Where We Stand (or Fall): An Analysis of CSRF Defenses in Web
Frameworks

Xhelal Likaj
Saarland University
Saarbruecken, Germany
xhelallikaj20@gmail.com

ABSTRACT

Cross-Site Request Forgery (CSRF) is among the oldest web vul-
nerabilities that, despite its popularity and severity, it is still an
understudied security problem. In this paper, we undertake one
of the first security evaluations of CSRF defense as implemented
by popular web frameworks, with the overarching goal to identify
additional explanations to the occurrences of such an old vulner-
ability. Starting from a review of existing literature, we identify
16 CSRF defenses and 18 potential threats agains them. Then, we
evaluate the source code of the 44 most popular web frameworks
across five languages (i.e., JavaScript, Python, Java, PHP, and C#)
covering about 5.5 million LoCs, intending to determine the imple-
mented defenses and their exposure to the identified threats. We
also quantify the quality of web frameworks’ documentation, look-
ing for incomplete, misleading, or insufficient information required
by developers to use the implemented CSRF defenses correctly.

Our study uncovers a rather complex landscape, suggesting that
while implementations of CSRF defenses exist, their correct and
secure use depends on developers’ awareness and expertise about
CSREF attacks. More than a third of the frameworks require devel-
opers to write code to use the defense, modify the configuration
to enable CSRF defenses, or look for an external library as CSRF
defenses are not built-in. Even when using defenses, developers
need to be aware and address a diversity of additional security risks.
In total, we identified 157 security risks in 37 frameworks, of which
17 are directly exploitable to mount a CSRF attack, leveraging imple-
mentation mistakes, cryptography-related flaws, cookie integrity,
and leakage of CSRF tokens—including three critical vulnerabili-
ties in CakePHP, Vert.x-Web, and Play. The developers’ feedback
indicate that, for a significant fraction of risks, frameworks have
divergent expectations about who is responsible for addressing
them. Finally, the documentation analysis reveals several inadequa-
cies, including not mentioning the implemented defense, and not
showing code examples for correct use.

CCS CONCEPTS

« Security and privacy — Web application security;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

RAID °21, October 6-8, 2021, San Sebastian, Spain

© 2021 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Soheil Khodayari
CISPA Helmholtz Center for
Information Security
Saarbruecken, Germany
soheil khodayari@cispa.saarland

Giancarlo Pellegrino
CISPA Helmholtz Center for
Information Security
Saarbruecken, Germany
gpellegrino@cispa.saarland

KEYWORDS
CSRF, Defenses, Web Frameworks

ACM Reference Format:

Xhelal Likaj, Soheil Khodayari, and Giancarlo Pellegrino. 2021. Where We
Stand (or Fall): An Analysis of CSRF Defenses in Web Frameworks. In 24th
International Symposium on Research in Attacks, Intrusions and Defenses
(RAID °21), October 6-8, 2021, San Sebastian, Spain. ACM, New York, NY,
USA, 16 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Cross-Site Request Forgery (CSRF) is among the oldest web vul-
nerabilities, consistently ranked as one of the top ten threats to
web applications [88]. Successful CSRF exploitations could cause re-
mote code execution [111], user accounts take-over [85, 87, 90, 122],
or compromise of database integrity—to name only a few in-
stances. Developers can protect web applications from CSRF at-
tacks by implementing one of the many client-side and server-
side defense mechanisms proposed by the research community
(e.g., [99, 104, 112, 114, 124, 126, 133, 134]). Alternatively, develop-
ers can use off-the-shelf CSRF defenses as implemented by web
frameworks, such as the ones provided by popular frameworks
like Django for Python, Spring for Java, and ASP.NET for C#. Web
frameworks are key components for developing web applications,
providing convenient and powerful abstractions to separate low-
level functionalities, e.g., databases and web page generation, from
the application’s logic. However, such a convenience comes at a
great cost: a vulnerability in the framework will negatively affect
the security of many web applications.

CSRF vulnerabilities are a major concern for web applica-
tions, with a steep increasing number of reported instances ev-
ery year [58]. Yet, this class of vulnerabilities have received
a marginal attention by the research community, where most
of the previous effort focused largely on defense mechanisms
(e.g., [99, 104, 112, 114, 124, 126, 133, 134]) and vulnerability de-
tection (e.g., [101, 122, 129]. To date, we know none-to-little about
the security of the CSRF defense implementations and their suscep-
tibility against improper use.

In this paper, we undertake, to the best of our knowledge, the
first security evaluation of CSRF defense as implemented by popular
web frameworks, comprehensively and systematically covering the
source code, defenses’ design, documentation, and the operational
aspects, with the overarching goal to identify additional explana-
tions to the steady increase of such an old vulnerability. Starting
with a thorough review of academic and non-academic literature,
we enumerate existing CSRF defenses and threats against them,
identifying 16 distinct defenses and 18 potential threats. Then, we

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

evaluate the source code of the 44 most popular web frameworks
across the top five programming languages for web applications
(i.e., JavaScript, Python, Java, PHP, and C#) covering about 5.5 mil-
lion LoCs, intending to determine the implemented defenses and
their exposure to the identified threats. Finally, we also quantify the
quality of web frameworks’ documentation, looking for incomplete,
misleading, or insufficient information required by developers to
implement and use the implemented CSRF defenses correctly.

Insights—Our study uncovers a complex landscape, suggesting
that while implementations of CSRF defenses exist, their correct and
secure implementation depends on developers’ awareness about
CSREF attacks, threats to CSRF defenses, and specific behaviors of
the implementations.

Insight #1: Almost all frameworks offer a CSRF defense—either
built-in or via external libraries, with the majority enforcing a
token-based protection mechanism, one of the most robust CSRF
defenses. For example, over 53% and 41% of the frameworks use
double submit cookies and synchronizer tokens to mitigate CSRF
attacks, respectively. Also, all frameworks (except Li3) use robust
CPRNG for token generation. Even more promising, almost half
of the frameworks (i.e., 19) enforce a defense-in-depth mechanism
by applying two or more layers of defenses in sequence. For exam-
ple, we observe that ten frameworks enable SameSite cookies by
default—a promising defense-in-depth mechanism which can miti-
gate a number of CSRF attacks. Similarly, we observed that seven
frameworks give state to the double submit cookie that is stateless
in nature, making it immune to cookie tossing and jar overflow
attacks. Finally, we noticed that frameworks offer defenses that can
protect web applications from attackers with stronger capabilities
than web attackers. For example, the cryptographic operations con-
ducted in most frameworks use secure algorithms, sufficiently long
tokens, or encryption that makes a CSRF attack even more difficult.

Insight #2: In total, 11 frameworks provide an enabled-by-default
defense. In all other frameworks, developers need to write glue
code to enable and use frameworks’ defenses correctly. More specif-
ically, more than a third of the frameworks (36%, i.e., 16 out of
44) do not provide any built-in defense—including popular ones
such as Express, Flask, and Spring—requiring developers to search
for external libraries or alternatively implement their defense. In
most of these cases (i.e., 11 out of 16 frameworks), the frameworks’
documentation suggests an external CSRF library, whereas, for the
remaining ones (i.e., five out of 16 frameworks), it does not. Even
if the vast majority of frameworks (67%, i.e., 28 out of 44) provide
built-in defenses, all frameworks require developers to know the
CSRF defense operations, the correct sequence of operations, and
the security-sensitive server-side endpoint that need to be protected.
Finally, for 17 of these 28 frameworks, developers need to enable
CSREF defenses explicitly as they are disabled by default.

Insight #3: Implemented defenses—either built-in or via external
libraries—can contain vulnerabilities or implement weak solutions.
The deployment of robust defenses requires developers to be aware
of additional threats that can weaken or even defeat CSRF defenses
and their ability to develop or configure ad-hoc solutions. In total,
we identified 157 distinct security risks in all but four frameworks

(Falcon, Web2py, Apache Wicket, and Falcon), of which 17 are di-
rectly exploitable, affecting the building blocks of token-based CSRF
defenses—the most widely implemented defense—such as token
generation, transportation, and validation. In general, while token-
based defenses use robust generation algorithms (i.e., cryptographi-
cally secure pseudorandom number generators, cryptographic algo-
rithms, and implementations), the randomness of tokens is sub-par.
Furthermore, if tokens leak, virtually all implemented defenses are
exposed to token replay attacks as they reuse tokens across multiple
requests. Only one framework implements a per-request unique
token, rendering replay hard in practice. Also, we identified and
already reported three critical vulnerabilities in CakePHP, Vert.x-
Web, and Play, leading to a complete CSRF defense bypass. Finally,
both our security analyses and developers’ feedback reveal that, for
a considerable fraction of security risks, frameworks’ developers
have divergent expectations from applications’ developers about
their responsibility for addressing the risks.

Insight #4: Lastly, the documentation of most of the frameworks
with a CSRF defense is inadequate. For example, the documentation
does not explain the implemented defense name or any kind of
description (16 out of 39 frameworks with a defense), does not show
the correct use via code examples (seven out of 39 frameworks),
nor adequately describe the API calls and the configuration space
of the CSRF defense (eight out of 39 frameworks).

Contributions—To summarize, this paper makes the following
contributions:

e We conduct, to the best of our knowledge, the first security
evaluation of CSRF defenses as implemented by popular web
frameworks.

e We conduct an exhaustive review of the existing proposed
defenses and potential threats, identifying 16 defenses and
18 security threats.

o We identify 44 popular web frameworks across the most
popular programming languages for web applications (i.e.,
JavaScript, Python, Java, PHP, and C#). We evaluate 5.5 mil-
lion LoCs, to identify implemented defenses and their expo-
sure to the 18 security threats.

e We discovered 157 distinct security risks in 37 popular web
frameworks, of which 17 are directly exploitable and three
severe instances that can lead to a complete defense bypass
in CakePHP, Vert.x-Web, and Play.

e We ranked the documentation of the web frameworks
against six quality attributes, and show that documenta-
tion is largely inadequate and poorly supports developers in
building robust defenses.

2 PROBLEM STATEMENT
2.1 Cross-Site Request Forgery (CSRF)

In a CSRF attack, an adversary tricks a victim’s web browser into
sending an authenticated HTTP request to a vulnerable web ap-
plication in order to execute a state-changing operation, with-
out the victim’s consent or awareness. Targets of CSRF attacks
can be, for example, changing user account privileges or creden-
tials [85, 87, 90, 101], remote execution of arbitrary code [111, 122],

https://attack-page.com https://bank.com

s>fs -B-8

<script
src="https://bank.com/transfer
2amount=1000&to=attacker”>

Figure 1: The workflow of a CSRF attack.

or illicit money transfer [122, 134]. A CSRF attack typically com-
prises of two phases: preparation and attack. During the prepara-
tion phase, the malicious code is added to the attacker-controlled
website, whose aim is to submit a correct (i.e., with all expected pa-
rameters) cross-origin HTTP request to the target web application
(e.g., bank.com). This can be achieved with a variety of methods,
e.g., with a script tag, self-submitting HTML form, other HTML
tags with the src attribute, or the JavaScript Fetch API [41]. In
the attack phase, the attacker lures an authenticated victim into
visiting the attack page (step one). Then, the malicious code in the
attack page tricks the victim’s browser into sending a cross-origin
HTTP request to the target web application (step two). The browser
complies with the Same-Origin Policy (SOP) for cookies and auto-
matically includes the authentication header (e.g., HTTP session
cookies) in the outgoing request [81, 104]. Finally, the cross-origin
request triggers a state-changing operation (e.g., a money transfer),
which the vulnerable server will execute due to the session cookies’
presence. Figure 1 exemplifies the steps of this attack.

2.2 Research Questions

Despite the popularity of CSRF attacks, little has been done to
understand how CSRF defenses are implemented and the hurdles
when using them in practice. This paper takes the first step in this
direction and explores the security of CSRF implementations of
web frameworks to shed some light on possible causes and factors
hampering web applications’ security. More specifically, we aim to
answer the following questions:

RQ1: Available CSRF Defenses—Over the past decades, we have
seen a plethora of different ideas to protect from CSRF attacks. Still,
we lack a comprehensive survey and categorization of proposed
defenses. More importantly, we know little about the ones that are
used in practice by web applications.

RQ2: Security of Existing Defenses—Prior work has mostly fo-
cused on proposing new defenses or devising new CSRF detection
techniques (e.g., [101, 122, 129]). Yet, we do not know what are com-
mon mistakes introduced by developers when implementing CSRF
defenses. The second question of this paper intends to answer that
question by reviewing the source code of popular web frameworks
and libraries against attacks targeting both CSRF defenses or other
components whose compromisation might weaken them.

RQ3: Developers’ Challenges—Even when frameworks imple-
ment robust CSRF defenses, their incorrect use can also severely
impact web applications’ security. Incorrect use may stem from
under-documented APIs, missing or misleading documentation,
wrong or missing code examples, and insecure defaults and con-
figuration (see, e.g., [96, 107, 120, 121, 132]). Our third question
intends to explore the extent to which the implementations of CSRF

defenses might induce web developers in implementing insecure
web applications.

3 METHODOLOGY

To answer our research questions presented in §2.2, we decompose
our study into five main steps, organizing it into preparatory steps
and analysis.

Preparatory Steps. The preparatory steps (i) identify relevant
frameworks used by developers (§3.1), (ii) survey academic and
non-academic literature to enumerate and classify proposed CSRF
defenses (§3.2), and (iii) review existing literature to create a com-
prehensive list of threats against CSRF defenses (§3.3).

Analysis. Our analysis combines manual code review and dynamic
testing (§3.4), and documentation review (§3.5). During code review
and dynamic testing, we identify defenses used in practice and
their robustness against our list of threats, answering to RQ1 and
RQ2. Then, to review the documentation, we define measurable
quality criteria of the web framework documentation, and rank
frameworks accordingly.

