
With a Little Help from My Friends: Constructing Practical
Anonymous Credentials

Lucjan Hanzlik

lucjan.hanzlik@cispa.de

CISPA Helmholtz Center for Information Security

Saarbrücken, Germany

Daniel Slamanig

daniel.slamanig@ait.ac.at

AIT Austrian Institute of Technology

Vienna, Austria

ABSTRACT
Anonymous credentials (ACs) are a powerful cryptographic tool

for the secure use of digital services, when simultaneously aim-

ing for strong privacy guarantees of users combined with strong

authentication guarantees for providers of services. They allow

users to selectively prove possession of attributes encoded in a

credential without revealing any other meaningful information

about themselves. While there is a significant body of research on

AC systems, modern use-cases of ACs such as mobile applications

come with various requirements not sufficiently considered so far.

These include preventing the sharing of credentials and coping

with resource constraints of the platforms (e.g., smart cards such as

SIM cards in smartphones). Such aspects are typically out of scope

of AC constructions, and, thus AC systems that can be considered

entirely practical have been elusive so far.

In this paper we address this problem by introducing and for-

malizing the notion of core/helper anonymous credentials (CHAC).

The model considers a constrained core device (e.g., a SIM card) and

a powerful helper device (e.g., a smartphone). The key idea is that

the core device performs operations that do not depend on the size

of the credential or the number of attributes, but at the same time

the helper device is unable to use the credential without its help.

We present a provably secure generic construction of CHACs using

a combination of signatures with flexible public keys (SFPK) and

the novel notion of aggregatable attribute-based equivalence class

signatures (AAEQ) along with a concrete instantiation. The key

characteristics of our scheme are that the size of showing tokens

is independent of the number of attributes in the credential(s) and

that the core device only needs to compute a single elliptic curve

scalar multiplication, regardless of the number of attributes. We

confirm the practical efficiency of our CHACs with an implemen-

tation of our scheme on a Multos smart card as the core and an

Android smartphone as the helper device. A credential showing

requires less than 500 ms on the smart card and around 200 ms on

the smartphone (even for a credential with 1000 attributes).

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea.
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8454-4/21/11. . . $15.00

https://doi.org/10.1145/3460120.3484582

CCS CONCEPTS
• Security and privacy→ Digital signatures; Hardware-based
security protocols; •Theory of computation→Cryptographic
primitives.

KEYWORDS
Anonymous credentials; secure elements; smart cards; mobile;

ACM Reference Format:
Lucjan Hanzlik and Daniel Slamanig. 2021. With a Little Help from My

Friends: Constructing Practical Anonymous Credentials. In Proceedings of
the 2021 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’21), November 15–19, 2021, Virtual Event, Republic of Korea. ACM, New

York, NY, USA, 20 pages. https://doi.org/10.1145/3460120.3484582

1 INTRODUCTION
Anonymous credential systems (ACs), envisioned by Chaum [33] in

the 1980ies and meanwhile found as commercial products such as

U-Prove [65] or Idemix [30], allow users to obtain digital credentials

from an issuer and to prove possession of attributes encoded in

a credential, e.g., just prove that the holder is over 21 years old,

to verifiers without revealing any other meaningful information

about themselves. Typically, a credential contains a number of at-

tributes, e.g. a collection of attributes such as age, address, gender,

etc. for human credential holders or a potentially large number

of attributes describing a platform and its configuration, e.g., for

remote attestation.
1
These attributes can be selectively shown and

thus support minimum disclosure, i.e., only information that is

required for the particular application is revealed. The reason why

ACs are considered useful is because they provide strong authenti-

cation and in addition strong privacy. This means that verifiers can

be convinced that users really hold credentials from an issuer when

the authentication is successful, but at the same time the credential

issuer and verifiers (even if they collaborate) cannot link credentials

to a specific session with the user.

There are two variants of ACs, namely one-show and multi-show.
If ACs are one-show private, with U-Prove [65] being the most well

known representative, then each credential can only be used once

in an unlinkable way (i.e., multiple showings can be linked). While

this might pose serious limitations in some settings, it has recently

been found real-world applications and in particular in the form of

PrivacyPass [41] by Cloudflare (available as extensions for Chrome

and Firefox), the enhanced variant by Google [56] being integrated

1
Remote attestation allows a verifier to determine a level of trust in the integrity

of the platform of another system, i.e., the machine that holds the credential.

https://orcid.org/0000-0002-4181-2561
https://doi.org/10.1145/3460120.3484582
https://doi.org/10.1145/3460120.3484582

into the Trust Tokens API
2
or the PrivateStats proposal by Face-

book.
3
A stronger variant of ACs is calledmulti-show private, which

additionally guarantees that the repeated use of the same credential

is unlinkable. The latter is a much more general and typically more

desirable notion and we are exclusively focusing on multi-show

ACs in this paper.
4
Multi-show ACs have a variety of applications

such as access control to online-service [68], anonymous subscrip-

tions [12, 57], e-tickets [50, 61] or point collection systems [14, 15].

A recent large scale real-world application of such ACs is the real-

ization of private groups within the popular Signal messenger [32].

Moreover, there are recent innovative proposals such as Gradient’s

identity management infrastructure
5
supporting provable state-

ments and claims chained to immutable (hardware-based) roots of

trust via recent AC constructions [38, 39, 45].

Camenisch and Lysyanskaya [28] were the first to fully construct

this cryptographic primitive. Their scheme is based on so-called

CL-signatures that use RSA groups and allow to efficiently prove

knowledge of a signature. In their follow-up work [29] they con-

struct CL-signatures from bilinear groups and more schemes follow

their template, e.g., [58, 66]. Brands [18] proposed an alternative

construction (later made provably secure in [3]) that uses pairing-

free groups at the expense of multi-show privacy. Besides the al-

ready mentioned constructions of ACs, there is significant research

into different approaches to construct AC systems with various

trade-offs in bandwidth, computational efficiency and security (e.g.,

[3, 27, 42, 45, 48, 69]). We will compare our approach to the most

important ones later. Furthermore, there are various variants of

ACs such as keyed-verification [31, 37], updatable [14, 36], dele-

gatable [7, 13, 38], decentralized [46, 73] or cloud-based ACs [55],

further broadening the scope of potential applications.

Preventing unauthorized sharing of credentials. The use of
ACs in commercial products such as U-Prove or Idemix created new

problems such as the sharing of credentials, allowing for instance

non-paying or non-authorized users to gain access to a service (e.g.,

watch R-rated movies). A simple solution is to store the credential

inside a secure hardware device (secure element) such as a smart

card, which makes sharing a credential practically infeasible. This

not only solves the problem of dishonest users, but provides an addi-

tional layer of security for credentials of honest users. It also allows

applying ACs in e-government applications [11], since electronic

identities (e-IDs) are usually based on smart cards. The problem

that one encounters here, however, is that the AC constructions

mentioned before are not designed having this in mind. Thus their

efficiency is only practical on rather powerful devices such as PCs

or smartphones, but fails on constrained devices such as a smart

card providing much less memory and processing capabilities. Thus,

they are typically far too inefficient for the use in such a setting.

Anonymous credentials on constrained devices. There were
several attempts to implement ACs on smart cards. Bichsel et. al.

[10] implemented CL credentials [28] on a standard Java Card [64].

2
https://web.dev/trust-tokens/

3
https://research.fb.com/privatestats

4
Note that every multi-show AC can easily be turned into a one-show AC by

including a unique attribute that always needs to be shown.

5
https://www.gradient.tech/

Unfortunately, for a meaningful security parameter, their imple-

mentation required more than 16 seconds to perform a showing. A

more practical implementation was proposed by Mostowski and

Vullers [63]. They implemented U-Prove like one-show ACs on a

smart card in Multos technology [60], where proving possession

of 1 of 5 attributes in a credential takes around 0.9s (Bjones et

al. [11] report about 0.5s for 10 undisclosed attributes). Recently

Camenisch et. al. in [23] proposed a construction and smart card

implementation of keyed-verification ACs [31], a restricted class of

ACs where the issuer is also the verifier. They achieve execution

times similar to the aforementioned one in [63]. A somewhat dif-

ferent approach to ACs was proposed by Batina et. al. [6]. Here,

a credential is associated with a randomizable certificate on the

user’s public key (which can also be randomized). Therefore, each

credential corresponds to a single attribute. For a showing, the user

randomizes the public key, the certificate, and signs a nonce send

by the verifier. The concrete construction uses self-blindable cer-

tificates by Verheul [74] and their implementation requires around

3s to show one credential/attribute at a 100 bit security level.

Drawbacks of existing implementations. The main drawback

of all these implementations is that the execution time on the smart

card depends on the number of attributes and either increases with

the number of disclosed or undisclosed attributes but always lin-

early increases with the number of attributes inside the credential.

Due to this reason, the application of smart card based ACs is lim-

ited to cases where the user possess only a very small number of

attributes and very soon gets impractical in use-cases that require

more attributes. For smart cards, Mostowski and Vullers in [63]

report that adding an attribute to the credential increases the execu-

tion time of a showing by around 0.1s. We stress that while in case

of PC or smartphone implementations one still notices the linear

increase in execution time, it is significantly less problematic than

in case of smart cards.

On the number of attributes. Attributes provided by govern-

mental issuers usually reflect basic personal information about the

credential holder (e.g. name, gender, age, address). However, there

are many scenarios where additional attributes can be defined. In

particular, the IRMA pilot implementation of AC’s developed by

the Privacy by Design Foundation
6
provided several real-world at-

tributes considered by the industry/government like diplomas, cer-

tificates, or even membership IDs for online services (e.g. Facebook

ID). Moreover, in the context of eIDs in some European countries,

e.g., Austria or Germany, service-specific pseudonyms are used for

authentication and computing them on the fly would be too expen-

sive. Therefore a more efficient approach would be to store them

as attributes inside the credential. It is worth noting that in Austria

according to [54] there are around 30 of them for governmental

purposes and potentially many more for other industrial purposes.

Attributes however can not only be used to describe individuals

but are also useful to reflect properties of the user’s platform or

other devices like servers. For example, when basing access control

on the configuration of the platform, one can consider binary at-

tributes such as whether a certain software, e.g. antivirus, or some

hardware, e.g. certain sensor type, is present. Note there could be

6
https://privacybydesign.foundation/attribute-index/en/

https://web.dev/trust-tokens/
https://research.fb.com/privatestats
https://www.gradient.tech/
https://privacybydesign.foundation/attribute-index/en/

numerous such attributes and in addition those properties could

also be arbitrarily valued, e.g., OS type, version, hardware vendor.

In such a case the number of attributes in the system is likely to be

large.

As efficiency of the system is influenced by the number of at-

tributes in the credentials, this aspect gets even more important

considering examples like the ones above where the number of po-

tential attributes in some scenarios can be in the tens to hundreds.

Our goals and setting. To overcome the aforementioned prob-

lems, we consider splitting the overall computations between a

resource constrained device, e.g., a secure element (SE) such as a

smart card in Figure 1 (the core), and a much more powerful host

device, e.g., a primary device such as a smartphone in Figure 1 (the
helper). And in particular our goal is to consider this core/helper
setting already in the formal AC model. The motivation comes from

the observation that nowadays platforms that use ACs (e.g., PCs,

smartphones) typically are equipped with secure elements (SEs)

in form of dedicated hardware modules, e.g., the Trusted Platform

Module (TPM)
7
or SIM cards that are designed to handle secrets

(such as secret keys for ACs). Besides, many modern processors

come with hardware-enforced isolation that is already built into the

CPU and allows to build trusted execution environments (TEE), e.g.,

TrustZone by Arm or the Software Guard Extensions (SGX) by Intel.

Such TEEs feature isolated execution of user processes and are also

used to emulate TPM functionality [67] (e.g., Intel fTPM). Since

there is a huge body on recent practical microarchitectural attacks

on TEEs, this however questions their adequacy for cryptographic

applications (cf. [40, 70]). Consequently, we focus on hardware

SEs such as TPMs or SIM cards more suitable for handling crypto-

graphic keys.
8
Nevertheless, insights from an implementation and

its performance on such constrained SEs gives us a good baseline,

as performance will only get better if we move to “software-based”

TEEs like TrustZone or SGX.

Now, any such SE (core device) depends on a host device (the
helper) that provides power supply and acts as a gateway to the out-
side world. Besides TPMs and SIM cards in PCs and smartphones,

this is also true for the Internet of Things (IoT), where smaller and

constrained devices are connected to a more powerful IoT hub. In

most applications, the used helper device is owned by the user

and can be leveraged to perform part of the computation and can

also be used to store larger amounts of data. So while we consider

the helper to be potentially malicious, a well known problem in

such a setting is that a corrupted helper device can always break

the privacy of an AC system, e.g., by adding identifying metadata

before finalizing the showing with a verifier. This can obviously not

be checked by the core device. But we can take advantage of this

fact and prioritize the efficiency of the core at the expense of pro-

tecting privacy against the helper.
9
Nevertheless, we do not want

to tolerate that a malicious helper can show a credential without

interacting with the core. Consequently, we require that as long

as the verifier sends an honest challenge triggering the showing

7
https://trustedcomputinggroup.org/resource/tpm-library-specification/

8
Although it clearly needs to be mentioned that these are not immune against

attacks (cf. [62] for recent timing side-channels in TPMs.)

9
Note that this can never be prevented by the core device and in practice it is

more likely that malware running on the helper device will use this approach to leak

private information about the user than breaking the actual cryptographic scheme.

of a credential at the helper, the core needs to be involved in order

to result in a valid showing of the credential and even a malicious

helper cannot succeed.

High-level overview of our CHAC approach.We are now ready

to provide a high-level overview of our core/helper anonymous

credentials (CHAC) approach (cf. Figure 1). Initially, the core gen-

erates a secret key 1○ which never leaves the core; the user can

now obtain multiple credentials from an issuer by 2○ sending a

request, which is then 3○ passed to the core (ensuring that core

needs to be involved in obtaining credentials) and after the issuing

4○ is finished, the credentials are stored at the helper 5○. For a

showing, the helper first triggers a request 6○, which is then passed

to the core 7○ (again ensuring that core needs to be involved). Then,

depending on the attributes that need to be selectively shown (all

other remain undisclosed) the helper can aggregate them from po-

tentially different credentials into a compact showing token 8○.

Note that while for certain applications (e.g., the core being a SIM

card in the smartphone) batching may not be so important, but if

we for instance consider a standalone NFC based smart card, the

communication between the core and the smartphone is limited

because of the way the user has to physically interface both devices.

Therefore some kind of batching (aggregation) is desirable, i.e., the

Figure 1: High-level overview of our approach.

helper device should be able to accumulate many showing tokens

for the core into a single compact one. Finally, the helper sends the

resulting showing token to the verifier 9○ who either accepts or

rejects. Showings can be performed with different verifiers and an

arbitrary number of times without the showings being linkable to

each other.

Previous work in the core/helper setting. In order to put our

CHAC approach into context, we will look at one well known ex-

ample for the core/helper setting. Namely, the direct anonymous

attestation (DAA) protocol [20, 22] designed for privacy-preserving

remote attestation of platforms. Here the core device is the Trusted

Platform Module (TPM), a specialized chip supporting DAA, and

the helper is a PC. Technically, DAA is not an AC system, but rather

a group signature scheme [34] (without the anonymity revocation

capability), but with a mechanism to detect rogue members and op-

tional linkability. It can be considered as the most widely deployed

protocol for anonymous authentication in practice
10
. Previously,

there have been informal discussions on how a TPM can be used to-

gether with CL-credentials in [21] as well as explicit constructions

10
An enhanced DAA with revocation capabilities is called Enhanced Privacy ID

(EPID) [19] and revocation was later also adopted for existing DAA [22, 25]. EPID,

however, is not designed for the core/helper setting.

https://trustedcomputinggroup.org/resource/tpm-library-specification/

Scheme Show (Core/Helper) Verify |Cred| |Show|
[25] (DAA-A) 3G1 / O(𝑈G1) O(𝐿G1) + 2𝑃 2Z𝑝 + 2G1 O(𝑈Z𝑝) + 4G1
[22] (DAA-A) 3G1 / O(𝑈G1) O(𝐿G1) + 2𝑃 2Z𝑝 + 2G1 O(𝑈Z𝑝) + 4G1
[26] (DAA-A)

a
3G1 / O(𝐿G1) O(𝐿G1) + 4𝑃 O(𝐿G1) O(𝐿(G1 + Z𝑝))

CHAC 1G1 / O(𝐷 (G1 + G2)) O(𝐷𝑃) O(𝐿(G1 + G2)) 6G1 + 3G2
a

This LRSW based DAA scheme is supported in FIDO. Though it does not support attributes, for completeness we include a projection of

its complexity if realized as DAA-A based on the LRSW based DAA-A in [35].

Table 1: Comparison of CHAC with existing DAA-A constructions. | · | denotes sizes and otherwise computational effort. For
Type-3 pairings and the BN-256 curve we have in bits |G2 | = 2 · |G1 |, |G1 | = 2 · |Z𝑝 |, and |Z𝑝 | = 256.

that extend DAA with attributes (DAA-A) and selective attribute

disclosure [22, 25, 35], bringing it closer to AC systems. DAA(-A)

constructions however are proven secure in a formal model that

exactly captures DAA(-A), with a long line of failed security no-

tions [22, 26], and a design tailored towards a specific core device

being the TMP (2.0). With CHAC, our aim is to have a simpler and

much more general model not tailored to a specific core device.

We note that CHAC can be an alternative to DAA in some of its

use-cases, but due to DAA(-A)’s focus on specific features, e.g.,

linkability, it is not intended to be a replacement.

Since all aforementioned DAA constructions follow the same

template, they all have the same inherent performance drawbacks.

In Table 1 we compare our CHAC construction to the recent DAA-A

proposals, where we denote 𝑘 exponentiations in group G𝑖 in a

bilinear group (G1,G2,G𝑇 , 𝑒, 𝑝) with pairing 𝑒 : G1 × G2 → G𝑇
by 𝑘G𝑖 and 𝑘𝑃 denotes 𝑘 pairing operations. Moreover, we denote

by 𝐿 the number of attributes and by 𝐷 and 𝑈 the number of se-

lectively disclosed and undisclosed attributes respectively. We see

that CHAC asymptotically improves over DAA-A and concretely

we improve significantly on the core (the most critical part) and

size of the showing token. For practical applications, where one

can assume that 𝐷 ≪ 𝑈 as this is the main use-case of a selective

disclosure tool for privacy, we also improve significantly (cf. Sec-

tion 5 for a detailed discussion). We note that while our credentials

are larger compared to other work, they are stored on the helper

device where storage space is not an issue. Moreover, for practical

numbers of attributes the credentials are still relatively small, i.e.,

around 200KB for 100 attributes.

Scheme |Params| Show Verify |Cred| |Show|
[45, 48] O(𝐿) O(𝑈) O(𝐷) O(1) O(1)
[27] O(𝐿) O(𝑈) O(𝐷) O(1) O(1)
[69] O(𝐿2) O(𝑈) O(𝐷) O(1) O(1)
[49] O(𝐿) O(1) O(𝐷) O(𝐿) O(1)
CHAC O(𝐿) O(𝐷) O(𝐷) O(𝐿) O(1)

Table 2: Comparison of CHAC (merging core and helper)
with conventional ACs designed for selective disclosure.

