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Abstract

We study connections between three different fields: distributed local algorithms, finitary
factors of iid processes, and descriptive combinatorics. We focus on two central questions: Can
we apply techniques from one of the areas to obtain results in another? Can we show that
complexity classes coming from different areas contain precisely the same problems? We give
an affirmative answer to both questions in the context of local problems on regular trees:

1. We extend the Borel determinacy technique of Marks [Marks – J. Am. Math. Soc. 2016]
coming from descriptive combinatorics and adapt it to the area of distributed computing,
thereby obtaining a more generally applicable lower bound technique in descriptive combi-
natorics and an entirely new lower bound technique for distributed algorithms. Using our
new technique, we prove deterministic distributed Ω(log n)-round lower bounds for prob-
lems from a natural class of homomorphism problems. Interestingly, these lower bounds
seem beyond the current reach of the powerful round elimination technique [Brandt –
PODC 2019] responsible for all substantial locality lower bounds of the last years. Our
key technical ingredient is a novel ID graph technique that we expect to be of independent
interest; in fact, it has already played an important role in a new lower bound for the
Lovász local lemma in the Local Computation Algorithms model from sequential comput-
ing [Brandt, Grunau, Rozhoň – PODC 2021].

2. We prove that a local problem admits a Baire measurable coloring if and only if it admits
a local algorithm with local complexity O(log n), extending the classification of Baire mea-
surable colorings of Bernshteyn [Bernshteyn – personal communication]. A key ingredient
of the proof is a new and simple characterization of local problems that can be solved in
O(log n) rounds. We complement this result by showing separations between complexity
classes from distributed computing, finitary factors, and descriptive combinatorics. Most
notably, the class of problems that allow a distributed algorithm with sublogarithmic ran-
domized local complexity is incomparable with the class of problems with a Borel solution.
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We hope that our treatment will help to view all three perspectives as part of a common theory
of locality, in which we follow the insightful paper of [Bernshteyn – arXiv 2004.04905].
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1 Introduction

In this work, we study local problems on regular trees from three different perspectives.
First, we consider the perspective of distributed algorithms. In distributed computing, the

studied setup is a network of computers where each computer can only communicate with its
neighbors. Roughly speaking, the question of interest in this area is which problems can be solved
with only a few rounds of communication in the underlying network.

Second, we consider the perspective of (finitary) factors of iid processes. In probability, ran-
dom processes model systems that appear to vary in a random manner. These include Bernoulli
processes, Random walks etc. A particular, well-studied, example is the Ising model.

Third, we investigate the perspective of descriptive combinatorics. The goal of this area is to
understand which constructions on infinite graphs can be performed without using the so-called
axiom of choice.

Although many of the questions of interest asked in these three areas are quite similar to
each other, no systematic connections were known until an insightful paper of Bernshteyn [20]
who showed that results from distributed computing can automatically imply results in descriptive
combinatorics. In this work, we show that the connections between the three areas run much deeper
than previously known, both in terms of techniques and in terms of complexity classes. In fact, our
work suggests that it is quite useful to consider all three perspectives as part of a common theory,
and we will attempt to present our results accordingly. We refer the reader to Figure 1 for a partial
overview of the rich connections between the three perspectives, some of which are proven in this
paper.

In this work, we focus on the case where the graph under consideration is a regular tree.
Despite its simplistic appearance, regular trees play an important role in each of the three areas,
as we will substantiate at the end of this section. To already provide an example, in the area of
distributed algorithms, the majority of known locality lower bounds is achieved on regular trees.
Moreover, when regarding lower bounds, the property that they already apply on regular trees
actually strengthens the result—a fact that is quite relevant for our work as our main contribution
regarding the transfer of techniques between the areas is a new lower bound technique in the area
of distributed computation that is an adaptation and generalization of a technique from descriptive
combinatorics. Regarding our results about the relations between complexity classes from the three
areas, we note that such connections are also studied in the context of paths and grids in other
recent papers [61, 62].

In the remainder of this section, we give a high-level overview of the three areas that we study.
The purpose of these overviews is to provide the reader with a comprehensive picture of the studied
settings that can also serve as a starting point for delving deeper into selected topics in those areas—
in order to follow our paper, it is not necessary to obtain a detailed understanding of the results and
connections presented in the overviews. Necessary technical details will be provided in Section 3.
Moreover, in Section 2, we present our contributions in detail.

Distributed Computing The definition of the LOCAL model of distributed computing by
Linial [81] was motivated by the desire to understand distributed algorithms in huge networks.
As an example, consider a huge network of wifi routers. Let us think of two routers as connected
by an edge if they are close enough to exchange messages. It is desirable that such close-by routers
communicate with user devices on different channels to avoid interference. In graph-theoretic lan-
guage, we want to properly color the underlying network. Even if we are allowed a color palette
with ∆ + 1 colors where ∆ denotes the maximum degree of the graph (which would admit a simple
greedy algorithm in a sequential setting), the problem remains highly interesting in the distributed
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setting, as, ideally, each vertex decides on its output color after only a few rounds of communication
with its neighbors, which does not allow for a simple greedy solution.

The LOCAL model of distributed computing formalizes this setup: we have a large network,
where each vertex knows the network’s size, n, and perhaps some other parameters like the maxi-
mum degree ∆. In the case of randomized algorithms, each vertex has access to a private random
bit string, while in the case of deterministic algorithms, each vertex is equipped with a unique
identifier from a range polynomial in the size n of the network. In one round, each vertex can
exchange any message with its neighbors and can perform an arbitrary computation. The goal is
to find a solution to a given problem in as few communication rounds as possible. As the allowed
message size is unbounded, a t-round LOCAL algorithm can be equivalently described as a function
that maps t-hop neighborhoods to outputs—the output of a vertex is then simply the output its
t-hop neighborhood mapped to by this function. An algorithm is correct if and only if the collection
of outputs at all vertices constitutes a correct solution to the problem.

There is a rich theory of distributed algorithms and the local complexity of many problems
is understood. The case of trees is a highlight of the theory: it is known that any local prob-
lem (a class of natural problems we will define later) belongs to one of only very few com-
plexity classes. More precisely, for any local problem, its randomized local complexity is either
O(1),Θ(log∗ n),Θ(log log n),Θ(log n), or Θ(n1/k) for some k ∈ N. Moreover, the deterministic
complexity is always the same as the randomized one, except for the case Θ(log log n), for which
the corresponding deterministic complexity is Θ(logn) (see Figure 1).

(Finitary) Factors of iid Processes and Uniform Algorithms In recent years, factors of
iid (fiid) processes on trees attracted a lot of attention in combinatorics, probability, ergodic theory
and statistical physics [1, 17, 3, 5, 2, 4, 6, 7, 25, 24, 37, 43, 52, 53, 63, 64, 67, 69, 70, 71, 73, 79,
96, 97, 82, 91, 98, 104, 105]. Intuitively, factors of iid processes are randomized algorithms on,
e.g., infinite ∆-regular trees, where each vertex outputs a solution to a problem after it explores
random strings on vertices of the whole tree. As an example, consider the perfect matching problem.
An easy parity argument shows that perfect matching cannot be solved by any local randomized
algorithm on finite trees. However, if we allow a small fraction of vertices not to be matched, then,
by a result of Nguyen and Onak [94] (see also [47]), there is a constant-round randomized algorithm
that produces such a matching on high-girth graphs (where the constant depends on the fraction
of unmatched vertices that we allow). This result can also be deduced from a result of Lyons and
Nazarov [83], who showed that perfect matching can be described as a factor of iid process on
an infinite ∆-regular tree. The high-level idea behind this connection is that high-girth graphs
approximate the infinite ∆-regular tree and constant-round local algorithms approximate factors of
iid processes. This correspondence is formalized in the notion of Benjamini-Schramm or local-global
convergence [18, 65]. We note that getting only “approximate” solutions, that is, solutions where
a small fraction of vertices does not have to satisfy the constraints of a given problem, is intrinsic
in this correspondence. Regardless, there are many techniques, such as entropy inequality [2] or
correlation decay [4], and particular results such as the aforementioned perfect matching problem
[83] that provide lower and upper bounds, respectively, in our setting as well. We refer the reader
to [82, 6] for a comprehensive summary of the field.

In this paper, we mostly consider a stronger condition than fiid, namely so-called finitary factors
of iid (ffiid) processes that are studied in the same context as fiid [68, 72, 102]. Perhaps surprisingly,
the notion of ffiid is identical to the notion of so-called uniform distributed randomized algorithms
[78, 62] that we now describe. We define a uniform local algorithm as a randomized local algorithm
that does not know the size of the graph n – this enables us to run such an algorithm on infinite
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Figure 1: Complexity classes on regular trees considered in the three areas of distributed computing,
factors of iid processes/uniform algorithms, and descriptive combinatorics. The left part shows
complexity classes of distributed computing. We use the shorthand LOCAL if it does not matter
whether we talk about the deterministic or randomized complexity. These two notions differ only
for the class of problems of randomized local complexity O(log log n), which have deterministic
complexity O(log n).
The uniform complexity classes of sublogarithmic complexity are in correspondence to appropriate
classes in the randomized local complexity model, as proven in Section 5. On the other hand, the
class fiid is very similar to the class MEASURE from descriptive combinatorics. The equivalence of
the class CONTINUOUS and LOCAL(O(log∗ n)) = ULOCAL(O(log∗ 1/ε)) is marked with a dashed
arrow as it was proven in case the tree is generated by a group action (think of the tree being
equipped with an additional ∆-edge coloring). The inclusion LOCAL(O(log∗ n)) ⊆ BOREL however
clearly holds also in our setting. The class BOREL is incomparable with RLOCAL(O(log log n)), as
proven in Section 5.
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graphs, where there is no n. More precisely, we require that each vertex eventually outputs a
solution that is compatible with the output in its neighborhood, but the time until the vertex finishes
is a potentially unbounded random variable. As in the case of classical randomized algorithms, we
can now measure the uniform complexity of a uniform local algorithm (known as the tail decay of
ffiid [72]). The uniform complexity of an algorithm is defined as the function t(ε) such that the
probability that the algorithm run on a specific vertex needs to see outside its t(ε)-hop neighborhood
is at most ε. As in the case of classical local complexity, there is a whole hierarchy of possible
uniform complexities (see Figure 1).

We remark that uniform distributed local algorithms can be regarded as Las Vegas algorithms.
The output will always be correct; there is however no fixed guarantee at what point all vertices
have computed their final output. On the other hand, a randomized distributed local algorithm
can be viewed as a Monte Carlo algorithm as it needs to produce an output after a fixed number
of rounds, though the produced output might be incorrect.

Descriptive Combinatorics The Banach-Tarski paradox states that a three-dimensional ball of
unit volume can be decomposed into finitely many pieces that can be moved by isometries (distance
preserving transformations such as rotations and translations) to form two three-dimensional balls
each of them with unit volume(!). The graph theoretic problem lurking behind this paradox is the
following: fix finitely many isometries of R3 and then consider a graph where x and y are connected
if there is an isometry that sends x to y. Then our task becomes to find a perfect matching in the
appropriate subgraph of this graph – namely, the bipartite subgraph where one partition contains
points of the first ball and the other contains points of the other two balls. Banach and Tarski
have shown that, with a suitably chosen set of isometries, the axiom of choice implies the existence
of such a matching. In contrast, since isometries preserve the Lebesgue measure, the pieces in the
decomposition cannot be Lebesgue measurable. Surprisingly, Dougherty and Foreman [45] proved
that the pieces in the Banach-Tarski paradox can have the Baire property. The Baire property
is a topological analogue of being Lebesgue measurable; a subset of R3 is said to have the Baire
property if its difference from some open set is topologically negligible.

Recently, results similar to the Banach-Tarski paradox that lie on the border of combinatorics,
logic, group theory, and ergodic theory led to an emergence of a new field often called descriptive or
measurable combinatorics. The field focuses on the connection between the discrete and continuous
and is largely concerned with the investigation of graph-theoretic concepts. The usual setup in
descriptive combinatorics is that we have a graph with uncountably many connected components,
each being a countable graph of bounded degree. For example, in case of the Banach-Tarski
paradox, the vertices of the underlying graph are the points of the three balls, edges correspond to
isometries, and the degree of each vertex is bounded by the number of chosen isometries. Some of
the most beautiful results related to the field include [80, 87, 59, 45, 84, 51, 77, 86, 42, 38, 44, 20],
see [76, 95] for recent surveys.

Importantly, in many of these results, including the Banach-Tarski paradox, graphs where
each component is an infinite ∆-regular tree appear naturally. Oftentimes, questions considered
in descriptive combinatorics lead to constructing a solution to a local problem in the underlying
uncountable graph (in the case of Banach-Tarski, the local problem is perfect matching). The
construction needs to be such that the solution of the problem has some additional regularity
properties. For example in the case of Banach-Tarski, a solution is possible when the regularity
condition is the Baire property, but not if it is Lebesgue measurability. In fact, together with Borel
measurability these are the most prominent regularity conditions studied in descriptive combina-
torics. The corresponding complexity classes of local problems that always admit a solution with
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the respective regularity property are BOREL,MEASURE,BAIRE (See Figure 1). In this paper,
we moreover consider the setting where each connected component of the underlying graph is a
∆-regular tree.

The connection between distributed computing and descriptive combinatorics arises from the
fact that in descriptive combinatorics we care about constructions that do not use the axiom of
choice. In the distributed language, the axiom of choice corresponds to leader election, that is,
the constructions in descriptive combinatorics do not allow picking exactly one point in every
component. To get some intuition about the power of the complexity class BOREL, we note that
Borel constructions allow us to alternate countably many times the following two operations. First,
any local algorithm with constant local complexity can be run. Second, we have an oracle that
provides a maximal independent set (MIS) on any graph that can be constructed locally from the
information computed so far [77]. Note that from the speedup result of [34] we get that every
local problem with local complexity O(log∗ n) can be solved by constant local constructions and
one call to such an MIS oracle. This implies the inclusion LOCAL(O(log∗ n)) ⊆ BOREL in Figure 1
proven in the insightful paper of Bernshteyn [20]. The relationship of the class MEASURE (and of
the class fiid from the discussion of factors) to the class BOREL is analogous to the relationship of
randomized distributed algorithms to deterministic distributed algorithms.

Local Problems on Regular Trees After introducing the three areas of interest in this work,
we conclude the section by briefly discussing the kinds of problems we focus on, which are local
problems on regular trees. More precisely, we study locally checkable labeling (LCL) problems, which
are a class of problems, where the correctness of the solution can be checked locally. Examples
include classical problems from combinatorics such as proper vertex coloring, proper edge coloring,
perfect matching, and maximal independent set. One main goal of this paper is to understand
possible complexity classes of LCLs without inputs on infinite ∆-regular trees and their finite
analogues. We refer the reader to Section 3 for a precise definition of a finite ∆-regular tree.

The motivation for studying regular trees in this work stems from different sources: (a) infinite
∆-regular trees are studied in the area of ergodic theory [25, 24], random processes [2, 4, 83] and
descriptive combinatorics [86, 39], (b) many lower bounds in distributed computing are proven in
regular trees [8, 9, 27, 26, 31, 33, 58], and (c) connecting and comparing the techniques of the three
areas in this simple setting reveals already deep connections, see Section 2.

2 Our Contributions

We believe that our main contribution is presenting all three perspectives as part of a common
theory. Our technical contribution is split into three main parts.

2.1 Generalization of Marks’ Technique

In Section 4 we extend the Borel determinacy technique of Marks [86], which was used to prove the
nonexistence of Borel ∆-colorings and perfect matchings, to a broader class of problems, and adapt
the extended technique to the distributed setting, thereby obtaining a simple method for proving
distributed lower bounds. This method is the first lower bound technique for distributed computing
using ideas coming from descriptive combinatorics (see [21] for a distributed computing upper bound
motivated by descriptive combinatorics). Moreover, we show how to use the developed techniques
to obtain both BOREL and LOCAL lower bounds for local problems from a natural class, called
homomorphism problems. Our key technical ingredient for obtaining the mentioned techniques
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and results is a novel technique based on the notion of an ID graph. We note that a very similar
concept to the ID graph was independently discovered by [50].

Marks’ technique In the following we give an introduction to Marks’ technique by going through
a variant of his proof [86, 85] that shows that ∆-coloring has deterministic local complexity Ω(log n).
The proof already works in the case where the considered regular tree comes with an input ∆-edge
coloring. In this case, the output color of a given vertex u can be interpreted as that u “grabs” the
incident edge of that color. The problem then reduces to the edge grabbing problem where every
vertex is required to grab an incident edge such that no two vertices grab the same edge.

We first show the lower bound in the case that vertices do not have unique identifiers but instead
are properly colored with L > ∆ colors. Suppose there is an algorithm A solving the edge grabbing
problem with local complexity t(n) = o(log n), and consider a tree rooted at vertex u of depth t(n);
such a tree has less than n vertices, for large enough n. Assume that u has input color σ ∈ [L],
and consider, for some fixed edge color α, the edge e that is incident to u and has color α. Two
players, Alice and Bob, are playing the following game. In the i-th round, Alice colors the vertices
at distance i from u in the subtree reachable via edge e with colors from [L]. Then, Bob colors all
other vertices at distance i from u with colors from [L] (see Figure 4). Consider the output of u
when executing A on the obtained colored tree. Bob wins the game if u grabs the edge e, and Alice
wins otherwise.

Note that either Alice or Bob has a winning strategy. Given the color σ of u, if, for each edge
color α, Alice has a winning strategy in the game corresponding to the pair (σ, α), then we can
create ∆ copies of Alice and let them play their strategy on each subtree of u, telling them that the
colors chosen by the other Alices are what Bob played. The result is a coloring of the input tree
such that u, by definition, does not pick any edge, contradicting the fact that A provides a valid
solution! So for every σ there is at least one α such that Bob has a winning strategy for the game
corresponding to (σ, α). By the pigeonhole principle, there are two colors σ1, σ2, such that Bob
has a winning strategy for both pairs (σ1, α) and (σ2, α). But now we can imagine a tree rooted
in an edge between vertices u1, u2 that are colored with colors σ1, σ2. We can now take two copies
of Bob, one playing at u1 and the other playing at u2 and let them battle it out, telling each copy
that the other color from {σ1, σ2} and whatever the other copy plays are the moves of Alice. The
resulting coloring has the property that both u1 and u2, when executing A on the obtained colored
tree, grab the edge between them, a contradiction that finishes the proof!