3.1 Identification of Popular Web Frameworks

In this paper, we focus on analyzing CSRF defenses in web frame-
works. To find popular frameworks, we first identify the top five
web programming languages from GitHub’s 2019 Octoverse re-
port [42], i.e. JS, Python, Java, PHP, and C# (ordered). Then, for
each language, we identify the top 10 web frameworks. As a first
step, we compiled a large list of frameworks for each language
using numerous web resources. Then, we quantitatively measure
the popularity of all identified frameworks based on these criteria
(ordered by importance): the number of uses by other GitHub repos-
itories (GitHub Used By), download statistics in package managers
of each language (e.g., npm [61] for JS), number of relevant ques-
tions in Stack Overflow [77], and the number of GitHub watches,
stars, and forks. Accordingly, we pick the top 10 frameworks for
each language. For C# and JS, we only identified five and nine web
frameworks, respectively. Thus, our testbed contains a total of 44
web frameworks (see Table 5 in Appendix A).

Finally, for frameworks that do not offer any built-in CSRF de-
fense, we searched in their documentation for official indication on
how to protect against CSRF, e.g., by importing external libraries.
We label these libraries official. If we do not find any official indica-
tion, we search on developer communities, such as Stack Overflow,
to find the library to use. We label these libraries unofficial. In to-
tal, we considered 13 libraries (11 official, and two unofficial). The
complete list of libraries is provided in Table 6 of Appendix A.

3.2 Survey of CSRF Defenses

As the second step of our study, we compile a comprehensive list of
defenses by reviewing the academic works (i.e., [3, 63, 74, 92, 95, 99—
101, 104, 112-115, 119, 122-124, 126-128, 128, 129, 131, 133, 134])
and non-academic resources [3, 63, 74, 82]. Then, by dissecting CSRF
attacks, we identify four distinct categories of vulnerable behaviors
that when removed, a CSRF attack is no longer successful. In total,
we identify 16 distinct defenses, each addressing one of the four
vulnerable behaviors. We present each defense in §4.

3.3 Threat Analysis

We identified possible threats against CSRF defenses by systemat-
ically reviewing academic literature (i.e., [99, 100, 104-106, 109,
110, 114, 118, 126, 129, 130, 133, 134]), OWASP security best-
practices [63], the National Vulnerability Database (NVD) [58], and
web frameworks’ GitHub issues. Of these, we consider in-scope
those threats that can be exploited by a web attacker and a network
attacker. We note that both attacker models are consistent with
prior work in the area of CSRF defenses [99] and attacks [106]. How-
ever, we observe that the network attacker is, in general, stronger
than a web attacker, and many attacks may be considered out of
scope for CSRF defenses, i.e., network-level MITM. In this paper, we
consider a weak form of the network attacker, e.g., an attacker that
can leverage compromised DNS servers and unprotected wireless
networks to control the victim users’ network connections.

Once we identified relevant threats, we grouped them into four
main categories: (i) threats affecting the generation of CSRF tokens,
(if) ways an attacker can obtain a valid CSRF token, (iii) as token-
based defenses can rely on cookies, e.g., double submit cookie,
we have threats against cookie integrity, and (iv) finally, we have
threats affecting the CSRF validation of HTTP requests. In total,
we identified 18 distinct threats which we present in §5.

3.4 Analysis of the Code

To the best of our knowledge, there is no single program analysis
technique that satisfies three requirements: (1) analyze programs
written in multiple programming languages; (2) analyze partial
programs such as frameworks and libraries; (3) detect the threats
we identified in §5. Accordingly, in this work, we defined a manual
methodology that combines code review, dynamic testing, and a
strict evaluation protocol.

Code Review. Manual code review is the first technique we used
to analyze the security of each framework. First, we reviewed the
documentation and API specifications. We observed that the doc-
umentation is rarely useful in practice. In §7.2, we present an in-
depth evaluation of the documentation. Given the insufficient doc-
umentation, we searched for all CSRF-related GitHub issues in the
framework’s repository to gain insight into corner cases and design
decisions.

Next, we reviewed the source code using two strategies. In the
first review strategy, we examined the code to expand our under-
standing of frameworks, architectures, and modules. We loaded the
source code in an IDE (IntelliJ for Java, VS Enterprise for C#, and
VS Code for Python, PHP, and JavaScript), and then reviewed the
CSRF-related source code files, following control-flow insensitive
navigation. We noted possible entry points for the execution, con-
figuration files, and parameters. In total, with the first strategy, we
reviewed 5,585,275 LoC, containing 575,182 of JavaScript, 509,400
of Python, 1,915,669 of Java, 1,062,917 of PHP, and 1,522,104 of C#.
Then, we evaluated the workflow of CSRF defenses. Specifically,
we prepared a list of sensitive functions, e.g., token generation,
leveraging the snippets and APIs from the documentation. Then,
we located functions in the code and traced the program execu-
tion following a forward control and data-flow sensitive inspection.
During the inspection, we collected sensitive functions that could
be abused by an attacker, e.g., cryptographic functions. With the

second strategy, we reviewed 14,696 of LoC, including 1,632 of
JavaScript, 2,164 of Python, 3,661 of PHP, 3,773 of Java, and 3,466
of C#.

Manual Dynamic Testing. During our review, frameworks like
Meteor, Vaadin, and Tornado were particularly challenging to ana-
lyze due to their complex, poorly-modularized source code. There-
fore, we also performed dynamic testing as part of our evaluation
for all frameworks. We built a basic web application for each frame-
work, equipped it with a simple HTML form for a state-changing
HTTP request, and monitored the execution using debuggers and
breakpoints to ensure that our code review did not miss alternative
executions.

Threats Prioritization. Our evaluation requires to test a large
number of threats, which is demanding. Therefore, we prioritized
our analysis and examined all threats against the top five frame-
works for each language, for a total of 25 frameworks. For the re-
maining 19 frameworks, we only focused on a subset of threats that
does not require a special testing environment but can be inferred
directly from the source code review (e.g., implementation mistakes,
cookie tossing, replay attacks, or BREACH). Furthermore, in this
paper, we focus only on the default settings of each framework as
it is infeasible to study every possible configuration setting.

3.5 Analysis of the Documentation

Documentation is pivotal for the correct use of CSRF defenses.
After retrieving the documentations, we defined six quality criteria
that the documentation of CSRF defenses should have, and ranked
frameworks accordingly.

Defense Name or Description. The documentation should name
and describe the implemented CSRF defense so that developers can
properly apply and evaluate its enforcement.

API Specs. Using CSRF defenses may require the use of API func-
tions, and the documentation should provide developers with an
adequate description of their functionalities.

Configuration. The implemented CSRF defense may need con-
figuration parameters, e.g., the secret key for encrypted tokens.
Accordingly, the documentation should adequately describe the
configuration parameters of the CSRF defense.

Code Example. Descriptive text may not be sufficient to convey
the correct use of defenses. Often documentation includes snippets
of code to illustrate the correct use.

Cryptographic Guarantees. Some CSRF defenses rely on crypto-
graphic algorithms whose security depends on known weaknesses
of the algorithms or weak secrets. Ideally, documentation should
mention the names of used algorithms and default parameters, e.g.,
key length and entropy.

General Security Considerations. The documentation should
describe known behaviors that can weaken the security guarantees,
and provide general security considerations when not protecting
state-changing operations against CSRF attacks.

4 SURVEY OF CSRF DEFENSES

In this section, we answer RQ1 by surveying existing literature
on CSRF defenses following our methodology of §3.2. In total, we

identified 16 distinct defense mechanisms, each addressing one of
the four vulnerable behaviors. Table 1 summarizes the identified
defenses. The rest of this section details the defenses in four distinct
categories.

4.1 Origin Checks

A distinctive feature of CSRF attacks is that the request’s origin
differs from the origin of the target. One of the first defenses con-
sists of checking the origin of an HT TP request. For example, the
server-side of the web application can check the HTTP request
Referer and Origin headers [99, 114, 129]. Another defense relies
on browsers complying with the Cross-Origin Resource Sharing
(CORS) [99, 129]. When performing a cross-origin request (COR),
browsers can send a so-called pre-flight request, whose goal is to
check whether the COR complies with the CORS policy of the
server-side before sending the actual COR request. However, pre-
flight requests are issued only for non-simple requests. A web
application can enforce these requests by requiring a custom HTTP
request header [63] with each state-changing request and rejecting
requests that lack this header.

4.2 Request Unguessability

Another distinctive feature of CSRF attacks is that an attacker can
guess all parameters of a request, except for cookies. The second
strategy of defense is the addition of unguessable parameters, often
called CSRF tokens. For example, a popular CSRF defense is the
Synchronizer Token Pattern (Plain Token) [126] which generates
random tokens. This generated token is stored on the server-side
and tied to the user session. For each incoming sensitive request,
the server compares the token in the user session against the to-
ken in the request. Alternatively, the server-side can avoid storing
tokens and check their validity with the aid of cryptographic primi-
tives. For example, the Encryption-based Token Pattern (Encrypted
Token) [63] and HMAC-based Token Pattern (HMAC Token) [63]
use encryption and HMAC codes to protect a token containing a
timestamp and a user session identifier. The server accepts requests
if two conditions hold. First, the server decrypts the token correctly
or checks whether the HMAC code is correct. Second, the server
verifies that the timestamp is valid and that the session identifier is
of the user submitting the request. Instead of using cryptographic
primitives, servers can submit a pseudo-random value both as a
request parameter and as a cookie. The server will accept the re-
quest only if the two values match. An example of such a defense
is the Double Submit Cookie [134]. A variant of it is the Triple
Submit Cookie [133], which suggests using a random cookie name
to prevent attackers from writing cookies in specific scenarios such
as XSS or cookie tossing attack.

Another approach is Cookie-less User Session management [55,
82] which relies on the localStorage APIs [83] to store user ses-
sions. This defense could be effective since, unlike cookies, the
browser does not automatically attach the values stored in web
storage to HTTP requests.

4.3 Same-Origin Policy for Cookies

A behavior that is exploited by CSRF attacks is the compliance
with SOP for cookies. When the user visits the malicious page, the

malicious code will send a request to the target web application
and the user’s browser will include the cookies in this request.
Over the past years, we have seen many defenses suggesting to
modify this behavior of the browser, e.g., via proxies (e.g., [104,
114]), browser extensions (e.g., [112, 119, 123, 124]), or both [115].
Instead of relying on third-party components, SameSite attribute
for cookies [128, 131] can be used. This attribute allows developers
to choose among three policies (Strict, Lax, None) specifying when
cookies should be included in cross-origin requests. An alternative
approach that can be implemented by web applications is to limit
the life span of session cookies, forcing frequent log out events [74].

4.4 User Intention

Finally, another crucial feature of CSRF attacks is that web appli-
cations cannot determine whether a request is the result of the
users’ intention. Inferring the user intention is not a trivial prob-
lem to solve and existing solutions require the user itself to per-
form additional steps before accepting a request. Examples of these
defenses are user Re-authentication [63], One-time Token [63],
solving (re)CAPTCHA challenges [63], and Multi-browser naviga-
tion [3, 63, 100].

5 THREAT MODELING

In our review, we focused on four categories of threats: (1) threats af-
fecting the way CSRF defenses generate tokens; (2) threats that can
leak the CSRF token; (3) threats against cookie integrity; (4) threats
affecting the CSRF validation of requests. In total, we identified 18
distinct threats across all four categories, as presented in Table 1.
The rest of this section presents the identified threats. For brevity,
we discuss the threats in more coarse-grained groupings and mark
each individual threat in italic. Also, for each threat, we provide
the references to past vulnerabilities that affected CSRF protections
or real-world web applications. We use reports from HackerOne
(hereafter H1) [43], and CVEs from MITRE [57].

5.1 Token Generation

This section presents the first category of threats against the gener-
ation of CSRF tokens.

Weak Generators. An insecure randomness vulnerability occurs
when developers generate predictable tokens, e.g. as in the recent
CVE-2021-26296 [38]. Other example can be found in practice, such
as hashing used identifiers [46] or the timestamp [69], or using the
time to initialize a pseudo-random number generator (PRNG) [5, 53].
A more robust approach consists of using a cryptographically-
secure PRNG (CSPRNG) [4] together with a secret key. Another
common threat is caused when using vulnerable cryptographic li-
braries, as in CVEs 2013-2213 [7] and 2015-4056 [11]. We relied
on the official documentation of each PRNG [54, 56, 60, 66, 71] to
evaluate whether they were secure.

