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Abstract

The goal of this work is to give precise bounds on the counting complexity of a family of
generalized coloring problems (list homomorphisms) on bounded-treewidth graphs. Given
graphsG, H, and lists L(v) ⊆ V (H) for every v ∈ V (G), a list homomorphism is a function
f : V (G) → V (H) that preserves the edges (i.e., uv ∈ E(G) implies f(u)f(v) ∈ E(H))
and respects the lists (i.e., f(v) ∈ L(v)). Standard techniques show that if G is given with
a tree decomposition of width t, then the number of list homomorphisms can be counted
in time |V (H)|t · nO(1). Our main result is determining, for every fixed graph H, how
much the base |V (H)| in the running time can be improved. For a connected graph H we
define irr(H) in the following way: if H has a loop or is nonbipartite, then irr(H) is the
maximum size of a set S ⊆ V (H) where any two vertices have different neighborhoods; if
H is bipartite, then irr(H) is the maximum size of such a set that is fully in one of the
bipartition classes. For disconnected H, we define irr(H) as the maximum of irr(C) over
every connected component C of H. It follows from earlier results that if irr(H) = 1,
then the problem of counting list homomorphisms to H is polynomial-time solvable, and
otherwise it is #P-hard. We show that, for every fixed graph H, the number of list
homomorphisms from (G,L) to H

• can be counted in time irr(H)t · nO(1) if a tree decomposition of G having width at
most t is given in the input, and

• given that irr(H) ≥ 2, cannot be counted in time (irr(H)− ε)t · nO(1) for any ε > 0,
even if a tree decomposition of G having width at most t is given in the input, unless
the Counting Strong Exponential-Time Hypothesis (#SETH) fails.

Thereby we give a precise and complete complexity classification featuring matching upper
and lower bounds for all target graphs with or without loops.
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1 Introduction

Many of the NP-hard problems studied in the literature are known to be polynomial-time solv-
able when restricted to graphs of bounded treewidth. In fact, the majority of these problems
can be solved in time f(t)·nO(1) if a tree decomposition of width t is given in the input, that is,
they are fixed-parameter tractable (FPT) parameterized by treewidth. As algorithms working
on tree decompositions are useful building blocks in many types of FPT results and approxi-
mation schemes, determining the optimal dependence f(t) on the width of the decomposition
received significant attention.

On the upper bound side, new algorithmic techniques (such as Fast Subset Convolution,
Cut & Count, representative sets) were developed to obtain improved algorithms. For lower
bounds, conditional complexity results were given ruling out certain forms of running times.
Lokshtanov, Marx, and Saurabh [22] considered problems that are known to be solvable in
time ct · nO(1) if a tree decomposition of width t is given in the input, and showed that these
algorithms are essentially optimal, as no algorithm with running time (c− ε)t ·nO(1) can exist
for any ε > 0, assuming the Strong Exponential-Time Hypothesis (SETH). In particular,
for Vertex Coloring with c colors, the textbook ct · nO(1) algorithm based on dynamic
programming cannot be improved to (c− ε)t · nO(1). By now, there is a growing collection of
tight lower bounds of this form in the literature [2, 6, 7, 11,20,23,26,27].

Vertex coloring with c colors can be seen as a homomorphism problem. Given graphs G
and H, a homomorphism is a mapping f : V (G)→ V (H) that preserves the edges of G, that
is, uv ∈ E(G) implies f(u)f(v) ∈ E(H). Let us observe that a c-coloring of G can be seen
equivalently as a homomorphism from G to Kc, the complete graph with c vertices. Thus
generalized coloring problems defined by homomorphisms to a fixed graph H were intensively
studied in the combinatorics literature and subsequently from the viewpoint of computational
complexity [14,15,17–19,24,25]. The homomorphism problem can be generalized from graphs
to arbitrary relational structures, giving a very direct connection to constraint satisfaction
problems (CSPs), which are often described using the terminology of homomorphisms [13,17–
19].

Introducing lists of allowed images gives a more robust variant for homomorphism prob-
lems: formally, given graphs G and H, a list assignment is a function L : V (G) → 2V (H).
Then a list homomorphism from (G,L) to H is a homomorphism f : V (G)→ V (H) that ad-
ditionally respects the lists, that is, f(v) ∈ L(v) for every v ∈ V (G). Studying the list version
of a homomorphism problem can be seen as analogous to studying the conservative version of
CSP, where every unary constraint is allowed [1, 4, 5]. The study of conservative CSP often
served as a starting point before more general investigations, motivating the exploration of
the list version of homomorphism problems.

The polynomial-time solvable cases of (list) homomorphism is well understood. Nešetřil
and Hell [15] showed that the non-list problem is polynomial-time solvable if H is bipartite or
has a loop, and NP-hard when restricted to any otherH. The complexity of the list version was
characterized by Feder, Hell, and Huang [12]: it is polynomial-time solvable if H is a so-called
bi-arc graph, and NP-hard for every other fixed H. But are there nontrivial algorithmic ideas
that can help us obtain improved running times for the NP-hard cases? Similarly to coloring,
the problem of finding a (list) homomorphism to H can be solved in time |V (H)|t · nO(1) if G
is given with a tree decomposition of width t. Can this straightforward dynamic programming
algorithm be improved for a given fixed H, and if so, by how much?

This question was resolved first by Egri, Marx, and Rzążewski [11] for the list homomor-
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phism problem in the special case when H is reflexive (that is, every vertex has a loop), which
was extended by Okrasa, Piecyk, and Rzążewski [26] to every H (where each vertex may or
may not have a loop). It turns out that there are a couple of algorithmic ideas that can be used
to obtain ct · nO(1) time algorithms with c < |V (H)|. In particular, there are delicate notions
of decompositions of H, such that if they are present, then the problem can be reduced in a
nontrivial way to multiple instances with some H ′ having fewer vertices than H. To formalize
the optimality of these ideas, a combinatorial parameter i∗(H) was introduced, and it was
shown that the problem can be solved in time i∗(H)t ·nO(1), but there is no (i∗(H)−ε)t ·nO(1)

time algorithm for any ε > 0, assuming the SETH. This means that the technical ideas behind
the i∗(H)t ·nO(1) time algorithm already capture all the possible algorithmic insights that can
be exploited when solving the problem on a given tree decomposition. A similar tight result
was obtained by Okrasa and Rzążewski [27] for the non-list version of the problem. In that
version, a different set of algorithmic ideas become relevant (reduction to a homomorphic
core and factorizations), and the optimality of these ideas were proved assuming not only the
SETH, but also two long-standing conjectures from algebraic graph theory.

A well-known phenomenon in computational complexity is that even if it is possible to
find a solution efficiently in a combinatorial problem, counting the number of solutions can be
hard. The most notable example is the perfect matching problem in bipartite graphs: finding
a perfect matching is polynomial-time solvable, but counting the number of perfect matchings
is #P-hard by the seminal result of Valiant [29]. There are algorithmic ideas that can be
generalized from decision to counting (for example, simple forms of dynamic programming),
but others may not be. In particular, arguments of the form “if there is a solution, then there
is a solution with property P , hence we only need to look for solutions with property P ” do
not immediately generalize to counting, as they would fail to count the potential solutions
that do not have property P . Unfortunately, the i∗(H)t · nO(1) time algorithm of Okrasa,
Piecyk, and Rzążewski [26] for list homomorphism heavily relies on such arguments. Careful
observation shows that only a very limited set of algorithmic ideas remain relevant for the
counting problem:

• Connected components. We may assume that G is connected: otherwise the number
of solutions is the product of the number of solutions for each component of G. Fur-
thermore, if G is connected, then every vertex of G is mapped into the same connected
component of H. Thus we may assume that H is connected as well: the number of
solutions is the sum of the number of solutions when restricted to each component of H.

• Identical neighborhoods. If two vertices u and v have identical neighborhoods, then
we may pretend that only one of them, say u, is present in H. Then we need to solve
a weighted problem that takes into account that whenever a vertex of G is mapped to
u, then we can actually choose from two different copies of u. The extension to this
weighted problem can be easily implemented in the dynamic programming algorithm
working over a tree decomposition. Therefore, the number of possible images of a vertex
can be restricted to the maximum size of a set S ⊆ V (G) where the neighborhoods are
pairwise different. We call such a set S an irredundant set.

• Bipartite classes. If H is bipartite (and has no loops), then G has to be bipartite as
well. This means that each bipartite class of G is mapped to one of the two bipartite
classes of H, resulting in two cases that we can treat separately. In each case, the
possible images of a vertex v of G are restricted to a bipartite class of H. Now the
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maximum number of possible images of v can be bounded by the maximum size of an
irredundant set S that is contained in one bipartite class of H.

Our main negative result shows that these are all the algorithmic ideas that can be exploited in
the list homomorphism problem for a fixed H. To state this formally, we define the following
graph parameter.

Definition 1.1. Given a graph H, we say that S ⊆ V (H) is irredundant if any two vertices
have different neighborhoods. We say that graph H is irredundant if V (H) is irredundant.
For a connected bipartite graph H, set S is one-sided if it is fully contained in one of the
bipartite classes.

For a connected graph H, we define irr(H) the following way. If H has a loop or is
nonbipartite, then irr(H) is the maximum size of an irredundant set; if H is bipartite, then
irr(H) is the maximum size of a one-sided irredundant set. For disconnected H, we define
irr(H) as the maximum of irr(C) over every connected component C of H.

Note that if v has a loop, then the neighborhood of v includes v itself. This has to be
carefully taken into account when interpreting different neighborhoods. For example, in a
reflexive clique (where every vertex has a loop) every vertex has the same neighborhood.

For a fixed graph H (possibly with loops), we denote by #LHom(H) the problem of
counting the number of list homomorphisms from the given (G,L) to H. Our main result
shows for #LHom(H) that irr(H) is indeed the best possible base of the exponent that can
appear in the running time. We obtain the lower bound under the #SETH, the counting
version of the SETH, which is the natural variant of the assumption for lower bounds on
counting problems (see [8]). Note that the SETH implies the #SETH, thus proving a result
under the latter assumption make it somewhat stronger.

Theorem 1.2. Let H be a graph that has a component which is not a biclique nor a reflexive
clique. On n-vertex instances with treewidth tw, the #LHom(H) problem

1. can be solved in time irr(H)tw · nO(1), provided that a tree decomposition of width tw is
given as part of the input.

2. cannot be solved in time (irr(H)−ε)tw ·nO(1), for any ε > 0, even if a tree decomposition
of width tw is given as part of the input, unless the #SETH fails.

While the counting complexity of homomorphism problems is well-studied, we may argue
that our lower bound brings a new level of understanding on the real hardness of the problem.
It is easy to deduce from earlier results that if H has a component that is neither a biclique
nor a reflexive clique, then H contains an induced subgraph H ′ on at most 4 vertices such that
#LHom(H ′) is #P-hard. As we can use the lists to restrict the problem to V (H ′), it follows
that #LHom(H) is #P-hard as well. Dyer and Greenhill [10] showed that for such an H the
homomorphism counting problem is #P-hard even if no lists are allowed. Since we cannot use
the lists to restrict the problem to V (H ′), this proof is significantly more complicated. What all
these proofs have in common is that they identify only one level of complexity: #P-hardness.
Intuitively, counting 10-colorings feels harder than counting 3-colorings, as we need to consider
a larger number of possible values at each vertex. Saying that both problems are #P-hard
ignores this perceived difference of hardness. On the other hand, Theorem 1.2 establishes, in
a formal way, a difference in complexity between #LHom(K10) and #LHom(K3): the best
possible base is 10 in the former and 3 in the latter.
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Typical #P-hardness proofs use as the basis of the reduction a few known #P-hard prob-
lems, such as counting independent sets or counting 3-colorings. Once it is established that
the problem can express one of these hard problems, then the proof can stop, as it is irrelevant
whether some even harder problem can also be expressed. On the other hand, the lower bound
proof of Theorem 1.2 has to delve deeper into the complexity of the problem, as it should ex-
tract as much hardness from the problem as possible. So instead of trying to show that the
problem can express a simple relation corresponding to e.g., independent set or 3-coloring,
our main goal is to show that, in a formal sense, #LHom(H) can express every relation over
a domain of size irr(H). Going beyond the context of bounded-treewidth graphs, the main
message of this paper is that the #LHom(H) problem is sufficiently rich to express all such
relations.

1.1 Proof overview

As described above, the algorithmic part of the main result is fairly simple: we need to do
only a few changes to the standard dynamic programming algorithm to take into account
connected components, vertices with identical neighborhoods, and bipartiteness. Therefore,
we focus on the main steps of the lower bound proof in this section.

From SAT to CSP. The #SETH states that for every ε > 0, there is a d ≥ 1 such that
n-variable #d-SAT (i.e., counting satisfying assignments of a Boolean formula where every
clause has d literals) cannot be solved in time O((2 − ε)n). Therefore, we need to show that
the hypothetical fast algorithm for #LHom(H) would give an algorithm for #SAT violating
this lower bound. It will be convenient to introduce an intermediate problem. By #CSP(q,
r), we denote the problem of counting solutions in a CSP instance with domain [q] and each
constraint having arity at most r. It follows from the work of Lampis [21] that if for some
q ≥ 2 there is an ε > 0 such that #CSP(q, r) can be solved in time (q − ε)n · (n+m)O(1) for
every r, then the #SETH fails. Therefore, to prove our main lower bound for #LHom(H), we
take a #CSP(q, r) instance with q = irr(H) and show that it can be reduced to #LHom(H).