The ID graph The downside of the proof is that it does not work in the model with unique
identifiers (where the players’ moves consist in assigning identifiers instead of colors), since gluing
copies of the same player could result in an identifier assignment where the identifiers are not
unique. One possible remedy is to conduct the whole proof in the context of Borel graphs as was
done by Marks. This proves an even stronger statement, namely that ∆-coloring is not in the
class BOREL, but requires additional ad-hoc tricks and a pretty heavy set theoretic tool—Martin’s
celebrated Borel determinacy theorem [88] stating that even for infinite two-player games one of the
players has to have a winning strategy if the payoff set is Borel. The ID graph enables us to adapt
the proof (and its generalization that we develop in Section 4) to the distributed setting, where the
fact that one of the players has a winning strategy is obvious. Moreover, we use an infinite version
of the ID graph to generalize Marks’ technique also in the Borel setting.

Here is how it works: The ID graph is a specific graph whose vertices are the possible unique
input identifiers (for input graphs of size n), that is, numbers from [nO(1)]. Its edges are colored
with colors from [∆] and its girth is Ω(log n). When we define the game between Alice and Bob, we
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require them to label vertices with identifiers in such a way that whenever a new vertex is labeled
with identifier i, and its already labeled neighbor has identifier j, then ij is an edge in the ID graph.
Moreover, the color of edge ij in the ID graph is required to be the same as the color of the edge
between the vertices labeled i and j in the tree where the game is played. It is straightforward to
check that these conditions enforce that even if we let several copies of the same player play, the
resulting tree is labeled with unique identifiers. Hence, the same argument as above now finally
proves that the deterministic local complexity of ∆-coloring is Ω(log n).

We note that our ID graph technique is of independent interest and may have applications in
many different contexts. To give an example from distributed computing, consider the proof of
the deterministic Ω(log n)-round lower bound for ∆-coloring developed by the distributed commu-
nity [27, 34], which is based on the celebrated round elimination technique. Even though the result
is deterministic, the proof is quite technical due to the fact that it relies on examining randomized
algorithms, for reasons similar to the reasons why Marks’ proof does not apply directly to the
setting with unique identifiers. Fortunately, it can be again streamlined with the use of the ID
graph technique. Moreover, the ID graph technique has already led to a new lower bound for the
Lovász local lemma [29] in the area of Local Computation Algorithms (which is part of the realm
of sequential computation), thereby giving further evidence for the versatility of the technique.

Marks vs. Round Elimination It is quite insightful to compare Marks’ technique (and our
generalization of it) with the powerful round elimination technique [26], which has been responsible
for all locality lower bounds of the last years [27, 9, 26, 15, 8, 31, 11, 33, 10]. While, on the surface,
Marks’ approach developed for the Borel world may seem quite different from the round elimination
technique, there are actually striking similarities between the two methods. On a high level, in the
round elimination technique, the following argument is used to prove lower bounds in the LOCAL
model: If a T -round algorithm exists for a problem Π0 of interest, then there exists a (T −1)-round
algorithm for some problem Π1 that can be obtained from Π0 in a mechanical manner. By applying
this step iteratively, we obtain a problem Πt that can be solved in 0 rounds; by showing that there
is no 0-algorithm for Πt (which is easy to do if Πt is known), a (T + 1)-round lower bound for Π0

is obtained.
The interesting part regarding the relation to Marks’ technique is how the (T − i − 1)-round

algorithms A′ are obtained from the (T−i)-round algorithms A in the round elimination framework:
in order to execute A′, each vertex v, being aware of its (T − i− 1)-hop neighborhood, essentially
asks whether, for all possible extensions of its view by one hop along a chosen incident edge, there
exists some extension of its view by one hop along all other incident edges such that A, executed
on the obtained (T − i)-hop neighborhood, returns a certain output at v, and then bases its output
on the obtained answer. It turns out that the vertex sets corresponding to these two extensions
correspond precisely to two moves of the two players in the game(s) played in Marks’ approach:
more precisely, in round T − i of a game corresponding to the considered vertex v and the chosen
incident edge, the move of Alice consists in labeling the vertices corresponding to the first extension,
and the move of Bob consists in labeling the vertices corresponding to the second extension.

However, despite the similarities, the two techniques (at least in their current forms) have their
own strengths and weaknesses and are interestingly different in that there are local problems that
we know how to obtain good lower bounds for with one technique but not the other, and vice versa.
Finding provable connections between the two techniques is an exciting research direction that we
expect to lead to a better understanding of the possibilities and limitations of both techniques.

In Section 4 we use our generalized and adapted version of Marks’ technique to prove new
lower bounds for so-called homomorphism problems. Homomorphism problems are a class of local
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problems that generalizes coloring problems—each vertex is to be colored with some color and there
are constraints on which colors are allowed to be adjacent. The constraints can be viewed as a
graph—in the case of coloring this graph is a clique. In general, whenever the underlying graph1 of
the homomorphism problem is ∆-colorable, its deterministic local complexity is Ω(log n), because
solving the problem would imply that we can solve ∆-coloring too (in the same runtime). It seems
plausible that homomorphism problems of this kind are the only hard, i.e., Ω(log n), homomorphism
problems. However, our generalization of Marks’ technique asserts that this is not true.

Theorem 1. There are homomorphism problems whose deterministic local complexity on trees of
degree ≤ ∆ is Ω(log n) such that the chromatic number of the underlying graph is 2∆− 2.

It is not known how to prove the same lower bounds using round elimination2; in fact, as far
as we know, these problems are the only known examples of problems on ∆-regular trees for which
a lower bound is known to hold but currently not achievable by round elimination. Proving the
same lower bounds via round elimination is an exciting open problem.

2.2 Separation of Various Complexity Classes

Uniform Complexity Landscape We investigate the connection between randomized and uni-
form distributed local algorithms, where uniform algorithms are equivalent to the studied notion
of finitary factors of iid. First, it is simple to observe that local problems with uniform complexity
t(ε) have randomized complexity t(1/nO(1)) – by definition, every vertex knows its local output
after that many rounds with probability 1 − 1/nO(1). The result thus follows by a union bound
over the n vertices of the input graph.

On the other hand, we observe that on ∆-regular trees the implication also goes in the opposite
direction in the following sense. Every problem that has a randomized complexity of t(n) = o(log n)
has a uniform complexity of O(t(1/ε)).

One could naively assume that this equivalence also holds for higher complexities, but this is
not the case. Consider for example the 3-coloring problem. It is well-known in the distributed
community that 3-coloring a tree can be solved deterministically in O(log n) rounds using the
rake-and-compress decomposition [35, 92]. On the other hand, there is no uniform algorithm for
3-coloring a tree. If there were such a uniform algorithm, we could run it on any graph with large
enough girth and color 99% of its vertices with three colors. This in turn would imply that the
high-girth graph has an independent set of size at least 0.99 · n/3. This is a contradiction with the
fact that there exist high-girth graphs with a much smaller independence number [23].

Interestingly, the characterization of Bernshteyn [19] implies that any uniform distributed al-
gorithm can be “sped up” to a deterministic local O(log n) complexity, as we prove in Theorem 16.

We show that there are local problems that can be solved by a uniform algorithm but only with a
complexity of Ω(log 1/ε). Namely, the problem of constructing a 2-hop perfect matching on infinite
∆-regular trees for ∆ ≥ 3 has a uniform local complexity between Ω(log 1/ε) and O(poly log 1/ε).
Formally, this proves the following theorem.

Theorem 2. ULOCAL(O(log log 1/ε)) ( ULOCAL(O(poly log 1/ε)).

1Note that the maximum degree of the underlying graph is potentially very different from ∆, the maximum degree
of the input tree.

2Indeed, the descriptions of the problems have comparably large numbers of labels and do not behave like so-called
“fixed points” (i.e., nicely) under round elimination, which suggests that it is hard to find a round elimination proof
with the currently known approaches.
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The uniform algorithm for this problem is based on a so-called one-ended forest decomposition
introduced in [39] in the descriptive combinatorics context. In a one-ended forest decomposition,
each vertex selects exactly one of its neighbors as its parent by orienting the corresponding edge
outwards. This defines a decomposition of the vertices into infinite trees. We refer to such a
decomposition as a one-ended forest decomposition if the subtree rooted at each vertex only contains
finitely many vertices. Having computed such a decomposition, 2-hop perfect matching can be
solved inductively starting from the leaf vertices of each tree.

We leave the understanding of the uniform complexity landscape in the regime Ω(log 1/ε) as an
exciting open problem. In particular, does there exist a function g(ε) such that each local problem
that can be solved by a uniform algorithm has a uniform complexity of O(g(ε))?

Relationship of Distributed Classes with Descriptive Combinatorics Bernshteyn re-
cently proved that LOCAL(O(log∗ n)) ⊆ BOREL [20]. That is, each local problem with a determin-
istic LOCAL complexity of O(log∗ n) also admits a Borel-measurable solution. A natural question
to ask is whether the converse also holds. Indeed, it is known that LOCAL(O(log∗ n)) = BOREL on
paths with no additional input [61]. We show that on regular trees the situation is different. On
one hand, a characterization of Bernshteyn [19] implies that BOREL ⊆ BAIRE ⊆ LOCAL(O(log n)).
On the other hand, we show that this result cannot be strengthened by proving the following result.

Theorem 3. BOREL 6⊆ RLOCAL(o(log n)).

That is, there exists a local problem that admits a Borel-measurable solution but cannot be
solved with a (randomized) LOCAL algorithm running in a sublogarithmic number of rounds.

Let us sketch a weaker separation, namely that BOREL \ LOCAL(O(log∗ n)) 6= ∅. Consider
a version of ∆-coloring where a subset of vertices can be left uncolored. However, the subgraph
induced by the uncolored vertices needs to be a collection of doubly-infinite paths (in finite trees,
this means each path needs to end in a leaf vertex). The nonexistence of a fast distributed algorithm
for this problem essentially follows from the celebrated Ω(log n) deterministic lower bound for ∆-
coloring of [27]. On the other hand, the problem allows a Borel solution. First, sequentially compute
∆ − 2 maximal independent sets, each time coloring all vertices in the MIS with the same color,
followed by removing all the colored vertices from the graph. In that way, a total of ∆ − 2 colors
are used. Moreover, each uncolored vertex has at most 2 uncolored neighbors. This implies that
the set of uncolored vertices forms a disjoint union of finite paths, one ended infinite paths and
doubly infinite paths. The first two classes can be colored inductively with two additional colors,
starting at one endpoint of each path in a Borel way (namely it can be done by making use of the
countably many MISes in larger and larger powers of the input graph). Hence, in the end only
doubly infinite paths are left uncolored, as desired.

To show the stronger separation between the classes BOREL and RLOCAL(o(log n)) we use a
variation of the 2-hop perfect matching problem. In this variation, some of the vertices can be
left unmatched, but similar as in the variant of the ∆-coloring problem described above, the graph
induced by all the unmatched vertices needs to satisfy some additional constraints.

We conclude the paragraph by noting that the separation between the classes BOREL and
LOCAL(O(log∗ n)) is not as simple as it may look in the following sense. This is because problems
typically studied in the LOCAL model with a LOCAL complexity of ω(log∗ n) like ∆-coloring and
perfect matching also do not admit a Borel-measurable solution due to the technique of Marks [86]
that we discussed in Section 2.1.
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2.3 LOCAL(O(log n)) = BAIRE

We already discussed that one of complexity classes studied in descriptive combinatorics is the
class BAIRE. Recently, Bernshteyn proved [19] that all local problems that are in the complexity
class BAIRE,MEASURE or fiid have to satisfy a simple combinatorial condition which we call being
`-full. On the other hand, all `-full problems allow a BAIRE solution [19]. This implies a complete
combinatorial characterization of the class BAIRE. We defer the formal definition of `-fullness to
Section 6 as it requires a formal definition of a local problem. Informally speaking, in the context
of vertex labeling problems, a problem is `-full if we can choose a subset S of the labels with the
following property. Whenever we label two endpoints of a path of at least ` vertices with two labels
from S, we can extend the labeling with labels from S to the whole path such that the overall
labeling is valid. For example, proper 3-coloring is 3-full with S = {1, 2, 3} because for any path of
three vertices such that its both endpoints are colored arbitrarily, we can color the middle vertex
so that the overall coloring is proper. On the other hand, proper 2-coloring is not `-full for any `.

We complement this result as follows. First, we prove that any `-full problem has local complex-
ity O(log n), thus proving that all complexity classes considered in the areas of factors of iids and
descriptive combinatorics from Figure 1 are contained in LOCAL(O(log n)). In particular, this im-
plies that the existence of any uniform algorithm implies a local distributed algorithm for the same
problem of local complexity O(log n). We obtain this result via the well-known rake-and-compress
decomposition [92].

On the other hand, we prove that any problem in the class LOCAL(O(log n)) satisfies the `-full
condition. The proof combines a machinery developed by Chang and Pettie [35] with additional
nontrivial ideas. In this proof we construct recursively a sequence of sets of rooted, layered, and
partially labeled trees, where the partial labeling is computed by simulating any given O(log n)-
round distributed algorithm, and then the set S meeting the `-full condition is constructed by
considering all possible extensions of the partial labeling to complete correct labeling of these trees.

This result implies the following equality:

Theorem 4. LOCAL(O(log n)) = BAIRE.

This equality is surprising in that the definitions of the two classes do not seem to have much
in common at first glance! Moreover, the proof of the equality relies on nontrivial results in both
distributed algorithms (the technique of Chang and Pettie [35]) and descriptive combinatorics (the
fact that a hierarchical decomposition, so-called toast, can be constructed in BAIRE, [41], see
Proposition 12).

The combinatorial characterization of the local complexity class LOCAL(O(log n)) on ∆-regular
trees is interesting from the perspective of distributed computing alone. This result can be seen as
a part of a large research program aiming at classification of possible local complexities on various
graph classes [13, 27, 34, 35, 32, 36, 12, 8, 14]. That is, we wish not only to understand possible
complexity classes (see the left part of Figure 1 for possible local complexity classes on regular
trees), but also to find combinatorial characterizations of problems in those classes that allow us to
efficiently decide for a given problem which class it belongs to. Unfortunately, even for grids with
input labels, it is undecidable whether a given local problem can be solved in O(1) rounds [93, 30],
since local problems on grids can be used to simulate a Turing machine. This undecidability result
does not apply to paths and trees, hence for these graph classes it is still hopeful that we can find
simple and useful characterizations for different classes of distributed problems.

In particular, on paths it is decidable what classes a given local problem belongs to, for all
classes coming from the three areas considered here, and this holds even if we allow inputs [36, 61].
The situation becomes much more complicated when we consider trees. Recently, classification
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results on trees were obtained for so-called binary-labeling problems [8]. More recently, a complete
classification was obtained in the case of rooted regular trees [12]. Although their algorithm takes
exponential time in the worst case, the authors provided a practical implementation fast enough
to classify many typical problems of interest.

Much less is known for general, unoriented trees, with an arbitrary number of labels. In
general, deciding the optimal distributed complexity for a local problem on bounded-degree trees
is EXPTIME-hard [32], such a hardness result does not rule out the possibility for having a simple
and polynomial-time characterization for the case of regular trees, where there is no input and the
constraints are placed only on degree-∆ vertices. Indeed, it was stated in [12] as an open question to
find such a characterization. Our characterization of LOCAL(O(log n)) = BAIRE by `-full problems
makes progress in better understanding the distributed complexity classes on trees and towards
answering this open question.

Roadmap In Section 3, we define formally all the three setups we consider in the paper. In
Section 4 we discuss the lower bound technique of Marks and the new concept of an ID graph.
Next, in Section 5 we prove some basic results about the uniform complexity classes and give
examples of problems separating some classes from Figure 1. Finally, in Section 6 we prove that
a problem admits a Baire measurable solution if and only if it admits a distributed algorithm of
local complexity O(log n).

The individual sections can be read largely independently of each other. Moreover, most of our
results that are specific to only one of the three areas can be understood without reading the parts
of the paper that concern the other areas. We encourage the reader interested mainly in one of the
areas to skip the respective parts.

3 Preliminaries

In this section, we explain the setup we work with, the main definitions and results. The class of
graphs that we consider in this work are either infinite ∆-regular trees, or their finite analogue that
we define formally in Section 3.1.

We sometimes explicitly assume ∆ > 2. The case ∆ = 2, that is, studying paths, behaves
differently and seems much easier to understand [61]. Unless stated otherwise, we do not consider
any additional structure on the graphs, but sometimes it is natural to work with trees with an
input ∆-edge-coloring.

3.1 Local Problems on ∆-regular trees

The problems we study in this work are locally checkable labeling (LCL) problems, which, roughly
speaking, are problems that can be described via local constraints that have to be satisfied in a
suitable neighborhood of each vertex. In the context of distributed algorithms, these problems were
introduced in the seminal work by Naor and Stockmeyer [93], and have been studied extensively
since. In the modern formulation introduced in [26], instead of labeling vertices or edges, LCL
problems are described by labeling half-edges, i.e., pairs of a vertex and an incident edge. This
formulation is very general in that it not only captures vertex and edge labeling problems, but also
others such as orientation problems, or combinations of all of these types. Before we can provide
this general definition of an LCL, we need to introduce some definitions. We start by formalizing
the notion of a half-edge.

11



Figure 2: A 3-regular tree on 15 vertices. Every vertex has 3 half-edges but not all half-edges lead
to a different vertex.