Insufficient Randomness. Even with robust cryptographic func-
tions, developers can still introduce vulnerabilities by specifying
short tokens that do not protect sufficiently against brute-forcing,
i.e., insufficient token randomness [64]. Threats can also originate
when generating insufficiently long secret keys for signature and

Tok Cooki
Token Gen. | oon ookie Implementation Mistakes
Leakage Int.
é 2 o g —é 15} e
s EE % 53 2935 E E
¢ g E g o © g £ 2Y % £
=R} 5 £ »n = S |l& T £ 2 @)
E §< =2 g & ° T|EZ20 W
£ £ 3 £ 0 Z2|Y 2= 3 T a oW =
2 O g8 2 S B g 2E
S g 2 s - =3 O|lgs = 28 8§ 7¢gQ
A I S E |8 5|l rETETS S ¢
s 2 & 2z Edg SEldEmsa 8§ <2
EEM SI0B & wle o|lFELZZE LT
Eee (=5 S| 2|y EMET B
g2 2 Eldg 8 E|S S| e mw B E
222 3|2t 2 5|l 2|2 % .EE o z 8 &
Category CSRF Defense Defense Source S5 8 >|mx O F|O O|8E o DT 2 &
Origin Checks Referer/0Origin Header Check [63, 99, 114, 129] - [] []
Custom Request Headers [63, 99, 129] [} [] -
Request Unguessability Plain Token [63, 126] o0 - 6000 0 - o000 0 00
Encrypted Token [3,63] o0 0 06000 0 - o000 0 0O
HMAC Token [3, 63, 99] o0 0 06000 0 - 000000
Double Submit [63, 134] o0 - 00060060 - 06 00600 0 -
Triple Submit [133] o0 - 00060606060 06 0000 -
Cookie-less User Sessions [55] o0 - 000 0 0 - 00000 0 -
SOP for Cookies SameSite Cookies [92, 95, 128, 131] - - e - -
Frequent Log Outs (server-enforced) [74] - o o - - - -
Browser Extensions [104, 114, 115] - - - - o - -
Server-side Proxies [112, 115, 119, 123, 124] | - - - - - @ - -
User Intention Re-authentication [63] - [] - - - @ - -
One-time Token [63] o0 - o - [] o - -
(re)CAPTCHA [63] oo - o - ° e - -
Frequent Log Outs (user-enforced) [74] - - - - - - - - -
Multi-browser Navigation [3, 63, 100] - - - - - - -

Legend: @ = potential security risk; - = not applicable;
Table 1: Overview of CSRF defenses and threats. The left part summarizes our survey of CSRF defenses. The right part shows

the mapping between each defense and potential threats.

encryption, i.e., insufficient key randomness. Examples of insuffi-
cient randomness vulnerabilities are CVEs 2012-1598 [6], and 2021-
23127 [37].

5.2 CSRF Token Leakage and Abuse

The second category of threats that we considered targets the ex-
change of the token between the client and server. This category
includes attacks where the adversary can exploit weaknesses that
allow leaking the token.

Side-channel Attacks. An attacker can leak the tokens through
side-channels using attacks like BREACH [106], which affects ap-
plications that use data compression such as gzip or DEFLATE
in HTTP responses. Here, an attacker could trick user’s browser
into submitting multiple requests and observe length variations
due to compression and leak the token. Examples of BREACH vul-
nerabilities are CVE 2015-2206 [9] and 2014-9720 [10]. Another
side-channel can originate from the way applications compare to-
kens. For example, default string comparison functions such as
strcmp stop the comparison at the first mismatching character,
allowing an external observer to monitor the time increase be-
tween comparisons, revealing the correct character. Examples of
such a vulnerability are CVEs 2015-6728 [12], 2015-8125 [13], 2015-
8623 [14], 2016-10535 [16], and 2018-1000119 [25].

Cross-Domain Referrer Leakage. When transmitting the to-
ken to the client, developers can use hidden HTML input forms,
JavaScript variables, or custom request headers. However, devel-
opers should consider not including tokens as URL parameters as
they can be leaked. For example, URLs may appear in the Referer
HTTP header, disclosing tokens to external websites. Examples of
these vulnerabilities are H1 report nos. 342693 [44] and 787160 [48],
and CVEs 2016-5739 [18] and 2019-15515 [31].

CORS Misconfiguration. Attackers can also exploit server-side
misconfigurations to leak the CSRF tokens. For example, an over-
permissive CORS policy [2, 102] that sets Access-Control-Allow-
Origin (ACAO) HTTP header to reflect the request’s origin and
Access-Control-Allow-Credentials (ACAC) to true, allow at-
tackers to read responses’ body of cross-origin requests, which is
forbidden by default browsers’ policies. Accordingly, the attacker
could send a cross-origin request to fetch a page with the CSRF
token and use it in a CSRF attack. Examples of these vulnerabilities
are H1 report nos. 975983 [49], 577969 [47], and 426147 [45] or
2015-9243 [15] and CVEs 2016-10549 [17].

5.3 Cookie Integrity

Token-based CSRF defenses, such as Double and Triple Submit
cookie, rely on cookies which an attacker may try to corrupt. For
example, if the attacker controls a subdomain of the target web
application, the attacker can set or overwrite cookies of the parent
domain with attacker-specified values [116], known as cookie toss-
ing [116]. A similar result can be achieved by cookie jar overflow
attack [97], which floods the browser with HTTP requests to set
cookies and exploit the limited capacity that browsers’ cookie jar
have [51]. When this limit is reached, older cookies get evicted [86]
and can be replaced with attacker-specified values. Examples of
these vulnerabilities are 2016-8615 [21] and CVEs 2019-14998 [30].

5.4 Implementation Mistakes

The final category of threats encompasses improper ways to vali-
date incoming HTTP requests, ranging from incorrect user-token
association to missing checks, as presented next.

Missing Checks on HTTP Methods. A robust CSRF verifica-
tion should enforce CSRF checks on all incoming HTTP requests,
irrespective of the request method. For example, GET is a safe, idem-
potent HTTP method that should not be used for state-changing

requests [84]. Yet, this does not prevent a developer from perform-
ing state-changing requests using GET which could lead to CSRF
attacks. Similarly, developers may not perform CSRF checks on all
unsafe HTTP methods, e.g., DELETE or PUT [72]. Finally, the prob-
lem is aggravated by the HTTP Method Override feature, which is
used to change the request method. If CSRF checks are only applied
to specific HTTP methods, CSRF validation could be bypassed by
overriding the request method (see, e.g., 2017-16136 [23] and CVEs
2020-35239 [94]).

Logical Mistakes. Unlike syntactical code errors, logical errors
do not trigger a compilation error and might go unnoticed. A sim-
ple logic error could be using the OR operator instead of AND, thus
accepting a request if only one of the conditions holds (see, e.g.,
CVEs 2017-0894 [22], 2017-9339 [24], and 2019-12659 [28]). A simi-
lar mistake is the incorrect user-token mapping. If each user does
not have a unique CSRF token for each session, an attacker can
obtain the same token as the victim (see, e.g., CVE-2020-11825 [33])
by being a user of the application. Finally, CSRF validation of the
request can be erroneous. For example, a faulty comparison between
the request’s origin and the application’s origin can occur due to
incorrect regular expressions [108]. Examples of this vulnerability
are CVEs 2018-6651 [27], 2018-10899 [26], and 2016-6806 [20].

Replay Attacks. These attacks operate under the assumption that
the attacker has leaked the CSRF token [105, 122]. In such cases,
the attacker can reuse the same token to forge a state-changing
request until the expiration of the session cookie (see, e.g., CVEs
2014-1808 [8], 2016-6582 [19], and 2020-5261 [36]).

Cross-Site WebSocket Hijacking. Another implementation mis-
take exploits the way WebSocket (WS) connections are authenti-
cated. If the authentication solely relies on cookies (as opposed to
TLS/HTTP authentication), the WS connection can be hijacked by
a CSRF attack [125]. Instances of this vulnerability are CVEs 2019-
13209 [29], 2019-17654 [32], 2020-14368 [34], and 2020-25095 [35].

6 SECURITY ANALYSIS OF THE
IMPLEMENTATIONS

We now present the results of our security analysis on the 44 web
frameworks identified in §3.1 against the 18 threats of §5. First, we
present an overview of the usage of CSRF defenses (§6.1), and then
we present the discovered security risks (§6.2).

6.1 Demographics of CSRF Defenses

Built-in Defenses and Defaults. Our analysis uncovered a rami-
fied and rather complex landscape. First, not all frameworks pro-
vide off-the-shelve CSRF defenses. In total, 16 frameworks (about
36%) are shipped without built-in CSRF defenses, including Ex-
press, Flask, and Spring, the most popular frameworks in JavaScript,
Python, and Java, respectively. For 13 of them, we identified ex-
ternal libraries providing CSRF protection. Then, the remaining
28 frameworks provide built-in CSRF defenses; however, in 17 of
them (covering for more than 60% of the frameworks with built-in
defenses), CSRF defenses are disabled by default. Both these cases
can be problematic if developers are not security-aware and forget
to install the necessary libraries or enable the defense correctly.

@
H PR
@ 3 2 25983
2 5 . _ f.5s5_25:i%7
§ 25 EgefoEsiwibLl
T gE £ 58§ 38 28 SEF¥ e i
23 28 8o 2 8833
B B - B A 2 8 =3 3
EfRQ 2P e tEMESELS
Q = 22 BT 5FS 5B 28 L
SEF S EEdErdeisis
= 0 o
A EAESSSSEER2ESE
Ref./Orig. Header 4
Plain Token 0 18
Encrypted Token 00 4
HMAC Token 2 0 4 12
Double Submit 3.0 4 12 22
Triple Submit 000 0 0 O
SameSite Cookies 231 4 6 010
Cust. Req. Hdr. 000 0 0 O0O0 O
Cookie-less UsrSess.| 0 0 0 0 0 0 0 0 1
One-time Token 0000 0 O0O0O0O0O0
(re)CAPTCHA 0000 0000O0O0O
Frequent Log Outs 000 0 O O0OOO0OOOTOO
Re-authentication 0000 0 O0OOOOO0O0O0
Browser Extensions | 0 0 0 0 0 0 0 0 00 0 0 0 0
Server-side Proxies |0 0 0 0 0 0 0 0 00 0 0 0 0 O
Multi-browserNav. |0 0 0 0 0 0 0 0 00 0 0 0 0 0 0

Table 2: Frequency of the combination of CSRF defenses.
Each entry in this symmetric table shows the number of
frameworks that use a certain combination.

Few but Popular Frameworks with No Defenses. Overall, five
of the 44 frameworks do not have built-in CSRF defenses and the
documentation does not suggest any as well. We point out that two
of them, Bottle and Spark, are among the top five Python and Java
frameworks, respectively.

Implemented Defenses. In total, 39 frameworks can have a CSRF
defense as a built-in feature or via official external libraries. For
Bottle and Spark, who have no defenses, we identified unofficial
libraries via Stack Overflow [50, 75] and internet search [76]. Ac-
cordingly, we extended the testbed of frameworks to 41 frameworks
by including Bottle and Spark. The vast majority of frameworks
implement the Double Submit (i.e., 22) or Plain Token (i.e., 18)
defense. The least frequent CSRF defense is Cookie-less user Ses-
sion, used only by Meteor. This technique is an emerging pattern,
where the web storage and custom client-side JS code replace cook-
ies and cookie management policies, respectively. The number of
frameworks that use the rest of the defenses are as follows: 12
HMAC Token, 10 SameSite Cookies, 4 Encrypted Token, and 4 Ref-
erer/Origin Check. We refer interested readers to Appendix A for a
complete list of defenses implemented by each framework.
Defense in Depth. Web frameworks may implement multiple
CSRF defenses at the same time. For example, almost half of the
frameworks (i.e., 19) enforce two or more defenses in sequence.
Table 2 shows the frequency of combinations of defenses across
web frameworks of our testbed. We observe that Double Submit
and HMAC Token are used together more than any other pair of
defenses, i.e., in 12 frameworks.

6.2 Vulnerabilities and Security Risks

In total, we discovered 157 security risks affecting 37 frameworks,
all of which can be mounted by a web attacker. However, we note
that the exploitability of these risks may vary. For example, out of
157, 17 security risks are directly exploitable with one of two HTTP
requests and without relying on developers’ mistakes or misconfig-
urations of the targeted web application. We rank these security
risks as severe. In contrast, 140 security risks can be exploited only
under specific circumstances. For example, if a developer makes a

Token Gen. Ioken Cookie Implementation Mistakes
eakage |Int.
Eg o g f‘jty ™
gE58 58 ERh: g
ESE S Sz ElRE o ¢ o)
EESE g3 =(5228 o
2253 FO0L|P 282 wy B
cg2e|l $C %2 S6|e=2E258% 9
S8 8SeZ|g |lSacsEEs ¢
s SIEGTELE SRETZEEZ S| S e am
feg ZELEE By REnEE R 2| 23 =
22558 9ElE 3| gélone | SEE
Web Framework | S S S 5|22 OE|C S |ESdor 322 & B8 &
JavaScript
#1 Express O000O|0O0OO|0 B|IOOOOOO 11 6
#2 Meteor OO0 -0|0000O|- -|O0OO0OO0OO000 - | 12 2
#3 Koa OO00PO|0OOO|- -|1000O0C0OCD - | 10 1 4
#4 Hapi OO0 -0/000C0O |- 0000000 - 81 6
#5 Sails OO0 -0/00O00Of- -|10O0OO0CO000 - | 11 3
Python
#1 Flask OO0O0PO|0OO0OOI0OO|-0000C000 @ 12 2 3
#2 Django OO0 -0/00000B|-0000C00 ®@| 10 2 4
#3 Tornado O00PO|0OOOOB|-00O0O0O0C00 - | 11 5
#4 Bottle O00PO|0OO0OOB|-0O0O0COC@@0 - |12 1 3
#5 Pyramid OO00PO|0OOOI0O O|-000000 @| 12 1 4
Java
#1 Spring OO0 -0/00O0d- -|O0OOCOCOO - 8 6
#2 Play OO00®O0O|0BO O|- 000000 - |10 1 5
#3 Spark OO0 -0/0000- - OO0 - 9 1 4
#4 Vert.x-Web [ONONC Nl NONON P|-000000 - 17
#5 Vaadin OO0 -0|0000|- -|O0OO0O00CO00 - | 11 3
PHP
#1 Laravel O00O|0OOO|- -|0O0OOO0O00 - | 11 4
#2 Symfony OO0 -0|/0000|- -|[O0000O0® - | 12 2
#3 Slim OO0 -0/0000|- -|0O0OO0O0O0D® - | 12 2
#4 CakePHP 0000|0000 ?|-000000 - 8 2 6
#5 Zend/Laminas [O O - O[O0 O ®- - |OOCO0CO0O0C@Dd - |11 1 2
C#
#1 ASP Web Forms|O O O O|O O O ®|O O |- O0CO0 000 - | 13 3
#2 ASP MVC O0O00|0O0O0O0O0OO-000000 - | 14 2
#3 ASP Core O0O00|0OO0O0O0O0OO-000000® - | 13 3
#4 Service Stack [O O O O[O O OO0 O|-000000 - | 14 2
#5 Nancy O0OO00|0O0000 B|-000000 - | 11 5
Total O|25 25 5 25|15 19 24 17| 7 7(11 924242313 1 274
Total @ 1127 3 14
Total @ 10 10 6 1 8|38 8 16 524 96

Legend: O = no security risk; ® = conditional risk; @ = severe risk; - = not applicable;
empty cell = zero; blue = vialibrary; red =no defense;
Table 3: Summary of results on top five frameworks of top
five languages.

mistake, such as using a weak key or the insecure default configu-
ration, and the framework facilitates making that mistake, e.g., no
checks on key length. Other circumstances are whether attackers
will be allowed to perform sufficiently many requests to exploit
side channels without being detected by network monitoring tools.
Table 3 summarizes the results of our security assessment for the
top five frameworks of each language, and Table 4 presents the
results for the remaining, less popular frameworks (see §3 for the
methodology).

