABLE VI: Summary of Window Properties (WP) and postMessage (PM)
information leakage vulnerabilities discovered in Alexa top 500 websites.

Vuln. Alexa Websites
Crawl Top 1K Top 10K Top 100K Top 500K
June 2019 0 0 3 12
Sept. 2019 9 34 70 113
Dec. 2019 1 4 35 135
March 2020 6 29 227 644
June 2020 12 74 556 1,918
Sept. 2020 12 82 609 2,076
Dec. 2021 12 71 597 1,987
March 2021 12 82 634 2,148

TABLE VII: Summary of the discovered security risks due to the missing
Secure flag in SameSite=None cookies.

the test web page listens for broadcasted postMessages using
the window.addEventListener API. Finally, the script
compares the values collected at the two different states, and
outputs the set of state-dependent, leaky URLs.

Table VI summarizes the results of our experiment. In
total, we discovered 1,302 vulnerable URLs, belonging to
a total of 40 distinct websites. Out of 1,302, 37 URLs can
be exploited for deanonimyzing the user’s identity in eight
websites, i.e., Tumblr, Twitch, AliExpress, Blogger, Office365,
Tokopedia, Ebay, and SoundCloud, and the rest (i.e., 995) can
be trivially exploited for mounting login detection attacks in
all 40 vulnerable websites, including privacy-sensitive sites,
such as PornHub. Note that being logged in implies having an
account, which may be problematic for privacy-sensitive web-
sites. Overall, we observe that 18.4% and 1.9% of the tested
web applications are vulnerable to the window properties and
postMessage side-channels, respectively.

3) Pervasive Monitoring: We reuse the data we collected
from Internet Archive between June 2019 to March 2021 (§IV)
to identify cookies marked with SameSite=None that miss
the Secure flag. In total, we detected 2,148 websites who are
at risk of compromising user’s privacy, 12 and 82 of which
belong to the top 1K and 10K websites, respectively. Table VII
summarizes the results of our analysis. We observe that there
is an increasing trend on the instances of this security risk in
the wild.

4) Forging State-changing POST Requests: We reuse the
data we collected in §VI-B1 to assess the prevalence of forge-
able state-changing POST requests. We manually explored
the collected data to detect concrete instances of forgeable
POST requests, where attackers can bypass the Lax protection
by changing the HTTP method. As shown in Table IV, in
total, we identified 6,230 state-changing POST requests in
602 web applications of Alexa top 1K websites. Given the
scale of the data, we randomly selected one state-changing
POST request per web application, resulting in 602 requests.
For each selected request, we checked the susceptibility to a

9

CSRF attack by replaying the request using a different HTTP
method, i.e., GET. In addition to the HTTP method change,
we encode the key-value pairs in the POST request body, if
any, in the form of GET request query parameters. Table V
summarizes our findings. In total, we discovered that nine out
of the 602 requests (i.e., 1.5%) are forgeable, affecting six
popular websites (e.g., PayPal, IMDB, or Meetup). We created
a proof-of-concept exploit for each of the six vulnerable web
applications. The exploits allow an attacker to add or remove
movies from a user watchlist in IMDB, change user settings
(e.g., name, gender, or profile title) in Fandom, modify user
invoices and extend the user session in PayPal, editing a
user’s signature in iLovePDF, and finally creating or removing
notification alerts in Meetup.

5) Single Sign-On HTTP Redirects: To identify SSO IdPs
that enable bypass of the Lax policy, we create a web ap-
plication that integrates SSO using 13 different popular IdPs,
i.e., Google, Facebook, Amazon, Apple, Microsoft, Linkedin,
Github, Twitter, VK, Mail.ru, Twitch, Instagram, and Yahoo.
To derive the list of popular IdPs, we manually review Alexa
top 500 sites, and list the IdPs they use for SSO. We investigate
if each IdP can be leveraged to bypass Lax by checking if
it offers a cross-origin GET-based auto re-login feature that
does not require any user interaction (e.g., CAPTCHA). For
each affected IdP, we find websites from Alexa top 500 that
integrate a SSO feature via that IdP, and verify if the attack
still works in the real-world setting.

To quantify the impact of affected IdPs on websites, We
built a JavaScript-enabled, Chrome-based web crawler on the
top of XDriver [62], and used it to detect the IdPs each website
is using for the SSO. The detection of the IdPs is similar to
that of [62], and is based on a set of fine-grained static probes
and regular expressions that we design for each IdP. We use
our crawler to detect the IdPs in Alexa top 10K websites,
examining tens of thousands of web pages.

Results. In total, we found six SSO IdPs that enable trivial
bypass of the new default policy, i.e., Google, Facebook, Mi-
crosoft, Linkedin, VK and GitHub. These IdPs are integrated
in 4,935 websites, accounting for more than 49% of the top
10K Alexa sites. To identify the affected websites, our crawler
examined a total of 208,464 web pages of 9,485 sites in a
period of around two weeks, designating 6,638 login pages, out
of which 5,180 are login pages with an SSO. From these pages,
4,935 are login pages with at least one of the six affected SSO.
For 515 sites, our crawler failed because either the website
was unresponsive or XDriver failed when looking for DOM
elements. Table XIV in Appendix B summarizes our findings.

False Positives. To evaluate the potential false positives
(FPs) of our automated SSO detection mechanism, we ran-
domly selected 500 websites, and manually verified the de-
tected IdPs. This resulted in a total of seven FP IdP instances
for four websites. In all cases, the underlying reason for the
FP was that the heuristic used to match the existence of the
IdP was present in the website for non-SSO usecases, e.g., in
websites containing tutorials, or documentation about an SSO.

Rank Website Policy Downgrade # Vuln. Cookies
38 aliexpress.com Lax to None 2
148 kompas.com Lax to None 3
151 office365.com Lax to None 1
170 canva.com Strict to None 1
176 vimeo.com Lax to None 1
191 abs-cbn.com Lax to None 2
199 aliyun.com Strict to None 1

Total 7 11

TABLE VIII: Summary of inter-page SameSite cookie inconsistencies in
Alexa top 500 websites.

Accordingly, our crawler exhibits an estimated false positive
rate of 7/(13×500) IdP instances, or 4/500 websites (0.8%).

6) SameSite Cookie Inter-Page Inconsistency: We investi-
gate inter-page policy inconsistencies using the data of our
crawl of §V on the top 500 Alexa websites. We create a script
that compiles a list of cookies set on each website together
with the URL of web pages on which the cookie was set.
Then, the script looks for redundant cookie entries across web
pages, and for each matching case, it checks if the value of the
SameSite attribute is consistent in all cases, and otherwise,
it reports the inconsistency. Finally, for each reported case by
the automated script, we manually confirm the inconsistency
on the live instance of the application.

In total, out of the 211 websites of the top 500 Alexa, this
process led to the detection of seven vulnerable sites having a
total of 11 cookies with policy inconsistencies. This includes,
among others, popular websites such as AliExpress, Vimeo,
and Office365. In all cases, an attacker can downgrade the Lax
or Strict policy to None. Table VIII summarizes the results.

7) SameSite Cookie Intra-Page Inconsistency: We explore
the presence of duplicate cookies having inconsistent SameSite
cookie policies with a semi-automated approach, leveraging
the data of our crawl of §V on the Alexa top 500 websites.
Specifically, we create a script that compares all the cookies set
in a web page with each other. The script checks if it can find
a pair of cookies that have the same value. If a match is found,
it checks if their specified SameSite policy is different, i.e.,
no SameSite or None policy for one cookie, and Lax or
Strict for the other. Since two session cookies may trivially
have the same value (e.g., an integer), yet do not encode the
same semantics, the script also apply certain heuristics, e.g.,
the length or type of the strings. Finally, it reports all cookie
pairs that match these properties. For each cookie reported, we
manually review and confirm the existence of a vulnerability
to eliminate false positives.