Definition 1 (Half-edge). A half-edge is a pair (v, e) where v is a vertex, and e an edge incident
to v. We say that a half-edge (v, e) is incident to a vertex w if w = v, we say that a vertex w
is contained in a half edge (v, e) if w = v, and we say that (v, e) belongs to an edge e′ if e′ = e.
We denote the set of all half-edges of a graph G by H(G). A half-edge labeling is a function
c : H(G)→ Σ that assigns to each half-edge an element from some label set Σ.

In order to speak about finite ∆-regular trees, we need to consider slightly modified definition
of a graph. We think of each vertex to be contained in ∆-many half-edges, however, not every half
edge belongs to an actual edge of the graph. That is half-edges are pairs (v, e), but e is formally
not a pair of vertices. Sometimes we refer to these half-edges as virtual half-edges. We include a
formal definition to avoid confusions. See also Figure 2.

Definition 2 (∆-regular trees). A tree T , finite or infinite is a ∆-regular tree if either it is infinite
and T = T∆, where T∆ is the unique infinite ∆-regular tree, that is each vertex has exactly ∆-many
neighbors, or it is finite of maximum degree ∆ and each vertex v ∈ T of degree d ≤ ∆ is contained
in (∆− d)-many virtual half-edges.

Formally, we can view T as a triplet (V (T ), E(T ), H(T )), where (V (T ), E(T )) is a tree of
maximum degree ∆ and H(T ) consists of real half-edges, that is pairs (v, e), where v ∈ V (T ),
e ∈ E(T ) and e is incident to v, together with some virtual edges, in the case when T is finite, such
that each vertex v ∈ V (T ) is contained in exactly ∆-many half-edges (real or virtual).

As we are considering trees in this work, each LCL problem can be described in a specific form
that provides two lists, one describing all label combinations that are allowed on the half-edges
incident to a vertex, and the other describing all label combinations that are allowed on the two
half-edges belonging to an edge.3 We arrive at the following definition for LCLs on ∆-regular trees.4

3Every problem that can be described in the form given by Naor and Stockmeyer [93] can be equivalently described
as an LCL problem in this list form, by simply requiring each output label on some half-edge h to encode all output
labels in a suitably large (constant) neighborhood of h in the form given in [93].

4Note that the defined LCL problems do not allow the correctness of the output to depend on input labels.
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Definition 3 (LCLs on ∆-regular trees). A locally checkable labeling problem, or LCL for short,
is a triple Π = (Σ,V, E), where Σ is a finite set of labels, V is a subset of unordered cardinality-∆
multisets5 of labels from Σ , and E is a subset of unordered cardinality-2 multisets of labels from Σ.

We call V and E the vertex constraint and edge constraint of Π, respectively. Moreover, we
call each multiset contained in V a vertex configuration of Π, and each multiset contained in E an
edge configuration of Π.

Let T be a ∆-regular tree and c : H(T ) → Σ a half-edge labeling of T with labels from Σ. We
say that c is a Π-coloring, or, equivalently, a correct solution for Π, if, for each vertex v of T , the
multiset of labels assigned to the half-edges incident to v is contained in V, and, for each edge e of
T , the cardinality-2 multiset of labels assigned to the half-edges belonging to e is an element of E.

An equivalent way to define our setting would be to consider ∆-regular trees as commonly
defined, that is, there are vertices of degree ∆ and vertices of degree 1, i.e., leaves. In the corre-
sponding definition of LCL one would consider leaves as unconstrained w.r.t. the vertex constraint,
i.e., in the above definition of a correct solution the condition “for each vertex v” is replaced by “for
each non-leaf vertex v”. Equivalently, we could allow arbitrary trees of maximum degree ∆ as input
graphs, but, for vertices of degree < ∆, we require the multiset of labels assigned to the half-edges
to be extendable to some cardinality-∆ multiset in V. When it helps the exposition of our ideas
and is clear from the context, we may make use of these different but equivalent perspectives.

We illustrate the difference between our setting and “standard setting” without virtual half-
edges on the perfect matching problem. A standard definition of the perfect matching problem is
that some edges are picked in such a way that each vertex is covered by exactly one edge. It is easy
to see that there is no local algorithm to solve this problem on the class of finite trees (without
virtual half-edges), this is a simple parity argument. However, in our setting, every vertex needs
to pick exactly one half-edge (real or virtual) in such a way that both endpoints of each edge are
either picked or not picked. We remark that in our setting it is not difficult to see that (if ∆ > 2),
then this problem can be solved by a local deterministic algorithm of local complexity O(log(n)).

3.2 The LOCAL model

In this section, we define local algorithms and local complexity. We discuss the general relation
between the classical local complexity and the uniform local complexity. Recall that when we talk
about distributed algorithm on ∆-regular trees, the algorithm has access to n, the size of the tree.
The measure of complexity is the classical local complexity. On the other hand, when we talk about
uniform distributed algorithms on ∆-regular trees, we talk about an infinite ∆-regular tree and the
measure of complexity is the uniform local complexity. We start with the classical notions. Recall
that B(v, t) is the t-hop neighborhood of a vertex v in an underlying graph G.

Definition 4 (Local algorithm). A distributed local algorithm A of local complexity t(n) is a
function defined on all possible t(n)-hop neighborhoods of a vertex. Applying an algorithm A on
an input graph G means that the function is applied to a t(n)-hop neighborhood B(u, t(n)) of each
vertex u of G. The output of the function is a labeling of the half-edges around the given vertex.
The algorithm also takes as input the size of the input graph n.

Definition 5 (Local complexity). We say that an LCL problem Π has a deterministic local com-
plexity t(n) if there is a local algorithm A of local complexity t(n) such that when run on the input
graph G, with each of its vertices having a unique identifier from [nO(1)], A always returns a valid
solution to Π. We also say Π ∈ DLOCAL(O(t(n)).

5Recall that a multiset is a modification of the concept of sets, where repetition is allowed.
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The randomized complexity is defined analogously, but instead of unique identifiers, each vertex
of G has an infinite random string. The solution of A needs to be a valid solution with probability
1− 1/n. We also say Π ∈ RLOCAL(O(t(n)).

Whenever we talk about local complexity on ∆-regular trees, we always tacitly think about the
class of finite ∆-regular trees. We use the notation LOCAL(O(t(n))) whenever the deterministic
and the randomized complexity of the problems are the same up to constant factor (cf. Theorem 5).

Classification of Local Problems on ∆-regular Trees There is a lot of work aiming to
classify all possible local complexities of LCL problems on bounded degree trees. This classification
was recently finished. Even though the results in the literature are stated for the classical notion of
finite trees, we note that it is easy to check that the same picture emerges if we restrict ourselves
to ∆-regular trees according to our definition.

Theorem 5 (Classification of local complexities of LCLs on ∆-regular trees [93, 34, 35, 32, 13,
15, 28]). Let Π be an LCL problem. Then the deterministic/randomized local complexity of Π on
∆-regular trees is one of the following:

1. O(1),

2. Θ(log∗ n),

3. Θ(log n) deterministic and Θ(log log n) randomized,

4. Θ(log n),

5. Θ(n1/k) for k ∈ N.

We do not know whether the complexity classes Θ(n1/k) are non-empty on ∆-regular trees.
The 21

2 coloring problems Pk are known to have complexity Θ(n1/k) on bounded-degree trees [35].
However, as the correctness criterion of Pk depends on the degree of vertices, it does not fit into the
class of LCL problems that we consider in Definition 3. Nevertheless, as can be seen in Figure 1,
all classes of factors of iid and from descriptive combinatorics are already contained in the class
LOCAL(O(log n)).

Uniform Algorithms As we mentioned before, when talking about local complexities, we always
have in mind that the underlying graph is finite. In particular, the corresponding algorithm knows
the size of the graph. On infinite ∆-regular trees, or infinite graphs in general, we use the following
notion [72, 78].

Definition 6. An uniform local algorithm A is a function that is defined on all possible (finite)
neighborhoods of a vertex. For some neighborhoods it outputs a special symbol ∅ instead of a labeling
of the half-edges around the central vertex. Applying A on a graph G means that for each vertex u
of G the function is applied to B(u, t), where t is the minimal number such that A(u, t) 6= ∅. We
call t the coding radius of A, and denote it, as a function on vertices, as RA.

We define the corresponding notion of uniform local complexity for infinite ∆-regular trees where
each vertex is assigned an infinite random string.

Definition 7 (Uniform local complexity [72]). We say that the uniform local (randomized) com-
plexity of an LCL problem Π is t(ε) if there is a uniform local algorithm A such that the following
hold on the infinite ∆-regular tree. Recall that RA is the random variable measuring the coding
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radius of a vertex u, that is, the distance A needs to look at to decide the answer for u. Then, for
any 0 < ε < 1:

P(RA ≥ t(ε)) ≤ ε.

We also say Π ∈ OLOCAL(O(t(ε)).

We finish by stating the following lemma that bounds the uniform complexity of concatenation
of two uniform algorithm (we need to be a little bit more careful and cannot just add the complexites
up).

Lemma 1 (Sequential Composition). Let A1 and A2 be two distributed uniform algorithms with a
uniform local complexity of t1(ε) and t2(ε), respectively. Let A be the sequential composition of A1

and A2. That is, A needs to know the output that A2 computes when the local input at every vertex

is equal to the output of the algorithm A1 at that vertex. Then, tA(ε) ≤ tA1

(
ε/2

∆
tA2

(ε/2)+1

)
+tA2(ε/2).

Proof. Consider some arbitrary vertex u. Let E1 denote the event that the coding radius of A1

is at most tA1

(
ε/2

∆
tA2

(ε/2)+1

)
for all vertices in the tA2(ε/2)-hop neighborhood around u. As the

tA2(ε/2)-hop neighborhood around u contains at most ∆tA2
(ε/2)+1 vertices, a union bound implies

that P (E1) ≥ 1 − ε/2. Moreover, let E2 denote the event that the coding radius of algorithm A2

at vertex u is at most tA2(ε/2). By definition, P (E2) ≥ 1− ε/2. Moreover, if both events E1 and
E2 occur, which happens with probability at least 1− ε, then the coding radius of algorithm A is

at most tA1

(
ε/2

∆
tA2

(ε/2)+1

)
+ tA2(ε/2), thus finishing the proof.

3.3 Descriptive combinatorics

Before we define formally the descriptive combinatorics complexity classes, we give a high-level
overview on their connection to distributing computing for the readers more familiar with the
latter.

The complexity class that partially captures deterministic local complexity classes is called
BOREL (see also Remark 1). First note that by a result of Kechris, Solecki and Todorčević [77]
the maximal independent set problem (with any parameter r ∈ N) is in this class for any bounded
degree graph.6 In particular, this yields that BOREL contains the class LOCAL(O(log∗ n)) by the
characterization of [34], see [20]. Moreover, as mentioned before, BOREL is closed under countably
many iterations of the operations of finding maximal independent set (for some parameter that
might grow) and of applying a constant local rule that takes into account what has been constructed
previously.7

To get a better grasp of what this means, consider for example the proper vertex 2-coloring
problem on half-lines. It is clear that no local algorithm can solve this problem. However, as it is
possible to determine the starting vertex after countably many iterations of the maximal indepen-
dent set operation, we conclude that this problem is in the class BOREL. The idea that BOREL
can compute some unbounded, global, information will be implicitly used in all the constructions
in Section 5 that separate BOREL from local classes.

The intuition behind the class MEASURE is that it relates in the same way to the class BOREL,
as randomized local algorithms relate to deterministic ones. In particular, the operations that are

6That is, it is possible to find a Borel maximal independent set, i.e., a maximal independent set which is, moreover,
a Borel subset of the vertex set.

7It is in fact an open problem, whether this captures fully the class BOREL. However, note that an affirmative
answer to this question would yield that problems can be solved in an “effective” manner in the Borel context, which
is known not to be the case in unbounded degree graphs [106].
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allowed in the class MEASURE are the same as in the class BOREL but the solution of a given LCL
can be incorrect on a measure zero set.

The class BAIRE can be considered as a topological equivalent of the measure theoretic class
MEASURE, that is, a solution can be incorrect on a topologically negligible set. The main difference
between the classes MEASURE and BAIRE is that in the later there is a hierarchical decomposition
that is called toast. (Note that this phenomenon is present in the case of MEASURE exactly on
so-called amenable graphs. It is also tightly connected with the notion of hyperfiniteness [41, 55].)
The independence of colorings on a tree together with this structure allows for a combinatorial
characterization of the class BAIRE, which was proven by Bernshteyn [19], see also Section 6.

Next we formulate the precise definitions. We refer the reader to [95, 76, 20, 75], or to [61,
Introduction, Section 4.1] and [62, Section 7.1, 7.2] for intuitive examples and standard facts of
descriptive set theory. In particular, we do not define here the notion standard Borel/probability
space, a Polish topology, a Borel probability measure, Baire property etc.

Let G be a Borel graph of bounded maximum degree on a standard Borel space X. In this
paper we consider exclusively acyclic ∆-regular Borel graphs and we refer to them as ∆-regular
Borel forests. It is easy to see that the set of half-edges (see Definition 1) is naturally a standard
Borel space, we denote this set by H(G). Thus, it makes sense to consider Borel labelings of H(G).
Moreover, if G is a ∆-regular Borel forest and Π = (Σ,V, E) is an LCL, we can also decide whether
a coloring f : H(G)→ Σ is a solution to Π as in Definition 3. Similarly, we say that the coloring f
solves Π, e.g., on a µ-conull set for some Borel probability measure µ on X if there is a Borel set
C ⊆ X such that µ(C) = 1, the vertex constraints are satisfied around every x ∈ C and the edge
constraints are satisfied for every x, y ∈ C that form an edge in G.

Definition 8 (Descriptive classes). Let Π = (Σ,V, E) be an LCL. We say that Π is in the class
BOREL if for every acyclic ∆-regular Borel graph G on a standard Borel space X, there is a Borel
function f : H(G)→ Σ that is a Π-coloring of G.

We say that Π is in the class BAIRE if for every acyclic ∆-regular Borel graph G on a standard
Borel space X and every compatible Polish topology τ on X, there is a Borel function f : H(G)→ Σ
that is a Π-coloring of G on a τ -comeager set.

We say that Π is in the class MEASURE if for every acyclic ∆-regular Borel graph G on a
standard Borel space X and every Borel probability measure µ on X, there is a Borel function
f : H(G)→ Σ that is a Π-coloring of G on a µ-conull set.

The following claim follows directly from the definition.

Claim 1. We have BOREL ⊆ MEASURE,BAIRE.

Recently Bernshteyn [20, 22] proved several results that connect distributed computing with
descriptive combinatorics. Using the language of complexity classes we can formulate some of the
result as inclusions in Figure 1.

Theorem 6 ([20]). We have

� LOCAL(O(log∗(n))) ⊆ BOREL,

� RLOCAL(o(log(n))) ⊆ MEASURE,BAIRE.

In fact, these inclusions hold for any reasonable class of bounded degree graphs.
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Remark 1. The “truly” local class in descriptive combinatorics is the class CONTINUOUS. Even
though we do not define this class here8, and we refer the reader to [22, 56, 62] for the definition
and discussions in various cases, we mention that the inclusion

LOCAL(O(log∗ n)) ⊆ CONTINUOUS (*)

holds in most reasonable classes of bounded degree graphs, see [20]. This also applies to our situa-
tion. Recently, it was shown by Bernshteyn [22], and independently by Seward [99], that (∗) can be
reversed for Cayley graphs of finitely generated groups. This includes, e.g., natural ∆-regular trees
with proper edge ∆-coloring, as this is a Cayely graph of free product of ∆-many Z2 induced by the
standard generating set. It is, however, not clear whether it (∗) can be reversed in our situation,
i.e., ∆-regular trees without any additional labels.

3.4 Random processes

We start with an intutitve description of fiid processes. Let T∆ be the infinite ∆-regular tree.
Informally, factors of iid processes (fiid) on T∆ are infinite analogues of local randomized algorithms
in the following way. Let Π be an LCL and u ∈ T∆. In order to solve Π, we are allowed to explore
the whole graph, and the random strings that are assigned to vertices, and then output a labeling
of half-edges around u. If such an assignment is a measurable function and produces a Π-coloring
almost surely, then we say that Π is in the class fiid. Moreover, if every vertex needs to explore only
finite neighborhood to output a solution, then we say that Π is in the class ffiid. Such processes
are called finitary fiid (ffiid). There is also an intimate connection between ffiid and uniform
algorithms. This is explained in [62, Section 2.2]. Informally, an ffiid process that almost surely
solves Π is, in the language of distributed computing, a uniform local algorithm that solves Π. This
allows us to talk about uniform local complexity of an ffiid. In the rest of the paper we interchange
both notions freely with slight preference for the distributed computing language.

Now we define formally these classes, using the language of probability. We denote by Aut(T∆)
the automorphism group of T∆. An iid process on T∆ is a collection of iid random variables Y =
{Yv}v∈V (T∆) indexed by vertices, or edges, half-edges etc, of T∆ such that their joint distribution is
invariant under Aut(T∆). We say that X is a factor of iid process (fiid) if X = F (Y ), where F is a
measurable Aut(T∆)-invariant map and Y is an iid process on T∆.9 Moreover, we say that X is a
finitary factor if iid process (ffiid) if F depends with probability 1 on a finite (but random) radius
around each vertex. We denote as RF the random variable that assigns minimal such radius to a
given vertex, and call it the coding radius of F . We denote the space of all Π-colorings of T∆ as
XΠ. This is a subspace of ΣH(T∆) that is invariant under Aut(T∆).

Definition 9. We say that an LCL Π is in the class fiid (ffiid) if there is an fiid (ffiid) process X
that almost surely produces elements of XΠ.

Equivalently, we can define ffiid =
⋃
f OLOCAL(f(ε)) where f ranges over all functions. That

is, ffiid is the class of problems solvable by any uniform distributed algorithm.

It is obvious that ffiid ⊆ fiid. The natural connection between descriptive combinatorics and
random processes is formulated by the inclusion MEASURE ⊆ fiid. While this inclusion is trivially
satisfied, e.g., in the case of ∆-regular trees with proper edge ∆-coloring, in our situation we need
a routine argument that we include for the sake of completeness in Appendix A.

