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Abstract. The algebraic-group model (AGM), which lies between the generic group model and the
standard model of computation, provides a means by which to analyze the security of cryptosystems
against so-called algebraic adversaries. We formalize the AGM within the framework of universal com-
posability, providing formal definitions for this setting and proving an appropriate composition theorem.
This extends the applicability of the AGM to more-complex protocols, and lays the foundations for
analyzing algebraic adversaries in a composable fashion. Our results also clarify the meaning of com-
posing proofs in the AGM with other proofs and they highlight a natural form of independence between
idealized groups that seems inherent to the AGM and has not been made formal before—these insights
also apply to the composition of game-based proofs in the AGM. We show the utility of our model
by proving several important protocols universally composable for algebraic adversaries, specifically:
(1) the Chou-Orlandi protocol for oblivious transfer, and (2) the SPAKE2 and CPace protocols for
password-based authenticated key exchange.
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1 Introduction

Security proofs are often carried out in idealized models that seek to capture certain classes of adversarial
behavior. Examples include the random-oracle model [8], in which the attacker is assumed to treat a hash
function as an ideal random function; the ideal-cipher model, in which the attacker is assumed to treat a
block cipher as an ideal keyed permutation; and the generic-group model (GGM) [28,29], where the attacker
is assumed to treat group elements as abstract identifiers and group operations as black-box operations on
those identifiers.

Cryptographers continually seek to refine these models, making them more expressive so they capture
larger classes of algorithms and thus come closer to modeling adversaries performing arbitrary computation.
With this motivation in mind, Fuchsbauer et al. [18] (based on ideas of Abdalla et al. [3]) proposed the
algebraic-group model (AGM) as a more expressive version of the GGM. Roughly, the AGM considers alge-
braic adversaries that compute group elements via a sequence of “generic” group operations, but which—in
contrast to the GGM—are allowed to utilize the actual bitstrings representing group elements in the course
of their computation. This model is strictly stronger than the GGM; for example, index-calculus algorithms
that apply to certain classes of groups are algebraic and hence allowed in the AGM, even though they are
ruled out in the GGM by known lower bounds on the hardness of the discrete-logarithm problem in that
model. The AGM has been used to show equivalence of various number-theoretic assumptions [5, 6, 18] and
to prove security of SNARKs [16,18,26] and blind signatures [19]. An extension called the strong AGM has
recently been used to prove hardness of the repeated squaring assumption underlying timed commitments
and related primitives [23].

Notably, none of the aforementioned results provide any guarantees of security under composition with
other protocols (whether proven secure in the AGM or not). Here, we lay the foundations for a composable
treatment of algebraic adversaries by formalizing the AGM within the framework of universal composability
(UC) [12] and proving a corresponding composition theorem. This involves not only formalizing a number
of subtle issues related to the AGM itself (which may be of independent interest for subsequent work in the
AGM), but also making a number of careful design decisions in defining what algebraic adversaries mean
in the UC framework, in part to ensure that a suitable composition theorem holds. We discuss this in more
detail in the following section.

We demonstrate the utility of our model by proving several important protocols universally composable
for algebraic adversaries. Specifically, we prove security of (1) the Chou-Orlandi protocol for oblivious trans-
fer [17], and (2) the SPAKE2 and CPace protocols for password-based authenticated key exchange [4,21] in
our model. We describe these results further in Section 1.2.

1.1 Defining the AGM Within the UC Framework

We first define some notation and terminology related to the AGM that suffices to understand the discussion
that follows. (Our treatment here is deliberately informal, and we refer the reader to Section 2 for technical
details.) Fix a group G. An algebraic representation of h ∈ G with respect to a list of elements g1, . . . , gn ∈ G
is a tuple (x1, . . . , xn) ∈ Zn with h =

∏n
i=1 g

xi
i . Roughly speaking, the AGM considers adversaries that are

algebraic (with respect to G), meaning that if an adversary A outputs a group element h ∈ G, then A must
also output an algebraic representation of h with respect to the set of group elements (which we call a base)
that A has been given as input thus far.

We generalize the AGM to the standard UC framework by restricting our attention to algebraic attackers.1

While this is a natural idea, it involves dealing with a number of subtle technical issues. First of all, to make
this notion meaningful it is not sufficient to restrict the adversary to be algebraic; rather, we require the
environment to be algebraic as well. Moreover, in order for composition to possibly hold, we must also require
the simulator used in proving security to be algebraic. That is, in the UC-AGM a protocol π securely realizes

1 One can consider formalizing the AGM within the UC framework by introducing a functionality FAGM that “forces”
arbitrary algorithms to behave algebraically by registering group elements and their representations in a central
repository. This has a number of disadvantages that we discuss in Appendix A. Our approach is closer to the spirit
of the AGM, which idealizes groups by quantifying over restricted classes of adversaries.
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Fig. 1. The AGM UC real and ideal worlds. Blue arrows impose algebraic behaviour.

a functionality F if, for any efficient algebraic adversaryA, there is an efficient algebraic simulator S such that
no efficient algebraic environment can distinguish the execution of A with π from the execution of S with F .
Under this definition, we can indeed prove that a UC-style composition theorem holds in the UC-AGM.

Our definition of an algebraic algorithm makes a distinction between adversarial entities (real and ideal
world adversaries and environments) and non-adversarial entities (uncorrupted protocol participants and
ideal functionalities). In the real world, we require the adversary to behave algebraically when it delivers
group elements to uncorrupted participants and to ideal functionalities (when the proof is carried out in
a hybrid real-world); moreover, we also require the environment to behave algebraically when it delivers
group elements to the adversary, but not the converse. Algebraic behavior is defined within the context of
a UC AGM proof by specifying what set of group elements occurring during the protocol execution in the
real-world must be used by the environment and by the adversary as a base for the provided group element
representations. When this is the empty set, we recover the standard UC framework. The natural definition
for this set is to include in it all the group elements that are produced by non-adversarial entities.

We show this pictorially in Figure 1, where the blue arrows denote that all group elements that are
delivered must be accompanied by an algebraic decomposition with respect to base Bρ, which are the group
elements produced by the machines within the boundary of ρ. Note that, in the figure, ρ is specified in a
hybrid world that includes a functionality F , which is within that boundary. The ideal world restrictions are
equivalent, replacing A with S and ρ with the ideal-world protocol φ that is realized by ρ.

Formally, the quantification of the UC-emulation notion is subtle. As in UC, we require for all adversaries
A, the existence of a simulator S, such that for all enviroments E the real and ideal worlds are indistinguish-
able. However, the simulator is only required to work if the pair (E ,A) satisfies the algebraic restrictions
specified in the real world. Intuitively, the extra power of the simulator comes from the fact that E is bound
to behave algebraically when interacting with A and, furthermore, that A will also behave algebraically if the
simulator runs it internally. A caveat is that the simulator must also ensure that (E ,S) satisfy the algebraic
restrictions in the ideal world. However, in the most common case when the simulator is interacting with an
ideal functionality, if this interaction does not involve group elements, then the algebraic requirement is not
a restriction on the simulation strategy (this is the case in all our proofs for concrete protocols).

The UC AGM composition theorem then states, as expected, that ρπ ∼ ρF if π ∼ F . We show this
scenario in Figure 2. Again the quantification is subtle. The composition theorem guarantees only hold if
we restrict our quantification to match the emulation guarantee provided by π: i.e., we have that ρπ ∼ ρF

with respect to pairs (E ,A) that adhere to the base Bπ when interacting with machines in π. Note that this
means, in particular, that the attacker cannot use group elements produced in ρ when attacking π, unless it
is able to provide a representation according to Bπ.

The companion UC AGM transitivity theory further highlights a natural notion of independence between
UC AGM proofs. Suppose that ρF is known to UC AGM emulate some functionality G. Transitivity intuitively
implies that ρπ ∼ G if ρπ ∼ ρF . We show that this is the case also in the UC AGM setting, if we restrict the
quantification over (E ,A) to those attackers that independently meet the AGM restrictions imposed by the
proofs of both π and ρ. This means providing algebraic representations to parties executing π with respect
to a base Bπ defined in the proof of π and, similarly, respecting the algebraic base Bρ when interacting with
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Fig. 2. The UC AGM restrictions for composition (blue) and transitivity (blue/green).

parties executing ρ. This restriction means that AGM UC composition works as expected for protocols that
operate on groups that can be assumed to be independent.

In Section 2.3 we give full technical details and also show that proofs in the UC AGM naturally compose
with proofs in the plain UC model; as expected, the composed protocols can only be shown to be secure
in the UC AGM setting. We also show that the standard approach of writing UC proofs w.r.t. a dummy
adversary still applies in the UC AGM setting.

Discussion. Our theorems show that one should be very careful when composing proofs in the AGM, and
not only in the UC setting. For example, when composing game-based reductions carried out in the AGM,
the same issues arise. Intuitively, composition can only be guaranteed when the AGM assumptions do not
interact badly with each-other, i.e., interacting with one protocol does not allow an attacker to override the
extractability assumption that is being captured by the AGM in the proof of another protocol. In practice
this seems to imply excluding attackers that take group elements from one protocol and use them to attack
another protocol (unless of course the algebraic construction of those elements can be explained with respect
to the set of bases defined by the target protocol alone).

Interestingly, in recent independent work Kerber, Kiayias and Kohlweiss [24] encouter a manifestation
of the same problem in the constructive cryptography framework. In this work, the authors propose a
general notion of proofs w.r.t. knowledge assumptions, which generalizes the AGM: adversaries provide the
relevant extractable information when interacting with the protocol. Their goal is to study the composition
of protocols that rely on different knowledge assumptions. It is beyond the scope of this paper to make
a detailed comparison, since the approaches rely on different compositional frameworks and have different
goals, but it is clear that the same restrictions must be imposed in the composition theorem to enable a proof;
quoting from the paper: “Care must be taken that knowledge stemming from one knowledge assumption does
not give an advantage in another. . . we conjecture that multiple instances with the AGM with independently
sampled groups are sufficiently independent.”

To conclude, we do not see the restrictions in the UC AGM composition theorems as a limitation of our
work, but rather as a limitation inherent to proofs in idealized models—for example, it is easy to establish
a parallel with the random oracle model in the UC setting, where the need for independent RO instances
is well known [15]. On the contrary, we believe that an important contribution of our work is to clarify
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what this limitation means for proofs in the AGM. To overcome these limitations, and similarly to proofs
in the random oracle model, one can prove multiple protocol executions secure simultaneously. At the very
least, it is important to ensure that AGM UC proofs are carried out with respect to multi-session ideal
functionalities, so that multiple executions of the same protocol can be guaranteed to compose securely. We
adopt this approach in our proofs. Another option is to strengthen the proofs of each protocol to consider a
global/shared source of bases along with a more powerful composition theorem, similarly to UC with global
setup [13]. We leave exploring this option as an interesting and important direction for future work.

1.2 Proofs of Security in the UC-AGM

In addition to defining the UC-AGM framework, we also show that several important protocols from the
literature—which were previously lacking full proofs of security in the UC framework—can be proven secure
in our model.

The Chou-Orlandi protocol. Chou and Orlandi [17] proposed a simple and elegant protocol for obliv-
ious transfer and claimed that it was universally composable (with adaptive corruptions) under a suitable
assumption in the random oracle model. Unfortunately, subsequent works [10,20,22] uncovered several prob-
lems with their proof. While these subsequent works also showed how to address some of these issues, and/or
presented modified protocols that could be proven secure, there seems to be no way of proving the original
Chou-Orlandi protocol universally composable, even in the random oracle model.

We show that the original Chou-Orlandi protocol can be proven secure in the UC-AGM, based on the
discrete-logarithm assumption in the random oracle model. We refer to Section 3 for a high-level overview
of the proof and further details.

The SPAKE2 and CPace protocols. SPAKE2 [4] and CPace [21] have attracted a lot of interest recently
due to their consideration for standardization by the IETF. The selection process explicitly considered
whether these protocols were universally composable, which turned out to be a surprisingly difficult question
to answer.2

Abdalla et al. [2] recently proved that these protocols are universally composable with respect to a relaxed
version of the standard functionality for password-based authenticated key exchange (PAKE) that, roughly
speaking, allows the adversary to delay its password guess for a session until an arbitrary time after that
session ends. The full implications of relying on that relaxed functionality are unclear; in particular, although
Abdalla et al. [2] showed that adding a key-confirmation step lifts a UC PAKE protocol to one that provides
explicit entity authentication, we do not know if this is the case when we start from a PAKE protocol that
only realizes the relaxed PAKE functionality.

In this work, we improve upon these results by showing that both SPAKE2 and CPace are universally
composable with respect to the original PAKE functionality [14] when we restrict our attention to algebraic
adversaries. Interestingly, our proofs are significantly simpler than those of Abdalla et al. [2], since the
simulator in our case can leverage the fact that the adversary is algebraic to directly extract password
guesses, rather than performing an indirect extraction using the random oracle.

In addition, we also demonstrate that an important variant of SPAKE2, known as SPAKE1, is secure in
the UC-AGM. SPAKE1, in contrast to SPAKE2, does not include the password as input to the final key-
derivation function, and thus may be advantageous relative to SPAKE2 with regard to side-channel attacks
targeting the key-derivation step. Prior to this work, SPAKE1 was not known to satisfy the standard notions
of security for game-based and UC PAKE. In particular, it was not known to guarantee even the weaker
notion of forward secrecy, in which the attacker can only learn passwords for sessions in which it played the
role of a passive eavesdropper.

1.3 Related Work

We are not aware of any prior work modeling algebraic adversaries in the UC framework, however a few works
have considered generic groups and other idealized models in that setting. Larangeira and Tanaka [25] analyze

2 For a review of the security proofs available for both protocols at the time, see https://mailarchive.ietf.org/

arch/msg/cfrg/47pnOSsrVS8uozXbAuM-alEk0-s.

5

https://mailarchive.ietf.org/arch/msg/cfrg/47pnOSsrVS8uozXbAuM-alEk0-s
https://mailarchive.ietf.org/arch/msg/cfrg/47pnOSsrVS8uozXbAuM-alEk0-s


universally composable non-committing encryption schemes in the GGM and the generic-ring model (GRM).
However, they leave the modeling of the GGM/GRM in the UC framework informal, and in particular do
not prove that composition holds in their setting. Bradley et al. [9] prove security of a strong asymmetric
PAKE protocol against a generic-group adversary in the UC framework, but their treatment is also informal;
in particular, their protocol is split into an “offline part” and an “online part,” with the GGM used only in
the former, and it is unclear how these two parts are defined for general protocols or what the implications
are for composition. Naor et al. [27] model generic-group adversaries in the UC framework by introducing a
generic-group functionality FGGM in a way similar in spirit to the approach involving the FAGM functionality
described earlier that we ultimately rejected. A similar approach was followed in [7] for the analysis of
time-lock puzzles in the UC setting.

1.4 Overview of the Paper

Section 2 introduces the UC-AGM model. The treatment is quite low level to ensure the appropriate level of
formalization and Appendix B.1 reviews the UC framework for this reason.Section 3 then presents a proof
of the Chou-Orlandi protocol in the UC-AGM. Next, Section 4 proves security of SPAKE1, SPAKE2, and
CPace in the new model. Finally, Appendices B to D provide detailed proofs for theorems in Sections 2 to 4.

2 Defining Algebraic Adversaries in the UC Framework

In this section, we introduce the UC-AGM framework that incorporates algebraic adversaries into the UC
framework. We provide a brief overview of the UC framework [12] in Section 2.1; for a more detailed descrip-
tion, see Appendix B.1 . In Section 2.2 we formally define algebraic adversaries and introduce the notation
of AGM-emulation that underlies the UC-AGM. We also show there that, analogous to the UC frame-
work, it suffices to consider “algebraically dummy” adversaries when proving AGM-emulation. We prove a
composition theorem for the UC-AGM in Section 2.3.

For simplicity, our treatment of the UC-AGM is based on the so-called simplified UC framework [12,
Section 2] where the number of parties, their identities, program code, and connectivity are all fixed in
advance. In Appendix B.2 we explain how the UC-AGM can be extended to the full UC framework.

2.1 Overview of the UC Framework

A protocol consists of a number of machines (or parties) with unique identities, each of which represents
some computational entity. Protocol machines communicate with each other via messages labeled input or
subroutine-output. In an execution of the protocol, two additional machines (whose identities are distinct from
any protocol machines) are added: the environment E and the adversary A. (Below we assume that E has
identity 0 and A has identity 1.) The environment E can send input messages to A and a subset of the
protocol machines (called main machines), and protocol machines can send subroutine-output messages to E ;
the adversary A can send backdoor messages to E and all protocol machines, and receive backdoor messages
from all protocol machines.