In total, the script reported 22 cookie pairs of eight websites
out of the 211 sites under test. However, manual investigation
revealed that only three websites (nine cookie pairs) are
vulnerable, i.e., GitHub, CNN, and Yahoo, accounting for
1.4% of the tested websites. For example, CNN sets a pair
of duplicate cookies named obuid and OB-USER-TOKEN
with the exact same value but with different SameSite
cookie policies, i.e., no SameSite attribute and the Strict
policy, respectively. Similarly, Yahoo sets duplicate session
cookies with different policies, i.e., None and Lax. Finally,
GitHub uses a pair of cookies named user-session and
--Host-user-session-same-site with inconsistent

10

Crawl (M, N) (M, L) (M, S) (M, NS) (M, I) Total
June 2020 5,719
(D, N) - 2,263 70 213 0
(D, L) 2,382 - 244 157 0
(D, S) 72 244 - 9 0
(D, NS) 217 133 5 - 0
(D, I) 0 0 0 0 -

Sept. 2020 9,215
(D, N) - 3,262 299 1,282 0
(D, L) 3,167 - 381 759 0
(D, S) 234 378 - 26 0
(D, NS) 172 268 13 - 0
(D, I) 0 0 0 1 -

April 2021 9,951
(D, N) - 3,572 328 1,166 0
(D, L) 3,516 - 431 781 0
(D, S) 302 432 - 35 0
(D, NS) 135 278 33 - 0
(D, I) 0 0 0 1 -

Legend: D= Desktop; M= Mobile; N= None; L= Lax; S= Strict;
NS= Not Set; I= Invalid.

TABLE IX: Summary of SameSite cookies’ inconsistencies across mobile
and desktop clients of Alexa top 500K websites. The total column shows the
number of vulnerable sites where a policy downgrade can occur.

policies, i.e., no SameSite policy and Strict, respectively.
8) Inconsistent Policy for Different User-Agents: To de-

termine inconsistent policies based on the user-agent, we
performed three web crawls on live instances of Alexa top
500K websites on June 2020, September 2020, and April 2021
using two different User-Agents for mobile and desktop clients
(see Appendix B). Accordingly, we compare if the SameSite
cookie policy is set differently for the same cookie across the
HTTP responses captured for desktop and mobile clients.

Table IX summarizes our findings. In total, we identified
5,719, 9,215, and 9,951 vulnerable websites that allow a policy
downgrade in the three web crawls, respectively. Note that not
all entries in Table IX may lead to a policy downgrade, i.e.,
pairs that have the Lax policy in one client, and do not set any
policy in the other client do not lead to a policy downgrade
assuming the new default policy. Finally, out of the 9,951 vul-
nerable websites, 138 are among the top 1K Alexa websites,
showing that such inconsistencies are prevalent among popular
sites. We refer interested readers to Table XV in Appendix B
which shows the number of policy inconsistencies grouped by
site popularity.

VII. WEB BROWSERS AND WEB FRAMEWORKS

The final analysis of our paper looks at the inconsistency
between browsers when handling and enforcing the SameSite
attribute properties (§VII-A), and it looks at the default poli-
cies used by popular web frameworks (§VII-B).

A. Evaluation of Web Browsers

Browsers exhibit a variety of behaviours when applying
SameSite cookies. For example, the default policy in Chrome
and Opera is Lax, whereas Firefox and Safari enforce the
None policy by default. Even with regards to Chrome, the
latest IOS version (87.0.4280.77) still uses the None policy by
default [88]. Also, such inconsistencies not only apply to the
default setting, but also to other corner cases where a request is

sent in cross-site context, e.g., when SameSite=None cook-
ies are used without a Secure flag, or when the SameSite
attribute has an invalid or even the Lax or Strict value.

Methodology. We conducted our analysis against 14 web
browsers and investigated their compliance with the new RFC
6265bis specification [20]. The list of popular browsers for
testing is from MDN [37], and we add the iOS Chrome
and Tor Browser. Furthermore, for Safari, we consider three
different versions that are frequently used by the three recent
macOS operating systems, since Safari cannot be upgraded
standalone [95]. We automated the analysis by developing
three webpages, two in the same origin and the third page in
a different origin, where the first page performs same-site and
cross-site requests from different contexts towards the second
and third page, respectively. Then, the analysis of the logs
of the web servers reveals which request was submitted with
cookies.

Results. Table X summarizes our findings. In total, we
identified seven distinct ways on how browsers enforce the
SameSite cookie policy in same-site and cross-site context.
We observed that, to date, none of the 14 tested browsers are
fully compliant with the new RFC 6265bis specification [20],
including Chrome. The most RFC-compliant browsers are
Chrome, Chrome on Android, Opera, Opera on Android, and
Edge, which comply for 11 out of the 12 possible cases of
how the SameSite cookie attribute can be set in same-site and
cross-site contexts, as shown in Table X.

As of today, web application developers need to be aware
of all these seven behaviors if they want their website to (i)
work with all these browsers and (ii) provide the same security
guarantees. One way to achieve that is using user-agent-
dependent SameSite policies. While this may seem a valid
solution, we have seen in the past that header inconsistencies
can be the root cause of vulnerabilities (see, e.g., [19] or our
SSC User Agent Inconsistency vulnerabilities in §VI-B8).

B. Evaluation of Web Frameworks

Even when browsers enforce a default Lax policy, web
frameworks’ built-in APIs can downgrade it to the None policy
by default. Accordingly, we examined the top five frameworks
of top five programming languages, with the overarching goal
of identifying frameworks that relax the browser’s default
SameSite cookie policy when a cookie is set.

Methodology. First, we select the top five web programming
languages based on GitHub’s 2020 Octoverse report [123] (i.e.,
JavaScript, Python, Java, PHP, and C#). Then, we compile
a list of frameworks for each language, and quantify their
popularity based on a series of criteria (ordered): number
of tagged questions in Stack Overflow [124], number of
uses by other GitHub repositories, number of GitHub stars,
forks and watches, and the number of downloads in package
managers of each language. Accordingly, we pick the top
five frameworks of each language, resulting in a total of 25
frameworks (see Table XVI of Appendix B). Then, we resort
to the documentation of each framework to see if it has built-

11

Set-Cookie HTTP Header

Browser/ Spec Version Scope K
=V

K
=V

;S
S=

N
on

e;
Se

cu
re

K
=V

;S
S=

N
on

e

K
=V

;S
S=

In
va

lid

K
=V

;S
S=

L
ax

K
=V

;S
S=

St
ri

ct

Specification RFC 6265bis [20] Same-Site
Cross-Site

Tor Browser 10.0.12 Same-Site 7
Cross-Site 7 7

Chrome 89.0.4389.82 Same-Site
Cross-Site 7

Opera 74.0.3911.218 Same-Site
Cross-Site 7

Edge 89.0.774.54 Same-Site
Cross-Site 7

Firefox 86.0 Same-Site 7
Cross-Site 7 7

Safari 14.0.3 Same-Site 7
Cross-Site 7 7

Safari 12.0.3, 13.1.1 Same-Site 7
Cross-Site 7 7 7

IE 11.0 Same-Site 7
Cross-Site 7 7 7 7

Andr. Chrome 84.0.4147.124 Same-Site
Cross-Site 7

Andr. Opera 61.2.3076.56749 Same-Site
Cross-Site 7

Andr. Firefox 79.0.5 Same-Site 7
Cross-Site 7 7

iOS Safari 14.4 Same-Site 7
Cross-Site 7 7

Samsung Int. 13.2.1.70 Same-Site 7
Cross-Site 7 7

Andr. WebView 84.0.4147.105 Same-Site 7
Cross-Site 7

iOS Chrome 87.0.4280.77 Same-Site 7 7
Cross-Site 7 7

Legend: K= Key; V= Value; SS= SameSite; = Cookie Sent; = Cookie Not Sent;
7 = Divergent From/Not Compliant with Specification.