8To define the class CONTINUOUS, rather than asking for a continuous solution on all possible ∆-regular Borel
graphs, one has to restrict to a smaller family of graphs, otherwise the class trivializes. To define precisely this family
is somewhat inconvenient, and not necessary for our arguments.

9We always assume Y = (2N)T∆ endowed with the product Lebesgue measure.
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Lemma 2. Let Π be an LCL such that Π ∈ MEASURE. Then Π ∈ fiid.

3.5 Specific Local Problems

Here we list some well-known local problems that were studied in all three considered areas. We
describe the results known about these problems with respect to classes from Figure 1.

Edge Grabbing We start by recalling the well-known problem of edge grabbing (a close variant
of the problem is known as sinkless orientation[27]). In this problem, every vertex should mark one
of its half-edges (that is, grab an edge) in such a way that no edge can be marked by two vertices.
It is known that Πedgegrab 6∈ LOCAL(O(log∗ n)) [27] but Πedgegrab ∈ RLOCAL(O(log log n)).

Similarly, Πedgegrab 6∈ BOREL by [86], but Πedgegrab ∈ MEASURE by [39]: to see the former, just
note that if a ∆-regular tree admits proper ∆-colorings of both edges and vertices, every vertex
can grab an edge of the same color as the color of the vertex. Thus, Πedgegrab ∈ BOREL would yield
that ∆-regular Borel forests with Borel proper edge-colorings admit a Borel proper ∆-coloring,
contradicting [86].

This completes the complexity characterization of Πedgegrab as well as the proper vertex ∆-
coloring with respect to classes in Figure 1.

Perfect Matching Another notorious LCL problem, whose position in Figure 1 is, however, not
completely understood, is the perfect matching problem Πpm. Recall that the perfect matching
problem Πpm asks for a matching that covers all vertices of the input tree.10 It is known that
Πpm ∈ fiid [83], and it is easy to see that Πpm 6∈ RLOCAL(O(log log(n))) (we will prove a stronger
result in Proposition 9). Marks proved [86] that it is not in BOREL, even when the underlying tree
admits a Borel bipartition. It is not clear if Πpm is in ffiid, nor whether it is in MEASURE.

Graph Homomorphism We end our discussion with LCLs that correspond to graph homomor-
phisms (see also the discussion in Section 4). These are also known as edge constraint LCLs. Let
G be a finite graph. Then we define ΠG to be the LCL that asks for a homomorphism from the
input tree to G, that is, vertices are labeled with vertices of G in such a way that edge relations
are preserved. There are not many positive results except for the class BAIRE. It follows from the
result of Bernshteyn [19] (see Section 6) that ΠG ∈ BAIRE if and only if G is not bipartite. The
main negative results can be summarized as follows. An easy consequence of the result of Marks
[86] is that if χ(G) ≤ ∆, then ΠG 6∈ BOREL. In this paper, we describe examples of graphs of
chromatic number up to 2∆ − 2 such that the corresponding homomorphism problem is not in
BOREL, see Section 4. The theory of entropy inequalities see [2] implies that if G is a cycle on more
than 9 vertices, then ΠG 6∈ fiid.

4 Generalization of Marks’ technique

In this section, we first develop a new way of proving lower bounds in the LOCAL model based on
a generalization of a technique of Marks [86]. Then, we use ideas arising in the finitary setting—
connected to the adaptation of Marks’ technique—to obtain new results back in the Borel context.
For an introduction to Marks’ technique and a high-level discussion about the challenges in adapting
the technique to the standard distributed setting as well as our solution via the new notion of an
ID graph, we refer the reader to Section 2.1.

10In our formalism this means that around each vertex exactly one half-edge is picked.
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The setting we consider in this section is ∆-regular trees that come with a proper ∆-edge
coloring with colors from [∆]. All lower bounds discussed already hold under these restrictions
(and therefore also in any more general setting).

Recall that an LCL Π = (Σ,V, E) is given by specifying a list of allowed vertex configurations
and a list of allowed edge configurations (see Definition 3). To make our lower bounds as widely
applicable as possible, we replace the latter list by a separate list for each of the ∆ edge colors;
in other words, we consider LCLs where the correctness of the output is allowed to depend on the
input that is provided by the edge colors. Hence, formally, in this section, an LCL is more generally
defined: it is a tuple Π = (Σ,V, E) where Σ and V are as before, while E = (Eα)α∈[∆] is now a
∆-tuple of sets Eα consisting of cardinality-2 multisets. Similarly as before, a half-edge labeling (see
Definition 8 for the Borel context) with labels from Σ is a correct solution for Π if, for each vertex
v, the multiset of labels assigned to the half-edges incident to v is contained in V, and, for each
edge e, the multiset of labels assigned to the half-edges belonging to e is contained in Eα, where α
is the color of the edge e.

The idea of our approach is to identify a condition that an LCL Π necessarily has to satisfy if it
is solvable in O(log∗ n) rounds in the LOCAL model. Showing that Π does not satisfy this condition
then immediately implies an Ω(log n) deterministic and Ω(log log n) randomized lower bound, by
Theorem 5.

In order to define our condition we need to introduce the following notion.

Definition 10. A configuration graph is a ∆-tuple P = (Pα)α∈∆ of graphs, where the vertex set of
each of the graphs Pα is the set of subsets of Σ, and there is an edge in Pα connecting two vertices
S, T if and only if there are a ∈ S and b ∈ T such that {a, b} ∈ Eα.

Note that loops are allowed. Naturally, we will consider any two vertices of different Pα to be
distinct, even if they correspond to the same subset of Σ.

Now we are set to define the aforementioned condition. The intuition behind the playability
condition is the following: assume that there exists a local algorithm A that solves Π using the
t neighbourhood of a given vertex. We are going to define a family of two player games. The
game will depend on some S ⊆ Σ. Alice and Bob will assign labels (or IDs) to the vertices in the
t-neighbourhood (in some way specified later on, depending on α ∈ [∆]). When the assignment is
complete, we evaluate A on the root of the obtained labelled graph, this way obtaining an element
s of Σ, and decide who is the winner based on s ∈ S or not. Naturally, it depends on S and α,
which player has a winning strategy. This gives rise to a two coloring of vertices of Pα by colors
Alice and Bob. The failure of the playability condition will guarantee that using a strategy stealing
argument one can derive a contradiction.

Definition 11 (Playability condition). We say that an LCL Π = (Σ,V, E) with a configuration
graph P = (Pα)α∈∆ is playable if for every α ∈ [∆] there is a coloring Λα of the vertices of Pα with
two colors {Alice,Bob} such that the following conditions are satisfied:

(A) For any tuple (Sα)α∈[∆] ∈ V (P1) × · · · × V (P∆) satisfying Λα(Sα) = Alice for each α ∈ [∆],
there exists an aα 6∈ Sα such that {aα}α∈∆ ∈ V, and

(B) for any α ∈ [∆], and any tuple (S, T ) ∈ V (Pα)× V (Pα) satisfying Λα(S) = Λα(T ) = Bob, we
have that (S, T ) is an edge of Pα.

Our aim in this section is to show the following general results.

Theorem 7. Let Π be an LCL that is not playable. Then Π is not in the class LOCAL(O(log∗ n)).
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Using ideas from the proof of this result, we can formulate an analogous theorem in the Borel
context. Let us mention that while Theorem 7 is a consequence of Theorem 8 by [20], we prefer
to state the theorems separately. This is because the proof of the Borel version of the theorem
uses heavily complex results such as the Borel determinacy theorem, theory of local-global limits
and some set-theoretical considerations about measurable sets. This is in a stark contrast with the
proof of Theorem 7 that uses ‘merely’ the existence of large girth graphs and determinacy of finite
games. However, the ideas surrounding these concepts are the same in both cases.

Theorem 8. Let Π be an LCL that is not playable.Then Π is not in the class BOREL.

The main application of these abstract results is to find lower bounds for (graph) homomorphism
LCLs aka edge constraint LCLs. We already defined this class in Section 3.1 but we recall the
definition in the formalism of this section to avoid any confusion. Let G be a finite graph. Then
ΠG = (Σ,V, E) is defined by letting

1. V = {(a, . . . , a) : a ∈ Σ},

2. Σ = V (G),

3. ∀α ∈ [∆] (Eα = E(G)).

An LCL for which 1 holds is called a vertex-LCL. There is a one-to-one correspondence between
vertex-LCLs for which ∀α, β (Eα = Eβ) and LCLs of the form ΠG. (Indeed, to vertex-LCLs with
this property one can associate a graph G whose vertices are the labels in Σ and where two vertices
`, `′ are connected by an edge if and only if {`, `′} ∈ E .) Note that if Π is a vertex-LCL, then
condition (A) in Definition 11 is equivalent to the statement that no tuple {Sα}α∈∆ that satisfies
the assumption of (A) can cover Σ, i.e., that Σ * S1 ∪ · · · ∪ S∆ for such a tuple. Moreover, if ΠG

is a homomorphism LCL, then Pα = Pβ for every α, β ∈ ∆.
The simplest example of a graph homomorphism LCL is given by setting G to be the clique

on k vertices; the associated LCL ΠG is simply the problem of finding a proper k-coloring of the
vertices of the input graph. Now we can easily derive Marks’ original result from Theorem 8.

Corollary 1 (Marks [86]). Let G be a finite graph that has chromatic number at most ∆. Then
ΠG is not playable. In particular, there is a ∆-regular Borel forest that has Borel chromatic number
∆ + 1.

Proof. Let A1, . . . , A∆ be some independent sets that cover G, and Λ1, . . . ,Λ∆ arbitrary colorings
of the vertices of P1, . . . ,P∆, respectively, with colors from {Alice,Bob}. It follows that Λα(Aα) =
Alice for every α ∈ ∆, since otherwise condition (B) in Definition 11 is violated with S = T = Aα.
But then condition (A) does not hold.

As our main application we describe graphs with chromatic number larger than ∆ such that
ΠG is not playable. This rules out the hope that the complexity of ΠG is connected with chromatic
number being larger than ∆. In Section 4.1 we show the following. Note that the case k = ∆ is
Corollary 1.

Theorem 9. Let ∆ > 2 and ∆ < k ≤ 2∆ − 2. There exists a graph Gk with χ(Gk) = k, such
that ΠGk is not playable and ΠGk ∈ RLOCAL(O(log log n)). In particular, ΠGk 6∈ BOREL and
ΠGk 6∈ LOCAL(O(log∗(n))).

Interestingly, recent results connected to counterexamples to Hedetniemi’s conjecture yield the
same statement asymptotically, as ∆→∞ (see Remark 4).
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†

P = K2 ×K2
V0 = K2

V1 = K2

H3 :

Figure 3: The maximal graph with the property ∆-(*) for ∆ = 3.

Remark 2. It can be shown that for ∆ = 3 both the Chvátal and Grötsch graphs are suitable
examples for k = 4.

Remark 3. As another application of his technique Marks showed in [86] that there is a Borel ∆-
regular forest that does not admit Borel perfect matching. This holds even when we assume that the
forest is Borel bipartite, i.e., it has Borel chromatic number 2. In order to show this result Marks
works with free joins of colored hyperedges, that is, Cayley graphs of free products of cyclic groups.
One should think of two types of triangles (3-hyperedges) that are joined in such a way that every
vertex is contained in both types and there are no cycles. We remark that the playability condition
can be formulated in this setting. Similarly, one can derive a version of Theorem 8. However, we
do not have any application of this generalization.

4.1 Applications of playability to homomorphism LCLs

In this section we find the graph examples from Theorem 9. First we introduce a condition ∆-(*)
that is a weaker condition than having chromatic number at most ∆, but still implies that the
homomorphism LCL is not playable. Then, we will show that–similarly to the way the complete
graph on ∆-many vertices, K∆, is maximal among graphs of chromatic number ≤ ∆–there exists
a maximal graph (under homorphisms) with property ∆-(*). Recall that we assume ∆ > 2.

Definition 12 (Property ∆-(*)). Let ∆ > 2 and G = (V,E) be a finite graph. We say that G
satisfies property ∆-(*) if there are sets S0, S1 ⊆ V such that G restricted to V \ Si has chromatic
number at most (∆− 1) for i ∈ {0, 1}, and there is no edge between S0 and S1.

Note that χ(G) ≤ ∆ implies ∆-(*): indeed, if A1, . . . , A∆ are independent sets that cover V (G),
we can set S0 = S1 = A1.

On the other hand, we claim that if G satisfies ∆-(*) then χ(G) ≤ 2∆ − 2. In order to see
this, take S0, S1 ⊆ V (G) witnessing ∆-(*). Then, as there is no edge between S0 and S1, so in
particular, between S0 \ S1 and S0 ∩ S1, it follows that the chromatic number of G’s restriction to
S0 is ≤ ∆− 1. But then we can construct proper ∆− 1-colorings of S0 and V (G) \S0, which shows
our claim.

Proposition 1. Let G be a graph satisfying ∆-(*). Then ΠG is not playable.

Proof. Fix S0, S1 as in the definition of ∆-(*) and assume for a contradiction that colorings
Λ1, . . . ,Λ∆ as described in Definition 11 exist. By Property ∆-(*), there exist independent sets
A1, . . . , A∆−1 such that S0 together with the Ai covers G, i.e., such that S0∪A1∪· · ·∪A∆−1 = V (G).
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For each α ∈ [∆ − 1], we must have Λα(Aα) = Alice, since otherwise condition (B) in Defini-
tion 11 is violated. Consequently Λ∆(S0) = Bob, otherwise condition (A) is violated. Similarly
Λ∆(S1) = Bob. This shows that Λ∆ does not satisfy condition (B) with S = S0 and T = S1.

Next we describe maximal examples of graphs that satisfy the condition ∆-(*). That is, we
define a graph H∆ that satisfies ∆-(*), its chromatic number is 2∆− 2 and every other graph that
satisfies ∆-(*) admits a homomorphism in H∆. The graph H3 is depicted in Figure 3.

Recall that the (categorical) product G×H of graphs G,H is the graph on V (G)×V (H), such
that ((g, h), (g′, h′)) ∈ E(G×H) iff (g, g′) ∈ E(G) and (h, h′) ∈ E(H).

Write P for the product K∆−1 ×K∆−1. Let V0 and V1 be vertex disjoint copies of K∆−1. We
think of vertices in Vi and P as having labels from [∆− 1] and [∆− 1]× [∆− 1], respectively. The
graph H∆ is the disjoint union of V0, V1, P and an extra vertex † that is connected by an edge to
every vertex in P , and additionally, if v is a vertex in V0 with label i ∈ [∆ − 1], then we connect
it by an edge with (i′, j) ∈ P for every i′ 6= i and j ∈ [∆− 1], and if v is a vertex in V1 with label
j ∈ ∆− 1, then we connect it by an edge with (i, j′) ∈ P for every j′ 6= j and i ∈ [∆− 1].

Proposition 2. 1. H∆ satisfies ∆-(*).

2. χ(H∆) = 2∆− 2.

3. A graph G satisfies ∆-(*) if and only if it admits a homomorphism to H∆.

Proof. (1) Set S0 = V (V0)∪{†} and S1 = V (V1)∪{†}. By the definition there are no edges between
S0 and S1. Consider now, e.g., V (H∆) \ S0. Let Aj consist of all elements in P that have second
coordinate equal to j together with the vertex in V1 that has the label j. By the definition, the set
Ai is independent and

⋃
i∈[∆−1]Ai covers H∆ \ S0, and similarly for S1.

(2) By (1) and the claim after the definition of ∆-(*), it is enough to show that χ(H∆) ≥ 2∆−2.
Towards a contradiction, assume that c is a proper coloring of H∆ with < 2∆ − 2-many colors.
Note the vertex † guarantees that |c(V (P ))| ≤ 2∆− 4, and also ∆− 1 ≤ |c(V (P ))|.

First we claim that there are no indices i, j ∈ [∆−1] (even with i = j) such that c(i, r) 6= c(i, s)
and c(r, j) 6= c(s, j) for every s 6= r: indeed, otherwise, by the definition of P we had c(i, r) 6= c(s, j)
for every r, s unless (i, r) = (s, j), which would the upper bound on the size of c(V (P )).

Therefore, without loss of generality, we may assume that for every i ∈ [∆− 1] there is a color
αi and two indices ji 6= j′i such that c(i, ji) = c(i, j′i) = αi. It follows form the definition of P and
ji 6= j′i that αi 6= αi′ whenever i 6= i′.

Moreover, note that any vertex in V1 is connected to at least one of the vertices (i, ji) and (i, j′i),
hence none of the colors {αi}i∈[∆−1] can appear on V1. Consequently, since V1 is isomorphic to
K∆−1 we need to use at least ∆− 1 additional colors, a contradiction.

(3) First note that if G admits a homomorphism into H∆, then the pullbacks of the sets
witnessing ∆-(*) will witness that G has ∆-(*).

Conversely, let G be a graph that satisfies ∆-(*). Fix the corresponding sets S0, S1 together
with (∆ − 1)-colorings c0, c1 of their complements. We construct a homomorphism Θ from G to
H∆. Let

Θ(v) =


† if v ∈ S0 ∩ S1,

c0(v) if v ∈ S1 \ S0,

c1(v) if v ∈ S0 \ S1,

(c0(v), c1(v)) if v 6∈ S0 ∪ S1.

Observe that S = S0∩S1 is an independent set such that there is no edge between S and S0∪S1.
Using this observation, one easily checks case-by-case that Θ is indeed a homomorphism.
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Now, combining what we have so far, we can easily prove Theorem 9.

Proof of Theorem 9. It follows that ΠH∆
is not playable from Proposition 2, Proposition 1. It is

easy to see that if for a graph G the LCL ΠG is not playable then ΠG′ is not playable for every
subgraph G′ of G. Since erasing a vertex decreases the chromatic number by at most one, for each
k ≤ 2∆− 2 there is a subgraph Gk of H∆ with χ(Gk) = k, such that ΠGk is not playable.