The notion of UC emulation involves two protocols, π and φ. We say that π emulates φ if for any efficient
adversary A in an execution of π, there is an efficient adversary (called the simulator) S in an execution
of φ that “simulates” the environment’s view, in the sense that no efficient environment can distinguish an
execution of π with A from an execution of φ with S. A particularly important example of UC emulation
is realizing an ideal functionality, in which the emulated protocol idealF consists of an incorruptible ideal
functionality F , and the main machines are dummy parties that simply pass messages between the ideal
functionality and the environment.

2.2 UC Emulation in the Algebraic Group Model

In this work we put forth a notion of UC emulation (called AGM-emulation) in which the adversary is
restricted to be algebraic. To this end, we first introduce the concept of algebraic adversaries [18]. At a high
level, an algebraic adversary has an additional auxiliary tape on which it writes the representation of any
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group element it outputs on (some of) its other tapes.3 We assume for simplicity that the group G = (G, g, p)
under consideration is cyclic with known order p, though neither of these assumptions is essential.

Definition 1. Suppose an execution of protocol π involves protocol machines sending elements in group
G = (G, g, p) (henceforce “protocol π involves group G”).4 A pair of environment E and adversary A (in π’s
execution) is (G, π)-algebraic if it satisfies the following:

(1) A has a special output tape called the algebraic tape;
(2) Whenever A sends (backdoor,m) to some protocol machine, where m contains some X ∈ G, then

either (1) A also writes an algebraic representation of X on its algebraic tape, or (2) A has previously received
such representation from E; where the algebraic representation of X is a list Λ = [(X1, λ1), . . . , (Xk, λk)]
(where X1, . . . ,Xk ∈ G and λ1, . . . , λk ∈ Zp) such that X = Xλ1

1 · · ·X
λk
k , and X1, . . . ,Xk is the ordered list

of group elements in messages E and/or A has received up to that point in the execution of π.

We stress that it is necessary to separate the algebraic tape from the other tapes of A so that, for example,
the message m itself does not contain an algebraic representation of X. When clear from the context, we
will drop G and π, and simply say that the environment/adversary is “algebraic.”

We note that when considering static corruptions, the adversary runs the corrupt parties internally and
hence messages produced by corrupt parties are subject to the restrictions above. The model for adaptive
corruptions is the obvious one. Non-corrupt parties compute group elements honestly. So, if no secure erasure
is assumed, the representations of any group elements computed by non-corrupt parties are part of their
state when they are corrupted (and are given to the adversary). If we assume secure erasure, then any such
state will not be available, and so any group elements that are part of a non-corrupt party’s state will not
have their representations available; in this case they must be added to the adversary’s basis.

AGM emulation. We could now consider standard UC emulation restricted to algebraic adversaries and
environments. However, looking ahead, in order for composition to hold we will want the simulator to be
algebraic as well.

Definition 2. Suppose protocols π and φ involve the same group G. We say that π G-AGM emulates φ if the
following holds: for any efficient adversary A, there is an efficient adversary S (called the simulator) such
that: for any efficient E such that (E ,A) are (G, π)-algebraic, we have that (E ,S) are (G, φ)-algebraic, and

execφ,S,E ≈ execπ,A,E ,

where execπ,A,E denotes environment E’s view in π’s execution with adversary A.

Above, we write ≈ to denote generic computational indistinguishability. This may refer to either asymp-
totic indistinguishability, in which case a security parameter is introduced as well, or concrete indistinguisha-
bility, in which case we write ≈ε to denote that the distinguishing advantage is bounded by ε.

Definition 3. Protocol π G-AGM realizes ideal functionality F if π G-AGM emulates idealF , the ideal
protocol for F .

AGM emulation with respect to a sub-protocol. Our definitions of algebraic adversary and environ-
ment can be easily extended to the setting where the adversary/environment is restricted within a sub-
protocol, namely it can only use group elements in received from parties in this sub-protocol as its basis for
algebraic representation.

3 Formally, we assume an encoding of group elements that distinguishes them from arbitrary strings. This can be
done by simply prefixing any group element with a 0 and any other string (not necessarily representing a group
element) with a 1. Following prior work [18], we use bold capital letters to denote group elements (except for the
generator g).

4 Formally, we consider protocols having access to a FCRS functionality, where FCRS runs a group-generation algo-
rithm to obtain G (and possibly additional group elements), and then sends G (and any other elements) to parties
that request it. Note that the protocol may use other groups, but we only require the adversary to be algebraic
with respect to G.
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Definition 4. Suppose protocol ρπ involves group G, and π is a sub-protocol of ρπ. A pair of environment
E and adversary A (in ρπ’s execution) is (G, π)-algebraic if it satisfies the following:

(1) A has a special output tape called the algebraic tape;
(2) Whenever A sends (backdoor,m) to some protocol machine, where m contains some X ∈ G, then

either (1) A also writes an algebraic representation (with respect to π) of X on its algebraic tape, or (2)
A has previously received such representation from E; where the algebraic representation of X is a list
Λ = [(X1, λ1), . . . , (Xk, λk)] (where X1, . . . ,Xk ∈ G and λ1, . . . , λk ∈ Zp) such that X = Xλ1

1 · · ·X
λk
k , and

X1, . . . ,Xk is the ordered list of group elements in messages E and/or A have received up to that point from
either the environment or protocol machines in π, that is, excluding protocol machines in ρπ \ π. (For the
formal definition of a “sub-protocol,” see Appendix B.1 .)

Clearly, Definition 1 can be viewed as Definition 4 in the special case that ρπ = π. Note that now we can
talk about AGM emulation with respect to a sub-protocol, i.e., protocol ρπ (G, π, φ)-AGM emulates ρφ, where
the environment/adversary pair is restricted by the sub-protocol π, and the environment/ simulator pair is
restricted by the sub-protocol φ. The formal definition exactly follows Definition 2.

The algebraically dummy adversary. Similar to the standard UC framework, we can also define a
notion of dummy adversary here; this will be usful in our protocol analyses in the later sections. Recall that
in the standard UC framework, the dummy adversary is one that merely passes messages to and from the
environment. However, in our setting, the environment might send some algebraic representations to the
adversary, which we do not want the protocol parties to receive. Hence, we define the algebraically dummy
adversary as dropping these algebraic representations.

Definition 5. Suppose protocol π involves group G. An adversary D (in π’s execution) is (G, π)-algebraically
dummy if it satisfies the following: for any message (backdoor,m) sent from some identity ID 6= 0 (i.e., from
some protocol machine), it sends (backdoor, (ID,m)) to the environment E; for any message (input, (ID,m))
sent from E, it sends (backdoor,m) to identity ID, except that if m contains X ∈ G and its algebraic
representation Λ, then A sends (backdoor,m′) to identity ID instead, where m′ is m with Λ deleted.

Since D does not write anything on its algebraic tape, for (E ,D) to be algebraic, E must send all necessary
algebraic representations to D. To simplify notations, we may say “E is algebraic” in this case.

Now we can define AGM emulation with respect to the dummy adversary:

Definition 6. Suppose protocols π and φ involve the same group G. π G-AGM emulates φ with respect to
the dummy adversary if the following holds: there is an efficient simulator S such that: for any efficient and
(G, π)-algebraic environment E, we have that (E ,S) are (G, φ)-algebraic, and

execφ,S,E ≈ execπ,D,E ,

where D is the (G, π)-algebraically dummy adversary.

Similar to the standard UC framework, we can show that emulation is equivalent to emulation with
respect to the dummy adversary. This simplifies protocol analysis, since from now on we can simply assume
that the adversary is algebraically dummy.

Theorem 1. Suppose protocols π and φ involve the same group G. Then π G-AGM emulates φ (as in
Definition 2) iff π G-AGM emulates φ with respect to the dummy adversary (as in Definition 6).

The proof is tedious and is therefore deferred to Appendix B.3.

2.3 Composition in the UC-AGM

The composition theorem. We are now ready to prove the composition theorem in our UC-AGM frame-
work:
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Theorem 2. Suppose protocols π and φ involve the same group G, such that φ is a sub-protocol of ρφ, π
G-AGM emulates φ, and π is identity-compatible with ρφ and φ. Then ρπ (ρφ with its sub-protocol φ replaced
with π) (G, π, φ)-AGM emulates ρφ. (For formal definitions of “identity-compatibility” and “sub-protocol
replacement”, see Appendix B.1)

Proof. Let Dπ be the algebraically dummy adversary in an execution of π. Since π G-AGM emulates φ, we
know that there is an efficient simulator Sπ such that: for any efficient and (G, π)-algebraic environment Eπ,
we have that (Eπ,Sπ) are (G, φ)-algebraic, and

execφ,Sπ,Eπ ≈ execπ,Dπ,Eπ .

Let ρ = ρφ \ φ, i.e., ρ is the “caller” part of ρπ.

Construction of simulator S. By Theorem 1, it suffices to consider the (G, π)-algebraically dummy ad-
versary D in an execution of ρπ. We construct a simulator S (in an execution of ρφ) which simulates E ’s
view for any efficient and (G, π)-algebraic environment E . S essentially “combines” D and Sπ. Concretely, S
works as follows:

1. On message (input, (ID,m0)) from identity 0 (recall that this means that E instructs S to send message
m0 to the protocol party with identity ID), S checks if there is a machine in φ with identity ID.
(a) If so, then S activates Sπ with input (input, (ID,m0)) (as from the environment), and follows Sπ’s

instruction until the activation of Sπ completes.
(b) Otherwise, i.e., ID is the identity of a machine in ρ, S parses m0 = (m′0, Λ) (where Λ is the algebraic

representations of the group elements in m′0) and sends (backdoor,m′0) to ID, and writes Λ on its
algebraic tape.

2. On message (backdoor,m1) from some identity ID 6= 0 (i.e., from a protocol party), S checks if there is
a machine in φ with identity ID.
(a) If so, then S activates Sπ with input (backdoor,m1) (as from ID), and follows Sπ’s instruction until

the activation of Sπ completes.
(b) Otherwise, i.e., ID is the identity of a machine in ρ, S sends (backdoor,m1) to identity 0 (i.e., to E).

Analysis of simulator S. It is straightforward to see that if Sπ is efficient, then S is also efficient. We now
show that (E ,S) are (G, φ)-algebraic. Recall that (E ,S) are (G, φ)-algebraic iff whenever S sends (backdoor,m)
to identity ID 6= 1, it also writes on its algebraic tape the algebraic representations (w.r.t. φ) of all group
elements in m. According to the description of S above, S sends backdoor messages to identity ID 6= 1 in step
1(b) only; in this case S writes the algebraic representation Λ on its algebraic tape, so E is (G, π)-algebraic
implies that (E ,S) are (G, φ)-algebraic.

Moreover, S plays the role of an (G, π)-algebraic environment when activating Sπ with message (input, (ID,m0)).
This is because S copies E ’s message payload m0, so E is (G, π)-algebraic implies that m0 contains the alge-
braic representations (w.r.t. π) of its all group elements.

Next we show the validity of S. We construct another environment Eπ, which aims to distinguish between
π’s execution with D and φ’s execution with Sπ. Eπ simulates instances of E and runs the codes of ρ and
S locally, and essentially “combines” E , ρ, and S. Concretely, Eπ, on initial input z, activates E with initial
input z. Then Eπ works as follows:

1. When E completes this activation,
(a) If E halts with some output, then Eπ also halts with the same output.
(b) If E generates an outgoing message (input,m0) to some identity ID such that there is a machine

µ ∈ ρ with identity ID, then Eπ runs the code of µ on message (input,m0). When µ halts, (∗)
i. If µ generates an outgoing message (subroutine-output,m1) to identity 0, then Eπ activates E with

message (subroutine-output,m1) (as from ID) and jumps to the beginning of this step.
ii. If µ generates an outgoing message (backdoor,m1) to identity 1, then Eπ runs the code of S on

message (backdoor,m1).
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iii. If µ generates an outgoing message (input,m1) to identity ID′, which is the identity of a machine
µ′ ∈ ρ, then Eπ runs the code of µ′ on input (input,m1) and jumps to (∗) (with µ replaced by
µ′).

iv. If µ generates an outgoing message (input,m1) to identity ID′, which is the identity of a machine
in φ/π, then Eπ sends (input,m1) to identity ID′.

(c) If E generates an outgoing message (input, (ID,m0)) to identity 1, then Eπ runs the code of S on
message (input, (ID,m0)).

2. When S halts (as in case (b)ii or (c) in step 1; recall that S is a piece of code run by E itself),

(a) If S generates an outgoing message (backdoor,m2) to identity 0, then Eπ activates E with message
(backdoor,m2) and jumps to step 1.

(b) If S generates an outgoing message (backdoor,m2) to identity ID, which is the identity of a machine
µ ∈ ρ, then Eπ runs the code of µ on message (input,m2) and jumps to (∗).

(c) If S activates Sπ5 with message (input, (ID,m2)), then Eπ sends (input, (ID,m2)) to identity 1 (i.e.,
to Dπ or Sπ).

3. On message (backdoor, (ID,m3)) from identity 1, Eπ runs the code of S on message (backdoor, (ID,m3))
(as from Sπ) and jumps to step 2.

4. On message (backdoor,m3) from some identity ID 6= 1 (i.e., from a machine in φ or π) aimed at some
identity ID′,

(a) If there is a machine µ′ ∈ ρ with identity ID′, then Eπ runs the code of µ′ on message (input,m3)
and jumps to (∗) (with µ replaced by µ′).

(b) Otherwise, i.e., if ID′ is an external identity, then Eπ activates E with message (backdoor,m3) (as
from ID) and jumps to step 1.

It is straightforward to see that if E is efficient, then Eπ is also efficient. Also, Eπ perfectly simulates an
instance of D in π’s execution, and an instance of Sπ in φ’s execution, i.e.,

execπ,Dπ,Eπ = execρπ,D,E , and execφ,Sπ,Eπ = execρφ,S,E .

Next we claim that if E is (G, π)-algebraic, then Eπ, as the environment in an execution of π, is also
(G, π)-algebraic. Recall that Eπ is (G, π)-algebraic iff whenever it sends (input,m) to identity 1, m contains
the algebraic representations (w.r.t. π) of its all group elements. According to the description of Eπ above, Eπ
sends input messages to identity 1 in step 2(c) only. The message payload m2 is copied from S’s message aimed
at Sπ; we have argued above that S plays the role of a (G, π)-algebraic environment while communicating
with Sπ, which implies that m2 contains the algebraic representations (w.r.t. π) of its all group elements.

Since Eπ is both efficient and (G, π)-algebraic, by the definition of Sπ, we have that

execφ,Sπ,Eπ ≈ execπ,Dπ,Eπ .

Combining the three results above, we conclude that

execρφ,S,E ≈ execρπ,D,E ,

completing the proof. ut

Transitivity of AGM-emulation. The following theorem is straightforward to prove, similarly to the
standard UC framework.

Theorem 3. Suppose protocols π, π′, φ involve the same group G, such that π G-AGM emulates π′ and π′

G-AGM emulates φ. Then π G-AGM emulates φ.

5 Note that this Sπ is an imaginary machine supposed to run inside S, whereas the “actual” Sπ is the simulator in
the execution of φ. Same with step 3 below.
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Proof. Our goal is to give a simulator S such that execφ,S,E ≈ execπ,A,E when (E ,A) are (G, π)-algebraic.
Furthermore, (E ,S) must be (G, φ)-algebraic.

By assumption, since π AGM-emulates π′, there is an efficient algebraic adversaryA′ such that execπ′,A′,E ≈
execπ,A,E when (E ,A) are (G, π) algebraic. Furthermore, (E ,A′) are (G, π′)-algebraic.

Moreover, since π′ AGM-emulates φ, there is an efficient algebraic adversary S such that execφ,S,E ≈
execπ′,A′,E when (E ,A′) are (G, π′)-algebraic. Furthermore, (E ,S) are (G, φ)-algebraic. This implies that S
is the required simulator, which concludes the proof. ut

In the standard UC framework, the guarantees given by the UC composition theorem can be plugged
in as hypothesis of the transitivity theorem, which allows deriving a natural corollary when φ is an ideal
functionality. Intuitively, in the standard UC setting, composition allows us to derive that ρπ emulates ρF ,
when π emulates F . If, in turn ρF has been shown to emulate F ′, then transitivity yields that ρπ emulates
F ′.

However, this is not the case in the UC AGM setting. The composition theorem guarantees that ρπ

emulates ρF with respect to (G, π)-algebraic attackers, rather than (G, ρπ)-algebraic attackers. This means
that, in order to plug-in composition results with transitivity to obtain a result for ideal functionality
emulation, we require a refined theorem that considers the specific case of composed protocols.