Comparing core/helper ACs to conventional ACs. Finally, for
the sake of completeness we want to put our CHAC approach into

context of existing conventional state-of-the-art AC systems that

do not consider this core and helper separation. We focus on ACs

that like our approach provide constant-size selective showing of

attributes [27, 45, 48, 49, 69, 73]. Since this is not our main focus of

the paper, in Table 2 we only provide an asymptotic comparison of

the characteristics when using our CHAC approach as a conven-

tional AC system by merging the core and helper functionality into

a single entity. A rough comparison based on expensive operations,

i.e., group exponentiations and pairings,
11

and for fairness assum-

ing that 𝐷 = 𝑈 < 𝐿 yields that for [45, 48] showing and verification

are equivalent. [69] has comparable verification efficiency but less

efficient showings. In the recent concurrent and independent work

in [49], which also uses an aggregatable approach as in our construc-

tion, verification is equivalent, but their showing is more efficient

and requires only a constant number of expensive operations. Fi-

nally, the showing of the most compact scheme from [27] includes

around 100 group elements and the computational costs are not

even evaluated, but can be assumed too high in practice (especially

for constrained devices).

Note, however, that vice versa it is not straightforwardly possible

for the other AC approaches to achieve our core/helper separation.

As can be seen, while our CHAC approach has larger credentials,

which as discussed above is not really an issue, we outperform all

existing approaches in that the computation within showing and

verification is in the number 𝐷 of disclosed attributes, a number

that is typically very small compared to𝑈 and 𝐿 in practical privacy-

preserving applications. Consequently, our CHAC approach also

yields an interesting alternative when not requiring this core/helper

separation.

1.1 Our Contribution and Technical Overview
Our contributions can be summarized in points as follows:

Formal framework for CHAC. We formalize a cryptographic

primitive called core/helper anonymous credentials (CHAC). The
key idea is that the core device performs operations that do not

depend on the size of the credential or the number of attributes.

While we cannot guarantee privacy in front of a malicious helper

device, we however require that even a malicious helper device is

not able to perform a credential showing without the help of the

core. In particular, after 𝑛 showings by the core, even a malicious

helper is not able to produce more than 𝑛 valid showings. We call

the later property dependability. Besides the usual unforgeability
and anonymity, which are defined similarly to previous work on

ACs, we also consider a property called compactness. It states that
the size of showing of a credential (called show token) should be

independent of the number of disclosed/undisclosed attributes.

Generic construction.We provide a construction of CHACs in-
spired by the approach to construct single-attribute credentials

11
A comparison based on implementations would be very interesting, but for most

schemes no open implementations are available.

from self-blindable certificates [6]. However, instead of using Ver-

heul’s scheme [74], we instantiate self-blindable credentials us-

ing the approach by Backes et. al. [1]. They introduced signa-

tures with flexible public keys (SFPK) and showed that they can

be efficiently combined with signatures on equivalence classes

(SPS-EQ) [43, 45, 48, 53, 59]. In brief, SFPK are signatures where

the key space is partitioned into equivalence classes and a signer

can efficiently change a key pair to a different representative of the

same class that is indistinguishable from a newly generated one.

SPS-EQ are signatures where the message space is partitioned into

equivalence classes and everyone can update a signature to another

representative of the message class, where the resulting signature

is indistinguishable from a fresh one. We will usually denote this

update operation (the change of representative) by adapt.
The starting point for our generic construction is to represent a

credential as a SPS-EQ signature on a SFPK public key and the core

device just generates a SFPK signature. The helper device adapts

the SFPK public key, randomizes the SFPK signature and adapts

the SPS-EQ signature to the updated SFPK public key. Unfortu-

nately, similar to [6], this only yields a single-attribute credential.

To overcome this limitation, we build upon the notion of SPS-EQ
and introduce two cryptographic primitives that are of indepen-

dent interest: tag-based equivalence class signatures (TBEQ) and
aggregatable attribute-based equivalence class signatures (AAEQ).

In contrary to standard equivalence class signatures, TBEQ allow

to additionally include a tag (an attribute value) when signing a

message (class). AAEQ then allow to aggregate multiple TBEQ
signatures under different keys (representing attributes) and tags

(representing attribute values) on the same message (representa-

tive). In our construction, we then use AAEQ instead of SPS-EQ
in the above template, which allows us to aggregate multiple cer-

tificates to different attributes and attribute values into a single

one. In other words, during the show procedure the helper device

randomizes the SFPK signature and adapts the public key, chooses

the certificates corresponding to the disclosed attributes, aggre-

gates them into a single compact AAEQ signature and adapts it to

the updated SFPK public key. The core device still only generates

the SFPK signature and thus the helper device is unable to use the

credential without a valid SFPK signature from the core device.

Efficient CHAC instantiation.We instantiate the construction

described above using schemes that are secure in the generic group

model [72] and in addition use random oracles [8]. We note that

both are idealized assumptions and it would be more favorable to

have a scheme secure only in the ROM or even in the standard

model. Unfortunately, we do not yet have building blocks available

that are efficient and do not require such assumptions. As our main

motivation is a highly practical solution, we opted for efficiency at

the cost of idealized assumptions.

Our SFPK signature builds upon the one by Backes et. al. [2],

but we replace the programmable Waters hash function [75] with

a random oracle. We instantiate our primitives in Type-3 bilinear

groups BG = (G1,G2,G𝑇 , 𝑒, 𝑝) using the popular BN-256 curve

[4] and the optimal ate pairing 𝑒 : G1 × G2 → G𝑇 . The signing
process involves operations in G2 = 𝐸 (F𝑝2) which are not natively

supported by smart cards and should be avoided. Therefore, we

showhow to securely split the signing process into three steps: a pre-

computation step that is performed only once, the main part that

only involves operations in G1, natively supported by smart cards,

and a finalization step that can be performed without the secret

key. This allows for the core device to pre-compute certain data

once and then only sign using operations in G1 where the helper
device will finalize the SFPK signature and perform operations in

G2. We call this extension SFPK with split signing.
Our tag-based equivalence class signature (TBEQ) is based upon

the SPS-EQ scheme from [44] extended with one component repre-

senting a one-time BLS signature [16] on the tag in group G2 using
the randomness of the SPS-EQ scheme as a one-time signing key.

The corresponding verification key is already part of the SPS-EQ
scheme from [44]. Similar to [44] we analyze its security in the

generic group model. In order to construct a provably secure aggre-

gatable attribute-based equivalence class (AAEQ) scheme, we use

parallel copies of this TBEQ scheme with independent keys, where

all instances compute the signing randomness deterministically

using a PRF evaluation on the message using a shared PRF key. We

again prove it secure in the generic group model.

Efficient CHAC implementation.We provide an efficient pro-

totype implementation that uses a Multos smart card as the core

device and a smartphone with a Snapdragon 710 processor and

6GB RAM running Android 10.0 to implement the helper device

and verification algorithm. For a comprehensive evaluation, we

execute the same code on a PC (laptop) with Intel i7-7660U CPU

@ 2.50 GHz with 16GB RAM. The execution time on the core de-

vice with the BN-256 curve (providing around 100-bit of security)

is < 0.5s. The helper device part for credentials even with 1000

attributes takes ≈ 200ms for the smartphone and 15ms for the PC

which respectively adds to 0.7s and 0.5s for a full showing of 1000

attributes. Verification of such a show token takes ≈ 800ms on

the PC and ≈ 100ms if we assume that the verifier knows the set

of potential attribute/value pairs and does some pre-computation.

For show tokens with 10 and 100 attributes, the verification takes

respectively 140ms and 200ms even without this optimization. The

most computationally expensive operation is the issuing which

takes ≈ 200ms and ≈ 1s for credentials with 10 and 100 attributes

respectively. However, we show that issuing can be distributed and

the workload decreases with the number of used cores/servers.

Extensions and Optimization. Finally, we discuss various exten-
sions and optimizations of our CHAC instantiation.

2 PRELIMINARIES
We denote by 𝑦 ←$ A(𝑥) the execution of algorithm A on input 𝑥

and with output 𝑦. By 𝑟 ←$ 𝑆 we mean that 𝑟 is chosen uniformly at

random from set 𝑆 . We will use 1G to denote the identity element

in group G and [𝑛] to denote the set {1, . . . , 𝑛}. We will denote a

bilinear group as BG = (G1,G2,G𝑇 , 𝑒, 𝑝) and will consider Type-

3 pairings, i.e., there is no efficiently computable isomorphism

betweenG1 andG2. Finally, byAO we denote an algorithmA that

has access to oracle O. We defer some further notation that is not

required in the main body of the paper to Appendix A.1.

2.1 Signatures on Equivalence Classes
Structure-preserving signatures on equivalence classes (SPS-EQ) [45,
48] sign vectors of length ℓ > 1 from one of the prime order 𝑝 source

groups G𝑖 (𝑖 ∈ {1, 2}) of a bilinear group BG. We can view Zℓ𝑝 as a

vector space and one can define a projective equivalence relation

on it, which propagates to Gℓ
𝑖
and partitions Gℓ

𝑖
into equivalence

classes. An SPS-EQ-scheme signs equivalence classes [𝑀] of vec-
tors 𝑀 ∈ (G∗

𝑖
)ℓ with equivalence relation: 𝑀, 𝑁 ∈ Gℓ

𝑖
: 𝑀 ∼R

𝑁 ⇔ ∃ 𝑠 ∈ Z∗𝑝 : 𝑀 = 𝑁 𝑠
, i.e., scaling the message by 𝑠 .

Definition 2.1 (SPS-EQ). An SPS-EQ scheme SPS-EQ on message

space (G∗
𝑖
) for 𝑖 ∈ {1, 2} consists of the following PPT algorithms.

Setup(1𝜆): on input a security parameter 1
𝜆
, outputs group BG.

KeyGen(BG, ℓ): on input BG and message vector length ℓ > 1,

outputs a key pair (pk, sk).
Sign(sk, 𝑀): on input a secret key sk and representative𝑀 ∈ (G∗

𝑖
)ℓ ,

outputs a signature 𝜎 for equivalence class [𝑀].
ChgRep(𝑀,𝜎, 𝜇, pk): on input representative𝑀 ∈ (G∗

𝑖
)ℓ of equiv-

alence class [𝑀], a signature 𝜎 on𝑀 , a value 𝜇 and a public key

pk, returns an updated message-signature pair (𝑀 ′, 𝜎 ′), where
the new representative is 𝑀 ′ = 𝑀𝜇

and 𝜎 ′ its corresponding
(or, updated) signature.

Verify(pk, 𝑀, 𝜎): is a deterministic algorithm and, on input a public

key pk, a representative𝑀 ∈ (G∗
𝑖
)ℓ , and a signature 𝜎 outputs

a bit 𝑏 ∈ {0, 1}.
VKey(sk, pk): is a deterministic algorithm and, on input secret key

sk and a public key pk, checks if it represents a valid key pair

and outputs a bit 𝑏 ∈ {0, 1}.
We provide formal definitions of security in Appendix A.3.

2.2 Signatures with Flexible Public Key
Signatures with flexible public key (SFPK) [1] are signatures that

provide relations [pk]R on public keys. The main property is called

class-hiding and states that it is hard to decide if a random public

key is in a relation to a different public key. We use the class-

hiding definition with key corruption introduced in [2], where the

adversary gets the secret keys. This definition is weaker than in [1],

but allows to instantiate this primitive with a shorter (and optimal)

public key of 2 group elements, as shown in [2].

Definition 2.2 (SFPK). A SFPK scheme is a set of 𝑃𝑃𝑇 algorithms

such that:

SFPK.CRSGen(1𝜆): on input a security parameter 1
𝜆
, outputs a

trapdoor 𝛿𝜌 and a common reference string 𝜌 , which is an

implicit input for all the algorithms.

SFPK.KeyGen(1𝜆): on input a security parameter 1
𝜆
outputs a key

pair (sk, pk).
SFPK.TKGen(1𝜆): on input a security parameter 1

𝜆
outputs a key

pair (sk, pk), and a trapdoor 𝛿 .

SFPK.Sign(sk,𝑚): on input a message𝑚 ∈ {0, 1}∗ and a signing

key sk, outputs a signature Sig.
SFPK.ChkRep(𝛿, pk′): on input a trapdoor 𝛿 for some equivalence

class [pk]R and public key pk′, outputs 1 if pk′ ∈ [pk]R and 0

otherwise.

SFPK.ChgPK(pk, 𝑟): on input a representative pk of equivalence

class [pk]R and random coins 𝑟 , outputs a different representa-

tive pk′, where pk′ ∈ [pk]R .

SFPK.ChgSK(sk, 𝑟): on input a secret key sk and random coins 𝑟 ,

outputs an updated secret key sk′.
SFPK.Verify(pk,𝑚, Sig): on input a message𝑚, signature Sig and

public verification key pk, outputs 1 if the signature is valid

and 0 otherwise.

Definition 2.3 (Canonical Representative). Let canon be a predi-

cate that holds for exactly one public key in a given class. We say

pkSFPK is a canonical representative if canon(pkSFPK) = 1.

We provide the formal security definitions in Appendix A.2.

3 NEW RESULTS AND BUILDING BLOCKS
In this section we provide new results on SFPK signatures and

introduce tag-based equivalence class (TBEQ) signatures as well as

aggregatable attribute-based equivalence class (AAEQ) signatures.

3.1 Efficient SFPK with Split Signing
We base our SFPK signature scheme on the one by Backes et al.

[2], but we replace the programmable Waters hash function [75]

with a hash function H modeled as a random oracle. This allows

us to increase the efficiency of the signing process, i.e., we replace

𝑂 (𝜆) group operations in G1 with one hashing to G1. The change
requires us to prove security in the random oracle model. However,

it also allows us to securely divide the signing process so that in

our CHAC the core only performs operations in G1 and can seek

support by the helper device to finish the signing process without

knowing the secret key.

SFPK.CRSGen(1𝜆) : generate BG ←$ BGGen(𝜆) , choose 𝑦 ←$ Z∗𝑝 and

compute 𝑌1 = 𝑔
𝑦

1
and 𝑌2 = 𝑔

𝑦

2
. Set 𝜌 = (BG, 𝑌1, 𝑌2) .

SFPK.KeyGen(1𝜆) : choose 𝑥 ←$ Z∗𝑝 . Set pkSFPK = (𝑔1, 𝑔𝑥
1
) and skSFPK =

(𝑌𝑥
1
, pkSFPK) .

SFPK.TKGen(1𝜆) : choose 𝑥 ←$ Z∗𝑝 . Set pkSFPK = (𝑔1, 𝑔𝑥
1
) , skSFPK =

(𝑌𝑥
1
, pkSFPK) , and 𝛿SFPK = (𝑔𝑥

2
) .

SFPK.Sign(skSFPK,𝑚) : given a message𝑚 ∈ {0, 1}𝜆 , choose 𝑟 ←$ Z∗𝑝 and

return the signature SigSFPK = (𝑌𝑥
1
· H(𝑚)𝑟 , 𝑔𝑟

1
, 𝑔𝑟

2
) .

SFPK.ChgPK(pkSFPK, 𝑟) : Parse pkSFPK = (𝐴, 𝐵) and compute pk′SFPK =

(𝐴𝑟 , 𝐵𝑟) . Return pk′SFPK.
SFPK.ChgSK(skSFPK, 𝑟) : Parse skSFPK = (𝑌𝑥

1
, pkSFPK) and

compute pk′SFPK ← SFPK.ChgPK(pkSFPK, 𝑟) , and return

sk′SFPK = ((𝑌𝑥
1
)𝑟 , pk′SFPK) .

SFPK.ChkRep(𝛿SFPK, pkSFPK) : pkSFPK = (𝐴, 𝐵) . Return 1 iff

𝑒 (𝐴,𝛿SFPK) = 𝑒 (𝐵,𝑔2) .
SFPK.Verify(pkSFPK,𝑚, SigSFPK) : parse SigSFPK as (Sig1SFPK, Sig

2

SFPK,

Sig3SFPK) , parse pkSFPK as (𝐴, 𝐵) . Return 1 iff

𝑒 (Sig2SFPK, 𝑔2) = 𝑒 (𝑔1, Sig3SFPK) and
𝑒 (Sig1SFPK, 𝑔2) = 𝑒 (𝐵,𝑌2) · 𝑒 (H(𝑚), Sig3SFPK) .

Scheme 1: Our SFPK Signature Scheme

Split signing. Scheme 1 requires the signer to perform operations

in G2 which are usually inefficient on constrained devices and

influence the execution time significantly. We will now describe a

technique that allows splitting the signing procedure between two

parties. We will later identify them by the core and helper devices.

The party holding the secret key (core) performs only operations in

G1 and creates pre-signatures that are finalized by the second party
(helper). Unforgeability of the scheme will hold against the helper

device but we will require the core to perform a one-time-only

pre-computation that will involve operations in G2. More formally.

Definition 3.1. We say that a SFPK scheme supports split sign-
ing if the SFPK.Sign algorithm can be divided into three steps:

SFPK.Sign
1
, SFPK.Sign

2
, SFPK.Sign

3
, such that:

SFPK.Sign
1
: takes as input the security parameters 1

𝜆
and outputs

a secret state stsecr and a public state stpub.
SFPK.Sign

2
: takes the same inputs as SFPK.Sign and additionally

stsecr and outputs a pre-signature pSigSFPK.
SFPK.Sign

3
: on input a pre-signature pSigSFPK and the public state

stpub this algorithm outputs the final signature SigSFPK.

Additionally, we require that 1) the distribution of signatures out-

put by SFPK.Sign
3
is identical to the output of SFPK.Sign, 2) un-

forgeability holds with respect to pre-signatures even if a pair

(stsecr, stpub) is reused, i.e., both signing oracles in the unforgeabil-

ity experiment are initialized with an output of SFPK.Sign
1
and

output pre-signatures instead of full-signatures.

We will now sketch the idea how to split the signing procedure

in Scheme 1. We will use the core/helper naming convention to

describe the two parties.

The only operation in G2 performed during signing is the com-

putation of 𝑔𝑟
2
. Since 𝑟 is a random value, it suggests that the core

can just send it to the helper and let it compute Sig3SFPK (and

even Sig2SFPK). Unfortunately, this idea fails completely because

the helper would be able to extract the secret key 𝑌𝑥
1
from Sig1SFPK,

since it can compute H(𝑚)𝑟 . It is obvious that the randomness 𝑟

must be kept secret and must not leak to the helper.

Our approach is now to hide 𝑟 by pre-computing a value in G2,
namely𝑈 = 𝑔𝑢

2
for 𝑢 ←$ Z∗𝑝 . The core retains 𝑢, and shares𝑈 with

the helper. To sign a message, the core does not compute Sig3SFPK
but chooses 𝑘𝑢 ←$ Z∗𝑝 and sends it together with (Sig1SFPK, Sig

2

SFPK)
to the helper, who finalizes the signature by computing Sig3SFPK =

𝑈 𝑘𝑢 . To minimize the number of operations in G1 the core can use

the same idea for Sig2SFPK, i.e., it can send 𝑔𝑢
1
to the helper, which

can use 𝑘𝑢 to compute Sig2SFPK.
To show that Scheme 1 supports split signing let:

SFPK.Sign
1
(1𝜆): choose 𝑘 ←$ Z∗𝑝 , set (stsecr, stpub) = (𝑘, (𝑔𝑘1 , 𝑔

𝑘
2
)).