It follows from Theorems 7 and 8 that there is a ∆-regular Borel forest that admits no Borel
homomorphism to any graph of Gk and that ΠGk 6∈ LOCAL(O(log∗(n))).

Finally, note that if k ≥ ∆ then Gk can be chosen so that it contains K∆, yielding ΠGk ∈
RLOCAL(O(log log(n)).

Remark 4. Hedetniemi’s conjecture is the statement that if G,H are finite graphs then χ(G ×
H) = min{χ(G), χ(H)}. This conjecture has been recently disproven by Shitov [100], and strong
counterexamples have been constructed later (see, [103, 109]). We claim that these imply for ε > 0
the existence of finite graphs H with χ(H) ≥ (2− ε)∆ to which ∆-regular Borel forests cannot have
a homomorphism in BOREL, for every large enough ∆. Indeed, if a ∆-regular Borel forest admitted
a Borel homomorphism to each finite graph of chromatic number at least (2 − ε)∆, it would have
such a homomorphism to their product as well. Thus, we would obtain that the chromatic number
of the product of any graphs of chromatic number (2− ε)∆ is at least ∆ + 1. This contradicts Zhu’s
result [109], which states that the chromatic number of the product of graphs with chromatic number
n can drop to ≈ n

2 .

Remark 5. A natural attempt to construct graphs with large girth and not playable homomorphisms
problem would be to consider random d-regular graphs of size n for a large enough n. However, it
is not hard to see that setting Λ(A) = Alice if and only if |A| < n

d shows that this approach cannot
work.

4.2 Proof of Theorem 7

In this section we prove Theorem 7, by applying Marks’ game technique in the LOCAL setting.
In order to define our games, we will need certain auxiliary graphs, the so-called ID graphs. The
purpose of these graphs is to define a “playground” for the games that we consider. Namely, vertices
in the game are labeled by vertices from the ID graph in such a way that the at the end we obtain
a homomorphism from our underlying graph to the ID graph.

Definition 13. Let n, t ∈ N and r ∈ R+. A pair Hn,t,r = (Hn,t,r, c) is called an ID graph, if

1. Hn,t,r is graph with girth at least 2t+ 2,

2. |V (Hn,t,r)| ≤ n,

3. c is a ∆-edge-coloring of Hn,t,r, such that every vertex is adjacent to at least one edge of each
color,

4. for each α ∈ [∆] and Hα
n,t,r = (V (Hn,t,r), E(Hn,t,r) ∩ c−1(α)) (i.e., Hα

n,t,r is the graph formed
by α-colored edges) we have that the independence ratio of Hα

n,t,r is at most r.

Before we define the game we show that ID graphs exist.

Proposition 3. Let tn ∈ o(log(n)), r > 0, ∆ ≥ 2. Then there is an ID graph Hn,tn,r for every
n ∈ N sufficiently large.
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Proof. We use the configuration model for regular random graphs, see [108]. This model is defined
as follows. Let n be even. Then a d-regular random sample on n-vertices is just a union of d-many
independent uniform random perfect matchings. Note that in this model we allow parallel edges.

It was proved by Bollobás [23] that the independence ratio of a random d-regular graph is at

most 2 log(d)
d a.a.s. Moreover, this quantity is concentrated by an easy application of McDiarmid’s

result [89], i.e.,

P
(
|X −E(X)| ≥

√
n
)
< 2 exp

(
−n
d

)
, (1)

where X is the random variable that counts the size of a maximal independent set. Therefore for
fixed n large enough we have that the independence ratio of a random sample is at most 3 log(d)

d
with probability at least

(
1− 2 exp

(
−n
d

))
.

Pick a d large enough such that 3 log(d)
d < r. Now for an n large enough take ∆-many independent

samples of random d-regular graphs according to the configuration model. Note that this is a
random sample from the configuration model for ∆d-regular graphs. We define c to be equal to
α ∈ [∆] on edges of the α-th sample. Then condition (4) is satisfied with probability at least(

1− 2 exp
(
−n
d

))∆
.

It remains to show that the girth condition is satisfied. Recall that we assume tn ∈ o(log n).
Then we have (∆d− 1)2tn−1 ∈ o(n). Using [90, Corollary 1] we have that the probability of having
girth at least tn is

exp

(
−

tn∑
a=3

(∆d− 1)a

2a
+ o(1)

)
≥ exp

(
−(∆d)tn

)
≥ exp(−o(n))

>1−
(

1− 2 exp
(
−n
d

))∆

(2)

as n→∞. This shows that there exists such a graph Htn,n,r with non-zero probability.

Next, we define the games. As mentioned before, the games are going to depend on the following
parameters: an algorithm An of local complexity t ∈ o(log(n)), an ID graph Hn,t,r, α ∈ ∆,
σ ∈ V (Hn,t,r) and S ⊆ Σ. (We will view An, Hn,t,r as fixed, and the rest of the parameters as
variables).

The game
G(An, n, t,Hn,t,r)[α, σ, S]

is defined as follows: two players, Alice and Bob assign labels to the vertices of a rooted ∆-regular
tree of diameter t. The labels are vertices of Hn,t,r and the root is labeled σ. In the k-th round,
where 0 < k ≤ t, first Alice labels vertices of distance k from the root on the side of the α edge.
After that, Bob labels all remaining vertices of distance k, etc (see Figure 4). We also require
the assignment of labels to give rise to an edge-color preserving homomorphism to Hn,t,r. (For
example, if it is Alice’s turn to label a neighbor of some vertex v, that has been assigned a label
ρ ∈ V (Hn,t,r) in the previous round, along an edge that has color β, then the allowed labels are
only those that span a β edge with ρ in Hn,t,r).

By property (2) of the ID graph, we can fix an injective map from V (Hn,t,r) to [n]. Now, we
say that Alice wins an instance of the game iff An applied to the produced labeling of the rooted
tree does not produce an element of S on the half edge that starts in the root and has edge color
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Figure 4: The game G(An, n, t,Hn,t,r)[α, σ, S]

α. Note that this is well defined thanks to our assumption on the girth of Hn,t,r. Let us define
Λσα(S) to be Alice or Bob depending on who has a winning strategy in the game

G(An, n, t,Hn,t,r)[α, σ, S].

Since the game is finite and there is no draw, one of the players has a winning strategy. Thus, the
map

Λσα : Pα → {Alice,Bob}

is well-defined for all σ ∈ V (Hn,t,r) and α ∈ [∆].

Proposition 4. Let An be an algorithm of local complexity t ∈ o(log(n)) that solves Π and σ ∈
V (Hn,t,r). Then (Λσα)α∈∆ satisfies (A) in Definition 11.

Proof. Assume that (Sα)α∈∆ is such that Λσα(Sα) = Alice. This means that Alice has winning
strategy in all the games corresponding to Sα. Letting these strategies play against each other in
the obvious way, produces a labeling of the tree. Since An solves Π it has to output labeling of half
edges (aα)α∈∆ ∈ N , where aα is a label on the half edge that start at the root and has color α.
Note that we must have aα 6∈ Sα by the definition of winning strategy for Alice. This shows that
(A) of Definition 11 holds.

We are ready to prove Theorem 7.

Proof of Theorem 7. Let (An)n∈N be a sequence of algorithms of local complexity tn ∈ o(log(n))
that solve Π and N ∈ N be the number of all possible colorings of vertices of (Pα)α∈∆ with two
colors, that is, N = 2

∑
α |V (Pα)|. Set r := 1

N+1 . By Proposition 3 there exists an ID graph Hn,t,r.
Thus, the games above are well-defined and we can construct the functions (Λσα)α∈∆. Since there
are only N possibilities for such a sequence, there exists a set X ⊆ V (Hn,t,r) of relative size greater
than r, such that for all σ ∈ X the sequence of functions (Λσα)α∈∆ is the same.

Since Π is not playable, we can find an edge color α ∈ ∆ and sets S, T ∈ Pα such that Λσα
does not satisfy (B) from Definition 11 with S, T for every σ ∈ X. Note that this is because (A) is
always satisfied by Proposition 4.

By property (4) of the ID graph, there exist σ0, σ1 ∈ X that span an α edge in Hn,t,r. We let
the winning strategies of Bob in the games

G(An, n, t,Hn,t,r)[α, σ0, S], G(An, n, t,Hn,t,r)[α, σ1, T ],
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play against each other, where we start with an α edge with endpoints labeled by σ0, σ1. This
produces a labeling of the vertices that have distance at most t from either of the endpoints of the
edge (intuitively, the tree “rooted” at this edge of “diameter” t + 1

2). Now applying An on the
vertex with label σ0 produces a0 ∈ S on the the half edge that starts at this vertex and has color
α. Similarly, we produce a1 ∈ T . However, (a0, a1) 6∈ Eα by the definition of an edge in Pα. This
shows that An does not solve Π.

4.3 Proof of Theorem 8

We show how to use an infinite analogue of the ID graph to prove our main result in the Borel
context, Theorem 8. Finding such a graph/graphing is in fact much easier in this context.

Definition 14. Let r ∈ R+. Hr = (Hr, c) is an ID graphing, if

1. Hr is an acyclic locally finite Borel graphing on a standard probability measure space (X,µ),

2. c is a Borel ∆-edge-coloring of Hr, such that every vertex is adjacent to at least one edge of
each color,

3. for each α ∈ [∆] the µ-measure of a maximal independent set of Hαr = (V (Hr), E(Hr)∩c−1(α))
is at most r.

Proposition 5. For each r > 0 there exists an ID graphing Hr.

Proof. Let Hr be a local-global limit of the random graphs constructed in Proposition 3 (see, e.g.,
[65] for the basic results about local-global convergence). It is not hard to check that this limit
satisfies the required properties.

Now we turn to the proof of Theorem 8. The proof will closely follow the argument given in the
proof of the LOCAL version, i.e., Theorem 7, but can be understood without reading the latter.

Let Π be an LCL that is not playable, and N ∈ N be the number of all possible colorings of
vertices of (Pα)α∈∆ with two colors, that is, N = 2

∑
α |V (Pα)|. Set r := 1

N+1 .
We define a Borel acyclic ∆-regular graph G, with edges properly colored by ∆, that does not

admit a Borel solution of Π. Vertices of G are pairs (x,A), where x ∈ X is a vertex of Hr and A
is a countable subgraph of Hr that is a ∆-regular tree that contains x and the edge coloring of Hr

induces a proper edge coloring of A. We say that (x,A) and (y,B) are connected by an α-edge in
G if A = B, x, y are adjacent in A and the edge that connects them has color α ∈ ∆.

Suppose for a contradiction that A is a Borel function that solves Π on G.
Next, we define a family of games parametrized by α ∈ [∆], x ∈ V (Hr) and S ⊆ Σ. For the

reader familiar with Marks’ construction, let us point out that for a fixed x, the games are analogues
to the ones he defines, with the following differences: allowed moves are vertices of the ID graphing
Hr and restricted by its edge relation, and the winning condition is defined by a set of labels, not
just merely one label.

So, the game
G(A,Hr)[α, x, S]

is defined as follows: Alice and Bob alternatingly label vertices of a ∆-regular rooted tree. The root
is labelled by x, and the labels come from V (Hr). In the k-th round, first Alice labels vertices of
distance k from the root on the side of the α edge. After that, Bob labels all remaining vertices of
distance k, etc (see Figure 4). We also require the assignment of labels to give rise to an edge-color
preserving homomorphism to Hr.
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It follows from the acyclicity of Hr that a play of a game determines a ∆-regular rooted subtree
of Hr to which the restriction of the edge-coloring is proper. That is, it determines a vertex (x,A)
of G. Let Alice win iff the output of A on the half-edge determined by (x,A) and the color α is
not in S.

Define the function Λxα : Pα → {Alice,Bob} assigning the player to some S ∈ V (Pα) who has
a winning strategy in G(A,Hr)[α, x, S]. Note that, since Hr is locally finite, each player has only
finitely many choices at each position. Thus, it follows from Borel Determinacy Theorem that Λxα
is well defined.

Now we show the analogue of Proposition 4.

Proposition 6. (Λxα)α∈∆ satisfies (A) in Definition 11.

Proof. Assume that (Sα)α∈∆ is such that Λxα(Sα) = Alice. This means that Alice has winning
strategy in all the games corresponding to Sα. Letting these strategies play against each other in
the obvious way, produces a vertex (x,A) of G. Since A solves Π it has to output labeling of half
edges (aα)α∈∆ ∈ N , where aα is a label on the half edge that start at (x,A) and has color α. Note
that we must have aα 6∈ Sα by the definition of winning strategy for Alice. This shows that (A) of
Definition 11 holds.

Now we are ready to prove Theorem 8.

Proof of Theorem 8. Let f be defined by

x 7→ (Λxα)α∈∆.

Note that f has a finite range. Using the fact that the allowed moves for each player can be
determined in a Borel way, uniformly in x, it is not hard to see that for each element s in the range,
f−1(s) is in the algebra generated by sets that can be obtained by applying game quantifiers to Borel
sets (for the definition see [75, Section 20.D]). It has been shown by Solovay [101] and independently
by Fenstad-Norman [48] that such sets are provably ∆1

2, and consequently, measurable. Therefore,
f is a measurable map.

As the number of sequences of functions (Λxα)α∈∆ is ≤ N , by the choice of r, there exists a
Borel set Y with µ(Y ) > r, such that f is constant on Y .

Since Π is not playable Proposition 6 gives that there is an α ∈ ∆ and S, T ∈ Pα that violate
condition (B). Recall that the measure of an independent Borel set of Hαr is at most r. That means
that there are x, y ∈ Y such that (x, y) is an α-edge in Hr. We let the winning strategies of Bob in
the games

G(A,Hr)[α, x, S], G(A,Hr)[α, y, T ],

play against each other, where we start with an α edge with endpoints labeled by x, y. This
produces a labeling of a ∆-regular tree A with labels from Hr such that (x,A) and (y,A) span an
α-edge in Hr. Applying A on the half-edge determined by (x,A) and the color α, we obtain a0 ∈ S.
Similarly, we produce a1 ∈ T for (y,A). However, (a0, a1) 6∈ Eα by the definition of an edge in Pα.
This shows that A does not produce a Borel solution to Π.

5 Separation Of Various Complexity Classes

In this section we provide examples of several problems that separate some classes from Figure 1.
The examples show two things. First, we have OLOCAL(poly log 1/ε) 6= OLOCAL(O(log log 1/ε)).
This shows that there are problems such that their worst case complexity is at least Θ(log n) on
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finite ∆-regular trees, but their average local complexity is constant. Second, we show that there are
problems in the class BOREL that are not in the class RLOCAL(O(log log n)) = RLOCAL(o(log n)),
on ∆-regular trees. This shows that one cannot in general hope that results from (Borel) measurable
combinatorics can be turned into very efficient (sublogarithmic) distributed algorithms.

5.1 Preliminaries

We first show that there is a strong connection between randomized local complexities and uniform
local complexities. Afterwards, we introduce a generic construction that turns any LCL into a new
LCL. We later use this generic transformation to construct an LCL that is contained in the set
BOREL \ RLOCAL(O(log log n)).

Uniform vs Local Randomized Complexity We will now discuss the connections between
uniform and randomized complexities. Note that the easy part of the connection between the two
concepts is turning uniform local algorithms into randomized ones, as formalized in the following
proposition.

Proposition 7. We have ULOCAL(t(ε)) ⊆ RLOCAL(t(1/nO(1))).

Proof. We claim that a uniform local algorithm A with a uniform local complexity of t(ε) can be
turned into a local randomized algorithm A′ with a local complexity of t(1/nO(1)).

The algorithm A′ simulates A on an infinite ∆-regular tree – each vertex u of degree less than ∆
in the original tree pretends that the tree continues past its virtual half-edges and the random bits
of u are used to simulate the random bits in this virtual subtree. Choosing ε = 1/nO(1), one gets
that the probability of A′ needing to look further than t(ε) for any vertex is bounded by 1/nO(1),
as needed in the definition of the randomized local complexity.

On the other hand, we will use the following proposition from [62]. It informally states that the
existence of any uniform local algorithm together with the existence of a sufficiently fast randomized
local algorithm for a given LCL Π directly implies an upper bound on the uniform complexity of
Π.

Proposition 8 ([62]). Let A be a uniform local algorithm solving an LCL problem Π such that its
randomized local complexity on finite ∆-regular trees is t(n) for t(n) = o(log n). Then, the uniform
local complexity of A on infinite ∆-regular trees is O(t(1/ε)).

Proposition 8 makes our life simpler, since we can take a known randomized distributed local
algorithm with local complexity g(n) = o(log n) and check if it works without the knowledge
of n. If yes, this automatically implies that the uniform local complexity of the algorithm is
h(ε) = O(g(1/ε)). In particular, combining Proposition 8 with the work of [34, 35] and verifying
that the algorithms of Fischer and Ghaffari [49, Section 3.1.1] and Chang et al. [33, Section 5.1]
work without the knowledge of n, we obtain the following result.

Theorem 10. We have:

� LOCAL(O(1)) = OLOCAL(O(1))

� RLOCAL(O(log∗ n)) = OLOCAL(O(log∗ 1/ε))

� RLOCAL(O(log log n)) = OLOCAL(O(log log 1/ε))

Moreover, there are no other possible uniform local complexities for t(ε) = o(log 1/ε).
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We note that the first two items are proven in [62]. For the third item it suffices by known
reductions to find a uniform algorithm solving a version of the distributed Lovász Local Lemma
(LLL) on so-called tree-structured dependency graphs considered in [33].

Proof sketch. The proof follows from Proposition 7 and the following ideas. The first item follows
from the fact that any local algorithm with local complexity O(1) can simply be made uniform.
More specifically, there exists a constant n0 — depending only on the problem Π — such that the
algorithm, being told the size of the graph is n0, is correct on any graph of size n ≥ n0.

For the second item, by the work of [34, 35], it suffices to check that there is a uniform distributed
(∆+1)-coloring algorithm with uniform local complexity O(log∗ 1/ε). Such an algorithm was given
in [72], or follows from the work in [78] and Proposition 8.

