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ABSTRACT
Machine learning models are commonly trained on sensitive and
personal data such as pictures, medical records, financial records,
etc. A serious breach of the privacy of this training set occurs when
an adversary is able to decide whether or not a specific data point
in her possession was used to train a model. While all previous
membership inference attacks rely on access to the posterior proba-
bilities, we present the first attack which only relies on the predicted
class label - yet shows high success rate.
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1 INTRODUCTION
Recent machine learning (ML) methods – especially deep learning
approaches – largely owe their success to the availability of big
data and the computation power to train huge models with millions
of parameters on this training dataset. Often, people might assume
that since these models are designed to learn statistical properties
of their training dataset, they protect the privacy of the individuals
who contribute to these datasets. Unfortunately, this is not the
case and the ML models are proven to violate the privacy of this
training set in many unintended ways such as memorizing details
about the individuals [37], leaking features of their training set [25]
and contributing to re-identification problems e.g. via saving users’
geodata [23].
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In this study we are concerned with membership inference (MI)
attacks. These are attacks carried out by an adversary who has
complete or partial data records and access to a trained victim
ML model and wishes to know whether that data record has been
used to train the victim model. MI attacks pose serious threats on
the privacy of the individuals present in databases and have been
successfully applied on models trained on image data, medical data,
transaction records, etc. [27, 29, 35, 39].

MI attacks are carried out in a black-box setting, where adver-
sary has no access to the internal parameters of the victim model.
The assumption is that posterior vectors from the victim classifier
suffice to reveal the membership status of queried points. We go
one step further and show that a victim model that only reveals the
labels of the queried points is still vulnerable to membership infer-
ence attacks. For this purpose, we introduce a novel membership
inference attack technique called sampling attack. The intuition
behind this attack is that the trained victim model returns more
consistent labels for small random perturbations of data points that
have been used to train the model.

We also employ differential privacy (DP) [9] to defend against
our sampling attack. DP is becoming more and more popular as a
method to protect the privacy of individuals involved in a machine
learning setting. It offers flexible techniques which can be applied
locally on the data [17, 31], or during the training on training
parameters such as gradients [1] or the objective function [44] or it
can be applied on the output of the function [24, 33]. We select DP-
Stocahstic Gradient Descent (DP-SGD) [1] which is an extensively-
used gradient perturbation technique and compare the protection
it offers against MI attacks to randomized response mechanism
which is an output perturbation technique.

Our contributions:

• We introduce our novel sampling attack model which per-
forms membership inference under the severe restriction of
no access to confidence scores of the attacked classifier.
• We compile a comprehensive list of all the prominent datasets
in membership attack studies and compare them under uni-
fied metrics and alongside each other. This helps us better
understand and analyze membership inference attacks.
• Focusing mainly on the practical implications of differential
privacy (DP) [9] rather than the theoretical bounds on the
privacy budget, we use DP as a method to defend against our
sampling attack. We show the interplay between datasets,
attack models and defenses.

The structure of this paper is as follows: We first introduce mem-
bership inference attacks in details in Section 2. We then summarize
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possible defense methods against membership adversaries in Sec-
tion 3. We formulate the novel sampling attack and explain the
details and practical methods to implement it in Section 4 and also
suggest two DPmethods that could be applied to defend against this
attack. We finally presents our experimental results in Section 5.

2 MEMBERSHIP INFERENCE
Membership inference attack decides whether or not a certain data
point is a member of a dataset. The privacy risks of membership
inference attacks were first brought into attention by Homer et
al. [14] when they demonstrated that they could successfully resolve
the presence of an individual in a highly-complex DNA mixture.
One of their key findings is that publishing only the composite
statistics over a collection of genomic data would not protect the
privacy of the individuals who are members of that collection. In
a follow up paper [40] they use more sophisticated test statistics
to achieve better results with less prior knowledge on the victims.
Similar attacks on other biomarkers such as microRNA have also
been successfully performed [2].

2.1 Membership Inference on Machine
Learning Models

The increased popularity of machine learning models translates
to an ever-increasing need for data to train these models. This
data often contains sensitive information from individuals and
protecting the privacy of it is of great importance. Therefore, our
focus in this paper is on membership inference attacks on machine
learning models.

These models are usually trained on a set of data points 𝑥 so
that the function 𝑓 (𝑥 ;𝜃 ), which is characterized by parameters 𝜃 ,
is learned. In this context, the goal of the adversary is to determine:
given a trained victim model, is a certain data point 𝑥𝑖 a member of
the training set of this model? i.e:

𝐴(𝑥 ;𝜙) : 𝑋 → {0 (non-member), 1 (member)} (1)

where 𝐴 is the adversary, 𝜙 are the parameters that the adversary
utilizes and 𝑋 is the space of possible data points.

Now we will explain two adversarial models that cover standard
membership attacks. The first adversary requires training with
the objective of finding statistical differences between members
and non-member data points; whereas the second model has a
prior belief on these statistical differences and no learning phase is
required.