Theorem 4. Suppose protocols ρF , π and ideal functionalities F , F ′ involve the same group G, such that:

1. idealF is a sub-protocol of ρF ,
2. the π protocol (G, π)-AGM realizes F ,
3. the ρF protocol (G, ρ)-AGM realizes F ′, and
4. π is identity-compatible with ρF and idealF .

Then the instantiated protocol ρπ AGM realizes F ′ with respect to attackers that are both (G, ρ)- and
(G, π)-algebraic.

Proof (Sketch). To prove this statement we need to recall the structure of the simulator for ρπ that is implied
by the composition theorem; here we will call it A′ consistently with the transitivity theorem proof.

This simulator runs A internally and, when A communicates with machines executing π, it uses the
simulator Sπ as a translator that communicates to F instead. On the other hand, communications between
A and parties executing ρ are just passed along.

Note that, to use this simulator we need to apply the composition theorem, which means that (E ,A)
must be (G, π) algebraic; this is guaranteed by the stronger restriction that attackers are both (G, ρ) and
(G, π) algebraic.

At this point we can now follow the same strategy adopted in the proof of the transitivity theorem:
simulator A′ is used as an attacker against ρF . The crucial observation now is that, this simulator guarantees
that, if (E ,A) are (G, π) algebraic and (G, ρ) algebraic, then (E ,A′) is also (G, ρ) algebraic. This is because
communications with ρ are just passed along between A and ρ.

We can now apply the hypothesis that the ρF protocol (G, ρ)-AGM realizes F ′ and take simulator S
implied by this hypothesis to conclude the proof. ut

Extension to the full UC framework and relation to UC proofs. In Appendix B.2 we explain how
our treatment here can be extended to the full UC framework, which models fully dynamic and evolving
distributed computing systems.

UC emulation implies AGM emulation. For completeness, we note that UC emulation implies AGM
emulation whenever the algebraic restriction on the simulator is moot. To see this, fix protocols π, φ where π
UC emulates φ and φ does not impose any algebraic restriction on S. Any efficient algebraic environment E
is in particular an efficient environment, so there is an efficient simulator S for which execφ,S,E ≈ execπ,D,E
holds for any efficient algebraic environment E . Furthermore, S is trivially algebraic since there is no such
requirement when interacting with φ.
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In Appendix E we discuss in detail how UC AGM proofs compose with stronger standard UC emulation
results, and further clarify the implications of the UC AGM composition theorems. The discussion also
clarifies what happens in the setting where different groups are used by different protocols.

We finally note that the fact that we refer to protocols that use the same group in our theorems because
this is the more problematic case, and it serves to highlight the limitations to composition in the AGM. All
our results carry without change to the case where different groups are used; in this case excluding attacks
that prevent using group elements occurring in one protocol in an attack against another protocol, unless a
representation can be provided, seems less of a limitation.

3 Analysis of the Chou-Orlandi Protocol

In this section, we analyze the security of the Chou-Orlandi protocol for oblivious transfer in the UC-AGM.
For convenience, we present the standard OT functionality FOT in Figure 3. We describe the Chou-Orlandi
protocol ΠCO in Figure 4. All messages sent in the protocol are via a message authentication functionality
FAUTH, as presented in [12].

Functionality FOT

– On input (receive, sid , b) where b ∈ {0, 1} from R do: if no message of the form (receive, sid , b), b ∈ {0, 1}
has been stored, store (receive, sid , b). Output (receive, sid) to S.

– On input (send, sid ,m0,m1) where m0,m1 ∈ {0, 1}` from S do: if no message of the form
(send, sid ,m0,m1) has been stored, store (send, sid ,m0,m1). Output (send, sid) to S.

Adversary S:

– On input (receive, sid , b) where b ∈ {0, 1} from S do: if no message of the form (receive, sid , b), b ∈ {0, 1}
has been stored, store (receive, sid , b).

– On input (send, sid ,m0,m1) where m0,m1 ∈ {0, 1}` from S do: if no message of the form
(send, sid ,m0,m1) has been stored, store (send, sid ,m0,m1).

– On input (deliver, sid , R) from S: if both (receive, sid , b) and (send, sid ,m0,m1) have previously been
stored, do:
• If R is honest: output (output, sid ,mb) to R.
• If R is corrupted: output (output, sid ,mb) to S.

Otherwise, output ⊥ to S.
– On input (deliver, sid , S) from S, if (output, sid ,mb) was previously output (to R or to S) and S is

honest, output (output, sid) to S. Otherwise, output ⊥ to S.

Fig. 3. Functionality for 1-out-of-2 OT

Protocol ΠCO

– Step 1: Upon receiving input (send, sid ,m0,m1), S samples y ← Zp and computes A := gy,B := gy
2

.
It sends A to R via FAUTH.

– Step 2: Upon receiving input (receive, sid , b) and A ∈ G from S, R samples x ← Zp and computes
U := Abgx. It sends U to S via FAUTH.

– Step 3: Upon receiving U from R, S computes kb := H(A,UyB−b), eb := mb ⊕ kb for b ∈ {0, 1}. It
sends e0, e1 to R via FAUTH and outputs (output, sid).

– Step 4: Upon receiving e0, e1 from S, R computes kb∗ := H(A,Ax),mb∗ := eb∗ ⊕ kb∗ for b∗ ∈ {0, 1}.
It outputs (output, sid ,mb∗).

Fig. 4. The Chou-Orlandi OT protocol.
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We now turn toward proving security of the protocol. In the following, we denote S and R as the sender
and the receiver in protocol ΠCO, respectively. We describe a simulator SimCO for ΠCO by considering the
different options for the order of corruptions. We assume that the simulator immediately aborts if it obtains
syntactically ill-formed messages from a corrupted party as part of ΠCO. We first give an outline of the proof.

Proof intuition. Roughly speaking, our proof must overcome two main challenges from the original work
of Chou and Orlandi. The first is how to simulate the internal state of parties upon adaptive corruption.
Namely, in Chou and Orlandi’s proof, there seems to be no way of of explaining the secret exponent x chosen
by R if S is statically corrupted and can send an arbitrary group element A in Step 1 for which R does not
know the discrete logarithm y. This issue is easily resolved using the AGM, as the simulator always learns
the exponent y from the algebraic coefficients provided for A.

The second issue in their proof comes from an improperly defined FOT functionality. Roughly speaking,
their version of this functionality does not notify S upon R obtaining the message mb. If the corrupted R
never makes the query for one of the keys kb to H then the simulator cannot extract the correct bit and
complete the simulation of the protocol. Note that this issue cannot be overcome by the simulator naively
completing the simulation before R makes this query by prompting the message (output, sid) from FOT to
S prematurely via a query on some arbitrary b. The reason is that E can always make the opposite query to
H, i.e., for k1−b, with probability 1 after the simulation is complete. In this case, there is no way to obtain
m1−b from FOT again, since S already had to make the query in order to force (output, sid) being output to
E . Both of these issues can be overcome when requiring that the environment E be algebraic. In this case,
y is revealed when the corrupted S sends it in Step 1. For the issue of extraction, S observes that R sends
U := Abgx. In the either case (i.e., b = 0 or b = 1), S can safely carry out the extraction for b. The only way
for E to distinguish the simulation from the real world is by making a query from which a discrete logarithm
instance can be solved (using algebraic coefficients provided by E as part of that query to H).

Let g denote a generator for a cyclic group G of prime order q and let DL denote the problem of
computing a when given a random element A = ga in G. Moreover, denote AdvDL

B := Pr[a′ = a | a′ ← B(ga)]
the advantage of adversary B in solving DL. Then Theorem 5 shows that the ΠCO protocol for oblivious
transfer AGM realizes FOT.

Theorem 5. ΠCO UC-realizes FOT in the FRO-hybrid model under adaptive corruptions. More precisely,
there exists an algebraic simulator SimCO for the algebraically dummy adversary D such that, for every
algebraic environment E that makes at most qH queries to FRO, there exist attackers B1 and B2 running in
roughly the same time as E, such that execFOT,S,E ≈ε execΠCO,D,E , with

ε ≤ qH · (AdvDL
B1

+ AdvDL
B2

).

Proof. The simulator SimCO is as follows:

S is corrupted before Step 1.

– R is corrupted before Step 2. In this case, there is nothing for SimCO to simulate.
– R is corrupted between Step 2 and 4. In this case, R has received A ∈ G from S (but has not yet

received e0, e1). In addition, SimCO learns y ∈ Zp s.t. A = gy. SimCO samples u ← Zp and computes
U := gu, which it sends to S. When R becomes corrupted, SimCO learns b and sets sets x := u − yb. It
outputs (b, x) to E . In addition, it simulates the random oracle H as described in the next subcase.

– R is corrupted after Step 4. In this case, R receives A ∈ G at Step 2 and e0, e1 at Step 4. In addition,
SimCO learns y ∈ Zp s.t. A = gy. SimCO samples u ← Zp and computes U := gu, which it sends to S.
To program H, when E queries H on input (I,J) (together with the algebraic representations of I,J),
SimCO does as follows.
• It first checks whether H[I,J] 6= ⊥. In this case, it returns H[I,J]. Thus, assume in the following

that E queries H on some input for the first time. In addition, for any fresh query I,J, assume that
SimCO sets H[I,J] to the value it returns.

• If the query is of the form H(gy,Uygy
2·(−b)) for b ∈ {0, 1}, SimCO sets kb ← {0, 1}κ. It returns kb.

• Otherwise SimCO samples k ← {0, 1}κ and returns k.
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• After observing both A and U in the protocol, SimCO also retroactively checks whether it has
previously set H[gy,Uygy

2·(−b)]. If so, it sets kb := H[gy,Uygy
2·(−b)].

Upon having received e0, e1 from S, SimCO samples m0,m1 ← {0, 1}κ. For all b ∈ {0, 1} for which kb = ⊥
at this point, it sets kb ← {0, 1}κ and programs H[gy,Uygy

2·(−b)] = kb (it does not resample kb in case
it has already been defined). It then sets m0 := e0 ⊕ k0,m1 := e1 ⊕ k1 and inputs (send, sid ,m0,m1)
and (deliver, sid , R) to FOT. This prompts the output (output, sid ,mb) to the honest R, since R has
previously input (receive, sid , b) to FOT. When R is corrupted, SimCO learns b and sets x := u − yb
(mod q). It outputs (b, x,mb) to E .

S is corrupted between Step 1 and Step 3. To simulate the behaviour of S, SimCO samples y ← Zp
and computes A := gy,B := gy

2

. It sends A to R. When S is corrupted, SimCO learns m0,m1. It outputs
(y,m0,m1) to E .

– R is corrupted before Step 2. In this case, SimCO only needs to simulate H before S becomes
corrupted (afterwards, both parties are corrupt and there is nothing to simulate). When R sends U in
Step 2, SimCO learns u, v s.t. U = guAv. SimCO now proceeds to simulate H exactly as in the case where
S is corrupted before Step 1, except that it aborts if it ever sets both k0, k1 6= ⊥. As in the case where
the Sender is corrupted before Step 1, SimCO’s simulation is indeed efficient, since it knows y and can
hence check the necessary relations in the exponent of U.

Claim. SimCO does not abort except with probability 1
qH

AdvDL
B1
, where B1 is an adversary that runs in

roughly the same time as E .

Proof. SimCO aborts in this case only if the adversary queries gy,Uy, and Uyg−y
2

, as it queries gy,Uygy
2·(−b)

for both b = 0, b = 1 to H by assumption. In this case, we can construct B1 as follows. On input a dis-
crete logarithm challenge A = gy in game DL, B1 samples i ∈ [qH ] uniformly at random and runs E .
It simulates the behavior of SimCO by sending the element A in Step 1. If E corrupts R, B1 aborts.
When E (controlling R) queries H on input A,J, SimCO learns coefficients a, c s.t. J = gaAc. If J = Au,
and v = 0, then B1 sets k0 ← {0, 1}κ and programs H[A,J] = k0. If v = 1, U = gugy and hence
Uy = J = gaAc yields the equation y2 + (u − c) · y − a = 0 (mod q). For v 6∈ {0, 1}, B1 obtains the
equation (v− 1) · y2 + (u− b) · y− a = 0 (mod q) for y. If either of the latter cases occurs during the ith
query to H, B1 solves the equation and outputs y. Since B1 guesses q correctly with probability at least
1
qH

and perfectly simulates the behavior of SimCO up that point perfectly, the claim follows. ut

– R is corrupted between Steps 2 and 4. In this case, the simulation for R can be carried out as in
the case where S is corrupted before Step 1.

– R is corrupted after Step 4. In this case, R receives e0, e1 from the corrupted sender S at Step 4.
The only difference to the case where S is corrupted before Step 1 is that that SimCO knows y ∈ Zp s.t.
A = gy from sampling it in the first part of the simulation (rather than learning it from the algebraic
coefficients output by the corrupted S).

S is corrupted after Step 3. To simulate the behaviour of S, in Step 1, SimCO samples y ← Zp and

computes A := gy,B := gy
2

. It sends A to R.

– R is corrupted before Step 2. When R sends U ∈ G to S, SimCO obtains algebraic coefficients b, x
provided by R such that U = Abgx for some b ∈ {0, 1}, x ∈ Zp.6 SimCO inputs (receive, sid , b) and then
(deliver, sid , R) to FOT. This prompts the output (output, sid ,mb) to SimCO, since S is honest at this
point and has previously input (send, sid ,m0,m1) to FOT. To simulate H on input (I,J), SimCO does as
follows.

6 In case b 6∈ {0, 1}, SimCO can treat this as the case where b = 1 and perform the simulation as described from that
point.
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• It first checks whether H[I,J] 6= ⊥. In this case, it returns H[I,J]. Thus, assume in the following
that H is queried on some input for the first time. In addition, for any fresh query I,J, assume that
SimCO sets H[I,J] to the value it returns.

• For any query to H, SimCO checks whether it is of the form H(gy,Uygy
2·(−b)) for b ∈ {0, 1}, (i.e., it

checks with respect to both b = 0 and b = 1). If any queries have been made before U was set by
the corrupted R, SimCO also checks whether they have this format.

∗ If not, it samples k ← {0, 1}κ and returns k.
∗ If SimCO has previously set eb 6= ⊥ (see below) it sets kb := eb ⊕mb. If mb has not been output

to SimCO as described above, SimCO aborts.
∗ Else (i.e., eb was not previously set), it sets kb ← {0, 1}κ and returns kb.

In Step 3, SimCO samples e0, e1 ← {0, 1}κ and sends them to R. After SimCO performs Step 3 of the
protocol, SimCO inputs (deliver, sid , S) to FOT which prompts the output (output, sid) to S. Once S is
corrupted (after Step 3), SimCO learns m0,m1. It outputs (y,m0,m1) to E .

– R is corrupted between Step 2 and Step 4. In this case, the simulation for R can be carried out as
in the case where S is corrupted before Step 1. In addition, after S performs Step 3 of the protocol, SimCO

inputs (receive, sid , b), (deliver, sid , S) to FOT (in this order). This prompts the output (output, sid) to S,
since S is honest at this point and thus has input (send, sid ,m0,m1) to FOT. Moreover, SimCO aborts
upon setting both k0, k1 6= ⊥.

– R is corrupted after Step 4. Same as previous case, except that SimCO does not have to abort if R
is corrupted after S.

The proof of the following claim is almost identical to the one given for the case where S is corrupted
between Step 1 and Step 3.

Claim. SimCO does not abort in case the sender is corrupted after Step 3 except with probability 1
qH

AdvDL
B2

,
and B2 runs in roughly the same time as E .

As long as SimCO does not abort, it perfectly simulates the behavior of a party in ΠCO, as all outputs of the
random oracle H are uniformly distributed in this case from the view of E . Moreover, SimCO can consistently
simulate the view of E . Finally, it is easy to see that all SimCO can output algebraic representations of all
elements that it outputs relative to group elements it receives as input, and hence SimCO is algebraic. This
concludes the proof. ut

4 Analysis of PAKE protocols: SPAKE2 and CPace

In this section we analyze the UC security of PAKE protocols SPAKE2 and CPace in the algebraic group
model. We show that, modeling the hash functions used by these protocols as random oracles, they both
achieve full UC security. The proofs are simpler than the ones we encountered in the literature for the UC
and game-based security of the same protocols and they are based on standard (non-interactive) assumptions
(we do not need gap assumptions). We use the standard definition of FpwKE from [2,14] supporting multiple
sessions Fig. 5.