TABLE X: Overview of web browser’s compliance with RFC 6265bis [20].
Browsers with similar behaviours are grouped with the same color. The table
highlights a total of seven distinct browsers’ implementations when enforcing
the SameSite cookie policy, each marked by a different color.

in support for SameSite cookies. If so, we create a basic web
application using the default configuration of the framework,
and use the frameworks’ cookie APIs to set a cookie. Finally,
we run the application and investigate if the framework did
set a SameSite attribute on the cookie by default.

Results. Table XI summarizes our findings. First, out of
the 25 frameworks, 21 frameworks provide built-in APIs
to control the SameSite policy when setting a cookie, out
of which in three frameworks, not all the three SameSite
policies are supported. Then, we observe that six out of the 25
frameworks (i.e., 24%) specify the None policy by default for
all cookies set. For example, when a developer uses the API
set_cookie(k, v) in Django [21] or Pyramid [22], the
framework sets the cookie k=v; SameSite=None, adding
a None policy semi-transparently to the developer.

VIII. DISCUSSION

The Hidden Costs of Pre-packaged Policies. In this paper,
we quantified a significant fraction of the attack surface that
remains unprotected by the SameSite policy and exposed to
XS attacks. Protecting such a fraction of the attack surface
is a considerably harder and more costly task, requiring
developers to revisit the design and implementation of their
systems (e.g., removing state-changing GET) and being aware
of both precise corner case behaviors of browsers and web
frameworks. To date, developers must adapt their existing

SameSite Cookies
Language Framework Version Support Default Reference

Python Flask 1.1.2 Not Set [96]
Django 3.1.7 None [21]
Tornado 6.1 Not Set [97]
Pyramid 2.0 None [22]
Web.py 0.62 None [98]

JavaScript Express 4.17.1 Not Set [99]
Meteor 2.1 Not Set [100]
Sails 1.4.1 None [101, 102]
Koa 6.1.0 Not Set [103]
Hapi 20.1.0 Strict [104]

PHP Laravel 8.16.1 Lax [105]
Symfony 5.2 Lax [106, 107]
CakePHP 4.2.4 Not Set [108, 109]
Zend 1.12 Not Set [110]
Slim 4.7.0 Lax [111, 112]

C# ASP WebForms 4.7.2 None [113]
ASP MVC 4.7.2 None [114]
ASP Core 5.0 Not Set [115]
Nancy 1.4.4 Not Set [116]
Service Stack 5.1 Lax [117]

Java Spring 5.3.4 Lax [118]
Play 2.8 Lax [119]
Vaadin 8.0 Not Set [120]
Vert.x-Web 4.03 Not Set [121]
Spark 3.1.1 Not Set [122]

Legend: = Fully Supported; = Partially Supported; = Not Supported;

TABLE XI: Evaluation of SameSite cookie policy in top five frameworks of
top five programming languages.

web applications to three predefined sets of admitted contexts,
which is in stark contrast with other web security policies
(e.g., CORS and CSP) where developers have fine-grained
options to customize a security policy to their needs. We
believe that such flexibility and customization could help
developers fully protect their web applications. We hope that
our work encourages researchers to take on the challenges of
going beyond static, pre-packaged policies and exploring more
flexible and customizable SameSite policies.

Correct and Secure Use Require Awareness. While the Lax-
by-default policy is a relatively new mechanism that could
help protect from XS attacks, it requires developers to know
the precise cross-site request contexts that are and are not
protected. In this paper, we identified six cross-site contexts
that are not covered by the Lax policy (Table I), which are
exposed to XS attacks. For example, we observed that over
10.3% of state-changing operations in Alexa top 1K sites use
the GET method, and 2.6% of them can be trivially exploited
to mount a CSRF attack.

SameSite for Defense in Depth. Switching to the new Lax
policy requires further care by developers as even the contexts
covered by the Lax policy can be still be abused for XS
attacks. For example, we showed that 1.5% of POST requests
of top 1K Alexa sites that are seemingly protected by Lax
can be successfully forged by replaying the request with the
GET HTTP verb that is not protected by Lax. Also, SameSite
policies should be used consistently across pages and across
website versions to avoid introducing security gaps.

Advertisement Services Affected the Most. Our functionality
breakage analysis showed that as of Februrary 2021, 19% of
cross-site requests without the SameSite attribute are no longer
working, affecting the most the advertising services (77.5%).

12

Browsers Diverge on SameSite Cookie Policy. Our analysis
of 14 different web browsers uncovered seven distinct types of
behaviours when enforcing SameSite cookies. These divergent
enforcements may urge application developers to implement
ad-hoc solutions to handle cookies of different user clients
differently, e.g., by dynamically generating the SameSite pol-
icy per client, or by setting duplicate cookies, one for each
intended client. For example, we discovered that the Lax
policy can be bypassed in 1.4% and 3.3% of the tested top 500
sites due to cookies with inconsistent SameSite policies, either
within a web page (duplicate cookies), or across multiple
pages, respectively. We believe such divergence will narrow
down over time.

Change of the Browser’s Flag Is the First Step. SameSite
cookies are a robust defense-in-depth mechanism against some
classes of XS attacks. However, developers needed to opt-into
its protections by explicitly specifying a SameSite attribute.
Accordingly, changing the default browser’s SameSite cookie
flag to Lax helps transition from an “opt-in” to an “opt-
out” solution. While such change is a promising first step,
it is not enough to complete this transition. For example,
we observed that 24% of the top 25 web frameworks set
the None policy by default when a cookie is set, which can
downgrade the browser’s default SameSite cookie policy, and
requires developers to explicitly opt-into stricter policies. In
addition, external functionalities, such as the integration of
the application to third-party services, may be leveraged to
compromise the Lax protection, and thus need to be reviewed.
For example, for the top 10K Alexa sites, the Lax policy can
be trivially bypassed in over 49% of the sites due to their
integration with vulnerable identity providers.

Vulnerability Notification. In February 2021, we started
the notification process to browsers, web frameworks, IdPs
and websites following the best practices of vulnerability
disclosure [125]. We prioritized our reports by severity. We
sent an initial notification followed by an additional reminder
every month, including a detailed description of the security
risk, or a proof-of-concept exploit for vulnerabilities, e.g.,
the user deanonymization leaks in Tumblr and Twitch, or
CSRF vulnerabilities in Meetup, PayPal, and Mailchimp, who
confirmed the vulnerabilities, and patched them. We detail the
latest status of our notification campaign in Appendix C.

IX. RELATED WORK

HTTP Cookies. The study of cookies in Web security has
primarily focused on cookie integrity attacks (e.g., [126–
130]), and third-party cookies (e.g., [131, 132]). As a re-
sponse to the nefarious role of third-party cookies in XS
attacks, previous research also proposed multiple approaches
to automatically strip session cookies from cross-site re-
quests, e.g., using server-side proxies [24, 133], browser
extensions [1, 10, 134, 135], or both [136]. Franken et. al. [60]
proposed a framework to evaluate the correct enforcement
of these cookie stripping policies on cross-site requests, by
analyzing the security mechanisms of browsers and browser

extensions. Other works studied the usage of cookie security
attributes. For example, Sivakorn et. al. explored the adoption
of the Secure flag [137], and Singh et. al. measured its
usage [138]. Similarly, Zhou and Evans studied the usage of
the HTTPOnly attribute [139]. In contrast to these works, we
focus on the SameSite attribute. Closely related to our work,
Calvano [44, 140] analyzed the usage of SameSite cookie poli-
cies using HTTP archive. Similarly, the proprietary BuiltWith
website reports the usage of SameSite cookies [141]. Our work
completes the missing pieces from these analyses, systemati-
cally studying the trend of the adoption of valid and invalid
SameSite cookie policies, and the impact and effectiveness of
Lax-by-default cookies.

Web Inconsistencies. Analysis of Web inconsistencies has
been considered by several researchers in the past. Most
notably, previous research studied the inconsistent deployment
of HTTP headers between the desktop and mobile variants of
a website [19, 63]. Other works addressed incoherencies in
browser access control policies and SOP (see, e.g., [2, 138,
142, 143]). More closely related to the attacks presented in
our work, Calzavara et. al. studied the inconsistent adoption
of security mechanisms across different web pages of an
application [18]. As opposed to these works, in this paper,
we uncovered inconsistencies of the browsers with regards to
the SameSite cookie policy. Also, we studied the protective
coverage of the new default Lax policy, and systematically
identified and proposed attacks that can bypass it, primarily
based on incoherencies in the SameSite cookie attribute.