The 157 security risks comprise 80 implementation mistakes
affecting 37 frameworks, 37 CSRF token leakage affecting 34 frame-
works, 10 security risks in token generation of 17 frameworks, and
finally, 30 security risks against cookie integrity affecting 15 frame-
works. Accordingly, the most common category of threats against
CSRF defenses are implementation mistakes, e.g., replay attacks
and missing checks on safe HTTP methods which affect 33 and 25
frameworks, respectively. The least common category of threats
are those that corrupt the cookie integrity, e.g., both cookie tossing,
and jar overflow attacks affect 15 frameworks.

All frameworks with a CSRF defense, except four (Falcon,
Web2py, Apache Wicket, Phalcon), are exposed to at least one

Token |Cookie|Implementation
Leakage|Int. Mistakes
a,
g
< s
=
g S
v o s
g 58S = 9]
s 5| 2|29z g
0 <lg g § 2= " .gﬂ
kIR
S 38 5|lErEEEG
T RE Sl End <8
CEvlg gfEez 25008
IESE 2|loTE8 RS2 =
SE Elg glggewmaz| S8 &
~3 50 02K E o o Fl 00 ©
Web Framework [Ae F|O O [EvD A& m|BHE H
JavaScript
#6 Fastify [OXCNe) (] [ORONd] 5 5
#7 Think]S B e
#8 Total.js Y B T I
#9 Adonis]s OO0 O|- -[0OO0OO0D -|¢6 2
Python
#6 Falcon R e
#7 Zope 0P B|I-OO0D -| 3 6
#8 Masonite 0P |- 0@O0D -| 21 6
#9 TurboGears PO PP O|-OO0O00D -| 4 5
#10 Web2py O0OQ|- -|0O0O000 -|38
Java
#6 Dropwizard L I I
#7 Blade ®O0O|- -|10C0@O0D -|41 3
#8 ZK O0OQf- -|0O0O000D -|7 1
#9 Apache Struts |@ O @|- - |[O®O OO -|5 3
#10 Apache Wicket|- - - |- - |- - - O - O] 2
PHP
#6 Codelgniter 000 O|-0@O00O -| 41 4
#7 FuelPHP OO0 B|-OO0O0O -|5 4
#8 Yii2 O0O0 O|-0O00D -5 4
#9 Phalcon O0O|- -|0O0OO00O0 -| 38
#10 Li3 O0Q|- - |0O0000 -|7 1
Total O| 7 13 10 851115 5 1|75
Total @ 3 3
Total @) 7 1 4|7 7| 9 9 44

Legend: O = no security risk; @ = conditional risk;
@ = severe risk; - = not applicable; empty cell = zero;

blue = vialibrary; red =no defense;
Table 4: Summary of results on less popular frameworks of
top four languages. Only five frameworks were identified
for C#.

threat for each of the four categories. ASP.Net Core is the least
exposed framework, providing a robust token-based defense ad-
dressing all threats against token generation, leakage, and cookie
integrity. The framework exposed to the highest relative number
of security risks—excluding not applicable ones and including inse-
cure defaults—is CakePHP, which is exposed to 8 out of 17 threats.
On average, we observe that each framework is exposed to four
security risks.

Looking at the affected programming languages, the most ex-
posed language is Python, with 45 security risks mostly being
implementation mistakes. In comparison, the least exposed lan-
guage is C#, which is affected by less than half security risks when
compared to Python, i.e., a total of 17 security risks.

Overall, an important insight of our study is that even if frame-
works offer a CSRF defense, their implementation may require
developers to be aware and then address additional security threats
that could compromise or even lead to a complete bypass of the
CSREF defense. The rest of this section details our findings for each
threat of §5.

6.2.1 Token Generation. All frameworks implement token gener-
ation mechanisms that are robust against attackers stronger than
the web attacker.

Weak Generators. No framework uses insecure cryptographic
libraries for cryptographic operations (tested via snyk [79]).
All frameworks use cryptographically-secure PRNG (e.g.,
crypto.randomBytes [60] in JavaScript, os.urandom [71] in
Python, SecureRandom.nextBytes [54] in Java, random_bytes in
PHP [66], and RandomNumberGenerator.Fill [56] in C#), secure
cryptographic algorithms (e.g., AES-CBC for encrypting and
HMAC-256 for signing across languages), and cryptographic
libraries that are not known to be vulnerable.

Insufficient Randomness. In total, 13 frameworks use encrypted
or HMACed tokens. Of these, 10 frameworks require the developer
to provide a cryptographic key. Among these, however, Play is the
only framework that checks the key length (but not randomness)
and ensures that the default key is not used in production mode.
All other frameworks do not perform any check on the length
or randomness of the provided key, increasing the risk of using
weak keys. Also, we discovered that all web applications developed
via the command line interface of CakePHP share the same static,
default key, allowing an attacker to set valid CSRF tokens, e.g.,
during cookie tossing attack, and forge HT TP requests.

6.2.2 Token Leakage. Overall, the vast majority of frameworks
have strict CORS configuration (24 out of 25 frameworks) and offer
ad-hoc APIs to manage web forms and HTTP requests in order to
minimize cross-domain referrer leakage (32 out of 39 frameworks
with token-based defenses). In contrast, the most common security
risk is posed by timing-based side channels on the token comparison
(12 out of 39) if a web application has no means to detect or block
this brute-forcing technique.

Cross-Domain Referrer Leakage. Overall, seven out of the 39
frameworks that use token-based defenses provide APIs that place
the token in the URL, increasing the risk of a token leakage if the
web developer decides to place the CSRF token in the URL.

CORS Misconfiguration. Among tested frameworks, the only
framework with a default vulnerable CORS configuration is Play
which enables an attacker to leak the CSRF token and mount a
successful attack as explained in details in §6.3.

Side-channel Attacks. Most frameworks operate on top or be-
hind an HTTP server, and data compression at the HTTP/TLS level
depends on these components. In total, we observed that 15 frame-
works use the same CSRF token throughout the entire user session,
exposing tokens to the BREACH attack (assuming that HTTP com-
pression is enabled and the frequent brute-forcing requests are
not detected and blocked). Also, two frameworks, Codelgniter and
Vert.x-Web, are generally exposed to BREACH attacks except cer-
tain cases, i.e., when using helper functions to build forms and when
sessions are not used, respectively. Only in these cases, the CSRF
token is unique per request. On the contrary, the remaining frame-
works provide a better protection against BREACH attacks. Most
frameworks (i.e., 22) use a fresh token which is updated frequently,
reducing the time window validity in which the symbols of a token
can be inferred because of data compression. For example, Vaadin,
Phalcon, and Web2py generate a token for each request. C#-based
frameworks follow a different approach. Instead of generating fresh
tokens, they use AES-CBC encrypted CSRF tokens with a fresh
initialization vector (IV) per request, which results in a different
token for each request, thus preventing BREACH.

Another side-channel can originate from the token compari-
son. Out of the 39 frameworks that use token-based defenses, 27
frameworks use constant-time comparison functions to validate
CSRF tokens. The rest (most notably Java-based frameworks) use
directly or via wrappers the default string comparisons, which are
vulnerable to timing-based side-channel attacks [98, 118] unless
web application does not detect the frequent spike in request during
this brute-forcing attack.

6.2.3 Cookie Integrity. This category of threats targets CSRF de-
fenses that use cookies, such as Double Submit cookies, which is
implemented by 22 frameworks. Overall, we detected a total of 30
security risks against cookie integrity in 15 frameworks, comprised
of 15 cookie tossing and 15 jar overflow attacks each. Although
seven of these frameworks sign and/or encrypt the CSRF cookie for
additional security, this approach does not help to prevent cookie
tossing [116] or jar overflow [97] attacks if an attacker controls
or hijacks a subdomain of the target domain. Attackers can sim-
ply reuse an encrypted token that they receive as normal users of
the web application. As opposed to these cases, seven frameworks
provide a better defense. For example, Flask stores the CSRF token
in a session cookie along with all other session information. An
attacker cannot easily forge a valid session cookie without know-
ing the entire victim’s session information, especially when the
cookie is encrypted. While this approach could be effective, it is
not an optimal solution since session information might grow in
size and the cookie size is limited [51]. A better alternative is to
store a unique user identifier within the CSRF token, as applied in
C#-based frameworks (except Nancy).

6.2.4 Implementation Mistakes. When looking at the mistakes in-
troduced during the validation of incoming requests, most frame-
works miss checks on safe HTTP methods (i.e., 25 out of 39 frame-
works with token-based defenses). Also, the majority of frameworks
(i.e., 33) do not provide adequate defenses against replay attacks.
Missing Checks and Token Verification. Web frameworks ver-
ify the CSRF tokens in two distinct ways: ad-hoc, or systematic. In
the systematic verification, the token is verified automatically for
state-changing requests, unless explicitly specified. In contrast, if
the framework offers ad-hoc verification, the developer has to man-
ually call the verification function for each HTTP request handler
that is expected to perform a state-changing operation. This has the
obvious drawback that the developer has to manually invoke the
CSREF verification module in all state-changing operations. In total,
out of the 39 frameworks that provide a token-based defense, 29
frameworks provide a systematic verification, nine frameworks re-
quire ad-hoc verification, and one framework, Symfony, offers both,
depending on whether the developer is using a built-in Symfony
form (systematic verification) or a standard HTML form (ad-hoc
verification).

We observed that 25 frameworks that perform systematic ver-
ification exempt requests with safe HTTP methods (i.e., GET, OP-
TIONS, HEAD) [73] from the token verification step. This implies
that if developers use safe HTTP methods for state-changing oper-
ations, they will not be CSRF-protected by the framework. When
we reported these vulnerabilities, some frameworks, such as Sails,

Fastify and Adonis]S, decided to patch the issue by adding a pseudo-
random synchronizer token in a custom HT TP header. However,
other frameworks, such as Apache Struts or Express, were con-
cerned if adding such protection could urge application developers
to mis-use requests with safe HTTP methods for state-changing
operations, which is against the RFC 7231 specification [52]. Also,
this distinction of HTTP methods can lead to a bypass of the CSRF
defense. For example, we discovered that the CakePHP framework
allows the developer to override (via HTTP Method Override [59, 62])
the request method to an arbitrary string that is not an unsafe
method (or even an HT TP method), thus not triggering the CSRF
verification. We discuss the vulnerability in detail in §6.3. In addi-
tion, four of these 25 frameworks have missing checks on unsafe
HTTP Methods since they also exclude DELETE, PUT, and PATCH
requests from the token verification. These frameworks perform
the CSREF verification only for POST HTTP requests.

Replay Attacks. If the CSRF token is leaked, replay attacks are
possible until the expiration of the token. In total, six out of the 39
frameworks mitigate replay attacks by applying per-request tokens
and invalidating them after they are consumed. However, the ma-
jority of the frameworks, i.e., 30/39, do not offer such protection. In
addition, in three frameworks, the mitigation against replay attacks
can be bypassed. Specifically, Vert.x-Web and Vaadin do provide
per-request tokens, but they generate a new token only if the web
page is refreshed. In Slim, an old CSRF token will remain in the
session storage until the storage capacity is reached. Accordingly,
in these cases, the same token can be abused multiple times.

Also, we noticed that many frameworks (e.g., Flask, Tornado,

ASP.NET) attach a timestamp to HTTP requests. OWASP [63] sug-
gests that timestamps can be used to prevent replay attacks. How-
ever, no framework currently does that. For example, the timestamp
in Tornado is an incomplete feature [80]. Yet, frameworks such as
ASPNET MVC and ASP.NET Core allow adding extra information
to the CSRF cookie (e.g., nonces or timestamps [117]), which can
then be verified during the CSRF validation.
Cross-Site WebSocket Hijacking. We observed that WS connec-
tions are not treated the same in all frameworks. Overall, we found
seven frameworks that allow CSRF attacks in WS connections. Then,
five frameworks provide a weak defense against hijacking WS con-
nections by a CSRF attack. For example, Spring only performs a
lenient Origin header check, which can be bypassed if the Origin
header is missing or null. Also, all C#-based frameworks except
Nancy use an Origin header check (if SignalR library is not used)
which allow all origins by default.

Finally, we observed that the rest of the frameworks offer pro-
tections against attacks hijacking WS connections, including those
that not support WS (e.g., Symfony [78]). These frameworks use a
strict Origin header check, a CSRF token verification (e.g., Laravel),
or a combination of the two (e.g., Sails). Also, we noticed that one
framework, Hapi, uses the SameSite=Strict attribute on cookies
to prevent CSRF attacks on WS connections.