Focusing on bipartite H. Similarly to [26], first we prove the main result for bipartite
H. Then it is a surprisingly simple task to raise the result to general H. Given a (not
necessarily bipartite) graph H, we define the associated bipartite graph H∗ the following
way (see Figure 1): for every vertex v of H, there are are two vertices v′, v′′ in H∗ and we
introduce edges such that, if uv ∈ E(H), then u′v′′, u′′v′ ∈ E(H∗) (if v has a loop in H, then
v′v′′ ∈ E(H∗)). It can be shown that irr(H∗) = irr(H) and the lower bound for #LHom(H)
can be obtained by a simple reduction from #LHom(H∗). Thus in the following we can
assume that H is bipartite. Furthermore, we may assume that H is irredundant, that is, any
two vertices have distinct neighborhoods. It is easy to see that the lower bound for irredundant
H can be extended to the general case.

New relations. Input to #LHom(H) can be seen as a CSP instance where the vertices are
variables with domain V (H) and each edge is a binary constraint restricting the combination of
values appearing on two vertices. We can augment the problem by allowing a fixed finite set
R = {R1, . . . , Rc} of other relations in the instance. Of course, introducing new relations
may make the problem harder. If for every 1 ≤ i ≤ c, we can provide an appropriate
reduction from the problem augmented with {R1, . . . , Ri} to the problem augmented only
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a a′ a′′

b′′b′b

c c′ c′′

e′′e′e

d
d′ d′′

H H∗

Figure 1: A graph H and its associated bipartite graph H∗.

with {R1, . . . , Ri−1}, then this chain of reductions shows that the problem augmented with
R is not harder than the original #LHom(H) problem, hence any lower bound proved for
the augmented problem holds for #LHom(H) as well. Therefore, we start with #LHom(H)
and try to introduce new relations Ri one by one, in a way that does not make the problem
any harder. We do this until we can introduce every r-ary relation over a domain S of size
q = irr(H). At this point, the lower bound for #CSP(q, r) applies to our augmented problem,
and hence to the original #LHom(H) problem as well.

Gadgets and interpolation. How can we show that introducing a new relation Ri does
not make the problem harder? This can be done by showing that each occurrence of the
Ri relation can be replaced by an appropriate gadget that, in a certain sense, simulates
this relation. A gadget is a small instance where a subset (x1, . . . , xr) of the vertices are
distinguished as the interface. Now if we fix the images f(x1) = v1, . . . , f(xr) = vr, then, for
each vector (v1, . . . , vr), there is some number of ways the mapping f can be extended to a list
homomorphism from the gadget to H. If it so happens that for every (v1, . . . , vr) ∈ Ri there
is exactly one extension, and for every (v1, . . . , vr) 6∈ Ri there are zero extensions, then this
gadget effectively expresses a constraint with the relation Ri on the vertices (x1, . . . , xr). Now
we can replace every occurrence of Ri with a copy of this gadget, showing that introducing
Ri does not make the problem harder.

However, it is rare that a gadget can express the new relation Ri in such a clean way.
Fortunately, the nature of counting problems allows us to use gadgets in a much more general
setting. Suppose the number of possible extensions for every (v1, . . . , vr) ∈ Ri is always an
integer from a set A (for example, A = {4, 5, 8, 11}), while the number of extensions for
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(v1, . . . , vr) 6∈ Ri is always an integer from a set B (for example, B = {3, 7, 9}). Suppose
that every a ∈ A and b ∈ B are coprime1 (that is, there is no prime p dividing both an
element of A and an element of B); this condition holds in our example. Then a polynomial
interpolation technique of Dyer and Greenhill [10] allows us to count those assignments where
(v1, . . . , vr) ∈ Ri is satisfied, effectively introducing a constraint with relation Ri.

A simple application of this technique allows us to express compositions of relations. Given
two binary relations R1 and R2, their composition is defined as R1;R2 = {(a, b) | ∃ c : (a, c) ∈
R1, (c, b) ∈ R2}. Given two interface vertices v1 and v2, we can construct a gadget by intro-
ducing a new vertex z and adding the constraint R1 on v1 and z, and adding the constraint
R2 on z and v2. Now if the interface vertices are assigned a pair of values from R1;R2, then
there is at least one extension to z; if they are assigned a pair of values not from R1;R2, then
there is no extension. Thus by the technique mentioned in the previous paragraph, we can
express the relation R1;R2.

Relations on a P4. The path on four vertices (a P4) is the smallest example of a connected
bipartite graph H that is not a complete bipartite graph, and hence the #LHom(H) problem
is #P-hard. Intuitively, #P-hardness should mean that whenever a P4 appears in H, then we
should be able to express arbitrarily complicated constraints when restricted to these vertices;
however, this has not been stated explicitely in earlier work. We make this expectation formal
by showing that if (a − b − c − d) is a P4 appearing in H, then any relation R ⊆ {a, c}r can
be simulated with appropriate gadgets. For this statement it is essential that we consider the
counting problem, and an analogous statement should not hold for the decision version. To
see this, observe that in the path (a − b − c − d), the neighborhood of c is a superset of the
neighborhood of a. Thus if the list of a vertex contains both a and c, then a in the solution
can always be replaced by c. This makes it impossible to simulate even very simple relations
such as R = {aa, cc} in the decision version since allowing aa and cc would automatically
allow ac and ca as well.

Forcers. Forcers are crucial objects in our proof. Let S ⊆ V (H), x, y ∈ S, and α, β ∈ V (H),
where S, {x, y}, {α, β} are all one-sided sets. An (x, y, S)-forcer with respect to (α, β) is a
binary relation R ⊆ S × {α, β} that

• contains (x, α), but not (x, β),

• contains (y, β), but not (y, α), and

• for every z ∈ S \ {x, y}, contains at least one of (z, α) or (z, β).

Intuitively, the relation moves x and y to α and β, respectively, while other values of S
can move to somewhere in {α, β}. For example, both of the following two relations are
(x, y, {x, y, z, q, w})-forcers with respect to (α, β):

R1 = {xα, yβ, zα, zβ, qα,wβ},
R2 = {xα, yβ, zα, qα,wα}.

We will be particularly interested in forcers where α and β are vertices a and c of a P4

a− b− c− d. The following claim will be crucial for our proof: if we can show that, for every
1More precisely, we allow 0 to appear only in B, and allow 1 to appear only in A.
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x, y ∈ S, there are good (x, y, S)-forcers with respect to (a, c) of the same P4, then we can
realize any r-ary relation R over S. Therefore, if we choose an S with |S| = irr(H) = q, then
we can reduce #CSP(q, r) to our problem, which was our main goal. Let us sketch how to
prove the claim by realizing an r-ary relation R with the help of the forcers. Let s = |S|.
Intuitively, by applying all the s(s− 1) possible (x, y, S)-forcers on a vertex v, we can extract
s(s−1) bits of information about the value of v. These bits are sufficient to identify the value
of v, as for any two different values x 6= y, one of the bits will be different. Therefore, we
can translate the values of r variables into rs(s− 1) bits and then we can implement R by an
rs(s − 1)-ary relation over {a, c}. As a and c are on a P4, we have already seen that such a
relation can be realized.

The connected structure of P4’s. As we have seen in the previous paragraph, a crucial
step in the proof is to realize an (x, y, S)-forcer for every x, y ∈ S. An important detail is that
we need all these (x, y, S)-forcers to be with respect to the same (a, c). But what happens if
we have two P4s (a − b − c − d) and (a′ − b′ − c′ − d′), can an (x, y, S)-forcer with respect
to (a′, c′) be turned into one with respect to (a, c)? We can show that if the two P4s are
“adjacent” in the sense that they share two vertices in the same bipartite class of H, then
this is indeed possible. Even if the two P4s are not adjacent, but are in the “same connected
component” under this definition of adjacency, then multiple applications of this argument
show that a forcer with respect to (a′, c′) can be turned into a forcer with respect to (a, c).
A graph-theoretic analysis shows that if H is connected and irredundant, then the P4s have
only a single connected component. Therefore, it does not matter in the definition of good
forcers exactly where a and c are, as long as they are in a P4. We can show that even this
last condition is unnecessary: a forcer with respect to any two distinct (α, β) that are on the
same side can be turned into a forcer with respect to (a, c).

The inductive proof. We prove by induction that there is a good (x, y, S)-forcer for every
S ⊆ V (H) and x, y ∈ S: when proving the statement for (x, y, S), we assume that it is true
for every (x′, y′, S′) where either

• |S′| < |S| or

• |S′| = |S| and the distance condition dist({x′, y′}, S′ \ {x′, y′}) < dist({x, y}, S \ {x, y})
holds.

To explain the main ideas of the induction step, we need two new concepts. A weaker
version of the forcer is the distinguisher, which additionally may allow (y, α) ∈ R as well. For
example, the following relation is an (x, y, {x, y, z, q, w})-distinguisher with respect to (α, β):

R = {xα, yα, yβ, zα, zβ, qα,wβ}.

As another application of the interpolation technique, we show that if we can realize a distin-
guisher, then we can realize a forcer as well, that is, we can eliminate the unwanted possibility
(y, α).

For a partition (X,Y ) of S, the (X,Y )-partitioner with respect to (α, β) is the relation

R = {(x, α) | x ∈ X} ∪ {(y, β) | y ∈ Y }.

It can be seen as a stricter version of the (x, y, S)-forcer: it is now specified for every element
of S whether the relation should move it to α or β. But we can show that if we realize an
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z z′
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y
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q

x′

y′

Case 1 Case 2

Figure 2: The two cases in the inductive proof. The set S is highlighted in red, the set S′ is
highlighted in yellow. Case 1: As z and y have a common neighbor, we can define S′ with
|S′| < |S|. Vertex q ∈ S′ is in N(y) \N(x). Case 2: In S, the distance of {x, y} from the rest
of the vertices is 6 (a shortest path P is highlighted in gray), while in (x′, y′, S′) this distance
is only 4.

(x, y, S)-forcer for every x, y ∈ S, then we can realize an (X,Y )-partitioner for every partition
(X,Y ) of S: the argument is similar to how forcers were used to realize arbitrary relations
over S.

Now let us overview the main cases in the inductive proof.

• Base case: S = {x, y}. If x and y have a common neighbor, then x and y are part
of a P4 (as we assumed that H is irredundant) and we essentially have an (x, y, S)-
distinguisher, which we can turn into an (x, y, S)-forcer. If x and y have distance at
least 3, then we can use the edge relation E of H to move x and y closer to each other,
until they have a common neighbor.

• Case 1: S contains a vertex z at distance two from {x, y}. Using that z has a neighbor
that is also adjacent to one of x and y, we can define a set S′ with S ⊆ N(S′) and
|S′| < |S| (see Figure 2). Furthermore, we can define S′ in a way that, without loss of
generality, the set N(y) \ N(x) is nonempty. As |S′| < |S|, the induction hypothesis
implies that there are (x′, y′, S′)-forcers for every x′, y′ ∈ S′. Therefore, we may also
assume that there are (X ′, Y ′)-partitioners for every partition (X ′, Y ′) of S′. Let R be
an (N(x)∩S′, S′\N(x))-partitioner with respect to some (α, β). If E is the edge relation
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of H, then we claim that the composition E;R is an (x, y, S)-distinguisher. Indeed, it
moves x to α (as E has to move x to N(x) ∩ S′ first, which is moved to α by R), y can
move to β (as E can move y to the nonempty (N(y) \ N(x)) ∩ S′, which is moved to
β by R), and every element of S can move to at least one of α and β (as S ⊆ N(S′)).
Then this (x, y, S)-distinguisher can be turned into an (x, y, S)-forcer, as required.

• Case 2: Every vertex of S\{x, y} is at distance at least 4 from {x, y}. Let P be a shortest
path between {x, y} and S \ {x, y}. There are a few similar cases to consider, but let us
assume, as a representative case, that P goes from x to some vertex z, and there is a
vertex y′ ∈ N(y)\N(x) (see Figure 2). Let x′ be the neighbor of x on P , let z be the other
endpoint of P , and let z′ be the neighbor of z on P . We define S′ starting from {x′, y′, z′}
and adding a neighbor of each S \ {x, y, z}; clearly, we have |S′| ≤ |S|. Furthermore,
dist({x′, y′}, S′\{x′, y′}) is strictly less than dist({x, y}, S\{x, y}): vertices x′ and z′ are
closer to each other than x and z. Thus by the induction hypothesis, an (x′, y′, S′)-forcer
R exists with respect to some (α, β). Then we claim that the composition E;R is an
(x, y, S)-distinguisher. Indeed, x is moved to α (as x′ is the only neighbor of x in S′,
which is moved to α by R), y can move to β (as y′ is a neighbor of y and R can move
y′ to β), and every element of S can move to at least one of α and β (as S ⊆ N(S′)).
Then this (x, y, S)-distinguisher can be turned into an (x, y, S)-forcer, as required.

2 Preliminaries

For an integer n, we define [n] := {1, 2, . . . , n}. Given a set S, by 2S we denote the power set
of S.