SFPK.Sign
2
(skSFPK,𝑚, stsecr): choose 𝑟 ←$ Z∗𝑝 and return the pre-

signature pSigSFPK = (𝑌𝑥
1
· H(𝑚)𝑟 , 𝑟 · 𝑘−1).

SFPK.Sign
3
(pSigSFPK, stpub): parse pSigSFPK = (Sig1SFPK,𝑤),

stpub = (𝑈1,𝑈2) and output (Sig1SFPK,𝑈
𝑤
1
,𝑈𝑤

2
).

It is easy to see that the only difference between SFPK.Sign and

the combination (SFPK.Sign
1
, SFPK.Sign

2
, SFPK.Sign

3
) is the way

Sig2SFPK and Sig3SFPK are computed. However, since 𝑟 is chosen at

random in SFPK.Sign
2
and 𝑈𝑤

1
= 𝑔𝑟

1
and 𝑈𝑤

2
= 𝑔𝑟

2
are distributed

identical to the output of SFPK.Sign. The main difficulty is to show

that unforgeability holds in the sense as defined in Definition 3.1.

Theorem 3.2 (Unforgeability). Scheme 1 is an unforgeable
SFPK scheme with split signing in the random oracle model assuming
the bilinear decisional Diffie-Hellman assumption.

Proof. The proofs follows a similar strategy to the proof in [2],

but with small changes due to split signing. For completeness we

present the full proof of Theorem 3.2 in Appendix B.1. □

The following readily follows from [2].

Theorem 3.3 (Class-hiding). Scheme 1 is class-hiding with key
corruption in the random oracle model assuming the decisional Diffie-
Hellman assumption.

Lemma 3.4 (Canonical Representative). A predicate defined
as canon((𝐴, 𝐵)) := 𝐴 ≡ 𝑔1 can be used to identify canonical rep-
resentatives in Scheme 1. Note that by defining canon this way the
SFPK.KeyGen algorithm outputs keys in canonical representation.

Third party re-randomization. A useful property that was not

defined in previous work on SFPK is re-randomization of the full
signature/public key pair. In the original work, the authors consider

changing representation of the public key before the actual signa-

ture. We show that there exists an algorithm (pk′SFPK, Sig
′
SFPK) ←

SFPK.ReRand(pkSFPK,𝑚, SigSFPK, 𝑟) for which we have pk′SFPK ←
SFPK.ChgPK(pkSFPK, 𝑟) and SFPK.Verify(pk′SFPK,𝑚, Sig′SFPK) = 1

where for the original signature SFPK.Verify(pkSFPK,𝑚, SigSFPK) =
1. We can define this algorithm as part of Scheme 1 as follows:

SFPK.ReRand(pkSFPK,𝑚, SigSFPK, 𝑟): parse SigSFPK = (Sig1SFPK,
Sig2SFPK, Sig

3

SFPK), choose random 𝑘 ←$ Z∗𝑝 , compute pk′SFPK
← SFPK.ChgPK(pkSFPK, 𝑟) and set Sig′SFPK = ((Sig1SFPK)

𝑟 ·
H(𝑚)𝑘 , (Sig2SFPK)

𝑟 · 𝑔𝑘
1
, (Sig3SFPK)

𝑟 · 𝑔𝑘
2
).

3.2 Tag-Based Equivalence Class Signatures
Now, we introduce a variant of SPS-EQ or more precisely equiva-

lence class signatures (as they are not strictly structure-preserving

anymore) that in addition to the message 𝑀 being a representa-

tive of class [𝑀] support an auxiliary tag 𝜏 ∈ {0, 1}∗. Therefore,
we adapt the security model from SPS-EQ as follows. The task of

the adversary is to forge a signature for a message (𝑀∗, 𝜏∗) where
the adversary did not query a signature for the class [𝑀∗] and 𝜏∗
combination (cf. Appendix A.4). Moreover, for the adaption notion

which guarantees that signatures from ChgRep and Sign are identi-

cally distributed, we only require it to hold with respect to identical

auxiliary tags 𝜏 . Our construction is a modification of the SPS-EQ
scheme from [44] (denoted FHS15 henceforth) which is proven

to be EUF-CMA secure in the generic group model and provides

perfect adaption even under malicious keys. We do not provide an

abstract definition as the only changes to the SPS-EQ interface are

the additional input 𝜏 to the Sign and Verify algorithms. Our con-

struction of a tag-based equivalence class signature scheme (TBEQ)

is provided in Scheme 2 and it basically extends the FHS15 scheme

by a fourth signature element𝑉2 = 𝐻 (𝜏)
1

𝑦
where 𝐻 : {0, 1}∗ → G2

is modeled as a random oracle and 𝑦 is the signing randomness.

Note that 𝑉2 can be considered as a BLS signature [16] with the

signing randomness 1/𝑦 acting as a one-time signing key.

We will now show the unforgeability and perfect adaption of the

TBEQ in Scheme 2.

TBEQ .Setup(1𝜆) : generate BG ←$ BGGen(𝜆) , 𝐻 : {0, 1}∗ → G2 and

return params = (BG, 𝐻) .
TBEQ .KeyGen(params, ℓ) : choose ®𝑥 ←$ (Z∗𝑝)ℓ and set sk = ®𝑥 and pk =

𝑔 ®𝑥
2
= (𝑔𝑥1

2
, . . . , 𝑔

𝑥ℓ
2
) .

TBEQ .Sign(sk, 𝑀, 𝜏) : parse sk = ®𝑥 , 𝑀 ∈ (G∗
1
)ℓ , 𝜏 ∈ {0, 1}∗ and choose

𝑦 ←$ Z𝑝 . Compute

𝑍1 =

(
ℓ∏

𝑖=1

𝑀
𝑥𝑖
𝑖

)𝑦
, 𝑌1 = 𝑔

1

𝑦

1
, 𝑌2 = 𝑔

1

𝑦

2
𝑎𝑛𝑑 𝑉2 = 𝐻 (𝜏)

1

𝑦 .

Return 𝜎 = (𝑍1, 𝑌1, 𝑌2,𝑉2) .

TBEQ .ChgRep(𝑀,𝜎, 𝜇, pk) : Choose 𝜓 ←$ Z∗𝑝 and return (𝑀𝜇 , 𝜎′) with

𝜎′ = (𝑍𝜓𝜇

1
, 𝑌

1

𝜓

1
, 𝑌

1

𝜓

2
,𝑉

1

𝜓

2
) .

TBEQ .Verify(pk, 𝑀, 𝜏, 𝜎) : parse pk = (pk
1
= 𝑔

𝑥1
2
, . . . , pkℓ = 𝑔

𝑥ℓ
2
) , 𝑀 ∈

(G∗
1
)ℓ , 𝜏 ∈ {0, 1}∗ and 𝜎 = (𝑍1, 𝑌1, 𝑌2,𝑉2) . Return 1 if the following

checks hold and 0 otherwise:

ℓ∏
𝑖=1

𝑒 (𝑀𝑖 , pk𝑖) = 𝑒 (𝑍1, 𝑌2) ∧

𝑒 (𝑌1, 𝑔2) = 𝑒 (𝑔1, 𝑌2) ∧ 𝑒 (𝑔1,𝑉2) = 𝑒 (𝑌1, 𝐻 (𝜏))

Scheme 2: Our TBEQ Signature Scheme

Theorem 3.5. The TBEQ in Scheme 2 is EUF-CMA secure and
provides perfect adaption (under malicious keys) assuming that 𝐻 is
a random oracle.

We argue unforgeability in the generic bilinear group model

(following the proof of the FHS15 SPS-EQ in [45]) for a version of

our TBEQ without random oracles and a polynomially bounded tag-

space. Then, we will argue our modification in the random oracle

model with an unbounded tag space and constant size public keys.

The idea for a polynomially bounded tag space T = {𝜏1, . . . , 𝜏𝑘 } for
a 𝑘 ∈ poly(𝜆) is to include additional uniformly random elements

(ℎ𝑖 ∈ G2)𝑖∈[𝑘] into pk and use the corresponding value ℎ𝑖 when

signing for tag 𝜏𝑖 instead of the hash evaluation 𝐻 (𝜏𝑖).

Lemma 3.6. The TBEQ in Scheme 2 with the above modifications
is EUF-CMA secure in the Type-3 generic bilinear group model.

We provide this proof in Appendix B.2.

Lemma 3.7. The TBEQ in Scheme 2 is EUF-CMA secure for an
unbounded tag-space when modeling 𝐻 as a random oracle.

Proof. Up to collisions in the random oracle, which happenwith

negligible probability, the TBEQ in Scheme 2 and in particular the

security analysis is identical to the proof of Lemma 3.6, but without

the restriction of the tag space being polynomial in size. □

Lemma 3.8. The TBEQ in Scheme 2 provides perfect adaption
(under malicious keys).

We provide this proof in Appendix B.3.

What we require for our further constructions is a derandom-

ized version of the TBEQ scheme. Subsequently, we formulate as

Lemma 3.9 (cf. [17]) a frequently used technique (see e.g., [9, 52]) to

derandomize any signature scheme, which in particular also holds

for TBEQ . Thus, we omit the proof.

Lemma 3.9. Let Σ = (Setup,KeyGen, Sign,ChgRep,Verify) be an
EUF-CMA secure TBEQ scheme and 𝐹 : K ×MTBEQ → RTBEQ be a
secure PRF, then Σ′ = (Σ.Setup,KeyGen′, Sign′, Σ.ChgRep, Σ.Verify)
is also EUF-CMA secure, where:

KeyGen′(BG, ℓ): Run (sk, pk) ← Σ.KeyGen(BG, ℓ), choose 𝑘 ←$ K
and return ((sk, 𝑘), pk).

Sign′(sk, 𝑀, 𝜏): Compute 𝑟 := 𝐹 (𝑘,𝑀) and return Σ.Sign(sk, 𝑀, 𝜏 ; 𝑟).

We denote the derandomized TBEQ by TBEQd. Note that in

Scheme 2 this means that in Sign we have 𝑦 ← 𝐹 (𝑘,𝑀).

3.3 Aggregatable Attribute-Based EQs
We now introduce another variant of equivalence class signatures

called aggregatable attribute-based equivalence class (AAEQ) sig-

natures, that will represent one core building block for our CHAC

system. In such a scheme there is a main key pair, which is akin

to identity-based signatures [71]. The main secret key can issue

signing keys for attributes (Attr), e.g., Attr =“age”. When signing a

message𝑀 (a representative of a class [𝑀]) with respect to such an

attribute signing key, signing additionally takes an attribute value

𝑣Attr, e.g., 𝑣Attr =“21”. The scheme is required to be aggregatable in

a sense that signatures under different attribute signing keys for the

same representative 𝑀 of a class can be aggregated into a compact

signature. Like in SPS-EQ , the signatures are with respect to classes

and there is a ChgRep algorithm to publicly change representatives

(i.e., adapt). For the sake of simplicity, below we assume that the

set of attributes represents the integers [𝑡] with domain {0, 1}∗ for
each attribute.

Definition 3.10 (Aggregatable Attribute-Based EQs). An aggregat-

able attribute-based equivalence class (AAEQ) signature scheme

consists of the following PPT algorithms:

Setup(1𝜆, 𝑡, ℓ): on input security parameter 1
𝜆
, the number of at-

tributes 𝑡 (distinct attribute names) and length parameter ℓ this

algorithm outputs main key pair (msk,mpk).
AKGen(msk,Attr): on input a main secret keymsk and an attribute

Attr, outputs an attribute secret key skAttr.
Sign(skAttr, 𝑣Attr, 𝑀): on input an attribute secret key skAttr, an

attribute value 𝑣Attr and a representative 𝑀 , this algorithm

outputs a signature 𝜎 .

ChgRep(𝑀,𝜎, 𝜇,mpk): on input a representative𝑀 , a signature 𝜎 ,

a scalar 𝜇 and a main public key mpk, this algorithm outputs

an updated signature 𝜎 ′ for representative𝑀𝜇
.

Agg(mpk, {𝜎𝑖 }): on input a main public keympk and a set of valid
signatures {𝜎𝑖 }, outputs an aggregated signature 𝜎 ′.

Verify(mpk, {Attr𝑖 }, 𝜎 ′, 𝑀): on input a public key mpk, a set of

attributes {(Attr𝑖 , 𝑣Attr𝑖)}, an aggregated signature 𝜎 ′ and a

representative𝑀 , outputs either accept(1) or reject(0).

We require an AAEQ to be correct, unforgeable and to provide

perfect adaption.We present the formal definitions in Appendix A.5.

Intuition of our construction.We now present a construction

with𝑂 (𝜆) sizedmpk andmsk as Scheme 3 which is based upon the

TBEQ in Scheme 2 using the de-randomization (TBEQd). The idea

is simple and uses parallel instances of the derandomized TBEQd
scheme, where every pk represents a different attribute Attr (for
simplicity just integers in the set [𝑡], but this can easily be changed

to arbitrary strings, e.g., Attr =“age”). Now the basic idea is to use

the attribute value 𝑣Attr as the tag in the TBEQ scheme.

The intuition is that signatures for multiple different attributes

and the same representative𝑀 of class [𝑀] share the same random-

ness 𝑦 = 𝐹 (𝑘,𝑀) and thus from the set of𝑤 signatures {(𝑍1,𝑖 , 𝑌1,𝑖 ,
𝑌2,𝑖 ,𝑉2,𝑖)}𝑖∈[𝑤] aggregation can easily be done by aggregating the

𝑍1,𝑖 components of all single signatures as well as the 𝑉2,𝑖 compo-

nents and use the𝑌1, 𝑌2 values of one of the signatures (note that all

with respect to the same mpk and same representative𝑀 use the

same randomness 𝑦 and are thus identical). Aggregate verification

is the verification of the TBEQ scheme using the componentwise

aggregation of the attribute public keys (see Scheme 3 for details).

Finally, the change representative algorithm is identical to the al-

gorithm of the underlying TBEQ . Note that for the simplicity of

presentation we assume that ChgRep and Agg only take valid sig-

natures as input (this can easily be handled by adding verification

of all input signatures to the respective algorithms).

AAEQ .Setup(1𝜆, 𝑡, ℓ) : generate BG←$ BGGen(𝜆) , choose 𝐻 : {0, 1}∗ →
G2 and set params = (BG, 𝐻) . Choose PRF key 𝑘 ←$ K and for 𝑖 ∈ [𝑡]
• choose ®𝑥𝑖 ←$ (Z∗𝑝)ℓ , set pkAttr𝑖 = (𝑔 ®𝑥𝑖

2
) and set skAttr𝑖 =

(pkAttr𝑖 , ®𝑥𝑖 , k) .
Set msk = (skAttr1 , . . . , skAttr𝑡) and mpk = (pkAttr1 , . . . , pkAttr𝑡) and
return (msk,mpk) .

AAEQ .AKGen(msk,Attr) : parse msk = (skAttr1 , . . . , skAttr𝑡) and Attr ∈
[𝑡] and return msk[Attr].

AAEQ .Sign(skAttr, 𝑣Attr, 𝑀) : parse skAttr = (pkAttr, ®𝑥, 𝑘) , 𝑣Attr ∈ {0, 1}∗,
𝑀 ∈ (G∗

1
)ℓ , compute 𝑦 ← 𝐹 (𝑘,𝑀) and with 𝐻Attr (·) := 𝐻 (pkAttr ∥ ·)

compute

𝑍1 =

(
ℓ∏

𝑖=1

𝑀
𝑥𝑖
𝑖

)𝑦
, 𝑌1 = 𝑔

1

𝑦

1
, 𝑌2 = 𝑔

1

𝑦

2
, 𝑉2 = 𝐻Attr (𝑣Attr)

1

𝑦 .

Return 𝜎 = (𝑍1, 𝑌1, 𝑌2,𝑉2) ∈ (G∗
1
)2 × (G∗

2
)2.

AAEQ .ChgRep(𝑀,𝜎, 𝜇,mpk) : given 𝑀 ∈ (G∗
1
)ℓ , a valid signature 𝜎 ,

𝜇 ∈ Z∗𝑝 and mpk, choose 𝜓 ←$ Z∗𝑝 and return (𝑀𝜇 , 𝜎′) with 𝜎′ =

(𝑍𝜓𝜇

1
, 𝑌

1

𝜓

1
, 𝑌

1

𝜓

2
,𝑉

1

𝜓

2
) .

AAEQ .Agg(mpk, {𝜎𝑖 }) : given mpk and set of valid signatures {𝜎𝑖 } of
size 𝑘 parse it as 𝜎𝑖 = (𝑍1,𝑖 , 𝑌1,𝑖 , 𝑌2,𝑖 ,𝑉2,𝑖) and return ⊥ if 𝑌1,𝑖 ≠

𝑌1, 𝑗 or 𝑌2,𝑖 ≠ 𝑌2, 𝑗 for 𝑖 ≠ 𝑗 , 𝑖, 𝑗 ∈ [𝑘] and otherwise return

(∏𝑘
𝑖=1 𝑍1,𝑖 , 𝑌1,1, 𝑌2,1,

∏𝑘
𝑖=1𝑉2,𝑖) .

AAEQ .Verify(mpk, {Attr}, 𝜎′, 𝑀) : parse mpk = (pkAttr1 , . . . , pkAttr𝑡) ,
{Attr} = ((Attr𝑖 , 𝑣Attr𝑖))𝑖∈[𝑡] ∈ ([𝑡] × {0, 1}∗)𝑘 , 𝜎′ = (𝑍1, 𝑌1, 𝑌2,𝑉2)
and𝑀 ∈ (G∗

1
)ℓ . Return 1 if the following checks hold and 0 otherwise:

ℓ∏
𝑖=1

𝑒 (𝑀𝑖 ,

𝑘∏
𝑗=1

pkAttr𝑗 ,𝑖) = 𝑒 (𝑍1, 𝑌2) ∧ 𝑒 (𝑌1, 𝑔2) = 𝑒 (𝑔1, 𝑌2) ∧

𝑒 (𝑌1,
𝑘∏
𝑗=1

𝐻Attr𝑗 (𝑣Attr𝑗)) = 𝑒 (𝑔1,𝑉2)

Scheme 3: Our AAEQ Signature Scheme

Now, we prove the security of our AAEQ scheme in Scheme 3.

Theorem 3.11. The AAEQ scheme in Scheme 3 is EUF-CMA and
provides perfect adaption assuming that 𝐻 is a random oracle.

We again prove the above theorem using a sequence of lemmas.

Lemma 3.12. TheAAEQ scheme in Scheme 3with bounded attribute-
space is EUF-CMA secure in the generic bilinear group model for
Type-3 bilinear groups.

The proof is given in Appendix B.4.