Logical Mistakes None of the frameworks we analyzed suffers
from insecure user-token mapping, whereas three frameworks im-
plement a faulty Referer/Origin header check, as explained in §6.1.
Finally, we identified two logical errors in CakePHP and Vert.x-Web
which result in a complete bypass of the CSRF defense. In CakePHP,

for example, the route handler does not check the HTTP verb when
the connect API [1] is used since this API is designed to process
any kind of HTTP request. An attacker can exploit this by sending
an HTTP request with an unknown HTTP verb, bypassing the CSRF
protection. In the following subsection, we provide more details
about these vulnerabilities.

6.3 Examples of Critical Vulnerabilities.

In this section, we present three critical vulnerabilities affecting
Vert.x-Web, CakePHP, and Play, which are among the top five frame-
works of Java and PHP, respectively, and lead to a complete bypass
of the CSRF defense.

Vert.x-Web. The vulnerability [93] in Vert.x-Web framework re-
sides in the way CSRF verification is performed. Whenever a new
CSREF token is generated and signed, it is stored in a CSRF cookie
which is sent to the client-side. Additionally, this generated CSRF
token is stored in session storage. During the CSRF verification,
Vert.x-Web retrieves the CSRF token of the user from the session
storage. Then, the CSRF verification module compares the token
in the CSRF cookie with the token from the session storage. How-
ever, this leads to a logical error because the CSRF token in the
HTML form (i.e., in the request body) is not considered at all. Due
to SOP for cookies, the CSRF cookie will always be sent by the
victim’s browser, thus the verification will always succeed, even if
the attacker does not supply any CSRF token in the HTTP request.

CakePHP. The vulnerability [94] in CakePHP exploits the HTTP
Method Override feature [59, 62] and a missing check in the routing
middleware of the framework. The problem arises from the fact
that the framework performs the CSRF token validation only if
the request method is an unsafe HTTP method [73]. Thus, if an
attacker abuses HTTP Method Override to change the request
method to anything that is not an unsafe HTTP method (even an
arbitrary string), the CSRF verification function is not invoked, and
hence, even without a CSRF token, the request reaches the targeted
endpoint, bypassing the CSRF verification.

Play. A critical vulnerability arises when the developer enables
the CORS module. The default configuration of this module sets
the ACAO HTTP header to reflect back the request’s origin via
dynamic generation [103]. Additionally, the configuration sets the
ACAC header to true [40, 68]. This combination allows an attacker
to send an authenticated GET request on behalf of the victim,
read the CSRF token from the HTTP response across origins, and
mount a CSRF attack. We also noticed a dangerous feature in Play,
bypassCorsTrustedOrigins, which is by default set to true. This
feature allows the CSRF check to be bypassed if the request’s origin
is trusted by the CORS module [68, 70].

7 DOCUMENTATION AND API ANALYSIS

In this section, we address RQ3 (§2.2) by presenting the results of
our documentation analysis.

7.1 Quality of the Documentation

As presented in §3.5, we quantify the quality of documentation
using six distinct criteria, i.e., presence of CSRF defense name or

description, presence of API specifications, description of the con-
figuration space, presence of code examples, description of the
cryptographic guarantees, and presence of a general security con-
siderations section.

Ideally, frameworks’ documentation should fulfill all six criteria,
but only two frameworks achieve that. The next best documenta-
tion that meets at least five of the six criteria is observed in nine
frameworks (20.5%). On the other end of the spectrum, we have six
frameworks that do not mention anything about CSRF and CSRF
defenses. Additionally, seven frameworks fulfill only one out of the
six quality criteria, i.e., a total of 13 frameworks (29.6%) provide
minimal or no CSRF documentation at all.

For the remaining 22 frameworks, the documentation contains
between two to four of the quality criteria (seven, seven, and eight
frameworks, respectively). We also noticed that out of all the frame-
works that provide CSRF documentation, 12 frameworks do not
explain the implemented defense. These frameworks provide only
minimal information which is mostly focused on how to include the
CSREF token in an HTML form or activate the defense. In compari-
son, the rest of the frameworks explain the defense and available
options. Overall, our results suggest that 61.7% of the frameworks
do not meet at least half of the quality criteria. Such a result is
alarming, and it indicates that even if the frameworks support
CSREF defenses, misconceptions and usability issues may arise as de-
velopers try to use these defenses. The complete mapping between
web frameworks and documentation content is shown in Table 7
in Appendix A.

7.2 API Abstraction Analysis

Although our evaluation identified different CSRF defenses, the
vast majority of frameworks (i.e., 84%) implement a defense from
Request Unguessability category. The APIs analysis reveals a vari-
ety in the semantics and operations, diverging in the integration,
configuration, generation, and validation of CSRF tokens. Overall,
there is no established consensus in the way unguessable request
defenses are exposed to developers.

Defense Configuration. In total, 11 frameworks have the CSRF
defense enabled by default. The developers need to install an exter-
nal library or enable the defense in a configuration file for the rest
of the frameworks. We observed that 20 frameworks allow the de-
velopers to configure the CSRF defense. However, the configuration
mainly relates to the type of defense to implement (Plain Token or
Double Submit) and the cryptographic key. Other features such as
the token length, token generation method, signing/encryption of
the tokens, and HTTP methods to validate are neither explained nor
configurable. As such, developers may be forced to customize the
CSRF defense code via “monkey patching” to increase the security
guarantees of the defense.

Token Generation. Our review of the APIs show that web frame-
works provide three distinct ways to add tokens to requests. The
first option is by calling the token generation function and arbitrar-
ily placing the token in the request. The second option uses helpers
or pseudo-variables that are interpreted by a template engine when
generating the HTML code for the browser. The third option is
using framework-provided special form objects.

Looking at frameworks, first, a total of three frameworks allow
calling the token generation function directly. Then, 34 frameworks
rely on template engines to render CSRF tokens in a form. Among
these frameworks, the semantics and operations to use tokens in
templates are not uniform. For example, some frameworks require
using special keywords to generate the input field that stores the
token (e.g., @csrf in Laravel). Other frameworks require the de-
veloper to create the HTML form and input fields manually and
only replace the value attribute with a specific pseudo-variable.
Unfortunately, these pseudo-variables are not always directly in-
terpretable by the template engine. In Vert.x-Web, for example, the
developer needs to pass the pseudo-variable to the template engine
for every HTTP response so that the template engine can recognize
it. Other frameworks, e.g., Django or Flask, offer template engines
that handle this process automatically.

Finally, a total of nine frameworks offer special form objects to

add the CSRF token, out of which six add the CSRF token automati-
cally in the HTML, while for the rest, the developer needs to add
the token manually.
Token Validation. Web frameworks provide three different tech-
niques to validate the CSRF token: (1) calling the CSRF verification
function; (2) using method decorators; (3) automatic. Regardless of
the technique, the state-changing request is verified before reaching
the targeted endpoint.

8 DEVELOPERS FEEDBACK

We notified the affected frameworks about the discovered security
risks (by sharing a proof-of-concept exploit), and our findings of
the status of the documentation. The summary of our notification
campaign is in Table 9.

Overview. Out of the total 157 notifications, 55 security risks were
confirmed by the frameworks’ developers who replied to our report.
Out of 55, 27 security risks are already patched in eight frameworks
(see, e.g, [93], or [94]), and the rest of the confirmed security risks
(i.e., 28) are still in the process of being patched. Then, 24 out of 157
vulnerability reports are still in the process of being reviewed by the
eight affected frameworks (e.g., Pyramid, Hapi, or Laravel). For 17
vulnerability reports that affect four frameworks (i.e., Codelgniter,
FuelPHP, Blade, and ServiceStack) and two external libraries (i.e.,
koa-socket for Koa and swool for Zend), the developers have not
replied to our notifications yet. Similarly, for 18 security risks that
affect four frameworks (i.e., Bottle, Zope, Nancy, and ASP.NET
Web Forms), the developers said the code is no longer maintained
or replaced by a newer option. Finally, for 43 security risks of 19
different frameworks, the frameworks’ developers decided not to
take any further action because they either did not confirm the
vulnerability, or determined that the potential impact of the issue
is low.

Inconsistent Threat Model. When looking at the developers’
feedback over the reported 14 security risks, we observe incon-
sistent responses about the threat’s validity. For 12 out of the 14
reported, we have at least one developers team who did not consider
the reported threat a valid concern. Instead, they indicated web
frameworks’ users as the ones who should address them. On the
contrary, for 10 out of the 14 reported vulnerabilities, at least one
team acknowledged the threat and patched their code. Interestingly,

for six out of the 14 reported vulnerabilities, we have one team that
addressed the threat and another team that did not.

9 DISCUSSION

The overarching goal of the study of this paper is to identify possi-
ble new explanations to a two-decades-old web vulnerability, by
looking at the code and documentation of existing CSRF defenses as
implemented by web frameworks. In this section, we distill our main
findings, showing that while implementations of CSRF defenses
exist, much of their correct and secure implementation depends on
developers’ awareness about CSRF attacks, threats to defenses, and
specific behaviors of the implementations.

Who is Responsible. Both our security analysis and developers’
feedback indicate that a large fraction of threats is adequately ad-
dressed by web frameworks, showing a rather consistent threat
model across the various web frameworks. However, at the same
time, our results show that for a significant fraction of threats,
frameworks’ developers have divergent expectations about who is
responsible for addressing them. For example, when we reported
the insufficient key randomness security risk to the affected frame-
works, CakePHP and Vert.x-Web patched the issue, but other frame-
works, such as Flask and Express, questioned their responsibility
for checking the developer-provided secret keys’ randomness. An-
other example is the CSRF token verification in Hapi and Masonite,
which is disabled by default for unsafe HTTP methods. On the
one hand, Masonite decided to patch the issue. On the other hand,
Hapi argued that they expect the developer to change the default
configuration. While both frameworks acknowledge that insecure
default configurations lead to a vulnerability, they do not agree on
the responsible party to address it.

Correct Use Require Awareness. All frameworks, except for Me-
teor, requires developers to at least write additional code to protect
against CSRF attacks. Meteor does not require that, and it offers a
by-default, cookie-less CSRF defense. Even worse, for more than
60% of the CSRF defenses, developers need to enable them explicitly.
Finally, not all frameworks offer built-in defenses, and for more than
a third of the cases, developers must look for an external library
by themselves. In most of these cases, frameworks’ documenta-
tion provides pointers to libraries implementing a CSRF defense,
whereas the remaining ones do not offer such help.

Secure Defenses Require Diverse Expertise. Even when devel-
opers can correctly enable and use CSRF defenses, they need to be
well informed about the plethora of threats that might weaken or
bypass the defense building blocks. Our evaluation identified 14
treats and, while token generation is, in general, the most robust
building block, the remaining building blocks are equally exposed
to a variety of risks. We mention replay attacks, cookie tossing and
jar overflow among the most concerning ones.

Incomplete and Inconsistent Documentation. Our qualitative
evaluation of the documentation shows that most of the frameworks
and libraries have incomplete and inconsistent documentation. Is-
sues range from trivial details such as the name of the implemented
defense (e.g., double submit token) or advanced ones such as no
code examples showing correct use. Even more concerning is the
lack of details about the threats considered in this study that can
affect the implemented defense’s building blocks. In general, we

find that the documentation accompanying web frameworks and
libraries does not adequately help developers in raising awareness
nor build-up cognition about the many threats that can weaken or
bypass CSRF defenses.

Same-Site Helpful but May not Completely Cut it. SameSite
cookies are relatively new mechanisms that could help protecting
from CSRF attacks. Our evaluation shows that only ten frameworks
and libraries offer SameSite protection. However, we point out
that SameSite cookies alone may not be sufficient to protect from
CSREF attacks. For example, they are not sufficient to protect against
a newer variant of CSRF attacks that leverage on the client-side
JavaScript code [89]. Similarly, when applications mis-use GET-
based HT TP requests for sensitive state-changing operations, the
new default SameSite cookie policy (i.e., Lax) cannot mitigate CSRF
attacks [39]. Additionally, as SameSite can change the behavior of
existing web services, developers may relax it on purpose to avoid
adapting their code. Finally, SameSite cookies are not fully sup-
ported by all programming languages [91]. For example, SameSite
cookies are not supported in PHP until PHP 7.3 [65, 67].
Language-specific Results. A closer look at our results show ap-
preciable language-based differences across CSRF implementations.
For example, C#-based frameworks come with a built-in CSRF de-
fense, whereas, for the other languages, a fraction between 20%
to 70% of the frameworks do not offer a built-in defense. We also
point out that web frameworks and libraries within a language tend
to implement the same defense. For example, JavaScript and Java
frameworks mostly implement Plain Token, while Python and C#
frameworks implement Double Submit. For JavaScript, the reason is
that most of the frameworks rely only on two external libraries (i.e.,
csurf and csrf libraries). We also noticed that, in contrast to the vast
majority of the web frameworks, most Java frameworks are subject
to timing-based side-channel attacks since they use the Java’s built-
in equals function for token comparison. The default behavior of
this function does not perform a constant-time comparison (unless
overridden). These examples show that the implementation of CSRF
defenses may differ among frameworks of different languages.

10 CONCLUSION

In this work, we identified and analyzed all existing CSRF defenses
for potential security threats. We performed the first systematic
study of the implementation and security guarantees of CSRF de-
fenses in 44 top web frameworks of five popular programming lan-
guages. Our results are alarming. We identified 157 security risks
affecting 37 frameworks that can be exploited to perform a CSRF
attack. We discovered three critical vulnerabilities in CakePHP,
Vert.x-Web, and Play that allow the attacker to bypass the CSRF de-
fense. Also, a closer look at the developers’ feedback reveals that, for
a considerable fraction of security risks, frameworks have divergent
expectations about who is responsible for addressing them. Also,
we systematically reviewed the CSRF-related documentation and
API surface of CSRF defenses which showed that at least 61.4% of
the frameworks do not provide sufficient documentation regarding
the CSRF defense. Overall, our research shows that although web
frameworks provide developers with the tools to defend against
CSRE, their correct and secure implementation too often depends
on developers’ awareness and diverse expertise about CSRF attacks,

who need to overcome missing and misleading documentation as
well as insecure defaults.