Remark. Throughout the paper we present the simulators as running their own instances of the random
oracle functionality used by the protocols, which means that we assume that the random oracle is local to the
protocol [13]. However, in this section, we make it clear that none of the given simulators needs to program
the random oracle functionality and, in the case of the SPAKE2 protocol, it does not even need to know
which adversarial queries were made to the random oracle. These observations indicate that our proofs of
security may carry over to a setting with global random oracle as in [11, 15]. Providing a full formalization
of the referred works in the AGM is beyond the scope of this paper; however, we believe that our formal
approach will carry naturally to extensions of UC with global functionalities.

Remark. The SPAKE2 simulator does not need to program the common reference string and the CPace
protocol does not use one (in addition to the group description). We also show for both protocols that the
simulators are algebraic. This means that the UC-AGM composition applies to both protocols.
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Functionality FpwKE

Upon receiving a query (NewSession, sid , P, P ′, pw, role) from party P :
Ignore this query if record (sid , P, ·, ·, ·) already exists. Otherwise, record (sid , P, P ′, pw, role) marked fresh
and send (NewSession, sid , P, P ′, role) to S.

Upon receiving a query (TestPwd, sid , P, pw∗) from S:
If ∃ a fresh record (sid , P, P ′, pw, ·) then:
– If pw∗ = pw then mark it compromised and return “correct guess”;
– If pw∗ 6= pw then mark it interrupted and return “wrong guess”.

Upon receiving a query (NewKey, sid , P,K∗) from S:
If ∃ a record (sid , P, P ′, pw, role) not marked completed then do:
– If the record is compromised, or either P or P ′ is corrupted, then set K := K∗.
– If the record is fresh and ∃ a completed record (sid , P ′, P, pw, role′,K′) with role′ 6= role that was fresh

when P ′ output (sid ,K′), then set K := K′.
– In all other cases pick K uniformly at random.

Finally, append K to record (sid , P, P ′, pw, role), mark it completed, and output (sid ,K) to P .

Fig. 5. The password-based key-exchange functionality FpwKE.

User Server

x←← Zq y ←← Zq
X ← gx Y ← gy

X? ← X ·Mpw X ← X? /Mpw

Y ← Y ? /Npw Y ? ← Y ·Npw

K ← H(sid , U, S,X?, Y ?, pw, Y x) K ← H(sid , U, S,X?, Y ?, pw, Xy)

sid , U, S, pw ∈ P, crs = (G,M,N)

X?

Y ?

Fig. 6. The SPAKE2 protocol [4]. The CRS includes the group description G, where |G| = q and two group elements
M,N ∈ G sampled uniformly at random.

4.1 SPAKE2

Fig. 6 shows a SPAKE2 protocol execution between an user U and a server S. SPAKE2 is a two-pass protocol,
where we assume the user plays the role of the initiator and the server that of the responder.

Let SqDH denote the problem of computing ga
2

, when given a random element A = ga in G, and
AdvSqDH

B the probability that attacker B succeeds in solving this problem. Theorem 6 shows that SPAKE2
AGM realizes FpwKE assuming that SqDH and the discrete-logarithm problems are hard in G.

Theorem 6. SPAKE2 AGM-emulates FpwKE in the (FRO,FCRS)-hybrid model under static corruptions.
More precisely, there exists an algebraic simulator S for the (algebraic) dummy adversary D such that,
for every efficient algebraic environment E creating at most qS sessions and placing at most qH queries to
the random oracle, there exist attackers B11, B21, and B2 running in roughly the same time as E such that
execpwKE,S,E ≈ε execspake2,D,E , where

ε ≤ AdvDL
B1

1
+ AdvDL

B2
1

+ qH · AdvSqDH
B2

+
qS + 1

q
.

Note, that the DL problem and the SqDH problems are equivalent when we consider algebraic attackers,
so the theorem follows with a reduction to the DL problem even if the proof relies on an apparently stronger
assumption.

We also remark that the structure of this proof is much simpler than the proof that SPAKE2 satisfies
relaxed UC PAKE security [2]. This is because, in the AGM, the password guessing event can be detected
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directly by the simulator (and hence by the reductions) and one does not need to rely on the random oracle
to extract passwords in active attacks.

We give a sketch of the proof and provide the full proof in Appendix C .

Proof (Sketch). Simulator S is shown in Fig. 7. Recall that, whenever the dummy adversary is instructed to
deliver a group element to an uncorrupted party, it will output on its auxiliary tape the algebraic representa-
tion of that element with respect to group elements that appear in the view of the environment. In this case,
the bases for such representations include M, N and any messages X? or Y? produced by an uncorrupted
party.

Simulation strategy. The simulator generates all messages of uncorrupted parties by raising either M or
N to a random exponent. It does so because it does not know the corresponding password. The distribution
of such messages is identical to those produced by honest parties in the real world, which are of the form
gxMpw or gyNpw. The simulator then keeps track of whether the adversary is launching a passive attack or
an active attack: where the former means that there exists another simulated session with a consistent view.
All passively attacked sessions are not interrupted by the simulator, which means that FpwKE will choose
independent keys at the associated dummy parties’ outputs.

For actively attacked sessions, the simulator checks if the delivered message was constructed as per the
protocol and, if so, it extracts the password. All malformed messages cause the simulator to interrupt the
session in the functionality by calling TestPw with pw =⊥. For well formed messages, the simulator queries
TestPw on the extracted password and, if the password is correct, computes the correct key: this is possible
because, even though the simulator does not know the correct exponent implicit in the simulated honest
party’s state, it knows the algebraic decomposition of the delivered message and this is well formed (this
means it can compute the key as the adversary would). If the password is incorrect, the simulator generates
a totally random key (this is ignored by the functionality if there are no corrupt parties involved in the
session, but it is relevant otherwise as we discuss below).

The simulation is perfect for all sessions with well-formed messages and correct password guesses. It looks
perfect for all other sessions, unless the attacker can query the random oracle on the group element that such
a session would compute in the real world. Our proof shows that any such query can, with overwhelming
probability, be used to solve the SqDH problem. Two important observations for the proof: i. the simulator
never uses the random exponents it generates for the honest party messages to perform any computation; and
ii. the simulator never constructs any group element for which it cannot provide an algebraic decomposition
to bases g, M and N. The second observation guarantees that our simulator is an algebraic adversary as
required by the composition theorem in Section 2.

Corrupt parties. Fig. 7 does not show explicitly the simulator’s handling of sessions involving corrupt
parties. In this case, the environment tells the simulator what the corrupt party should be doing, and the
simulator does not keep the state of the corrupt party. Moreover, any group elements transmitted by the
corrupt party come with their algebraic decomposition as above. Our simulator is structured to handle
this case identically to the setting where the uncorrupted party is actively attacked while interacting with
another uncorrupted party; we explain why this is the case in the detailed version of the proof provided in
Appendix C . The proof below covers this scenario as a particular case.

Proof of simulator correctness. From this point on we consider only interactions involving uncorrupted
parties. The first observation we make is that the distribution of the protocol messages produced by the
simulator is identical to that occurring in the real world, even though they are constructed differently. It
therefore remains to prove that the outputs of the ideal functionality match the distribution of the parties’
outputs in the real world. We observe that the real and ideal worlds are identical until bad, where bad is
defined as the event that a secret key that is selected uniformly at random by the functionality at the output
of an uncorrupted party is inconsistent with the answer given by H to the adversary. This is because in all
other cases the simulator programs the output of the ideal functionality consistently with the real world.
This means formally that, for ε = Pr[execpwKE,S,E ⇒ bad], we have

execpwKE,S,E ≈ε execspake2,D,E
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Simulator S for SPAKE2

proc Initialize( )

Get CRS=(M,N)

On input (NewSession, sid, P, P ′, role) from FpwKE

If ¬(πsid
P =⊥) discard input.

If role = init

x←← Zq; X? ←Mx; πsid
P ← (x, (P, P ′, sid ,X?,⊥),⊥, init)

Send SendInit(P, P ′, sid ,X?) to E
Else

y ←← Zq; Y? ← Ny; πsid
P ← (y, (P ′, P, sid ,⊥,Y?),⊥, resp)

On message SendInit(P, P ′, sid , (X?, alg)) from E
Ignore if πsid

P ′ 6= (y, (P, P ′, sid ,⊥,Y?),⊥, resp)

(A unique πsid
P ′ satisfies the above check for some y and Y?)

K ←← K
(Can’t interrupt passive sessions so F sets =K at output)

If πsid
P = ( · , (P, P ′, sid ,X?,⊥),⊥, init) Jump to Complete

(First check whether X? was constructed as per protocol)
If alg = [(g, x); (M, pw)]

Query (TestPwd, sid, P ′, pw) to FpwKE

If FpwKE responds with “correct guess”
Y ← Y? /Npw; K ← H(P, P ′, sid ,X?,Y?, pw, Y x)

(Interrupt all other sessions so independent key is set)
Else Query (TestPwd, sid , P ′,⊥) to FpwKE

Complete: Send SendResp(P ′, P, sid ,Y?) to E
πsid
P ′ ← (y, (P, P ′, sid ,X?,Y?),K, resp)

Query (NewKey, sid, P ′,K) to FpwKE

On message SendResp(P ′, P, sid , (Y?, alg)) from E
Ignore if πsid

P 6= (x, (P, P ′, sid ,X?,⊥),⊥, init)

(A unique πsid
P satisfies the above check for some x and X?)

K ←← K
(Can’t interrupt passive sessions so F sets =K at output)

If πsid
P ′ = ( · , (P, P ′, sid ,X?,Y?), · , resp) Jump to Complete

(First check whether Y? was constructed as per protocol)
If alg = [(g, y); (N, pw)]

Query (TestPwd, sid , P, pw) to FpwKE

If FpwKE responds with “correct guess”
X ← X? /Mpw; K ← H(P, P ′, sid ,X?,Y?, pw, Xy)

(Interrupt all other sessions so independent key is set)
Else Query (TestPwd, sid , P,⊥) to FpwKE

Complete: πsid
P ← (x, (P, P ′, sid ,X?,Y?),K, init)

Query (NewKey, sid, P,K) to FpwKE

Fig. 7. The operation of the SPAKE2 simulator. The simulator does not need to observe adversarial random oracle
queries nor program either of the random oracle or the CRS.
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More precisely, we define event bad as the existence within the set of queries placed by E to the random
oracle of a query (sid , P, P ′,X?,Y?, pw,Z) that is consistent with the trace of a session at an uncorrupted
party, which accepted after a passive attack or after an active attack where the simulator did not place a
correct TestPw query. We define now these conditions formally.

We say a random oracle query (sid , P, P ′,X?,Y?, pw,Z) is consistent with an initiator session πsid
P if

this instance was created following a NewSession query by E using pw and πsid
P = ( · , (P, P ′,X?,Y?), · , init).

Similarly, the condition for responder session πsid
P ′ is πsid

P ′ = ( · , (P, P ′,X?,Y?), · , resp). Note that the order
of party identities in the trace determines the role of the party.

We say an initiator session πsid
P accepted after a passive attack if it completed following a SendResp(P ′,

P, sid , (Y?, alg)) message from E , when πsid
P ′ = ( · , (P, P ′, sid ,X?,Y?), · , resp). We say a responder session

πsid
P ′ accepted after a passive attack if it completed following a SendInit(P, P ′, sid , (X?, alg)) message from
E , when πsid

P = ( · , (P, P ′, sid ,X?,Y?), · , init). All other sessions are considered to be under active attack.
We reduce the probability of bad to SqDH. Intuitively, our reduction embeds the SqDH challenge A

in the global parameters (M = A,N = Aδ) for δ sampled uniformly at random from Z?q (this accounts
for the 1/q term in the theorem statement). Suppose bad is first set for a random oracle entry that is
consistent with a session accepted by an initiator session. The attacker delivered a message Y? and an
algebraic representation that we can see as [(a, g), (b,M), (c,N)]. The reduction can transform this algebraic
representation into [(a, g), (b+ δc,A)]. Let CDH(A,B) = gab for A = ga and B = gb. This means that any
problematic random oracle query will include a group element of the form

Z = CDH(Ax−pw, gaAb+δ(c−pw)) = CDH(Ax−pw, ga) · CDH(Ax−pw,Ab+δ(c−pw))

where x was chosen by the reduction following the simulator code. Since the reduction can compute the first
factor, we can recover

CDH(A,A)(x−pw)(b+δ(c−pw))

which means that the required SqDH solution can be recovered when (x− pw)(b+ δ(c− pw)) 6= 0. The case
of responders is similar, but we can only recover the SqDH result provided δ(y − pw)(b+ δc− pw) 6= 0.

The detailed proof given Appendix C bounds the probability that our reduction strategy fails using a
statistical term and reductions B11 and B21 to the discrete logarithm problem. Once this possibility is excluded,
we can reduce the probability of bad to SqDH. The detailed proof also includes the code for the algorithm
B2 that breaks SqDH if the bad event occurs. In this case, we know that the random oracle table will contain
a solution to SqDH if the event bad has occurred. When the experiment terminates, B2 therefore samples
a random oracle query uniformly at random7 and looks for a consistent session. It could find one or two
consistent sessions, where the latter case corresponds to a passive attack with matching passwords on both
sides. In any case, it computes a candidate SqDH value using the appropriate initiator or responder-side
formula we described above. If the randomly selected random oracle entry was the first to cause the bad
event, the algorithm solves SqDH. This accounts for the qH multiplicative loss in the theorem statement. ut

Remark. The above proof strategy can be used almost without change for an alternative version of the
protocol that does not include the password pw in the input to the key derivation hash. This has practical
advantages, as the password need not be kept in memory after computing the outgoing message. This version
of the protocol was introduced as SPAKE1 in [4], and it was previously not known that this protocol could
achieve forward secrecy or UC security. The only point where the current proof would need to be modified is
in the final computation of the SqDH solution: in the particular case of a passive attack there now could be
two protocol instances at P and P ′ with different passwords, but matching the same random oracle entry.
In this case, the reduction would toss a coin and choose one of them at random to fix the password used to
compute the SqDH solution. This adds only a factor of 2 to the final reduction step.

Furthermore, the same proof applies to both protocols when we can rely on a DDH oracle to the fixed
basis A to look for the offending random oracle entry. In this case, we get a tight reduction to Strong SqDH

7 This step could be replaced with a search for a consistent entry using a DDH oracle to the fixed basis A, resulting
in a tighter reduction to Strong SqDH where the qH factor disappears.
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for both protocols, i.e., the strong DH assumption adapted to the computation of ga
2

. Finally, the proof also
applies to variants of the protocol discussed in [1], whereby the CRS is defined as (M,N = M), or when the
CRS is simply the group description and (M,N) = H(sid , U, S) and H is modeled as a random oracle.

4.2 CPace

Fig. 8 shows a CPace protocol execution between an user U and a server S. CPace is a two-pass protocol,
where we assume the user plays the role of the initiator and the server that of the responder. We give a
sketch of the proof here and provide the complete proof in Appendix D .

User Server

G← H1(sid , U, S, pw) G← H1(sid , U, S, pw)

x←← Zq y ←← Zq
X ← Gx Abort if X = 1

Abort if Y = 1 Y ← Gy

K ← H2(sid , X, Y, Y x) K ← H2(sid , X, Y,Xy)

sid , U, S, pw ∈ P, crs = (G)

X

Y

Fig. 8. The CPace protocol [21]. CRS includes the group description G s.t. |G| = q.

Let InvCDH denote the problem of computing g1/a when given a random element A = ga in G and let
AdvInvCDH

B denote the probability that attacker B solves this problem. Theorem 7 shows that CPace AGM
realizes FpwKE if InvCDH is hard in G.

Theorem 7. CPace AGM-emulates FpwKE under static corruptions, in a hybrid model with the random
oracle functionality. More precisely, there exists an algebraic simulator S for the (algebraic) dummy adversary
D such that, for every efficient algebraic environment E creating at most qS sessions, querying H1 at most
qH1

times and querying H2 at most qH2
times, there exists B`1,`2 running in roughly the same time as E such

that execpwKE,S,E ≈ε execcpace,D,E , where

ε ≤ qH1
· qH2

· AdvInvCDH
B`1,`2

( ) +
q2H1

+ qS

q
.

Note that the InvCDH problem is equivalent to the DL problem when we consider algebraic attackers, so
the theorem follows with a reduction to the DL problem even if the proof relies on this apparently stronger
assumption.

Proof. (Sketch) Simulator S is shown in Fig. 9. The simulation strategy here is identical to that we adopt
for the SPAKE2 proof, with the caveat that the simulator must learn the environment’s queries to H1 in
order to extract the password in an active attack. (In this case, the bases for the algebraic representations of
adversarially constructed messages include the outputs of the random oracle H1 and any messages X or Y
produced by an uncorrupted party.) Also here the simulator never generates any group element for which it
cannot give an algebraic decomposition with respect to base g, and hence it is an algebraic adversary. The
handling of corrupt parties is also the same.

