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ABSTRACT

Observational models enable the analysis of information flow prop-
erties against side channels. Relational testing has been used to
validate the soundness of these models by measuring the side chan-
nel on states that the model considers indistinguishable. However,
unguided search can generate test states that are too similar to
each other to invalidate the model. To address this we introduce
observation refinement, a technique to guide the exploration of
the state space to focus on hardware features of interest. We re-
fine observational models to include fine-grained observations that
characterize behavior that we want to exclude. States that yield
equivalent refined observations are then ruled out, reducing the
size of the space. We have extended an existing model validation
framework, Scam-V, to support refinement. We have evaluated the
usefulness of refinement for search guidance by analyzing cache
coloring and speculative leakage in the ARMv8-A architecture. As
a surprising result, we have exposed SiSCLoak, a new vulnerability
linked to speculative execution in Cortex-A53.
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1 INTRODUCTION

The complexity of modern processors has given rise to sophisti-
cated side channels that may compromise security. Due to this
complexity, information-flow analyses that handle such leaks rely
on abstract models that overapproximate the attacker’s view of the
real system in terms of “observations”, i.e. parts of the program state
that may be leaked during execution. Such observational models are
useful provided they do not miss any information flows: i.e., states
that are observationally equivalent should be indistinguishable on
the real hardware. Unfortunately, this assumption is often violated:
side channels can arise from unforeseen interactions between mi-
croarchitectural features that are often hidden, undocumented, or
underspecified. In recent years, speculative execution has emerged
as a prime example of this type of vulnerability [27, 31, 33].

Previous work [37] has shown that testing can be used to iden-
tify these problems. Fig. 1 shows the general strategy for a single
test case generation and execution in the Scam-V framework. (1)
Scam-V generates a binary program; (2) it synthesizes a relation
that identifies which states are observationally equivalent for the
program according to the model under validation; (3) it generates an
instance of this relation in terms of two input states; (4) it executes
the test case on real hardware and measures the side-channel to
reveal whether the instance is indistinguishable. Section 2 provides
preliminaries required to elaborate on this process.

Validating observational models via relational testing can re-
sult in a state space explosion. Unguided search explores spurious
states that are unlikely to invalidate the model, either because they
are too similar to each other or because they fail to trigger mi-
croarchitectural behavior that can be measured by an attacker. It is
therefore critical to define strategies to guide the search in order to
identify vulnerabilities within the limited time available for testing.
Also, in case of an incorrect model, it is important to collect enough
counterexamples to get better insight and identify patterns that trig-
ger microarchitectural features in unexpected ways. Moreover, we
would like counterexamples to cover as many vulnerable programs
as possible in order to avoid missing classes of vulnerabilities.

In this work, we extend the validation process of Scam-V with
observation refinement (Section 3), a technique for guiding the explo-
ration of the input state space in meaningful directions. Specifically,
we refine observational models to capture behaviors that we would
like to exclude, essentially adding more fine-grained observations
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Figure 1: Test-case generation and evaluation with Scam-V. Components with thick borders are those that have been extended
in this work. Components with dashed lines only apply to experiments involving speculative execution.

of the system state. States that yield equivalent refined observa-
tions can then be ruled out of the search, considerably reducing
the size of the search space. In many cases these refined observa-
tions are meant to exclude states that are strongly suspected to be
indistinguishable or irrelevant to the side channel of interest.

Section 4 presents two interesting applications of observation
refinement: validation of a model for cache coloring in the pres-
ence of prefetching and validation in the presence of speculative
execution. Section 5 presents an implementation of observation
refinement for Scam-V (bold boxes in Fig. 1), including key op-
timizations that make the refinement search more tractable and
support for speculative execution (dashed boxes in Fig. 1).

In Section 6 we present a series of conducted experiments. These
results show that refinement substantially reduces the number of
tests and time needed to find counterexamples (when the model
is incorrect). Moreover our tests have produced an unexpected
result. They exposed SiSCloak!, a new vulnerability in Cortex-A53
processors. Finally, we conclude our paper with related work and
concluding remarks in Section 7 and Section 8.

2 BACKGROUND

In the following we model the program running on the processor
by a transition system M = (S, —), where S is a set of states and
—C § X S a transition relation. This model reflects the proces-
sor architecture and abstracts from low-level behavior of the mi-
croarchitecture, such as caches, electric currents, timing, or power
consumption.

We use the running example of Fig. 2 to illustrate the main
concepts of our work. This program updates x2 by dereferencing
x0 and, if x@ is strictly lower than x1, it updates x3 by further
dereferencing x2.

2.1 Side Channels

Contemporary platforms provide a number of resources, such as
caches and energy stored in batteries, that are limited and shared
among several processes. While resource sharing is essential, great
care must be taken to avoid unintended information channels that
might leak secret data. Generally speaking, side channels are paths
through which sensitive information can escape and that are not

!SIngle SpeCulative LOad AttacK. This vulnerability was responsibly disclosed to ARM
by the authors on June 2020. ARM has confirmed that the Cortex-A53 is vulnerable to
attacks based on single speculative memory loads.
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Running Observation

ldr x2, [x0]
add x1, x1, 1
if x0 < x1

ldr x3,

Example

load from x@
none

branch on x0<x1
load from x2

[x2]

Figure 2: Example code

present in the abstract architectural model M. Absence of infor-
mation flows due to side-channels is formalized as a variation of
non-interference: two states of model M are indistinguishable if and
only if a real-world attacker is not able to distinguish executions
on real hardware that start from any states of the real system that
correspond to the model state.

Most side channel attacks exploit the data cache (e.g. [6, 38,
43, 44, 49]). For instance when x0 < x1, line four of our running
example may leak the value of x2 via the cache, since accessing
different addresses can affect different cache lines. An approach to
extracting information via the cache is Flush+Reload [48] where: (1)
the attacker flushes the desired lines from the cache; (2) the victim
executes its process or a fragment of it; (3) the attacker measures
the time needed to access the flushed line. Depending on the reload
time, the attacker decides whether the line was accessed.

2.2 Observational Models

When analyzing the resilience of software against side channel
attacks, a model capturing the channel is required. Unfortunately,
for complex microarchitectures it is infeasible to model all the
relevant, complex, and intertwined processor features like cache
hierarchies, cache replacement policies, branch prediction, as well
as bus and memory features. This may require knowledge at a level
of detail that is not even public for many processors.
Observational models solve this problem by overapproximating
attacker capabilities [7, 19, 36]. An observational model extends
the abstract processor model with a set of possible observations O
and a transition relation —C S X O x S. The observations represent
the part of the (ISA) processor state that may affect the channel
at each transition. For instance, in order to overapproximate the
information leakage that may occur in Fig. 2 due to the presence of
caches, the processor model may be extended with the observations
shown in the right column. Intuitively, these observations capture
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that the program execution time depends on the addresses of mem-
ory loads and instructions that are executed based on conditional
constructs. For the first load instruction, the value of x0 affects
which cache line the processor accesses, which in turn decides
whether the load is slow or fast. The addition instruction has no
observations, since its execution time is constant and it does not
access the cache. Whether or not line four executes depends on the
condition x0@ < x1 and it affects execution time. Line four contains
another load instruction, which also affects and is affected by the
cache state.