REFERENCES

(1]
[2]

(3]
[4]
[5]
o]
(7]

S
=}

w
=

[n.d.]. CakePHP Documentation: Routing. https://book.cakephp.org/3/en/
development/routing.html#routes-configuration.

[n.d.]. Common CSRF prevention misconceptions. https://www.nccgroup.com/
uk/about-us/newsroom-and-events/blogs/2017/september/common-csrf-
prevention-misconceptions/.

[n.d.]. Common Weakness Enumeration: A Community-Developed List of Software
& Hardware Weakness Types. https://cwe.mitre.org/data/definitions/352.html.
[n.d.]. Cryptographic Storage Cheat Sheet. https://cheatsheetseries.owasp.org/
cheatsheets/Cryptographic_Storage_Cheat_Sheet.html.

[n.d.]. CVE-2010-5084. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2010-5084.

[n.d.]. CVE-2012-1598. https://cve.mitre.org/cgi-bin/cvename.cgi?’name=CVE-
2012-1598.

[n.d.]. CVE-2013-2213. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2013-2213.

[n.d.]. CVE-2014-1808. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2014-1808.

[n.d.]. CVE-2014-9720. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2014-9720.

[n.d.]. CVE-2015-2206. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2015-2206.

[n.d.]. CVE-2015-4056. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2015-4056.

[n.d.]. CVE-2015-6728. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2015-6728.

[n.d.]. CVE-2015-8125. https://cve.mitre.org/cgi-bin/cvename.cgi?’name=CVE-
2015-8125.

[n.d.]. CVE-2015-8623. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2015-8623.

[n.d.]. CVE-2015-9243. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2015-9243.

[n.d.]. CVE-2016-10535. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2016-10535.

[n.d.]. CVE-2016-10549. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2016-10549.

[n.d.]. CVE-2016-5739. https://cve.mitre.org/cgi-bin/cvename.cgi?’name=CVE-
2016-5739.

[n.d.]. CVE-2016-6582. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2016-6582.

[n.d.]. CVE-2016-6806. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2016-6806.

[n.d.]. CVE-2016-8615. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2016-8615.

[n.d.]. CVE-2017-0894. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2017-0894.

[n.d.]. CVE-2017-16136. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2017-16136.

[n.d.]. CVE-2017-9339. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2017-9339.

[n.d.]. CVE-2018-1000119. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2018-1000119.

[n.d.]. CVE-2018-10899. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2018-10899.

[n.d.]. CVE-2018-6651. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2018-6651.

[n.d.]. CVE-2019-12659.
2019-12659.

[n.d.]. CVE-2019-13209.
2019-13209.

[n.d.). CVE-2019-14993.
2019-14998.

[n.d.]. CVE-2019-15515.
2019-15515.

[n.d.]. CVE-2019-17654.
2019-17654.

[n.d.]. CVE-2020-11825.
2020-11825.

[n.d.]. CVE-2020-14368.
2020-14368.

[n.d.]. CVE-2020-25095.
2020-25095.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-

[36]
[37]
[38]
[39]
[40]

[41
[42

[43
[44

[45]
[46]

[47

[48]
[49]

[50

[51
[52
[53]

[54]
[55]
[56]

[57
[58

[59

[60

[61
[62

[63]

[64

[65

[66

[67

[68

[69]

[70

[71

[72]

[73

[n.d.]. CVE-2020-5261. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2020-5261.

[n.d.]. CVE-2021-23127. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2021-23127.

[n.d.]. CVE-2021-26296. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2021-26296.

[n.d.]. Defending against CSRF with SameSite cookies. https://portswigger.net/
web-security/csrf/samesite- cookies.

[nd.]. Documentation: Cross-Origin Resource Sharing.
playframework.com/documentation/2.8.x/CorsFilter.

[n.d.]. Fetch APL https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
[n.d.]. GitHub’s Annual Report: The State of the Octoverse. https://octoverse.
github.com/.

[n.d.]. Hackerone. https://hackerone.com.

[n.d.]. HackerOne, Report 342693: CSRF and password reset token leakage via
referer. https://hackerone.com/reports/342693.

[n.d.]. HackerOne, Report 426147: CORS misconfiguration lead to CSRF and account
takeover. https://hackerone.com/reports/426147.

[n.d.]. HackerOne, Report 576504: Authentication bypass by abusing insecure
crypto tokens in Revive Adserver. https://hackerone.com/reports/576504.

[n.d.]. HackerOne, Report 577969: CORS misconfiguration allows to steal customers
data and CSRF tokens. https://hackerone.com/reports/577969.

[n.d.]. HackerOne, Report 787160: Referer leakage vulnerability in rockstargames
leads to Facebook’s OAuth token theft. https://hackerone.com/reports/787160.
[n.d.]. HackerOne, Report 975983: Site-wide CSRF on Safari due to CORS miscon-
figuration. https://hackerone.com/reports/975983.

[n.d.]. How do I get the parameters of a post request when using a pacdj security
filter in Spark Java? https://stackoverflow.com/questions/43240829/how-do-i-
get-the-parameters-of-a-post-request-when-using-a-pac4j- security-filter.
[n.d.]. HTTP State Management. https://tools.ietf.org/html/rfc6265.

[n.d.]. Hypertext Transfer Protocol (HTTP/1.1). https://tools.ietf.org/html/rfc7231.
[n.d.]. Insecure token generation in Kayako. https://www.sjoerdlangkemper.nl/
2016/06/23/insecure-tokens-in-kayako/.

[n.d.]. Java Documenation: Class SecureRandom. https://docs.oracle.com/javase/
8/docs/api/java/security/SecureRandom.html.

[n.d.]. Meteor.js and CSRF/XSS Attacks. https://stackoverflow.com/questions/
21807229/meteor-js-and- csrf-xss-attacks.

[n.d.]. Microsoft Documentation: RandomNumberGenerator.Fill(Span<Byte>)
Method. https://docs.microsoft.com/en-us/dotnet/api/system.security.
cryptography.randomnumbergenerator.fill?view=net-5.0.

[n.d.]. MITRE CVE database. https://cve.mitre.org/.

[nd.]. National Vulnerability Database: CSRF statistics. https:
//nvd.nist.gov/vuln/search/statistics?form_type=Advanced&results_type=
statistics&query=CSRF&search_type=all.

[n.d.]. NODE.JS CONNECT CSRF BYPASS ABUSING METHODOVERRIDE MID-
DLEWARE. http://blog.nibblesec.org/2014/05/nodejs- connect-csrf-bypass-
abusing.html.

[n.d.]. Node.js Documentation: crypto.randomBytes. https://nodejs.org/api/
crypto.html#crypto_crypto_randombytes_size_callback.

[n.d.]. NPM package manger. https://www.npmjs.com/.

[n.d.]. Often Misused: HTTP Method Override. https://vulncat.fortify.com/
en/detail?id=desc.dynamic.xtended_preview.often_misused\ http_method_
override.

[n.d.]. OWASP: Cross-Site Request Forgery Prevention Cheat Sheet.
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_
Prevention_Cheat_Sheet.html.

[nd.]. OWASP: Insufficient Session-ID Length. https://owasp.org/www-
community/vulnerabilities/Insufficient_Session-ID_Length.

[n.d.]. PHP 7.3: SameSite cookie support. https://php.watch/versions/7.3/same-
site-cookies.

[n.d.]. PHP Documentation: random_bytes. https://www.php.net/manual/en/
function.random-bytes.php.

[n.d.]. PHP setcookie SameSite=Strict. https://php.watch/versions/7.3/same-site-
cookies.

[nd.]. Play filter configurations. https://www.playframework.com/
documentation/2.8.x/resources/confs/filters-helpers/reference.conf.

[n.d.]. Predictable token in Froxlor that wuses timestamps and
the rand() method. https://github.com/Froxlor/Froxlor/commit/
dadec3e1b591de96675817a009e26e05e848a6ba.

[n.d.]. Protecting against Cross Site Request Forgery. https://www.playframework.
com/documentation/2.8.x/JavaCsrf.

[n.d.]. Python: os — Miscellaneous operating system interfaces.
python.org/3/library/os. html#os.urandom.

[n.d.]. Question: Was it intentional to validate crumb key for POST only? https:
//github.com/hapijs/crumb/issues/4.

[n.d.]. Safe HTTP Methods. https://developer.mozilla.org/en-US/docs/Glossary/
safe.

https://www.

https://docs.

https://book.cakephp.org/3/en/development/routing.html#routes-configuration
https://book.cakephp.org/3/en/development/routing.html#routes-configuration
https://www.nccgroup.com/uk/about-us/newsroom-and-events/blogs/2017/september/common-csrf-prevention-misconceptions/
https://www.nccgroup.com/uk/about-us/newsroom-and-events/blogs/2017/september/common-csrf-prevention-misconceptions/
https://www.nccgroup.com/uk/about-us/newsroom-and-events/blogs/2017/september/common-csrf-prevention-misconceptions/
https://cwe.mitre.org/data/definitions/352.html
https://cheatsheetseries.owasp.org/cheatsheets/Cryptographic_Storage_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cryptographic_Storage_Cheat_Sheet.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-5084
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-5084
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-1598
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-1598
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2213
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2213
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1808
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1808
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-9720
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-9720
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-2206
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-2206
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4056
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4056
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-6728
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-6728
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-8125
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-8125
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-8623
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-8623
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-9243
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-9243
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-10535
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-10535
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-10549
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-10549
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5739
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5739
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-6582
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-6582
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-6806
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-6806
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-8615
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-8615
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-0894
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-0894
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-16136
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-16136
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-9339
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-9339
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-1000119
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-1000119
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-10899
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-10899
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-6651
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-6651
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-12659
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-12659
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-13209
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-13209
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-14998
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-14998
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-15515
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-15515
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-17654
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-17654
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11825
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11825
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14368
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14368
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-25095
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-25095
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-5261
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-5261
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-23127
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-23127
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-26296
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-26296
https://portswigger.net/web-security/csrf/samesite-cookies
https://portswigger.net/web-security/csrf/samesite-cookies
https://www.playframework.com/documentation/2.8.x/CorsFilter
https://www.playframework.com/documentation/2.8.x/CorsFilter
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://octoverse.github.com/
https://octoverse.github.com/
https://hackerone.com
https://hackerone.com/reports/342693
https://hackerone.com/reports/426147
https://hackerone.com/reports/576504
https://hackerone.com/reports/577969
https://hackerone.com/reports/787160
https://hackerone.com/reports/975983
https://stackoverflow.com/questions/43240829/how-do-i-get-the-parameters-of-a-post-request-when-using-a-pac4j-security-filter
https://stackoverflow.com/questions/43240829/how-do-i-get-the-parameters-of-a-post-request-when-using-a-pac4j-security-filter
https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc7231
https://www.sjoerdlangkemper.nl/2016/06/23/insecure-tokens-in-kayako/
https://www.sjoerdlangkemper.nl/2016/06/23/insecure-tokens-in-kayako/
https://docs.oracle.com/javase/8/docs/api/java/security/SecureRandom.html
https://docs.oracle.com/javase/8/docs/api/java/security/SecureRandom.html
https://stackoverflow.com/questions/21807229/meteor-js-and-csrf-xss-attacks
https://stackoverflow.com/questions/21807229/meteor-js-and-csrf-xss-attacks
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.randomnumbergenerator.fill?view=net-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.randomnumbergenerator.fill?view=net-5.0
https://cve.mitre.org/
https://nvd.nist.gov/vuln/search/statistics?form_type=Advanced&results_type=statistics&query=CSRF&search_type=all
https://nvd.nist.gov/vuln/search/statistics?form_type=Advanced&results_type=statistics&query=CSRF&search_type=all
https://nvd.nist.gov/vuln/search/statistics?form_type=Advanced&results_type=statistics&query=CSRF&search_type=all
http://blog.nibblesec.org/2014/05/nodejs-connect-csrf-bypass-abusing.html
http://blog.nibblesec.org/2014/05/nodejs-connect-csrf-bypass-abusing.html
https://nodejs.org/api/crypto.html#crypto_crypto_randombytes_size_callback
https://nodejs.org/api/crypto.html#crypto_crypto_randombytes_size_callback
https://www.npmjs.com/
https://vulncat.fortify.com/en/detail?id=desc.dynamic.xtended_preview.often_misused_http_method_override
https://vulncat.fortify.com/en/detail?id=desc.dynamic.xtended_preview.often_misused_http_method_override
https://vulncat.fortify.com/en/detail?id=desc.dynamic.xtended_preview.often_misused_http_method_override
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://owasp.org/www-community/vulnerabilities/Insufficient_Session-ID_Length
https://owasp.org/www-community/vulnerabilities/Insufficient_Session-ID_Length
https://php.watch/versions/7.3/same-site-cookies
https://php.watch/versions/7.3/same-site-cookies
https://www.php.net/manual/en/function.random-bytes.php
https://www.php.net/manual/en/function.random-bytes.php
https://php.watch/versions/7.3/same-site-cookies
https://php.watch/versions/7.3/same-site-cookies
https://www.playframework.com/documentation/2.8.x/resources/confs/filters-helpers/reference.conf
https://www.playframework.com/documentation/2.8.x/resources/confs/filters-helpers/reference.conf
https://github.com/Froxlor/Froxlor/commit/da4ec3e1b591de96675817a009e26e05e848a6ba
https://github.com/Froxlor/Froxlor/commit/da4ec3e1b591de96675817a009e26e05e848a6ba
https://www.playframework.com/documentation/2.8.x/JavaCsrf
https://www.playframework.com/documentation/2.8.x/JavaCsrf
https://docs.python.org/3/library/os.html#os.urandom
https://docs.python.org/3/library/os.html#os.urandom
https://github.com/hapijs/crumb/issues/4
https://github.com/hapijs/crumb/issues/4
https://developer.mozilla.org/en-US/docs/Glossary/safe
https://developer.mozilla.org/en-US/docs/Glossary/safe

"%
i

)
2

[97]

[98

[99]

._;
S o
=2

[102

[103

[104

[105

[106

[107

[n.d.]. SameSite Cookies & CSRF Attacks. https://symfonycasts.com/screencast/
api-platform-security/samesite- csrf.