Graph theory By (p1 − p2 − . . . − pq) we denote the path of length q whose consecutive
vertices are p1, p2, . . . , pq. Let H be a graph. For vertices u, v ∈ V (H), dist(u, v) is the length
of a shortest path between u and v in H. N(u) = {v ∈ V (H) | uv ∈ E(H)} is the (open)
neighborhood of u in H. For a set U ⊆ V (H), N(U) is the set of vertices of H with at least
one neighbor in U .

Structures A signature σ consists of a finite set of relation symbols with specified arities.
For a relation (symbol) R, ar(R) denotes the arity of R. For i ∈ [ar(R)], Πi(R) is the projection
onto the i-th entry of the tuples in R. A structure H with signature σ(H) consists of a universe
V (H) together with a set of relations R(H) = {RH | R ∈ σ(H)} over the universe V (H). We
write H = (V (H),R(H)). By ||H|| we denote |σ(H)|+ |V (H)|+

∑
R∈σ(H) |RH| · ar(R), which

is the size of a “reasonable” encoding of H. Note that if σ(H) consists of a constant number of
relations, each with constant arity, then ||H|| = |V (H)|O(1). Throughout the paper we work
in such a setting.

A structure H is a graph if R(H) = {E(H)}, where E(H) is a symmetric binary relation
over V (H). In this case we write H = (V (H), E(H)).

The Gaifman graph of a structure H has vertex set V (H) and distinct u, v ∈ V (H) are
adjacent if and only if there is a relation R ∈ R(H) that involves u and v. We define the
treewidth and a tree decomposition (resp., the pathwidth and a path decomposition) of H as
the treewidth and a tree decomposition (resp., the pathwidth and a path decomposition) of
the Gaifman graph of H.
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Given two structures G and H with the same signature σ, a function f : V (G) → V (H)
respects R ∈ σ if, for each x ∈ RG , f(x) ∈ RH, where f is evaluated elementwise. A
homomorphism from G to H is a function h : V (G) → V (H) that respects every R ∈ σ. By
hom

(
G → H

)
we denote the number of homomorphisms from G to H. If ar(R) = 1 then RH

is a subset of V (H) and we also use the usual list notation: For an element x ∈ V (G) we write
L(x) = RH if x ∈ RG . More generally, if L is a partial function from V (G) to 2V (H), then h
is a homomorphism from (G, L) to H if h is a homomorphism from G to H with h(x) ∈ L(x)
for each x in the domain of L. Note that x being outside the domain of L is as restrictive as
having L(x) = V (H). By hom

(
(G, L) → H

)
we denote the number of homomorphisms from

(G, L) to H.
Let H = (U,S) be a fixed structure and let J = (Z,F) be a structure with the same

signature asH. For some integer p, let x = (x1, x2, . . . , xp) ∈ Zp and y = (y1, y2, . . . , yp) ∈ Up.
Then hom

(
(J ,x) → (H,y)

)
is the number of homomorphisms from J to H that map xi to

yi for each i ∈ [p]. A p-tuple of distinguished (not necessarily pairwise distinct) elements of Z
is also called an interface (of size p) of J .

Counting Problems Let H = (V,R) be a structure. Then #Hom(H) is the problem that
takes as input a structure G with the same signature asH and asks to determine hom

(
G → H

)
.

Note that the power set 2V is the set of all unary relations over V . Then #LHom(H) is
the problem #Hom(H+), where H+ = (V,R ∪ (2V \ {∅})). Intuitively, H+ is the structure
obtained fromH by adding all non-empty unary relations over the universe ofH. In the special
case, where H is a graph H we simplify the notation by writing instances of #LHom(H) as
(G,L), where G is a graph and L is a function from the vertices of G to subsets of V (H)
specifying the unary relations of the input (lists). For convenience we assume that for such
instances every vertex of G has a list. Then #LHom(H) on input (G,L) asks to determine
hom

(
(G,L)→ H

)
.

Pathwidth and pathwidth-preserving reductions Let A and B be computational prob-
lems that take as input some structure given along with a path decomposition. A pathwidth-
preserving reduction from A to B is a polynomial-time Turing reduction from A to B such
that the corresponding algorithm, if executed on an instance G of A given with a path decom-
position with width at most t, makes B-oracle calls only on structures of size polynomial in
||G||, given with a path decomposition with width at most t+O(1).

Let H = (V,R) be a structure. A relation R ⊆ V ar(R) is realizable (by H) if there is a
pathwidth-preserving reduction from #LHom((V,R ∪ {R})) to #LHom(H).

Note that pathwidth-preserving reductions are transitive in the sense that a pathwidth-
preserving reduction from A to B together with a pathwidth-preserving reduction from B to C
implies that there is a pathwidth-preserving reduction from A to C. The concept of realizable
relations is transitive as well: If a relation R is realizable by a structure H = (V,R), and a
relation R′ is realizable by H′ = (V,R ∪ {R}), then R′ is realizable by H.

However, there is a caveat here: we are only allowed to combine a constant number of
pathwidth-preserving reductions to make sure that the total increase of the pathwidth bound
is constant as well.

We say that H = (V,R) is an induced substructure of H′ = (V ′,R′) if V ⊆ V ′ and for every
R we have x ∈ RH if and only if x ∈ RH′ ∩V ar(R). Note that, since we can use arbitrary lists,
we can see each instance of #LHom(H) as an instance of #LHom(H′), where each element of
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the input universe has a list that is a subset of V . This gives us a simple pathwidth-preserving
reduction from #LHom(H) to #LHom(H′). Therefore, if a relation R is realizable by H, it
is also realizable by H′. We will use this fact implicitly throughout this work.

Relations and Operators Let us now define some notation concerning relations.

• Let R1 ⊆ X1 × X2 and R2 ⊆ X2 × X3. The composition of R1 and R2 is the relation
R1;R2 ⊆ X1 ×X3 defined as {(u, v) | ∃w : (u,w) ∈ R1, (w, v) ∈ R2}.

• Given a graph H and two sets U,W ⊆ V (H), we define RU→W = {(u, v) | u ∈ U, v ∈
W ∩N(u)}.

• For q ≥ 2, a relation R ⊆ X1× · · · ×Xq, and v1 ∈ X1, we define R(v1) = {(v2, . . . , vq) ∈
X2 × · · · ×Xq | (v1, v2, . . . , vq) ∈ R}.

Note that for a graph H, sets U,W ⊆ V (H), and u ∈ U , we have RU→W (u) = {v ∈ W |
(u, v) ∈ RU→W } = V ∩N(u).

The following lemma shows three simple ways to obtain realizable relations.

Lemma 2.1. Let H = (V,R). The following relations R are realizable by H:

1. R1 ∩R2, where R1, R2 ∈ R are of the same arity,
2. RU→U ′, where R contains E(H) for some graph H with vertex set V , and U,U ′ ⊆ V ,
3. R1;R2, where R1, R2 ∈ R are of arity 2.

The proof of Lemma 2.1 is postponed to the next subsection, where we introduce necessary
tools to prove the third item.

2.1 Pathwidth-Preserving Reductions and Interpolation

One well-known tool for proving hardness for exact counting problems is interpolation.

Lemma 2.2 ([10, Lemma 3.2]). For distinct non-zero integers a = (a1, . . . , ak) and integers
b = (b1, . . . bk), suppose that, for each j ∈ [k], we have

∑k
i=1 a

j
i · xi = bj for some unknown

x = (x1, . . . xk). Then the values of x can be computed in time polynomial in k.

The following lemma is a modification of [10, Corollary 3.3] that generalizes to structures
and makes the reduction pathwidth-preserving. Note that the conditions on the numbers are
slightly different than the conditions on the weights in [10, Corollary 3.3].

Lemma 2.3. Let H = (V,R) be a structure with signature σ and, for some positive integer p,
let R ⊆ V p be a relation that is not in R. Suppose that there is a structure J with signature σ
and an interface x of size p such that, for each f ∈ R and g ∈ V p \R, we have the following:

1. hom
(
(J ,x)→ (H, f)

)
6= 0.

2. hom
(
(J ,x)→ (H,g)

)
6= 1.

3. If hom
(
(J ,x) → (H,g)

)
6= 0, then there is no prime that divides both hom

(
(J ,x) →

(H, f)
)
and hom

(
(J ,x)→ (H,g)

)
.

Then R is realizable by H.
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Proof. In order to show that R is realizable by H, we need to show, for H′ = (V,R ∪ {R}),
that there is a pathwidth-preserving reduction from #LHom(H′) to #LHom(H).

Consider an input G = (U,S) of the #LHom(H′) problem, given along with a path decom-
position with width t. Slightly overloading notation, we will use R to denote both the relation
and its symbol so the corresponding relation in G is RG . We set n = ||G|| and m = |RG |.
Note that if m = 0, then we are done, as G can be cast as a structure with signature σ and it
therefore can be interpreted as an instance of the #LHom(H) problem.

Let k be a positive integer. For each (v1, v2, . . . , vp) ∈ RG , we introduce k copies of
the structure J with interface x = (x1, . . . , xp). For each copy we identify x1, . . . , xp with
v1, v2, . . . , vp, respectively. Then we remove the relation RG from G. Let us call the obtained
structure GJ k . Note that the signature of GJ k is σ.

Let Φ be the class of functions from U to V that respect all relations from σ (but not
necessarily R). Let Φ+ be the class of functions in Φ that respect R.

For each function f ∈ Φ, define

w(f) =
∏

v∈RG
hom

(
(J ,x)→ (H, f(v))

)
.

We also say that f is a w(f)-function. For each integer w, by Φ(w) we denote the set of
w-functions in Φ.

Define

W :={w(f) | f ∈ Φ and w(f) 6= 0}
W+ :={w(f) | f ∈ Φ+ and w(f) 6= 0}
W− :={w(f) | f ∈ Φ \ Φ+ and w(f) 6= 0}.

First note that for f ∈ Φ+, we have w(f) 6= 0 according to property 1 as given in the
statement of the lemma. Thus, W+ = {w(f) | f ∈ Φ+}.

We now argue that W+ and W− are disjoint. Let w+ ∈ W+ and w− ∈ W−. We have
w− 6= 0, and by properties 2 and 3 as given in the statement of the lemma, we observe that
w− has a prime factor that does not divide w+. Therefore, w+ 6= w−. We can conclude that

hom
(
G → H′

)
=
∑

w∈W+

|Φ(w)|. (1)

Furthermore, we have

hom
(
GJ k → H

)
=
∑
f∈Φ

w(f)k

=
∑
w∈W

∑
f∈Φ(w)

wk

=
∑
w∈W

wk · |Φ(w)|. (2)

Let a = (w)w∈W and b = (hom
(
GJ k → H

)
)k∈[|W|]. Note that a factor of the form

hom
(
(J ,x) → (H, f(v))

)
can have at most |V |p different values, each of which can have

multiplicity between 0 and m in the product w(f). Thus, there are at most (m + 1)(|V |p)

distinct values for w(f) and the set W can be computed in time polynomial in n.
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So, the tuple a can be computed in time polynomial in n. The tuple b can be com-
puted using the algorithm that solves #LHom(H) for each k ∈ [|W|] on input GJ k We have
|V (GJ k)| ≤ |U |+ |RG | · |V (J )| · k.

Consider a tuple (v1, v2, . . . , vp) ∈ RG and note that it corresponds to a clique in the
Gaifman graph of G, so in a path decomposition X of this graph there is a bag that contains
{v1, v2, . . . , vp}. Let X ′ be the first such a bag. We modify X by inserting right after X ′ bags
X ′1, X

′
2, . . . , X

′
k, where X

′
i is the union of X ′ and the vertex set of the i-th copy of J with

interface (v1, v2, . . . , vp). Clearly the obtained sequence X ′ is a path decomposition of GJ k .
As the size of J depends only on R and H, and thus is a constant, we obtain that the width
of X ′ is t+O(1).

Thus, b can be computed using |W| calls to the #LHom(H) oracle, and we have shown
that |W| ∈ nO(1) and each of the oracle calls is on an instance given with a path decomposition
of width at most t+O(1).

Note that the values of a are non-zero by definition of W. Using (2) and the fact that
a contains non-zero pairwise distinct values, we can apply Lemma 2.2. Thus, we obtain
x = (|Φ(w)|)w∈W from a and b in time polynomial in n. By computing, for each f ∈ R,
the value of hom

(
(J ,x) → (H, f)

)
, one can decide in polynomial time which values of W

belong to W+ (recall that each w− ∈ W− has a prime factor that does not appear in any
value of hom

(
(J ,x) → (H, f)

)
with f ∈ R). Thus, using (1), the sought-for number of (list)

homomorphisms can be computed from x = (|Φ(w)|)w∈W in time polynomial in n.

The following simple corollary formalizes the modeling of relations by gadgets.

Corollary 2.4. Let H = (V,R) be a structure with signature σ and, for some positive integer
p, let R ∈ V p be a relation whose relation symbol is not in σ. Suppose that there is a structure
J with signature σ and an interface x of size p such that, for each f ∈ R and g ∈ V p \R, we
have hom

(
(J ,x)→ (H, f)

)
6= 0 and hom

(
(J ,x)→ (H,g)

)
= 0, then R is realizable by H.

Now we are ready to prove Lemma 2.1 that we recall here.