Learning Based Adversary. First introduced in [34], this adver-
sary relies on training a shadow model and a binary attack model.
Shadow models mimic the behavior of the victim model and are
in the possession of the adversary. The adversary can freely study
the behavior of these models as a surrogate for the victim models
with restricted access. The task of the binary attack classifier is to
classify its input as member/non-member of the training set.

The following steps are taken by the adversary:

(1) Shadow model training: Train the shadow model with a
set of data point from the same distribution as the training
set of the vicitm model.

(2) Binary classifier training:Query the trained shadowmodel
with its training set as well as a hold-out test set. Collect the
posteriors and pass them to the binary attack classifier.

(3) Attack the victim model: Query the victim model with
the desired data points and use the trained binary classifier
to decide the membership status.

The assumption about this attack is that the adversary has a black
box access to the victim model and can only study the returned
posterior vectors. In this method, only one shadow model and one
binary classifier are used. This can be viewed as a relaxed version
of multiple shadow models and multiple binary classifiers of Shokri
et al. [35].

We will refer to this attack model as LRN adversary.

Learning Free Adversary. The dependence of the LRN adver-
sary on the shadowmodel and the binary classifier as well as data to
train these models, is an undesirable factor. For this reason, Salem
et al. [34] suggest a more versatile model that requires no shadow
model or attack binary classifier. A black-box access to the victim
model is also assumed for this attack. The posterior vectors from the
victim model are inspected and if the maximum element exceeds
a calibrated threshold it will be classified as a member, otherwise
non-member. This can be summarized in the following function:

𝐴(𝑥 ;𝑇 ) =
{

1 if max𝑦 Pr(𝑦 |𝑥) ≥ 𝑇
0 otherwise

(2)

which is parameterized by a single threshold 𝑇 . The adversary
queries the victim model by data point 𝑥 and decides based on the
maximum of the returned posterior vector Pr(𝑦 |𝑥) whether or not
it is a member of the training set of the vicitm model.

The name "learning free" comes from the fact that no shadow or
attack classifiers are trained.Wewill refer to this attack as LRN-Free
adversary.

3 DEFENSES FOR MEMBERSHIP INFERENCE
ATTACKS

In the previous sectionwe defined themembership inference attacks
and described two generic models to carry out these attacks in
practice. Now, we will explore methods to defend against them.

To defend against these attacks, we need to understand what
factors make these attacks possible and how we can limit and
paralyze the adversary. Most of the previous work on defenses
against membership inference attacks can be summarized into two
categories:

3.1 Generalization-based techniques
[35] was the first to define the membership inference attacks in a
machine learning setting. They also identify the overfitting of the
victim model as one of the main culprits for vulnerability to mem-
bership inference attacks. They hypothesize that the victim model
memorizes its training set such that the posteriors show a statistical
difference between the seen and hold-out data. A more compre-
hensive study about the correlation of overfitting to membership
inference attacks can be found in [43].



These findings prompt a line of defense that relies on enforcing
generalization on the victim model. [35] suggest using L2 regular-
ization of the parameters and restricting the number of training
epochs. [34] use dropout and ensemble learning to train the vic-
tim model to help it generalize better. In a slightly different ap-
proach, [28] utilizes adversarial training of the victim model in the
form of a min-max game to help the model generate indistinguish-
able predictions on its training set and an unseen dataset.

3.2 Noising-based techniques
Adding randomness to different parameters of the victim model
at different stages is one of the most natural ways to confuse any
adversary. In fact, the first defenses against membership inference
attacks on the genome data [40] proposes adding carefully-crafted
noise to the published dataset.

Jia et al [16] suggest adding noise to the output of the victim
model. They generate specially-composed noise vectors for the
victim model’s posteriors such that they act as adversarial examples
for the attacker.

In amore formal andmathematics-driven line of work differential
privacy is leveraged to add noise the gradients during the training
of the victim model [15, 32].

In this work we mainly focus on differential privacy as a defense
since it is a well-defined privacy framework and very flexible with
respect to the methods that can be applied to build a differentially-
private model. We will next introduce differential privacy.

Differential Privacy. Differential privacy (DP) [7–10] is amath-
ematical definition bounding the maximum divergence between the
probability distributions of the outputs of a mechanism𝑀 when it
is applied on two adjacent datsets 𝑑 and 𝑑 ′. Two datasets 𝑑, 𝑑 ′ ∈ D
are adjacent when they differ in only one entry, e.g. when the data
of one user is removed from one of the two identical datasets.

Definition. We formally define a differentially private algorithm
𝑀 : D → R when the following condition holds:

Pr[𝑀 (𝑑) ∈ 𝑆] ≤ 𝑒𝜖 Pr[𝑀 (𝑑 ′) ∈ 𝑆] + 𝛿 (3)

where𝑀 is a randomized algorithm with domain D of all possible
datasets and range R, 𝑑 and 𝑑 ′ are two adjacent datasets and 𝑆 ⊆ R
is the output of the algorithm𝑀 . The privacy parameters (privacy
budget) 𝜖 and 𝛿 bound the probability of the output being more
likely for one dataset compared to the other.