[n.d.]. Spark Framework CSRF Protection. https://stackoverflow.com/questions/
43317938/spark-framework-csrf-protection.

[n.d.]. Spark Framework CSRF Protection. https://bottle-utils.readthedocs.io/en/
latest/csrf.html.

[n.d.]. Stackoverflow Tags. https://stackoverflow.com/help/tagging.

[n.d.]. Symfony: [RFC] Add support for Websockets and real-time applications.
https://github.com/symfony/symfony/issues/17051.

[n.d.]. Test your code. https://snyk.io/test/.

[n.d.]. Tornado Github Issue 2722: Misleading CSRF Docs / Bug in Setting CSRF
Cookie. https://github.com/tornadoweb/tornado/issues/2722.

[n.d.]. The Web Origin Concept. https://www.ietf.org/rfc/rfc6454.txt.

[n.d.]. Why Meteor doesn’t use session cookies. https://blog.meteor.com/why-
meteor-doesnt-use-session-cookies-e988544f52¢9.

[n.d.]. Window.localStorage APIs. https://developer.mozilla.org/en-US/docs/
Web/API/Window/localStorage.

1999. Hypertext Transfer Protocol - HTTP/1.1. https://tools.ietf.org/html/rfc2616#
page-53.

2009. Netflix CSRF Revisited. https://appsecnotes.blogspot.com/2009/01/netflix-
csrf-revisited.html.

2010. Patching auto-complete vulnerabilities not enough, Cookie Eviction to the
rescue. https://blog.jeremiahgrossman.com/2010/07/patching-auto-complete-
vulnerabilities.html.

2013. Twitter CSRF account control exploit. https://www.itproportal.com/2013/
11/07/twitter-rapidly-fixes-csrf-account- control-exploit/.

2016. OWASP Top Ten. https://owasp.org/www-project-top-ten/.

2018. Client-Side CSRF. https://www.facebook.com/notes/facebook-bug-bounty/
client-side-csrf/2056804174333798)/.

2019. Critical CSRF Vulnerability on Facebook. https://www.acunetix.com/blog/
web-security-zone/critical- csrf-vulnerability-facebook/.

2019. Developers: Get Ready for New SameSite=None; Secure Cookie Settings.
https://blog.chromium.org/2019/10/developers-get-ready-for-new.html.

2019. Intent to implement: Cookie SameSite=lax by default and SameSite=none
only if secure. https://groups.google.com/forum/#!msg/mozilla.dev.platform/
nx2uP0CzA9k/BNVPWDHSAQA].

2020. CVE-2020-35217. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2020-35217.

2020. CVE-2020-35239. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2020-35239.

2020. SameSite cookie attribute, Chromium, Blink. https://www.chromestatus.
com/feature/4672634709082112.

Y. Acar, M. Backes, S. Fahl, S. Garfinkel, D. Kim, M. L. Mazurek, and C. Stransky.
2017. Comparing the Usability of Cryptographic APIs. In IEEE Symposium on
Security and Privacy (SP).

‘Wade Alcorn, Christian Frichot, and Michele Orru. 2014. The Browser Hacker’s
Handbook. John Wiley & Sons. 268-270 pages.

Scott Arciszewski. [n.d.]. Preventing Timing Attacks on String Comparison with a
Double HMAC Strategy. https://paragonie.com/blog/2015/11/preventing-timing-
attacks- on- string- comparison-with-double-hmac-strategy.

Adam Barth, Collin Jackson, and John C. Mitchell. 2008. Robust Defenses
for Cross-Site Request Forgery. In Proceedings of the 15th ACM Conference on
Computer and Communications Security (Alexandria, Virginia, USA) (CCS ’08).
Association for Computing Machinery, New York, NY, USA, 75-88. https:
//doi.org/10.1145/1455770.1455782

Jeremiah Blatz. [n.d.]. CSRF: Attack and Defense. ([n.d.]).

Stefano Calzavara, Mauro Conti, Riccardo Focardi, Alvise Rabitti, and Gabriele
Tolomei. 2019. Mitch: A Machine Learning Approach to the Black-Box Detection
of CSRF Vulnerabilities. In Proceedings of the IEEE European Symposium on
Security and Privacy.

Jianjun Chen, Jian Jiang, Haixin Duan, Tao Wan, Shuo Chen, Vern Paxson,
and Min Yang. 2018. We Still Don’t Have Secure Cross-Domain Requests: An
Empirical Study of CORS. In Proceedings of the 27th USENIX Conference on
Security Symposium.

Jianjun Chen, Jian Jiang, Haixin Duan, Tao Wan, Shuo Chen, Vern Paxson,
and Min Yang. 2018. We Still Don’t Have Secure Cross-Domain Requests: an
Empirical Study of CORS. In 27th USENIX Security Symposium.

Alexei Czeskis, Alexander Moshchuk, Tadayoshi Kohno, and Helen J. Wang.
2013. Lightweight server support for browser-based CSRF protection. In Pro-
ceedings of the International Conference on World Wide Web.

Dorothy E Denning and Giovanni Maria Sacco. 1981. Timestamps in key distri-
bution protocols. Commun. ACM 24, 8 (1981), 533-536.

Yoel Gluck, Neal Harris, and Angelo Prado. 2013. BREACH: reviving the CRIME
attack. Unpublished manuscript (2013).

Peter Leo Gorski, Yasemin Acar, Luigi Lo Iacono, and Sascha Fahl. 2020. Lis-
ten to Developers! A Participatory Design Study on Security Warnings for
Cryptographic APIs. In Proceedings of the 2020 Conference on Human Factors in
Computing Systems (CHI).

[108]

[109

[110

[111

[112]

[113]

[114

[115

[116]

[117

[118])

[119

[120]

[121

[122

[123

[124

[125

[126

[127

[128

[129

A

Michael Howard and David LeBlanc. 2003. Writing secure code. Pearson Educa-
tion. 350-361 pages.

Lin-Shung Huang, Alex Moshchuk, Helen J. Wang, Stuart Schechter, and Collin
Jackson. 2012. Clickjacking: Attacks and Defenses. In Proceedings of the 21st
USENIX Conference on Security Symposium.

David Johansson. 2017. A Double Defeat of the Double-Submit Cookie Pattern.
(2017).

Martin Johns. 2007. The three faces of CSRF. Talk at the DeepSec2007 con-
ference. (2007). https://deepsec.net/archive/2007.deepsec.net/speakers/index.
html#martin-johns.

Martin Johns and Justus Winter. 2006. RequestRodeo: Client side protection
against session riding. https://www.owasp.org/images/4/42/RequestRodeo-
MartinJohns.pdf.

Nenad Jovanovic, Engin Kirda, and Christopher Kruegel. 2006. Preventing Cross
Site Request Forgery Attacks. In Second International Conference on Security and
Privacy in Communication Networks and the Workshops (SecureComm).

Florian Kerschbaum. 2007. Simple cross-site attack prevention. In 2007 Third
International Conference on Security and Privacy in Communications Networks
and the Workshops-SecureComm 2007. IEEE, 464-472.

Sebastian Lekies, Walter Tighzert, and Martin Johns. 2012. Towards stateless,
client-side driven Cross-site request forgery protection for Web applications.
SAP Research (2012).

Rich Lundeen, Jesse Ou, and Travis Rhodes. 2011. New ways im going to hack
your web app. Blackhat AD (2011), 1-11.

Sreekanth Malladi, Jim Alves-Foss, and Robert B Heckendorn. 2002. On pre-
venting replay attacks on security protocols. Technical Report. IDAHO UNIV
MOSCOW DEPT OF COMPUTER SCIENCE.

Jian Mao, Yue Chen, Futian Shi, Yaoqi Jia, and Zhenkai Liang. 2016. Toward
Exposing Timing-Based Probing Attacks in Web Applications. In Proceedings of
the International Conference on Wireless Algorithms, Systems, and Applications.
Ziqing Mao, Ninghui Li, and Ian Molloy. 2009. Defeating Cross-Site Request
Forgery Attacks with Browser-Enforced Authenticity Protection. In 13th Inter-
national Conference on Financial Cryptography and Data Security.

Kai Mindermann and Stefan Wagner. 2018. Usability and Security Effects of
Code Examples on Crypto APIs. In 16th Annual Conference on Privacy, Security
and Trust (PST).

Nikhil Patnaik, Joseph Hallett, and Awais Rashid. 2019. Usability Smells: An
Analysis of Developers’ Struggle With Crypto Libraries. In Fifteenth Symposium
on Usable Privacy and Security(SOUPS).

Giancarlo Pellegrino, Martin Johns, Simon Koch, Michael Backes, and Christian
Rossow. 2017. Deemon: Detecting CSRF with dynamic analysis and property
graphs. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security.

Philippe De Ryck, Lieven Desmet, Thomas Heyman, Frank Piessens, and Wouter
Joosen. 2010. CsFire: Transparent Client-Side Mitigation of Malicious Cross-
Domain Requests. In International Symposium on Engineering Secure Software
and Systems (ESSoS).

Philippe De Ryck, Lieven Desmet, Wouter Joosen, and Frank Piessens. 2011.
Automatic and Precise Client-Side Protection against CSRF Attacks. In European
Symposium on Research in Computer Security (ESORICS).

Christian Schneider. [n.d.]. Cross-Site WebSocket Hijacking. https://christian-
schneider.net/CrossSiteWebSocketHijacking html.

Thomas Schreiber. 2004. Session Riding-A Widespread Vulnerability in Today’s
Web Applications.(2004).

Hossain Shahriar and Mohammad Zulkernine. 2010. Client-Side Detection of
Cross-Site Request Forgery Attacks. In Proceedings of the IEEE 21st International
Symposium on Software Reliability Engineering.

Robin Sharma. 2017. Preventing cross-site attacks using same-site cook-
ies. https://blogs.dropbox.com/tech/2017/03/preventing- cross-site-attacks-
using-same-site-cookies/.

Avinash Sudhodanan, Roberto Carbone, Luca Compagna, and Nicolas Dolgin.
2017. Large-scale analysis & detection of authentication cross-site request
forgeries. In 2017 IEEE European Symposium on Security and Privacy.

Tom Van Goethem, Wouter Joosen, and Nick Nikiforakis. 2015. The Clock is
Still Ticking: Timing Attacks in the Modern Web. In Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security.

Mike West. 2019. Incrementally Better Cookies. (2019). https://tools.ietf.org/
html/draft-west-cookie-incrementalism-00.

Chamila Wijayarathna and Nalin A. G. Arachchilage. 2018. A methodology
to Evaluate the Usability of Security APIs. In IEEE International Conference on
Information and Automation for Sustainability (ICIAfS).

John Wilander. 2012. Advanced CSRF and Stateless Anti-CSRF. (2012).
William Zeller and Edward W. Felten. 2008. Cross-Site Request Forgeries:
Exploitation and Prevention. In Princeton University.

ADDITIONAL EVALUATION DETAILS

https://symfonycasts.com/screencast/api-platform-security/samesite-csrf
https://symfonycasts.com/screencast/api-platform-security/samesite-csrf
https://stackoverflow.com/questions/43317938/spark-framework-csrf-protection
https://stackoverflow.com/questions/43317938/spark-framework-csrf-protection
https://bottle-utils.readthedocs.io/en/latest/csrf.html
https://bottle-utils.readthedocs.io/en/latest/csrf.html
https://stackoverflow.com/help/tagging
https://github.com/symfony/symfony/issues/17051
https://snyk.io/test/
https://github.com/tornadoweb/tornado/issues/2722
https://www.ietf.org/rfc/rfc6454.txt
https://blog.meteor.com/why-meteor-doesnt-use-session-cookies-e988544f52c9
https://blog.meteor.com/why-meteor-doesnt-use-session-cookies-e988544f52c9
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://tools.ietf.org/html/rfc2616#page-53
https://tools.ietf.org/html/rfc2616#page-53
https://appsecnotes.blogspot.com/2009/01/netflix-csrf-revisited.html
https://appsecnotes.blogspot.com/2009/01/netflix-csrf-revisited.html
https://blog.jeremiahgrossman.com/2010/07/patching-auto-complete-vulnerabilities.html
https://blog.jeremiahgrossman.com/2010/07/patching-auto-complete-vulnerabilities.html
https://www.itproportal.com/2013/11/07/twitter-rapidly-fixes-csrf-account-control-exploit/
https://www.itproportal.com/2013/11/07/twitter-rapidly-fixes-csrf-account-control-exploit/
https://owasp.org/www-project-top-ten/
https://www.facebook.com/notes/facebook-bug-bounty/client-side-csrf/2056804174333798/
https://www.facebook.com/notes/facebook-bug-bounty/client-side-csrf/2056804174333798/
https://www.acunetix.com/blog/web-security-zone/critical-csrf-vulnerability-facebook/
https://www.acunetix.com/blog/web-security-zone/critical-csrf-vulnerability-facebook/
https://blog.chromium.org/2019/10/developers-get-ready-for-new.html
https://groups.google.com/forum/#!msg/mozilla.dev.platform/nx2uP0CzA9k/BNVPWDHsAQAJ
https://groups.google.com/forum/#!msg/mozilla.dev.platform/nx2uP0CzA9k/BNVPWDHsAQAJ
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-35217
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-35217
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-35239
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-35239
https://www.chromestatus.com/feature/4672634709082112
https://www.chromestatus.com/feature/4672634709082112
https://paragonie.com/blog/2015/11/preventing-timing-attacks-on-string-comparison-with-double-hmac-strategy
https://paragonie.com/blog/2015/11/preventing-timing-attacks-on-string-comparison-with-double-hmac-strategy
https://doi.org/10.1145/1455770.1455782
https://doi.org/10.1145/1455770.1455782
https://deepsec.net/archive/2007.deepsec.net/speakers/index.html#martin-johns
https://deepsec.net/archive/2007.deepsec.net/speakers/index.html#martin-johns
https://www.owasp.org/images/4/42/RequestRodeo-MartinJohns.pdf
https://www.owasp.org/images/4/42/RequestRodeo-MartinJohns.pdf
https://christian-schneider.net/CrossSiteWebSocketHijacking.html
https://christian-schneider.net/CrossSiteWebSocketHijacking.html
https://blogs.dropbox.com/tech/2017/03/preventing-cross-site-attacks-using-same-site-cookies/
https://blogs.dropbox.com/tech/2017/03/preventing-cross-site-attacks-using-same-site-cookies/
https://tools.ietf.org/html/draft-west-cookie-incrementalism-00
https://tools.ietf.org/html/draft-west-cookie-incrementalism-00