DEFINITION 1 (OBSERVATIONAL EQUIVALENCE). Statess,s’ € S
are observationally equivalent, denoteds ~ s s, iff for every possible
of

1 RN

(o]
trace s —> ;..
such that [o1, . . .,oi’] =[o2,... ,og].

o o
1 . 2
— 51" of M there is a trace s; — s% e

n
2
For instance, all states in false,, = {s | X0 = v A =(x0 < x1+1)}
lead to the sequence of observations [1load v, none, branch false]
and are observationally equivalent. Also, all states in true,, » =
{s | x0 = v Ax0 < x1+ 1 Amem[x0] = v’} lead to the sequence of
equivalent observations [load v, none, branch true, load v’].

DEFINITION 2 (SOUNDNESS). An observational model M is sound
if observationally equivalent states (i.e., s1 ~pr s2) lead to executions
that are indistinguishable for an attacker on real hardware.

Observational equivalence is, in principle, different from indis-
tinguishability. Unsound models can overlook some information
flows, i.e., two states that are observationally equivalent according
to the model can lead to executions on the real hardware that can
be distinguished by measuring a side channel. Sound observational
models can be used as reliable foundations for side-channel analyses
in terms of non-interference [23, 24], where we consider a program
secure if given two states that have the same public variables it
produces the same observations.

2.3 Validation of Observational Models

Scam-V validates observation models (see Fig. 1) by generating
random binary programs, and pairs of input states (called test cases)
per program. The programs are first augmented with annotations
that indicate observations for each statement, as shown on the
right column in Fig. 2. Then, to generate test cases for the program
(i.e., two observationally equivalent states), Scam-V synthesizes a
relation which characterizes the space of observationally equivalent
states for the program according to the model under validation.
The generated test cases, together with the test program, are then
executed and Scam-V evaluates indistinguishability of test cases by
measuring the side channel. Each distinguishing test case on the
hardware is a counterexample to the soundness of the model.
Scam-V supports multiple architectures? by translating binary
programs to an intermediate language. Supporting a new archi-
tecture requires implementing a new binary translator and the
bare-metal code that executes experiments on the new platform.
While we focus on cache side channels here, the tool supports sev-
eral types of side channels. To analyze a new channel (e.g., caused by
TLB state, variable time arithmetic operations, variable time DRAM
accesses, or power consumption) it is necessary to implement a

2 Currently ARMv8, CortexM0, and RISC-V
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new module for augmenting input programs with the relevant ob-
servations (which represent the expected ISA state leakage) and to
extend the test case executor to measure the channel.

To synthesize the equivalence relation, Scam-V relies on sym-
bolic execution of the annotated program. This means executing
the program with symbolic inputs, exploring all possible execution
paths, and collecting the execution effects along each path in sym-
bolic expressions in a terminating symbolic state ¢ € X per path. A
further adaption of standard symbolic execution allows handling
the annotated observations. Each symbolic state consists of the path
condition p (expressing which states take the corresponding execu-
tion path) and the list of symbolic expressions 1, that correspond to
the encountered observations (accounting for effects of assignments
along the path). For instance, we obtain two terminating states for
the example in Fig. 2. The state that results when the condition in the
third line holds has the path condition x@ < x1+ 1 and symbolic ob-
servation list [1load x@, none, branch true, 1oad mem(x@)]. Note that
the last observation in the list shows the propagation of the symbol
for the initial value of x@ through the last line of the program, which
leads to observation of the value located at x@ in the initial memory
mem. The other state has the path condition =(x@ < x1 + 1) and the
symbolic observation list [load x@, none, branch false].

The relation ~j; is synthesized using the result of symbolic
execution. The formula considers each pair of execution paths and
ensures equal observation sequences:

1 ~M S2 =
( Po; (51) A P, (52) 1)

(01,02)€EXE = l"l (s1) = 102(52)

For the example in Fig. 2, let _; and _;, be variables of s; and s
respectively. Instantiating Equation 1 for this example generates
the formula:

(x0; < x1; +1AX0; < x1,+1)

= (x0; = x0; A mem;[x0;] = mem,[x0,]) A
(=(x0; < x17 + 1) A =(x0; < X1, + 1)) = (x0; = x0;) A
(x0; < x1; +1 A =(x0; < X1, + 1)) = false A
(—|(x01 <x1; + 1) A X0y < X1, + 1) = false

Note that the right hand side of the implication in each conjunct
(15, (s1) = l5,(s2)) has been partially evaluated for brevity. For ex-
ample, the last two are trivially false because the observation lists
do not agree in length since the two states take different execution
paths.

inline]RG: If we have space we can extend this

3 OBSERVATION REFINEMENT

For a program p, an observational model M; induces a partition of
the input states into observation equivalence classes. For instance,
the observations of the program in Fig. 2 lead to the equivalence
classes false,, and true,, . for v,v’ € {0...2%* — 1} exemplified
after Definition 1 (see Fig. 3.a). In order to validate a model, we
should test “relevant” pairs of states that belong to the same class.
The search of these pairs faces two challenges.

The first challenge is to identify a notion of test coverage that
can drive the tests. The equivalence classes of the model under
validation are seldom suitable for this purpose, since their number
is usually large. Blindly testing many different classes may simply
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Figure 3: Input state space partitioned via observation equivalence classes

expose the same hardware behavior. For instance in Fig. 2, simply
iterating over every equivalence class false,, requires 2%* tests, all
probably exercising the same hardware features. For this reason, it is
usually convenient to define supporting observational models that
induce coarser equivalence classes and use these classes for a notion
of test coverage, provided that they can be easily enumerated. This
consists in taking successive test cases from different partitions, en-
suring that we systematically explore the entire space. For instance,
we may desire to guarantee that the tests for Fig. 2 cover all possible
paths, which are just two. In this case the supporting observational
model only observes the program counter for every instruction and
produces the equivalence classes false = {s | =(x0 < x1 + 1)} and
true = {s | x0 < x1 + 1}, which are depicted in Fig. 3.b.

The second challenge is to identify interesting pairs of states
within an equivalence class, since the size of each class can be
enormous. There are several states within an equivalence class that
cannot have different effects on the side channels. For instance for
a given v, testing every pair of states in false,, that only differ for
the value of register x1, in addition to being infeasible, is unlikely
to find any distinguishable execution: the states lead the program
to access exactly the same memory locations and to follow the
same execution path. The same should happen (but it does not,
see Section 6.4) for pairs of false,, that only differ in the contents
of memory at address x9, since if the condition is not met then the
result of the first load does not affect any memory access. Similar
arguments hold for every register or memory location that does
not affect the execution or that cannot affect the side channel: e.g.,
registers x2 and x3 for the example. This search is seldom successful
without proper guidance.

We use properties of observation equivalence to guide our search
in meaningful directions. Intuitively, for every architecture there
is an observational model that is trivially sound: the model that
observes the complete ISA state after each instruction. For this
model the observational equivalence relation is the identity and its
soundness is guaranteed vacuously as the identity relation implies
absence of any leakage — there is nothing that could be leaked in
this case. At the opposite side we have the model that produces
no observations, that considers all states as equivalent, and whose
observational equivalence relation is the whole cartesian product of
the input spaces. Given two models M; and Ma, we say that My is
more-restrictive than My if ~£/12 Q~241 for every program p, i.e. if ob-
servational equivalence w.r.t. My entails observational equivalence
w.r.t. M.