Proof of simulator correctness. This part of the proof is also similar in structure to that of SPAKE2.
We first eliminate some corner cases, where the distribution of real world and the ideal world views do not
match, but are straightforward to bound using a statistical term; this includes collisions at the random oracle
output. We then conclude that the real and ideal worlds are identical until bad, where bad is defined as the
existence within the set of queries placed by E to H2 of a query (sid ,X,Y,Z) that is consistent with the
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Simulator S for CPace

proc H1(sid , P, P ′, pw) (non-repeat queries)

r ←← Zq; G← gr; T1[sid , P, P ′, pw]← G; return G
Simulator aborts if at any point T1 is non-injective.

On input (NewSession, sid, P, P ′, role) from FpwKE

If ¬(πsid
P =⊥) discard input.

If role = init

x̂←← Z∗q ; X← gx̂

πsid
P ← (x̂, (P, P ′, sid ,X,⊥),⊥, init)

Send SendInit(P, P ′, sid ,X) to D
Else ŷ ←← Z∗q ; Y ← gŷ

πsid
P ← (ŷ, (P ′, P, sid ,⊥,Y),⊥, resp)

On message SendInit(P, P ′, sid , (X, alg) 6= 1) from E via D
Ignore if πsid

P ′ 6= (ŷ, (P, P ′, sid ,⊥,Y),⊥, resp)

(A unique πsid
P ′ satisfies the above check for some ŷ and Y)

K ←← K
(Can’t interrupt passive sessions so F sets =K at output)

If πsid
P = ( · , (P, P ′, sid ,X,⊥),⊥, init) Jump to Complete

(First check whether X was constructed as per protocol)
If alg = [(G, x))] ∧ (sid , P, P ′, pw,G) ∈ T1

Query (TestPwd, sid, P ′, pw) to FpwKE

If FpwKE responds with “correct guess” Then K ← H2(sid ,X,Y,Yx)
(Interrupt all other non-passive sessions.)
Else Query (TestPwd, sid , P ′,⊥) to FpwKE

Complete: Send SendResp(P ′, P, sid ,Y) to D
πsid
P ′ ← (⊥, (P, P ′, sid ,X,Y),K, resp)

Query (NewKey, sid, P ′,K) to FpwKE

On message SendResp(P ′, P, sid , (Y, alg) 6= 1) from E via D
Ignore if πsid

P 6= (x̂, (P, P ′, sid ,X,⊥),⊥, init)

(A unique πsid
P satisfies the above check for some x̂ and X)

K ←← K
(Can’t interrupt passive sessions so F sets =K at output)

If πsid
P ′ = ( · , (P, P ′, sid ,X,Y), · , resp) Jump to Complete

(First check whether Y was constructed as per protocol)
If alg = [(G, y)] ∧ (sid , P, P ′, pw,G) ∈ T1

Query (TestPwd, sid , P, pw) to FpwKE

If FpwKE responds with “correct guess” Then K ← H2(sid,X,Y,Xy)
(Interrupt all other non-passive sessions.)
Else Query (TestPwd, sid , P,⊥) to FpwKE

Complete: πsid
P ← (⊥, (P, P ′, sid ,X,Y),K, init)

Query (NewKey, sid, P,K) to FpwKE

Fig. 9. The operation of the CPace simulator. The simulator needs to observe adversarial random oracle queries on
H1 but not on H2, and it does not need to program either of the random oracles. T1 is initially empty.
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trace of a session at an uncorrupted party, which accepted after a passive attack or after an active attack
where the simulator did not place a correct TestPw query. We define now these conditions formally.

We say an H2 query (sid ,X,Y,Z) is consistent with an initiator session πsid
P if πsid

P = ( · , ( · , · ,X,Y), · ,
init). Similarly, the condition for responder session πsid

P ′ is πsid
P ′ = ( · , ( · , · ,X,Y), · , resp). We say an initiator

session πsid
P accepted after a passive attack if it completed following a SendResp(P ′, P, sid , (Y, alg)) message

from E , when πsid
P ′ = ( · , (P, P ′, sid ,X,Y), · , resp). Responder session πsid

P ′ accepted after a passive attack if it
completed after a SendInit(P, P ′, sid , (X, alg)) message from E , when πsid

P = ( · , (P, P ′, sid ,X,Y), · , init).
All other sessions are considered to be under active attack. Finally, we say a T1 entry of the form (sid ,
P, P ′, pw) is consistent with an initiator (resp. responder) instance, if that instance was initialized by the
environment in a NewSession query with (sid , P, P ′, pw, init) (resp. (sid , P ′, P, pw, resp)).

We bound the probability of bad in the ideal world using a sequence of games.

Guessing the RO entries that cause bad. We modify ideal world as follows: sample (`1, `2) uniformly
at random in [qH1 ] × [qH2 ]. Then, if bad first occurs due to the i-th H2 query such that i 6= `2, abort.
Furthermore, if the offending T1 entry (i.e., the T1 unique entry consistent with the session where the bad
event was detected) is not the `1-th one, abort. Clearly, we can still bound the probability of bad in the
previous game with the pessimistic bound qH1

· qH2
· Pr[bad], where we only check for bad if the experiment

has not aborted. We give in Appendix D a reduction B`1,`2 that solves the InvCDH problem whenever bad
occurs in this modified game.

Final reduction. The reduction strategy is as follows. The generator returned by H1 for the problematic
session associated with the `2-th password query is programmed to be A, the InvCDH problem instance. All
messages generated by uncorrupted parties are generated as gx̂ or gŷ. All random oracle queries consistent
with a session with trace (X,Y) and generator A include the key element Z satisfying the following equation:

Z = XdlogA(Y) = YdlogA(X) = A(dlogA(X)·dlogA(Y))

Observing that dlogA(X) = dlogg(X)/dlogg(A) the equation can be re-written as:

Z = g
dlogg(X)·dlogg(Y)

dloggA

In the simplest case of a passive attack, it is immediate that we recover the solution to the InvCDH problem
if x̂ · ŷ 6= 0, which we know to be the case.

Now let us suppose the problematic case occurs with an actively attacked initiator session. Then we know
that Y = gαAβ and α 6= 0; otherwise this would be a correct password guess and the bad event could never
have occurred for this session—recall the experiment would have aborted if H1 did not program A as the
output for the password associated with this session. We can therefore refine the equation above to:

Z = g
x̂·(α+β·dlogg(A))

dloggA = g
x̂·α

dloggA
+x̂·β

Again, the InvCDH solution can be recovered, as long as x̂ 6= 0. The responder session case is identical. ut

Remark. As in the proof of SPAKE2, we could eliminate the qH2
factor in the reduction by using a DDH

oracle to the fixed basis A to detect which of the entries in H2 is consistent with the bad event; however, we
would still be guessing the problematic H1 query in order to program the hard problem instance, and the
qH1 factor would remain.

Remark. In the proofs for SPAKE2 and CPace, we have seen that it is possible to have tighter reductions
to a stronger gap assumption that excludes the need to guess an entry in the key derivation random oracle.
However, we should also mention that in the algebraic group model, the gap versions of the SqDH and
InvCDH assumptions are actually equivalent to the standard versions, provided that the reduction is able to
give algebraic decompositions of all the elements queried to the DDH oracle. This is the case in our proofs,
provided that the attacker is also required to give algebraic decompositions of the group elements it queries
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to the random oracle. Note that this is a requirement for algebraic environments in the UC AGM model,
as explained in Section 2. The take away from this discussion is that our proof of SPAKE2 implies a tight
reduction to SqDH in the algebraic group model for both SPAKE1 and SPAKE2 (SPAKE1 is the variant
that does not include pw in the key derivation hash). The CPace proof implies a reduction to InvCDH in
the AGM with a loss of qH1

.
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A On using an ideal functionality to idealize a group

One can try to formalize the AGM within the UC framework by introducing an appropriate functionality
FAGM that “forces” arbitrary algorithms to behave algebraically. For example, the functionality could generate
a group G along with a group element g (that it gives to all parties), and then maintain a set D ⊆ G
(initialized as D = {g}) containing the group elements that are currently “registered.” Any party can check
whether a group element h is registered by querying FAGM to see whether h ∈ D; a party can register a new
group element h by sending h to FAGM along with a representation of h with respect to the elements that
are currently registered, after which h will be added to D.

This approach would have the advantage of leaving the UC framework itself unchanged; once an appropri-
ate FAGM functionality is defined, one could work in the FAGM-hybrid model, while automatically inheriting
existing composition theorems. Nevertheless, although we considered this approach we ultimately found it
unsatisfactory for several reasons:

– This approach requires honest parties to be aware of the fact that they are working in the AGM; in
particular, any protocol designed in this model would need to instruct honest parties that when they
receive a group element h they must make a query to FAGM checking whether h is registered. While not a
fundamental barrier, this is clunky and conceptually awkward, and does not match what would be done
in a real-world protocol execution.

– A more serious problem is that it is not technically clear how composition would work for the version
of FAGM described above (and we did not see any reasonable way to define FAGM that circumvents this
issue). Consider the case of a protocol relying on the oblivious-transfer functionality FOT. In the spirit
of the AGM, any group elements h0, h1 sent to FOT by the sender should be registered—but this seems
to require FOT itself to query FAGM to check whether that is the case. The same problem arises, e.g.,
when relying on the random-oracle functionality, if we insist that only registered group elements can
be queried to the random oracle. Resolving this issue would thus, at least, require modifying standard
functionalities when working in the AGM; even worse, it would require functionalities to communicate
with each other, something that is disallowed in the standard UC framework.

– The preceding issue could perhaps be solved, at least partially, by making FAGM a global functionality [13].
This, however, is problematic because then the simulator is unable to learn the representations of group
elements when they are registered, which seems to limit the applicability of working in the AGM to begin
with.
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For these reasons, we decided to reject the above in favor of our current approach, which adopts the
standard AGM idea of restricting the classes of attackers, rather than changing the rules of the environments
in which the attackers execute. This leads to simpler and easy to check proofs and it preserves the syntax of
ideal functionalities and protocols.

B Further Details Regarding the UC-AGM

B.1 Detailed Description of the Simplified UC Framework

In this section, we give a detailed description of the (simplified) UC framework [12, Section 2]; see Ap-
pendix B.2 for discussion on the full UC framework.

Protocols. A protocol is treated as a set of machines, where each machine has a fixed program and a set of
specifications telling it how to communicate and with whom. A machine can be viewed roughly as a “party,”
but machines can also be abstract computational entities such as ideal functionalities.

More concretely, a machine is a tuple µ = (ID,C, µ̃), where

– ID is µ’s identity, which is unchanged throughout an execution of the protocol.
– C is µ’s communication set, which specifies the parties to which µ can send messages.8 It consists

of pairs of the form (IDi, Li), where Li is either input, subroutine-output, or backdoor. If Li = input,
then µ is allowed to send input to the machine with identity IDi (we say µ is a caller of IDi); if
Li = subroutine-output, then µ is allowed to send output to the machine with identity IDi (we say µ is
a subroutine of IDi). As we shall see soon, backdoor is reserved for information sent to and from the
adversary in an execution of the protocol.

– µ̃ is µ’s program. A program can be formally defined via some fixed computational model, such as
interactive Turing machines (ITMs) or random access machines (RAMs). For concreteness, in this work
we use ITMs as the model of computation.

Definition 7. A protocol is a set of machines π = {µ1, . . . , µn}, where µi = (IDi, Ci, µ̃i), with the following
properties:

– The identity IDi of each machine is unique.
– If π contains a machine µ = (ID, ?, ?) which is a caller of ID′, then π also contains a machine µ′ =

(ID′, ?, ?) which is a subroutine of ID.
– If π contains a machine µ′ = (ID′, ?, ?) which is a subroutine of ID, and π also contains a machine
µ = (ID, ?, ?),9 then µ is a caller of ID′.

Every machine in a protocol π is either an internal machine or a main machine. A main machine is a
machine that is a subroutine of an external identity.

For now we say that a machine is efficient if it halts within a number of steps polynomial in a global
security parameter κ. (See Appendix B.2 for more discussion on this.)

Protocol execution. We distinguish between a protocol and its execution. Let π = {µ1, . . . , µn} be a
protocol, where µi = (IDi, Ci, µ̃i). Without loss of generality, assume µ1, . . . , µm (where m ≤ n) are π’s
main machines. In an execution of protocol π, two additional machines are added. One is the environment

E =
(

0,
{

(IDj , input)}mj=1 ∪ {(1, input)
}
, Ẽ
)

;

the other is the adversary

A =
(

1, {(IDi, backdoor)}ni=1 ∪ {(0, backdoor)} , Ã
)
.

8 As we will see, this determines the machines from which µ can receive messages.
9 Note that π may not contain such a machine. If not, then ID is called an external identity of µ′. Intuitively this

is some party outside the protocol (e.g., in some higher-level protocol) that calls µ′.
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In other words, the environment E has identity 0, and can send inputs to all main machines of π, as well as
the adversary; the adversary A has identity 1, and can send backdoor messages to all machines of π, as well
as the environment. (We require that none of the identities of machines in π, nor π’s external identities, is
0 or 1.) Furthermore, in an execution of π, we change Ci to Ci ∪ {(1, backdoor)}. That is, every machine in
π is additionally allowed to send backdoor message to the adversary.

An execution of π starts by running the environment E ; in other words, E is activated. Then when machine
µ wants to transmit some message m (with identity ID) to some identity ID′ together with a label (input,
subroutine-output, or backdoor) as allowed by µ’s communication set, the execution proceeds as follows:

– If µ = E , then m is added to the state of µ′ with identity ID′, together with a sender identity chosen by
E from π’s external identities.

– If µ 6= E and ID′ corresponds to some machine µ′ in π, then m is added to the state of µ′, together with
the sender identity ID.

– If µ 6= E and ID′ is an external identity, then m is added to the state of E , together with the sender
identity ID.10

After that, µ’s activation completes and µ′ (or E , if ID′ is an external identity) is activated. If µ halts
without sending any message, then E is activated.11

In the “plain” model, the adversary can modify any message as it wants. Restrictions on the adversary’s
ability can be modeled via adding suitable ideal functionalities (see below), such as the message authentica-
tion functionality and the secure message transmission functionality.

A message has four components: the sender identity, the (intended) receiver identity, the label, and the
payload. For readability, we use (label, payload) to denote a message; when it is necessary to make the
identity of the sender and/or receiver explicit, we may use the term “from/to (or aimed at) identity.”

We use execπ,A,E to denote environment E ’s view in π’s execution with A.

Protocol emulation. We are now ready to define UC emulation of a protocol. Roughly speaking, a protocol
π emulates another protocol φ, if any efficient environment’s view in an execution of π (for any efficient
adversary) can be “simulated” in an execution of φ. Concretely,

Definition 8. Protocol π emulates protocol φ if the following holds: for any efficient adversary A in π’s
execution, there is an efficient adversary S (called the simulator) in φ’s execution, such that for any efficient
environment E we have

execφ,S,E ≈ execπ,A,E .

An immediate observation is that if π emulates φ, then the number and identities of main machines they
each have must be the same; otherwise the environment can distinguish trivially. (We say that π is compatible
with φ.) Also note that both A and S have identity 1.

Party corruption. Party corruption must be modeled carefully; in particular, it must be accounted for by
the environment somehow, since otherwise the simulator could simply corrupt all parties at the outset and
then simulate somewhat trivially. We provide the following simple mechanism. A main machine R, called the
record keeping machine, is added to the protocol. When the adversary sends a (backdoor, corrupt) message
to a protocol machine µ, µ notifies R that it is corrupted. R maintains a list of all corrupted parties; upon
query from the environment, R returns this list.

10 Formally, an ITM has three externally writable tapes: an input tape, a subroutine-output tape, and a backdoor
tape. The incoming message m is written on one of these tapes of µ′ (or E), depending on the label.

11 As we can see, the environment E essentially covers all external identities of π. It might look odd that we let the
main machines communicate with some external identities, rather than with E directly. This is for the sake of
composibility: in the case that π is a sub-protocol of some higher-level protocol ρπ, we need π’s main machines to
communicate with machines in ρ := ρπ \ π, which has the corresponding external identity. If we only allowed π’s
main machines to communicate with identity 0 (i.e., the environment), then they would not be able to communicate
with their “callers” in ρ, and thus composibility could not be well-defined.
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The two common corruption settings are adaptive corruption, where the adversary can corrupt a party at
any time; and static corruption, where party corruption must happen at the outset (so a party remains either
corrupted or uncorrupted throughout protocol execution). Static corruption can be modeled via modifying
the code of R as follows: upon activation of the adversary, it can send R a set of parties to be corrupted; all
subsequent corrupt messages sent to R are ignored.