Lemma 3.13. The AAEQ in Scheme 3 is EUF-CMA secure for an
unbounded attribute-space when modeling 𝐻 as a random oracle.

Proof. Up to collisions in the random oracle, which happen

with negligible probability, the AAEQ in Scheme 3 and in particular

the analysis is identical to the proof of Lemma 3.12, but without

the restriction of the tag space being polynomial in size. □

Lemma 3.14. TheAAEQ scheme in Scheme 3 provides perfect adap-
tion if the TBEQd Scheme 2 provides perfect adaption.

Proof. This straightforwardly follows from the perfect adaption

notion of the underlying TBEQd scheme. □

4 CORE/HELPER CREDENTIALS
We recall that in ACs usually a personal computer or smartphone

is used to store and show the credential and it is assumed that

the user’s device is not limited in any way, i.e., computational or

communication-wise. A core/helper anonymous credential (CHAC)
system considers a different and more realistic scenario. We con-

sider two devices, a core device with limited capabilities (i.e., small

memory and computational power) and a helper device that is more

powerful and the only gateway of the core device to the outside

world, e.g., the Internet. The core device creates and stores the

secret key required to show credentials. However, since it is limited

it only creates so-called partial show tokens. The helper device

stores the credentials and finalizes the show token. The key idea

here is that the core device is responsible for protecting credentials

(i.e., the key to use them) and the helper device is responsible for

protecting the privacy of the showing procedure. In CHACs we
will only consider single round communications and therefore the

semantic will consist only of algorithms and not protocols as it is

the case in standard anonymous credentials.

4.1 Syntax and Security Model
Before defining the syntax of a CHAC system, we assume that

there exists a compressing and collision-resistant function AIDGen
(Attr, nonce) that on input a non-empty attribute set Attr and ran-

dom nonce ∈ {0, 1}𝜆 , outputs an attribute identifier aid ∈ {0, 1}𝜆 .
We will assume that the attribute set Attr contains pairs of a name

and value, e.g. a valid element is ('Age:', '18').

Definition 4.1 (CHAC). A core/helper anonymous credential

(CHAC) system consists of the following PPT algorithms:

SetupCHAC (1𝜆): on input security parameter 1
𝜆
, this algorithm

outputs a common reference string 𝜌 , which is an implicit input

to the below algorithms. Some constructions might not require

such a string and work without a trusted setup.

IKGen(1𝜆): on input security parameter 1
𝜆
, this algorithm outputs

the issuer’s key pair (isk, ipk).
CKGen(1𝜆): on input security parameter 1

𝜆
, this algorithm outputs

the core device secret key ssk.

CObtain(aid, ipk, ssk): on input attribute identifier aid, issuer’s
public key ipk and secret key ssk, executed by the core device

outputs a partial credential request apreq.
HObtain(Attr, nonce, ipk, apreq): on input non-empty attribute set

Attr, a random nonce ∈ {0, 1}𝜆 , issuer’s public key ipk and

partial credential request apreq, this algorithm executed by the

helper outputs a credential request areq.
Issue(Attr, nonce, areq, isk): on input non-empty attribute set Attr,

a random nonce ∈ {0, 1}𝜆 , credential request areq and issuer’s

secret key isk, this algorithm outputs⊥ on failure and otherwise

a credential cred and a device identifier did.
CShow(aid, ipk, ssk): on input attribute identifier aid, issuer’s pub-

lic key ipk and secret key ssk, this algorithm executed by the

core device outputs a partial show token apsig.
HShow(Attr, nonce, cred, ipk, apsig): on input non-empty attribute

set Attr, a random nonce ∈ {0, 1}𝜆 , credential cred, issuer’s
public key and partial show token apsig, this algorithm executed

by the helper outputs a full show token asig.
Verify(Attr, nonce, asig, ipk): on input non-empty attribute setAttr,

a nonce ∈ {0, 1}𝜆 , full show token asig and issuer’s public key,

this algorithm outputs either accept(1) or reject(0).

We say that a core/helper anonymous credential system is secure
if it is correct, unforgeable, dependable, anonymous and compact.

Correctness. As one would expect, a showing of a credential with

respect to a non-empty set Attr𝐷 of attributes always verifies if the

credential was issued honestly for some attribute set Attr𝐴 with

Attr𝐷 ⊆ Attr𝐴 .

Unforgeability. Showing of attributes for which one does not pos-

sess credentials should not be possible. Even a malicious coalition

should be unable to combine their credentials and show a set of

attributes that no single member has.

Dependability. An adversary that takes control over the helper

device should be unable to show an honestly generated credential

in a given session without interaction with the core device, i.e. this

involves the case that credentials stored on the helper device leak.

Anonymity. A coalition of a malicious verifier and issuer should

not be able to identify the core/helper devices, except that they

possess a valid credential for the shown attributes. Furthermore,

different showings of the same credential should be unlinkable.

Compactness. The size of the full show token asig should not

depend on the number of attributes.

Formal definitions of those properties are given in Appendix A.6.

4.2 Generic Construction
We will now present our generic construction of a CHAC system

for up to 𝑡 attributes i.e., the upper bound on the number of different

attributes an issuer can issue. The two main building blocks are

a SFPK scheme with public key size ℓ and split signing, and an

AAEQ scheme with message size ℓ . We assume that the space of

SFPK public keys and AAEQ messages are compatible (the same).

We also assume that the SFPK key generation algorithm outputs

public keys in canonical form.

Our construction uses the idea of self-blindable certificates sim-

ilar to [63]. The core device generates a long-term SFPK key pair

that is used for all credentials. This key pair is used as a standard

signing key and the core device does not use the randomization

properties of the SFPK public key. However, this key is “certified”

by the issuer using the AAEQ scheme. Since it is attribute-based,

the issuer can easily create multiple signatures on the core device’s

public key depending on the possessed attributes. A credential is

then formed by appending all signatures, i.e., its size depends on

the number of attributes. To show an attribute the core device uses

the SFPK signing procedure to sign an attribute identifier aid send

by the helper device and which corresponds to the disclosed at-

tributes Attr and a nonce (from the verifier). Once the helper device

receives the SFPK signature from the core device it finalizes (we

use split signing here) and randomizes it. We will use 𝑛 to denote

the number of attributes that were issued to a user and by 𝑘 ≤ 𝑛 the

number of attributes that are selectively disclosed within a show

token. Additionally, it aggregates all AAEQ signatures that corre-

spond to the shown attributes (i.e., the 𝑘 that should be selectively

disclosed) and uses the same random coins to randomize it. Note

that thanks to aggregation the show tokens size is independent

of the number of shown attributes. The final show token is a ran-

dom SFPK public key, the corresponding SFPK signature under

aid = AIDGen(Attr, nonce) and an aggregated AAEQ signature for

the public key. More details are given in Scheme 4.

We now show that Scheme 4 can be efficiently instantiated in

the random oracle model using an SFPK with split signing and an

AAEQ scheme (cf. Section 3).

Theorem 4.2 (Unforgeability). Scheme 4 is unforgeable assum-
ing the used SFPK with split signing is unforgeable, the used AAEQ
is unforgeable and AIDGen is collision-resistant.

Theorem 4.3 (Anonymity). Scheme 4 is anonymous if the used
AAEQ are adaptable and the SFPK signatures are class-hiding.

Theorem 4.4 (Dependability). Scheme 4 is dependable if SFPK
with split signing is unforgeable and AIDGen is collision-resistant.

For completeness the proofs for unforgeability, anonymity and

dependability are given respectively in Appendix C.1, C.2 and C.3.

Remark. For our concrete instantiation in the next section, we

require that for every user SFPK public key all requested attributes

are queried once and at the same time. While this is a proof artifact

to simplify the GGM proof, we 1) do not expect this to be a problem
formost use-cases and 2) conjecture that even if ignored this implies

no issues with the security of the CHAC construction.

5 CHAC EVALUATION
In this section we evaluate a concrete instantiation of our CHAC
system based on the building blocks from Section 3. Moreover,

discuss techniques used to optimize the smart card implementation

and helper device side of the CHAC system.

5.1 Setup
To evaluate our CHAC system we prepared a prototype implemen-

tation. We used a Multos smart card [60] as the core device and

implement the helper device on a smartphone with a Snapdragon

SetupCHAC (1𝜆) : return 𝜌 ← SFPK.CRSGen(1𝜆) .

IKGen(1𝜆) : return (isk, ipk) ← AAEQ .Setup(1𝜆, 𝑡, ℓ) .
CKGen(1𝜆) : choose (skSFPK, pkSFPK) ← SFPK.KeyGen(1𝜆) and com-

pute (stsecr, stpub) ← SFPK.Sign
1
(1𝜆) . Return ssk = (skSFPK, pkSFPK,

stsecr, stpub) .
CObtain(aid, ipk, ssk) : parse ssk = (skSFPK, pkSFPK, stsecr, stpub) , compute

pSigSFPK ← SFPK.Sign
2
(skSFPK, aid, stsecr) and return apreq = (pkSFPK,

stpub, pSigSFPK) .
HObtain(Attr, nonce, ipk, apreq) : parse apreq = (pkSFPK, stpub, pSigSFPK) ,

compute SigSFPK ← SFPK.Sign
3
(pSigSFPK, stpub) and return areq =

(pkSFPK, SigSFPK) .
Issue(Attr, nonce, areq, isk) : parse Attr = {(Attr1, 𝑣Attr1), . . . ,
(Attr𝑛, 𝑣Attr𝑛) }, areq = (pkSFPK, SigSFPK) and isk = msk.
• Compute identifier aid = AIDGen(Attr, nonce) and output ⊥ if

SFPK.Verify(pkSFPK, aid, SigSFPK) = 0 or canon(pkSFPK) ≠ 1.

• For all indices 𝑖 ∈ {1, . . . , 𝑛} recompute the AAEQ keys

skAttr𝑖 ← AAEQ .AKGen(msk,Attr𝑖) and compute signatures

𝜎Attr𝑖 ← AAEQ .Sign(skAttr𝑖 , 𝑣Attr𝑖 , pkSFPK) .
• Output cred = (𝜎Attr1 , . . . , 𝜎Attr𝑛) and did = pkSFPK.

CShow(aid, ipk, ssk) : execute apsig← CObtain(aid, ipk, ssk) .
HShow(Attr, nonce, cred, ipk, apsig) : parse Attr = {(Attr1, 𝑣Attr1), . . . ,
(Attr𝑘 , 𝑣Attr𝑘) } apsig = (pkSFPK, pSigSFPK, stpub) .
• Compute identifier aid = AIDGen(Attr, nonce) and finalize signature

SigSFPK ← SFPK.Sign
3
(pSigSFPK, stpub) .

• Set Attr𝜎 = {𝜎Attr1 , . . . , 𝜎Attr𝑘 } and aggregate the AAEQ signature

𝜎Attr ← AAEQ .Agg(ipk,Attr𝜎) .
• Compute (pk′SFPK, Sig

′
SFPK) ← SFPK.ReRand(pkSFPK, aid, SigSFPK, 𝑟)

using blinding 𝑟 ←$ coinSFPK.
• Change the representation of the signature 𝜎′Attr ←
AAEQ .ChgRep(pkSFPK, 𝜎Attr, 𝑟 , ipk) .
• Return the show token asig = (pk′SFPK, Sig

′
SFPK, 𝜎

′
Attr) .

Verify(Attr, nonce, asig, ipk) : Parse asig = (pk′SFPK, Sig
′
SFPK,

𝜎′Attr) and compute aid = AIDGen(Attr, nonce) . Return 0

if SFPK.Verify(pk′SFPK, aid, Sig
′
SFPK) = 0. Otherwise return

AAEQ .Verify(ipk, {(Attr𝑖 , 𝑣Attr𝑖) }, 𝜎′Attr, pk
′
SFPK) .

Scheme 4: Our Generic Construction of CHAC

710 processor and 6GB RAM running Android 10.0. To make the

evaluation more comprehensive, we executed the same helper de-

vice code on a laptop with Intel i7-7660U CPU @ 2.50 GHz with

16GB RAM running Windows 10.

We instantiate the bilinear groups using BN-256 curves [4] where

the group G1 is a standard curve defined over F𝑝 , G2 is a curve

defined over the extension field F𝑝2 and the target group is F𝑝12 .

5.2 Implementing SFPK on a Smart Card
On a high level, to implement the core device part of the con-

struction in Section 4.2 we have to implement the SFPK key gen-

eration (SFPK.KeyGen) and signing algorithms (SFPK.Sign
1
and

SFPK.Sign
2
). They involve the following elliptic curve operations:

SFPK.KeyGen: standard elliptic curve key generation,

SFPK.Sign
1
: point multiplication in G1 and G2,

SFPK.Sign
2
: point multiplication, addition, hashing in G1.

Below we describe three principles and explain in detail how we

implemented the above algorithms on-card. What is more impor-

tant, the described principles explain the design choices we made

in the construction of our CHAC system.

Standardized operations. Multi-app smart cards usually provide

a high-level programming API with standardized cryptographic

algorithms and some basic operations like memory copying. We

decided on Multos smart cards because they provide API access to

modular arithmetic, which is not the case for the popular Java Card

technology-based cards [64]. The main limitation of smart cards

is that algorithms implemented directly are strongly inefficient in

comparison to the ones provided by the API, e.g., Bichsel et. al. [10]

used API based exponentiation (via the RSA algorithm) and the

equation (𝑎 + 𝑏)2 = 𝑎2 + 2𝑎𝑏 + 𝑏2 to implement multiplication.

The Gemalto Multos card we used for our evaluation supports

elliptic curves, but it is limited to standard curves over F𝑝 . There
is also no support for low-level operations like point addition

and multiplication. Instead, the API provides access to an ellip-

tic curve Diffie-Hellman (ECDH) algorithm that outputs only the

x-coordinate of the resulting point. Implementing point addition

using the API provided modular arithmetic is sufficiently efficient.

To implement SFPK.Sign
1
and SFPK.Sign

2
we do not need an

actual point multiplication algorithm because the scalar in both

cases is random and chosen by the core device. Therefore, we can

leverage the API provided elliptic curve key generation algorithm

that outputs the full representation of the public key. What is more,

the parameters of the curve can be easily changed and therefore

we can use an arbitrary group generator that allows us to compute,

e.g., H(𝑚)𝑟 by replacing the group generator by H(𝑚).
It remains to discuss how one can implement operations in G2,

since elliptic curves over an extension field F𝑝2 are not supported.

In this case there are no API level algorithms that could be used to

make a custom implementation faster. This is the main reason why

we divide the SFPK signing process and included a pre-computation

step SFPK.Sign
1
. Since the generation of the core’s device secret

key is a one-time operation and can take more time than the online

signing process. Thus, point multiplication for curves over F𝑝2 can

be implemented using the API provided modular arithmetic.

Reusable Code. Smart cards are not only constrained in terms

of computation power but also in terms of memory. Usually the

card provided around 100 KB for applications which consist of

compiled code and defined data structured (e.g., secret keys). We

took this into account while designing our construction by limiting

the operations of the core device. This is also the main reason why

CShow executes CObtain and on a high level, both algorithms are

just SFPK.Sign
2
. What is more, this is also the reason why the core

device performs operations that are independent, in some sense,

of the attributes shown/obtained which allowed us to store the

credentials on the helper device.

Helper device characteristics. In CHAC we consider the helper

device somewhat trusted, i.e., it should be unable to use credentials

without the core device but otherwise, it is considered trusted (i.e.,

w.r.t. privacy). We abuse this in our implementation. The first idea

we introduce is how to hash the aid value to a point in G1. Usually,
one would use techniques like Icart’s function [51] to do this, but

since we put some trust in the helper we can use a simpler algorithm.

The idea is to limit the aid space to only values for which computing

SHA-256 give a valid x-coordinate in G1. We also assume that the

helper provides a valid 𝑦-coordinate. This approach can be easily

shown to be secure.

The point H(aid) is used in computing Sig
1
= 𝑌𝑥

1
· H(aid)𝑟 . We

can use the API provided EC key generation algorithm to generate

𝑟 as the secret key and H(aid)𝑟 as the public key. The benefit of

computing H(aid)𝑟 this way is that the algorithm checks if the

point H(aid) is actually on the curve and returns an error if it is

not. The only way the helper device can abuse this is by sending

−𝑦 instead of the correct 𝑦. This would mean the card would return

Sig
1
= 𝑌𝑥

1
·H(aid)−𝑟 . However, such a value can be easily obtained

by the helper device by computing (Sig
1
, Sig−1

2
, Sig−1

3
) and therefore

gives no additional advantage.

It remains to show how to compute Sig
1
using the key𝑌𝑥

1
(stored

on the card as an EC point). To do this we use our custom imple-

mentation of point addition. To make this operation more efficient

we only compute the x-coordinate of the result and let the helper

device recompute 𝑦 and −𝑦. This saves us some operation in F𝑝
on-card and the helper device can easily find the correct value using

the SFPK verification procedure.

5.3 Results
Various smart cards differ in computational power and available

algorithms, which influences the efficiency of custom cryptographic

algorithms. Thus, a comparison with results in related work would

not present meaningful data about the efficiency. However, an easy

way to assess the efficiency is to compare the algorithms execution

time to other well-known cryptographic algorithms. In Table 3

we compare our implementation of CObtain/CShow with elliptic

curve DSA, Diffie-Hellman, and key generation algorithms. All

algorithms are provided by the Multos API and work on the used

smart card. Additionally, we provide a prototype implementation

of the FIDO ECDAA algorithm [24, Chapter 3.5.2]. Note that the

efficiency of 𝑞-SDH based DAA schemes referenced in Table 1 are

close. This is due to the same number of point multiplications which

is the dominant computational factor. The execution time of our

ECDAA implementation can be used as a good estimator of the

execution time of the other algorithms in Table 1.

The numbers given in Table 3 correspond to an average of 100

executions. It is easy to see that our algorithms are roughly two

times slower than securely generating an elliptic curve key pair

on-card which is one of the basic operations used in practice. A

ECDAA implementation is two times slower than the smart card

part of our scheme. What is more, even a full showing of credentials

for CHAC is faster than just the smart card part of ECDAA.

To perform a comprehensive evaluation we created a simple

android application that naively implements the algorithms used

by the helper device and verifier. The core bilinear group opera-

tions were implemented using the Java based bnpairings library [5].
The only optimization used was the quaternary windowmethod for

pointmultiplicationwith pre-computation.We used pre-computation

for group generators 𝑔1, 𝑔2 and the core device’s SFPK public key

which is the same for each invocation of HObtain/HShow.

Algorithm Time
ECDSA 150

ECDH 210

ECKeyGen 222

CObtain/CShow 468

ECDAA [24] 970

Algorithm PC Phone
HObtain 7 93

HShow 15 189

Verify 140 1003

Verify∗ 109 945

Issue 156 -

On-card execution time cred with 10 Attributes

Algorithm PC Phone
HObtain 7 93

HShow 15 190

Verify 200 1770

Verify∗ 109 954

Issue 1024 -

Algorithm PC Phone
HObtain 7 93

HShow 15 192

Verify 851 9363

Verify∗ 110 960

Issue 10047 -

cred with 100 Attributes cred with 1000 Attributes

Table 3: Average execution time in milliseconds for BN-256
curve (𝑁 = 100). Worst case scenario for all algorithms. Bi-
linear pairings implemented using bnpairings Java library
based on BigIntegers. In algorithm Verify∗ we assume that the
verifier uses pre-computed values 𝐻Attr (𝑣Attr) ∈ G2.