We will use this to drive model validation. Intuitively, if the
model under validation M; is unsound then there must be a refined
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(i.e., more restrictive) model that is sound. In order to drive test-
case generation for validating M;, we consider a refined model
M3, which has to be chosen so as to capture the observations that
might arise from the side channel under scrutiny. The model M,
enables us to repartition each equivalence class C; of M; into M,-
observation equivalence classes C} ... C}'(see Fig. 3.c). For instance
for the example in Fig. 2, we may observe the highest two bits of x1
in lines 2 for checking if time needed for additions depends on the
size of the arguments. In this case, the class trueo ; is repartitioned
into four classes Cy 1 16+ = {s | X0 = v A x0 < x1 + 1 A mem[x@] =
o A 216471 <y < 216%1)

If M; is unsound and M, adds useful observations then there
must be two states s; and sy that are in the same Mj-equivalence
class C;, but that are in the two different Mz-equivalence classes
C{ and Cl].c and are distinguishable. For this reason we guide our
exploration of the state space using the relation s; ~MA™Mz g,
which is defined as s; ~Mi s, and s; #M s,. This ensures that
the generated states are “interesting” with respect to My. On the
other hand, the inability of finding such pairs of states that are
distinguishable on the hardware would suggest that M, does not add
useful observations to M;. Once we fix M; and My, and assuming
we start from program P, refinement-guided exploration proceeds
as follows:

(1) Add observations. Program P is instrumented with obser-
vations for models M; and My, yielding programs P; and Py,
respectively.

(2) Symbolic execution. Each of P; and P, are symbolically
executed, yielding symbolic states o1 and oy. These states
are data structures that represent all possible program paths
as well as the list of symbolic observations produced in each
path.

(3) Relation synthesis. Observational equivalence relations
~Mt and ~M2 are synthesized. These are constructed such
that for all states s1, s; we have that s; ~Mi s, only if 51
and sp produce identical observation lists in M;, i.e. 15,(s1) =
lo‘,~ (s2).

(4) Generate test case. When generating test cases, we require
that the input states s; and sy be such that s; ~Mi g, and
s; +#Mz sy, that is, they should be observationally equivalent
in Mj but distinct in My. The refined model provides guid-
ance by allowing us to skip test cases that are not relevant
to the model under validation, thereby improving the ability
to find counterexamples.
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For performance reasons, in our tool we do not generate the
two separate relations explicitly in this manner, but we introduce
an optimization that is functionally identical to this process (see
Section 5).

4 APPLICATIONS
4.1 Supporting models for coverage

We present two simple models that are useful to identify coverage
measures for models of cache side-channels.

4.1.1  Path enumeration: Mp.. A basic application of support mod-
els is to ensure path coverage, i.e., to require that all execution
paths of a program be explored. For this, the supporting model
Mp, observes the program counter for every instruction. Let %
be the set of states resulting from the symbolic execution, then

: 2 . pe _
this model produces |2|° equivalence classes, where Coroyesxs =

{Pm (s1) A sz(sz)}-

4.1.2  Cache line enumeration: M;;,.. For cache side channels we
may desire to guarantee that the addresses of the tests cover all
possible cache lines of the real hardware, which may be a few
hundred. In this case, the supporting observational model M;;,,,
only observes a few bits (the ones identifying the cache set index)
of the accessed addresses. This approach reflects the intuition that
the hardware behavior could be different for some cache lines. Let
L be the number of cache set indexes, for our running example
this model produces L? equivalence classes, where C;i’;e ={s |

line(x0) = I A (x@ < X1 + 1) = line(mem[xQ]) = L}.

4.2 Models to validate and refinements

We present application that exposed behaviors of hardware that
invalidate observational models: i.e., prefetching for models of cache
partitioning, and branch prediction for models that do not take into
account speculation.

4.2.1 Cache Partitioning (Mpqar¢) vs prefetching. On many proces-
sors, the replacement policy for a cache set does not depend on
previous accesses performed to other cache sets. The resulting isola-
tion among cache sets leads to the development of an efficient coun-
termeasure against access-driven attacks: cache coloring [22, 41].
This consists in partitioning the cache sets into multiple regions
and ensuring that memory pages accessible by the attacker are
mapped to a specific region of the cache. In this case, accesses to
other regions do not affect the state of cache sets that an attacker
can examine.

We dub the observational model for cache coloring Mpqr¢. In this
model, observations include the address of every memory access
within the attacker-accessible region. For instance, the model would
annotate the observations if AR(x@) then x@ else none and if
AR(x2) then x2 else none for lines 1 and 5 of the example 2, where
AR(_) is a predicate that identifies the addresses belonging to the
attacker accessible region.

As it has been shown in previous work [37], automatic cache
prefetching can invalidate this partitioned-cache observational
model. In fact, a memory access to a set close to the boundary
of the two cache regions can trigger prefetching of a stride pattern
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that may include sets in the attacker-observable region. For in-
stance in example 2, let the cache consist of 128 lines of 64 bytes
and let the highest 64 lines be accessible by the attacker. In this case
AR(v) £ 64 < line(v) < 127. State s; = {x0@ = 0,x1 = 1,mem[x0] =
0} satisfies the branch condition and accesses cache line 0 twice.
Similarly, s; = {x@ = 62 * 64,x1 = 62 * 64 + 1,mem[x0] = 63 * 64}
satisfies the branch condition and accesses cache lines 62 and 63.
Since none of the memory accesses satisfies AR(v), the observations
for these two states are [none, branch true, none], hence the states
are observationally equivalent according to Mpq,¢. However, the
stride of two accesses in consecutive cache lines in s, can trigger
an automatic cache prefetcher to load the memory block that starts
at 64 * 64 and that is mapped to cache line 64, affecting that state
of the portion of the cache that is accessible by the attacker.

Finding a pair of input states that invalidates this model is rare
without adequate guidance. Intuitively, a counterexample should
lead to memory accesses in different cache sets that are inacces-
sible by the attacker, otherwise prefetching would not cause dis-
tinguishable access patterns in the accessible region. However, the
observational equivalence relation deriving from Mpg,; places no
constraints that would force the input states to involve addresses
on different inaccessible cache sets. Specifically, for the example
the first part of the observational equivalence relation is:

((X01<X11+1/\X02<X12+1)

= (AR(X0;) = AR(x03)) A (AR(x0;) = (x0; = X02)) ) "

(AR(memy[x@1]) = AR(memz[x02])) A (AR(mem;[x01])
= (mem;[x@1] = mem;[x02]))

Note that for the cases in which the addresses are outside the
accessible region, the relation imposes no extra constraints. There-
fore, a naive exploration of the search space is likely to yield many
redundant test cases.