We say that the randomized algorithm𝑀 is (𝜖, 𝛿)-differentially
private if Equation. 3 holds for some parameters 𝜖, 𝛿 ≥ 0. It is usually
suitable to set the value of 𝛿 = 1/|𝑑 | where |𝑑 | is the number of data
points in the dataset. So we are mostly concerned with and aim to
achieve a smaller value of 𝜖 since it guarantees more privacy.

In Section. 4 we will explain two DP methods used to defend
against our sampling attack, in more detail.

3.3 Argmax Defense
Diverging from differential privacy and the other suggested defense
methods, we can take a step back and tackle this problem from a
different perspective. To date, all the membership inference adver-
saries that we are aware of, rely on and utilize the posterior vectors
from the victim model. This means that if the victim model returns

the most confident ‘argmax’ label 𝑘 = arg max𝑘 Pr(𝑦 = 𝑘 |𝑥𝑖 ) in-
stead of the full posterior, the adversary is unable to carry out the
attack. We refer to this method as argmax defense.

Note that the argmax defense is not always feasible, mostly as a
result of the problem design setting where the scores are required
and expected by the benign user.

4 SAMPLING ATTACK AND DEFENSES
In Section 3.3 we argued that the argmax defense is effective against
all the previously-suggested membership inference adversaries due
to their dependence on the posteriors vectors. Now we will intro-
duce our novel attack method which is designed to work under this
severe restriction. We will first explain how the attack works and
provide the algorithm, then pick two differentially-private mecha-
nisms as defense against sampling attack.

4.1 Sampling Attack
Membership inference adversaries are designed to study the pos-
terior vector, so the idea behind our sampling adversary is to re-
construct these vectors from the returned labels. We achieve this
by populating a sphere around each data point with multiple per-
turbations of it and counting the number of perturbed samples
that fall under each label. Our hypothesis is that, accuracy of the
model reflects the data point’s distance to the decision boundary
and members of the training set lie farther from these decision
boundaries compared to the non-members and data points that
the model is unsure about. So at a specific perturbation level, the
returned labels of perturbed member data points are less likely to
change, compared to returned labels of the perturbations of the
non-member data points.

Algorithm. 1 demonstrates how the sampling adversary works.
The perturbation function pert() acts on each data point 𝑥 to gen-
erate 𝑁 perturbed samples. We assume that these perturbations
provide an approximate of the data points distance to the decision
boundary (proven for linear models in e.g. [11]). I is an identity
function which builds histograms over the labels of the perturbed
points. Here, 𝑐 is a specific class label. We hypothesize that this
histogram can be a suitable replacement for the posterior.

Algorithm 1: Sampling Attack

Input: Data points {𝑥1, . . . , 𝑥𝑀 }, neural network N(𝑥) that
outputs label of 𝑥 , perturbation function pert(𝑥𝑖 ;𝑝).
Parameters: number of perturbations 𝑁 , perturbation scale 𝑝 .
for 𝑖 ∈ [𝑀] do
𝑙 = []
for 𝑛 ∈ [𝑁 ] do
get labels: 𝑙𝑛 = N(pert(𝑥𝑖 ;𝑝))
𝑙 .append(𝑙𝑛)

end for
build histograms: Pr(𝑦 = 𝑐 |𝑥𝑖 ) = 1

𝑁

∑
I(𝑙 = 𝑐)

end for
Output: Posterior vectors Pr(𝑦 |𝑥)

In practice, the following steps are taken by the adversary:



(1) Shadow model training: Train a shadow model with data
from the same distribution as the training set of the victim
model.

(2) Sampling on the shadowmodel: Execute algorithm. 1 for
the training set as well as a hold-out test set of the shadow
model. Repeat for different perturbation levels 𝑝 .

(3) Attack the shadow model: Using the reconstructed poste-
riors from the previous step, attack the shadow model with
one of the conventional adversaries.

(4) Attack the victim model: Choose the optimum value of
𝑝 according to some performance metric of the adversary.
Attack the victim model with the chosen 𝑝 value and the
adversary from step 3.

In Table. 1 we compare the sampling attack with the LRN and
LRN-Free adversaries. The sampling attack requires the training of
a shadow model. If we choose LRN-Free adversary for steps 3 and
4 of the sampling attack, no binary classifier training is required.

4.2 Defenses for Sampling Attacks
For defense against our sampling attacks, we look at DP inspired
techniques. We choose two different DP approaches:
• DP-SGD which is applied during the training of the victim
model and in general guarantees the privacy of the model
after the training process.
• Randomized Response (RR) mechanism which protects the
output of the victim model, here the returned labels.