Data type Size: bits Size: group elements
areq - credential request 1536 4 · [G1]+[G2]
asig - show token 3072 6 · [G1]+3 · [G2]
cred - credential 𝐿 · 1536 2𝐿 · [G1]+2𝐿 · [G2]
apreq - partial request 1792 4 · [G1]+[G2] + [Z𝑝]
apsig - partial token 1792 4 · [G1]+[G2] + [Z𝑝]

Table 4: Size of data types for credential credwith 𝐿 attributes.
Bit size is presented for the BN-256 curve.

In our implementation, we used the standard Java based SHA-256

to implement the used pseudo-random function and for hashing to

both curves, where we assume that the system is setup in a way that

the hashed values always correspond to a x-coordinate on the curve.

This is similar to the hash to point function that we introduced

for the smart card implementation. We executed the same code

on a PC (laptop) with Intel i7-7660U CPU @ 2.50 GHz with 16GB

RAM. We also implemented the algorithm used by the issuer. For

showing a credential we consider the worst-case scenario which

for our construction is showing all attributes in a given credential.

The results are given in Table 3. It is easy to see that our construc-

tion is practical, since proving possession of even 1000 attributes

takes around 0.5s in case the helper device is a PC and 0.7s in case a

smartphone is used. Since we use a Java implementation for bilinear

pairing this is a pessimistic estimate and a native ARM library will

significantly increase efficiency on the smartphone. Show token ver-

ification is heavily influenced by our implementation of hashing to

G2. In case the values𝐻Attr (𝑣Attr) are pre-computed, verifying takes

almost the same amount of time for all sizes of credentials. This is

not an impractical assumption since the number of attributes and

values for an application must be limited. Otherwise, if values are

unique the credential becomes traceable. The most time-consuming

operation is the Issue algorithm. Fortunately, this workload can be

distributed since is consists of generating AAEQ signatures on the

same message but with different secret keys.

Finally, in Table 4 we present the size for credential requests,

show tokens and credentials stored by the helper device. We will

use [Z𝑝], [G1] and [G2] to respectively denote the element sizes

and 𝑠 is used to denote the number of attributes in a credential.

6 DISCUSSION AND FURTHER EXTENSIONS
In this section we discuss certain extensions and properties of our

construction.

Optional revocation. Contrary to some previous AC models and

constructions, in our CHAC model we do not consider revocation.

But we will show how to extend our generic construction from

Section 4 to allow blacklisting of core devices, i.e., revoke credentials

corresponding to a given device.

Recall that the core device uses the SFPK.KeyGen algorithm to

generate SFPK keys. For revocation we can replace it with the trap-

door generation SFPK.TKGen algorithm that outputs keys with the

same distribution and additionally a trapdoor 𝛿SFPK that can be used

in the SFPK.ChkRep algorithm. The core device can share this trap-

door with the helper device since this does not break unforgeability.

The helper device can encrypt it with respect to the authorities’ pub-

lic key and use standard zero-knowledge (ZK) proofs to prove that

the ciphertext contains𝛿SFPK forwhich SFPK.ChkRep(𝛿SFPK, pkSFPK
) = 1. Note that in our instantiation this corresponds to check-

ing pairing product equations for which we know efficient non-

interactive ZK proofs [47].

Finally, once a device is blacklisted the revocation authority

can decrypt and publish the trapdoor, which can be used by ver-

ifiers to check if the current session corresponds to revoked cre-

dentials. This approach obviously discloses all the show tokens

(past and future) created by the revoked device. A more general ap-

proach that prevents this is as follows. Instead of the trapdoor 𝛿SFPK,

we publish a randomized SFPK public key pk𝑅
𝑖
of the 𝑖-th black-

listed device. Now in addition to a show token asig = (pk′SFPK,
Sig′SFPK, 𝜎

′
Attr) the helper creates a ZK proof that there exists a

trapdoor 𝛿SFPK for which SFPK.ChkRep(𝛿SFPK, pk′SFPK) = 1 and

SFPK.ChkRep(𝛿SFPK, pk𝑅𝑖) = 0 for all pk𝑅
𝑖
on the blacklist.

Pre-loading credentials. In our model, we assume that credentials

are used for systems where the helper device is also part of the

user’s platform. However, this is not the case for some applications

like for example e-tickets where the terminal that communicates

with the smart card (i.e., core device) is part of the service.

A solution for this setting is to pre-randomize the SFPK public

key and the AAEQ signatures by the helper device and store them

on the core device. To show such a credential, the core device can

simply sign the aid for the given session nonce and use the stored

values to create the full asig. Due to the memory constrains of the

core device, this however only works when the helper is frequently

available and the user can simply re-load “fresh” values.

Pre-randomized values can only be used by the core device be-

cause of the dependability property. Thus they can be stored in an

online database where each entry will be associated with a unique

identifier that is generated by the helper device. To allow the core

device to recompute those identifiers the helper device creates them

by hashing a secret key 𝑘pre together with a counter.

Distributed/Parallel issuing. An interesting property of our con-

struction is that the issuing algorithm can be easily distributed

between different servers (representing the issuing authority). Re-

call that for each attribute the respectiveAAEQ secret key skAttr𝑖 ←
AAEQ .AKGen(msk,Attr𝑖) is used to sign the SFPK public key that

is part of the credential request. The resulting credential is just a

tuple that contains all the AAEQ signatures on the SFPK public

key for each attribute. An easy way to distribute the workload is

as follows. Each server receives a dedicated set of attributes and

the corresponding AAEQ secret key. Once a request is received

and verified it is sent to the responsible servers which compute the

AAEQ signature and return them to a server combining the results.

(Un)Trusted setup. Our generic construction from Section 4.2

uses a trusted setup to generate a common reference string (CRS)

𝜌 . This is only required if the used SFPK scheme needs a CRS, as it

is the case for our instantiation. In particular, the CRS in Scheme 1

is composed of BG and two values 𝑌1 = 𝑔
𝑦

1
and 𝑌2 = 𝑔

𝑦

2
. The group

parameters can be easily computed using a deterministic procedure

and without secret coins, as it is the case for BN curves [4]. Unfortu-

nately, this is not the case for 𝑌1 and 𝑌2. It is required that the value

𝑦 is unknown, otherwise, the SFPK scheme is forgeable. On the

bright side, knowing 𝑦 does not help in breaking the class-hiding

property which is used to ensure the unlinkability of credentials.

A simple corollary from the above discussion is that in case the

system consists only of one issuer the CRS can be generated by that

entity. Unfortunately, it is not possible in case of multiple issuers as

the knowledge of𝑦 would allow using credentials of users issued by

different issuers. A workaround would be to generate an additive

share between all issuers. Instead of using values 𝑌1,𝑖 and 𝑌2,𝑖 gen-

erated by the 𝑖-th issuer, the CRS is constructed as 𝑌1 =
∏𝑛

𝑖=1 𝑌1,𝑖 ,

𝑌2 =
∏𝑛

𝑖=1 𝑌2,𝑖 where we use shares of each of the 𝑛 issuers. Note

that this is a well-known technique and involves additional step,

i.e., a proof of knowledge of the shared discrete logarithm.

Acknowledgements.We thank Fabian Eidens, Octavio Perez Kemp-

ner and the anonymous reviewers for their helpful feedback. Lucjan

Hanzlik was supported by the German Federal Ministry of Edu-

cation and Research (BMBF) through funding for CISPA and the

CISPA-Stanford Center for Cybersecurity (FKZ: 16KIS0762). Daniel

Slamanig was supported by the European commission through

ECSEL Joint Undertaking (JU) under grant agreement n
◦
826610

(Comp4Drones) and by the Austrian Science Fund (FWF) and ne-

tidee SCIENCE under grant agreement P31621-N38 (Profet).

REFERENCES
[1] Michael Backes, Lucjan Hanzlik, Kamil Kluczniak, and Jonas Schneider. 2018.

Signatures with Flexible Public Key: Introducing Equivalence Classes for Public

Keys. In ASIACRYPT 2018, Part II (LNCS, Vol. 11273). 405–434.
[2] Michael Backes, Lucjan Hanzlik, and Jonas Schneider-Bensch. 2019. Membership

Privacy for Fully Dynamic Group Signatures. In ACM CCS 2019. 2181–2198.
[3] Foteini Baldimtsi and Anna Lysyanskaya. 2013. Anonymous credentials light. In

ACM CCS 2013. 1087–1098.
[4] Paulo S. L. M. Barreto andMichael Naehrig. 2006. Pairing-Friendly Elliptic Curves

of Prime Order. In SAC 2005 (LNCS, Vol. 3897). 319–331.
[5] Paulo S. L. M. Barreto and Geovandro C. C. F. Pereira. 2015. Barreto-Naehrig

(BN) pairing-friendly elliptic curves. https://github.com/javabeanz/bnpairings.

https://github.com/javabeanz/bnpairings

[6] Lejla Batina, Jaap-Henk Hoepman, Bart Jacobs, Wojciech Mostowski, and Pim

Vullers. 2010. Developing Efficient Blinded Attribute Certificates on Smart Cards

via Pairings. In CARDIS 2010, Dieter Gollmann, Jean-Louis Lanet, and Julien

Iguchi-Cartigny (Eds.). Springer.

[7] Mira Belenkiy, Jan Camenisch, Melissa Chase, Markulf Kohlweiss, Anna Lysyan-

skaya, and Hovav Shacham. 2009. Randomizable Proofs and Delegatable Anony-

mous Credentials. In CRYPTO 2009 (LNCS, Vol. 5677). 108–125.
[8] Mihir Bellare and Phillip Rogaway. 1993. Random Oracles are Practical: A Para-

digm for Designing Efficient Protocols. In ACM CCS 93. 62–73.
[9] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang.

2011. High-Speed High-Security Signatures. In CHES 2011 (LNCS, Vol. 6917).
124–142.

[10] Patrik Bichsel, Jan Camenisch, Thomas Groß, and Victor Shoup. 2009. Anony-

mous credentials on a standard java card. In ACM CCS 2009. 600–610.
[11] Ronny Bjones, Ioannis Krontiris, Pascal Paillier, and Kai Rannenberg. 2012. Inte-

grating Anonymous Credentials with eIDs for Privacy-Respecting Online Au-

thentication. In APF 2012. Springer.
[12] Marina Blanton. 2008. Online subscriptions with anonymous access. In ASIACCS

08. 217–227.
[13] Johannes Blömer and Jan Bobolz. 2018. Delegatable Attribute-Based Anony-

mous Credentials from Dynamically Malleable Signatures. In ACNS 18 (LNCS,
Vol. 10892). 221–239.

[14] Johannes Blömer, Jan Bobolz, Denis Diemert, and Fabian Eidens. 2019. Updatable

Anonymous Credentials and Applications to Incentive Systems. In ACM CCS
2019. 1671–1685.

[15] Jan Bobolz, Fabian Eidens, Stephan Krenn, Daniel Slamanig, and Christoph

Striecks. 2020. Privacy-Preserving Incentive Systems with Highly Efficient Point-

Collection. In ASIACCS 20. 319–333.
[16] Dan Boneh, Ben Lynn, and Hovav Shacham. 2001. Short Signatures from the

Weil Pairing. In ASIACRYPT 2001 (LNCS, Vol. 2248). 514–532.
[17] Dan Boneh and Victor Shoup. 2020. A Graduate Course in Applied Cryptography

(version 0.5). cryptobook.us.
[18] Stefan Brands. 2002. A technical overview of digital credentials. Available online,

Feb 20 (2002), 145–8.
[19] Ernie Brickell and Jiangtao Li. 2012. Enhanced Privacy ID: A Direct Anony-

mous Attestation Scheme with Enhanced Revocation Capabilities. IEEE Trans.
Dependable Secur. Comput. 9, 3 (2012), 345–360.

[20] Ernest F. Brickell, Jan Camenisch, and Liqun Chen. 2004. Direct Anonymous

Attestation. In ACM CCS 2004. 132–145.
[21] Jan Camenisch. 2006. Protecting (Anonymous) Credentials with the Trusted

Computing Group’s TPM V1.2. In (SEC 2006). Springer.
[22] Jan Camenisch, Liqun Chen, Manu Drijvers, Anja Lehmann, David Novick, and

Rainer Urian. 2017. One TPM to Bind Them All: Fixing TPM 2.0 for Provably

Secure Anonymous Attestation. In 2017 IEEE Symposium on Security and Privacy.
901–920.

[23] Jan Camenisch, Manu Drijvers, Petr Dzurenda, and Jan Hajny. 2019. Fast Keyed-

Verification Anonymous Credentials on Standard Smart Cards. In SEC 2019,
Gurpreet Dhillon, Fredrik Karlsson, Karin Hedström, and André Zúquete (Eds.).

Springer.

[24] Jan Camenisch, Manu Drijvers, Alec Edgington, Anja Lehmann, and Rainer

Urian. 2018. FIDO ECDAA Algorithm. https://fidoalliance.org/specs/fido-v2.0-

id-20180227/fido-ecdaa-algorithm-v2.0-id-20180227.html.

[25] Jan Camenisch, Manu Drijvers, and Anja Lehmann. 2016. Anonymous Attestation

Using the Strong Diffie Hellman Assumption Revisited. In TRUST 2016. Springer.
[26] Jan Camenisch,ManuDrijvers, and Anja Lehmann. 2016. Universally Composable

Direct Anonymous Attestation. In PKC 2016, Part II (LNCS, Vol. 9615). 234–264.
[27] Jan Camenisch, Maria Dubovitskaya, Kristiyan Haralambiev, and Markulf

Kohlweiss. 2015. Composable and Modular Anonymous Credentials: Defini-

tions and Practical Constructions. In ASIACRYPT 2015, Part II (LNCS, Vol. 9453).
262–288.

[28] Jan Camenisch and Anna Lysyanskaya. 2001. An Efficient System for Non-

transferable Anonymous Credentials with Optional Anonymity Revocation. In

EUROCRYPT 2001 (LNCS, Vol. 2045). 93–118.
[29] Jan Camenisch and Anna Lysyanskaya. 2004. Signature Schemes and Anonymous

Credentials from Bilinear Maps. In CRYPTO 2004 (LNCS, Vol. 3152). 56–72.
[30] Jan Camenisch and Els Van Herreweghen. 2002. Design and Implementation of

The Idemix Anonymous Credential System. In ACM CCS 2002. 21–30.
[31] Melissa Chase, Sarah Meiklejohn, and Greg Zaverucha. 2014. Algebraic MACs

and Keyed-Verification Anonymous Credentials. In ACM CCS 2014. 1205–1216.
[32] Melissa Chase, Trevor Perrin, and Greg Zaverucha. 2020. The Signal Private

Group System and Anonymous Credentials Supporting Efficient Verifiable En-

cryption. In ACM CCS 20. 1445–1459.
[33] David Chaum. 1982. Blind Signatures for Untraceable Payments. In CRYPTO’82.

199–203.

[34] David Chaum and Eugène van Heyst. 1991. Group Signatures. In EUROCRYPT’91
(LNCS, Vol. 547). 257–265.

[35] Liqun Chen and Rainer Urian. 2015. DAA-A: Direct Anonymous Attestation with

Attributes. In TRUST 2015.

[36] Scott E. Coull, Matthew Green, and Susan Hohenberger. 2009. Controlling Access

to an Oblivious Database Using Stateful Anonymous Credentials. In PKC 2009
(LNCS, Vol. 5443). 501–520.

[37] Geoffroy Couteau and Michael Reichle. 2019. Non-interactive Keyed-Verification

Anonymous Credentials. In PKC 2019, Part I (LNCS, Vol. 11442). 66–96.
[38] Elizabeth C. Crites and Anna Lysyanskaya. 2019. Delegatable Anonymous Cre-

dentials from Mercurial Signatures. In CT-RSA 2019 (LNCS, Vol. 11405). 535–555.
[39] Elizabeth C. Crites and Anna Lysyanskaya. 2020. Mercurial Signatures for

Variable-Length Messages. Cryptology ePrint Archive, Report 2020/979. https:

//eprint.iacr.org/2020/979.

[40] Fergus Dall, Gabrielle De Micheli, Thomas Eisenbarth, Daniel Genkin, Nadia

Heninger, Ahmad Moghimi, and Yuval Yarom. 2018. CacheQuote: Efficiently

Recovering Long-term Secrets of SGX EPID via Cache Attacks. IACR TCHES 2018,
2 (2018), 171–191. https://tches.iacr.org/index.php/TCHES/article/view/879.

[41] Alex Davidson, Ian Goldberg, Nick Sullivan, George Tankersley, and Filippo

Valsorda. 2018. Privacy Pass: Bypassing Internet Challenges Anonymously.

PoPETs 2018, 3 (2018), 164–180.
[42] Dominic Deuber, Matteo Maffei, Giulio Malavolta, Max Rabkin, Dominique

Schröder, and Mark Simkin. 2018. Functional Credentials. PoPETs 2018, 2 (April
2018), 64–84.

[43] Georg Fuchsbauer and Romain Gay. 2018. Weakly Secure Equivalence-Class

Signatures from Standard Assumptions. In PKC 2018, Part II (LNCS, Vol. 10770).
153–183.

[44] Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. 2015. Practical Round-

Optimal Blind Signatures in the Standard Model. In CRYPTO 2015, Part II (LNCS,
Vol. 9216). 233–253.

[45] Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. 2019. Structure-

Preserving Signatures on Equivalence Classes and Constant-Size Anonymous

Credentials. Journal of Cryptology 32, 2 (April 2019), 498–546.

[46] Christina Garman, Matthew Green, and Ian Miers. 2014. Decentralized Anony-

mous Credentials. In NDSS 2014.
[47] Jens Groth and Amit Sahai. 2008. Efficient Non-interactive Proof Systems for

Bilinear Groups. In EUROCRYPT 2008 (LNCS, Vol. 4965). 415–432.
[48] Christian Hanser and Daniel Slamanig. 2014. Structure-Preserving Signatures

on Equivalence Classes and Their Application to Anonymous Credentials. In

ASIACRYPT 2014, Part I (LNCS, Vol. 8873). 491–511.
[49] Chloé Hébant and David Pointcheval. 2020. Traceable Constant-Size Multi-

Authority Credentials. Cryptology ePrint Archive, Report 2020/657. https:

//eprint.iacr.org/2020/657.

[50] Thomas S. Heydt-Benjamin, Hee-Jin Chae, Benessa Defend, and Kevin Fu. 2006.