X. CONCLUSION

In this paper, we performed, to the best of our knowl-
edge, the first security evaluation of SameSite cookie policy,
systematically covering the trend of its usage, the impact
of the new default policy, and the threats against it, with
the overarching goal of studying how effectively SameSite
cookies can mitigate XS attacks. We quantified the prevalence
of vulnerabilities of each threat in the wild, showing that (i)
XS attacks can still be mounted in popular web applications
leveraging requests that are not protected by the default
Lax policy, thus requiring developers to be aware of the
unprotected requests and the additional security risks, and
(ii) even if developers use the default Lax policy correctly
and as a defense-in-depth, application-level vulnerabilities,
such as forgeable state-changing POST requests, or intra-page
and inter-page cookie policy inconsistencies can continue to
cause XS attacks, despite the presence of the Lax policy.
Finally, we showed that browsers diverge when enforcing
SameSite cookies, and that web frameworks’ default APIs can
undermine the browser’s enabled-by-default Lax protection.
Overall, we believe SameSite cookies are a powerful defense-
in-depth that can help reduce the attack surface for XS attacks.
However, their correct and secure use require developer’s
awareness and expertise.

13

REFERENCES
[1] M. Johns and J. Winter, “RequestRodeo: Client-side Protection Against

Session Riding,” 2006, https://www.owasp.org/images/4/42/RequestR
odeo-MartinJohns.pdf.

[2] A. Sudhodanan, S. Khodayari, and J. Caballero, “Cross-Origin State
Inference (COSI) Attacks: Leaking Web Site States through XS-
Leaks,” in Network and Distributed Systems Security Symposium, 2020.

[3] XS-Leaks Wiki. https://xsleaks.com/.
[4] S. Lekies, B. Stock, M. Wentzel, and M. Johns, “The Unexpected

Dangers of Dynamic JavaScript,” in USENIX Security Symposium,
2015.

[5] C. A. Staicu and M. Pradel, “Leaky Images: Targeted Privacy Attacks
in the Web,” in USENIX Security Symposium, 2019.

[6] A. Sudhodanan, R. Carbone, L. Compagna, and N. Dolgin, “Large-
scale Analysis & Detection of Authentication Cross-site Request Forg-
eries,” in IEEE European Symposium on Security and Privacy, 2017.

[7] G. Pellegrino, M. Johns, S. Koch, M. Backes, and C. Rossow,
“Deemon: Detecting CSRF with Dynamic Analysis and Property
Graphs,” in ACM SIGSAC Conference on Computer and Communi-
cations Security, 2017.

[8] S. Calzavara, M. Conti, R. Focardi, A. Rabitti, and G. Tolomei,
“Mitch: A Machine Learning Approach to the Black-Box Detection
of CSRF Vulnerabilities,” in IEEE European Symposium on Security
and Privacy, 2019.

[9] S. Khodayari and G. Pellegrino, “JAW: Studying Client-side CSRF with
Hybrid Property Graphs and Declarative Traversals,” in 30th USENIX
Security Symposium, 2021.

[10] P. D. Ryck, L. Desmet, W. Joosen, and F. Piessens, “Automatic and
Precise Client-Side Protection against CSRF Attacks,” in European
Symposium on Research in Computer Security (ESORICS), 2011.

[11] M. West, “Same-site Cookies,” 2016. [Online]. Available: https:
//tools.ietf.org/html/draft-west-first-party-cookies-07

[12] S. Helme, “CSRF is (really) dead,” https://scotthelme.co.uk/csrf-is-
really-dead/.

[13] S. Rees-Carter, “CSRF is dead, long live SameSite=Lax (or is it?),”
https://stephenreescarter.net/csrf-is-dead-long-live-samesite-lax/.

[14] Using the Same-Site Cookie Attribute to Prevent CSRF Attacks. https:
//www.netsparker.com/blog/web-security/same-site-cookie-attribute-
prevent-cross-site-request-forgery/.

[15] R. Sharma, “Preventing Cross-Site Attacks Using SameSite Cookies,”
https://dropbox.tech/security/preventing-cross-site-attacks-using-
same-site-cookies.

[16] P. K. Riramar. OWASP: SameSite Attribute. https://owasp.org/www-
community/SameSite.

[17] M. West, “Incrementally Better Cookies,” 2019. [Online]. Available:
https://tools.ietf.org/html/draft-west-cookie-incrementalism-00

[18] S. Calzavara, T. Urban, D. Tatang, M. Steffens, and B. Stock, “Rein-
ing in the Web’s Inconsistencies with Site Policy,” in Network and
Distributed Systems Security Symposium, 2021.

[19] A. Mendoza, P. Chinprutthiwong, and G. Gu, “Uncovering HTTP
Header Inconsistencies and the Impact on Desktop/Mobile Websites,”
in World Wide Web Conference, 2018.

[20] “Cookies: HTTP State Management Mechanism,” 2020. [Online].
Available: https://tools.ietf.org/html/draft-ietf-httpbis-rfc6265bis-05

[21] Django HttpResponse.set cookie() API. https://docs.djangoproject.c
om/en/3.1/ref/request-response/.

[22] Pyramid Response.set cookie() API. https://docs.pylonsproject.org/pro
jects/pyramid/en/latest/api/response.html.

[23] A. Barth, C. Jackson, and J. C. Mitchell, “Robust Defenses for
Cross-site Request Forgery,” in ACM Conference on Computer and
Communications Security, 2008.

[24] A. Czeskis, A. Moshchuk, T. Kohno, and H. J. Wang, “Lightweight
Server Support for Browser-based CSRF Protection,” in International
Conference on World Wide Web, 2013.

[25] Account Take Over in US Dept of Defense. https://hackerone.com/re
ports/410099.

[26] Critical CSRF Vulnerability on Facebook. https://www.acunetix.com/b
log/web-security-zone/critical-csrf-vulnerability-facebook/.

[27] WordPress CVE-2014-9033. https://cve.mitre.org/cgi-bin/cvename.cg
i?name=CVE-2014-9033.

[28] W. Zeller and E. W. Felten, “Cross-Site Request Forgeries: Exploitation
and Prevention,” in Princeton University, 2008, https://www.cs.utexas.
edu/∼shmat/courses/cs378/zeller.pdf.

[29] M. Cardwell, “Abusing HTTP Status Codes to Expose Private Infor-

mation,” 2011, https://www.grepular.com/Abusing HTTP Status Cod
es to Expose Private Information.

[30] T. Yoneuchi, “Detect the Same-Origin Redirection with a bug in
Firefox’s CSP Implementation,” 2018, https://diary.shift-js.info/csp-
fingerprinting/.

[31] R. Linus, “Your Social Media Fingerprint,” https://github.com/Robin
Linus/socialmedia-leak.

[32] T. Van Goethem, W. Joosen, and N. Nikiforakis, “The Clock is
Still Ticking: Timing Attacks in the Modern Web,” in ACM SIGSAC
Conference on Computer and Communications Security, 2015.

[33] S. Chen, R. Wang, X. Wang, and K. Zhang, “Side-channel Leaks in
Web Applications: A Reality Today, a Challenge Tomorrow,” in IEEE
Symposium on Security and Privacy, 2010.

[34] A. Janc and M. West, “How do we Stop Spilling the Beans Across
Origins,” 2018. [Online]. Available: https://www.arturjanc.com/cross-
origin-infoleaks.pdf

[35] J. Mao, Y. Chen, F. Shi, Y. Jia, and Z. Liang, “Toward Exposing
Timing-Based Probing Attacks in Web Applications,” in International
Conference on Wireless Algorithms, Systems, and Applications, 2016.