Realizing an ideal functionality. The most common form of UC emulation is realizing an ideal func-
tionality. That is, the protocol emulated is an ideal protocol idealF consisting of an incorruptible internal
machine called the ideal functionality F , and m main machines called dummy parties, which merely pass
all messages between their external identities and F (recall that in a protocol execution, messages from/to
an external identity eventually comes from/goes to the environment); in particular, they ignore all messages
from the adversary (except for corrupt messages discussed above).

Definition 9. Protocol π realizes ideal functionality F if π emulates idealF .

Universal composition. The universal composition operation, which is the key concept behind the com-
position theorem, involves three protocols φ, ρφ and π, with the following properties:

1. φ is a sub-protocol of ρφ: that is, φ ⊂ ρφ (recall that we simply treat a protocol as a set of machines),
and φ is a protocol in itself.

2. π is compatible with φ: recall that this means that the number and identities of π’s and φ’s main machines
are the same.

3. π is identity-compatible with φ and ρφ: that is, no machine in π has the same identity as any machine in
ρφ \ φ.

It is easy to see that, given the three conditions above, ρπ := ρφ \ φ ∪ π also forms a protocol which is
compatible with ρφ; that is, in ρφ we can replace the sub-protocol φ with π.

The following universal composition theorem is proven in [12]:

Theorem 8. Suppose protocols ρφ, π, φ are such that φ is a sub-protocol of ρφ, π emulates φ, and π is
identity-compatible with ρφ and φ. Then ρπ emulates ρφ.

When an ideal protocol idealF is a sub-protocol of ρidealF , we simplify the notation to ρF and say that
protocol ρF is in the F-hybrid world.

B.2 The Full UC Framework

We explain the main differences between the simplified UC framework used in Section 2 and the full UC
framework, as well as how our treatment of algebraic adversaries there can be extended to the full framework.
Our discussion here is mostly informal; for a formal treatment, we refer the readers to [12].

Running time. Recall that in Appendix B.1 we define a machine to be efficient if it halts within a number
of steps polynomial in the security parameter. While helping keep the concept simple, this definition appears
overly restrictive; for example, in an encryption scheme where the encryption algorithm is “efficient” in this
sense, the length of plaintexts is a priori bounded.

A natural alternative approach is to replace the security parameter with the input length in the definition
of efficient machines. However, in a distributed system where there are multiple interactive Turing machines,
things are more subtle. In particular, if we define an efficient ITM as halting within a number of steps
polynomial in its overall input length, then this does not place any realistic limit on its running time: since
two ITMs may repeatedly send inputs to each other with increasing length, they may run infinitely even
though they are both “efficient.”

To resolve this issue, [12] replaces input length with “runtime budgets.” That is, every message is asso-
ciated with a natural number called import ; at any specific state, the runtime budget of an ITM is defined
as the overall import of messages it has received so far minus the overall import of messages it has sent so
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far. An ITM is efficient if at any state, the number of steps it has taken is at most some polynomial of its
runtime budget at this state. In essence, the import of an message can be viewed as a “token” that provides
running time; these “tokens” are circulated around the system, but the total number is an invariant.

To make the definition of UC emulation meaningful, [12] also considers only balanced environments, whose
overall import to protocol machines never exceeds the overall import to the adversary. For more detailed
discussion, see [12, Section 4.2].

Sender and receiver identities. Recall that a message in Appendix B.1 consists of label, payload, sender
identity, and receiver identity. There we assume that the identities of all parties are public. However, in a
dynamic system, such assumption cannot be made; for example, it is possible that the sender only knows
part of the receiver’s identity, or the sender might even want to invoke a new machine as the receiver.

To this end, [12] adds two more fields (apart from the import discussed above) to the message: a forced-
write flag f , and a reveal-sender-id flag r. If f = 1 then the receiver’s identity must exactly match the
one specified in the message, µ′; if no machine in the system has identity µ′, then one with identity µ′ is
invoked. If f = 0 then µ′ is interpreted as a predicate on identities, and the message is delivered to the
earliest-invoked machine whose identity satisfies µ′ (if no machine’s identity satisfies µ′, then the message is
not delivered). This mechanism allows for delivery of messages without knowing the receiver’s full identity
(by setting f = 0), as well as invocation of new machines (by setting f = 1). Finally, if r = 1 and the message
is delivered, then the sender’s identity is sent together with the message.

In an execution of a protocol, the environment E must set the forced-write flag f = 1, i.e., E must know
the identities of all machines it communicates with, and is free to invoke new machines; the adversary A must
set f = 0, i.e., A can only communicate with existing machines; the protocol parties must set f = 0 while
sending backdoor messages, i.e., they cannot invoke a new adversary, and they must reveal their identities
while sending messages by setting r = 1.12

Protocol sessions and ITIs. The model in Appendix B.1 implicitly assumes that the total number of
protocol sessions is fixed in advance (where each session of each party is an ITM). In order to take into
account the dynamic generation of protocol sessions, the full UC framework instead lets the entire protocol to
be a single ITM, and assigns multiple session IDs within this ITM; every combination of protocol code/party
ID/session ID, called an extended identity, determines an instance of ITM (ITI). A session s of protocol
π (or (π, s)) is simply the set of ITIs with code π and session ID s. As discussed above, ITIs can be
dynamically generated, which allows for dynamic generation of protocol sessions. An extended session (π, s)
is the transitive closure of the invocation relation starting from the ITIs in session (π, s). ITIs in session
(π, s) are also called the main parties of s; ITIs in extended session (π, s) (but not in s) are also called the
sub-parties of (π, s).

To provide some form of “separation” among protocol sessions, we require that the protocol be subroutine
respecting. Roughly speaking, this means that the only messages sent to any ITI in an extended session from
the outside are input messages to some main party, and the only messages sent from any ITI in an extended
session to an existing outside ITI are subroutine-output messages from some main party.

Compatibility requirements. In the simplified framework, we assume that the identities of all protocol
machines are public. However, in the dynamic setting where new ITIs can be invoked by existing ITIs (who
also picks the identities of the new ITIs), this is not necessarily the case, causing potential difficulties in
simulation (e.g., the simulator in the proof of Theorem 2 needs to check if there is a machine in protocol
φ with identity ID). To resolve this, we only consider protocols which are identity exposing ; that is, each
session s of protocol π provides to the adversary an interface in which, given an extended identity α, answers
with a bit indicating whether α is the extended identity of some ITI in extended session (π, s).

All the modifications to the simplified UC framework discussed above are orthogonal to our UC-AGM
framework, so our treatment naturally extends to the full UC framework. The only exception is the running

12 Formally, these rules are enforced via a control function, which on input an execution up-to-date, outputs a bit
indicating allow/disallow. If the output is 1 then the message is delivered; otherwise the environment is activated.
The control function has similar effects to those of the communication sets in the simplified model.

28



time, since our framework requires the environment and the adversary to additionally send (or output)
the algebraic representations of group elements. However, notice that at any state of protocol execution,
the length of algebraic representations sent/output by the environment/adversary cannot exceed the overall
import it receives so far multiplies the length of the message (without the algebraic representations) it
outputs this time. Therefore, if we replace all polynomials T (·) upper-bounding the running time with T (·)2
(and let the environment assign imports appropriately), then the conclusions in the simple framework can
be transferred to the full framework.

B.3 Proof of Theorem 1

Proof. For the “only if” direction, simply take Definition 2 and let A be the (G, π)-algebraically dummy
adversary (which is clearly efficient assuming that the environment and all protocol machines are efficient).

For the “if” direction, let D be the (G, π)-algebraically dummy adversary. Since π G-AGM emulates φ
w.r.t. the dummy adversary, we know that there is an efficient simulator SD such that (E ′,SD) is (G, φ)-
algebraic, and

execφ,SD,E′ ≈ execπ,D,E′

for any efficient (G, π)-algebraic environment E ′.

Construction of simulator S. Given an efficient adversary A (in π’s execution), we construct a simulator
S (in φ’s execution) which simulates E ’s view for any efficient environment E such that (E ,A) is (G, π)-
algebraic. S simulates instances of both A and SD, and essentially “combines” them. (Recall that both A
and SD communicate with the environment and protocol parties, and S needs to simulate all these interfaces.)
Concretely, S works as follows:

1. On message (input,m0) from identity 0 (i.e., from E), S (locally) activates A with message (input,m0).
2. When A completes this activation,

(a) If A does not generate any outgoing message, then S jumps to step 1.
(b) If A generates an outgoing message (backdoor,m1) to identity 0 (i.e., to the environment), then S

sends (backdoor,m1) to identity 0 (i.e., to E) and jumps to step 1.
(c) If A generates an outgoing message (backdoor,m1) to some identity ID 6= 0 (i.e., to a protocol

machine), then S extracts Λ1 as the concatenation of the algebraic representations of all group
elements in m1, from either A’s algebraic tape or messages previously sent to A. Then S (locally)
activates SD with message (input, (ID,m1||Λ1)).

3. When SD completes this activation,

(a) If SD generates an outgoing message (backdoor, (ID,m2)) to identity 0 (i.e., to the environment),
then S sends (backdoor, (ID,m2)) to identity 0 and jumps to step 1. (Note that A is “bypassed” in
this case.)

(b) If SD generates an outgoing message (backdoor,m2) to some identity ID 6= 0 (i.e., to a protocol
machine), then S extracts Λ2 as the concatenation of the algebraic representations of all group
elements in m2, from either SD’s algebraic tape or messages previously sent to SD. Then S writes
Λ2 on its own algebraic tape and sends (backdoor,m2) to identity ID.

4. On message (backdoor,m3) from identity ID 6= 0 (i.e., from a protocol machine), S activates SD with
message (backdoor,m3).

5. When SD completes this activation,

(a) If SD generates an outgoing message (backdoor, (ID,m2)) to identity 0, then S activates A with
message (backdoor, (ID,m2)) and jumps to step 2.

(b) If SD generates an outgoing message (backdoor,m2) to some identity ID 6= 0 (i.e., to a protocol
machine), then S extracts Λ2 as the concatenation of the algebraic representations of all group
elements in m2, from either SD’s algebraic tape or messages previously sent to SD. Then S writes
Λ2 on its own algebraic tape and sends (backdoor,m2) to identity ID.

(Note that the only difference with step 3 is that in case (a) A is not “bypassed.”)
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Analysis of simulator S. It is straightforward to see that if A and SD are both efficient, then S is also
efficient. We now show that (E ,S) is (G, φ)-algebraic in two steps:

– Recall that while interacting with SD, S generates the interfaces of both the environment and protocol
parties in the execution of φ. Let E ′ denote such environment in SD’s view; we show that E ′ is (G, π)-
algebraic. E ′ sends an input message to identity 0 (i.e., the adversary) in step 2(c) only (let m1 be the
message payload), in which case an algebraic representation Λ1 is attached to m1. Such an algebraic
representation can be extracted because (E ,A) is (G, π)-algebraic, so (1) if Λ1 is on A’s algebraic tape,
then it can be read by S; (2) otherwise Λ1 must have been previously sent to A by S (who simulates E
in A’s view), so S can extract Λ1 from its own transcript.

– Since E ′ is (G, π)-algebraic, by definition of SD, we have that (E ′,SD) is (G, φ)-algebraic. Now we claim
that (E ,S) is (G, φ)-algebraic. S sends (backdoor messages to identity ID 6= 1 in steps 3(b) and 5(b) only
(let m2 be the message payload); in both cases S writes an algebraic representation Λ2 on its algebraic
tape. Such an algebraic representation can be extracted because (1) if Λ2 is on SD’s algebraic tape, then
it can be read by S; (2) otherwise Λ2 must have been previously sent to SD by E ′, which in turn is part
of S, so S can extract Λ2 from its own transcript.

Next we show that S generates an indistinguishable view for E . We construct another environment ED,
which simulates instances of both E and A, and essentially “combines” them. Concretely, ED, on initial input
z, activates E with input z. Then ED works as follows:

1. When E completes this activation,
(a) If E halts with some output, then ED also halts with the same output.
(b) If E generates an outgoing message (input,m0) to some identity ID 6= 0 (i.e., to a protocol machine),

then ED sends (input,m0) to identity ID.
(c) If E generates an outgoing message (input,m0) to identity 1 (i.e., to the adversary), then ED activates
A with message (input,m0).

2. When A completes this activation,
(a) If A does not generate any outgoing message, then ED jumps to step 1.
(b) If A generates an outgoing message (backdoor,m1) to identity 0 (i.e., to the environment), then ED

enters a special state called bypass.
(c) If A generates an outgoing message (backdoor,m1) to some identity ID 6= 0 (i.e., to a protocol

machine), then ED extracts Λ as the concatenation of the algebraic representations of all group
elements in m1, from either A’s algebraic tape or messages previously sent from E to A. Then ED
sends (input, (ID,m1||Λ)) to identity 1 (i.e., to the adversary).13

3. On message (backdoor, (ID,m2)) from identity 1 (i.e., from the adversary),
(a) If ED is in the bypass state, then it exits this state, activates E with message (subroutine-output, (ID,

m2)) (as from identity 1), and jumps to step 1.
(b) Otherwise ED activates A with message (input,m2) (as from identity ID) and jumps to step 2, except

that in case 2(b) ED activates E with message (backdoor,m1) (rather than entering the bypass state).
4. On message (subroutine-output,m3) from identity ID 6= 1 (i.e., from a protocol machine), ED activates
E with message (subroutine-output,m3) and jumps to step 1.

It is straightforward to see that if E and A are both efficient, then ED is also efficient. Also, ED perfectly
simulates an instance of A in π’s execution, and an instance of S in φ’s execution, i.e.,

execπ,D,ED = execπ,A,E ,

and
execφ,SD,ED = execφ,S,E .

13 Note that this adversary is not A: both this adversary and ED are machines in protocol execution (of π or φ),
whereas ED runs A as a subroutine. In other words, from ED’s point of view, this adversary is “external,” whereas
A is “internal.”
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Next we claim that if (E ,A) is (G, π)-algebraic, then ED is also (G, π)-algebraic. According to the descrip-
tion of ED above, ED sends input messages to identity 1 in step 2(c) only (let m1 be the message payload),
in which case an algebraic representation Λ is attached to m1. Such an algebraic representation can be
extracted because (E ,A) is (G, π)-algebraic, so (1) if Λ is on A’s algebraic tape, then it can be read by ED;
(2) otherwise Λ must have been previously sent to A by E , so ED, who runs both E and A, can extract Λ
from the message sent from E to A.

Since ED is both efficient and algebraic, by the definition of SD, we have that

execφ,SD,ED ≈ execπ,D,ED .

Combining the three results above, we conclude that

execφ,S,E ≈ execπ,A,E ,

completing the proof. ut

C Detailed Proof for SPAKE2 (Theorem 6)

Simulator S is shown (again) in Fig. 10, side by side with the code for uncorrupted parties in the real-world.
Recall that, whenever the dummy adversary is instructed to deliver a group element to an uncorrupted
party, it will output in its auxiliary tape the algebraic representation of that element with respect to group
elements appear in the view of the environment. In this case, the bases for such representations include M,
N and any messages X? or Y? produced by an uncorrupted party.

Simulation strategy. The simulator generates all messages of uncorrupted parties by simpling raising
either M or N to a random exponent. It does so because it does not know the corresponding password.
The distribution of such messages is identical to those produced by honest parties in the real world, which
are of the form gxMpw or gyNpw. The simulator then keeps track of whether the adversary is launching a
passive attack or an active attack, where the former means that there exists another simulated session with
a consistent view. All passively attacked sessions are not interrupted by the simulator, which means that
FpwKE will choose independent keys at the associated dummy parties’ outputs. For actively attacked sessions,
the simulator checks if the delivered message was constructed as per the protocol and, if so, it extracts the
password. All malformed messages cause the simulator to interrupt the session in the functionality by calling
TestPw with pw =⊥. For well formed messages, the simulator queries TestPw on the extracted password
and, if the password is correct, computes the correct key: this is possible because, even though the simulator
does not know the correct exponent implicit in the simulated honest party’s state, it knows the algebraic
decomposition of the delivered message and this is well formed (this means it can compute the key as the
adversary would). If the password is incorrect, the simulator generates a totally random key (this is ignored
by the functionality if there are no corrupt parties involved in the session, but it is relevant otherwise as
we discuss below). The simulation is perfect for all sessions with well-formed messages and correct password
guesses. It looks perfect for all other sessions, unless the attacker can query the random oracle on the group
element that such a session would compute in the real world. Our proof shows that any such query can, with
overwhelming probability, be used to solve the SqDH problem. Two important observations for the proof:
i. the simulator never uses the random exponents it generates for the honest party messages to perform
any computation; and ii. the simulator never constructs any group element for which it cannot provide an
algebraic decomposition to bases g, M and N. The second observation guarantees that our simulator is an
algebraic adversary as required by the composition theorem in Section 2.