DP-Stochastic Gradient Descent (DP-SGD) [1]. This method
achieves privacy by adding noise to the parameters of the model
during the training. First, the gradients are clipped then an additive
noise is applied to them:

ḡ𝑡 (𝑥𝑖 ) ← g𝑡 (𝑥𝑖 )/max(1, ∥g𝑡 (𝑥𝑖 )∥2
𝐶

) (4)

g̃𝑡 ←
1
𝐿
(
∑
𝑖

ḡ𝑡 (𝑥𝑖 ) + N (0, (𝜎𝐶I)2)) (5)

where g𝑡 is the gradient vector at epoch 𝑡 , 𝐶 is the clipping norm,
𝐿 is the number of samples randomly chosen for calculation of
the gradient and N(0, 𝜎2) is a Gaussian with standard deviation 𝜎 .
This process can be viewed as Gaussian mechanism on top of the
stochastic gradient descent. The reason behind the clipping step is
to bound the 𝑙2-sensitivity of the gradients.

A drawback of this method is that due to the operations during
the training, it slows down the training process. It is also designed
to guarantee privacy for a white-box access which results in higher
𝜖 value for a specific accuracy, compared to other DP mechanisms
that are applied e.g. after the training of the model.

Randomized Response (RR)mechanism [42]. One of the old-
est privacy-ensuring mechanisms, randomized response was first
used to protect participants in surveys with a "yes/no" possible
answer.

We choose randomized response on the returned labels, assum-
ing that a trained model that follows argmax protocol only allows
adjusting of the labels. Since we have more than two possible an-
swers (labels), we modify the randomized response with a fair coin,
in he following way:

if tails: reveal the returned label
if heads: toss the fair coin again. If heads reveal the returned

label; otherwise uniformly at random choose one of the remaining
classes.

In this case, the privacy budget can be calculated as:

𝑒𝜖 =
Pr(revealed = k|returned = k)
Pr(revealed = k|returned = k’) =

0.75
0.25/(𝐶 − 1)

= 3(𝐶 − 1)
where 𝐶 is the total number of classes in the labels. So this mecha-
nism is (ln(3𝐶 − 3), 0) differentially private.

This DP method has the advantage of being fast and easy to
apply and any model owner, even those with access to only the
output labels can use this mechanism to protect the privacy of their
model.

5 EXPERIMENTS
In this section we start off with a study of the traditional mem-
bership inference attacks (LRN and LRN-Free of Section. 2) on a
collection of 8 different datasets that were used in the most influen-
tial membership inference attack studies (e.g. [16, 28, 34, 35]). This
has two benefits; first, we are able to unify the results on all these
datasets using a single metric. Second, we observe the behavor of
the traditional attackers and build a baseline to compare with out
novel sampling attack technique.

After these preliminary experiments we move to the main part
of our experiments, i.e. the study of sampling attack technique and
the DP defenses against it.

5.1 Datasets
The datasets that we begin our experiments with, are:

MNIST. The MNIST∗ dataset consists of 60, 000 training data and
10, 000 test data of grayscale images of size 28 × 28. These images
depict handwritten digits (0 − 9) and are centered with respect to
the frame of the image.

FashionMNIST. Created by Zalando†, this dataset consists of
60, 000 and 10, 000 training and test set data points, respectively.
These images are also 28 × 28 and in grayscale and represent 10
classes of fashion items such as "tops", "trousers", "sneakers", etc

CH-MNIST. This preprocessed dataset obtained from Kaggle‡
contains 5000 greyscale images of different types of tissue in col-
orectal cancer patients. The size of images is 64 × 64 and the task is
to classify these images into one the 8 possible tissue categories.

CIFAR10, CIFAR100. We used CIFAR-10 and CIFAR-100§ for our
experiments. Both consists of color images of size 32 × 32 and have
50, 000 raining data and 10, 000 test data. CIFAR-10 has 10 classes
such as "air plane", "dogs", "cats", etc.:5000 randomly-selected images
per class in its training set and 1000 randomly-selected images per
class in its test set. On the other hand, CIFAR-100 has 20 super
classes, each containing 5 class (in total 100 classes) of different
subjects such as animals, humans and vehicles. Similar to CIFAR-10,
∗http://yann.lecun.com/exdb/mnist/
†https://www.kaggle.com/zalando-research/fashionmnist
‡https://www.kaggle.com/kmader/colorectal-histology-mnist
§https://www.cs.toronto.edu/ kriz/cifar.html



Table 1: Comparison of LRN and LRN-Free to the sampling adversary. Full circles mean that the condition is required and the
half full circle means flexibility in terms of training.

adversary shadow model binary classifier data distribution access posterior access training

LRN      
LRN-Free - - -  -
sampling  -  - G

it also has 5000 randomly-selected images per class in its training
set and 1000 randomly-selected images per class in its test set.

Purchase100. Purchase¶ is dataset of shopping history of several
thousand customers and the aim is to classify the customers into 𝑘
different classes of shopping styles so that accurate coupon promo-
tions can be suggested to them. This dataset has no ground truth
for the labels. Similar to [34, 35], we use a simplified version of this
dataset with ∼ 200, 000 data points and a 600-dimensional vector
of purchases per data point where each element can take a value
of either 0 or 1 (present or not present in the shopping history).
Afterwards, k-means clustering algorithm [21] is used to cluster
these vectors into 100 classes. We call this version of the Purchase
dataset with 100 classes Purchase100.