[36] Z. Weinberg, E. Y. Chen, P. R. Jayaraman, and C. Jackson, “I Still
Know What You Visited Last Summer: Leaking Browsing History via
User Interaction and Side Channel Attacks,” in IEEE Symposium on
Security and Privacy, 2011.

[37] SameSite Cookies. https://developer.mozilla.org/en-US/docs/Web/HT
TP/Headers/Set-Cookie/SameSite.

[38] Safe HTTP Methods. https://developer.mozilla.org/en-US/docs/Glossa
ry/safe.

[39] (2020) Feature: Cookies default to SameSite=Lax. https://www.chro
mestatus.com/feature/5088147346030592.

[40] Site compatibility-impacting changes coming to Microsoft Edge. https:
//docs.microsoft.com/en-us/microsoft-edge/web-platform/site-impactin
g-changes.

[41] Can I use SameSite cookie attribute? https://caniuse.com/?search=sa
mesite.

[42] (2019) Intent to implement: Cookie SameSite=lax by default and
SameSite=none only if secure. https://groups.google.com/forum/#!msg
/mozilla.dev.platform/nx2uP0CzA9k/BNVPWDHsAQAJ.

[43] The Chromium Projects: SameSite Updates. https://www.chromium.o
rg/updates/same-site.

[44] P. Calvano, “SameSite Cookies - Are you Ready?” 2020, https://dev.
to/httparchive/samesite-cookies-are-you-ready-5abd.

[45] Impact of the Changes to the SameSite Cookie Flag Default Behavior
in Chrome. https://wiki.resolution.de/doc/saml-sso/latest/all/knowl
edgebase-articles/technical/impact-of-the-changes-to-the-samesite-
cookie-flag-default-behavior-in-chrome.

[46] F. Skokan, “Upcoming Browser Behavior Changes: What Developers
Need to Know,” 2020, https://auth0.com/blog/browser-behavior-
changes-what-developers-need-to-know/.

[47] B. Geesink, “Default cookie SameSite attribute behaviour change,”
2020, https://wiki.surfnet.nl/display/surfconextdev/Default+cookie
+SameSite+attribute+behaviour+change.

[48] PhenixID: SameSite cookie patch. https://document.phenixid.net/m/87
804/l/1201413-samesite-cookie-patch.

[49] J. Dixon and M. Paine, “Upcoming SameSite cookie changes and the
impact for APEX Apps running in an iframe,” 2020, https://www.jm
jcloud.com/blog/upcoming-samesite-cookie-changes-and-the-impact-
for-apex-apps-running-in-an-iframe.

[50] Bypass SameSite Cookies Default to Lax and get CSRF. https://me
dium.com/@renwa/bypass-samesite-cookies-default-to-lax-and-get-
csrf-343ba09b9f2b.

[51] Defending against CSRF with SameSite cookies. https://portswigger.
net/web-security/csrf/samesite-cookies.

[52] J. Rabal, “Same-Site cookies against CSRF attacks analysis,” 2017,
https://www.tarlogic.com/en/blog/samesite-cookies-analysis/.

[53] Puppeteer. https://github.com/puppeteer/puppeteer.
[54] Chrome DevTools Protocol. https://chromedevtools.github.io/devtools-

protocol/.
[55] Chrome DevTools Protocol Audits. https://chromedevtools.github.io/d

evtools-protocol/tot/Audits/.
[56] Web Shrinker API. https://www.webshrinker.com/.
[57] EasyList. https://easylist.to/.
[58] Host BlackList. https://github.com/anudeepND/blacklist.
[59] Host BlockList. https://github.com/notracking/hosts-blocklists.
[60] G. Franken, T. Van Goethem, and W. Joosen, “Who Left Open

14

the Cookie Jar? A Comprehensive Evaluation of Third-party Cookie
Policies,” in 27th USENIX Security Symposium, 2018.

[61] G. Franken, T. Van Goethem, and W. Joosen, “Exposing Cookie
Policy Flaws Through an Extensive Evaluation of Browsers and Their
Extensions,” in IEEE Symposium on Security and Privacy, 2019.

[62] K. Drakonakis, S. Ioannidis, and J. Polakis, “The Cookie Hunter: Au-
tomated Black-box Auditing for Web Authentication and Authorization
Flaws,” in ACM SIGSAC Conference on Computer and Communica-
tions Security, 2020.

[63] T. Van Goethem, V. Le Pochat, and W. Joosen, “Mobile Friendly or
Attacker Friendly? A Large-Scale Security Evaluation of Mobile-First
Websites,” in ACM Asia Conference on Computer and Communications
Security, 2019.

[64] StackExchange Security Community. https://security.stackexchange.c
om/.

[65] Dev Security Community. https://dev.to/t/security.
[66] Issue 831725: SameSite cookie bypass via prerender. https://bugs.chr

omium.org/p/chromium/issues/detail?id=831725.
[67] Cookies with SameSite=None or SameSite=invalid treated as Strict.

https://bugs.webkit.org/show bug.cgi?id=198181.
[68] Mozilla CVE-2018-12370. https://www.cvedetails.com/cve/CVE-

2018-12370/.
[69] CVE-2018-18351. https://nvd.nist.gov/vuln/detail/CVE-2018-18351.
[70] CVE-2019-5880: SameSite cookie bypass. https://bugzilla.redhat.com/

show bug.cgi?id=1762378.
[71] SameSite cookies aren’t sent on credentialed CORS requests. https:

//github.com/whatwg/fetch/issues/769.
[72] C. Sabol, “It’s Okay, We’re All On the SameSite,” 2020, https://securi

tyboulevard.com/2020/02/its-okay-were-all-on-the-samesite/.
[73] S. Rees-Carter. SameSite Cookies Deep Dive / CSRF is dead (or is

it?). https://stephenreescarter.net/talks/samesite-cookies/.
[74] V. Li, “Bypassing CSRF Protection,” 2020, https://vickieli.dev/csrf/by

pass-csrf-protection/.
[75] SameSite cookies. https://makandracards.com/makandra/71018-samesi

te-cookies.
[76] J. Walton, “Avoiding CSRF Attacks with API Design,” 2020, http://

www.thedreaming.org/2020/05/26/avoid-csrf-attacks-with-api-design/.
[77] SameSite Cookies and CSRF Attacks. https://symfonycasts.com/scree

ncast/api-platform-security/samesite-csrf.
[78] XS-Leaks Wiki: SameSite Cookies. https://xsleaks.dev/docs/defenses/

opt-in/same-site-cookies/.
[79] SameSite Cookie Attribute and Synchronizer Token Pattern. https://se

curity.stackexchange.com/questions/201396/samesite-cookie-attribute-
and-synchronizer-token-pattern.

[80] How is the lack of the “SameSite” cookie flag a risk? https://security.s
tackexchange.com/questions/154106/how-is-the-lack-of-the-samesite-
cookie-flag-a-risk.

[81] Will same-site cookies be sufficent protection against CSRF and XSS?
https://security.stackexchange.com/questions/121971/will-same-site-
cookies-be-sufficent-protection-against-csrf-and-xss.

[82] D. Jubeau, “Secure your cookies to the next level with SameSite
attribute,” 2017, https://dev.to/damienjubeau/secure-your-cookies-
to-the-next-level-with-samesite-attribute.

[83] F. Valverde, “Everybody hates CSRF,” 2020, https://dev.to/fdoxyz/ev
erybody-hates-csrf-4fek.

[84] Feature: Reject insecure SameSite=None cookies. https://www.chrome
status.com/feature/5633521622188032.

[85] R. Masas. (2018) Patched Facebook Vulnerability Could Have
Exposed Private Information About You and Your Friends. [Online].
Available: https://www.imperva.com/blog/facebook-privacy-bug/

[86] C. Guan, K. Sun, Z. Wang, and W. Zhu, “Privacy Breach by Exploiting
postMessage in HTML5: Identification, Evaluation, and Countermea-
sure,” in ACM Asia Conference on Computer and Communications
Security, 2016.