Similarly, for the third item, by the work of [35] it suffices to check that there is a uniform dis-
tributed algorithm for a specific LLL problem on trees with uniform local complexity O(log log 1/ε).
Such an algorithm can be obtained by combining the randomized pre-shattering algorithm of Fischer
and Ghaffari [49, Section 3.1.1] and the deterministic post-shattering algorithm of Chang et al. [33,
Section 5.1] in a graph shattering framework [16], which solves the LLL problem with local com-
plexity O(log log n). By Proposition 8, it suffices to check that this algorithm can be made to work
even if it does not know the size of the graph n. We defer the details to Appendix B. This finishes
the proof of Theorem 10.

Adding Paths Before we proceed to show some separation results, we define a certain construc-
tion that turns any LCL problem Π into a new LCL problem Π with the following property. If the
original problem Π cannot be solved by a fast local algorithm, then the same holds for Π. However,
Π might be strictly easier to solve than Π for BOREL constructions.

Definition 15. Let Π = (Σ,V, E) be an LCL. We define an LCL Π = (Σ′,V ′, E ′) as follows. Let
Σ′ be Σ together with one new label. Let V ′ be the union of V together with any cardinality-∆
multiset that contains the new label exactly two times. Let E ′ be the union of E together with the
cardinality-2 multiset that contains the new label twice.

In other words, the new label determines doubly infinite lines in infinite ∆-regular trees, or lines
that start and end in virtual half-edges in finite ∆-regular trees. Moreover, a vertex that is on such
a line does not have to satisfy any other vertex constraint. We call these vertices line-vertices and
each edge on a line a line-edge.

Proposition 9. Let Π be an LCL problem such that Π ∈ RLOCAL(t(n)) for t(n) = o(log(n)). Then
also Π ∈ RLOCAL(O(t(n))).

Proof. Let A be a randomized LOCAL algorithm that solves Π in t(n) = o(log n) rounds with
probability at least 1−1/nC for some sufficiently large constant C. We will construct an algorithm
A for Π with complexity t(n) that is correct with probability 1 − 4

nC/3−2 . The success probability

of A can then be boosted by “lying to it” that the number of vertices is nO(1) instead of n; this
increases the running time by at most a constant factor and boosts the success probability back to
1− 1/nC .

Consider a ∆-regular rooted finite tree T of depth 10t(n) and let u be its root vertex. Note
that |T | ≤ ∆10t(n)+1 < n, for n large enough.

We start by proving that when running A on the tree T , then u is most likely not a line-vertex.
This observation then allows us to turn A into an algorithm A that solves Π on any ∆-regular
input tree. Let X be the indicator of A marking u as a line-vertex. Moreover, for i ∈ [∆], let Yi
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be the indicator variable for the following event. The number of line edges in the i-th subtree of u
with one endpoint at depth 5t(n) and the other endpoint at depth 5t(n) + 1 is odd.

By a simple parity argument we can relate the value of X with the values of Y1, Y2, . . . , Y∆ as
follows. If X = 0, that is, u is not a line-vertex, then all of the Yi’s have to be 0, as each path in the
tree T is completely contained in one of the ∆ subtrees of u. On the other hand, if u is a line-vertex,
then there exists exactly one path, the one containing u, that is not completely contained in one
of the ∆ subtrees of u. This in turn implies that exactly two of the ∆ variables Y1, Y2, . . . , Y∆ are
equal to 1.

The random variables Y1, Y2, . . . , Y∆ are identically distributed and mutually independent.
Hence, if P(Yi = 1) > 1

nC/3
, then the probability that there are at least 3 Yi’s equal to 1 is

strictly greater than
(

1
nC/3

)3
= 1

nC
. This is a contradiction, as in that case A does not produce a

valid output, which according to our assumption happens with probability at most 1
nC

.

Thus, we can conclude that P(Yi = 1) ≤ 1
nC/3

. By a union bound, this implies that all of the

Yi’s are zero with probability at least 1
nC/3−1 , and in that case u is not a line-vertex.

Finally, the algorithm A simulates A as if the neighborhood of each vertex was a ∆-regular
branching tree up to depth at least t(n).

It remains to analyze the probability that A produces a valid solution for the LCL problem Π.
To that end, let v denote an arbitrary vertex of the input tree. The probability that the output of
v’s half edges satisfy the vertex constraint of the LCL problem Π is at least 1−1/nC . Moreover, in
the case that v is not a line-vertex, which happens with probability at least 1− 1

nC/3−1 , the output
of v’s half edges even satisfy the vertex constraint of the LCL problem Π. Hence, by a union bound
the vertex constraint of the LCL problem Π around v is satisfied with probability at least 1− 2

nC/3−1 .
With exactly the same reasoning, one can argue that the probability that the output of A satisfies
the edge constraint of the LCL problem Π at a given edge is also at least 1− 2

nC/3−1 . Finally, doing
a union bound over the n vertex constraints and n− 1 edge constraints it follows that A produces
a valid solution for Π with probability at least 1− 4

nC/3−2 .

Remark 6. The ultimate way how to solve LCLs of the form Π is to find a spanning forest of
lines. This is because once we have a spanning forest of lines, then we might declare every vertex to
be a line-vertex and label every half-edge that is contained on a line with the new symbol in Π. The
remaining half-edges can be labeled arbitrarily in such a way that the edge constraints are satisfied.

Put otherwise, once we are able to construct a spanning forest of lines and E 6= ∅, where
Π = (Σ,V, E), then Π can be solved. Moreover, in that case the complexity of Π is upper bounded
by the complexity of finding the spanning forest of lines.

Lyons and Nazarov [83] showed that Πpm ∈ fiid and it is discussed in [82] that the construction
can be iterated (∆− 2)-many times. After removing each edge that is contained in one of the ∆− 2
perfect matchings each vertex has a degree of two. Hence, it is possible to construct a spanning
forest of lines as fiid. Consequently, Π ∈ fiid for every Π = (Σ,V, E) with E 6= ∅.

5.2 LOCAL(O(log∗ n)) 6= BOREL

We now formalize the proof that LOCAL(O(log∗ n)) 6= BOREL from Section 2.2. Recall that Πχ,∆

is the proper vertex ∆-coloring problem. The following claim directly follows by Proposition 9
together with the fact that Πχ,∆ 6∈ LOCAL(O(log∗ n)).

Claim 2. We have Πχ,∆ 6∈ LOCAL(O(log∗ n)).
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On the other hand we show that adding lines helps to find a Borel solution. This already
provides a simple example of a problem in the set BOREL \ LOCAL(O(log∗ n)).

Proposition 10. We have Πχ,∆ ∈ BOREL.

Proof. By [77], every Borel graph of finite maximum degree admits a Borel maximal independent
set. Let G be a Borel ∆-regular acyclic graph on a standard Borel space X. By an iterative
application of the fact above we find Borel sets A1, . . . , A∆−2 such that A1 is a maximal independent
set in G and Ai is a maximal independent set in G\

⋃
j<iAj for every i > 1. We think of A1, . . . , A∆−2

as color classes for the first ∆− 2 colors. Let B = X \
⋃
i∈[∆−2]Ai and let H be the subgraph of G

determined by B. It is easy to see that the maximum degree of H is 2. In particular, H consists
of finite paths, one-ended infinite paths or doubly infinite paths. We use the extra label in Πχ,∆ to
mark the doubly infinite paths. It remains to use the remaining 2 colors in [∆] to define a proper
vertex 2-coloring of the finite and one-ended paths. It is a standard argument that this can be done
in a Borel way and it is easy to verify that, altogether, we found a Borel Πχ,∆-coloring of G.

5.3 Examples and Lower Bound

In this subsection we define two LCLs and show that they are not in the class RLOCAL(o(log n)).
In the next subsection we show that one of them is in the class OLOCAL(poly log 1/ε) and the other
in the class BOREL. Both examples that we present are based on the following relaxation of the
perfect matching problem.

Definition 16 (Perfect matching in power-2 graph). Let Π2
pm be the perfect matching problem in

the power-2 graph, i.e., in the graph that we obtain from the input graph by adding an edge between
any two vertices that have distance at most 2 in the input graph.

We show that Π2
pm is not contained in RLOCAL(o(log n)). Proposition 9 then directly implies

that Π2
pm is not contained in RLOCAL(o(log n)) as well. On the other hand, we later use a one-

ended spanning forest decomposition to show that Π2
pm is in OLOCAL(poly log 1/ε) and a one or

two-ended spanning forest decomposition to show that Π2
pm is in BOREL.

We first show the lower bound result. The proof is based on a simple parity argument as in the
proof of Proposition 9.

Theorem 11. The problems Π2
pm and Π2

pm are not in the class RLOCAL(o(log n)).

Proof. Suppose that the theorem statement does not hold for Π2
pm. Then, by Theorem 5, there is

a distributed randomized algorithm solving Π2
pm with probability at least 1 − 1/n. By telling the

algorithm that the size of the input graph is n2∆ instead of n, we can further boost the success
probability to 1 − 1/n2∆. The resulting round complexity is at most a constant factor larger, as
∆ = O(1). We can furthermore assume that the resulting algorithm A will always output for each
vertex v a vertex M(v) 6= v in v’s 2-hop neighborhood, even if A fails to produce a valid solution.
The vertex M(v) is the vertex v decides to be matched to, and if A produces a valid solution it
holds that M(M(v)) = v.

Consider a fully branching ∆-regular tree T of depth 10t(n). Note that |T | < n for n large
enough. Let u be the root of T and Ti denote the i-th subtree of u (so that u 6∈ Ti). Let Si denote
the set of vertices v in Ti such that both v and M(v) have distance at most 2t(n) from u. Note
that M(v) is not necessarily a vertex of Ti. Let Yi be the indicator of whether Si is even.

Observe that, if A does not fail on the given input graph, then the definition of the Si implies
that every vertex in {u} ∪

⋃
i∈[∆] Si is matched to a vertex in {u} ∪

⋃
i∈[∆] Si. Hence, the number
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of vertices in {u} ∪
⋃
i∈[∆] Si is even, which implies that we cannot have Y1 = Y2 = . . . = Y∆ = 1

unless A fails. Note that Yi depends only on the output of A at the vertices in Ti that have a
distance of precisely 2t(n)− 1 or 2t(n) to u (as all other vertices in Ti are guaranteed to be in Si).
Hence, the events Yi = 1, i ∈ [∆], are independent, and, since P(Y1 = 1) = . . . = P(Y∆ = 1) (as all
vertices in all Ti see the same topology in their t(n)-hop view), we obtain (P(Y1 = 1))∆ ≤ 1/n2∆,
which implies P(Yi = 1) ≤ 1/n2, for any i ∈ [∆].

Hence, with probability at least 1−∆/n2 we have Y1 = Y2 = . . . = Y∆ = 0, by a union bound.
Let v1, v2, . . . , v∆ denote the neighbors of u with vi being the root of subtree Ti. Note that if A does
not fail and Y1 = Y2 = . . . = Y∆ = 0, then it has to be the case that u is matched to a vertex in some
subtree Ti (not necessarily vi), while any vertex from N−i(u) := {v1, v2, . . . , vi−1, vi+1, . . . , v∆} is
matched with another vertex from N−i(u) (hence, we already get that ∆ needs to be odd). This is
because each subtree needs to have at least one vertex matched to a different subtree (since |Si| is
odd for each i ∈ [∆]). If M(u) is a vertex in Ti and, for any v ∈ N−i(u), we have M(v) ∈ N−i(u),
we say that u orients the edge going to vi outwards.

Consider a path (u0 = u, u1, . . . , uk), where k = 2t(n) + 3. By the argument provided above,
the probability that u orients an edge outwards is at least 1−∆/n2 − 1/n2∆, and, if u orients an
edge outwards, the probability that this edge is not uu1 is (∆ − 1)/∆, by symmetry. Hence, we
obtain (for sufficiently large n) that P(E1) ≥ 1/2, where E1 denotes the event that vertex u orients
an edge different from uu1 outwards. With an analogous argument, we obtain that P(E2) ≥ 1/2,
where E2 denotes the event that vertex uk orients an edge different from ukuk−1 outwards. Since
E1 and E2 are independent (due to the fact that the distance between any neighbor of u and any
neighbor of uk is at least 2t(n) + 1), we obtain P(E1 ∩E2) ≥ 1/4. Moreover, the probability that all
vertices in {u1, . . . , uk−1} orient an edge outwards is at least 1− (2t(n) + 2)(∆/n2 + 1/n2∆), which
is at least 4/5 for sufficiently large n. Thus, by a union bound, there is a probability of at least
1− 3/4− 1/5− 1/n2∆ that A does not fail, all vertices in (u, u1, . . . , uk) orient an edge outwards,
and the outward oriented edges chosen by u and uk are not uu1 and ukuk−1, respectively. For
sufficiently large n, the indicated probability is strictly larger than 0. We will obtain a contradiction
and conclude the proof for Π2

pm by showing that there is no correct solution with the described
properties.

Assume in the following that the solution provided by A is correct and u, u1, . . . , uk satisfy the
mentioned properties. Since u orients an edge different from uu1 outwards, u1 must be matched to a
neighbor of u, which implies that u1 orients edge u1u outwards. Using an analogous argumentation,
we obtain inductively that uj orients edge ujuj−1 outwards, for all 2 ≤ j ≤ k. However, this yields a
contradiction to the fact that the edge that uk orients outwards is different from ukuk−1, concluding
the proof (for Π2

pm).

The theorem statement for Π2
pm follows by applying Proposition 9.

5.4 Upper Bounds Using Forest Decompositions

We prove an upper bound for the problems Π2
pm and Π2

pm defined in the previous subsection.
We use a technique of decomposing the input graph in a spanning forest with some additional
properties, i.e., one or two ended. This technique was used in [39] to prove Brooks’ theorem in
a measurable context. Namely, they proved that if G is a Borel ∆-regular acyclic graph and µ is
a Borel probability measure, then it is possible to erase some edges of G in such a way that the
remaining graph is a one-ended spanning forest on a µ-conull set. It is not hard to see that one can
solve Π2

pm on one-ended trees in an inductive manner, starting with the leaf vertices. Consequently
we have Π2

pm ∈ MEASURE. We provide a quantitative version of this result and thereby show that
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Figure 5: An example of a one-ended forest decomposition of an infinite 3-regular tree.

the problem of constructing a one-ended forest is contained in OLOCAL(poly log 1/ε). A variation
of the construction shows that it is possible to find a one or two-ended spanning forest in a Borel
way. This allows us to show that Π2

pm ∈ BOREL. As an application of the decomposition technique
we show that Vizing’s theorem, i.e., proper ∆ + 1 edge coloring Πχ′,∆+1, for ∆ = 3 is in the class
OLOCAL(poly log 1/ε).

5.4.1 Uniform Complexity of the One-Forest Decomposition

We start with the definition of a one-ended spanning forest. It can be viewed as a variation of the
edge grabbing problem Πedgegrab. Namely, if a vertex v grabs an incident edge e, then we think of
e as being oriented away from v and v selecting the other endpoint of e as its parent. Suppose that
T is a solution of Πedgegrab on T∆. We denote with T ←(v) the subtree with root v.

Definition 17 (One-ended spanning forest). We say that a solution T of Πedgegrab is a one-ended
spanning forest if T ←(v) is finite for every v ∈ T∆ (see Figure 5).

Note that on an infinite ∆-regular tree every connected component of a one-ended spanning
forest must be infinite. Furthermore, recall that we discussed above that it is possible to construct
a one-ended spanning forest in MEASURE by [39]. Next we formulate our quantitative version.

Theorem 12. The one-ended spanning forest can be constructed by a uniform local algorithm
with a uniform local complexity of O(poly log 1/ε). More precisely, there is a uniform distributed
algorithm A that computes a one-ended spanning forest and if we define R(v) to be the smallest
coding radius that allows v to compute T ←(v), then

P (R(v) > O(poly log 1/ε)) ≤ ε.

The formal proof of Theorem 12 can be found in Section 5.5. We first show the main ap-
plications of the result. Namely, we show that Π2

pm can be solved inductively starting from
the leaves of the one-ended trees. This proves that Π2

pm is in OLOCAL(poly log 1/ε) and hence
OLOCAL(poly log 1/ε) \ RLOCAL(o(log n)) is non-empty.

Theorem 13. The problem Π2
pm is in the class MEASURE and OLOCAL(O(poly log 1/ε)).

Proof. First we show that every infinite one-ended directed tree T admits an inductive solution
from the leaves to the direction of infinity. More precisely, we define a power-2 perfect matching on
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the infinite one-ended directed tree T such that the following holds. Let v be an arbitrary vertex
and T←(v) the finite subtree rooted at v. Then, all vertices in T←(v), with the possible exception
of v, are matched to a vertex in T←(v). Moreover, for each vertex in T←(v) \ {v}, it is possible to
determine to which vertex it is matched by only considering the subtree T←(v). We show that it is
possible to define a perfect matching in that way by induction on the height of the subtree T←(v).

We first start with the leaves and declare them as unmatched in the first step of the induction.
Now, consider an arbitrary vertex v with R ≥ 1 children that we denote by v1, v2, . . . , vR. By

the induction hypothesis, all vertices in T←(vi) \ {vi} are matched with a vertex in T←(vi) for
i ∈ [R] and it is possible to compute that matching given T←(v). However, some of the children of
v are possibly still unmatched. If the number of unmatched children of v is even, then we simply
pair them up in an arbitrary but fixed way and we leave v unmatched. Otherwise, if the number
of unmatched children of v is odd, we pair up v with one of its unmatched children and we pair up
all the remaining unmatched children of v in an arbitrary but fixed way. This construction clearly
satisfies the criteria stated above. In particular, the resulting matching is a perfect matching, as
every vertex gets matched eventually.