Texas100. This includes patients’ data published by the Texas
Department of State Health Services∥. This dataset contains 6, 169
binary features of 67, 330 patients, such as diagnosis of various
disease, procedures performed on the patient and other properties
of each patient. We use a preprocessed version obtained from [16].
Given the input data of each patient, the task is to choose among
the most suitable procedure among the available 100 most frequent
ones.

Location. This dataset is the binary representation of 446 loca-
tions∗∗ (either visited or not visited) by users. This comes with 5, 010
data points and the task is to classify the datapoint into one of the
30 possible classes. We obtained a preprocessed version from [16].

5.2 How Successful MI Attacks Really Are
Throughout our studies we encountered many papers on member-
ship inference attacks and/or defenses against them where each
used different datasets and different metrics to evaluate the success
of the attacks and defenses. This motivated us to first combine all
these datasets under a unified metric to be able to compare and
better understand the results. We chose LRN and LRN-Free (see
Section 2) as our conventional adversaries. Below we explain the
details of our experiments:

Evaluation metrics. To evaluate the performance of the ad-
versary we chose Area Under the ROC Curve (AUC) since it is
independent of the threshold that the adversary chooses to distin-
guish members from non-members and gives a better overview of
the performance of the attacker. An AUC value of 0.5 means ran-
dom guessing and implies completely unsuccessful attack, whereas
AUC value of 1.0 implies a perfect attack.

¶https://www.kaggle.com/c/acquire-valued-shoppers-challenge/data
∥https://www.dshs.texas.gov/THCIC/Hospitals/Download.shtm
∗∗https://sites.google.com/site/yangdingqi/home/foursquare-dataset

Data splits. We divide each dataset into 4 equal parts 𝐷victim
train ,

𝐷victim
test , 𝐷shadow

train and 𝐷shadow
test . For this purpose, all of the training

and test sets of MNIST, FashionMNIST, CH-MNINST, CIFAR10,
CIFAR100 and Location datasets are combined and used. For Pur-
chase100 and Texas100 we use a total of 80,000 and 40,000 randomly
selected points, respectively.

LRN adversary. Weuse𝐷shadow
train to train the shadowmodel. After

training we query the shadow model by its training set and the
unseen data points of 𝐷shadow

test and use these posteriors to train
the binary classifier. We then test the performance of the binary
classifier on the posterior prediction of the victim model when
queried by its training set 𝐷victim

train and the unseen set 𝐷victim
test . To

avoid choosing a decision threshold, at this stage we only take
the output of the sigmoid function of the binary classifier. This
allows us to calculate the AUC values over decisions of the binary
classifier.

LRN-Free adversary. For a fair comparison with the LRN adver-
sary we only use 𝐷victim

train and 𝐷victim
test for our learning-free method.

We query the trained victim model by its training data 𝐷victim
train and

the hold-out 𝐷victim
test and take the maximum element of the returned

posterior vectors. Similar to LRN adversary, we refrain from choos-
ing a decision threshold and calculate AUC values over all the
possible thresholds.

Victim model. For all the image datasets (MNIST, FashionM-
NIST, CH-MNIST, CIFAR10 and CIFAR100) we use a VGG-like [36]
convolutional neural network (CNN) as shown in Figure. 1. For
Location we use a fully connected neural network with layer sizes
[256, 128, 128, 30]. For Texas 100 and Purchase100 we use a fully
connected neural network with layer sized [512, 256, 128, 100]. We
train these models with AdamOptimizerwith learning rate of 0.001.
The maximum number of epochs is set to 50 but an early stopping
criterion is also set.

Shadowmodel. We use the same structures as the victim model
for the shadow model and train the model with 𝐷shadow

train using the
same procedure as the victim model.

Attack binary classifier. For the attack classifier we use a neu-
ral network with one 64-unit hidden layer and a sigmoid output for
the final binary classification.

Results and discussion. Table. 2 demonstrates the evaluated
performance of the LRN and LRN-Free adversaries on each dataset.
We observe that the adversaries are more successful (higher AUC)
on datasets with lower test accuracy. Based on this observation we
have divided the table into 3 zones: green zone is where the adver-
saries do not achieve any meaningful success. Yellow zone is where



Figure 1: The structure of the CNN used for all the image datasets. All the red squares indicate 3 × 3 convolution filters and
the blue squares show 2 × 2 pooling with stride of 2. In the end there are two fully-connected (FC) layers.

the adversary starts to pick up the differences between members
and non-members and finally the red zone is where the advarsaries
have acceptable performance. We also symbolically show that with
the argmax defense, the performance of both adversaries for all
datasets would drop to chance level.