Observation refinement allows us to guide this search toward
suitable counterexamples. The refined model M4, would observe
the addresses in all memory operations, independently of the at-
tacker accessibility. By following the algorithm in Section 3, we
require our test cases to differ in their refined observations. The
corresponding formula would include a constraint of the form:

(x01 < x11+1 AX02 < x12+1)=
(—AR(x01) = (x01 #x03)) A
—AR(mem; [x0@1]) = (mem; [x0@1 ] # mem; [x02])

This adds the constraint that the cache set indices for addresses
outside the observable region should be different, which is exactly
what we need to guide the search. It can be useful to use a further
supporting model Mj;,. that simply observes the set index of all
memory accesses. If the cache consists of 64 lines, Mj;, . generates
64251 equivalence classes, where n is the number of memory ac-
cesses. Enumerating these classes guarantees coverage of cache
line set, which could be useful if the behavior of the system is dif-
ferent for different cache lines: i.e. across the border of the cache
partitions. In case that the number of memory accesses n is large,
one can use a coarser supporting model, which observes only a few
bits of the cache set index.
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4.2.2 Constant time programming (Mc;) vs branch prediction. A
widely used strategy to prevent cache side channels is to respect
the “constant time” policy: memory accesses and branches should
only be dependant of public information. This policy relyes on the
assumption that cache state is only affected by the addresses of
memory accesses. This assumption can be formalized by the obser-
vational model M., which observes the program counter of every
instruction and every address being accessed. This is equivalent
to the model in our running example, in which for simplicity we
observe the boolean value of each branch condition. In this exam-
ple, the branch condition fully determines the control flow of the
program, so it is not necessary to observe the program counter at
every step.

The Spectre family of attacks showed that speculative execution
and its microarchitectural effects can be used to leak secret data
from the L1 data cache [31] in programs that are traditionally con-
sidered secure. The original Spectre-v1 exploited branch prediction.
In this case the processor uses Pattern History Tables (PHT) to record
patterns of past executions of conditional branches, i.e., whether
the true or the false branch was executed, and then use it to pre-
dict the outcome of that branch. In case of misprediction then the
work that was executed speculatively is discarded and the proces-
sor is redirected to execute the correct instruction path. However,
mispredictions are not completely transparent, since speculatively
executed instructions can affect the microarchitectural state, such
as state of the data caches.

To demonstrate problems related to speculation we use our run-
ning example. We assume that the memory of the victim process
is split into two areas, where the high addresses contain confiden-
tial information and the low addresses contain public information.
Moreover, we assume that the highest address of public data is
stored in register x1, and that the attacker controls the input x0.
The program would usually be considered free of side channels
since the memory accesses and branches are only dependant of
public information: the branch condition and the first load is ad-
dressed by the attacker input x0 and the second load is executed
only if the address has been loaded from the public memory area.
However, if the microarchitecture supports speculative execution,
an attacker can fool the prediction mechanism by first supplying
low values of x@ and then a value that points to the confidential
memory area. This causes the CPU to access sensitive data, which
can then be leaked by the subsequent access to x2.

In order to check if a microarchitecture is not affected by Spectre-
v1-like vulnerabilities we should validate M.;. Note that a coun-
terexample due to the above misprediction would consist of two
states satisfying x@ > x1 + 1 (i.e., taking the same branch), having
same X0 (i.e., accessing the same address before branching), but
different mem[x0] (i.e., accessing different addresses in the misspecu-
lated branch). Unfortunately, the observational equivalence relation
for M. does not provide enough guidance to find these states, since
for states that do not satisfy the if condition the relation imposes
no extra constraints on mem[x@)].

We address this problem by relying on a refined observational
model (Mspec) that observes speculative memory accesses. This re-
quires speculative symbolic execution, which in case of speculative
branch execution (i.e., the Spectre-v1 type) can be implemented
on top of the standard symbolic execution, by transforming the

583

Buiras and Nemati, et al.

Running Example Observation
1dr x2, [x0] load from x©
add x1, x1, 1 none

branch on x0<x1
load from x2

if x0 < x1
ldr x3, [x2]

else
X2* = x2 none
x3* = x3 none
ldr x3*, [x2*] load from x2*

Figure 4: The running example instrumented via M spec

program and inlining shadow statements that represent (wrongly)
speculated instructions. First, our instrumentation constructs the
control-flow graph of the program. Then, for every pair of mutually
exclusive branches A and B in the control-flow graph, we prepend
to the statements in A the shadow statements from B and vice versa.
The shadow statements operate on a shadow state represented by
variables marked with * such as x1* or x2*. This state is essentially
a copy of the real state at the time of branch prediction. It represents
the transient state, i.e. the state of the CPU while it is performing
speculative execution, and it allows us to compute transient ob-
servations without interfering with the actual computations in the
branch. Fig. 4 shows instrumentation in action using our running
example. Since in this case the else branch was initially empty, the
instrumentation of the if branch has no effect.

Using this model to guide our search, we end up with a relation
that includes useful constraints for cases when the branch is not
taken, such as

—(x0; < x11 + 1) A =(x02 < x13 + 1) = (x0; = x03) A
—(x0; < X171+ 1) A =(x02 < x12+1) =
((x01 # x02) V (mem[x01] # mem[x02]))

This means the states must have the same ISA behavior, but they
must access different addresses speculatively.

5 IMPLEMENTATION

Scam-V 3 is part of the binary analysis platform HolBA [32], which
transpiles binary code to an architecture-independent binary in-
termediate representation with explicit observation statements. In
this work, we extended and modified the Scam-V pipeline imple-
mentation to support observation refinement. Fig. 1 illustrates the
updated architecture to generate test cases for a given observation
model. Scam-V runs this process for a given number of programs,
and for each program it generates a given number of test cases, as
configured by the user. For performance reasons, while generating
test cases for the same program the results of symbolic execution
remain cached, and only the latter phases are executed per test case.
The main changes to the pipeline with respect to previous work are
in the observation augmentation phase and the relation synthesis
phase, and the addition of a branch misprediction training module.
The rest of this section discusses each of these extensions in detail.

3Scam-V is available at https://github.com/kth-step/HolBA.
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5.1 Observation augmentation

Observation refinement involves two observational models: the
model under validation M; and the refined model M, for guiding
the state space exploration.

A naive implementation of observation refinement would require
a large part of the Scam-V pipeline, including symbolic execution
and relation synthesis, to run twice per program — once for each
model. The resulting relations would then be used in the rest of
the pipeline to generate test cases. While conceptually simple, this
process would be prohibitively expensive.

We implement observation refinement with an optimization that
allows us to run symbolic execution only once per program. The
optimization relies on the assumption that there exists a projection
function to obtain the symbolic observation list of the model under
validation from the observation list of the refined model.

Projection Assumption. Let M, be more restrictive than M;.
For all programs P and symbolic paths p of P, if

e symbolic execution of P with M, observations on path p
yields observation list 1M2; and

e symbolic execution of P with M; observations on path p
yields observation list 1M1;

then there exists a function 7 such that 7(1M2) = 1M1

This assumption holds for our two proposed applications. For
simplifying the pipeline we enrich the observation type with a tag
that indicates if an observation is exclusively from Mz or from both.
The projection function then simply removes all the observations
with the wrong tag. For example, for validation against speculative
leaks, these tags would distinguish between observations in real and
transient branches. Under this assumption, we can run the Scam-V
pipeline only on My. Then, when synthesizing the observational
equivalence relation, we use the projection 7 to distinguish between
the base observations (those that are required to be the same on
both input states) and the refined ones (those that are required to
be different on the input states).

The observation augmentation for M;spec implements the in-
strumentation described in Section 4.2.2, which reuses the existing
symbolic execution engine to compute speculative observations.
Our implementation allows us to bound the number and type of
instructions that can be speculated. This enables us to model exe-
cutions with both partial and without mis-speculation: the model
Mp, (i.e. without instrumentation) formalizes executions without
mis-speculation, model M;pec, of Section 6.5 corresponds to exe-
cuting up to the first load (included) of the mis-speculated branch,
and Mspec corresponds to execution of the whole mis-speculated
branch.