[87] A. Ballarano, F. Colace, M. De Santo, and L. Greco, “The Postman
Always Rings Twice”: Evaluating E-Learning Platform a Decade
Later,” International Journal of Emerging Technologies in Learning,
2016.

[88] SameSite Frequently Asked Questions (FAQ). https://www.chromium
.org/updates/same-site/faq.

[89] SameSite Cookie Attribute explained. https://cookie-script.com/docum
entation/samesite-cookie-attribute-explained.

[90] R. Merewood, “SameSite cookie recipes,” https://web.dev/samesite-
cookie-recipes/.

[91] (2018) Client-side CSRF. https://www.facebook.com/notes/facebook-
bug-bounty/client-side-csrf/2056804174333798/.

[92] L. Caretton, “Node.js Connect CSRF Bypass Abusing Method Override
Middleware,” http://blog.nibblesec.org/2014/05/nodejs-connect-csrf-
bypass-abusing.html.

[93] Often Misused: HTTP Method Override. https://vulncat.fortify.com/en
/detail?id=desc.dynamic.xtended preview.often misused http metho
d override.

[94] Mitch Dataset. https://github.com/alviser/mitch/tree/master/dataset.
[95] Update or reinstall Safari for your computer. https://support.apple.co

m/en-us/HT204416.
[96] Flask Response.set cookie() API. https://tedboy.github.io/flask/gener

ated/generated/flask.Response.set cookie.html.
[97] Tornado RequestHandler.set cookie() API. https://www.tornadoweb.o

rg/en/stable/web.html?highlight=set cookie#tornado.web.RequestHand
ler.set cookie.

[98] Web.py setcookie() API. https://webpy.org/cookbook/cookies.
[99] Express SameSite Cookie Attribute. https://expressjs.com/en/resources

/middleware/session.html.
[100] Meteor Cookie.set() API. https://docs.meteor.com/.
[101] Sails Response.cookie() API. https://sailsjs.com/documentation/refere

nce/response-res/res-cookie.
[102] Sails SameSite Cookies. https://github.com/balderdashy/sails/issues/69

42.
[103] Koa SameSite Attribute. https://github.com/koajs/session/issues/174.
[104] Hapi Server.state() API and isSameSite Option. https://hapi.dev/api/?v

=20.1.0.
[105] Laravel SameSite Cookie Attribute. https://laracasts.com/discuss/chan

nels/laravel/some-cookies-are-misusing-the-recommended-samesite-
attribute.

[106] Symfony Cookie API. https://symfony.com/doc/current/components/h
ttp foundation.html#setting-cookies.

[107] Symfony Default SameSite Cookie Attribute. https://github.com/sym
fony/symfony/blob/c377a795f579e5417d106c94ae5d5fe4b4300dca/src
/Symfony/Component/HttpFoundation/Cookie.php.

[108] CakePHP withCookie() API. https://book.cakephp.org/4/en/controller
s/request-response.html#setting-cookies.

[109] CakePHP Default SameSite Cookie Attribute. https://github.com/cak
ephp/cakephp/blob/d4b68a6dd2404d0b8cc7431838a39ec44b3f5f6b/src
/Http/Cookie/Cookie.php.

[110] Zend Default SameSite Cookie Attribute. https://github.com/zendfra
mework/zend-http/commit/0d99103d391f4f746e267a00507d75366055
0f7b.

[111] Slim setCookie() API. https://www.slimframework.com/docs/v2/resp
onse/cookies.html.

[112] Slim SameSite Cookie Attribute. https://github.com/bryanjhv/slim-
session/issues/54.

[113] ASP.NET WebForms HttpCookie. https://docs.microsoft.com/en-us/a
spnet/samesite/csharpwebforms.

[114] ASP.NET HttpCookie. https://docs.microsoft.com/en-us/aspnet/samesi
te/csmvc.

[115] ASP.NET Core CookieBuilder. https://docs.microsoft.com/en-us/aspne
t/core/security/samesite?view=aspnetcore-5.0.

[116] Nancy Web Framework. https://github.com/NancyFx/Nancy.
[117] Service Stack UseSameSiteCookies Configuration. https://docs.service

stack.net/sessions.
[118] Spring SameSite Cookie Attribute. https://docs.spring.io/spring-sessio

n/docs/current/reference/html5/guides/java-custom-cookie.html.
[119] Play Cookie.builder() API. https://www.playframework.com/document

ation/2.8.x/Migration26#SameSite-attribute,-enabled-for-session-and-
flash.

[120] Vaadin Cookie.SetCookie() API. https://vaadin.com/docs/v8/framewo
rk/articles/SettingAndReadingCookies.

[121] Vert.X-Web setCookieSameSite API. https://github.com/vert-x3/vertx-
web/blob/f7902ccd4f5da70908a68611119d77ef4aa3f8d4/vertx-
web/src/main/java/io/vertx/ext/web/handler/SessionHandler.java.

[122] Spark Response.cookie() API. https://sparkjava.com/documentation#g
etting-started.

[123] GitHub 2020 Octoverse Report. https://octoverse.github.com/.
[124] Stackoverflow Tags. https://stackoverflow.com/help/tagging.
[125] B. Stock, G. Pellegrino, C. Rossow, M. Johns, and M. Backes, “Hey,

you have a problem: On the feasibility of large-scale web vulnerability
notification,” in USENIX Security Symposium, 2016.

[126] X. Zheng, J. Jiang, J. Liang, H. Duan, S. Chen, and T. Wan, “Cookies

15

Lack Integrity: Real-World Implications,” in USENIX Security Sympo-
sium, 2015.

[127] A. Bortz, A. Barth, and A. Czeskis, “Origin Cookies: Session Integrity
for Web Applications,” in ACM Transactions on Internet Technology
(TOIT), 2012.

[128] N. Nikiforakis, W. Meert, Y. Younan, M. Johns, and W. Joosen,
“SessionShield: Lightweight protection against session hijacking,” in
International Symposium on Engineering Secure Software and Systems,
2011.

[129] M. Bugliesi, S. Calzavara, R. Focardi, and W. Khan, “CookiExt:
Patching the browser against session hijacking attacks,” in Journal of
Computer Security, 2015.

[130] S. Calzavara, A. Rabitti, and M. Bugliesi, “Sub-session hijacking on
the web: Root causes and prevention,” 2019.

[131] F. Roesner, T. Kohno, and D. Wetherall, “Detecting and defending
against third-party tracking on the web,” in 9th USENIX Symposium
on Networked Systems Design and Implementation, 2012.

[132] M. Dhawan, C. Kreibich, and N. Weaver, “Priv3: A third party cookie
policy,” in W3C Workshop: Do Not Track and Beyond, 2012.

[133] F. Kerschbaum, “Simple Cross-site Attack Prevention,” in Third In-
ternational Conference on Security and Privacy in Communications
Networks, 2007.

[134] P. D. Ryck, L. Desmet, T. Heyman, F. Piessens, and W. Joosen, “Cs-
Fire: Transparent Client-Side Mitigation of Malicious Cross-Domain
Requests,” in International Symposium on Engineering Secure Software
and Systems, 2010.

[135] Z. Mao, N. Li, and I. Molloy, “Defeating Cross-Site Request Forgery
Attacks with Browser-Enforced Authenticity Protection,” in 13th In-
ternational Conference on Financial Cryptography and Data Security,
2009.

[136] S. Lekies, W. Tighzert, and M. Johns, “Towards Stateless, Client-side
Driven Cross-site Request Forgery Protection for Web Applications,”
SAP Research, 2012.

[137] S. Sivakorn, I. Polakis, and A. D. Keromytis, “The Cracked Cookie Jar:
HTTP Cookie Hijacking and the Exposure of Private Information,” in
IEEE Symposium on Security and Privacy, 2016.

[138] K. Singh, A. Moshchuk, H. J. Wang, and W. Lee, “On the Incoherencies
in Web Browser Access Control Policies,” in IEEE Symposium on
Security and Privacy, 2010.