Privacy for Public Transportation. In PET 2006 (LNCS, Vol. 4258). 1–19.
[51] Thomas Icart. 2009. How to Hash into Elliptic Curves. In CRYPTO 2009 (LNCS,

Vol. 5677). 303–316.
[52] Jonathan Katz and Nan Wang. 2003. Efficiency Improvements for Signature

Schemes with Tight Security Reductions. In ACM CCS 2003. 155–164.
[53] Mojtaba Khalili, Daniel Slamanig, and Mohammad Dakhilalian. 2019. Structure-

Preserving Signatures on Equivalence Classes from Standard Assumptions. In

ASIACRYPT 2019, Part III (LNCS, Vol. 11923). 63–93.
[54] Armen Khatchatourov, Maryline Laurent, and Claire Levallois-Barth. 2015. Pri-

vacy in Digital Identity Systems: Models, Assessment, and User Adoption. In

Electronic Government, Efthimios Tambouris, Marijn Janssen, Hans Jochen Scholl,

Maria A. Wimmer, Konstantinos Tarabanis, Mila Gascó, Bram Klievink, Ida

Lindgren, and Peter Parycek (Eds.). Springer International Publishing, Cham,

273–290.

[55] Stephan Krenn, Thomas Lorünser, Anja Salzer, and Christoph Striecks. 2017.

Towards Attribute-Based Credentials in the Cloud. In CANS 17 (LNCS, Vol. 11261).
179–202.

[56] Ben Kreuter, Tancrède Lepoint, Michele Orrù, andMariana Raykova. 2020. Anony-

mous Tokens with Private Metadata Bit. In CRYPTO 2020, Part I (LNCS, Vol. 12170).
308–336.

[57] Michael Z. Lee, Alan M. Dunn, Brent Waters, Emmett Witchel, and Jonathan Katz.

2013. Anon-Pass: Practical Anonymous Subscriptions. In 2013 IEEE Symposium
on Security and Privacy. 319–333.

[58] Benoît Libert, Fabrice Mouhartem, Thomas Peters, and Moti Yung. 2016. Practical

“Signatures with Efficient Protocols” from Simple Assumptions. In ASIACCS 16.
511–522.

[59] Jinyu Lu, Yunwen Liu, Tomer Ashur, Bing Sun, and Chao Li. 2020. Rotational-

XOR Cryptanalysis of Simon-Like Block Ciphers. In ACISP 20 (LNCS, Vol. 12248).
105–124.

[60] MAOSCO Limited. 2020. MULTOS Standard Technology. https://www.multos.

com/.

[61] Milica Milutinovic, Koen Decroix, Vincent Naessens, and Bart De Decker. 2015.

Privacy-Preserving Public Transport Ticketing System. In Data and Applications
Security and Privacy XXIX. Springer.

cryptobook.us
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-ecdaa-algorithm-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-ecdaa-algorithm-v2.0-id-20180227.html
https://eprint.iacr.org/2020/979
https://eprint.iacr.org/2020/979
https://tches.iacr.org/index.php/TCHES/article/view/879
https://eprint.iacr.org/2020/657
https://eprint.iacr.org/2020/657
https://www.multos.com/
https://www.multos.com/

[62] DanielMoghimi, Berk Sunar, Thomas Eisenbarth, andNadia Heninger. 2020. TPM-

FAIL: TPMmeets Timing and Lattice Attacks. In 29th USENIX Security Symposium,
USENIX Security 2020, August 12-14, 2020, Srdjan Capkun and Franziska Roesner

(Eds.). USENIX Association, 2057–2073. https://www.usenix.org/conference/

usenixsecurity20/presentation/moghimi-tpm

[63] Wojciech Mostowski and Pim Vullers. 2012. Efficient U-Prove Implementation

for Anonymous Credentials on Smart Cards. In Security and Privacy in Com-
munication Networks, Muttukrishnan Rajarajan, Fred Piper, Haining Wang, and

George Kesidis (Eds.). Springer.

[64] Oracle. 2020. Java Card Technology. https://www.oracle.com/java/technologies/

java-card-tech.html.

[65] Christian Paquin and Greg Zaverucha. 2013. U-Prove Cryptographic Specification

V1.1 (Revision 3). https://www.microsoft.com/en-us/research/publication/u-

prove-cryptographic-specification-v1-1-revision-3/

[66] David Pointcheval and Olivier Sanders. 2016. Short Randomizable Signatures. In

CT-RSA 2016 (LNCS, Vol. 9610). 111–126.
[67] Himanshu Raj, Stefan Saroiu, Alec Wolman, Ronald Aigner, Jeremiah Cox,

Paul England, Chris Fenner, Kinshuman Kinshumann, Jork Löser, Dennis Mat-

toon, Magnus Nyström, David Robinson, Rob Spiger, Stefan Thom, and David

Wooten. 2016. fTPM: A Software-Only Implementation of a TPM Chip. In

25th USENIX Security Symposium, USENIX Security 16, Austin, TX, USA, Au-
gust 10-12, 2016, Thorsten Holz and Stefan Savage (Eds.). USENIX Associa-

tion, 841–856. https://www.usenix.org/conference/usenixsecurity16/technical-

sessions/presentation/raj

[68] Kai Rannenberg, Jan Camenisch, and Ahmad Sabouri (Eds.). 2015. Attribute-based
Credentials for Trust: Identity in the Information Society. Springer.

[69] Olivier Sanders. 2020. Efficient Redactable Signature and Application to Anony-

mous Credentials. In PKC 2020, Part II (LNCS, Vol. 12111). 628–656.
[70] Michael Schwarz and Daniel Gruss. 2020. How Trusted Execution Environments

Fuel Research on Microarchitectural Attacks. IEEE Secur. Priv. 18, 5 (2020), 18–27.
https://doi.org/10.1109/MSEC.2020.2993896

[71] Adi Shamir. 1984. Identity-Based Cryptosystems and Signature Schemes. In

CRYPTO’84 (LNCS, Vol. 196). 47–53.
[72] Victor Shoup. 1997. Lower Bounds for Discrete Logarithms and Related Problems.

In EUROCRYPT’97 (LNCS, Vol. 1233). 256–266.
[73] Alberto Sonnino,Mustafa Al-Bassam, Shehar Bano, SarahMeiklejohn, andGeorge

Danezis. 2019. Coconut: Threshold Issuance Selective Disclosure Credentials

with Applications to Distributed Ledgers. In NDSS 2019.
[74] Eric R. Verheul. 2001. Self-Blindable Credential Certificates from the Weil Pairing.

In ASIACRYPT 2001 (LNCS, Vol. 2248). 533–551.
[75] Brent R. Waters. 2005. Efficient Identity-Based Encryption Without Random

Oracles. In EUROCRYPT 2005 (LNCS, Vol. 3494). 114–127.

A OMITTED FORMAL DEFINITIONS
A.1 Preliminaries
We write Exp𝜙A,Ψ

(1𝜆) ⇒ 1 for the event that the experiment Exp
returns 1, when instantiated with parameters 𝜙 , adversary A and

primitive Ψ, all of which possibly omitted. We define the adjusted
advantage of adversary A in this experiment as

Adv [𝑥] Exp𝜙

A,Ψ
(1𝜆) :=

���Pr[Exp𝜙A,Ψ
(1𝜆) ⇒ 1

]
− 𝑥

���
If 𝑥 = 0, we write instead AdvExp

𝜙

A,Ψ
(1𝜆) for its advantage.

A.2 Signatures with Flexible Public Key
Definition A.1 (Class-hiding with Key Corruption). For SFPKwith

relation R and adversary A we define the following experiment:

C-HRA,SFPK (𝜆)
(sk𝑖 , pk𝑖) ←$ SFPK.KeyGen(1𝜆) for 𝑖 ∈ {0, 1}
𝑏 ←$ {0, 1}; 𝑟 ←$ coin

(sk′, pk′) ← SFPK.ChgKeys(sk𝑏 , pk𝑏 , 𝑟)
ˆ𝑏 ←$ ASFPK.Sign(sk′,·) ((sk

0
, pk

0
), (sk

1
, pk

1
), pk′)

return 𝑏 = ˆ𝑏

A SFPK is class-hiding with key corruption if for all 𝑃𝑃𝑇 adver-

saries A, their advantage Adv
[
1

2

] C-H
A,SFPK (1

𝜆) is negligible.

Definition A.2 (Existential Unforgeability under Flexible Public
Key). For scheme SFPKwith relation R and adversaryA we define

the following experiment:

EUF-CMARA,SFPK (𝜆)
(sk, pk, 𝛿) ←$ SFPK.TKGen(1𝜆) ;𝑄 := ∅

(pk′,𝑚∗, Sig∗) ←$ AO1 (sk,·),O2 (sk,·,·) (pk, 𝛿)
return𝑚∗ ∉ 𝑄 ∧
return SFPK.ChkRep(𝛿, pk′) = 1 ∧

SFPK.Verify(pk′,𝑚∗, Sig∗) = 1

O1 (sk,𝑚)
Sig←$ SFPK.Sign(sk,𝑚)
𝑄 := 𝑄 ∪ {𝑚}
return Sig

O2 (sk,𝑚, 𝑟)
sk′ ←$ SFPK.ChgSK(sk, 𝑟)
Sig←$ SFPK.Sign(sk′,𝑚)
𝑄 := 𝑄 ∪ {𝑚}
return Sig

A SFPK is existentially unforgeable with flexible public key under
chosen message attacks if for all 𝑃𝑃𝑇 adversariesA, their advantage

AdvEUF-CMAR
A,SFPK (1𝜆) is negligible.

A.3 Structure Preserving Signatures on
Equivalence Classes

EUF-CMA security is similar to that of conventional signatures, but

a forgery needs to be with respect to an unqueried class.

Definition A.3 (EUF-CMA). For scheme SPS-EQ and adversary

A we define the following experiment:

EUF-CMAA,SPS-EQ (𝜆, ℓ)
BG←$ Setup(𝜆) ;𝑄 := ∅
(sk, pk) ←$ KeyGen(BG, ℓ)

(𝑀∗, 𝜎∗) ← AO1 (sk,·) (pk)
return [𝑀∗] ≠ [𝑀] ∀𝑀 ∈ 𝑄 ∧

Verify(pk, 𝑀∗, 𝜎∗) = 1

O1 (sk, 𝑀)
𝜎 ←$ Sign(sk, 𝑀)
𝑄 := 𝑄 ∪ {𝑀 }
return 𝜎

An SPS-EQ over (G∗
𝑖
)ℓ is existentially unforgeable under adap-

tively chosen-message attacks, if for all PPT adversaries A, their

advantage AdvEUF-CMA
A,SPS-EQ (1

𝜆, ℓ) is negligible.

Definition A.4 (Perfect Adaption of Signatures under malicious
keys [44]). Let ℓ > 1. An SPS-EQ scheme SPS-EQ on (G∗

𝑖
)ℓ perfectly

adapts signatures under malicious keys if for all tuples (pk, 𝑀, 𝜎, 𝜇)
with 𝑀 ∈ (G∗

𝑖
)ℓ ∧ Verify(𝑀,𝜎, pk) = 1 ∧ 𝜇 ∈ Z∗𝑝 we have that

the output of ChgRep(𝑀,𝜎, 𝜇, pk) is a uniformly random element

in the space of signatures, conditioned on Verify(𝑀𝜇 , 𝜎 ′, pk) = 1.

A relaxation of this definition (perfect adaption) considers tu-

ples of the form (sk, pk, 𝑀, 𝜎, 𝜇) for which VKey(sk, pk) = 1 and

requires that the output of ChgRep(𝑀,𝜎, 𝜇, pk) and Sign(𝑀𝜇 , sk)
are identically distributed. We note that for our CHAC construction

we only need this relaxed definition.

A.4 Tag-Based Equivalence Class Signatures
Definition A.5 (EUF-CMA). For scheme TBEQ and adversary A

we define the following experiment:

https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-tpm
https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-tpm
https://www.oracle.com/java/technologies/java-card-tech.html
https://www.oracle.com/java/technologies/java-card-tech.html
https://www.microsoft.com/en-us/research/publication/u-prove-cryptographic-specification-v1-1-revision-3/
https://www.microsoft.com/en-us/research/publication/u-prove-cryptographic-specification-v1-1-revision-3/
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/raj
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/raj
https://doi.org/10.1109/MSEC.2020.2993896

EUF-CMAA,TBEQ (𝜆, ℓ)
pars←$ Setup(𝜆) ;𝑄 := ∅
(sk, pk) ←$ KeyGen(pars, ℓ)

(𝑀∗, 𝜎∗, 𝜏∗) ← AO1 (sk,·,·)CMA (pk)
return Verify(pk, 𝑀∗, 𝜏∗, 𝜎∗) = 1 ∧
([𝑀∗], 𝜏∗) ≠ ([𝑀], 𝜏) ∀(𝑀,𝜏) ∈ 𝑄

O1 (sk, 𝑀, 𝜏)
𝜎 ←$ Sign(sk, 𝑀, 𝜏)
𝑄 := 𝑄 ∪ {(𝑀,𝜏) }
return 𝜎

A TBEQ is EUF-CMA, secure if for all PPT adversaries A, their

advantage AdvEUFA,TBEQ (1
𝜆, ℓ) is negligible.

A.5 Aggregatable Attribute-Based EQs
Definition A.6 (EUF-CMA). For scheme AAEQ and adversary A

we define the following experiment:

EUF-CMAA,AAEQ (𝜆, 𝑡, ℓ)
(msk,mpk) ←$ Setup(1𝜆, 𝑡, ℓ) ;𝑄,𝐴 := ∅

(𝑀∗, 𝜎∗, {Attr∗𝑖 }) ←$ AO1 (msk,·,·,·) (mpk)

return
∧
𝑖

(Attr∗𝑖 , 𝑣∗Attr𝑖 , [𝑀
∗]) ∉ 𝑄 ∧

Verify(mpk, {Attr∗𝑖 }, 𝑀∗, 𝜎∗) = 1

O1 (msk,Attr, 𝑣Attr, 𝑀)
if (Attr, ·) ∉ 𝐴

skAttr ←$ AKGen(msk,Attr)
𝐴 := 𝐴 ∪ {(Attr, skAttr) }
𝜎 ←$ Sign(skAttr, 𝑣Attr, 𝑀)
𝑄 := 𝑄 ∪ {(Attr, 𝑣Attr, 𝑀) }
return {𝜎 }

An AAEQ is existentially unforgeable under chosen message at-
tacks if for all 𝑃𝑃𝑇 adversariesA, the advantageAdvEUF-CMA

A,AAEQ (1
𝜆, 𝑡, ℓ)

is negligible.

Definition A.7 (Perfect Adaption of Signatures). An AAEQ scheme

on (G∗
𝑖
)ℓ perfectly adapts signatures if for all tuples ({skAttr𝑖 },mpk,

𝑀, {Attr𝑖 }, 𝜎, 𝜇) where it holds that VKey({skAttr𝑖 },mpk) = 1,

Verify(mpk, {Attr𝑖 }, 𝜎, 𝑀) = 1,𝑀 ∈ (G∗
𝑖
)ℓ , and 𝜇 ∈ Z∗𝑝 , the distribu-

tions (𝑀𝜇 ,Agg(mpk, {Sign(skAttr𝑖 , 𝑣Attr𝑖 , 𝑀
𝜇 ,)}) andChgRep(𝑀,𝜎,

𝜇,mpk) are identical.

A.6 CHAC: Formal Model
Let HD, CD, SN, MN be empty sets. We introduce lists DSK, CRED,
ATTR, D, AID, I2D to track honest device secret keys, credentials

issued to honest devices, the corresponding attributes, device iden-

tifiers, session identifiers for issuing/showing, a list used to identify

which credential corresponds to which honest device. Addition-

ally, we will use an array CATTR to store sets with attributes of

dishonest devices where we use the device identifiers as indexes

to the array. Finally, we introduce a counter 𝑐AID initialized to 0.

Moreover, let us define the following oracles.

OHD (𝑖) : takes as input an identifier 𝑖 and outputs ⊥ if 𝑖 ∈ HD∪CD.
Otherwise, it creates a honest core device by running DSK[𝑖] ←$
CKGen(1𝜆), adding 𝑖 to HD and setting D[𝑖] = ⊥.
Ononce () : this allows the adversary to initiate an issuing/showing

session. The oracle chooses nonce←$ {0, 1}𝜆 , increments counter

𝑐AID and sets AID[𝑐AID] = nonce. Finally, it returns (𝑐AID, nonce).
OObtIss (𝑖,Attr) : creates credentials for honest device 𝑖 , i.e. it out-
puts ⊥ if 𝑖 ∉ HD. Otherwise, it generates a nonce nonce←$ {0, 1}𝜆 ,
generates aid←$ AIDGen(Attr, nonce) and issues a credential for 𝑖

by running apreq←$ CObtain(aid, ipk,DSK[𝑖]), areq←$ HObtain(
Attr, nonce, ipk, apreq), and (cred, did) ←$ Issue(Attr, nonce, areq,
isk). If cred = ⊥ it returns ⊥. Otherwise it adds (𝑖, cred,Attr) to
lists (I2D,CRED,ATTR) and sets D[𝑖] = did.

OCD (𝑖): takes as input an identifier 𝑖 . If 𝑖 ∉ HD it outputs ⊥. Other-
wise, it creates a corrupted core device by adding 𝑖 to CD and setting

HD = HD \ {𝑖}. If D[𝑖] ≠ ⊥ it computes the union CATTR[D[𝑖]]
of all sets ATTR[𝑗] for all 𝑗 where I2D[𝑗] = 𝑖 . Finally, it returns

DSK[𝑖].
OIssue (𝑠,Attr, areq): allows the adversary, who impersonates a ma-

licious device, to obtain credentials. It takes as input a session

index 𝑠 > 0 and returns ⊥ if AID[𝑗] = ⊥. The oracle generates

(cred, did) ←$ Issue(Attr,AID[𝑗], areq, isk) and aborts if cred = ⊥.
Otherwise, it computes the union CATTR[did] = CATTR[did] ∪
Attr. The oracle sets AID[𝑗] = ⊥ and returns cred.

OCShow (𝑖, aid): allows the adversary to obtain a partial show tokens

from an honest device and impersonate a malicious helper device.

It takes a input a device index 𝑖 and attribute identifier aid. If 𝑖 ∉ HD
then return⊥. Otherwise, compute apsig←$ CShow(aid, ipk,DSK[𝑖]),
adds (aid) to set SN and return apsig.

OHShow (𝑗, nonce,Attr): allows the adversary, who impersonates a

malicious verifier, to trigger showings with an honest device. It

takes as input an index of an issuance 𝑗 , nonce and a set of attributes
Attr. Let 𝑖 ← I2D[𝑗]. If 𝑖 ∉ HD or Attr ⊈ ATTR[𝑗] or CRED[𝑗] = ⊥
then return ⊥. Otherwise, compute aid ← AIDGen(Attr, nonce),
apsig←$ CShow(aid, ipk,DSK[𝑖]) and asig←$ HShow(Attr, nonce,
CRED[𝑗], ipk, apsig). Add (nonce) toMN and return asig.