Slim v4.0 Slim-Csrf v1.0

. Stack . . . g 5
N Web GitHub ~ Monthy Overflow GitHub GitHub GitHub = =t
Framework Used By Downloads . Watch Star Fork &g o}
Questions g g o]
£ s 5 %
FJavaScript 2 5 = 8
1 Express 6.4m 42.8m 659k 18k 491k 8.1k s 3 £ 5 %
2 Meteor - - 286k 17k 417k Sk 222 F & E
3 Koa 124k 1.7m 1.1k 882 295k 28k S5 EE 8 8
4 Hapi - 828k 523 439 125k 13k s 2 2§ g <]
5 Sails 24.7k 112k 6.5k 709 214k 19k £ E g & g 5
6 Fastify 7.2k 360k 142 265 147k 1k - '5 E 2 g
7 Think]S 1.9k 2.2k - 277 5.1k 632
8 Totaljs 512 2.3k 69 235 4.1k 440 JavaScript
9 AdonisJs 112 620 440 243 8.1k 451 #1 Express v4.17.1 e - 06 06 0 -
#2 Meteor v1.10.2 - 00 - o
Python #3 Koa v2.12 . . e e - -
1 Flask 462k 11.6m 38.3k 2.3k 51k 13.6k #4 Hapi v19.1.1 e o 0o 00 0
2 Django 398k 4.8m 236k 2.3k 50.4k 21.8k #5 Sails v1.2.4 ® - o0 - o
3 Tornado 98.2k 10.8m 3.5k 1.1k 19.2k 5.4k #6 Fastify v2.14.1 ® - o0 0 O
4 Bottle 15.1k 1.3m 1.4k 322 69k 13k 47 Think]s v32.11 S
5 Pyramid 9.7k 172k 22k 174 37k 865 #8 Totaljs v2.9 S -
6 Falcon 6.7k 488k 183 296 7.9k 791 49 AdonisJs v0.9 Y o -
7 Zope - 18k 717 85 224 84
8 Masonite - 2.9k 18 61 1.4k 88 Python
9 TurboGears 587 636 150 32 749 67 #1 Flask v1.1.2 - - 00 e -
10 Web2py 54 340 2.1k 231 1.9k 836 #2 Dijango v3.0.6 e - o000
#3 Tornado v6.0.4 e - 6 06 0 -
PHP #4 Bottle v0.12 e -
1 Laravel 488k 243k 150k 4.7k 59.9k 18.8k #5 Pyramid v1.10.4 e - 6 0 0 O
2 Symfony 59.3k 24.9k 66.2k 1.3k 26k 7.6k #6 Falcon v2.0 ® -0 0 0 -
3 Slim 25.1k 10.2k 2.6k 564 10.7k 1.9k 47 Zope v4.2 .. e .
4 CakePHP 10k 4.2k 30.9k 617 8.2k 3.4k #8 Masonite v2.3.8 ® -0 - - -
5 f;:i; " 6.3k 45k 204k 542 57k 2.8k #9 TurboGears v2.4.1 - -0 - e -
X #10 Web2py v2.20.4 - - - -
6 Codelgniter 858 551 66.8k 1.7k 18k 7.9k
7 FuelPHP 510 297 525 110 1.4k 294 Java
8 Yii2 30 7k 14.2k 1.2k 13.3k 6.9k #1 Spring v5.2.6 o - 06 0 0 O
9 Phalcon 9 58 1.9k 701 10.2k 1.9k #2 Play v2.8.1 o - 06 0 0 O
10 Li3 - 55 300 93 1.1k 243 #3 Spark v3.0 - - - - - -
#4 Vert.x-Web v4.0 milestonel-4 | @ - @ @ @ -
]av.a #5 Vaadin v8.11 - - - @ - -
1 Spring 162k - 171k 3.5k 38k 25.7k #6 Dropwizard v2.0 o T
2 Play 16.8k - - 712 116k 3.9k 7 Blade v2.0.15 L e . -
3 Spark 19k - 534 436 88k 1.5k 8 ZK v9.0 e)
4 Vert.x-Web 16.2k - 1.9k 87 767 361 #9 Apache Struts v2.3 - - - @ - -
5 Vaadin 10.3k - Sk 15t Lok 730 #10 Apache Wicket v8.8 eo0 o000
6 Dropwizard 8.7k - 1.8k 439 7.7k 3.2k
7 Blade 1.9k - 2.5k 315 5.4k 1.1k PHP
8 ZK 1.4k - 1.1k 49 304 166 #1 Laravel v7.0 - - 0 e - -
9 Apache Struts 482 - 3.6k 129 1k 671 #2 Symfony v5.0.8 e - 06 0 0 -
10 Apache Wicket 459 - 3.5k 60 513 339 #3 Slim v4.0 - - @ - - -
#4 CakePHP v4.0 e - 6 06 0 -
1% #5 Zend/Laminas v3.1.1 e - 60 - -
1 ASPNET Web Forms 322k - 357k 77 606 290 46 Codelgniter v3.1.11 e .o . .
2 ASP.NET MVC 322k - 357k 77 606 290 #7 FuelPEIP v1.9 . e ® . -
3 ASP.NET Core 10k - 48k 1.5k 18.1k 5.1k #8 Yii2 v2.0.35 . . e e -
4 Service Stack 2.1k - 5k 542 4.8k 1.6k £0 Phalcon v4.0 e -0 0 -
5 Nancy - - 1.1k 452 7.1k 1.5k #10 Li3 v1.2 P N
Table 5: Selected Web Frameworks. C#
#1 ASP.NET Web Forms v4.8 e - 060 - -
#2 ASPNET MVC v4.8 e - 06 06 0 O
#3 ASP.NET Core v3.1 e - 06 06 0 O
Language | Web Framework | Library #4 Service Stack v5.9.0 R A
#5 Nancy v2.0 - - - - - -
JavaScript | Express v4.17.1 csurf v1.11
Koa v2.12 koa-cstf v3.0.8 Legend: @ = contained in the documentation;
Hapi v19.1.1 crumb v8.0 - = not contained;
Fastify v2.14.1 fastify-csrf v1.0.3 .
Adonis]s v0.9 shield v3.0 red = no official CSRF defense;
Python | Flask vi.12 Naskowif V0143 Table 7: Mapping between web frameworks and quality of
Bottle v0.12 bottle-utils v2.0 the documentation.
Zope v4.2 zope.formlib v4.7.1
TurboGears v2.4.1 | tgext.utils v0.0.3
Java Spring v5.2.6 Spring Security v5.2.1
Spark v3.0 pac4j v4.0.2
PHP ‘ Symfony v5.0.8 security-csrf v5.1

Legend: red = unofficial external library;
Table 6: Official and unofficial external libraries implement-
ing CSRF defenses.

Plain Token

Encrypted Token

HMAC Token

Double Submit

Triple Submit

Cookie-less User Sessions
Referer/Origin Header Check

Custom Request Header

Re-authentication

One-Time Token
(re) CAPTCHA

Frequent log outs
SameSite cookies

JavaScript

#1 Express v4.17.1
#2 Meteor v1.10.2
#3 Koa v2.12

#4 Hapi v19.1.1

#5 Sails v1.2.4

#6 Fastify v2.14.1
#7 Think]S v3.2.11
#8 Total.js v2.9

#9 Adonis]s v0.9

Python

#1 Flask v1.1.2

#2 Django v3.0.6

#3 Tornado v6.0.4
#4 Bottle v0.12

#5 Pyramid v1.10.4
#6 Falcon v2.0

#7 Zope v4.2

#8 Masonite v2.3.8
#9 TurboGears v2.4.1
#10 Web2py v2.20.4

Java

#1 Spring v5.2.6
#2 Play v2.8.1
#3 Spark v3.0

#4 Vert.x-Web v4.0 milestonel-4

#5 Vaadin v8.11

#6 Dropwizard v2.0

#7 Blade v2.0.15

#8 ZK v9.0

#9 Apache Struts v2.3
#10 Apache Wicket v8.8

PHP

#1 Laravel v7.0

#2 Symfony v5.0.8

#3 Slim v4.0

#4 CakePHP v4.0

#5 Zend/Laminas v3.1.1
#6 Codelgniter v3.1.11
#7 FuelPHP v1.9

#8 Yii2 v2.0.35

#9 Phalcon v4.0

#10 Li3 v1.2

C#

#1 ASP.NET Web Forms v4.8 -

#2 ASP.NET MVC v4.8
#3 ASP.NET Core v3.1
#4 Service Stack v5.9.0
#5 Nancy v2.0

Total |18 4 12 22 1 4

Legend: @ = CSRF defense; - = not offered;

red = no official CSRF defense;

Table 8: Mapping between web frameworks
fenses they implement.

and CSRF de-

Web Framework

Token Gen.

Token Leakage

Cookie
Integrity

Implementation Mistakes

Insecure Randomness

Insuff. Token Randomnesg

Insuff. Key Randomness

Vuln. Crypto Libraries

BREACH

Referrer Leakage

Over-perm. CORS Conf.

Timing Attacks on Cmp.

Cookie Tossing

HTTP Method Override
Faulty Ref./Orig. Check

Unsafe HTTP Met. check
Logical Errors

Cookie Jar Overflow
Insecure Token Mapping
Safe HTTP Met. check
XS WS Hijacking
Replay Attack

JavaScript
#1 Express
#2 Meteor
#3 Koa

#4 Hapi

#5 Sails

#6 Fastify
#7

#8 Total.js
#9 Adonis]s

Vo g

ja~

Yo O

o~}

RN

la~]
z

oo

=Ra=B-=-=]
4 '
'

j BBl =lecTia~]

'

la~]
'

o<}

Python

#1 Flask

#2 Django
#3 Tornado
#4 Bottle

#5 Pyramid
#6 Falcon
#7 Zope

#8 Masonite
#9 TurboGears
#10 Web2py

z

3z 7

mmE o

-

o E o

zzz.
== Z2Z
20 mz
= ZzZz
= la~]

zz

om
]
2

Java

#1 Spring

#2 Play

#3 Spark

#4 Vert.-Web

#5 Vaadin

#6 Dropwizard
#7 Blade

#8 ZK

#9 Apache Struts
#10 Apache Wicket

oo

c oo 7

Z

]

oo oo

v Z2Z= 2z
™ Z
ZmmH sz

<
[
=Nl

Z

PHP

#1 Laravel

#2 Symfony

#3 Slim

#4 CakePHP
#5 Zend/Laminas
#6 Codelgniter
#7 FuelPHP

#8 Yii2

#9 Phalcon
#10 Li3

oo

"ac

'
=
'
'

N
zz
wZzmZzZ=

" ach
= ach
o
oo

Z

C#

#1 ASP.NET Web Forms
#2 ASPNET MVC

#3 ASP.NET Core

#4 Service Stack

#5 Nancy

czzz
zczzz

Legend: blue = CSRF defense via official external library;

red = no official CSRF defense;

- = already secure; F = fixed; P = fix in progress; N = not confirmed (risk acceptance);
R = under review; U = unanswered; M = not maintained anymore; empty cell = not evaluated;

Table 9: Summary of vulnerability disclosure

	Abstract
	1 Introduction
	2 Problem Statement
	2.1 Cross-Site Request Forgery (CSRF)
	2.2 Research Questions

	3 Methodology
	3.1 Identification of Popular Web Frameworks
	3.2 Survey of CSRF Defenses
	3.3 Threat Analysis
	3.4 Analysis of the Code
	3.5 Analysis of the Documentation

	4 Survey of CSRF Defenses
	4.1 Origin Checks
	4.2 Request Unguessability
	4.3 Same-Origin Policy for Cookies
	4.4 User Intention

	5 Threat Modeling
	5.1 Token Generation
	5.2 CSRF Token Leakage and Abuse
	5.3 Cookie Integrity
	5.4 Implementation Mistakes

	6 Security Analysis of the Implementations
	6.1 Demographics of CSRF Defenses
	6.2 Vulnerabilities and Security Risks
	6.3 Examples of Critical Vulnerabilities.

	7 Documentation and API Analysis
	7.1 Quality of the Documentation
	7.2 API Abstraction Analysis

	8 Developers Feedback
	9 Discussion
	10 Conclusion
	References
	A Additional Evaluation Details