Lemma 2.1. Let H = (V,R). The following relations R are realizable by H:
1. R1 ∩R2, where R1, R2 ∈ R are of the same arity,
2. RU→U ′ , where R contains E(H) for some graph H with vertex set V , and U,U ′ ⊆ V ,
3. R1;R2, where R1, R2 ∈ R are of arity 2.

Proof. For each case we will build a structure J = (U,S) with the same signature as H and
interface x, which satisfies the assumptions of Corollary 2.4.

1. Let R = R1 ∩ R2 for some R1, R2 ∈ R with p = ar(R1) = ar(R2). We set U =
{x1, . . . , xp}, x = (x1, . . . , xp), and RJ1 = RJ2 = {(x1, . . . , xp)}.

2. Suppose R contains E(H) for some graph H with vertex set V , and R = RU→U ′ , where
U,U ′ ⊆ V . We set U = {x, y}, x = (x, y), and E(H)J = {(x, y), (y, x)}. We also
introduce lists L(x) = U , L(y) = U ′.

3. Let R = R1;R2 for some R1, R2 ∈ R or arity 2. We set U = {x, y, z}, x = (x, z),
RJ1 = {(x, y)}, and RJ2 = {(y, z)}.

Note that in the first two cases all vertices of J are in x, so it it straightforward to observe
that hom

(
(J ,x) → (H, f)

)
= 1 if x ∈ R and hom

(
(J ,x) → (H, f)

)
= 0 if f /∈ R. In the

last case, we observe that hom
(
(J ,x)→ (H, f)

)
> 0 if f ∈ R and hom

(
(J ,x)→ (H, f)

)
= 0

otherwise. Thus the lemma follows from Corollary 2.4.
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2.2 Hardness of counting satisfying assignments to CSP(q, r)

Recall that the #SETH states that for every ε > 0, there is a d ≥ 1 such that n-variable #d-
SAT cannot be solved in time O((2− ε)n). Note that since d is a constant, this is equivalent
to saying that n-variable m-clause #d-SAT cannot be solved in time (2− ε)n · (n+m)O(1).

For integers r, q ≥ 2, by CSP(q, r) we denote the CSP problem with domain [q] and each
constraint of arity at most r. By #CSP(q, r) we denote the problem of counting satisfying
valuations of a given instance of CSP(q, r). In this section we show the hardness of computing
#CSP(q, r), conditioned on the #SETH.

The decision version of this result, conditioned on the SETH, was proven by Lampis [21].
Our proof is just an adaptation of the original one to the counting world, so we will not
elaborate on the details and refer the reader to the paper of Lampis [21].

Theorem 2.5. For every integer q ≥ 2 and ε > 0 there is an integer r, such that the following
holds. Unless the #SETH fails, #CSP(q, r) with n variables and m constraints cannot be
solved in time (q − ε)n · (n+m)O(1).

Proof. Fix q ≥ 2 and ε > 0 and suppose that for every r there is an algorithm solving n-
variable m-constraint #CSP(q, r) in time (q − ε)n · (n + m)O(1). Suppose we are given a
#d-SAT instance Φ with N variables and M clauses, where d is a constant. Without loss of
generality we may assume that each variable is involved in some clause.

In the reduction we will carefully choose r = r(d, q, ε) and build a #CSP(q, r) instance
Ψ. To avoid confusion, we will refer to an assignment of values to the variables of Φ as truth
assignment, while an assignment of values to the variables of Ψ will be called valuation.

First, select an integer p and a real δ > 0, such that there exists an integer t satisfying the
following (see [21] for the argument that such a choice is possible):

(q − ε)p ≤ (2− δ)t ≤ 2t ≤ qp.

Note that δ does not depend on d. Now group the variables of Φ into γ := dN/te groups, each
with at most t variables. Call these groups V1, V2 . . . , Vγ . For each i ∈ [γ], we create a group
Xi of p variables of Ψ. Thus the total number of variables in Ψ is n := γ · p ≤ pN

t + p.
Note that the total number of truth assignments of variables in Vi is at most 2t ≤ qp, so

it does not exceed the number of possible valuations of Xi. Let us fix some injective function
that maps each truth assignment on Vi to a distinct valuation of Xi.

Now, let us define the constraints of Ψ. Consider any clause c of Φ and let Vi1 , Vi2 , . . . , Vis′
for d′ ≤ d be the groups that contain the variables of c. Note that each truth assignment
of variables in Vi1 , Vi2 , . . . , Vid′ that satisfies c corresponds to some valuation of variables in
Xi1 , Xi2 , . . . , Xid′ . We introduce a new constraint C(c) on all variables fromXi1∪Xi2∪. . .∪Xid′

that accepts only the valuations that correspond to the truth assignments that satisfy c. The
arity of C(c) is |Xi1 ∪Xi2 ∪ . . . ∪Xid′ | ≤ d · p.

Summing up, Ψ has n = γ · p ≤ pN
t + p variables, m = M constraints, its domain is [q],

and each constraint has arity at most r := dp.
It is straightforward to observe that Φ has a satisfying truth assignment if and only if Ψ

has a satisfying valuation. However, a stronger property holds as well: there is a bijection
between truth assignments that satisfy Φ and valuations that satisfy Ψ. Indeed, recall that
every variable of Φ appears in some clause, and thus, for each i ∈ [γ], there is a constraint
of Ψ involving all variables of Xi. Since the constraints of Ψ were defined in a way that the
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only accepted valuations are in one-to-one correspondence to the truth assignments of Φ, we
observe that the claimed bijection between truth assignments and valuations exists. Hence,
the solution to #CSP(q, r) on the instance Ψ is precisely the number of satisfying assignments
of Φ, i.e., the solution of our instance of #d-SAT. Let us call our hypothetical algorithm for
Ψ. Its running time is:

(q − ε)n · (n+m)O(1) ≤ ((q − ε)p)N/t+1 · (N +M)O(1)

≤
(
(2− δ)t

)N/t+1 · (N +M)O(1)

≤2t · (2− δ)N · (N +M)O(1).

As t depends only on q and ε, this running time is (2− δ)N · (N +M)O(1), which violates the
#SETH.

3 Counting list homomorphisms to bipartite graphs H

Let H be a bipartite graph. We say that a set S ⊆ V (H) is irredundant if for all distinct u, v ∈
S it holds that N(u) 6= N(v). We say that a graph H is irredundant if V (H) is irredundant.
If H is connected, then S ⊆ V (H) is one-sided if it is contained in one bipartition class. Then
recall from Definition 1.1 that irr(H) is the maximum size of a one-sided irredundant subset of
V (H). We extend this to disconnected bipartite graphs by setting irr(H) to be the maximum
value of irr(H ′) over all connected components H ′ of H. Observe that the following conditions
are equivalent for every bipartite graph H:

(i) irr(H) ≥ 2,

(ii) H has a connected component that is not a biclique,

(iii) H contains an induced P4.

For a connected bipartite graph H, an instance (G,L) of #LHom(H) is consistent, if:

• G is connected and bipartite, let X and Y be its bipartition classes,

•
⋃
x∈X L(x) is contained in one bipartition class of H, and

⋃
y∈Y L(y) is contained in the

other bipartition class of H.

3.1 Algorithm

Theorem 3.1. For each bipartite graph H, the #LHom(H) problem on n-vertex instances
given along with a tree decomposition of width at most t can be solved in time irr(H)t · nO(1).

Proof. Let (G,L) be an instance of #LHom(H), where G has n vertices and is given along
with a tree decomposition of width at most t. First observe that if G is not bipartite, then
there is no homomorphism from G to H, thus we return 0. So from now on assume that G is
bipartite.

First, assume that G and H are both connected. Let X,Y be the bipartition of G and
A,B be the bipartition of H. We observe that in every homomorphism from G to H, either
each vertex of X is mapped to a vertex of A and each vertex of Y is mapped to a vertex of B,
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or each vertex of X is mapped to a vertex of B and each vertex of Y is mapped to a vertex
of A.

Thus we can reduce the problem to solving two consistent instances of #LHom(H) as
follows. Let L1 be the lists obtained from L by setting L1(x) := L(x) ∩ A for every x ∈ X
and L1(y) := L(y)∩B for every y ∈ Y . Similarly, define L2 as follows: L2(x) := L(x)∩B for
every x ∈ X and L2(y) := L(y) ∩A for every y ∈ Y . By the above reasoning, we obtain that
hom

(
(G,L)→ H

)
= hom

(
(G,L1)→ H

)
+ hom

(
(G,L2)→ H

)
.

So let us focus on computing hom
(
(G,L1) → H

)
as computing hom

(
(G,L2) → H

)
is

analogous. We define lists L′1 and an auxiliary weight function w : V (G) × V (H) → N as
follows. For each v ∈ V (G), we partition the vertices of L1(v) into subsets consisting of
vertices with exactly the same neighborhood. From each such subset W we include in L′1(v)
exactly one vertex, say u, and set w(v, u) = |W |. On the other hand, for every u /∈ L′1(v) we
set w(v, u) = 0.

Observe that for each v ∈ V (G) the set L′1(v) is irredundant and contained in one bipar-
tition class of H. Thus, for each v ∈ V (G), we have |L′1(v)| ≤ irr(H).

Furthermore, denoting by Ω the set of all homomorphisms from (G,L′1) to H, we observe
that:

hom
(
(G,L1)→ H

)
=
∑
f∈Ω

∏
v∈V (G)

w(v, f(v)). (3)

Since every list in L′1 has size at most irr(H), a standard bottom-up dynamic programming
approach can be used to compute hom

(
(G,L′1)→ H

)
in time irr(H)t ·nO(1) [?]. Furthermore

one can easily modify the algorithm to actually determine the sum in (3): whenever we decide
to assign color u to some vertex v ∈ V (G), we multiply the number of solutions by w(w, u).
This modification does not increase the running time.

Now consider the general case that graphs G and H are possibly disconnected. Let
G1, G2, . . . , Gp be the connected components of G and let H1, H2, . . . ,Hq be the connected
components of H. It is straightforward to observe that

hom
(
(G,L)→ H

)
=

p∏
i=1

 q∑
j=1

hom
(
(Gi, L)→ Hj

) .

Thus, the total running time of such an algorithm is irr(H)t · nO(1).

3.2 Hardness for bipartite target graphs

The following lemma is the main building block of our hardness reduction.

Lemma 3.2. Let H = (V,E) be a connected bipartite graph with irr(H) ≥ 2, and let S ⊆ V
be a one-sided irredundant set. For every fixed p ≥ 1, every relation R ⊆ Sp is realizable by
H.

We postpone the proof of Lemma 3.2 to Section 3.6, and now we show how it implies the
lower bounds for bipartite graphs H.

Theorem 3.3. Let H be a bipartite graph with irr(H) ≥ 2. Assuming the #SETH, there is no
ε > 0, such that #LHom(H) on consistent n-vertex instances given with a path decomposition
of width t can be solved in time (irr(H)− ε)t · nO(1).
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Proof. Let H be as in the assumptions and let S be a maximum-size irredundant set contained
in a bipartition class of some connected component H ′ of H. Let q := |S| = irr(H). Note
that H ′ and S satisfy the assumptions of Lemma 3.2. Suppose that there is ε > 0 and an
algorithm that solves every consistent n-vertex m-edge instance (G,L) of #LHom(H) that is
given along with a path decomposition of G with width t in time (q − ε)t · (n+m)O(1).

We reduce from #CSP(q, r), where r is the constant given for q and ε by Theorem 2.5.
Consider an instance Ψ with variables U , domain D = [q], and let R be the set of relations
used in the constraints of Ψ. Note that |R| depends only on q and r, i.e., |R| is a constant.
Furthermore, the number of constraints in Ψ is polynomial in |U |.

Recall that |S| = q, so by fixing an arbitrary bijection between S and [q], we can equiva-
lently see Ψ as an instance with domain S. In other words, the instance Ψ can be equivalently
seen as a structure, which is an instance of #LHom((S,R)). Note that the pathwidth of Ψ is
clearly at most |U |.

As the arity of each relation in R is at most r, by Lemma 3.2, all relations in R are
realizable by H ′ and thus by H. This means that there is a pathwidth-preserving reduction
from #LHom((S,R)) to #LHom(H).

Let us point out that our reduction is in fact a chain of pathwidth-preserving reductions.
However, the total number of steps in this chain is O(|R|), which is a constant. Thus the total
increase of the pathwidth is O(1).

So, using our hypothetical algorithm for #LHom(H), we can count satisfying assignments
for Ψ in time

(q − ε)|U |+O(1) · |U |O(1) = (q − ε)|U | · |U |O(1),

where we use the fact that q is a constant. By Theorem 2.5 the existence of such an algorithm
for #CSP(q, r) contradicts the #SETH.

3.3 Special case: H = P4

As a warm-up, let us start with the special case that H = P4. The following lemma can be
seen as a restriction of Lemma 3.2 to this case. The proof will illustrate our approach.

Lemma 3.4. Consider P4 = (a− b− c−d) and fix a positive integer q. Then any R ⊆ {a, c}q
is realizable by P4.

Proof. We first show that the relations NEQ := {(a, c), (c, a)} and ORq := {a, c}q \ {cq} are
realizable by P4. We will then use these relations to show the statement of the lemma.