Corrupt parties. Fig. 10 does not show explicitly the simulator’s handling of sessions involving corrupt
parties. In this case, the environment tells the simulator what the corrupt party should be doing, and the
simulator does not keep the state of the corrupt party. Moreover, any group elements transmitted by the
corrupt party come with their algebraic decomposition as above.
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Uncorrupted Parties

proc Initialize( )

Get CRS=(M,N)

On input (NewSession, sid , P, P ′, pw, role) from E
At most one instance for a given sid at P .
If role = init

x←← Zq; X? ← gx ·Mpw

πsid
P ← (x, (P, P ′, sid,X?,⊥),⊥, pw, init)

Send SendInit(P, P ′, sid,X?) to E via D
Else

y ←← Zq; Y? ← gy ·Npw

πsid
P ← (y, (P ′, P, sid,⊥,Y?),⊥, pw, resp)

On message SendInit(P, P ′, sid ,X?) from E via D
Ignore if πsid

P ′ 6= (y, (P, P ′, sid,⊥,Y?),⊥, pw, resp)

(A unique πsid
P ′ satisfies the above check)

X ← X? /Mpw

K ← H(P, P ′, sid ,X?,Y?, pw, Xy)
Send SendResp(P ′, P, sid ,Y?) to E via D
πsid
P ′ ← (y, (P, P ′, sid,X?,Y?),K, resp)

Output K

On message SendResp(P ′, P, sid ,Y?) from E via D
Ignore if πsid

P 6= (x, (P, P ′, sid,X?,⊥),⊥, pw, init)

(A unique πsid
P satisfies the above check)

Y ← Y? /Npw

K ← H(P, P ′, sid,X?,Y?, pw, Y x)

πsid
P ← (x, (P, P ′, sid,X?,Y?),K, init)

Output K

Simulator S

proc Initialize( )

Get CRS=(M,N)

On input (NewSession, sid, P, P ′, role) from FpwKE

If ¬(πsid
P =⊥) discard input.

If role = init
x←← Zq; X? ←Mx

πsid
P ← (x, (P, P ′, sid ,X?,⊥),⊥, init)

Send SendInit(P, P ′, sid ,X?) to E
Else

y ←← Zq; Y? ← Ny

πsid
P ← (y, (P ′, P, sid ,⊥,Y?),⊥, resp)

On message SendInit(P, P ′, sid , (X?, alg)) from E
Ignore if πsid

P ′ 6= (y, (P, P ′, sid ,⊥,Y?),⊥, resp)

(A unique πsid
P ′ satisfies the above check)

K ←← K
(Can’t interrupt passive sessions so F sets =K at output)

If πsid
P = ( · , (P, P ′, sid ,X?,⊥),⊥, init) Jump to Complete

(First check whether X? was constructed as per protocol)
If alg = [(g, x); (M, pw)]

Query (TestPwd, sid, P ′, pw) to FpwKE

If FpwKE responds with “correct guess”
Y ← Y? /Npw

K ← H(P, P ′, sid ,X?,Y?, pw, Y x)
(Interrupt all other sessions so independent key is set)
Else Query (TestPwd, sid , P ′,⊥) to FpwKE

Complete: Send SendResp(P ′, P, sid ,Y?) to E
πsid
P ′ ← (y, (P, P ′, sid ,X?,Y?),K, resp)

Query (NewKey, sid, P ′,K) to FpwKE

On message SendResp(P ′, P, sid , (Y?, alg)) from E
Ignore if πsid

P 6= (x, (P, P ′, sid ,X?,⊥),⊥, init)

(A unique πsid
P satisfies the above check)

K ←← K
(Can’t interrupt passive sessions so F sets =K at output)

If πsid
P ′ = ( · , (P, P ′, sid ,X?,Y?), · , resp) Jump to Complete

(First check whether Y? was constructed as per protocol)
If alg = [(g, y); (N, pw)]

Query (TestPwd, sid , P, pw) to FpwKE

If FpwKE responds with “correct guess”
X ← X? /Mpw

K ← H(P, P ′, sid ,X?,Y?, pw, Xy)
(Interrupt all other sessions so independent key is set)
Else Query (TestPwd, sid , P,⊥) to FpwKE

Complete: πsid
P ← (x, (P, P ′, sid ,X?,Y?),K, init)

Query (NewKey, sid, P,K) to FpwKE

Fig. 10. The operation of uncorrupted SPAKE2 parties in the real world (left) and the corresponding simulator
(right). The simulator does not need to observe adversarial random oracle queries nor program either of the random
oracle or the CRS.
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In particular, this means that any output key produced by a corrupt party can be easily fixed by the
simulator at the ideal functionality output, since its intended real-world output will be explicitly provided
by the environment. More subtle is the case of sessions accepted by uncorrupted parties when interacting
with corrupt parties: in this case the simulator must also fix the output of the uncorrupted party via the
ideal functionality consistently with the real world.

Our simulator is structured to handle this case identically to the setting where the uncorrupted party is
actively attacked while interacting with another uncorrupted party:

– such a session will never be interpreted as passively attacked by the simulator (as it is not controlling
the corrupt party state), so it will always test the password;

– if the password is correctly guessed, our simulator programs the functionality with the correct key;
– otherwise, it programs a completely random key (mimicking actively attacked sessions);
– in both cases the functionality outputs what the simulator provides because the session is corrupted.

The proof below covers this scenario as a particular case.

Proof of simulator correctness. From this point on we consider only interactions involving uncorrupted
parties. The first observation we make is that the distribution of the protocol messages produced by the
simulator is identical to that occurring in the real world, even though they are constructed differently. It
therefore remains to prove that the outputs of the ideal functionality match the distribution of the parties’
outputs in the real world. We observe that the real and ideal worlds are identical until bad, where bad is
defined as the event that a secret key that is selected uniformly at random by the functionality at the output
of an uncorrupted party is inconsistent with the answer given by H to the adversary. This is because in all
other cases the simulator programs the output of the ideal functionality consistently with the real world.
This means formally that, for ε = Pr[execpwKE,S,E ⇒ bad], we have

execpwKE,S,E ≈ε execspake2,D,E

More precisely, we define event bad as the existence within the set of queries placed by E to the random
oracle of a query (sid , P, P ′,X?,Y?, pw,Z) that is consistent with the trace of a session at an uncorrupted
party, which accepted after a passive attack or after an active attack where the simulator did not place a
correct TestPw query. We define now these conditions formally.

We say a random oracle query (sid , P, P ′,X?,Y?, pw,Z) is consistent with an initiator session πsid
P if

this instance was created following a NewSession query by E using pw and πsid
P = ( · , (P, P ′,X?,Y?), · , init).

Similarly, the condition for responder session πsid
P ′ is πsid

P ′ = ( · , (P, P ′,X?,Y?), · , resp). Note that the order
of party identities in the trace determines the role of the party.

We say an initiator session πsid
P accepted after a passive attack if it completed following a SendResp(P ′,

P, sid , (Y?, alg)) message from E , when πsid
P ′ = ( · , (P, P ′, sid ,X?,Y?), · , resp). We say a responder session

πsid
P ′ accepted after a passive attack if it completed following a SendInit(P, P ′, sid , (X?, alg)) message from
E , when πsid

P = ( · , (P, P ′, sid ,X?,Y?), · , init). All other sessions are considered to be under active attack.
We reduce the probability of bad to SqDH. Intuitively, our reduction embeds the SqDH challenge A

in the global parameters (M = A,N = Aδ) for δ sampled uniformly at random from Z?q (this accounts
for the 1/q term in the theorem statement). Suppose bad is first set for a random oracle entry that is
consistent with a session accepted by an initiator session. The attacker delivered a message Y? and an
algebraic representation that we can see as [(a, g), (b,M), (c,N)]. The reduction can transform this algebraic
representation into [(a, g), (b+ δc,A)]. This means that any problematic random oracle query will include a
group element of the form

Z = CDH(Ax−pw, gaAb+δ(c−pw)) = CDH(Ax−pw, ga) · CDH(Ax−pw,Ab+δ(c−pw))

where x was chosen by the reduction following the simulator code. Since the reduction can compute the first
factor, we can recover

CDH(A,A)(x−pw)(b+δ(c−pw))
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which means that the required SqDH solution can be recovered when (x− pw)(b+ δ(c− pw)) 6= 0. The case
of responders is similar, but we can only recover the SqDH result provided δ(y − pw)(b+ δc− pw) 6= 0.

We therefore split the bad event into the following cases:

– badI : bad is first detected on an initiator session but (x− pw)(b+ δ(c− pw)) = 0
– badR: bad is first detected on a responder session but δ(y − pw)(b+ δc− pw) = 0
– bad1 = badI ∨ badR
– bad2 = bad ∧ ¬bad1

Clearly we have

Pr[execpwKE,S,E ⇒ bad] = Pr[execpwKE,S,E ⇒ bad1] + Pr[execpwKE,S,E ⇒ bad2] .

Bounding bad1: Reductions to Discrete Log We analyze bad1 by splitting it into five disjoint cases:

– bad1I,R: bad1 first occurs because the value x (resp. y) sampled in an initiator (resp. responder) session
matches the password pw that was included by E in the NewSession query that created that session.
This event is easy to bound, as pw is fixed when the value is sampled, and it accounts for the qS/q term
in the theorem statement.

– bad2I : badI first occurs because bad1I,R did not occur and c = pw. In the case of passive attacks, this means
that the environment extracted the value y = c sampled by the simulator in the matching session. In
active attacks, this can never occur. To see this, note that if bad occurs and c = pw, then it must be the
case that b 6= 0, as otherwise the simulator would have made a correct password guess and computed the
correct key. But then, the condition (b+ δ(c− pw)) = 0 cannot be satisfied.

– bad2R: badR first occurs because none of the previous variants occurred and b = pw. In the case of passive
attacks, this means that the environment extracted the value x = b sampled by the simulator in the
matching session. In active attacks, this can never occur. To see this, note that if bad occurs and b = pw,
then it must be the case that c 6= 0, as otherwise the simulator would have made a correct password guess
and computed the correct key. But then, the condition (b + δc − pw) = 0 cannot be satisfied because we
use δ 6= 0.

– bad3I : badI first occurs because none of the previous variants occurred and (b+ δ(c− pw)) = 0. This event
can only occur in actively attacked sessions, as passively attacked sessions all have b = 0 and bad21 has not
occurred.

– bad3R: badR first occurs because none of the previous variants occurred and (b+ δc− pw) = 0. This event
can only occur in actively attacked sessions, as passively attacked sessions all have c = 0 and bad31 has not
occurred.

It is straightforward to bound bad2I ∨ bad2R by reducing the probability of these events occurring to the
discrete logarithm problem. Let us without loss of generality assume we get qS discrete logarithm challenges
and use them as the messages X? and Y? produced by the simulator. The reduction defines (M = gλ,N =
gδ), for random λ and δ. Then, if bad2I occurs, we obtain the discrete logarithm c of some Y? wrp to N,
and we can compute the discrete logarithm to the base g as λ · c. The reasoning for the responder side is
identical. We call this reduction B11 in the theorem statement.

We now consider the last two cases. We note that bad3I occurs if and only if δ = b/(pw − c), as we know
from bad2I that c 6= pw. Similarly, bad3R occurs if and only if c 6= 0 ∧ δ = (pw − b)/c, as we know from
bad2R that b 6= pw. These two events can be jointly reduced to the Discrete Logarithm problem by setting
(M = gλ,N = R) where R is the discrete logarithm challenge and λ is sampled uniformly at random. Indeed,
if either of these events occurs, then the reduction can recover δ, and consequently the discrete logarithm
λ · δ (recall we have defined N = Mδ). We call this reduction B21 in the theorem statement.

Bounding bad2: reduction to SqDH. Fig. 11 gives the detailed reduction to SqDH. The reduction, as
presented, would fail in the cases we have excluded with bad1, but here we can assume that bad1 has not
occurred. The reduction follows the strategy we outlined above. When the experiment terminates, it samples
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a random oracle query uniformly at random14 and looks for a consistent session. It could find one or two
consistent sessions, where the latter case corresponds to a passive attack with matching passwords on both
sides. In any case, it computes a candidate SqDH value using the appropriate initiator or responder-side
formula we described above. If the randomly selected random oracle entry was the first to cause the bad
event, the algorithm solves SqDH. This accounts for the qH multiplicative loss in the theorem statement. ut

D Detailed Proof for CPace (Theorem 7)

Simulator S is shown (again) in Fig. 12, side by side with the code for uncorrupted parties in the real-world.
Recall that, whenever the dummy adversary is instructed to deliver a group element to an uncorrupted
party, it will output in its auxiliary tape the algebraic representation of that element with respect to group
elements appear in the view of the environment. In this case the bases for such representations include the
outputs of the random oracle H1 and any messages X or Y produced by an uncorrupted party.

Simulation strategy and handling of corrupt parties. The simulation strategy here is identical to that
we adopt for the SPAKE2 proof, with the caveat that the simulator must learn the environments’ queries to
H1 in order to extract the password in an active attack. The handling of corrupt parties is also the same. Also
here the simulator never generates any group element for which it cannot give an algebraic decomposition
with respect to base g, and hence it is an algebraic adversary. The handling of corrupt parties is also the
same.

Proof of simulator correctness. From this point on we consider only interactions involving uncorrupted
parties. The first observation we make is that the distribution of the protocol messages produced by the
simulator is statistically close to that occurring in the real world, even though they are constructed differently.
The only difference is that we exclude the case where x̂ or ŷ are zero. We therefore first modify the real-world
so that the distribution of the protocol messages matches that of the ideal world. This explains the statistical
term qS/q in the theorem statement. Moreover, the simulator will abort if at some point it cannot invert
outputs of H1 due to ambiguity in T1. The probability of abort explains the statistical factor of q2H1

/q in the
theorem statement.

It remains to prove that the outputs of the ideal functionality match the distribution of the parties’
outputs in this slightly modified version of the real world. We observe that the real and ideal worlds are
now identical until bad, where bad is defined as the event that a secret key that is selected uniformly at
random by the functionality at the output of an uncorrupted party is inconsistent with the answer given
by H2 to the adversary. This is because in all other cases the simulator programs the output of the ideal
functionality consistently with the real world. This means formally that, for ε = Pr[execpwKE,S,E ⇒ bad],
we have execpwKE,S,E ≈ε execcpace,D,E .

More precisely, we define event bad as the existence within the set of queries placed by E to H2 of a query
(sid ,X,Y,Z) that is consistent with the trace of a session at an uncorrupted party, which accepted after a
passive attack or after an active attack where the simulator did not place a correct TestPw query. We define
now these conditions formally.

We say an H2 query (sid ,X,Y,Z) is consistent with an initiator session πsid
P if πsid

P = ( · , ( · , · ,X,Y), · ,
init). Similarly, the condition for responder session πsid

P ′ is πsid
P ′ = ( · , ( · , · ,X,Y), · , resp). We say an initiator

session πsid
P accepted after a passive attack if it completed following a SendResp(P ′, P, sid , (Y, alg)) message

from E , when πsid
P ′ = ( · , (P, P ′, sid ,X,Y), · , resp). Responder session πsid

P ′ accepted after a passive attack if it
completed after a SendInit(P, P ′, sid , (X, alg)) message from E , when πsid

P = ( · , (P, P ′, sid ,X,Y), · , init).
All other sessions are considered to be under active attack. Finally, we say a T1 entry of the form (sid ,
P, P ′, pw) is consistent with an initiator (resp. responder) instance, if that instance was initialized by the
environment in a NewSession query with (sid , P, P ′, pw, init) (resp. (sid , P ′, P, pw, resp)).

We bound the probability of bad in the ideal world using a simple sequence of games.