By Theorem 12 there is a uniform distributed algorithm of complexity O(poly log 1/ε) that
computes a one-ended spanning forest T on T∆. Moreover, every vertex v ∈ T∆ can compute
where it is matched with a uniform local complexity of O(poly log 1/ε). This follows from the
discussion above, as a vertex v can determine where it is matched once it has computed T ←(w) for
each w in its neighborhood. Hence, Π2

pm is in the class OLOCAL(O(poly log 1/ε)).
Similarly, the one-ended spanning forest T ⊆ G can be constructed in the class MEASURE by

[39]. By the discussion above, this immediately implies that Π2
pm is in the class MEASURE.

5.4.2 Decomposition in BOREL

Next, we show that a similar, but weaker, decomposition can be done in a Borel way. Namely,
we say that a subset of edges of an acyclic infinite graph G, denoted by T , is a one or two-ended
spanning forest if every vertex v ∈ G is contained in an infinite connected component of T and
each infinite connected component of T has exactly one or two directions to infinity. Let S be such
a connected component. Note that if S has one end, then we can solve Π2

pm on S as above. If
S has two ends, then S contains a doubly infinite path P with the property that erasing P splits
S \ P into finite connected components. In order to solve Π2

pm we simply solve Π2
pm on the finite

connected components of S \P (with some of the vertices in S \P being potentially matched with
vertices on the path P ) and declare vertices on P to be line vertices.

The high-level idea to find a one or two-ended spanning forest is to do the same construction as
in the measure case and understand what happens with edges that do not disappear after countably
many steps. A slight modification in the construction guarantees that what remains are doubly
infinite paths.

Theorem 14. Let G be a Borel ∆-regular forest. Then there is a Borel one or two-ended spanning
forest T ⊆ G.

The proof of Theorem 14 can be found in Appendix C. We remark that the notation used in
the proof is close to the notation in the proof that gives a measurable construction of a one-ended
spanning forest in [39]. Next, we show more formally how Theorem 14 implies that Π2

pm ∈ BOREL.

Theorem 15. The problem Π2
pm is in the class BOREL.

Proof. Let T be the one or two-ended spanning forest given by Theorem 14 and S be a connected
component of T . If S is one-ended, then we use the first part of the proof of Theorem 13 to find
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a solution of Π2
pm on S. Since deciding that S is one-ended as well as computing an orientation

towards infinity can be done in a Borel way, this yields a Borel labeling.
Suppose that S is two-ended. Then, there exists a doubly infinite path P in S with the property

that the connected components of S \ P are finite. Moreover, it is possible to detect P in a Borel
way. That is, declaring the vertices on P to be line vertices and using the special symbol in Π2

pm for
the half-edges on P yields a Borel measurable labeling. Let C 6= ∅ be one of the finite components
in S \ P and v ∈ C be the vertex of distance 1 from P . Orient the edges in C towards v, this
can be done in a Borel way since v is uniquely determined for C. Then the first part of the proof
of Theorem 13 shows that one can inductively find a solution to Π2

pm on C in such a way that all
vertices, possibly up to v, are matched. If v is matched, then we are done. If v is not matched, then
we add the edge that connects v with P to the matching. Note that it is possible that multiple
vertices are matched with the same path vertex, but this is not a problem according to the definition
of Π2

pm. It follows that this defines a Borel function on H(G) that solves Π2
pm.

5.4.3 Vizing’s Theorem for ∆ = 3

Finding a measurable or local version of Vizing’s Theorem, i.e., proper edge (∆ + 1)-coloring
Πχ′,∆+1, was studied recently in [60, 107, 21]. It is however not known, even on trees, whether
Πχ′,∆+1 is in RLOCAL(O(log log n)). Here we use the one-ended forest construction to show that
Πχ′,∆+1 is in the class OLOCAL(poly log 1/ε) for ∆ = 3.

Proposition 11. Let ∆ = 3. We have Πχ′,∆+1 ∈ OLOCAL(poly log 1/ε).

Proof sketch. By Theorem 12, we can compute a one-ended forest decomposition T with uniform
local complexity O(poly log 1/ε). Note that every vertex has at least one edge in T , hence the edges
in G \ T form paths. These paths can be 3-edge colored by using the uniform version of Linial’s
coloring algorithm. This algorithm has a uniform local complexity of O(log∗ 1/ε). By Lemma 1,
the overall complexity is O(poly log(∆log∗ 1/ε/ε) + log∗ 1/ε)) = O(poly log 1/ε).

Finally, we color the edges of T . We start from the leaves and color the edges inductively. In
particular, whenever we consider a vertex v we color the at most two edges in T←(v) below v. Note
that there always is at least one uncolored edge going from v in the direction of T . Hence, we can
color the at most two edges below v in T←(v) greedily – each one neighbors with at most 3 colored
edges at any time.

5.5 Proof of Theorem 12

In this section we formally prove Theorem 12.

Theorem 12. The one-ended spanning forest can be constructed by a uniform local algorithm
with a uniform local complexity of O(poly log 1/ε). More precisely, there is a uniform distributed
algorithm A that computes a one-ended spanning forest and if we define R(v) to be the smallest
coding radius that allows v to compute T ←(v), then

P (R(v) > O(poly log 1/ε)) ≤ ε.

We follow the construction of the one-ended spanning forest in [39]. The construction proceeds
in rounds. Before each round, some subset of the vertices have already decided which incident edge
to grab, and we refer to these vertices as settled vertices. All the remaining vertices are called
unsettled. The goal in each round is to make a large fraction of the unsettled vertices settled. To
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achieve this goal, our construction relies on certain properties that the graph induced by all the
unsettled vertices satisfies.

One important such property is that the graph induced by all the unsettled vertices is expand-
ing. That is, the number of vertices contained in the neighborhood around a given vertex grows
exponentially with the radius. The intuitive reason why this is a desirable property is the following.
Our algorithm will select a subset of the unsettled vertices and clusters each unsettled vertex to
the closest selected vertex. As the graph is expanding and any two vertices in the selected subset
are sufficiently far away, there will be a lot of edges leaving a given cluster. For most of these
inter-cluster edges, both of the endpoints will become settled. This in turn allows one to give a
lower bound on the fraction of vertices that become settled in each cluster.

To ensure that the graph induced by all the unsettled vertices is expanding, a first condition
we impose on the graph induced by all the unsettled vertices is that it has a minimum degree of at
least 2. While this condition is a first step in the right direction, it does not completely suffice to
ensure the desired expansion, as an infinite path has a minimum degree of 2 but does not expand
sufficiently. Hence, our algorithm will keep track of a special subset of the unsettled vertices, the
so-called hub vertices. Each hub vertex has a degree of ∆ in the graph induced by all the unsettled
vertices. That is, all of the neighbors of a hub vertex are unsettled as well. Moreover, each unsettled
vertex has a bounded distance to the closest hub vertex, where the specific upper bound on the
distance to the closest hub vertex increases with each round. As we assume ∆ > 2, the conditions
stated above suffice to show that the graph induced by all the unsettled vertices expands.

Next, we explain in more detail how a vertex decides which edge to grab. Concretely, if a vertex
becomes settled, it grabs an incident edge such that the other endpoint of that edge is strictly
closer to the closest unsettled vertex as the vertex itself. For example, if a vertex becomes settled
and there is exactly one neighbor that is still unsettled, then the vertex will grab the edge that the
vertex shares with its unsettled neighbor. Grabbing edges in that way, one can show two things.
First, for a settled vertex v, the set T←(v) of vertices behind v does not change once v becomes
settled. The intuitive reason for this is that the directed edges point towards the unsettled vertices
and therefore the unsettled vertices lie before v and not after v. Moreover, one can also show that
T←(v) only contains finitely many vertices. The reason for this is that at the moment a vertex
v becomes settled, there exists an unsettled vertex that is sufficiently close to v, where the exact
upper bound on that distance again depends on the specific round in which v becomes settled.

What remains to be discussed is at which moment a vertex decides to become settled. As
written above, in each round the algorithm considers a subset of the unsettled vertices and each
unsettled vertex is clustered to the closest vertex in that subset. This subset only contains hub
vertices and it corresponds to an MIS on the graph with the vertex set being equal to the set of
hub vertices and where two hub vertices are connected by an edge if they are sufficiently close in
the graph induced by all the unsettled vertices. Now, each cluster center decides to connect to
exactly ∆ different neighboring clusters, one in each of its ∆ subtrees. Remember that as each
cluster center is a hub vertex, all of its neighbors are unsettled as well. Now, each unsettled vertex
becomes settled except for those that lie on the unique path between two cluster centers such that
one of the cluster centers decided to connect to the other one.

Construction The algorithm proceeds in rounds. After each round, a vertex is either settled
or unsettled and a settled vertex remains settled in subsequent rounds. Moreover, some unsettled
vertices are so-called hub vertices. We denote the set of unsettled, settled and hub vertices after
the i-th round with Ui, Si and Hi, respectively. We set U0 = H0 = V prior to the first round and
we always set Si = V \ Ui. Figure 6 illustrates the situation after round i. Moreover, we denote
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with Oi a partial orientation of the edges of the infinite ∆-regular input tree T . In the beginning,
O0 corresponds to the partial orientation with no oriented edges. Each vertex is incident to at most
1 outwards oriented edge in Oi. If a vertex is incident to an outwards oriented edge in Oi, then
the other endpoint of the edge will be its parent in the one-ended forest decomposition. For each
vertex v in Si, we denote with Tv,i the smallest set that satisfies the following conditions. First,
v ∈ Tv,i. Moreover, if u ∈ Tv,i and {w, u} is an edge that according to Oi is oriented from w to
u, then w ∈ Tv,i. We later show that Tv,i contains exactly those vertices that are contained in the
subtree T ←(v).

u

v

hubsunsettled vertices

Figure 6: The picture illustrates the situation after some round i of the construction. The vertices
on the paths are all contained in Ui, while the vertices corresponding to the big black dots are
additionally contained in Hi. Note that the length of each path is at least di. However, the
distance between u and v in the original graph can be much smaller.

After the i-th round, the construction satisfies the following invariants.

1. For each v ∈ Si−1, we have Tv,i = Tv,i−1.

2. Let v be an arbitrary vertex in Si. Then, Tv,i contains finitely many vertices and furthermore
Tv,i ⊆ Si.

3. The minimum degree of the graph T [Ui] is at least 2 and each vertex in Hi has a degree of ∆
in T [Ui].

4. Each vertex in Ui has a distance of at most
∑i

j=0 dj to the closest vertex in Hi in the graph
T [Ui].

We now describe how to compute Ui, Si, Hi and Oi. The construction during the i-th round
is illustrated in Figure 7. Note that we can assume that the invariants stated above are satisfied
after the (i− 1)-th round. In the i-th round we have a parameter di that we later set to 22i .

1. Hi is a subset of Hi−1 that satisfies the following property. No two vertices in Hi have a
distance of at most di in T [Ui−1]. Moreover, each vertex in Hi−1 \ Hi has a distance of at
most di to the closest vertex in Hi in the graph T [Ui−1]. Note that we can compute Hi by
computing an MIS in the graph with vertex set Hi−1 and where two vertices are connected
iff they have a distance of at most di in the graph T [Ui−1]. Hence, we can use Ghaffari’s MIS
algorithm [57] to compute the set Hi.
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2. Next, we describe how to compute Ui. We assign each vertex u ∈ Ui−1 to the closest vertex
in the graph T [Ui−1] that is contained in Hi, with ties being broken arbitrarily. We note that
there exists a node in Hi with a distance of at most (

∑i−1
j=0 dj)+di to u. To see why, note that

Invariant (4) from round i − 1 implies that there exists a vertex w in Hi−1 with a distance
of at most

∑i−1
j=0 dj to u. We are done if w is also contained in Hi. If not, then it follows

from the way we compute Hi that there exists a vertex in Hi with a distance of at most di
to w, but then the triangle inequality implies that the distance from u to that vertex is at
most (

∑i−1
j=0 dj) + di, as desired. For each vertex v ∈ Hi, we denote with C(v) the set of all

vertices in Ui−1 that got assigned to v. Now, let Ev denote the set of edges that have exactly
one endpoint in C(v). We can partition Ev into Ev,1 t Ev,2 t . . . t Ev,∆, where for ` ∈ [∆],
Ev,` contains all the edges in Ev that are contained in the `-th subtree of v. Invariants (3)
and (4) after the (i− 1)-th round imply that Ev,` 6= ∅. Moreover, Ev,` contains only finitely

many edges, as we have shown above that the cluster radius is upper bounded by
∑i

j=0 dj .

Now, for ` ∈ [∆], we choose an edge e` uniformly at random from the set Ev,`. Let u` 6= v be
the unique vertex in Hi such that one endpoint of e` is contained in C(u`). We denote with
Pv,` the set of vertices that are contained in the unique path between v and u`. Finally, we
set Ui =

⋃
v∈Hi,`∈[∆] Pv,`.

3. It remains to describe how to compute the partial orientation Oi. All edges that are oriented
in Oi−1 will be oriented in the same direction in Oi. Additionally, we orient for each vertex
u that got settled in the i-th round, i.e., u ∈ Si ∩ Ui−1, exactly one incident edge away from
u. Let w be the closest vertex to u in T [Ui−1] that is contained in Ui, with ties being broken
arbitrarily. We note that it follows from the discussions above that the distance between u
and w in the graph T [Ui−1] is at most

∑i
j=0 dj . We now orient the edge incident to u that is

on the unique path between u and w outwards. We note that this orientation is well-defined
in the sense that we only orient edges that were not oriented before and that we don’t have
an edge such that both endpoints of that edge want to orient the edge outwards.

We now prove by induction that our procedure satisfies all the invariants. Prior to the first
round, all invariants are trivially satisfied. Hence, it remains to show that the invariants hold after
the i-th round, given that the invariants hold after the (i− 1)-th round.

1. Let v ∈ Si−1 be arbitrary. As Oi is an extension of Oi−1, it follows from the definition of
Tv,i−1 and Tv,i that Tv,i−1 ⊆ Tv,i. Now assume that Tv,i 6⊆ Tv,i−1. This would imply the
existence of an edge {u,w} such that u ∈ Tv,i−1 and the edge was oriented during the i-th
round from w to u. As u ∈ Tv,i−1, Invariant (2) from the (i − 1)-th round implies u ∈ Si−1.
This is a contradiction as during the i-th round only edges with both endpoints in Ui−1 can
be oriented. Therefore it holds that Tv,i = Tv,i−1, as desired.

2. Let v ∈ Si be arbitrary. If it also holds that v ∈ Si−1, then the invariant from round i − 1
implies that Tv,i−1 = Tv,i contains finitely many vertices and Tv,i−1 ⊆ Si−1 ⊆ Si. Thus, it
suffices to consider the case that v ∈ Si∩Ui−1. Note that Tv,i∩Ui = ∅. Otherwise there would
exist an edge that is oriented away from a vertex in Ui according to Oi, but this cannot happen
according to the algorithm description. Hence, Tv,i ⊆ Si. Now, for the sake of contradiction,
assume that Tv,i contains infinitely many vertices. From the definition of Tv,i, this implies that
there exists a sequence of vertices (vk)k≥1 with v = v1 such that for each k ≥ 1, {vk+1, vk} is
an edge in T that is oriented from vk+1 to vk according to Oi. For each k ≥ 1 we have vk ∈ Si.
We furthermore know that vk ∈ Ui−1, as otherwise Tvk,i = Tvk,i−1 would contain infinitely
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v

Ev,1

Ev,2

Ev,3

u1

u2

u3

Pv,1

Pv,2

Pv,3 C(v)

Figure 7: The picture illustrates the situation during some round i of the construction. The vertices
on all paths are contained in Ui−1 and the vertices corresponding to the big black dots are contained
in Hi−1. The vertices v, u1, u2 and u3 are the only vertices in the picture that are contained in
Hi. All the vertices on the red paths remain unsettled during round i while all the vertices on the
black paths become settled. Each vertex that becomes settled during the i-th round orients one
incident edge outwards, illustrated by the green edges. Each green edge is oriented towards the
closest vertex that is still unsettled after the i-th round. We note that some of the edges in the
picture are oriented away from v.

39



many vertices, a contradiction. From the way we orient the edges, a simple induction proof
implies that the closest vertex of vk in the graph T [Ui−1] that is contained in Ui has a distance
of at least k. However, we previously discussed that the distance between vk and the closest
vertex in Ui in the graph T [Ui−1] is at most

∑i
j=0 dj . This is a contradiction. Hence, Tv,i

contains finitely many vertices.

3. It follows directly from the description of how to compute Ui and Hi that the minimum degree
of the graph T [Ui] is at least 2 and that each vertex in Hi has a degree of ∆ in T [Ui].

4. Let u ∈ Ui be arbitrary. We need to show that u has a distance of at most
∑i

j=0 dj to the
closest vertex in Hi in the graph T [Ui]. Let v be the vertex with u ∈ C(v). We know that
there is no vertex in Hi that is closer to u in T [Ui−1] than v. Hence, the distance between
u and v is at most

∑i
j=0 dj in the graph T [Ui−1]. Moreover, from the description of how we

compute Ui, it follows that all the vertices on the unique path between u and v are contained
in Ui. Hence, each vertex in Ui has a distance of at most

∑i
j=0 dj to the closest vertex in Hi

in the graph T [Ui], as desired.

We derive an upper bound on the coding radius of the algorithm in three steps. First, for each
i ∈ N and ε > 0, we derive an upper bound on the coding radius for computing with probability
at least 1 − ε for a given vertex in which of the sets Si, Ui and Hi it is contained in and for each
incident edge whether and how it is oriented in Oi, given that each vertex receives as additional
input in which of the sets Si−1, Ui−1 and Hi−1 it is contained in and for each incident edge whether
and how it is oriented in Oi−1. Given this upper bound on the coding radius, we can use the
sequential composition lemma (Lemma 1) and a simple induction proof to give an upper bound on
the coding radius for computing with probability at least 1 − ε for a given vertex in which of the
sets Si, Ui and Hi it is contained in and for each incident edge whether and how it is oriented in
Oi, this time without providing any additional input.

Second, we analyze after how many rounds a given vertex is settled with probability at least
1− ε for a given ε > 0.