[139] Y. Zhou and D. Evans, “Why aren’t HTTP-only cookies more widely
deployed,” in Proceedings of 4th Web 2.0 Security and Privacy Work-
shop, 2010.

[140] P. Calvano, “SameSite Cookies Analysis,” 2020, https://discuss.httpar
chive.org/t/samesite-cookies-analysis/1988.

[141] SameSite Strict Usage Statistics. https://trends.builtwith.com/docinfo
/SameSite-Strict.

[142] J. Schwenk, M. Niemietz, and C. Mainka, “Same-Origin Policy:
Evaluation in Modern Browsers,” in Proceedings of the 26th USENIX
Conference on Security Symposium, 2017.

[143] G. Aggarwal, E. Bursztein, C. Jackson, and D. Boneh, “An Analysis
of Private Browsing Modes in Modern Browsers.” in USENIX security
symposium, 2010.

[144] X. Likaj, S. Khodayari, and G. Pellegrino, “Where We Stand (or Fall):
An Analysis of CSRF Defenses in Web Frameworks,” in 24th Inter-
national Symposium on Research in Attacks, Intrusions and Defenses,
2021.

[145] A. Parsovs, “Practical Issues with TLS Client Certificate Authentica-
tion.” in Network and Distributed Systems Security Symposium, 2014.

[146] Hackerone. https://hackerone.com.
[147] Bugcrowd. https://www.bugcrowd.com.

APPENDIX A
ADDITIONAL DETAILS FOR THREATS

Window Properties and postMessage Leak. In a window
properties XS-Leak, the attacker can issue top-level naviga-
tion requests via, for example, w=window.open(), and
then count the number of frames in a webpage (note that
w.frames.length is the leaking channel). For example,
if the victim is logged in, the attacker will count x frames,
and zero otherwise. Top-level navigation requests are not

covered by the Lax policy, meaning that top-level requests will
include cookies, leaving the leaking channel observable by the
attacker. On the contrary, if developers set the SameSite policy
to strict, this XS-Leak is mitigated. For the postMessage leak,
the attack pattern is similar. The only difference is that the
observable leaking channel is no longer the number of frames
but the attacker is listening for broadcasted postMessages.
For instance, if the victim is logged in, a postMessage m
is observed, and no messages otherwise. Also, in this case,
should the cookie not be included in top-level navigation
requests, the attacker would not be able to observe differences
across user states (e.g., logged in vs logged out) [2].

Pervasive Monitoring. Assume a website W1 that set a
privacy-sensitive cookie with SameSite=None and another
website W2 that performs cross-site requests to W1. Because
of the policy set by W1, browsers will include cookies in
all requests from W2 to W1. This is the typical setting of
third-party cookies widely used for tracking users. Pervasive
(network) monitoring is a threat to these scenarios because
if cookies are not securely transported (i.e., over TLS), they
can reveal sensitive information about user identity. For this
reason, browsers like Chrome and Opera reject cookies that
do not set the Secure flag together with SameSite=None
policy [84]. However, other browsers such as Firefox and
Safari do not reject these cookies (see Table X), exposing users
of these websites to pervasive monitoring attacks.

Cookie-less Request Authentication. While cookies are one
of the most prevalent forms of request authentication, they
are not the only one (see, e.g., [144]). SameSite cookies can
protect those class of request forgery attacks that perform am-
bient HTTP request authentication with cookies. Accordingly,
other forms of request authentication, such as HTTP authenti-
cation, client certificate authentication [145], or network-based
authentication are not protected by SameSite cookies.

APPENDIX B
ADDITIONAL EVALUATION DETAILS

User-Agents for Web Crawls. To determine inconsistent
SameSite cookie policies across mobile and desktop deploy-
ments of a website, we performed three large-scale crawls on
Alexa top 500K websites using two different user-agents (i.e.,
Chrome Desktop and iOS Safari) on June 2020, September
2020 and April 2021, as per methodology of §VI-B8. The
exact user-agent strings used by our crawler are detailed below.

• Chrome Desktop: Mozilla/5.0 (Windows NT 10.0;
Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/84.0.4147.89 Safari/537.36.

• iOS Safari: Mozilla/5.0 (iPhone; CPU iPhone OS 9 1
like Mac OS X) AppleWebKit/601.1.46 (KHTML, like
Gecko) Version/9.0 Mobile/13B137 Safari/601.1.

Request Timeout Threshold for Internet Archive. We
submitted queries to the Internet Archive to collect the HTTP
response headers of the top 500K Alexa sites from June 2019
to March 2021 (eight crawls, each separated by a three-month

16

IAB ID Category Sub-categories # Requests # Cookies # Websites
IAB19 Technology & Computing File Sharing, Web Search, Email / Chat / Messaging, Data Centers, Desktop Publishing 10,026 37,612 188
IAB3 Business Advertising, Marketing, Business Software 6,354 19,917 186
IAB12 News / Weather / Information News / Weather / Information 1,969 10,795 32
IAB9 Hobbies & Interests Video & Computer Games, Freelance Writing / Getting Published, Photography 1,365 10,508 34
IAB5 Education Distance Learning 1,120 10,705 23
IAB1 Arts & Entertainment Books & Literature, Movies, Music & Audio, Television & Video 867 4,341 25
IAB4 Careers Job Search 399 2,005 21
IAB6 Family & Parenting Babies & Toddlers 351 1,918 18
IAB24 Uncategorized Uncategorized 303 1,025 17
IAB21 Real Estate Buying / Selling Homes 62 489 10
IAB22 Shopping Content Server, Streaming Media, Adult Content, Contests & Freebies 57 411 17
IAB14 Society Social Networking, Weddings 46 283 13
IAB18 Fashion Jewelry, Clothing 40 142 16
IAB11 Law, Government, & Politics Politics 12 55 8
IAB13 Personal Finance Credit / Debit & Loans 9 22 5
IAB2 Automotive Buying/Selling Cars 8 14 4
IAB7 Health & Fitness Exercise / Weight Loss 4 9 3

Total 16 32 22,992 89,743 211

TABLE XII: Overview of the categorization of the affected cross-site requests and types of third-party functionalities.

Invalid Policies # Websites
SameSite=secure 287
SameSite=1 245
SameSite=true 138
SameSite=undefined 124
SameSite=; 106
SameSite= 72
SameSite=false 68
SameSite=-1 55
SameSite:Lax 53
SameSite=0 40

TABLE XIII: Top ten invalid SameSite cookie policies in Alexa top 500K
sites.

IdP Vuln. # Websites
Google 3,450
Amazon 679
Facebook 3,328
Apple 1,593
Microsoft 1,921
Linkedin 983
GitHub 198
Twitter 2,591
VK 1,241
Mail.ru 49
Twitch 168
Yahoo 379
Instagram 1,485

Total Vuln. 6 4,935
Total 13 9,485

Legend: = vuln. ; = not vuln.

TABLE XIV: Overview of the IdPs that enable bypass of the new default
SameSite cookie policy and the number of affected websites.

gap). To scale up our analysis, we conservatively set a 45
seconds connection timeout for each request.

Chrome on iOS and Lax-by-default. iOS/iPadOS browsers
are required to use WebKit for rendering web pages, possibly
limiting browser developers’ liberty in changing the default
SameSite cookies handling. However, even when browsers
are required by the AppStore policy to use iOS WebKit,
we observed different behaviors between iOS Safari and iOS
Chrome. With SameSite=Strict, Safari attaches cookies
only for SameSite requests (as per RFC 6265bis specifica-
tion [20]) whereas iOS Chrome does not do that (Table X).
Based on that, we do not know whether Chrome developers
have some form of liberty to control browser’s behavior when

Testbed June 2020 Sept. 2020 April 2021
Alexa Top 500K 5,719 9,215 9,951
Alexa Top 100K 1,903 2,949 3,242
Alexa Top 10K 339 565 645
Alexa Top 1K 64 128 138

TABLE XV: SameSite cookie policy inconsistencies for different user-agents
grouped by site popularity.

handling SameSite cookies, or if Chrome developers are using
a different version of iOS WebKit from the one used by Safari.