OObtain1 (𝑖,Attr, nonce): allows the adversary, who impersonates a

malicious issuer, to issue credentials for a honest device. It takes

as input a device index 𝑖 and returns ⊥ if 𝑖 ∉ HD. Otherwise it

computes aid←$ AIDGen(Attr, nonce), apreq←$ CObtain(aid, ipk,
DSK[𝑖]), and areq ←$ HObtain(Attr, nonce, ipk, apreq). and adds

(𝑖, 𝜀,Attr) to lists (I2D,CRED,ATTR).
OObtain2 (𝑗, cred): allows the adversary, who impersonates a ma-

licious issuer, to issue credentials for a honest device. It takes as

input a device index 𝑗 and returns ⊥ if cred = ⊥ or CRED[𝑗] ≠ 𝜀.

Otherwise, it sets CRED[𝑗] = cred.
We define correctness, compactness, unforgeability, dependabil-

ity and anonymity as the following experiments. We assume that,

if required, the experiment honestly generates a reference string 𝜌

using Setup(1𝜆) which is an implicit argument for the remaining

algorithms.

Definition A.8 (Correctness). A core/helper anonymous creden-

tials system is correct if for all 𝜆 ∈ N, all key pairs (isk, ipk) ←$
IKGen(1𝜆), all secret key ssk ←$ CKGen(1𝜆), all attribute sets

Attr𝑠 ⊆ Attr𝑜 and all nonces nonce𝑜 , nonce𝑠 ∈ {0, 1}𝜆 , aid𝑜 ←$
AIDGen(Attr𝑜 , nonce𝑜), aid𝑠 ←$ AIDGen(Attr𝑠 , nonce𝑠), all cre-
dential requests areq←$ HObtain(Attr𝑜 , nonce𝑜 , ipk,CObtain(aid𝑜 ,

ipk, ssk)), all showings asig ←$ HShow(Attr𝑠 , nonce𝑠 , cred,
CShow(aid𝑠 , ssk)), we haveVerify(Attr, nonce, areq, ipk) = 1,where

(cred, did) ←$ Issue(Attr, nonce𝑜 , asig, isk) .

Definition A.9 (Compactness). A core/helper anonymous creden-

tials system is compact if for all 𝜆 ∈ N, all key pairs (isk, ipk) ←$
IKGen(1𝜆), all secret key ssk ←$ CKGen(1𝜆), all attribute sets

Attr𝑠 ⊆ Attr𝑜 and all nonces nonce𝑜 , nonce𝑠 ∈ {0, 1}𝜆 , aid𝑜 ←$
AIDGen(Attr𝑜 , nonce𝑜), aid𝑠 ←$ AIDGen(Attr𝑠 , nonce𝑠), all cre-
dential requests areq←$ HObtain(Attr𝑜 , nonce𝑜 , ipk,CObtain(aid𝑜 ,
ipk, ssk)), all showings asig ←$ HShow(Attr𝑠 , nonce𝑠 , cred,
CShow(aid𝑠 , ssk)), we have |asig| ≤ 𝑂 (𝜆), i.e., the size of the show-
ing token asig is independent of the attribute set |Attr𝑠 | and only

depends on 𝜆.

Definition A.10 (Unforgeability). For the core/helper anonymous

credential and adversary A we define the following experiment:

UNFACHAC (𝜆)
(isk, ipk) ←$ IKGen(1𝜆)

nonce←$ {0, 1}𝜆

O := {OHD, OCD, Ononce, OObtIss, OIssue, OHShow }

(Attr∗, asig∗) ←$ AO (ipk, nonce)
if Verify(Attr∗, nonce, asig∗, ipk) = 1 and ∀𝑗 Attr∗ ⊈ CATTR[𝑗]
and (nonce) ∉ MN then return 1

else return 0

ACHAC is unforgeable if for all 𝑃𝑃𝑇 adversariesA, its advantage

in the above experiment is negligible:

AdvunfA,CHAC (𝜆) = Pr

[
UNFACHAC (𝜆) = 1

]
= negl(𝜆) .

Definition A.11 (Dependability). For the core/helper anonymous

credential and adversary A we define the following experiment:

DEPACHAC (𝜆)
(isk, ipk) ←$ IKGen(1𝜆)

O := {O (1)HD , OObtIss, Ononce, OIssue, OCShow }

(Attr∗, nonce∗, asig∗) ←$ AO (ipk)
aid∗ ←$ AIDGen(Attr∗, nonce∗)
if (aid∗) ∈ SN then return 0

if Verify(Attr∗, nonce∗, asig∗, ipk) = 1 and

∀𝑗 Attr∗ ⊈ CATTR[𝑗] then
return 1

else return 0

ACHAC is dependable if for all 𝑃𝑃𝑇 adversariesA, its advantage

in the above experiment is negligible:

AdvdepA,CHAC (𝜆) = Pr

[
DEPACHAC (𝜆) = 1

]
= negl(𝜆).

Definition A.12 (Anonymity). For the core/helper anonymous

credential and adversary A we define the following experiment:

ANONACHAC (𝜆)
𝑏 ←$ {0, 1}
O := {OHD, OCD, OObtain1 , OObtain2 , OHShow }

(𝑗0, 𝑗1,Attr∗, nonce∗, isk∗, ipk∗, st) ←$ AO (𝜆)
𝑖0 ←$ I2D[𝑗0]; 𝑖1 ←$ I2D[𝑗1]
if 𝑖0, 𝑖1 ∉ HD or Attr∗ ⊈ ATTR[𝑗0] ∩ ATTR[𝑗1] then return 0

aid∗ ←$ AIDGen(Attr∗, nonce∗)
apsig←$ CShow(aid∗, ipk∗,DSK[𝑖𝑏])
asig←$ HShow(Attr∗, nonce∗,CRED[𝑗𝑏], ipk∗, apsig)

𝑏∗ ←$ AO (asig, st)
return 𝑏∗ = 𝑏

ACHAC is anonymous if for all 𝑃𝑃𝑇 adversariesA, its advantage

in the above experiment is negligible:

AdvanonA,CHAC (𝜆) = Pr

[
ANONACHAC (𝜆) = 1

]
= negl(𝜆) .

Note that the adversary returns isk∗ which means that in our def-

inition we assume an honestly generated issuer’s key. This can

be ensured using standard proof techniques, i.e. the issuer proves

knowledge of the secret key. We define anonymity this way to

simplify our construction and proofs.

B PROOFS FOR SECTION 3
B.1 Proof of Theorem 3.2

Proof. Let (BG, 𝑔𝑎
1
, 𝑔𝑏

1
, 𝑔𝑐

1
, 𝑔𝑑

1
, 𝑔𝑎

2
, 𝑔𝑏

2
, 𝑔𝑐

2
, 𝑔𝑑

2
) be an instance of the

BDDH problem. We will show that we can use any efficient adver-

saryA to solve the above problem instance. To do so, we will build

a reduction algorithm R that uses A in a black box manner.

Let𝑞ℎ themaximal number of random oracle queries made by the

adversary A and (Sig∗SFPK,𝑚
∗, pk∗SFPK) be the forgery returned by

an adversary A, where Sig∗SFPK = (Sig∗
1
, Sig∗

2
, Sig∗

3
). The reduction

choose a random index 𝑖 ∈ {1, . . . , 𝑞ℎ} and aborts the experiment in

case𝑚∗ is not the 𝑖-th query of A to the random oracle. Note that

this means that the probability thatR does not abort the experiment

at any point is 1/𝑞ℎ . What is more, for the 𝑖-th random oracle query

H(𝑚∗) the reduction answers with 𝑔
ℎ𝑚∗
1

.

To simulate the unforgeabilty experiment, the reduction first

prepares the common reference string 𝜌 by setting 𝑌1 = 𝑔𝑎
1
, 𝑌2 = 𝑔𝑎

2
.

Next R prepares the public key pkSFPK and the trapdoor 𝜏SFPK.

For this it uses the values 𝑔𝑏
1
and 𝑔𝑏

2
from the problem instance. It

sets pkSFPK = (𝑔1, 𝑔𝑏
1
) and 𝜏SFPK = (𝑔𝑏

2
). Moreover, the reduction

chooses 𝑘𝑢 ←$ Z∗𝑝 , sets stpub = ((𝑔𝑎
1
) · 𝑔𝑘𝑢

1
, (𝑔𝑎

2
) · 𝑔𝑘𝑢

2
) and shares it

with A.

To answer A’s signing queries for message𝑚 and randomness

𝑡 (which is equal to 1 for oracle O1), the reduction R follows the

following steps:

(1) it first chooses𝑤𝑡 ←$ Z∗𝑝 ,
(2) it programs the random oracle to output H(𝑚) = (𝑔𝑏

1
)−𝑤−1𝑡 ·

𝑔
ℎ𝑚
1

for some ℎ𝑚 ←$ Z∗𝑝 ,
(3) compute𝑤 = 𝑤𝑡 · 𝑡 ,
(4) it computes: Sig1SFPK = (𝑔𝑏

1
)𝑡 ·𝑘𝑢 · (𝑈𝑤

1
)ℎ𝑚 ,

(5) set the pre-signature pSigSFPK := (Sig1SFPK,𝑤).

It is easy to see that this is a valid pre-signature. Note that a valid

one is of the form (𝑔𝑎 ·𝑏 ·𝑡
1
· ((𝑔𝑏

1
)−𝑤−1 · 𝑔ℎ𝑚

1
)𝑟 ,𝑤). In this case, the

reduction has set 𝑟 = 𝑡 ·𝑤 · (𝑎 + 𝑘𝑢) and this means that the 𝑔𝑎 ·𝑏 ·𝑡
1

cancels out and the reduction does not need to compute 𝑔𝑎 ·𝑏
1

. Note

that this only works because the reduction is able to program the

random oracle and does not actually know the value 𝑟 . We also

assume that if A queries a message𝑚 prior to a query to signing

queries, the reduction answers with H(𝑚) = (𝑔𝑏
1
)−𝑤−1 · 𝑔ℎ𝑚

1
and

retains (𝑤,ℎ𝑚).
Finally, the adversary outputs the forgery (pk∗SFPK,𝑚

∗, Sig∗SFPK)
of A and the reduction proceeds as follows:

(1) parse Sig∗SFPK as (Sig1SFPK, Sig
2

SFPK, Sig
3

SFPK),

(2) compute

𝑔𝑎 ·𝑏 ·𝑡
∗

1
= Sig1SFPK · (Sig

2

SFPK)
−ℎ𝑚∗

=

(
𝑔𝑎 ·𝑏 ·𝑡

∗
1

· H(𝑚∗)𝑟
∗
· (𝑔𝑟

∗
1
)−ℎ𝑚∗

)
,

=

(
𝑔𝑎 ·𝑏 ·𝑡

∗
1

· (𝑔ℎ𝑚
1
)𝑟
∗
· (𝑔𝑟

∗
1
)−ℎ𝑚∗

)
,

(3) parse pk∗SFPK, and since for a valid forgery then pk∗SFPK ∈
[pkSFPK]R and we have pk∗SFPK = (𝑔𝑡∗

1
, (𝑔𝑏

1
)𝑡∗) and R can

use 𝑔𝑡
∗
1
,

(4) output 1 iff 𝑒 (𝑔𝑎 ·𝑏 ·𝑡∗
1

, 𝑔𝑐
2
) = 𝑒 (𝑔𝑡∗

1
, 𝑔𝑑

2
).

The probability that R successfully solves the bilinear decisional

Diffie-Hellman problem depends on the advantage of A and the

probability that R’s simulation succeeds.

□

B.2 Proof of Lemma 3.6
Proof. We exactly follow the proof of the underlying FHS15

SPS-EQ scheme in [45] and only highlight the differences. To ease

the readability we write elements inG2 with “hat”, e.g., as𝑉 instead

of𝑉2, and consequently the forgery is denoted as (𝑍,𝑌,𝑌,𝑉). Now,
if the take the discrete logarithms of all available group elements in

the forgery, we get an additional 𝑉 ∗ term (𝑣∗) and need to consider

the contributions of the ℎ elements (with coefficients 𝜃𝑖) and 𝑣 𝑗
elements (with coefficients 𝜈 𝑗) from the 𝑞 queries. So the changes

to 𝑦∗ and the additional element 𝑣∗ are:

𝑦∗=𝜋�̂�+
∑︁
𝑖∈[ℓ]

𝜒�̂�,𝑖𝑥𝑖+
∑︁
𝑖∈[𝑘]

𝜃 �̂�,𝑖ℎ𝑖+
∑︁
𝑗 ∈[𝑞]

𝜈 �̂�, 𝑗𝑣 𝑗 +
∑︁
𝑗 ∈[𝑞]

𝜓�̂�, 𝑗
1

𝑦 𝑗
(1a)

𝑣∗=𝜋𝑣+
∑︁
𝑖∈[ℓ]

𝜒𝑣,𝑖𝑥𝑖+
∑︁
𝑖∈[𝑘]

𝜃𝑣,𝑖ℎ𝑖+
∑︁
𝑗 ∈[𝑞]

𝜈𝑣,𝑗𝑣 𝑗 +
∑︁
𝑗 ∈[𝑞]

𝜓𝑣,𝑗
1

𝑦 𝑗
(1b)

From the forgery we know that we have∑︁
𝑖∈[ℓ]

𝑚∗𝑖 𝑥𝑖 = 𝑧∗𝑦∗ (2a)

𝑦∗ = 𝑦∗ (2b)

𝑣∗ = 𝑦∗ ˆℎ∗ (2c)

We can now follow the proof for FHS15 and in particular Claim 1

and Corollary 1 (which is exactly as in their proof), and by using

the same argumentation as in FHS15 for (2b), from

𝑦∗ = 𝜋𝑦 +
∑︁
𝑗 ∈[𝑞]

𝜌𝑦,𝑗𝑧 𝑗 +
∑︁
𝑗 ∈[𝑞]

𝜓𝑦,𝑗
1

𝑦 𝑗

for (1a) we need to have 𝜋𝑦 = 𝜋�̂� and the non-zero coefficients are

𝜓𝑦,𝑗 and 𝜓�̂�, 𝑗 , where we have 𝜓𝑦,𝑗 = 𝜓�̂�, 𝑗 for all 𝑖 ∈ [𝑞]. Conse-
quently, the proof continues exactly as the FHS15 with the only

difference that we additionally need to investigate (2c). By leverag-

ing the simplification of Eq. (9) in [45], we know that there exists

one 𝑛 ∈ [𝑞] for which 𝑦∗ = 𝜓𝑦,𝑛
1

𝑦𝑛
. By construction we have

ℎ∗ = ℎ𝑖 for a given 𝑖 ∈ [𝑘], i.e., the tag 𝜏𝑖 of the forgery. Now only

considering non-zero coefficients we can simplify (1b) to

𝑣∗ =
∑︁
𝑖∈[𝑘]

𝜃𝑣,𝑖ℎ𝑖 +
∑︁
𝑗 ∈[𝑞]

𝜈𝑣,𝑗𝑣 𝑗 .

From FHS15 we know that 𝜌𝑧,𝑗𝜋𝑦𝑧𝑛 = 0 for all 𝑗 ∈ [𝑞]. But since 𝑧 𝑗
and 𝜌𝑧,𝑗 are non-zero for some 𝑗 , we have 𝜋𝑦 = 0 and thus 𝜃𝑣,𝑖 = 0

for all 𝑖 ∈ [𝑘]. By equating coefficients we have

𝑦∗ℎ𝑖 = 𝜓𝑦,𝑛
1

𝑦𝑛
ℎ𝑖 and 𝑣

∗ =
∑︁
𝑗 ∈[𝑞]

𝜈𝑣,𝑗 (ℎ𝑖
1

𝑦𝑖
) .

By leveraging the fact that all 𝑦𝑖 are distinct, we obtain that 𝑣∗ =
𝜈𝑣,𝑛 (ℎ𝑖 1

𝑦𝑛
) with 𝜈𝑣,𝑛 = 𝜓𝑦,𝑛 yielding that the 𝑣∗ part is consistent

with the remainder representing a previous query with the exact

same tag and in particular the entire forgery is just a multiple of

previously queried message. Note that the simulation error is the

same as in the FHS15 proof.

□

B.3 Proof of Lemma 3.8
Proof. For perfect adaption under malicious keys let𝑀 ∈ (G∗

1
)ℓ ,

𝜏 ∈ {0, 1}∗, 𝐻 : {0, 1}∗ → G2, pk ∈ (G∗
2
)ℓ and (𝑥𝑖)𝑖∈[ℓ] be such

that pk = (𝑔𝑥𝑖
2
)𝑖∈[ℓ] . A signature (𝑍1, 𝑌1, 𝑌2,𝑉2) ∈ G1 × G∗

1
×

G∗
2
× G2 satisfying Verify(𝑀, (𝑍1, 𝑌1, 𝑌2,𝑉2), pk) = 1 is of the form

((∏(𝑀𝑥𝑖
𝑖
)𝑦, 𝑔

1

𝑦

1
, 𝑔

1

𝑦

2
, 𝐻 (𝜏)

1

𝑦) for some𝑦 ∈ Z𝑝 .ChgRep(𝑀, (𝑍1, 𝑌1, 𝑌2,

𝑉2), 𝜇, pk) for 𝜇 ∈ Z𝑝 outputs ((∏(𝑀𝑥𝑖
𝑖
)𝑦𝜓 , 𝑔

1

𝑦𝜓

1
, 𝑔

1

𝑦𝜓

2
, 𝐻 (𝜏)

1

𝑦𝜓),
which is a uniformly random element 𝜎 in the signature space

conditioned on Verify(𝑀𝜇 , 𝜎, pk) = 1.

TBEQ in Scheme 2 also satisfies the conventional perfect adap-

tion notion, since sk = (𝑥𝑖)𝑖∈[ℓ] is the only element satisfying

VKey(sk, pk) = 1 (which checks if pk = 𝑔
sk
2
) and Sign(𝑀𝜇 , sk) (as

ChgRep) outputs a uniformly random element 𝜎 in the space of

signatures conditioned on Verify(𝑀𝜇 , 𝜎, pk) = 1.