5.2 Relation synthesis with projection

A test case for a program P is a pair of initial states s; and sz such
that P produces the same observations in model M; when executed
from either state but different observations in refined model M,
(see Section 2.3). We synthesize such a relation for each generated
program, using the tags in the combined observations to project
M; and M, observations, as they have to be treated differently.
Moreover, the relation includes any additional constraints that
arise from a support model to guide state exploration, which usually
includes at least path coverage. Finally, Scam-V queries an SMT
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solver, namely Z3 [18], for a model of this relation to generate
test-cases. Each test case corresponds to a concrete valuation of the
registers and memory locations used by program P in the states s;
and ss.

5.3 Branch Misprediction Training

To validate resilience against Spectre-like attacks we extended the
pipeline to produce states that train the branch predictor to mis-
predict. Notice that while validating M, two states s, and s that
belong to the same equivalence class follow the same execution
path because the model observes the program counter. Therefore,
both states satisfy the same symbolic path condition p (represented
by the formula support in Fig. 1). To generate a further state s; that
takes a different path, it suffices to find a satisfying assignment for
a path condition p’ # p from the symbolic execution tree, which
we do using the SMT solver.

When executing the experiment, in order to train the branch
predictor we execute the program multiple times using input s;.
Then, we execute and measure the execution with inputs s; and s3.
Due to the training, the branch will be mispredicted, and the wrong
branch will be executed speculatively. Since the states have been
chosen to be observationally equivalent on the correct branch and
observationally distinct on the other branch, any distinguishable
behaviors would invalidate the observational model and point to a
speculative leak. Notice that we do not test the case when only one
of the two executions occurs in the mispredicted branch because in
this case the effects on the cache are supposed to be different and
do not represent counterexamples to the observational model.

5.4 Additional changes to the pipeline

The experiments conducted in Section 6 required several further
extensions to Scam-V. The original Scam-V pipeline did not handle
programs where observations depend on previous loads. For these
programs, it is insufficient to generate only register assignments to
create the initial states (as it was the case in the previous version
of Scam-V) and memory content should be specified. In order to
support this type of programs, we have extended the SMT interface
and the evaluation platform to properly translate encodings of
memory contents between Scam-V and Z3, and for initializing the
initial memory of experiments on the evaluation platform.

We introduced new program generators for the templates in
Fig. 5. We reused the existing infrastructure, which allows to define
monadic generators and follows a grammar-driven approach in the
style of QuickCheck [17]. The generators are implemented in SML
and can be composed to generate more complex programs to fit
different attack scenarios.

Scam-V uses Mp, of Section 4.1.1 as supporting model to cover
of all execution paths. This allows us to optimize the synthesis of
the equivalence relation. Instead of generating the whole relation
s1 ~ sz, we can split the relation into one formula per pair of
execution paths that s; and s, can take. These relations are smaller
than the full observation equivalence, since each of them covers
only one of the conjuncts of Eq. 1. Scam-V explores these relations
in round-robin fashion, systematically covering pairs of execution
paths.
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6 CASE STUDIES AND RESULTS

To demonstrate the effectiveness of observation refinement and
supporting models for coverage, we conducted experiments on
Raspberry Pi 3, which is a widely available ARMv8 embedded sys-
tem. We first tried to validate a model for cache partitioning. Un-
surprisingly, this model is unsound due to prefetching. The second
set of experiments attempts the validation of a standard model for
constant time programming. These experiments lead to a surpris-
ing result: even if the processor is claimed to be immune against
attacks based on speculative execution, we were able to identify
speculative leakage. This allowed us to formulate a new variant of
the original Spectre attack [31].

6.1 Evaluation Platform

Our experiments use Raspberry Pi 3 boards, which use a Cortex-A53
processor. The processor is 8-stage pipelined with a 2-way super-
scalar and in-order execution pipeline. It also supports speculative
execution based on control flow prediction for performance reasons.
Using such a technique the processor relies on a branch prediction
engine to predict the control flow of a running program and deter-
mine operations which are needed to execute, rather than waiting
for all branch instructions to resolve. Furthermore the processor
uses a cache prefetcher to load instructions or data into respective
caches before it is actually needed. The prefetcher is activated when
a stride of at least three loads (default setting) accesses addresses
that are equidistant.

The board also has ARM TrustZone. To execute the generated
experiments, Scam-V uses a platform module which runs in Trust-
Zone. The module configures page tables to setup cacheable and
uncacheable memory, clears the cache before every execution of
the program, inserts memory barriers around the experiment code,
and inspects the cache state after execution. Executing the plat-
form module inside TrustZone allows us to use privileged debug
instructions to obtain the cache state directly for comparison after
experiment execution.

In a more realistic setting, an attacker can use the performance
monitor counter (PMC) for timing analysis and derive exploit code
from identified vulnerabilities. The PMC consists of a number of
special-purpose registers built into the processor which track the
counts of specific hardware-related activities like the processor
cycles and cache hits.

In order to guarantee repeatability of our results we execute each
experiment 10 times and check for discrepancies in the final state of
the data cache. Experiments not giving the same results in all runs
are classified as inconclusive and excluded from further analysis.

6.2 Validation of M.,

To study cache partitioning as in Section 4.2.1 (Mpqr¢), we used
the Stride Template in Fig. 5 to generate simple programs that
may trigger the automatic cache prefetcher: a stride of three to
five loads starting from the base address ro and distance v. We
use ? to show that an instruction is optional and we annotate the
constraints used for the allocation of registers. Notice that the
length of a cache line of Cortex-A53 is 64 bytes; therefore, the
template ensures that the accesses lie in different cache set indexes.
The framework instantiates this template by randomly assigning
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registers to ry, . .., rs, ensuring that the register chosen for ry is
different than the registers chosen for rq, ..., s, and choosing a
constant v. In order to steer test case generation we used M;j;,, for
coverage and My for refinement.

Table 1 reports the results of 450 generated test programs for
validation of My model. The data cache of Cortex-A53 has 128 set
indexes. In these experiments we assume that the highest 67 indexes
are accessible by the attacker: i.e., AR(v) £ 61 < line(v) < 127.
Our results show that prefetching violates cache partitioning and
that observational refinement increases the probability of finding
a counterexample by a factor of 20 and halves the Time To first
Counterexample (i.e., the time needed to invalidate the model).
Moreover, refinement has no substantial impact on time needed to
generate input states and time to execute the experiments.

Since cache partitioning is usually implemented via virtual mem-
ory, we repeated our experiments assuming that the attacker-acces-
sible memory is page aligned. One page of memory in Cortex-A53
spawns 64 lines, hence we assumed the highest 64 cache set indexes
to be accessible: i.e.,, AR(v) = 64 < line(v) < 127. Interestingly, nei-
ther the experiments with nor without refinement have discovered
a counterexample. This suggests that prefetching in Cortex-A53
stops at page boundary and that cache partitioning may be secure
in the presence of prefetching if the attacker region is page aligned.
Clearly, since our validation is based on testing, the absence of
counterexamples does not guarantee this property. However, since
refinement has proven to give more direction to the search of ex-
periments, we have more confidence in the conclusion we draw
from the experiments with refinement.