The New Default and Invalid Policy Values. Lax being
the new default policy means that if the HTTP response
Set-Cookie header does not contain the SameSite at-
tribute, browsers are expected to enforce the Lax policy as per
RFC 6265bis [20]. However, when this attribute is wrongly
set with an invalid value, the selected policy depends on
the browser. RFC 6265bis says that browsers should set the
policy to None. However, our results show that this does not
always happen. For example, Chromium-based browsers and
Tor Browser set the policy to Lax (which is the new default
policy). Other browsers follow the specification.

SameSite Cookies on Protected Pages. In this paper, we
did not evaluate at scale pages after the login step accurately.
To the best of our knowledge, Cookie Hunter [62] is the
only recent approach able to handle the sign-up and sign-
in automatically. However, the sign-up success rate is quite
unsatisfactory, with 88% fail rate in creating accounts. In
addition, Cookie Hunter relies on pattern matching which is
too brittle to minor changes in the UIs, requiring creating and
maintaining new patterns throughout the longitudinal analysis.
For these reasons, we evaluated SameSite adoption on a
smaller scale by creating ad-hoc login scripts, focusing on
the protected pages on the Top 500 sites having the login
functionality (211 sites). We observed that 88% of the sites
that do not use SameSite for their cookies on the home page
also do not use it on their protected pages.

APPENDIX C
VULNERABILITY NOTIFICATION

The security issues we identified in this paper affects web-
sites (Table III), IdPs (Table XIV), web frameworks (Table XI)

17

Framework StackOverflow
Questions

GitHub
Used By

GitHub
Stars

GitHub
Forks

GitHub
Watches

Weekly
Downloads

Flask 38.3k 462k 51k 13.6k 2.3k 2.9m
Django 236k 398k 50.4k 21.8k 2.3k 1.2m
Tornado 3.5k 98.2k 19.2k 5.4k 1.1k 2.7m
Pyramid 2.2k 9.7k 3.7k 865 174 43k
Web2py 2.1k 38 1.9k 849 229 85

Express 65.9k 6.4m 49.1k 8.1k 1.8k 10.7m
Meteor 28.6k - 41.7k 5.1k 1.7k -
Sails 6.5k 24.7k 21.4k 1.9k 709 28k
Koa 1.1k 124k 29.5k 2.8k 882 438k
Hapi 523 - 12.5k 1.3k 439 207k

Laravel 37.5k 488k 59.9k 18.8k 4.7k 243k
Symfony 16.5k 59.3k 26k 7.6k 1.3k 24.9k
CakePHP 7.7k 10k 8.2k 3.4k 617 4.2k
Zend 5.1k 6.3k 5.7k 2.8k 542 4.5k
Slim 650 25.1k 10.7k 1.9k 564 10.2k

ASP.NET WebForms 357k 322k 606 290 77 -
ASP.NET MVC 357k 322k 606 290 77 -
ASP.NET Core 48k 10k 18.1k 5.1k 1.5k -
Nancy 1.1k - 7.1k 1.5k 452 -
Service Stack 5k 2.1k 4.8k 1.6k 542 -

Spring 171k 162k 38k 25.7k 3.5k -
Play 16.8k - 11.6k 3.9k 712 -
Vaadin 5k 10.3k 1.6k 730 151 -
Vert.x-Web 1.9k 16.2k 767 361 87 -
Spark 534 19k 8.8k 1.5k 436 -

TABLE XVI: Popularity of the top five web frameworks of top five program-
ming languages. The list contains a reordered, updated version of [144] on
April 2021, and is shortlisted to five frameworks. Weekly download statistics
are derived from PIP, NPM, and Packagist for Python, JavaScript, and PHP-
based frameworks, respectively.

and browser vendors (Table X). We started the process of
notifying the affected parties in February 2021. We examined
multiple communication channels until we found a valid point
of contact. Specifically, we used the vulnerability disclosure
programs on (i) HackerOne [146] and Bugcrowed [147], (ii)
contact forums and valid email addresses we found on vulner-
able websites themselves, and the website of web frameworks,
(iii) WHOIS lookups [125], and finally (iv) Git issues for web
frameworks. At the time of writing this paper, the status of
our notification campaign is:

• 1,032 XS-Leaks affecting 40 websites: 27 confirmed, of
which 16 patched and the rest closed as informative/
acceptable risk, four websites are currently under review,
and nine are unresponsive.

• 16 CSRF vulnerabilities affecting nine websites: eight
confirmed and patched, and one is unresponsive.

• 14 inter/intra-page SSC inconsistency affecting 10 web-
sites: six confirmed, of which five patched, one under
review, and three unresponsive.

• SSO Redirects Bypass affecting six IdPs: all confirmed,
of which three patched and the rest considered it as an
acceptable risk.

• SameSite=None by default in six web frameworks: all
confirmed, of which four patched and two said it is a
developer issue.

• Browser vendors: all confirmed, of which one patched
(Tor Browser), and the rest is either future work or
calculated risk.

• For the remaining two types of vulnerabilities, we need
to contact 9,951 websites for the user-agent inconsistency
and 2,148 for pervasive monitoring. In April 2021, we
sent the first reports to 138 sites vulnerable to user-
agent inconsistency and 82 sites vulnerable to pervasive
monitoring. To contact the remaining sites, we sought the
assistance of the national CSIRT.

APPENDIX D
CASE STUDIES

In this section, we report on a few manually vetted case
studies of the confirmed attacks. We note that the affected
parties have been promptly informed of the discovered vul-
nerabilities, and have already patched them (see Appendix C).
Tumblr. We discovered a user deanonymization vulnerability
in Tumblr leveraging the cross-domain window properties XS-
Leak. This attack vector can be used for targeted attacks, i.e.,
deanonymizing a single individual, or a group of people across
site origins. In particular, assuming the target user has the
account with username u1 in Tumblr, the attacker exploits
the state-dependent resource R =/blog/u1/review. If the
user is not logged in, Tumblr returns the login page which
has c = 1 frame. If the user is logged in but is not the target
user, Tumblr redirects to a different webpage, which also has
c = 1 frame. However, when the user is logged and owns
the account u1, the user has proper permissions to access
the private resource R. In this case, the webpage contains
c = 2 frames. While Tumblr uses SameSite cookies, attackers
can observe the difference in the number of webpage frames
leveraging top-level requests, deanonymizing the user.
Meetup. We found a CSRF vulnerability in Meetup that allows
adding or removing notification alerts for users. This attack
vector affects the endpoint /api. To add or remove an alert,
Meetup normally sends a POST request to the aforementioned
affected endpoint. This request has several parameters in
its body, e.g., an anti-forgery token -csrf-token, and a
method parameter specifying the request action, i.e., adding
or removing the alert. As shown in Table I, POST request
contexts are protected by the new default Lax policy. However,
an attacker could bypass this protection by changing the
request method to GET. For a CSRF exploitation, the attacker
replays the key-value parameters in the POST request body
in the form of GET query parameters. For the anti-CSRF
parameter, the attacker uses the -csrf-token=0 for all
requests. We observed that Meetup fails to perform the CSRF
verification correctly when the method is changed from POST
to GET.
Mailchimp. We discovered a CSRF vulnerability that enables
a web attacker to create arbitrary surveys in Mailchimp across
origins on behalf of a victim user. The vulnerability affects the
endpoint /lists/surveys/create. For creating a sur-
vey, Mailchimp sends a request to the aforementioned endpoint
using the POST method. The body of this request contains an
anti-CSRF token and other key-value parameters that encode
the details of the created survey (e.g., title, questions, etc).
We found that an attacker can forge this request by switching
the HTTP method to GET, and replaying the POST body
parameters in the form of GET query parameters. Similarly to
Meetup, Mailchimp does not perform the CSRF verification
when the method is changed to GET. Therefore, the anti-CSRF
token can be omitted from the forged request.

18