First, let us focus on NEQ. We aim to use Lemma 2.3. Let J NEQ be a five-vertex path
(u − w1 − w2 − w3 − v). The interface of J NEQ is x = (u, v). The lists are L(u) = L(v) =
L(w2) = {a, c}, and L(w1) = L(w3) = {b, d}.

Let us analyze the values of hom
(
(J NEQ,x)→ (P4, f)

)
for distinct f ∈ V (P4)2:

hom
(
(J NEQ,x)→ (P4, (a, a))

)
= 2,

hom
(
(J NEQ,x)→ (P4, (a, c))

)
= 3,

hom
(
(J NEQ,x)→ (P4, (c, a))

)
= 3,

hom
(
(J NEQ,x)→ (P4, (c, c))

)
= 5.

hom
(
(J NEQ,x)→ (P4, f)

)
= 0, otherwise.
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So, for each f ∈ NEQ and g ∈ V 2 \ NEQ, we have hom
(
(J , (s, t)) → (H′, f)

)
= 3 and

hom
(
(J , (s, t)) → (H′,g)

)
∈ {0, 2, 5}. Thus, J NEQ satisfies the assumptions of Lemma 2.3

and we obtain that NEQ is realizable by P4.
Now let us consider ORq. Define J ORq as follows. We introduce q vertices v1, v2, . . . , vq

and one additional vertex w, adjacent to all vi’s. We set L(vi) = {a, c} for all i ∈ [q], and
L(w) = {b, d}. The interface of J ORq is x = (v1, v2, . . . , vq).

For f ∈ V (P4)q we have

hom
(
(J ORq ,x)→ (P4, f)

)
= 0 if f /∈ {a, c}q,

hom
(
(J ORq ,x)→ (P4, f)

)
= 1 if f ∈ {a, c}q \ cq,

hom
(
(J ORq ,x)→ (P4, f)

)
= 2 if f = cq.

Again, J ORq satisfies the assumptions of Lemma 2.3 and we obtain that ORq is realizable by
P4.

Finally, consider an arbitrary relation R ⊆ {a, c}q. Let {f1, f2, . . . , fp} = {a, c}q \ R, and
for each i ∈ [p] let Ri := {a, c}q \ {fi}. Clearly R =

⋂p
i=1Ri.

Thus, by Lemma 2.1, it is sufficient to show that each Ri is realizable. Fix some i and
let J be the set of the indices j ∈ [q], such that the j-th coordinate of fi is a (and the other
ones are c). If |J | = ∅, then Ri = ORq and we are done. So suppose that |J | ≥ 1 and we can
realize all relations R′ = {a, c}q \ {f}, where the number of coordinates of f that are equal to
a is smaller than |J |.

So let us choose some j ∈ J . For each tuple f ∈ {a, c}q let f ′ be the tuple in {a, c}q obtained
from f by changing the j-th coordinate from a to c or from c to a, whichever applies. Consider
R′i = {a, c}q \ {f ′i}. Since j ∈ J , f ′i is obtained from fi by swapping the j-th coordinate from
a to c. By the inductive assumption, R′i is realizable.

Note that Ri = {f | f ′ ∈ R′i}. We will use Corollary 2.4 to show that Ri is realizable by
the structure H = (V (P4), {E(P4), R′i,NEQ}), which implies that Ri is realizable by P4 =
(V (P4), E(P4)). Slightly abusing notation, we use E, R′i, and NEQ also as corresponding
relation symbols in the signature of H. We define a gadget J on q+ 1 vertices {v1, . . . , vq, u}
with interface x = (v1, . . . , vq). We apply R′i to the tuple (v1, . . . vj−1, u, vj+1, . . . vq) and
we apply NEQ to (u, vj), i.e. R′Ji = {(v1, . . . vj−1, u, vj+1, . . . vq)}, NEQJ = {(u, vj)}, and
EJ = ∅. Clearly, J has the same signature as H. Moreover, hom

(
(J ,x) → (H, f)

)
6= 0 iff

f ∈ Ri.

Note that Lemma 3.4 together with the proof of Theorem 3.3 already yield the following
result.

Corollary 3.5. Assuming the #SETH, there is no ε > 0, such that #LHom(P4) on n-vertex
instances given with a path decomposition of width t can be solved in time (2− ε)t · nO(1).

3.4 Structure of P4s in H

Let H be a bipartite graph with bipartition (X,Y ). We define

P3(H) :={S ⊆ V (H) | H[S] ' P3},
P4(H) :={S ⊆ V (H) | H[S] ' P4}.
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By AdjP4
(H) we denote the following graph:

V (AdjP4
(H)) :=P4(H),

E(AdjP4
(H)) :=

{
SS′ ∈ P4(H)2 | (|(S ∩ S′) ∩X| = 2 ∨ |(S ∩ S′) ∩ Y | = 2)

}
.

Informally speaking, we think of two induced four-vertex paths as adjacent if they share two
vertices from one bipartition class. Let us point out that in the definition of E(AdjP4

(H)) we
do not insist that S 6= S′. Therefore the graph AdjP4

(H) is reflexive, i.e., every vertex has a
loop. This is a technical detail that allows us to simplify some arguments.

Lemma 3.6. Let H be a connected irredundant bipartite graph. Then AdjP4
(H) is connected.

Proof. Note that if |V (H)| ≤ 3, then AdjP4
(H) = ∅ and we are done. Thus, suppose that H

has at least four vertices. Let C1, C2, . . . , Cp be the connected components of AdjP4
(H). Let

c : P4(H)→ [p] be a function such that c(S) = i if and only if S belongs to Ci.
First, let us observe the following.

Claim 3.6.1. Every edge and every induced P3 in H is contained in some induced P4.

Proof of Claim. First, let us argue that every induced P3 is contained in some induced P4. Let
(x− y− z) be an induced P3. Since the vertices x and z do not have the same neighborhood,
one of them, say x, has a neighbor w that is not adjacent to z. Then (w − x − y − z) is an
induced P4. Now consider an edge xy. Since H is connected and has at least three vertices,
one of the endvertices of xy, say y, has a neighbor z. Since H is bipartite, (x − y − z) is an
induced P3. As we have already shown, it is contained in some induced P4. /

Note that if A ∈ P3(H), then the set SA := {S ∈ P4(H) | A ⊆ S} is non-empty (by
Claim 3.6.1) and induces a clique in AdjP4

(H). In particular, for any S, S′ ∈ SA it holds
that c(S) = c(S′). We introduce a labeling ` : P3(H) → [p], where `(A) = i if and only if
c(SA) = {i}.

Claim 3.6.2. For any edge xy ∈ E(H) and any A,B ∈ P3(H) such that {x, y} ⊆ A ∩ B, it
holds that `(A) = `(B). Consequently, all sets S ∈ P4(H) that contain xy belong to the same
connected component of AdjP4

(H).

Proof of Claim. Let A = {x, y, a} and B = {x, y, b}, where a 6= b. If {x, y, a, b} ∈ P4(H), then
{x, y, a, b} ∈ SA ∩ SB and thus `(A) = `(B) = c({x, y, a, b}).

So suppose that {x, y, a, b} /∈ P4(H). This is possible in two cases: (1) if a and b are
adjacent to the same vertex from {x, y} (and thus H[{x, y, a, b}] is a star with 3 leaves), or
(2) if ab ∈ E(H) (and thus H[{x, y, a, b}] is a 4-cycle).

By Claim 3.6.1, each of the sets A,B belongs to some induced P4, i.e., there are vertices
c, d, such that {x, y, a, c}, {x, y, b, d} ∈ P4(H). Note that it is possible that c = d.

We will show that there is a walk from {x, y, a, c} to {x, y, b, d} in AdjP4
(H), which will

prove that c({x, y, a, c}) = c({x, y, b, d}) and consequently `(A) = `(B). We consider some
cases.

Case 1. Suppose that H[{x, y, a, b}] is a star with 3 leaves. By symmetry we assume that
a, b, x ∈ N(y). We consider possible positions of c and d. One of the following cases
occurs, see also Figure 3.

19



x x xy y y

a

b

a

b

a

b

c

d

c

d d

c

Figure 3: Possible configurations in the proof of Case 1 in Claim 3.6.2. Dashed edges may,
but do not have to exist. Note that the first and last subcase vertices c and d may coincide.

Subcase 1.1. N(x) ∩ {c, d} = 0. If none of the edges cb, ad exists in H, then we have
a walk

(
{x, y, a, c} − {c, a, y, b} − {a, y, b, d} − {x, y, b, d}

)
in AdjP4

(H).
If at least one of these edges, say cb, exists in H, then we have a walk(
{x, y, a, c} − {x, y, b, c} − {x, y, b, d}

)
in AdjP4

(H).
Subcase 1.2. N(x)∩{c, d} = 1. By symmetry, assume that dx ∈ E(H). If ad /∈ E(H),

then we have a walk
(
{x, y, a, c}−{d, x, y, a}−{d, x, y, b}

)
in AdjP4

(H).
If cb ∈ E(H), then we have a walk

(
{x, y, a, c}−{x, y, b, c}−{d, x, y, b}

)
in AdjP4

(H). If cb /∈ E(H) and ad ∈ E(H), then we have a walk(
{x, y, a, c} − {c, a, y, b} − {d, a, y, b} − {d, x, y, b}

)
in AdjP4

(H).
Subcase 1.3. N(x)∩{c, d} = 2. If one of the edges cb, ad, say ad, does not exist in H,

then we have a walk
(
{c, x, y, a}−{d, x, y, a}−{d, x, y, b}

)
in AdjP4

(H).
If both cb, ad ∈ E(H), then we have a walk

(
{c, x, y, a} − {c, x, d, a} −

{d, x, c, b} − {d, x, y, b}
)
in AdjP4

(H).

Case 2. Suppose that H[{x, y, a, b}] is a 4-cycle. By symmetry we assume that consecutive
vertices of the cycle are a, x, y, b. Note that c is adjacent to exactly one of a, y, and
d is adjacent to exactly one of x, b, see also Figure 4.

Subcase 2.1. dx, cy ∈ E(H). If cd /∈ E(H), then we have a walk
(
{a, x, y, c} −

{d, x, y, c} − {d, x, y, b}
)
in AdjP4

(H). If cd ∈ E(H), then we have a
walk

(
{a, x, y, c} − {a, x, d, c} − {b, a, x, d} − {b, y, x, d}

)
in AdjP4

(H).
Subcase 2.2. Exactly one of the edges xd, yc, say xd exists in H.

If cd /∈ E(H), then we have a walk
(
{c, a, x, y}−{c, a, x, d}−{b, a, x, d}

)
in AdjP4

(H). If cd ∈ E(H), then we have a walk
(
{c, a, x, y}−{c, d, x, y}−

{d, x, y, b}
)
in AdjP4

(H).
Subcase 2.3. ac, bd ∈ E(H). If cd /∈ E(H), then we have a walk

(
{c, a, x, y} −

{c, a, b, y} − {c, a, b, d} − {x, a, b, d} − {x, y, b, d}
)
in AdjP4

(H). If cd ∈
E(H), then we have a walk

(
{c, a, x, y} − {x, a, c, d} − {x, a, b, d} −

{x, y, b, d}
)
in AdjP4

(H).

As these are all possible cases, the proof of the claim is complete. /
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Figure 4: Possible configurations in the proof of Case 2 in Claim 3.6.2. Dashed edges may,
but do not have to exist.

Claim 3.6.2 allows us to define a labeling `′ of edges ofH, analogous to `: for xy ∈ E(H), we
set `′(xy) = c(S), where S is any element of P4(H) with {x, y} ∈ S. Note that by Claim 3.6.1,
such a set S always exists and by Claim 3.6.2, the value of `′(xy) does not depend on the
choice of S. Note that for every induced path (x−y−z) we have `({x, y, z}) = `′(xy) = `′(yz).

Now we claim that for any two edges e, f ∈ E(H) we have `′(e) = `′(f). For contradiction,
suppose this is not the case. Since H is connected, this means that there are two edges xy
and xz, where y 6= z, such that `′(xy) 6= `′(xz). However, this cannot happen as `′(xy) =
`({x, y, z}) = `′(yz), since {x, y, z} ∈ P3(H).

3.5 Constructing (x, y)-Forcers

Definition 3.7 ((x, y, S)-distinguisher, (x, y, S)-forcer). Let H = (V,E) be a bipartite graph.
Let S be a one-sided subset of V with distinct vertices x, y ∈ S. Let {α, β} be a one-sided
subset of V , and let R be a relation in S × {α, β}.

1. R is an (x, y, S)-distinguisher with respect to (α, β) if it has the following properties:

• (x, α) ∈ R, (x, β) /∈ R.
• (y, β) ∈ R.
• ∀v ∈ S : R ∩ {(v, α), (v, β)} 6= ∅.

2. R is an (x, y, S)-forcer with respect to (α, β) if it is an (x, y, S)-distinguisher with respect
to (α, β) with the additional property:

• (y, α) /∈ R.

We say that a relation R is an (x, y, S)-distinguisher (resp. (x, y, S)-forcer) if there are is
a one-sided set {α, β}, such that R is an (x, y, S)-distinguisher (resp. (x, y, S)-forcer) with
respect to (α, β).