6.3 Validation of M,;

Fig. 6 illustrates the original Spectre-PHT [31], where the victim
uses two arrays A and B that start at address #A and #B respectively.
The arrays do not contain confidential data, and we assume every
element of A is a valid index into the array B. We also assume that
the attacker controls the value of register x@ and that the size of
the array A is stored at address #A-size. This program is usually
considered secure as it ensures that x0 lies within the bounds of
#A and the three memory accesses are only dependent on public
information: the location #A-size, the locations of #A and #B, the
attacker input R0, and #A[RQ]. In fact, the program respects the
standard constant-time policy [8, 11]. However, in the presence of
speculation this program may be insecure. Misprediction can cause
an out-of-bounds memory read from address #A+x@ (when index
x0 is greater than the size of A) that reads sensitive data, which is
later used as index for a second memory read from #B+x2.

Some microarchitectures, including Cortex-A53, have been pre-
viously claimed to be immune to these types of vulnerabilities as
they allow speculative fetching but limited speculative or out-of-
order execution of the fetched instructions. The informal argument
was that mispredictions cannot cause buffer overreads or leave any
footprint on the cache due to restricted speculative loads.

In order to validate this claim for ARM Cortex-A53 we have
conducted experiments using the observation models M,; of Sec-
tion 4.2.2, which consider speculative execution to be completely
transparent and constant-time programs to be side-channel free.
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Speculaive —Templatc A
1dr rl,[r0+v*0] // rL# ro 1dr r2,[r0+r1] // ro £ 11 (ldr r1,[r0])?
ldr ry,[ro+ov*64] /] ry#rg ldr ry, [l  // ry @ {r,r} (ldr r3,[r1)?
ldr r3,[ry+ v *128] /] r3#rn if ri=rg if p(ry, re)
(ldr ry,[ro+o0%1921)?// ry#ro ldr r5,[rp] 1dr ry,[rg]
(ldr rs,[ro+v%2561)?// rs #rg else (ldr ryp,[0rel)?
ldr r;,[re]

Figure 5: Template (in pseudo-code) for My, and M;.

Model Mpart Mpar: Page Aligned | Mc; Template A | M¢; Template B
Refinement No Mpare No Mpare No | Mspec No | Mspec
Coverage Mpc | Mpc&Miine | Mpc | Mpc&Mjine Mpc Mpe | Mpe Mpc
Programs 450 450 425 425 655 652 942 941
Prog. w. Count. 21 89 0 0 6 626 0 498
Experiments 13752 18000 | 12860 17000 26200 25737 | 37680 37640
- Counterexample 21 447 0 0 6 | 12462 0 4838
- Inconclusive 1096 4709 612 4245 5 506 2 352
- Avg. Gen. time (s) 43 1.8 8.5 4.6 4.7 3.1 2.6 5.0
- Avg. Exe. time (s) 3.3 34 3.3 3.3 10.5 10.3 10.7 10.7
- TT.C. (s) 8892 2070 - - | 102600 13 - 681

Table 1: Result of the experiments

We used Template A in Fig. 5 to generate simple programs * that
may lead to wrongly-predicted memory accesses. Notice that for
states such that r; # r4 the program does not use the value of ry
in any memory access. Therefore, two of these states should be
indistringuishable if they only differ for the content of memory
at rg + r1. The framework instantiates this template by randomly
assigning registers to r; while satisfying the side constraints (i.e.,
rp # ry and rg ¢ {r1,r2}). To steer test case generation we used
Mp, for coverage and Mspe for refinement.

Table 1 reports the results for 655 generated test programs. Ex-
ecution of experiments is more costly w.r.t. Mpart since we must
run multiple times the same program to train the branch predictor
to misspredict the outcome of the branch. First, despite the exist-
ing claims, the counterexamples identified by Scam-V invalidate
immunity of Cortex-A53 to speculative leakage and shows that the
core is affected by a new variant of Spectre dubbed SiSCloak (see
Section 6.4). Second, our results substantiate the effectiveness of
observational refinement to drive test generation. When the tests
are driven by the refined model, they identify 12462 counterexam-
ples and at least one counterexample for the majority (i.e. 626) of
programs. The time needed to find the first counterexample to in-
validate the test is substantially smaller with refinement: 13 seconds
vs 29 hours (i.e. 102600 seconds) and refinement has no sensible
impact on time needed to generate and execute experiments. When
tests are generated without any guidance, they can only identify 6
counterexamples. Moreover, these 6 counterexamples cover only
a specific subclass of programs, where the generator has selected
r¢ to be the same register of either ry or ry. In this case, when
r1 = r4, the transient branch leaks the value of a register (by load-
ing from re) that has been already partially leaked (by loading from

4For clarity we present the speculative templates as pseudocode, but the real code uses
comparison and branch instructions instead of a structured if statement.
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ro + r1). Therefore, executing tests without refinement may lead to
the wrong conclusion that speculation introduces only this type of
leakage.

We also executed experiments for a more general template, Tem-
plate B in Fig. 5, which allows from zero to two loads before the
branch, one or two loads in the if body, and a comparison predicate
p randomly chosen by the program generator. In this case, there
is no constraint for register allocation, therefore in some cases a
machine register is used for multiple rg, . .., 711, and in other cases
each register placeholder is assigned to a different machine register.
The tests driven by refinement identify 4838 counterexamples and
the first one was discovered after 11 minutes. Programs generated
with this template are harder to test without refinement, since there
are many variables that can be altered without affecting the side
channel. In fact, tests without refinement were not able to identify
any counterexamples during 138 hours.

6.4 SiSCloak

Our experiments show that Cortex-A53 is capable of executing
loads in speculation, but it prevents using the result of a speculated
instruction for subsequent operations, probably due to the absence
of register renaming and the short CPU pipeline. However, this
limitation does not completely prevent speculative leakage.

We use the counterexamples from Fig. 6 to explain SiSCloak.
The first counterexample (second column of Fig. 6), which was also
previously presented but not experimented in [29], is a variation of
Spectre-PHT. Compared to Spectre-PHT, the access ldr x2, [#A+x0]
has been anticipated by the programmer or the compiler. In this
case, a Cortex-A53 CPU may mispredict the condition x0 < x1 and
speculatively access #B+x2, which may contain data that has been
read out-of-bound.
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Spectre-PHT

ldr x1,[#A_size]
if(x0 < x1)
ldr x2,[#A+x0]
1dr x3,[#B+x2]

if(x0 < x1)

ldr x1,[#A_size]
1dr x2,[#A+x0]

ldr x3,[#B+x2]

Buiras and Nemati, et al.

ldr x1,[#A_size]
if(x0 < x1)

ldr x2,[#A+x0]
if(x2 & #0x80000000 < #0)
ldr x3,[#B+x2]

Figure 6: Spectre-PHT and SiSCloak counterexamples.

The second counterexample (third column of Fig. 6) demonstrates
leakage when the classification of elements of an array is stored in
few bits of the array itself. As usual we assume that every element of
A is a valid index into the array B. We also assume that the highest
bit of each element of A identifies if the element itself is public.
Let the attacker control the value of register x0. This program is
considered secure at the ISA level as it ensures that x0 always lies
within the bounds of #A and that no memory access depends of non-
public information. However, Cortex-A53 may mispredict condition
x2 & 0x80000000 which leads to considering a confidential element
to be public. In this case, the CPU may speculatively access #B+x2,
making the confidential data in x2 affect the cache.