□

B.4 Proof of Lemma 3.12
We use the same notation as in the proof of Lemma 3.6 and note that

we consider a bounded attribute-space represented by distinct and

random elements ℎ𝑖 ∈ G∗
2
, 𝑖 ∈ [𝑘], in the mpk (i.e., one for every

possible (Attr, 𝑣Attr) pair). Moreover, for the sake of readability we

prove the lemma for the case 𝑡 = 2with public keys pk
1
= (𝑔𝑥𝑖

2
)𝑖∈[ℓ]

and pk
2
= (𝑔𝑢𝑖

2
)𝑖∈[ℓ] respectively and it is straightforward to gener-

alize it to any 𝑛 > 2. Note that a query for the same representative

𝑀 to either of the keys results in using the same randomness 𝑦. We

require that for any message𝑀 to the Sign oracle of AAEQ , if the

adversary wants to obtain a signature for more than one attribute,

it will obtain signatures under both secret keys (attributes) using

the same randomness 𝑦 (which is sampled uniformly at random in

each query to Sign) and the queried attribute values 𝑣Attr and 𝑣Attr′

(which maps to two of the ℎ values). We will denote the correspond-

ing 𝑍1 elements of signatures under pk
1
and pk

2
using superscript

(1) and (2) respectively.
As in the proof of Lemma 3.6, we follow the the proof of the

underlying FHS15 SPS-EQ scheme in [45]. We start by taking the

discrete logarithms of all elements:

𝑧∗=𝜋𝑧 +
∑︁
𝑗 ∈[𝑞]

𝜌
(1)
𝑧,𝑗

𝑧
(1)
𝑗
+

∑︁
𝑗 ∈[𝑞]

𝜌
(2)
𝑧,𝑗

𝑧
(2)
𝑗
+

∑︁
𝑗 ∈[𝑞]

𝜓𝑧,𝑗
1

𝑦 𝑗

𝑦∗=𝜋𝑦 +
∑︁
𝑗 ∈[𝑞]

𝜌
(1)
𝑦,𝑗

𝑧
(1)
𝑗
+

∑︁
𝑗 ∈[𝑞]

𝜌
(2)
𝑦,𝑗

𝑧
(2)
𝑗
+

∑︁
𝑗 ∈[𝑞]

𝜓𝑦,𝑗
1

𝑦 𝑗

𝑦∗=𝜋�̂�+
∑︁
𝑖∈[ℓ]

𝜒�̂�,𝑖𝑥𝑖+
∑︁
𝑖∈[ℓ]

𝜔�̂�,𝑖𝑢𝑖+
∑︁
𝑖∈[𝑘]

𝜃 �̂�,𝑖ℎ𝑖

+
∑︁
𝑗 ∈[𝑞]

𝜈 �̂�, 𝑗𝑣 𝑗 +
∑︁
𝑗 ∈[𝑞]

𝜓�̂�, 𝑗
1

𝑦 𝑗

𝑣∗=𝜋𝑣+
∑︁
𝑖∈[ℓ]

𝜒𝑣,𝑖𝑥𝑖+
∑︁
𝑖∈[ℓ]

𝜔𝑣,𝑖𝑢𝑖+
∑︁
𝑖∈[𝑘]

𝜃𝑣,𝑖ℎ𝑖

+
∑︁
𝑗 ∈[𝑞]

𝜈𝑣,𝑗𝑣 𝑗 +
∑︁
𝑗 ∈[𝑞]

𝜓𝑣,𝑗
1

𝑦 𝑗

𝑚∗𝑖 =𝜋𝑚∗,𝑖+
∑︁
𝑗 ∈[𝑞]

𝜌
(1)
𝑚∗,𝑖, 𝑗𝑧

(1)
𝑗
+

∑︁
𝑗 ∈[𝑞]

𝜌
(2)
𝑚∗,𝑖, 𝑗𝑧

(2)
𝑗

+
∑︁
𝑗 ∈[𝑞]

𝜓𝑚∗,𝑖, 𝑗
1

𝑦 𝑗

𝑚 𝑗,𝑖 =𝜋𝑚,𝑗,𝑖+
∑︁

𝑘∈[𝑗−1]
𝜌
(1)
𝑚,𝑗,𝑖,𝑘

𝑧
(1)
𝑘
+

∑︁
𝑘∈[𝑗−1]

𝜌
(2)
𝑚,𝑗,𝑖,𝑘

𝑧
(2)
𝑘

+
∑︁

𝑘∈[𝑗−1]
𝜓𝑚,𝑗,𝑖,𝑘

1

𝑦𝑘

And from the forgery we know that:∑︁
𝑖∈[ℓ]

𝑚∗𝑖 (𝑥𝑖 + 𝑢𝑖) = 𝑧∗𝑦∗ (3a)

𝑦∗ = 𝑦∗ (3b)

𝑣∗ = 𝑦∗ (ˆℎ∗
1
+ ˆℎ∗

2
) (3c)

with the pair of (Attr, 𝑣Attr) values in the forgery w.l.o.g. correspond-
ing to ℎ1 and ℎ2 respectively. In the following we omit the analysis

of Equation (3c) as this follows from the exact same reasoning as in

the proof of Lemma 3.6. First, we observe that we can adopt Claim 1

and Corollary 1 from the FHS15 proof in [45] to our case of the 𝑧
(1)
𝑛

and 𝑧
(2)
𝑛 which in particular means that all 𝑦’s in such monomials

are different, one is 𝑦𝑛 and for every 𝑥 as well as 𝑢 there comes one

𝑦. Moreover, 𝑧
(1)
𝑛 contains one more 𝑥 than 𝑢’s and vice-versa for

𝑧
(2)
𝑛 . Now, we first look at Equation (3b) and comparing coefficients

immediately yields that 𝜋𝑦∗ = 𝜋�̂�∗ , that 𝜒�̂�,𝑖 = 𝜔�̂�,𝑖 = 0 for all

𝑖 ∈ [ℓ], 𝜃 �̂�,𝑖 = 𝜈𝑣,𝑗 = 0 for all 𝑖 ∈ [𝑘] and𝜓𝑦,𝑗 = 𝜓�̂�, 𝑗 for all 𝑗 ∈ [𝑞].
Moreover, due to Claim 1 we have that 𝜌

(1)
𝑦,𝑗

= 𝜌
(2)
𝑦,𝑗

= 0 for all

𝑗 ∈ [𝑞]. This simplifies Equation (3b) to

𝑦∗ = 𝑦 = 𝜋𝑦 +
∑︁
𝑗 ∈[𝑞]

𝜓𝑦,𝑗
1

𝑦 𝑗
.

Now, we use this simplification to investigate Equation (3a):∑︁
𝑖∈[ℓ]
(𝜋𝑚∗,𝑖+

∑︁
𝑗 ∈[𝑞]

𝜌
(1)
𝑚∗,𝑖, 𝑗𝑧

(1)
𝑗
+

∑︁
𝑗 ∈[𝑞]

𝜌
(2)
𝑚∗,𝑖, 𝑗𝑧

(2)
𝑗

+
∑︁
𝑗 ∈[𝑞]

𝜓𝑚∗,𝑖, 𝑗
1

𝑦 𝑗
) (𝑥𝑖 + 𝑢𝑖) = (𝜋𝑧 +

∑︁
𝑗 ∈[𝑞]

𝜌
(1)
𝑧,𝑗

𝑧
(1)
𝑗

+
∑︁
𝑗 ∈[𝑞]

𝜌
(2)
𝑧,𝑗

𝑧
(2)
𝑗
+

∑︁
𝑗 ∈[𝑞]

𝜓𝑧,𝑗
1

𝑦 𝑗
) (𝜋𝑦 +

∑︁
𝑗 ∈[𝑞]

𝜓𝑦,𝑗
1

𝑦 𝑗
)

(4)

Now, by expanding the RHS and comparing coefficients it follows

that 𝜋𝑧𝜋𝑦 = 0, 𝜋𝑧𝜓𝑦,𝑗 = 0, 𝜋𝑦𝜓𝑧,𝑗 = 0, 𝜋𝑦𝜌
(𝑏)
𝑧,𝑗

= 0 for all 𝑗 ∈ [𝑞],
𝑏 ∈ [2] and𝜓𝑧,𝑗𝜓𝑦,𝑘 = 0 for all 𝑗, 𝑘 ∈ [𝑞]. This simplifies the RHS

to: ∑︁
𝑗 ∈[𝑞]

∑︁
𝑘∈[𝑞]

𝜌
(1)
𝑧,𝑗

𝜓𝑦,𝑘𝑧
(1)
𝑗

1

𝑦𝑘
+

∑︁
𝑗 ∈[𝑞]

∑︁
𝑘∈[𝑞]

𝜌
(2)
𝑧,𝑗

𝜓𝑦,𝑘𝑧
(2)
𝑗

1

𝑦𝑘
(5)

Now, we take a closer look at Equation (5) and Claim 1 tells us that

every 𝑧
(𝑏)
𝑗

, 𝑏 ∈ [2], has an equal number of 𝑦’s and 𝑥 ’s (respec-

tively 𝑢’s) in the numerator and consequently for all monomials

on the LHS there is one 𝑦 less than 𝑥 ’s (or 𝑢’s respectively). Con-

sequently, following the same argumentation as in [45] we obtain

that 𝜌
(1)
𝑧,𝑗

𝜓𝑦,𝑘 = 0 and 𝜌
(2)
𝑧,𝑗

𝜓𝑦,𝑘 = 0 for all 𝑗 ≠ 𝑘 (note that it may

be the case that either of 𝑧 (1) or 𝑧 (2) may not be present at all,

but one needs to be non-zero to represent a valid forgery. We will

consider the case where both are present subsequently, the other

cases are analogous). Furthermore, following the FHS15 argumen-

tation it follows that there is exactly one 𝑛 ∈ [𝑞] s.t. 𝜌 (𝑏)𝑧,𝑛𝜓𝑦,𝑛 ≠ 0.

Consequently, we obtain a simplified version of Equation (5) as

𝜌
(1)
𝑧,𝑛𝜓𝑦,𝑛𝑧

(1)
𝑛

1

𝑦𝑛
+ 𝜌 (2)𝑧,𝑛𝜓𝑦,𝑛𝑧

(2)
𝑛

1

𝑦𝑛

and substituting 𝑧
(𝑏)
𝑛 by its definition and simplification we obtain

𝜌
(1)
𝑧,𝑛𝜓𝑦,𝑛

∑︁
𝑖∈[ℓ]

𝑚𝑛,𝑖𝑥𝑖 + 𝜌 (2)𝑧,𝑛𝜓𝑦,𝑛

∑︁
𝑖∈[ℓ]

𝑚𝑛,𝑖𝑢𝑖 =

𝜓𝑦,𝑛 (𝜌 (1)𝑧,𝑛 + 𝜌
(2)
𝑧,𝑛)

∑︁
𝑖∈[ℓ]

𝑚𝑛,𝑖 (𝑥𝑖 + 𝑢𝑖)

Now, plugging in𝑚𝑛,𝑖 and setting 𝛼 = 𝜓𝑦,𝑛 (𝜌 (1)𝑧,𝑛 + 𝜌
(2)
𝑧,𝑛) we obtain:

𝛼
(∑︁
𝑖∈[ℓ]

𝜋𝑚,𝑛,𝑖+
∑︁

𝑘∈[𝑗−1]
𝜌
(1)
𝑚,𝑛,𝑖,𝑘

𝑧
(1)
𝑘
+∑︁

𝑘∈[𝑗−1]
𝜌
(2)
𝑚,𝑛,𝑖,𝑘

𝑧
(2)
𝑘
+

∑︁
𝑘∈[𝑗−1]

𝜓𝑚,𝑛,𝑖,𝑘

1

𝑦𝑘

)
(𝑥𝑖 + 𝑢𝑖)

and by equating coefficients with the LHS of Equation (4) we obtain

that 𝜋𝑚∗,𝑖 = 𝛼𝜋𝑚,𝑛,𝑖 , 𝜌
(1)
𝑚∗,𝑖, 𝑗 = 𝛼𝜌

(1)
𝑚,𝑛,𝑖,𝑘

, 𝜌
(2)
𝑚∗,𝑖, 𝑗 = 𝛼𝜌

(2)
𝑚,𝑛,𝑖,𝑘

and

𝜓𝑚∗,𝑖, 𝑗 = 𝛼𝜓𝑚,𝑛,𝑖,𝑘 , whereas the forgery just represents a previously

queried message. Finally, the simulation error of the generic group

is identical to FHS15.

C PROOFS FOR SECTION 4
C.1 Proof of Theorem 4.2
We will prove this theorem using a series of hybrid arguments. Let

asig∗ = (pk∗SFPK, Sig
∗
SFPK, 𝜎

∗
Attr) and Attr∗ be the values returned

by the adversary and nonce∗ be the value given to the adversary.

Moreover, let 𝑞HD denote the maximum number of queries made to

the HD oracle by the adversary and aid∗ = AIDGen(Attr∗, nonce∗).
H0 : This is the anonymity experiment.

H1 : We change the way we generate the keys inside the OHD (𝑖)
oracle. Instead of SFPK.KeyGen we use trapdoor generation

SFPK.TKGen and retain the trapdoor 𝛿𝑖 .

H2 : We abort the experiment if there is a collision for aid∗, i.e. if
there was a query for a tuple (Attr, nonce) ≠ (Attr∗, nonce∗)
for which aid∗ = AIDGen(Attr, nonce).

H3 : We abort the experiment if SFPK.ChkRep(𝛿 𝑗 , pk∗SFPK) = 0 for

all 𝑗 ∈ [𝑞HD] and 𝑗 ∈ HD, i.e. we do not abort if the SFPK
public key is in a relation with an honest device public key.

H4 : We choose an index 𝑗 ∈ [𝑞HD] and we abort the experiment

if SFPK.ChkRep(𝛿 𝑗 , pk∗SFPK) = 0, i.e. we chose a specific

honest device.

Lemma C.1. HybridsH0 andH1 are indistinguishable.

Proof. For the SFPK scheme we have that SFPK.KeyGen and

SFPK.TKGen produce key pairs with identical distribution. □

LemmaC.2. The changes made in hybridH2 lowers the adversaries
advantage in the unforgeability experiment only by a negligible frac-
tion which is at most the advantage of breaking collision-resistance
of AIDGen.

Lemma C.3. The changes made in hybrid H3 lowers the adver-
saries advantage in the unforgeability experiment only by a negligible
fraction which is at most the advantage of an adversary breaking the
unforgeability of the AAEQ scheme.

Proof. We will show this proof via a simple reduction. The

idea for the reduction is to instead of using the AKGen and Sign
algorithm inside Issue to generate credentials cred for devices the

reduction will use its AAEQ signing query. In the end, the adversary

returns (Attr∗, asig∗ = (pk∗SFPK, Sig
∗
SFPK, 𝜎

∗
Attr)) which contains a

AAEQ forgery for message (pk∗SFPK,Attr
∗).

Note that because we only abort if the SFPK public key pkSFPK
is not in a relation with any of the honest device and by definition

this excludes the usage of all corrupted attribute. Thus, we know

that Attr∗ was never queried together with an element from the

class [pk∗SFPK]R to the AAEQ signing oracle. □

Lemma C.4. HybridH4 does not abort with prob. 1/𝑞HD.

LemmaC.5. An adversary that has non-negligible advantage against
the unforgeability experiment inH4 can be used to break the unforge-
ability of the SFPK scheme.

Proof. We will show this proof via a simple reduction. The

idea is for the reduction to simulate the 𝑗-the device using the

SFPK signing oracle. In other words, instead of running algorithm

CObtain, CShow for the secret device key DSK[𝑗], the reduction
asks the oracle for the corresponding signature.

Finally the adversary output asig∗ for which we know that

SFPK.ChkRep(𝛿 𝑗 , pk∗SFPK) = 1, i.e. that the signature Sig∗SFPK cor-

responds to the device that the reduction simulated using the SFPK
challenges. Thus by returning (pk∗SFPK, aid

∗, Sig∗SFPK) the reduction
outputs a valid forgery against the SFPK unforgeability experi-

ment. □

C.2 Proof of Theorem 4.3
We will prove this theorem using a series of hybrid arguments.

Let 𝑞HD denote the maximum number of queries made to the HD
oracle by the adversary. Let asig = (pk′SFPK, Sig

′
SFPK, 𝜎

′
Attr) be the

challenge signature given to the adversary.

H0 : This is the anonymity experiment.

H1 : We change the way the value 𝜎 ′Attr is computed inside oracle

OHShow, i.e. instead of randomizing the AAEQ signature

using ChgRep, we use the secret key isk∗ to generate a fresh
signature on pk′SFPK.

H2 : We choose two distinct indexes 𝑘0, 𝑘1 ∈ [𝑞HD] and abort

the experiment if 𝑖0 ≠ 𝑘0 and 𝑖1 ≠ 𝑘1 where 𝑖0 ←$ I2D[𝑗0],
𝑖1 ←$ I2D[𝑗1] and 𝑗0, 𝑗1 were returned by the adversary.

Lemma C.6. HybridsH0 andH1 are indistinguishable assuming
the AAEQ scheme perfectly adapts signatures.

Lemma C.7. The experiment is not aborted inH2 with probability
(1/𝑞HD)2.

LemmaC.8. An adversary that has non-negligible advantage against
the anonymity experiment inH2 can be used to break the class-hiding
property of SFPK signatures.

Proof. We will show this by constructing a reduction R which

is given ((sk
0
, pk

0
), (sk

1
, pk

1
), pk′) by the challenger and access to

an oracle that output valid SFPK signatures for public key pk′. The
reduction uses (sk

0
, pk

0
) and (sk

1
, pk

1
) to respectively simulate

the devices 𝑘0 and 𝑘1.

Finally, it receives (𝑗0, 𝑗1,Attr∗, nonce∗, isk∗, ipk∗, st) from the

adversary. Because we are inH2 we know that 𝑗0, 𝑗1 correspond

to devices 𝑘0, 𝑘1. The reduction now sets pk′SFPK = pk′, uses
it’s oracle to generate the signature Sig′SFPK on message aid∗ =

AIDGen(Attr∗, nonce∗) and creates 𝜎 ′Attr as perH2. The adversary

ends the experiment by outputting 𝑏∗ which is also returned by

reduction. It is easy to see that in this case pk′ = pk𝑏 and the adver-

sary can be used this way to break the class-hiding property. □

C.3 Proof of Theorem 4.4
The proof follows using a simple reduction. The key point to no-

tice is that there is only one honest device created in this ex-

periment and the reduction can use it’s own signing oracle to

get a SFPK signature and answer queries to the OCShow oracle.

What is more, since we require that aid∗ ∉ SN it follows that

for asig∗ = (pk∗SFPK, Sig
∗
SFPK, 𝜎

∗
Attr) the tuple (aid

∗, pk∗SFPK, pk
∗
SFPK)

can be used by the reduction as a valid forgery. Note that in case

there exists a tuple (Attr, nonce) ≠ (Attr∗, nonce∗) for which aid∗ =
AIDGen(Attr, nonce) the reduction can return both pairs as a colli-

sion for AIDGen.

	Abstract
	1 Introduction
	1.1 Our Contribution and Technical Overview

	2 Preliminaries
	2.1 Signatures on Equivalence Classes
	2.2 Signatures with Flexible Public Key

	3 New Results and Building Blocks
	3.1 Efficient SFPK with Split Signing
	3.2 Tag-Based Equivalence Class Signatures
	3.3 Aggregatable Attribute-Based EQs

	4 Core/Helper Credentials
	4.1 Syntax and Security Model
	4.2 Generic Construction

	5 CHAC Evaluation
	5.1 Setup
	5.2 Implementing SFPK on a Smart Card
	5.3 Results

	6 Discussion and Further Extensions
	References
	A Omitted Formal Definitions
	A.1 Preliminaries
	A.2 Signatures with Flexible Public Key
	A.3 Structure Preserving Signatures on Equivalence Classes
	A.4 Tag-Based Equivalence Class Signatures
	A.5 Aggregatable Attribute-Based EQs
	A.6 CHAC: Formal Model

	B Proofs for Section 3
	B.1 Proof of Theorem 3.2
	B.2 Proof of Lemma 3.6
	B.3 Proof of Lemma 3.8
	B.4 Proof of Lemma 3.12

	C Proofs for Section 4
	C.1 Proof of Theorem 4.2
	C.2 Proof of Theorem 4.3
	C.3 Proof of Theorem 4.4