The following lemma is a crucial building block that we will use repeatedly in the re-
sults leading up to the proof of Lemma 3.2. Here, given a realizable (x, y, S)-distinguisher
with respect to some pair of vertices on a four-vertex path, we use Lemma 2.3 to turn this
distinguisher into a forcer.
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Lemma 3.8. Let H = (V,E) be an irredundant connected bipartite graph. Let S be a one-
sided subset of V with distinct vertices x, y ∈ S. Let R be a relation that is realizable by H
such that, for some induced 4-vertex path (a− b− c− d) in H, R is an (x, y, S)-distinguisher
with respect to (a, c) or with respect to (c, a). Then the following relations are realizable by H.

1. an (x, y, S)-forcer with respect to (a, c),
2. an (x, y, S)-forcer with respect to (c, a),
3. an (x, y, S)-forcer with respect to (b, d).
4. an (x, y, S)-forcer with respect to (d, b),

Proof. First note that, since R is realizable by H, there is a pathwidth-preserving reduction
from #LHom((V,E∪{R})) to #LHom(H). So it suffices to show that the relations in items 1-4
are realizable by H′ = (V,E ∪ {R}).

Recall that by Lemma 3.4, the relations NEQ({a, c}) = {(a, c), (c, a)} and NEQ({b, d}) =
{(b, d), (d, b)} are realizable by P4 and thus by H. Note that if R is an (x, y, S)-distinguisher
with respect to (c, a), then R;NEQ({a, c}) is an (x, y, S)-distinguisher with respect to (a, c).
Furthermore, by Lemma 2.1, this relation is realizable by H′. So from now on we can assume
that R is an (x, y, S)-distinguisher with respect to (a, c), realizable by H′.

Let us first focus on proving item 1.

Claim 3.8.1. Let R is an (x, y, S)-distinguisher with respect to (a, c), realizable by H′. Then
there is an (x, y, S)-forcer R′ with respect to (a, c), realizable by H′.

Proof of Claim. Note that if (y, a) /∈ R then we can choose R′ = R and are done. So we can
assume that (y, a) ∈ R.

Slightly overloading notation, we use E and R also as the relation symbols in σ(H′)
corresponding to the relations E and R, respectively. We now define a gadget J = (U,S)
with two interface vertices s, t that has the same signature as H′. The vertices of J are
U = {s, t, t′, u1, u2, u3}, the edge relation is EJ = E((t − u1 − t′ − u2 − u3)), and RJ =
{(s, t), (s, t′)}. As lists we set L(u1) = L(u2) = {b, d} and L(u2) = {a, c}. Intuitively, J is a
path (t− u1 − t′ − u2 − u3), where in addition s, t and s, t′ are subject to the relation R. The
gadget J is illustrated in the following figure:

s

t

t′

u1 → {b, d}

u2

→ {b, d}
u3

→ {a, c}

R

R

Consider the following subsets of S.

• Sa = {v ∈ S | (v, a) ∈ R, (v, c) /∈ R},
• Sc = {v ∈ S | (v, a) /∈ R, (v, c) ∈ R},
• Sac = {v ∈ S | (v, a), (v, c) ∈ R}.
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Note that R = (Sa × {a}) ∪ (Sc × {c}) ∪ (Sac × {a, c}), x ∈ Sa, and y ∈ Sac. We choose
R′ = R \ {(v, a) | v ∈ Sac}, i.e., R′ = (Sa ×{a})∪ (Sc ×{c})∪ (Sac ×{c}). Note that R′ is an
(x, y, S)-forcer with respect to (a, c). Let us now show that R′ is realizable by H′. For each
tuple (v, w) ∈ V 2, we determine hom

(
(J , (s, t))→ (H′, (v, w))

)
:

• If v ∈ Sa, hom
(
(J , (s, t))→ (H′, (v, a))

)
= 2.

• For v ∈ Sc, hom
(
(J , (s, t))→ (H′, (v, c))

)
= 6.

• For v ∈ Sac, hom
(
(J , (s, t))→ (H′, (v, a))

)
= 5.

• For v ∈ Sac, hom
(
(J , (s, t))→ (H′, (v, c))

)
= 8.

• Otherwise, hom
(
(J , (s, t))→ (H′, (v, w))

)
= 0.

So, for each f ∈ R′ and g ∈ V 2 \R′,

1. hom
(
(J , (s, t))→ (H′, f)

)
∈ {2, 6, 8}.

2. hom
(
(J , (s, t))→ (H′,g)

)
∈ {0, 5}.

Therefore, we can apply Lemma 2.3 to complete the proof. /

Let R′ be the (x, y, S)-forcer with respect to (a, c) given by Claim 3.8.1. To obtain item 2,
notice that R′;NEQ({a, c}) is an (x, y, S)-forcer with respect to (c, a), and by Lemma 2.1 it
is realizable by H′.

Now let us focus on (3). Note that R′;R{a,c}→{b,d} is an (x, y, S)-distinguisher with respect
to (b, d), which is realizable by H′ by Lemma 2.1. Thus, applying Claim 3.8.1 with a switched
to b and c switched to d, we obtain that an (x, y, S)-forcer R′′ with respect to (b, d) is realizable
by H′.

Finally, to show (4), note that R′′;NEQ({b, d} is an (x, y, S)-forcer with respect to (d, b),
realizable by H′ (by Lemma 2.1). This completes the proof.

We show a strengthening of Lemma 3.8: Given a realizable (x, y, S)-distinguisher with
respect to some pair of vertices that are potentially far apart in H, we can obtain a realizable
(x, y, S)-forcer with respect to some pair of vertices on an induced four-vertex path. Moreover,
since P4s form a connected structure in H (recall Lemma 3.6), we can even choose a P4 in H
and obtain a forcer with respect to any one-sided pair from this very P4.

Lemma 3.9. Let H = (V,E) be an irredundant connected bipartite graph. Fix an induced 4-
vertex path (a−b−c−d) in H. Let S be a one-sided subset of V with distinct x, y ∈ S. Suppose
there is an (x, y, S)-distinguisher R′ that is realizable by H. Then there is an (x, y, S)-forcer
R with respect to (a, c) such that R is realizable by H.

Proof. The proof is divided into two parts. First, we show that there is a realizable forcer
with respect to a one-sided pair of vertices on some induced P4 in H.

Claim 3.9.1. There exist an induced 4-vertex path (a′−b′−c′−d′) in H and an (x, y, S)-forcer
with respect to (a′, c′) that is realizable by H.
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Proof of Claim. Let {α, β} be a one-sided set such that R′ is an (x, y, S)-distinguisher with
respect to (α, β). If α and β have a common neighbor then, since H is irredundant and has at
least four vertices, there is an induced 4-vertex path in H that is of the form (α− b′− β − d′)
or of the form (d′ − α− b′ − β). In either case, the statement follows from Lemma 3.8.

Otherwise, there is a shortest path P = (p1 − . . . − pk) from α to β (p1 = α, pk = β)
with k vertices. Since α and β are in the same bipartition class we have k ≥ 5. For each
i ∈ {1, . . . , k − 4}, the relation

Ri = R{pi,pk}→{pi+1,pk−1};R{pi+1,pk−1}→{pi+2,pk}

is a (pi, pk, {pi, pk})-forcer with respect to (pi+2, pk), and Ri is realizable by H according
to Lemma 2.1. So, by Lemma 2.1, the relation R′;R1;. . . ;Rk−4 is a realizable (x, y, S)-
distinguisher with respect to (pk−2, pk), where (pk−3 − pk−2 − pk−1 − pk) is an induced path
in H. By Lemma 3.8, there is also a realizable (x, y, S)-forcer with respect to (pk−2, pk). /

Let (a′ − b′ − c′ − d′) be as in Claim 3.9.1. Note that H satisfies the assumptions of
Lemma 3.6, so there is a sequence P (1), P (2), . . . , P (s) of subsets of H, such that (i) each P (i)

induces a P4 in H, (ii) P (1) = {a′, b′, c′, d′} and P (s) = {a, b, c, d}, and (iii) for each i ≤ s− 1,
sets P (i) and P (i+1) share two vertices from the same bipartition class.

We prove the statement by induction on s. If s = 1, then either (a − b − c − d) =
(a′ − b′ − c′ − d′) or (a− b− c− d) = (d′ − c′ − b′ − a′). By Lemma 3.8, in either case there is
a realizable (x, y, S)-forcer with respect to (a, c) and we are done.

So assume that s ≥ 2 and there is an (x, y, S)-forcer R′′ with respect to (a′′, c′′), such that
R′′ is realizable by H, where H[P (s−1)] = (a′′ − b′′ − c′′ − d′′). Let (s, t) ∈ {(a′′, c′′), (b′′, d′′)}
be such that s, t ∈ P s−1 ∩ P s. Applying Lemma 3.8 for the path H[P s−1], we obtain that an
(x, y, S)-forcer with respect to (s, t) is realizable by H. Since s, t ∈ P s, where s and t are in
the same bipartition class, we have (s, t) ∈ {(a, c), (c, a), (b, d), (d, b)}. Now using Lemma 3.8
for the path H[P s] = (a− b− c−d), we conclude that an (x, y, S)-forcer with respect to (a, c)
is realizable by H.

Recall from Lemma 3.4 that the structure of a 4-vertex path is rich enough to encode
basic binary relations. In Lemma 3.9 we showed how to obtain forcers with respect to some
specified pair (a, c) on a 4-vertex path. In the next lemma we show that such a collection of
forcers lets us realize more expressive relations.

Lemma 3.10. Let H = (V,E) be an irredundant connected bipartite graph. Let (a− b− c−d)
be an induced 4-vertex path in H, and let S be a one-sided subset of V . If for every x, y ∈ S
there is an (x, y, S)-distinguisher realizable by H, then, for every fixed p ≥ 1 and q ≥ 0, every
relation R ⊆ Sp × {a, c}q is realizable by H.

Proof. Let |S| = s and enumerate S as {x1, x2, . . . , xs}. Let (a− b− c− d) be a fixed 4-vertex
path in H. By the assumption of the lemma, for all distinct xi, xj ∈ S there is some (xi, xj , S)-
distinguisher realizable by H. Thus, by Lemma 3.9, there is also an (xi, xj , S)-forcer Ri,j with
respect to (a, c), realizable by H.

First, let us define an auxiliary relation I ⊆ S × {a, c}s(s−1) and show that it is realizable
by H. Recall from Section 2 that I(x) = {(v1, . . . , vs(s−1)) ∈ {a, c}s(s−1) | (x, v1, . . . , vs(s−1)) ∈
I}. We say that a relation I is an indicator if

• I(x) 6= ∅ for all x ∈ S, and
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• I(x) ∩ I(x′) = ∅ for all distinct x, x′ ∈ S.
Intuitively, each element of I(x) uniquely represents the value x, and every x ∈ S admits such
a representation.

Claim 3.10.1. There is an indicator I ⊆ S × {a, c}s(s−1) realizable by H.

Proof of Claim. For brevity, denote Ind := {(i, j) | i, j ∈ [s], i 6= j}. As for each (i, j) ∈ Ind,
the forcer Ri,j is realizable by H, it is sufficient to show an indicator realizable by the structure
H′ = (V,

⋃
(i,j)∈Ind{Ri,j}).

We define a structure I = (U,S) with the same signature as H′. The vertex set of I is
U = {u} ∪

⋃
(i,j)∈Ind{ui,j}. We also define an interface u of I by setting

u = (u, u1,2, . . . , u1,s, u2,1, u2,3, . . . , u2,s, . . . , us,1, . . . , us,s−1).

For all (i, j) ∈ Ind, we set RIi,j = {(u, ui,j)}, i.e., the (xi, xj , S)-forcer Ri,j is applied to the
tuple (u, ui,j). Consider the set

I := {f ∈ V s(s−1)+1 | hom
(
(I,u)→ (H′, f)

)
6= 0}

and let (f, f1,2, . . . , f1,s, f2,1, f2,3, . . . , f2,s, . . . , fs,1, . . . , fs,s−1) ∈ I.
First, clearly f ∈ S and for all (i, j) ∈ Ind we have fi,j ∈ {a, c}. Next, if f = xi for i ∈ [s],

then the properties of forcers imply that

• fi,j = a for all j, such that (i, j) ∈ Ind, and

• for all i′ ∈ [s] \ {i} there is j, such that (i′, j) ∈ Ind and fi′,j = c.

Therefore I(xi) ∩ I(xi′) = ∅ for all distinct i, i′ ∈ [s]. Finally, by the definition of a forcer,
we note that for all i ∈ [s] and all (i′, j′) ∈ Ind we have that at least one of (xi, a) or (xi, c)
is in Ri′,j′ , and thus I(xi) 6= ∅. Summing up, I is an indicator and by Corollary 2.4 it is
realizable by H. Note that the exact definition of I depends on the exact definitions of Ri,j
for (i, j) ∈ Ind. /

Let I be the indicator given by Claim 3.10.1; it is realizable by H. For each i ∈ [s], we fix
some element id(xi) from I(xi). We think of id(xi) as a unique identifier of xi. The properties
of I ensure these identifiers are pairwise distinct. Note that id(xi) ∈ {a, c}s(s−1).

Let p ≥ 1 and q ≥ 0 be integers and consider a relation R ⊆ Sp × {a, c}q. Let RI ⊆
{a, c}p(s−1)s+q be the relation defined as follows:

RI = {(id(y1), id(y2), . . . , id(yp), b1, b2, . . . , bq) | (y1, y2, . . . , yp, b1, b2, . . . , bq) ∈ R}.