To collect evidence of SiSCloak vulnerabilities we initially used
ARM TrustZone and privileged debug instructions to directly in-
spect the cache state. Later we mounted a real attack that recovers
bits of x2 for both programs of Fig. 6 by using a Flush+Reload attack
(see Section 2.1) and the cycle counter of core’s PMC.

6.5 Scope of speculation in Cortex-A53

Speculation can cause different leakage on different microarchitec-
tures, depending on their pipeline depth, prediction strategy, etc. It
is therefore useful to test observational models that are tailored for a
specific architecture. In fact, while a model that observes all loads of
arbitrarily nested mispredicted branches is probably sound, it is also
too coarse and may lead to consider insecure many side-channel
free programs, imposing unnecessary fences and overhead.

We first focus on the depth of speculation. For Cortex-A53, the
short pipeline and the absence of proper register renaming suggest
that only one memory load can be done speculatively and that its
result cannot be used for further computations. We tested this via
an observational model that we dubbed M;pec, . The model includes
the observations of M;; and in case of branches the first load of
the transient branch. We used both Template-B and Template-C
of Fig. 7, where two loads are causally dependent, are executed
only if the register comparison succeeds, and can be interleaved
by an arithmetic operation. Both Mspec, and Mspec instrument
this program by adding to the empty else branch a copy of the
if-body in that operates over the shadow state. The shadow load
Idr r},[rX + r}] is observable in both model, while the shadow
load ldr r§, [r + r}] is only observable in Mspec.

We comment on the results of table in Fig. 7. Similarly to the
templates of Section 6.3, the model M,; is unsound for Template-C
due to speculative leakage. This is an example of a leaking program
that cannot be detected without refinement. Model M,; imposes no
constraints on registers used in the branch if the branch is not taken,
so Scam-V cannot generate test cases that differ in those registers
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unless the refinement Mspe. is enabled. Driving testing via refine-
ment produces higher-quality counterexamples that no amount of
unguided testing can uncover. Moreover, we were able to identify
counterexamples for Mspec, in Template-B, which indicate that in
some circumstances (i.e. when loads have no causal dependencies)
Cortex-A53 can execute more than one transient load. Finally, our
results support the ARM claim that Cortex-A53 is not vulnerable to
Spectre-PHT [5], which is an instance of Template-C. In the original
Spectre, the address of the first speculative load is considered to be
known (and controlled) by the attacker. This is equivalent to the
observations in Mspec,, which uncovered no counterexamples for
Template-C.

Also, these experiments confirm that driving testing via refine-
ment is critical to identify counterexamples. We also investigated
the source of speculation. In fact, conditional branches are not the
only instructions activating prediction. We focused on the case of
straight-line speculation [10], where unconditional branches can
lead to speculative leakage if the processor transiently executes
loads that come after unconditional branches. ARM claims that
their processors are not affected by straight-line speculation in case
of direct branches [10]. We analysed this claim via Template-D of
Fig. 7. Notice that the code after jmp end is not supposed to be
executed in absence of speculation. In order to stride the tests, we
also implemented a new refined model, dubbed Mspe,, by trans-
forming unconditional branches to tautologically true conditional
branches. This enables to reuse the instrumentation of M. for un-
conditional branches. Clearly, in absence of unconditional branches,
Mspec and Mspe, are equivalent. For these programs our experi-
ments support the ARM claim that there is no speculative leakage
in case of unconditional direct branches. The fact that experiments
with refinement were able to find counterexamples for the majority
of other programs increases confidence in this conclusion.

7 RELATED WORK

The validation of information flow properties regarding side-chan-
nels is the distinguishing feature of Scam-V. In contrast to Scam-V,
other works validate models of functional processor behavior by
either white-box approaches [12, 20] or black-box testing [21, 30].
Similarly, the recent tool CacheQuery [45] applies testing and mea-
suring execution times on hardware to learn functional behavior
of unknown cache replacement policies.

Observational models allow abstracting from the mechanisms
used by an attacker such as profiling of side channels. For instance,
the program counter security model [36] abstracts time channels
when execution time depends on victim control flow. Almeida et.
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Template Template
ldr ry, [r;] (ldr ry, [r;]|lnop)™
if m<ny jmp end
ldr Te, [r5+r3] ldr ra, [r3]
(151 e, T6, #C)7 (ldr ry, [rs])"
ldr rg, [r7+rs] end:
Model Mct Mspecl Mct
Template C C B D
Refinement No | Mspec | Mspec | Mspec | Mspec!
Programs 8 8 8 915 478
Experiments | 8000 8000 8000 36600 47800
Counter. 0 3423 0 206 0
Inconclusive 87 87 87 303 0
Avg. Gen. (s) 8.5 9.0 9.8 7.2 4.0
Avg. Exe. (s) | 10.5 12.4 10.8 10.8 4.0
TT.C. (s) - 21 - | 16268 -

Figure 7: Further experiments

al. [9] present a model that also includes memory addresses ac-
cessed by the victim and is used for cache trace-driven attacks [40].
Consumers of such observation models are information flow analy-
sis tools like Ct-verif [7] and CacheAudit [19], which rely on model
soundness.

Spectre attacks [14] have exposed the problem of observational
model unsoundness. Several works have recently addressed the
formal foundations of different forms of speculation to capture
Spectre-like vulnerabilities [15, 16, 26, 28, 34]. Thus, sound ob-
servational models should approximate the information flows as
prescribed by these works. For instance, Guarnieri et al. [28] have
shown that an observation model, which observes memory accesses
assuming that the CPU always mispredicts, is a valid overapproxi-
mation for microarchitectures that support only branch prediction.
This corresponds to the refined model Mspe, that we have used in
our experiments.

Other lines of work analyze application code for vulnerabilities
directly, like the tool SpecFuzz [39] does for speculation leakage. To
generate test cases, it applies fuzzing and prioritizes among possible
speculation paths to make its search for speculative memory safety
violations tractable. While this approach focuses on saving mitiga-
tion overheads for specific code and avoiding overapproximation
of attackers for a given architecture, we aim to generalize to the
most secure model for a specific processor implementation and
thus consider more narrow attack surfaces.

Several prototypes have been developed to reproduce and detect
known Spectre-PHT attacks [16, 28, 46]. Checkmate [42] synthe-
sizes proof-of-concept attacks by using models of pipelines with
speculative and out-of-order execution. However, existing tools
have been designed to reproduce a specific type of attack or to ver-
ify resilience of a piece of software against a specific attack. Instead,
Scam-V is designed to identify new types of information flows and
can potentially discover new vulnerabilities and new information
channels. In a similar vein, other works [25, 35, 47] use fuzzing to
identify new side channels.

SiSCloak is different from the “straight-line speculation” [10]
vulnerability. Straight-line speculation involves the processor spec-
ulatively executing the next instructions past an unconditional
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change in control flow. It is shown [10] that existing ARM proces-
sors are affected by this vulnerability for unconditional indirect
branches and function returns, but are not affected for uncondi-
tional direct branches. We believe both SiSCloak and straight-line
speculation are caused by the ability of ARM Cortex-A53 to specu-
latively issue memory requests when the control flow cannot be
statically determined.