The existence of the green zone can be contributed to the accept-
able generalization of the models. Keep in mind that we have used
early stopping for training, unlike many previous work that have
a set number of epochs for training. This prevents overfitting on
the training set and can be seen as a generalized-based technique
(see Section. 3). These models, that generally achieve higher test
accuracy, do not overfit on their training data and output posterior
vectors that are statistically homogeneous across all the data.

We can also see that the number of classes in each dataset plays a
role in the success rate of adversaries. For datasets with comparable
number of training points, those that have fewer number of classes
are less prone to attacks. This can also be explained with the fact
that it is easier for models to generalize and perform for fewer
number of classes.

We noticed that some datasets that were well-protected in our
experiments, that is MNIST, FashionMNIST and CH-MNIST, were
reported with high success rate of the adversary in the previous
literature. We relate this to a better network structure and the
application of an early stopping mechanism in the training such
that overfitting is avoided.

From this point on we proceed with only CIFAR10/100, Texas100,
Purchase100 and Location since the AUC value for both adversaries
for the remaining datasets is close to chance level and this does
provide a good baseline for our further experiments.

5.3 Novel Sampling Attack and Defenses for It
With an understanding of how the conventional membership infer-
ence attacks perform in practice, we can start our experiments on
the sampling attack and the defenses against it. As mentioned in the
previous section, we only choose the datasets that showmeaningful
weaknesses towards adversaries.

The structure of the victim and shadow models are the same as
the previous section.

Sampling adversary. For image datasets (i.e. CIFAR10/100) we
choose pert(𝑥 ;𝑝) = 𝑥 + N(0, 𝑝2) which is an additive Gaussian
noise to each pixel of the image in each channel. We chose 𝑝 =

{𝑖 × 0.01|0 ≤ 𝑖 ≤ 20, 𝑖 ∈ N}.
For binary datasets (Location, Texas100, Purchase100) pert(𝑥 ;𝑝) =

𝑓 𝑙𝑖𝑝 (𝑥). So we flip the values of each dimension with a probability
𝑝 to the other value, that is, we flip 1 to 0 and 0 to 1. The steps of
perturbation are chosen such that 𝑝 = {𝑖 × 0.005|0 ≤ 𝑖 ≤ 20, 𝑖 ∈ N}

For all of the datasets, we chose to generate 𝑁 = 100 perturbed
samples for the attack.

For steps 3 and 4 of the sampling adversary (see Section 4) We
choose LRN-Free as the conventional adversary. This is based on
our findings from the previous section that showed no signifi-
cant difference between the performance of LRN and LRN-Free
. LRN-Free is more versatile and reduces one extra step of the
training an attack binary classifier for the sampling adversary. The
structure of the LRN-Free is the same as the previous section.

DP-SGD. We use DP-SGD as the parameter perturbation mech-
anism against this adversary. We pick the optimum value of noise
level based on the performance of the adversary on a shadowmodel
and run the sampling attack on the model trained with this noise
level of DP-SGD.

Randomized response. We apply the RR mechanism as de-
scribed in Section. 4. For this defense we can also calculate the
expected drop of the accuracy due to the application of the RR
mechanism:

accuracy =
𝑛𝑇

𝑛𝑇 + 𝑛𝐹

→ E[accuracy𝐷𝑃 ] =
0.75 ∗ 𝑛𝑇
𝑛𝑇 + 𝑛𝐹

+ 0.25/(𝐶 − 1) ∗ 𝑛𝐹
𝑛𝑇 + 𝑛𝐹

= 0.75 ∗ 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 + 0.25
𝐶 − 1

(1 − 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦)

where 𝑛𝑇 and 𝑛𝐹 indicate the number of points which correctly
match the ground truth labels and the number of points which
deviate from the ground truth labels, respectively. And 𝑛𝑇 + 𝑛𝐹 is
the total number of data points that the model was tested on.

Results and discussion. In Figure. 2 we show the performance
of the sampling adversary for different perturbation levels and



Table 2: Test accuracies versus performance of the LRN and LRN-Free attacker for all of the datasets. The last column symboli-
cally shows that when using the argmax defense, both LRN and LRN-Free adversaries fail to perform.

#classes/dataset accuracy
𝐷𝑣𝑖𝑐𝑡𝑖𝑚
𝑡𝑒𝑠𝑡

AUCLRN AUCLRN-Free w/ argmax

10 MNIST 0.98 0.50 0.51 0.5
10 FashionMNIST 0.88 0.505 0.505 0.5
10 CH-MNIST 0.76 0.52 0.505 0.5
100 Purchase100 0.78 0.60 0.58 0.5
10 CIFAR10 0.69 0.60 0.59 0.5
30 Location 0.61 0.81 0.88 0.5
100 Texas100 0.56 0.72 0.67 0.5
100 CIFAR100 0.35 0.76 0.75 0.5
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Figure 2: Sampling attack versus the LRN adversary with full
posterior access for binary and image datasets. On x-axis the
perturbation scale is shown

Table 3: Best 𝑝 value for sampling attack for each dataset

CIFAR10 CIFAR100 Purchase100 Texas100 Location

𝑝∗ 0.13 0.11 0.015 0.005 0.015

Table 4: Sampling attack with the best 𝑝 value on the victim
model.