Intuitively, we may see RI as R “translated” to the the ground set {a, c}, where the translation
of each element of S to a sequence over {a, c} is provided by the choice of id(·). By Lemma 3.4,
the relation RI is realizable by H. Thus, in order to prove that R is realizable by H, it is
sufficient to show that R is realizable by a structure H′ = (V, {I,RI}). Slightly abusing
notation we use {I,RI} also to denote the signature of H′. Consider a structure R = (U,S)
with signature {I,RI}, defined as follows:

U =
⋃
`∈[p]

{y`, u`1, . . . , u`s(s−1)} ∪
⋃
`∈[q]

{b`},

IR =
⋃
`∈[q]

{(y`, u`1, . . . , u`s(s−1))},

RRI ={(u1
1, . . . , u

1
s(s−1), u

2
1, . . . , u

2
s(s−1), . . . , u

p
1, . . . , u

p
s(s−1), b1, . . . , bq)}.
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Define y = (y1, y2, . . . , yp, b1, . . . , bq). It is straightforward to verify that hom
(
(R,y) →

(H′, f)
)
6= 0 if and only if (id(y1), id(y2), . . . , id(yp), b1, . . . , bq) ∈ RI , which in turn happens if

and only if (y1, y2, . . . , yp, b1, . . . , bq) ∈ R. Thus by Corollary 2.4 the relation R is realizable
by H.

Let us now introduce one more special type of relation. Consider a bipartite graph H =
(V,E) and a subset S ⊆ V . Let (X,Y ) be a partition of S. Moreover, let a, c be two distinct
vertices in V . A relation R ⊆ S × {a, c} is an (X,Y )-partitioner with respect to (a, c) if:

• for every x ∈ X it holds that R(x) = {a},

• for every y ∈ Y it holds that R(y) = {c}.

As each partitioner is a relation in S×{a, c}, Lemma 3.10 immediately yields the following.

Corollary 3.11. Let H = (V,E) be an irredundant connected bipartite graph. Let (a−b−c−d)
be an induced 4-vertex path in H, and let S be a one-sided subset of V . If for every x, y ∈ S
there is an (x, y, S)-distinguisher realizable by H, then for every partition (X,Y ) of S, the
(X,Y )-partitioner with respect to (a, c) is realizable by H.

3.6 Proof of Lemma 3.2

In this section we finally prove Lemma 3.2. Let us first discuss the plan. Lemma 3.2 will
easily follow from Lemma 3.10 (for q = 0), provided that for all distinct x, y ∈ S, there is
an (x, y, S)-distinguisher realizable by H. We prove this statement inductively, essentially
deriving new forcers from forcers that are “smaller” with respect to some measure on (x, y, S).
On the way, we use Lemma 3.9 to turn distinguishers into forcers, and we use Corollary 3.11
to turn forcers into partitioners.

Lemma 3.12. Let H = (V,E) be an irredundant connected bipartite graph with irr(H) ≥ 2.
Let S be a one-sided subset of V , and let x, y be distinct vertices in S. Fix any induced 4-vertex
path (a − b − c − d) in H. Then there is an (x, y, S)-forcer R with respect to (a, c) such that
R is realizable by H.

Proof. Let S and S′ be one-sided irredundant sets (not necessarily in the same part of the
bipartition) such that S contains two distinct vertices x, y ∈ S and S′ contains two distinct
vertices x′, y′ ∈ S′. We define an order by setting (x′, y′, S′) < (x, y, S) if one of the following
holds:

• |S′| < |S|, or
• |S′| = |S| and dist({x′, y′}, S′ \ {x′, y′}) < dist({x, y}, S \ {x, y}).

We prove the statement of the lemma by induction with respect to this order. Note that
(x, y, S) is a minimal element if S = {x, y}.

Suppose that the following holds:

There is an (x, y, S)-distinguisher or a (y, x, S)-distinguisher realizable by H. (4)

In the first case we can apply Lemma 3.9 to obtain an (x, y, S)-forcer with respect to (a, c)
that is realizable by H. In the second case, note that a (y, x, S)-forcer with respect to (a, c),
obtained by the application of Lemma 3.9, is an (x, y, S)-forcer with respect to (c, a). Thus,
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by Lemma 3.8, we again obtain an (x, y, S)-forcer with respect to (a, c) that is realizable by
H. Therefore, in order to show the statement of the lemma, it suffices to show (4).

We first consider the base case S = {x, y}. Since H is irredundant we have N(x) 6= N(y).
Suppose there is a vertex q ∈ N(y)\N(x) (the other case is analogous). Since H is connected
there is some vertex p ∈ N(x) (possibly p ∈ N(x) ∩N(y)). Since S is one-sided R{x,y}→{p,q}
is an (x, y, S)-distinguisher with respect to (p, q) (if p /∈ N(y) it is even a forcer). This is what
we need according to (4) and this completes the base case.

For the inductive step, let x, y, S be as given in the statement of the lemma. We can
assume S 6= {x, y}. To shorten notation let S0 = S \ {x, y}. Let P be a shortest path from
{x, y} to S0. So P is of the form (p1 − . . .− pk), where p1 ∈ {x, y}, pk ∈ S0, and k ≥ 3 (since
S0 is assumed to be non-empty). Let p = p2, then p is a neighbor of at least one of x or y.
Since N(x) 6= N(y) and H is connected we can choose a vertex q, such that both x and y
have a neighbor in {p, q}, and at least one of p or q has exactly one neighbor in {x, y}. Note
that, according to (4), it does not cause any issues to rename the vertices x and y because
a realizable (y, x, S)-distinguisher with respect to (a, c) also gives a realizable (x, y, S)-forcer
with respect to (a, c). So, without loss of generality (by renaming x and y), we can assume
that p ∈ N(x) and q ∈ N(y) \N(x).

Let S′0 be a minimal-size set with the properties pk−1 ∈ S′0 and S0 ⊆ N(S′0). Thus,
|S′0| ≤ |S0|. Let S′ = {p, q} ∪ S′0. Clearly, S′ is a one-sided set with |S′| ≤ |S|.

Case 1 Suppose that k = 3 and consequently p = p2 = pk−1. Then |S′| < |S|. So, for any
distinct x′, y′ ∈ S′, we have (x′, y′, S′) < (x, y, S), and consequently, by the induction hy-
pothesis, there is an (x′, y′, S′)-forcer with respect to (a, c) that is realizable by H. From
Corollary 3.11 we obtain that for every partition (X,Y ) of S′, the (X,Y )-partitioner with
respect to (a, c) is realizable by H. In particular, let R′ be the (S′ ∩N(x), S′ \N(x))-
partitioner. Then R′ is realizable by H, and R = RS→S′ ;R

′ is also realizable by H
(Lemma 2.1). We now show that R is an (x, y, S)-distinguisher with respect to (a, c).
We have p ∈ RS→S′(x) = S′ ∩N(x) and, for each v ∈ S′ ∩N(x), we have R′(v) = {a}.
It follows that R(x) = {a}. Since q ∈ RS→S′(y) but q /∈ N(x), we have R′(q) = {c}
and consequently c ∈ R(y). Since S0 ⊆ N(S′0) every vertex in S has a neighbor in S′.
Therefore, for u ∈ S, at least one of (u, a) or (u, c) is in R. This shows that R is an
(x, y, S)-distinguisher with respect to (a, c). By (4), we are done.

Case 2 Suppose k > 3, i.e., k ≥ 5 (since {x, y} is one-sided). We know that |S′0| ≤ |S0| and
consequently |S′| ≤ |S|— but now these sets could have the same cardinality. However,
by the choice of P , note that dist({p, q}, S′\{p, q}) ≤ k−2 < k = dist({x, y}, S\{x, y}).
So, we have (p, q, S′) < (x, y, S) and by the induction hypothesis there is a (p, q, S′)-
forcer R′ with respect to (a, c). By the choice of P it also follows that no vertex in S0

has a common neighbor with x or y, and therefore x has no neighbor in S′0. Thus, p is
the only neighbor of x in S′. Consequently, R = RS→S′ ;R

′ is an (x, y, S)-distinguisher
with respect to (a, c), and this is what we need according to (4).

This completes the proof.

We can now prove Lemma 3.2, which we restate for convenience.

Lemma 3.2. Let H = (V,E) be a connected bipartite graph with irr(H) ≥ 2, and let S ⊆ V
be a one-sided irredundant set. For every fixed p ≥ 1, every relation R ⊆ Sp is realizable by
H.
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Proof. Let S′ be a maximal-size irredundant superset of S in V . Note that every maximal-size
irredundant set in H contains a vertex from each class of vertices with identical neighborhood.
Thus, H ′ = H[S′] is connected as H is connected. Furthermore, we have irr(H ′) = irr(H) ≥ 2.
Since H ′ is an induced subgraph of H it suffices to show that every relation in Sp is realizable
by H ′. Since irr(H ′) ≥ 2, the graph H ′ is not a complete bipartite graph and therefore it
contains an induced four-vertex path (a− b− c−d). By Lemma 3.12, for every pair of distinct
x, y ∈ S, there is an (x, y, S)-forcer R with respect to (a, c) such that R is realizable by H ′.
The statement of the lemma follows from Lemma 3.10 for q = 0.

4 Counting list homomorphisms to general graphs H

In this section we discuss how to lift the results from Section 3, where we assumed H to be
bipartite, to the general case.

4.1 Associated bipartite graphs

For a graph H = (V,E), by H∗ we denote its associated bipartite graph, i.e., the graph with
vertex set {v′, v′′ | v ∈ V } and edge set {u′v′′, u′′v′ | uv ∈ E}. We set V ′ := {v′ | v ∈ V } and
V ′′ := {v′′ | v ∈ V }. So (V ′, V ′′) is a bipartition of H∗. Note that if H = H1 +H2, where +
denotes the disjoint sum, then H∗ = H∗1 +H∗2 .

Recall that if H is connected and nonbipartite, then irr(H) is the cardinality of the largest
irredundant set in H. Let us point out that associated bipartite graphs allow us to provide
a uniform definition of irr(H), which does not need to distinguish bipartite and nonbipartite
graphs.

Observation 4.1. For every graph H it holds that irr(H) = irr(H∗).

Proof. First, observe that S ⊆ V (H) is irredundant if and only if S′ = {v′ | v ∈ S} is
irredundant in H∗ if and only if S′′ = {v′′ | v ∈ S} is irredundant in H∗.

Furthermore, we observe that there is a correspondence between connected components
of H and connected components of H∗. Let H ′ be a connected component of H. If H ′ is
bipartite, then H ′∗ consists of two disjoint copies of H ′ and so irr(H ′) = irr(H ′∗). If H ′ is
nonbipartite, then H ′∗ is connected (and bipartite). Indeed, this follows from the fact that
for every two vertices x, y of H ′ there is an even x-y-walk and an odd x-y-walk in H ′. Thus
all vertices x′, x′′, y′, y′′ are in the same connected component of H ′.

Consequently, each bipartite component H ′ of H corresponds to two components of H∗,
both isomorphic to H ′, and each nonbipartite component H ′ of H corresponds to one con-
nected component of H∗, i.e., (H ′)∗.

Now the claim easily follows from the previous observations about S, S′ and S′′.

Note that H∗ is a biclique if and only if H is a reflexive clique. Thus, we observe that
irr(H) ≥ 2 if and only if H has a connected component that is not a biclique nor a reflexive
clique. This allows us to restate the complexity dichotomy for #LHom(H), which was orig-
inally observed as a simple consequence of the non-list result of Dyer and Greenhill [10] by
Díaz, Serna, and Thilikos [9], and also by Hell and Nešetřil [16].

Theorem 4.2 ([9, 10, 16]). Let H be a fixed graph. If irr(H) = 1, then #LHom(H) is
polynomial-time solvable, and otherwise it is #P-complete.
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4.2 Algorithm for general graphs H

For an instance (G,L) of #LHom(H), we define its associated instance (G∗, L∗) of #LHom(H∗),
where for all v ∈ V (G)

L∗(v′) = {x′ | x ∈ L(v)} and L∗(v′′) = {x′′ | x ∈ L(v)}.

We say that a homomorphism f : G∗ → H∗ is clean if, for every v ∈ V (G) and x ∈ V (H)
it holds that f(v′) = x′ if and only if f(v′′) = x′′.

Lemma 4.3. There is a bijection between homomorphisms from (G,L) to H and clean ho-
momorphisms from (G∗, L∗) to H∗.

Proof. Consider a homomorphism f : (G,L) → H. Let σ(f) be a mapping f∗ : V (G∗) →
V (H∗) defined as follows. Let v ∈ V (G) and suppose f(v) = x. We set f∗(v′) = x′ and
f∗(v′′) = x′′. It is straightforward to verify that f∗ is a clean homomorphism from (G∗, L∗)
to H∗ and that σ is a bijection.

Using Lemma 4.3 we can show the algorithmic statement of Theorem 1.2. Note that it
follows from the subsequent slightly stronger result.

Theorem 4.4. For each graph H, the #LHom(H) problem on n-vertex instances given along
with a tree decomposition of width at most t can be solved in time irr(H)t · nO(1).