8 CONCLUDING REMARKS

We introduced observation refinement, a novel technique to guide
state space exploration for validation of observation models. Our
notion of refinement is flexible enough to encode techniques like
path and line enumeration. We extend Scam-V with our observation
refinement technique and show that it can considerably increase
the chance of spotting counterexamples. We show the significance
of our approach by using Scam-V to validate soundness of a model
for cache partitioning and to evaluate the Cortex-A53 processor for
vulnerabilities due to speculative execution. Our experiments led
to the discovery of SiSCloak, a new class of speculative execution
vulnerability that affects the ARM Cortex-A53 processor.

Our approach is not specific to the evaluated models and can be
extended to set up experiments for other observational models and
microarchitectural features, e.g. other variants of the spectre attack,
with relative ease. As a future direction, we plan to investigate
techniques to refine unsound observation models to automatically
restore their soundness, e.g., by adding state observations or using
techniques similar to Eclipse Repairnator [1].
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A ARTIFACT APPENDIX

A.1 Abstract

The artifact for this paper is the prototype implementation of the
introduced observation refinement technique together with the ex-
perimental data used in the presented evaluation results. It is em-
bedded in the existing model validation framework, Scam-V, which
we have also extended to support our refinement technique.

In our evaluation, we showed that observation refinement is an
efficient technique to guide the exploration of the state space and to
find vulnerabilities on real-world hardware platforms. Additional
to the source code and experimental data, we provide a replication
package implemented as a VirtualBox VM to make reproducibility
of our results convenient. We also provide an introduction to our
framework implementation and detailed descriptions of how to
replicate the results presented in the paper.

We provide instructions to support the evaluation of generated
test cases on hardware. Alternatively, the artifact can be configured
to connect to an existing, compatible experiment platform.
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A.2 Artifact check-list (meta-information)

e Compilation: GCC ARM cross-compiler (tested under gcc-
arm8-8.2-2018.08-aarch64-elf).

e Data set: We have generated our own data-sets. All are
included in the provided VM.

¢ Run-time environment: Our framework has been devel-
oped and tested under the Linux environment, more specifi-
cally the Debian and Ubuntu distributions. The framework
depends on the HOL4 theorem prover, Z3 SMT solver, SQLite
DB manager, OpenOCD debugger, which are all cross-plat-
form software, included and pre-installed in the package.

e Hardware: A compatible hardware benchmark platform
with Raspberry Pi 3 boards (Cortex-A53 processor) is re-
quired. We include instructions on how to set up such a
platform and remote access to existing platforms is an op-
tion.

e Metrics: Execution time and time to first counterexample,

number of counterexamples to the model soundness and

inconclusive cases.

Output: The framework stores generated test-cases in data-

base files and the results per experiment will be displayed in

the system console.

e Experiments: The process is automated by a number of
scripts described in the corresponding README documents.
For validating the results, see Section A.6.1.

e How much disk space required?: The provided VM image
requires around 15 GB.

e How much time is needed to prepare workflow?: We
have deployed the framework in the replication package, no
installation is required.

e How much time is needed to complete experiments?:

Using 4 Raspberry Pi 3 boards, it approximately takes 7 days

to execute all experiments.

Publicly available?: Our framework is a well-documented

and open-source software publicly available on GitHub [4].

o Code licenses: BSD licensed

Archived: https://doi.org/10.6084/m9.figshare.15086895.v3

A.3 Description

A.3.1 How to access. In our paper, we describe a method to gener-
ate test inputs to validate side-channel models. The implementation
thereof is called Scam-V and consists of a test input generation tool
and a number of models together with a hardware benchmark
infrastructure. The tool has been packaged as plain source code
and preinstalled in a VM [13] together with our evaluation results.
However, the actual evaluation of the tool-generated test inputs
requires a benchmark platform that can be used by the benchmark
infrastructure.

A benchmark platform can be built with a bit of special hard-
ware and wiring according to the documentation in the repository
we have included in the replication package and made available
through the GitHub project EmbExp-Box [2]. Among other things,
this requires Raspberry Pi 3 boards and OpenOCD JTAG probes.
Alternatively, a remote connection to an existing benchmark plat-
form can be used. Both cases require a configuration like the file
config/networks. json.example illustrates.
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With a benchmark platform and connection configuration in
place, a user is able to generate test inputs and execute them on the
actual hardware via a network connection. Figure 8 shows the over-
all architecture of Scam-V. The dashed boxes group the components
of the pipeline into two categories: experiment generation and
experiment platform. Components in the box labeled experiment
generation run locally on the user machine, while those in the box
labeled experiment platform represent the network-connected hard-
ware experiment platform the evaluation of experiments depends
on.

A.4 Installation

No installation is needed. The execution environment is deployed
ina VM.

A.5 Experiment workflow

When starting the VM, a terminal and browser open automatically.
The browser loads a README document with detailed instructions
on how to generate and execute experiments. All paths given below
are relative to ~/scamv in the VM.

A.5.1  Premade Scam-V configurations. The VM includes scripts
that configure Scam-V to generate experiments with the same set-
tings as those in the paper. Using these configurations is the most
straightforward way of invoking Scam-V in order to reproduce our
results, and it should work out-of-the-box by using the scripts in
the introduction directory following the steps described in the
README document.

A.6 Evaluation and expected results

The whole process of validating individual experiments and whole
sets is described in the EmbExp-Logs [3] README document. In
order to simplify this process, we provide a script in the replication
VM to support high level operation and ease the introduction to
Scam-V.

Notice that it may happen that the experiment execution process
stalls due to run-time issues as indicated in the EmbExp-Logs [3]
README file. In this case many experiments execute without a
result, which is indicated with the warning unsuccessful. This
requires either to issue a complete restart or, better yet, to cancel
the running experiments and resume by manually orchestrating
the scripts in Scam-V examples or EmbExp-Logs [3] according to
the documentation. We do not provide a high level script for this
purpose.

A.6.1 Evaluation Checklist: Having executed experiments, in or-
der to validate the obtained results the following points must be
checked for each experiment output. Notice that the numbers in
our checklist are approximate and the results of experiments can
be slightly affected by different factors. For example, the execution
time can be affected by latency and throughput of the connection
to the experiment board server (hardware benchmark platform),
the number of counterexamples might be affected by unforeseen
and hidden microarchitectural interactions, etc.

Model Mpqr¢. With refinement in place:

e Number of programs with counterexamples is ~ 4 times more
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Figure 8: Test-case generation and evaluation with Scam-V.

e Number of counterexamples is ~ 20 times greater
o Time to reach the first counterexample is ~ 4 times faster

Model M¢; Template A.. With refinement in place:

e Number of programs with counterexamples is ~ 100 times
more

e Number of counterexamples is ~ 2000 times greater

o Time to reach the first counterexample is ~7000 times faster

Model My Template B.. Without refinement we do not expect to
find any counterexample, while with refinement in place:

e ~50% of all programs will have at least one counterexample
e ~13% of all experiments will be counterexamples
e Time to reach the first counterexamples is ~ 15 minutes

Model M.; Template C.. Without refinement we do not expect
to find a counterexample, while with refinement in place:

e ~42% of all experiments will be counterexamples
o Time to reach the first counterexamples is less than a minute

Model Mspec, Template C and B and with refinement. While with
Template C we do not expect to get any counterexample, with
Template B:

® ~0.6% of all experiments will be counterexamples
e Time to reach the first counterexamples is ~4.5 hours
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