Dataset w/ access sampling DP-SGD RR

CIFAR10 0.59 0.55 0.51 0.53
CIFAR100 0.78 0.66 0.51 0.61

Purchase100 0.69 0.67 0.52 0.57
Texas100 0.64 0.63 0.51 0.59
Location 0.89 0.89 0.61 0.8

compare it to the horizontal baseline of the LRN adversary when
the full posterior access is allowed.

We observe that the sampling adversary is able to gain up to
50% of its initial performance for image datasets and 100% of the
performance for binary datasets. The best result is achieved for
Location dataset and this could correlate with the fact that loca-
tion has the fewest number of features among all datasets and we
achieve more meaningful perturbations towards the boundaries
of the other classes and building the histograms over the labels is
more representative of the true posteriors.

Table 3 includes the best perturbation scales 𝑝 with the highest
AUC of adversary, found for each dataset in the shadow model
setting. We see that this value is very small and particularly in the
case of the binary datasets a 𝑝 < 0.015 works best. After this range,
further perturbation results in random and noisy behavior of the
sampling attack.

Next, we pick the optimum perturbation level 𝑝∗ of the shadow
model from Table. 3 and attack the victim model. Table 4 shows
the results for the LRN with access to posteriors, the sampling at-
tack AUC and sampling attack when DP-SGD and randomized
response are used. For DP-SGD we chose a noise level such that
accDP-SGD/accno-defense ≥ 0.8 for vitim model performance. Both
DP-SGD and randomized response mitigate the risks of such at-
tacks, however DP-SGD seems to protect better and the attacker’s
performance drops to almost chance level, for most datasets.

We then study the effect of sampling number 𝑁 on the per-
formance of the adversary on the victim model. We choose 𝑁 ∈
{10, 100, 1000} and calculate the AUC of the adversary for the op-
timum 𝑝 values from Table 3. The results are shown in Table 5.
As expected, higher number of queries improve the attack as they
provide a better estimate of the true position of the data point to



Table 5: Effect of number of samples on attacks.

Dataset w/ access N=10 N=100 N=1000

CIFAR10 0.59 0.52 0.55 0.56
CIFAR100 0.78 0.60 0.66 0.68

Purchase100 0.69 0.57 0.67 0.68
Texas100 0.64 0.54 0.63 0.63
Location 0.89 0.80 0.89 0.89

Table 6: Transferring the best 𝑝 between datasets

𝑝 0.11 0.13 0.005 0.015

CIFAR10 0.55 0.54
CIFAR100 0.64 0.63

Purchase100 0.65 0.67
Texas100 0.63 0.54
Location 0.81 0.89

Table 7: Comparison of the sampling attack’s best accuracy
with the accuracy of a naive generalization adversary

sampling attack naive attack

CIFAR10 0.56 0.51
CIFAR100 0.67 0.76

Purchase100 0.62 0.60
Texas100 0.57 0.65
Location 0.87 0.69

the decision boundaries of the model. It is important to remember
that DP guarantees degrade with the number of queries, since the
adversary can eventually zero out the noise e.g. in randomized
response defense. On the other hand, a victim model can detect and
block multiple queries from the adversary. So in general, querying a
victim model multiple times is not a desirable action and the adver-
sary should aim to attack with the least number of points possible.
We observe that the increase in performance is more noticeable
between 𝑁 = 10 − 100 than 𝑁 = 100 − 1000, so for these datasets
𝑁 = 100 is an acceptable and safe value.

We also show the AUC values of the attack when the optimum
𝑝 of another dataset is used to attack. Table 6 shows the AUC
of adversary on the victim model for different 𝑝∗ of datasets. We
transfer the best perturbation scale among image datasets and
binary datasets, separately. These results show us that an acceptable
attack performance can be achieved even when the adversary trains
the shadow model for a different dataset. With this strategy, the
attacker is able to train the shadow model once on a similar type of
dataset and carry out attacks on other data and save on the training
time.

At last, we compare the performance of our sampling attack to
the naive baseline of a generalization error adversary as proposed
in [43]. This naive adversary classifies all the correctly labeled
data points as members and the incorrectly classified ones as non-
members of the data set. For our same-sized dataset splits, the

accuracy of this attacker can be calculated by querying the victim
model:

attack accuracy =
1
2
(1 + accuracy𝐷𝑣𝑖𝑐𝑡𝑖𝑚

𝑡𝑟𝑎𝑖𝑛
− accuracy𝐷𝑣𝑖𝑐𝑡𝑖𝑚

𝑡𝑒𝑠𝑡
)

For this purpose, we chose the best attack accuracy of our sam-
pling attacker at the optimal 𝑝 value of each dataset. The results
are shown in Table 7. We observe that the naive attacker performs
better than the sampling attack on CIFAR100 and Texas100 datasets.
Looking back at Table 2 we see that these two datasets have the
lowest test set accuracies and suffer the most from the generaliza-
tion error. Another factor contributing to the poor performance of
the sampling attack on Texas100 might be the feature space which
is the largest among the binary datasets, making it hard to generate
meaningful perturbations of data points that cross the classifier’s
boundaries for each label.