Proof. Consider an instance (G,L) of #LHom(H). By Lemma 4.3, it suffices to count the
number of clean homomorphisms from (G∗, L∗) to H∗.

Let T be a tree decomposition of G with width at most t. We modify it as follows: in
every bag of T we replace every vertex v ∈ V (G) with two vertices v′, v′′ ∈ V (G∗). It is
straightforward to verify that this way we obtain a tree decomposition of G∗ with width at
most 2t; let us call this decomposition T ∗.

First, just like in the proof of Theorem 3.1, we reduce the problem to its equivalent weighted
version with each list of size at most irr(H∗) = irr(H). Consider one bag of T ∗ and recall
that we are only interested in counting the number of clean homomorphisms from G∗ to H∗.
Therefore, even though the size of the bag is at most 2t, there are at most irr(H)t colorings
that could possibly be extended to a clean homomorphism from G∗ to H∗.

Thus, by an argument analogous to the one in the proof of Theorem 3.1, we obtain the
desired running time.

4.3 Hardness for general graphs H

Recall the definition of consistent instances from the beginning of Section 3. The following
lemma is a crucial tool used in our hardness reduction.

Lemma 4.5. For a consistent instance (G,L′) of #LHom(H∗), define L : V (G) → 2V (H) as
follows: L(v) := {x | {x′, x′′}∩L′(v) 6= ∅}. There is a bijection between homomorphisms from
(G,L′) to H∗ and homomorphisms from (G,L) to H.

Proof. For a homomorphism f : (G,L′) → H∗, define σ(f) : V (G) → V (H) as follows. If
f(v) ∈ {x′, x′′}, then σ(f)(v) = x. It is straightforward to verify that σ(f) is a homomorphism
from (G,L) to H. Furthermore, σ is a bijection – as the instance (G,L′) is consistent, for no
v ∈ V (G) and x ∈ V (H) it holds that x′, x′′ ∈ L′(v).
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Now we are ready to prove the complexity statement in Theorem 1.2. Again, we will
actually show a slightly stronger result, where we consider pathwidth as the parameter.

Theorem 4.6. Let H be a graph with irr(H) ≥ 2. Assuming the #SETH, there is no ε >
0, such that #LHom(H) on connected bipartite n-vertex instances G can be solved in time
(irr(H) − ε)pw(G) · nO(1), even if pw(G) = tw(G) and G is given along with an optimal path
decomposition.

Proof. Note that the associated graph H∗ contains a connected component other than a
biclique and therefore irr(H∗) ≥ 2. We reduce from #LHom(H∗). Let (G′, L′) be an instance
of #LHom(H∗), where G′ has n vertices and is given along with a path decomposition P with
width t. Recall from the proof of Theorem 3.1 that we can assume that the instance (G′, L′)
is consistent.

Let (G′, L) be an instance of #LHom(H) constructed as in Lemma 4.5, note that the lists
L are computed in polynomial time. By Lemma 4.5, we know that hom

(
(G′, L′) → H∗

)
=

hom
(
(G′, L) → H

)
. Now we modify G′ to make sure that the treewidth and the pathwidth

of our instance is exactly t.
Let v be an arbitrary vertex of G′ that appears in the last bag of P. Let G be the graph

obtained from G′ by adding 2t− 1 new vertices, which, together with v, induce a biclique Kt,t

and are nonadjacent to any other vertices of G′. Let A and B be the bipartition classes of
this biclique, where v ∈ A.

The number of vertices of G is n+ 2t− 1 ≤ 3n. Furthermore, as tw(G′) ≤ pw(G′) ≤ t and
tw(Kt,t) = pw(Kt,t) = t, we conclude that tw(G) = pw(G) = t. Finally, it is easy to obtain
an optimal path decomposition of G by appending to P an optimal path decomposition of
Kt,t, where v appears in the first bag.

For each a ∈ L(v), let a′ be an arbitrary neighbor of a in H. Let La : V (G) → 2V (H) be
the list function defined as follows:

La(u) =


{a} if u ∈ A,
{a′} if u ∈ B,
L(u) otherwise.

Since lists La force a unique coloring of vertices in A∪B, we observe that hom
(
(G,La)→

H
)
is equal the number of homomorphisms from (G′, L) to H that map v to a. Consequently,

we obtain

hom
(
(G′, L′)→ H∗

)
= hom

(
(G′, L)→ H

)
=
∑

a∈L(v)

hom
(
(G,La)→ H

)
.

Thus, if for each a ∈ L(v) we could compute hom
(
(G,La)→ H

)
in time (irr(H)−ε)pw(G) ·

(n+ 2t− 1)O(1), then we could also compute hom
(
(G′, L′)→ H∗

)
in time

(irr(H)− ε)pw(G) · (n+ 2t− 1)O(1) = (irr(H∗)− ε)t · nO(1).

Recall that irr(H∗) ≥ 2. By Theorem 3.3, the existence of such an algorithm for #LHom(H∗)
contradicts the #SETH.
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4.4 From #LHom(H) to #Hom(H): special cases

In this section we show two corollaries of our main result that concern non-list problems.
First, let us show that Corollary 3.5 implies the following lower bound.

Corollary 4.7. There is no algorithm that counts all independents sets in n-vertex bipartite
graphs given with a path decomposition of width t in time (2− ε)t ·nO(1) for any ε > 0, unless
the #SETH fails.

Proof. We give a pathwidth-preserving reduction from #LHom(P4). Let (G,L) be an instance
of #LHom(P4), where P4 = (a−b−c−d). Note that we can safely assume that G is bipartite,
as otherwise the answer is clearly 0. Furthermore, similarly as in the proof of Theorem 3.1,
we can assume that G is connected. Let (X,Y ) be a bipartition of G.

Let L′ (resp. L′′) be the list function defined by setting L′(x) = L(x)∩ {a, c} and L′(y) =
L(y)∩{b, d} (resp. L′′(x) = L(x)∩{b, d} and L′′(y) = L(y)∩{a, c}) for every x ∈ X and y ∈ Y .
Observe that in any homomorphism f from G to P4, either f(X) ⊆ {a, c} and f(Y ) ⊆ {b, d},
or f(X) ⊆ {b, d} and f(Y ) ⊆ {a, c}. Thus we have

hom
(
(G,L)→ P4

)
= hom

(
(G,L′)→ P4

)
+ hom

(
(G,L′′)→ P4

)
.

Let us focus on computing hom
(
(G,L′) → P4

)
, as computing hom

(
(G,L′′) → P4

)
is

symmetric. We observe that if for some vertex v ∈ V (G) we have L′(v) = {a} (resp. L′(v) =
{d}), then we can safely remove d (resp. a) from the lists of all neighbors of v, and then delete
the vertex v. On the other hand, if L′(v) = {b} or L′(v) = {c}, then we can safely remove v
from the graph. Let (G̃, L̃) the the instance obtained by exhaustive application of the rules
above and note that

hom
(
(G̃, L̃)→ P4

)
= hom

(
(G,L′)→ P4

)
.

If the list of some vertex is empty, then hom
(
(G̃, L̃)→ P4

)
= 0 and we are done. Otherwise,

every list in L̃ is either {a, c} (for vertices in X) or {b, d} (for vertices in Y ). Consequently,
hom

(
(G̃, L̃) → P4

)
is precisely the number of independent sets in G̃ (the independent set is

formed by the vertices mapped to a and d).
Recall that G̃ is a subgraph of G. Thus, given a path decomposition of G with width at

most t, we can easily obtain a path decomposition of G̃ with width at most t. Now the lower
bound follows directly from Corollary 3.5.

Next, let us focus on the case that H = Kq for q ≥ 3, i.e., counting proper q-colorings of a
given graph. As this problem is a special case of #LHom(Kq), the algorithmic statement fol-
lows immediately from Theorem 4.4. However, Theorem 4.6 proves hardness only for counting
list q-colorings. Let us show a reduction from the problem of counting list q-colorings to the
problem of counting q-colorings. For simplicity, we will only prove hardness parameterized by
the treewidth of the instance graph, but using the same approach as in Theorem 4.6 we can
obtain an analogous result parameterized by the pathwidth. Let us point out that the lower
bound for counting proper q-colorings, conditioned on the SETH, follows from the result for
the decision variant of the problem by Lokshtanov, Marx, Saurabh [22].

Corollary 4.8. Let q ≥ 3. On n-vertex instances with treewidth tw, the number of proper q-
colorings cannot be counted in time (q−ε)tw ·nO(1), for any ε > 0, even if a tree decomposition
of width tw is given as part of the input, unless the #SETH fails.
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Proof. Let G = (V,E) be an n-vertex graph and let L : V → 2[q] be a list function. Suppose
that the treewidth of G is tw and G is given along with a tree decomposition T of width tw.

Let G′ be a graph obtained from G as follows. First, we introduce a q-vertex clique K
with vertices {x1, x2, . . . , xq}. Next, for each v ∈ V and each i ∈ [q], we make v adjacent to
xi if and only if i /∈ L(v).

It is straightforward to observe that (G,L) is a yes-instance of list q-coloring if and only if
G′ is a yes-instance of q-coloring. Furthermore, each proper list coloring of (G,L) corresponds
to exactly q! proper colorings of G′, one for each proper coloring of vertices of K. Thus
hom

(
(G,L)→ Kq

)
= 1

q! · hom
(
G′ → Kq

)
.

The number of vertices of G′ is n+ q. Now let us deal with the treewidth. We can easily
modify the tree decomposition T of G into a tree decomposition T ′ of G′ by including all
vertices of K in every bag. This proves that the treewidth of G′ is at most tw + q. Let us
further modify the instance, so that the treewidth is exactly tw + q. We use a trick similar to
the one in the proof of Theorem 4.6.

Let v be an arbitrary vertex of G′ and let G′′ be obtained from G′ by introducing 2(tw +
q) − 1 new vertices, which, together with v, form a biclique Ktw+q,tw+q. Recall that the
treewidth of Ktw+q,tw+q is exactly tw + q, and the treewidth of G′ is also tw + q. On the
other hand we can turn the tree decomposition T ′ of G′ into a tree decomposition T ′′ of G′′
as follows. Let T̃ be an optimal tree decomposition of the biclique Ktw+q,tw+q. We choose
any bag of T ′ containing v and make it adjacent to any bag of T̃ containing v. This way
we obtain a tree decomposition of G′′ with width tw + q. The number of vertices of G′′ is
n+ q + 2(tw + q)− 1 = O(n).

Now, let f(q, tw) be the number of proper q-colorings of Ktw+q,tw+q with the color of one
vertex fixed. We observe that hom

(
G′ → Kq

)
= 1

f(q,tw) · hom
(
G′′ → Kq

)
.

Thus, if we could count the number of proper q-colorings of G′′ in time (q−ε)tw+qnO(1), we
could count the number of list q-colorings of (G,L) in time (q− ε)tw+qnO(1) = (q− ε)twnO(1).
By Theorem 4.4, this would contradict the #SETH.

5 Conclusion

Let us conclude the paper with the discussion of a potential extension of our results to the
non-list variant of the #LHom(H) problem, i.e., the problem of counting homomorphisms to a
fixed graph H. Denote this problem by #Hom(H). The complexity dichotomy for #Hom(H)
was provided by Dyer and Greenhill [10] and it is exactly the same as for the list variant: the
problem is polynomial-time solvable if every component of H is either a reflexive clique or an
irreflexive biclique, and otherwise it is #P-complete.

While the algorithmic statement of Theorem 1.2 clearly carries over to #Hom(H) (as
#Hom(H) is a restriction of #LHom(H) where all lists are equal to V (H)), our hardness
proof heavily exploits non-trivial lists. The simple tricks we used in Corollaries 4.7 and 4.8
to reduce the list variant of coloring to the non-list variant cannot be easily generalized to
arbitrary graphs H.

Let us point out that the fine-grained complexity of the decision variant of #Hom(H),
parameterized by the treewidth of the instance graph is not fully understood [27].

Typically, the hardness proofs concerning the complexity of (non-list) graph homomor-
phism problems involve some tools from universal algebra and algebraic graph theory [3,15,28].

32



For graphs H1, H2, . . . ,Hp, we define their direct product H1 × · · · ×Hp as follows:

V (H1 × · · · ×Hp) =V (H1)× V (H2)× · · · × V (Hp),

E(H1 × · · · ×Hp) ={(x1, . . . , xp)(y1, . . . , yp) | xiyi ∈ E(Hi) for all i ∈ [p]}.

The following observation is straightforward.

Observation 5.1. Let G and H = H1×· · ·×Hp be two graphs. A function f : V (G)→ V (H)
is a homomorphism if and only if for every i ∈ [p], the function Πi(f) is a homomorphism
from G to Hi.

As an immediate consequence, we obtain

hom
(
G→ H1 × · · · ×Hp

)
=

p∏
i=1

hom
(
G→ Hi

)
.

In other words, if H can be obtained as a direct products of some factors H1, H2, . . . ,Hp,
we can reduce solving #Hom(H) to solving #Hom(Hi) for all i (with the same instance
graph). As irr(Hi) can be much smaller than irr(H), we observe that for some graphs H, the
#Hom(H) problem can be solved faster than the #LHom(H) problem. In particular, while
it was the truth for #LHom(H), the parameter irr(H) is not always the correct base of the
exponential factor appearing in the complexity of an optimal algorithm solving #Hom(H).
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