14 This step could be replaced with a search for a consistent entry using a DDH oracle to the fixed basis A, resulting
in a tighter reduction to Strong SqDH where the qH factor disappears.
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Reduction B2(A)

proc Init( )

δ ←← Z∗q
Program CRS = (M,N) = (A,Aδ)

proc H(sid , U, S,X?,Y?, pw,Z)) (non-repeat queries)

K ←← K; T [sid , U, S,X?,Y?, pw,Z)]← K; return K

If E causes FpwKE to send (NewSession, sid, P, P ′, role) to S
(Note reduction gets pw in the triggering NewSession query)

If ¬(πsid
P =⊥) discard input

If role = init

x̂←← Zq; X? ←Mx̂

πsid
P ← (x̂, (P, P ′, sid ,X?,⊥),⊥, init)

Send SendInit(P, P ′, sid ,X?) to D
Else

ŷ ←← Zq; Y? ← Nŷ

πsid
P ← (ŷ, (P ′, P, sid ,⊥,Y?),⊥, resp)

On message SendInit(P, P ′, sid , (X?, alg)) from E
If πsid

P ′ 6= (ŷ, (P, P ′, sid ,⊥,Y?),⊥, resp) discard input
K ←← K
If πsid

P = ( · , (P, P ′, sid ,X?,⊥),⊥, init) Jump to Complete
If alg = [(g, x), (M, pw)]

Compute (TestPwd, sid , P ′, pw) as FpwKE

If FpwKE responds with “correct guess” Then K ← H(sid ,X?,Y?, pw, (Y?/Npw)x)
Else Compute (TestPwd, sid , P ′,⊥) as FpwKE

Else Query (TestPwd, sid , P ′,⊥) to FpwKE

Complete: Send SendResp(P ′, P, sid ,Y?) to E
πsid
P ′ ← (ŷ, (P, P ′, sid , (X?, alg),Y?),K, resp)

Compute (NewKey, sid, P ′,K) as FpwKE; send output to E

On message SendResp(P ′, P, sid , (Y?, alg)) from E
If πsid

P 6= (x̂, (P, P ′, sid ,X?,⊥),⊥, init) discard input
K ←← K
If πsid

P ′ = ( · , (P, P ′, sid ,X?,Y?), · , resp) Jump to Complete
If alg = [(g, y), (N, pw)]

Compute (TestPwd, sid , P, pw) as FpwKE

If FpwKE responds with “correct guess” Then K ← H(sid,X?,Y?, pw, (X?/Mpw)y)
Else Compute (TestPwd, sid , P,⊥) as FpwKE

Complete: πsid
P ← (x̂, (P, P ′, sid ,X?, (Y?, alg)),K, init)

Compute (NewKey, sid, P,K) as FpwKE; send output to E

On termination
Sample (sid , P, P ′,X?,Y?, pw,Z)←← T

If ∃πsid
P = ( · , (P, P ′, sid ,X?, (Y?, alg)), · , init) for which FpwKE holds pw:

Rewrite alg = [(a, g), (b+ δc,A)]

Terminate outputting (Z/Aα(x−pw))
1

(x−pw)(b+δ(c−pw))

If ∃πsid
P ′ = ( · , (P, P ′, sid , (X?, alg),Y?), · , resp) for which FpwKE holds pw:

Rewrite alg = [(a, g), (b+ δc,A)]

Terminate outputting (Z/Aαδ(y−pw))
1

δ(y−pw)(b+δc−pw)

Fig. 11. Reduction B2 computes SqDH(A). T is initially empty. B2 runs FpwKE internally, so it can check password
guesses and answer corrupt queries as in the ideal world. It can also check whether random oracle entries are consistent
with the session passwords on termination.
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Uncorrupted Parties

On input (NewSession, sid, P, P ′, pw, role) from E
At most one instance for a given sid at P .
If role = init

G← H1(sid , P, P ′, pw)
x←← Zq; X← Gx

πsid
P ← (x, (P, P ′, sid,X,⊥),⊥, init)

Send SendInit(P, P ′, sid,X) to D
Else

G← H1(sid , P ′, P, pw)
y ←← Zq; Y ← Gy

πsid
P ← (y, (P ′, P, sid,⊥,Y),⊥, resp)

On message SendInit(P, P ′, sid,X 6= 1) from E via D
Ignore if πsid

P ′ 6= (y, (P, P ′, sid,⊥,Y),⊥, resp)

(A unique πsid
P ′ satisfies the above check)

K ← H2(sid ,X,Y, Xy)
Send SendResp(P ′, P, sid ,Y) to D
πsid
P ′ ← (⊥, (P, P ′, sid,X,Y),K, resp)

Output K

On message SendResp(P ′, P, sid ,Y 6= 1) from E via D
Ignore if πsid

P 6= (x, (P, P ′, sid,X,⊥),⊥, init)

(A unique πsid
P satisfies the above check)

K ← H2(sid,X,Y, Y x)

πsid
P ← (⊥, (P, P ′, sid,X,Y),K, init)

Output K

Simulator S

proc H1(sid , P, P ′, pw) (non-repeat queries)

r ←← Zq; G← gr; T1[sid , P, P ′, pw]← G; return G
Simulator aborts if at any point T1 is non-injective.

On input (NewSession, sid, P, P ′, role) from FpwKE

If ¬(πsid
P =⊥) discard input.

If role = init

x̂←← Z∗q ; X← gx̂

πsid
P ← (x̂, (P, P ′, sid ,X,⊥),⊥, init)

Send SendInit(P, P ′, sid ,X) to D
Else

ŷ ←← Z∗q ; Y ← gŷ

πsid
P ← (ŷ, (P ′, P, sid ,⊥,Y),⊥, resp)

On message SendInit(P, P ′, sid , (X, alg) 6= 1) from E via D
Ignore if πsid

P ′ 6= (ŷ, (P, P ′, sid ,⊥,Y),⊥, resp)

(A unique πsid
P ′ satisfies the above check)

K ←← K
(Can’t interrupt passive sessions so F sets =K at output)

If πsid
P = ( · , (P, P ′, sid ,X,⊥),⊥, init) Jump to Complete

(First check whether X was constructed as per protocol)
If alg = [(G, x))] ∧ (sid , P, P ′, pw,G) ∈ T1

Query (TestPwd, sid, P ′, pw) to FpwKE

If FpwKE responds with “correct guess”
K ← H2(sid ,X,Y,Yx)

(Interrupt all other non-passive sessions.)
Else Query (TestPwd, sid , P ′,⊥) to FpwKE

Complete: Send SendResp(P ′, P, sid ,Y) to D
πsid
P ′ ← (⊥, (P, P ′, sid ,X,Y),K, resp)

Query (NewKey, sid, P ′,K) to FpwKE

On message SendResp(P ′, P, sid , (Y, alg) 6= 1) from E via D
Ignore if πsid

P 6= (x̂, (P, P ′, sid ,X,⊥),⊥, init)

(A unique πsid
P satisfies the above check)

K ←← K
(Can’t interrupt passive sessions so F sets =K at output)

If πsid
P ′ = ( · , (P, P ′, sid ,X,Y), · , resp) Jump to Complete

(First check whether Y was constructed as per protocol)
If alg = [(G, y)] ∧ (sid , P, P ′, pw,G) ∈ T1

Query (TestPwd, sid , P, pw) to FpwKE

If FpwKE responds with “correct guess”
K ← H2(sid,X,Y,Xy)

(Interrupt all other non-passive sessions.)
Else Query (TestPwd, sid , P,⊥) to FpwKE

Complete: πsid
P ← (⊥, (P, P ′, sid ,X,Y),K, init)

Query (NewKey, sid, P,K) to FpwKE

Fig. 12. The operation of uncorrupted CPace parties in the real world (left) and the corresponding simulator (right).
The simulator needs to observe adversarial random oracle queries on H1 but not on H2, and it does not need to
program either of the random oracles. T1 is initially empty.
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Guessing the RO entries that cause bad. We modify ideal world as follows: sample (`1, `2) uniformly
at random in [qH1 ] × [qH2 ]. Then, if bad first occurs due to the i-th H2 query such that i 6= `2, abort.
Furthermore, if the offending T1 entry (i.e., the T1 unique entry consistent with the session where the bad
event was detected) is not the `1-th one, abort. Clearly, we can still bound the probability of bad in the
previous game with the pessimistic bound qH1

· qH2
· Pr[bad], where we only check for bad if the experiment

has not aborted. We give in Fig. 13 a reduction B`1,`2 that solves the InvCDH problem whenever bad occurs
in this modified game.

Final reduction. The reduction strategy is as follows. The generator returned by H1 for the problematic
session associated with the `2-th password query is programmed to be A, the InvCDH problem instance. All
messages generated by uncorrupted parties are generated as gx̂ or gŷ. All random oracle queries consistent
with a session with trace (X,Y) and generator A include the key element Z satisfying the following equation:

Z = XdlogA(Y) = YdlogA(X) = A(dlogA(X)·dlogA(Y))

Observing that dlogA(X) = dlogg(X)/dlogg(A) the equation can be re-written as:

Z = g
dlogg(X)·dlogg(Y)

dloggA

In the simplest case of a passive attack, it is immediate that we recover the solution to the InvCDH problem
if x̂ · ŷ 6= 0, which we know to be the case.

Now let us suppose the problematic case occurs with an actively attacked initiator session. Then we know
that Y = gαAβ and α 6= 0; otherwise this would be a correct password guess and the bad event could never
have occurred for this session—recall the experiment would have aborted if H1 did not program A as the
output for the password associated with this session. We can therefore refine the equation above to:

Z = g
x̂·(α+β·dlogg(A))

dloggA = g
x̂·α

dloggA
+x̂·β

Again, the InvCDH solution can be recovered, as long as x̂ 6= 0. The responder session case is identical. ut

E Implications of UC AGM composability

In this section we give a more detailed discussion of the UC AGM model and the implications of our theorems.
The UC-AGM model deviates from the UC model in two ways:

– it extends the execution model with one or more CRS functionalities for group definitions; and
– it constrains adversaries, environments and simulators to behave algebraically w.r.t. to said group de-

scriptions.

We argue that any UC proof in the standard model implies, as expected, a proof in the UC-AGM model. This
means that we can compose UC-secure protocols with UC-AGM protocols using the UC-AGM composition
theorem. Moreover, we argue that UC-AGM emulation w.r.t. to different FCRS functionalities (possibly using
the same mathematical group) also composes. These results create a hierarchy of UC emulation notions, all
of which can be composed with each-other by further restricting the adversarial entities to be algebraic with
respect to all groups used by the different protocols. We reinforce this last point: composition comes at the cost
of weakening the overall claim to holding over algebraically restricted adversarial entities—combining results
results in a more restrictive setting—which is the natural consequence of considering algebraic adversaries.
We first give the high-level details and then demonstrate with examples.

Algebraic Contexts. Let us first distinguish adversarial machines from non-adversarial machines. The
former include simulators, real-world adversaries, environments and corrupted protocol participants. The
latter include ideal functionalities and honest protocol participants.

The notion of an algebraic adversarial machine depends on the context in which this machine is executed.
Fix a functionality FCRS, defining a group description G. Adversarial machines must behave algebraically
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Reduction B`1,`2(A)

proc H1(sid , P, P ′, pw) (non-repeat i-th query)

Sample k ←← Z∗q s.t. Bk /∈ T1 ∪ {A}
If i = `1 Then T1[sid , P, P ′, pw]← (A,⊥); Return A

T1[sid , P, P ′, pw]← (gk, k); Return gk

proc H2(sid ,X,Y,Z)) (non-repeat queries)

K ←← K; T2[sid ,X,Y,Z)]← K; return K

If E causes FpwKE to send (NewSession, sid, P, P ′, role) to simulator

(Note reduction gets pw in the triggering NewSession query)

If ¬(πsid
P =⊥) discard input.

If role = init

x̂←← Z∗q ; X← gx̂

πsid
P ← (x̂, (P, P ′, sid ,X,⊥),⊥, init)

Send SendInit(P, P ′, sid ,X) to D
Else

ŷ ←← Z∗q ; Y ← gŷ

πsid
P ← (ŷ, (P ′, P, sid ,⊥,Y),⊥, resp)

On message SendInit(P, P ′, sid , (X, alg) 6= 1) from E
If πsid

P ′ 6= (ŷ, (P, P ′, sid ,⊥,Y),⊥, resp) discard input
K ←← K
If πsid

P = ( · , (P, P ′, sid ,X,⊥),⊥, init) Jump to Complete
If alg = [(G, x))] ∧ (sid , P, P ′, pw,G, · , · ) ∈ T1

Compute (TestPwd, sid , P ′, pw) as FpwKE

If FpwKE responds with “correct guess” Then K ← H2(sid ,X,Y,Yx)
Else Compute (TestPwd, sid , P ′,⊥) as FpwKE

Complete: Send SendResp(P ′, P, sid ,Y) to D
πsid
P ′ ← (ŷ, (P, P ′, sid , (X, alg),Y),K, resp)

Compute (NewKey, sid , P ′,K) as FpwKE; send output to E

On message SendResp(P ′, P, sid , (Y, alg) 6= 1) from E
If πsid

P 6= (x̂, (P, P ′, sid ,X,⊥),⊥, init) discard input
K ←← K
If πsid

P ′ = ( · , (P, P ′, sid ,X,Y), · , resp) Jump to Complete
If alg = [(G, y)] ∧ (sid , P, P ′, pw,G, · , · ) ∈ T1

Compute (TestPwd, sid , P, pw) as FpwKE

If FpwKE responds with “correct guess” Then K ← H2(sid,X,Y,Xy)
Else Compute (TestPwd, sid , P,⊥) as FpwKE

Complete: πsid
P ← (x̂, (P, P ′, sid ,X, (Y, alg)),K, init)

Compute (NewKey, sid , P,K) as FpwKE; send output to E

On termination
Get the `1-th query from T1: (sid , P, P ′, pw)
Get the `2-th query from T2: (sid ,X,Y,Z)

If ∃πsid
P = (x̂, (P, P ′, sid ,X, (Y, alg)), · , init) for which FpwKE holds pw:

Rewrite alg = [(α, g), (β,A)] // (for passive attacks (α, β) = (ŷ, 0))

Terminate outputting (Z/gβ·x̂)
1
α·x̂

If ∃πsid
P ′ = (ŷ, (P, P ′, sid , (X, alg),Y), · , resp) for which FpwKE holds pw:

Rewrite alg = [(α, g), (β,A)] // (for passive attacks (α, β) = (ŷ, 0))

Terminate outputting (Z/gβ·ŷ)
1
α·ŷ

Fig. 13. Reduction B`1,`2 computes InvCDH(A). T1 and T2 are initially empty. B`1,`2 runs FpwKE internally, so it can
check password guesses and answer corrupt queries as in the ideal world. It can also check whether random oracle
queries are consistent with the session passwords on termination.
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w.r.t. to G whenever the bit strings they produce are interpreted (typed) as elements in G by the target
non-adversarial machines—note that this applies only to group elements delivered via backdoor interfaces,
but not to protocol inputs. Furthermore, these algorithms can only use as bases for their representations
group elements that they read directly from FCRS or that they receive with this interpretation (type) from
a non-adversarial machine. These interpretations must be fixed because proofs will rely on the restrictions
that come as a consequence.

We call non-adversarial machines that never interpret an incoming or outgoing bit-string as an element
in G as G-agnostic. More precisely, in a context where FCRS is present and provides a description of G,
G-agnostic machines do not restrict adversarial machines into providing algebraic representations for group
elements in G, nor do they produce group elements that can be used any adversarial entity as a basis for a
representation of a group in G.

It is crucial that, for all machines in the context of a claim and all groups G in the same context, one
defines a priori whether a machine is adversarial and, if not, whether it is G-agnostic. In the particular case
of an ideal-world adversary S interacting with an ideal functionality, there is only one target non-adversarial
machine. Intuitively, if S is interacting with an F that is G-agnostic, then S is trivially algebraic w.r.t. to
G. For the particular case of FCRS defining G, we have that FCRS is agnostic to all other groups and it is
not agnostic w.r.t. to G, as it provides the basis for group element representations.

UC emulation implies UC AGM emulation. Our first claim is that standard UC emulation w.r.t. a
G-agnostic functionality implies UC emulation in the AGM w.r.t. to G.

Theorem 9 (Informal). Fix a protocol π that UC emulates G-agnostic functionality F . Then π UC emu-
lates F w.r.t. G-algebraic adversarial machines.

Proof. (Sketch) Algebraic adversaries and environments are subclasses of general UC adversaries and envi-
ronments, so an UC-AGM simulator S is guaranteed to exist for all algebraic environments and the dummy
algebraic adversary; furthermore S is trivially algebraic because F is G-agnostic. ut

The same argument applies when we consider UC-AGM emulation with respect to two different groups.
Suppose F is not G1-agnostic but it is G2 agnostic. Suppose further than S is G1-algebraic when it interacts
with F . Then S is trivially (G1,G2)-algebraic when it interacts with F . From here we obtain the following
result.

Theorem 10 (Informal). Fix a protocol π that UC emulates a G2-agnostic functionality F w.r.t. G1-
algebraic adversarial machines. Then π UC emulates F w.r.t. (G1,G2)-algebraic adversarial machines.

Combining these results with the AGM-UC composition theorem yields a comprehensive compositional
framework.
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