In real-world application where the classifiers are trained on
massive datasets, we expect the generalization error and conse-
quently the accuracy of the naive base attacker to drop. However,
since the sampling attack works based on the assumption that data
points that are unseen by the model should be located closer to
decision boundaries, we expect that our attack model would still
be applicable to real world models.

6 RELATEDWORK
Membership inference. Membership inference attacks have

been first suggested as a concern for medical data privacy [2, 14, 40].
In 2017, Shokri et al. [35] studied the membership inference attacks
on machine learning models. They showed that machine learning
models also suffer from memorization of their training data and
an adversary can infer the membership status of the data with the
help of a few shadow models and attack classifiers. They propose
overfitting of the machine learning models on their training set
and inefficient generalization as a possible cause of this issue. [43]
and [22] carry out extensive studies on the relationship between
overfitting and the risk of MI attacks.

Later, Salem et al. [34] suggested relaxing the assumptions made
in [35] to construct more versatile adversaries that achieved com-
parable performance.

So far MI attacks on machine learning models have been studied
on a variety of tasks ranging from attacks on audio recordings
and natural language processing [19, 26, 38], aggregate location
data [30] and smart meters data [3] to generative models [4, 12, 13,
20] as well as in collaborative and decentralized machine learning
settings [25, 29].

In all of the previously-mentioned works, the access of the MI
adversary to the full posterior is crucial. Machine learning attacks
under limited access to the posterior vectors have been studied
before, for example, [6] propose evasion attacks when the score of
the detector is not accessible to the adversary. To fool the detector,
they generate perturbations of the malicious sample and attempt to
find the first perturbed sample that traverses the malicious/benign
boundary of the detector. However, this evasion attack does not
directly depend on the posterior vectors and the goal is to only evade
the detector. In an attempt to relax the assumption of posterior
access for membership inference attacks, [43] suggested a naive



attacker that performs proportional to the generalization gap of
the victim model.

Concurrent to our work, [18] and [5] study methods to attack
the models with access to labels only. [18] suggests transfer-based
and perturbation-based attacks. Transfer-based attack relies on
a shadow model to mimic the behavior of the victim model and
return similar posteriors when queried by the attacked data. The
perturbation-based method classifies data points as members/non-
members based on the amount of perturbation needed to change
the label. Unlike our sampling attack, they do not aim to reconstruct
the posteriors. [5] investigates different perturbation functions and
builds on the assumption that the confidence scores are proportional
to distances to the decision boundary.

Defenses against membership inference. Naturally, the at-
tempts to protect against membership inference attacks dates back
to when the risks were first exposed. Wang et al. [40] proposed
adding carefully-crafted noise to the published dataset that needed
to be protected. Later [41] they suggested a method that splits an
aggregate of data into what is common among most participants
and the sensitive part and only publishing the common part.
Based on the hypothesis that machine learning models leak the
membership information due to overfitting on their training set,
Shokri et al. [35] suggest using L2 regularization of the parameters
and also restricting the number of passes on the training data dur-
ing the training (epochs). [34] suggest using dropout and ensemble
learning. As a method of regularization, adversarial training is used
in [28].
Another approach to defending against MI attacks is adding noise
to the output, or to the parameters of the model during the training.
Adding noise helps by making the distribution over the training
data set and the non-training data converge and become indis-
tinguishable. Jia et al. [16] add carefully composed noise vectors
to the posteriors of the victim model such that it acts as an ad-
versarial example for the adversary’s attack classifier. In a more
mathematically-driven line of work differential privacy (DP [7–10])
is leveraged to add noise to the gradients during the training of the
model [5, 15, 32]. [15] and [5] demonstrate that trying to preserve
the test accuracy results in privacy budgets that are not formally
acceptable by DP (𝜖 ≫ 1). In this paper we use DP only as a prac-
tical method to protect against our specific MI attack technique
with its restricted assumption and are not concerned with the strict
theoretical guarantees of DP.

7 DISCUSSION AND CONCLUSION
By evaluating membership inference attacks over a large scope of
different dataset, we highlight issues with the rapidly developing
research thread of membership inference. Often attack performance
is assessed with different type of models, while such performance
cannot be seen in isolation of data and training procedure. We
urgently need more transparency in reporting membership attack
performance in order to be really in a position to compare and
measure progress in this area.

We investigate the argmax defense, which previouslywas thought
to prevent membership inference attacks. While for previous at-
tacks this is true, we show a new sampling attack that attracts by
repeated querying of the model surrogate information of the model

that is able to recover a large fraction of the attack performance. In
turn, we also present a modification of the randomized response
defense, that is in part capable of mitigating the new attack vector.
We also study the effect DP-SGD in protecting of the model against
our sampling attacks.
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