Finally, we combine these two upper bounds to prove Theorem 12.

Lemma 3. For each i ∈ N and ε ∈ (0, 0.01], let gi(ε) denote the smallest coding radius such that
with probability at least 1− ε one knows for a given vertex in which of the sets Si, Ui and Hi it is
contained in and for each incident edge whether and how it is oriented in Oi, given that each vertex
receives as additional input in which of the sets Si−1, Ui−1 and Hi−1 it is contained in and for each
incident edge whether and how it is oriented in Oi−1. It holds that gi(ε) = O(d2

i log(∆/ε)).

Proof. When running Ghaffari’s uniform MIS algorithm on some graph G′ with maximum degree
∆′, each vertex knows with probability at least 1−ε whether it is contained in the MIS or not after
O(log(∆′) + log(1/ε)) communication rounds in G′ ([57], Theorem 1.1). For the MIS computed
during the i-th round, ∆′ = ∆O(di) and each communication round in G′ can be simulated with
O(di) communication rounds in the tree T . Hence, to know for a given vertex with probability at
least 1−ε whether it is contained in the MIS or not, it suffices consider the O(d2

i log(∆)+di log(1/ε))-
hop neighborhood around that vertex. Now, let u be an arbitrary vertex. In order to compute in
which of the sets Si, Ui and Hi u is contained in and for each incident edge of u whether and how it
is oriented in Oi, we not only need to know whether u is in the MIS or not. However, it suffices if
we know for all the vertices in the O(di)-hop neighborhood of u whether they are contained in the
MIS or not (on top of knowing for each vertex in the neighborhood in which of the sets Si−1, Ui−1

and Hi−1 it is contained in and for each incident edge whether and how it is oriented in Oi−1).
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Hence, by a simple union bound over the at most ∆O(di) vertices in the O(di)-hop neighborhood
around u, we obtain gi(ε) = O(di) +O(d2

i log(∆) + di log(∆O(di)/ε)) = O(d2
i log(∆/ε)).

Lemma 4. For each i ∈ N and ε ∈ (0, 0.01], let hi(ε) denote the smallest coding radius such that
with probability at least 1− ε one knows for a given vertex in which of the sets Si, Ui and Hi it is
contained in and for each incident edge whether and how it is oriented in Oi. Then, there exists a
constant c independent of ∆ such that hi(ε) ≤ 22i+2 · (c log(∆))i log(∆/ε).

Proof. By prove the statement by induction on i. For a large enough constant c, it holds that
h1(ε) ≤ 223 · (c log(∆)) log(∆/ε). Now, consider some arbitrary i and assume that hi(ε) ≤ 22i+2 ·
(c log(∆))i log(∆/ε) for some large enough constant c. We show that this implies hi+1(ε) ≤ 22(i+1)+2 ·
(c log(∆))i+1 log(∆/ε). By the sequential composition lemma (Lemma 1) and assuming that c is
large enough, we have

hi+1(ε) ≤ hi((ε/2)/∆gi+1(ε/2)+1) + gi+1(ε/2)

≤ 22i+2 · (c log(∆))i log(∆ ·∆gi+1(ε/2)+1/(ε/2)) + gi+1(ε/2)

≤ 2 · 22i+2 · (c log(∆))i log(∆ ·∆gi+1(ε/2)+1/(ε/2))

≤ 2 · 22i+2 · (c log(∆))i log(∆(c/10)·22i+2
log(∆/ε)/(ε/2))

≤ 4 · 22i+2 · (c log(∆))i log(∆(c/10)·22i+2
log(∆/ε))

≤ (4/10) · 22i+2 · 22i+2
(c log(∆))i+1 log(∆/ε)

≤ 22(i+1)+2 · (c log(∆))i+1 log(∆/ε),

as desired.

Lemma 5. Let u be an arbitrary vertex. For each ε ∈ (0, 0.01], let f(ε) denote the smallest i ∈ N
such that u is settled after the i-th round with probability at least 1− ε. There exists a fixed c ∈ R
independent of ∆ such that f(ε) ≤ d1 + log log 1

c log∆(1/ε)e.

Proof. Let i ∈ N be arbitrary. We show that a given vertex is settled after the i-th round with
probability at least 1−O(1/∆Ω(di/di−1)). For the sake of analysis, we run the algorithm on a finite
∆-regular high-girth graph instead of an infinite ∆-regular tree. For now, we additionally assume
that no vertex realizes that we don’t run the algorithm on an infinite ∆-regular tree. That is, we
assume that for each vertex the coding radius to compute all its local information after the i-th
round is much smaller than the girth of the graph.

With this assumption, we give a deterministic upper bound on the fraction of vertices that are
not settled after the i-th round. On the one hand, the number of vertices that are not settled after
the i-th round can be upper bounded by |Hi| · ∆ · O(di). On the other hand, we will show that
the fraction of vertices that are contained in Hi is upper bounded by 1/∆Ω(di/di−1). We do this
by showing that C(v) contains ∆Ω(di/di−1) many vertices for a given v ∈ Hi. Combining these two
bounds directly implies that the fraction of unsettled vertices is smaller than

∆ ·O(di)

∆Ω(di/di−1)
= 1/∆Ω(di/di−1).

Let v ∈ Hi be arbitrary. We show that |C(v)| = ∆Ω(di/di−1). Using Invariants (3) and (4) to-

gether with a simple induction argument, one can show that there are at least (∆−1)bD/((2
∑i−1
j=0 dj)+1)c
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vertices contained in Hi−1 and whose distance to v is at most D in the graph induced by the vertices
in Ui−1. Furthermore, from the way we defined the clustering C(v) and the fact that two vertices
in Hi have a distance of at least di in the graph T [Ui−1], it follows that all vertices in Ui−1 having
a distance of at most di/2 − 1 to v are contained in the cluster C(v). Hence, the total number of

vertices in C(v) is at least (∆− 1)b(di/2−1)/((2
∑i−1
j=0 dj)+1)c = ∆Ω(di/di−1), as promised.

Now we remove the assumption that no vertex realizes that we don’t run the algorithm on
an infinite ∆-regular tree. If a vertex does realize that we don’t run the algorithm on an infinite
∆-regular tree, then we consider the vertex as being unsettled after the i-th round. By considering
graphs with increasing girth, we can make the expected fraction of vertices that realize that we are
not on an infinite ∆-regular tree arbitrarily small. Combining this observation with the previous
discussion, this implies that the expected fraction of vertices that are not settled after the i-th round
is at most 1/∆Ω(di/di−1). By symmetry, each vertex has the same probability of being settled after
the i-th round. Hence, the probability that a given vertex is settled after the i-th round when run
on a graph with sufficiently large girth is 1−1/∆Ω(di/di−1), and the same holds for each vertex when
we run the algorithm on an infinite ∆-regular tree. Thus, there exists a constant c such that the

probability that a given vertex is unsettled after the i-th round is at most 1/∆c·di/di−1 = 1/∆c·22i−1

.
Setting i = d1 + log log 1

c log∆(1/ε)e finishes the proof.

We are now finally ready to finish the proof of Theorem 12. Let u be an arbitrary vertex and
ε ∈ (0, 0.01]. We need to compute an upper bound on the coding radius that is necessary for u to
know all the vertices in T ←(u) with probability at least 1 − ε. To compute such an upper bound
for the required coding radius it suffices to find an i∗ and an R∗ such that the following holds.
First, u is settled after i∗ rounds with probability at least 1− ε/2. Second, u knows for each edge
in its O(di∗)-hop neighborhood whether it is oriented in the partial orientation Oi∗ , and if yes, in
which direction, by only considering its R∗-hop neighborhood with probability at least 1− ε/2. By
a union bound, both of these events occur with probability at least 1− ε. Moreover, if both events
occur u knows all the vertices in the set T ←(u). The reason is as follows. If u is settled after round
i∗, then it follows from the previous analysis that only vertices in the O(di∗)-hop neighborhood of
u can be contained in T ←(u). Moreover, for each vertex in its O(di∗)-hop neighborhood, u can
determine if the vertex is contained in T ←(u) if it knows all the edge orientations on the unique
path between itself and that vertex after the i∗-th round. Hence, it remains to find concrete values
for i∗ and R∗. According to Lemma 5, we can choose i∗ = d1 + log log 1

c log∆(2/ε)e for some large
enough constant c. Moreover, it follows from a union bound that all vertices in the O(di∗)-hop
neighborhood around u know with probability at least 1 − ε/2 the orientation of all its incident
edges according to Oi∗ by only considering their hi∗((ε/2)/∆O(di∗ ))-hop neighborhood. Hence, we
can set

R∗ = O(di∗) + hi∗((ε/2)/∆O(di∗ ))

≤ O(di∗) + 22i
∗+2 · (c log(∆))i

∗
log(∆O(di∗ )/ε)

= O(22i
∗
· 22i

∗+2
(c log(∆))i

∗
log(∆/ε))

= O(22i
∗+3

(c log(∆))i
∗

log(∆/ε))

= O(22log log 1
c log(2/ε)+5

(c log(∆))log log 1
c

log(2/ε)+2 log(∆/ε))

= log(1/ε)32 · log(∆/ε) · log log(1/ε)O(log log(∆)).

As ∆ = O(1), it therefore holds that
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P (R(v)) = poly(log(1/ε)) ≥ 1− ε,

as desired.

6 BAIRE = LOCAL(O(log n))

In this section, we show that on ∆-regular trees the classes BAIRE and LOCAL(O(log(n))) are the
same. At first glance, this result looks rather counter-intuitive. This is because in finite ∆-regular
trees every vertex can see a leaf of distance O(log(n)), while there are no leaves at all in an infinite
∆-regular tree. However, there is an intuitive reasons why these classes are the same: in both
setups there is a technique to decompose an input graph into a hierarchy of subsets. Furthermore,
the existence of a solution that is defined inductively with respect to these decompositions can be
characterized by the same combinatorial condition of Bernshteyn [19]. We start with a high-level
overview of the decomposition techniques used in both contexts.

Rake and Compress The hierarchical decomposition in the context of distributed computing is
based on a variant of a decomposition algorithm of Miller and Reif [92]. Their original decomposition
algorithm works as follows. Start with a tree T , and repeatedly apply the following two operations
alternately: Rake (remove all degree-1 vertices) and Compress (remove all degree-2 vertices). Then
O(log n) iterations suffice to remove all vertices in T [92]. To view it another way, this produces a
decomposition of the vertex set V into 2L− 1 layers

V = V R
1 ∪ V C

1 ∪ V R
2 ∪ V C

2 ∪ V R
3 ∪ V C

3 ∪ · · · ∪ V R
L ,

with L = O(log n), where V R
i is the set of vertices removed during the i-th Rake operation and V C

i

is the set of vertices removed during the i-th Compress operation. We will use a variant [35] of this
decomposition in the proof of Proposition 14.

Variants of this decomposition turned out to be useful in designing LOCAL algorithms [35, 33,
32]. In our context, we assume that the given LCL satisfies a certain combinatorial condition and
then find a solution inductively, in the reversed order of the construction of the decomposition.
Namely, in the Rake step we want to be able to existentially extend the inductive partial solution
to all relative degree 1-vertices (each v ∈ V R

i has degree at most 1 in the subgraph induced by
V R
i ∪ · · · ∪ V R

L ) and in the Compress step we want to extend the inductive partial solution to paths
with endpoints labeled from the induction (the vertices in V C

i form degree-2 paths in the subgraph
induced by V C

i ∪ · · · ∪ V R
L ).

TOAST Finding a hierarchical decomposition in the context of descriptive combinatorics is tightly
connected with the notion of Borel hyperfiniteness. Understanding what Borel graphs are Borel
hyperfinite is a major theme in descriptive set theory [46, 54, 38]. It is known that grids, and
generally polynomial growth graphs are hyperfinite, while, e.g., acyclic graphs are not in general
hyperfinite [74]. A strengthening of hyperfiniteness that is of interest to us is called a toast [55, 41].
A q-toast, where q ∈ N, of a graph G is a collection D of finite subsets of G with the property that
(i) every pair of vertices is covered by an element of D and (ii) the boundaries of every D 6= E ∈ D
are at least q apart. The idea to use a toast structure to solve LCLs appears in [41] and has many
applications since then [55, 87]. This approach has been formalized in [62], where the authors
introduce TOAST algorithms. Roughly speaking, an LCL Π admits a TOAST algorithm if there
is q ∈ N and a partial extending function (the function is given a finite subset of a tree that is
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partially colored and outputs an extension of this coloring on the whole finite subset) that has the
property that whenever it is applied inductively to a q-toast, then it produces a Π-coloring. An
advantage of this approach is that once we know that a given Borel graph admits, e.g., a Borel
toast structure and a given LCL Π admits a TOAST algorithm, then we may conclude that Π is in
the class BOREL. Similarly for MEASURE, BAIRE or ULOCAL, we refer the reader to [62] for more
details and results concerning grids.

In the case of trees there is no way of constructing a Borel toast in general, however, it is a
result of Hjorth and Kechris [66] that every Borel graph is hyperfinite on a comeager set for every
compatible Polish topology. A direct consequence of [84, Lemma 3.1] together with a standard
construction of toast via Voronoi cells gives the following strengthening to toast. We include a
sketch of the proof for completeness.

Proposition 12. Let G be a Borel graph on a Polish space (X, τ) with degree bounded by ∆ ∈ N.
Then for every q > 0 there is a Borel G-invariant τ -comeager set C on which G admits a Borel
q-toast.

Proof sketch. Let {An}n∈N be a sequence of MIS with parameter f(n) as in [84, Lemma 3.1] for
a sufficiently fast growing function f(n), e.g., f(n) = (2q)n

2
. Then C =

⋃
n∈NAn is a Borel τ -

comeager set that is G-invariant. We produce a toast structure in a standard way, e.g., see [62,
Appendix A].

Let Bn(x) denote the ball of radius f(n)/3 and Rn(x) the ball of radius f(n)/4 around x ∈ An.
Iteratively, define cells Dn = {Cn(x)}x∈An as follows. Set C1(x) = R1(x). Suppose that Dn has
been defined and set

� Hn+1(x, n+ 1) := Rn+1(x) for every x ∈ An+1,

� if 1 ≤ i ≤ n and
{
Hn+1(x, i+ 1)

}
x∈Ak+1

has been defined, then we put

Hn+1(x, i) =
⋃{

Bi(y) : Hn+1(x, i+ 1) ∩Bi(y) 6= ∅
}

for every x ∈ An+1,

� set Cn+1(x) := Hn+1(x, 1) for every x ∈ An+1, this defines Dn+1.

The fact that D =
⋃
n∈NDn is a q-toast on C follows from the fact that C =

⋃
n∈NAn together

with the fact that the boundaries are q separated which can be shown as in [62, Appendix A].

Therefore to understand LCLs in the class BAIRE we need understand what LCLs on trees admit
TOAST algorithm. It turns out that these notions are equivalent, again by using the combinatorial
characterization of Bernshteyn [19] that we now discuss.

Combinatorial Condition – `-full set In both decompositions, described above, we need to
extend a partial coloring along paths that have their endpoints colored from the inductive step.
The precise formulation of the combinatorial condition that captures this demand was extracted
by Bernshteyn [19]. He proved that it characterizes the class BAIRE for Cayley graphs of virtually
free groups. Note that this class contains, e.g., ∆-regular trees with a proper edge ∆-coloring.

Definition 18 (Combinatorial condition – an `-full set). Let Π = (Σ,V, E) be an LCL and ` ≥ 2.
A set V ′ ⊆ V is `-full whenever the following is satisfied. Take a path with at least ` vertices, and
add half-edges to it so that each vertex has degree ∆. Take any c1, c2 ∈ V ′ and label arbitrarily
the half-edges around the endpoints with c1 and c2, respectively. Then there is a way to label the
half-edges around the remaining ` − 2 vertices with configurations from V ′ such that all the ` − 1
edges on the path have valid edge configuration on them.
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Now we are ready to formulate the result that combines Bernshteyn’s result [19] (equivalence
between (1.) and (3.), and the moreover part) with the main results of this section. This also shows
the remaining implications in Figure 1.

Theorem 16. Let Π be an LCL on regular trees. Then the following are equivalent:

1. Π ∈ BAIRE,

2. Π admits a TOAST algorithm,

3. Π admits an `-full set,

4. Π ∈ LOCAL(O(log(n))).

Moreover, any of the equivalent conditions is necessary for Π ∈ fiid.

Next we discuss the proof of Theorem 16. We refer the reader to Bernshteyn’s paper [19] for full
proofs in the case of BAIRE and fiid, here we only sketch the argument for completeness. We also
note that instead of using the toast construction, he used a path decomposition of acyclic graphs
of Conley, Marks and Unger [40].

6.1 Sufficiency

We start by showing that the combinatorial condition is sufficient for BAIRE and LOCAL(O(log(n))).
Namely, it follows from the next results together with Proposition 12 that (2.) implies all the other
conditions in Theorem 16. As discussed above the main idea is to color inductively along the
decompositions.

Proposition 13. Let Π = (Σ,V, E) be an LCL that admits `-full set V ′ ⊆ V for some ` > 0. Then
Π admits a TOAST algorithm that produces a Π-coloring for every (2`+ 2)-toast D.

Proof sketch. Our aim is to build a partial extending function. Set q := 2` + 2. Let E be a piece
in a q-toast D and suppose that D1, . . . , Dk ∈ D are subsets of E such that the boundaries are
separated. Suppose, moreover, that we have defined inductively a coloring of half-edges of vertices
in D =

⋃
Di using only vertex configurations from V ′ such that every edge configuration E is

satisfied for every edge in D.
We handle each connected component of E \D separately. Let A be one of them. Let u ∈ A be

a boundary vertex of E. Such an vertex exists since every vertex in E has degree ∆. The distance
of u and any Di is at least 2` + 2 for every i ∈ [k]. We orient all the edges from A towards u.
Moreover if vi ∈ A is a boundary vertex of some Di we assign to vi a path Vi of length ` towards u.
Note that Vi and Vj have distance at least 1, in particular, are disjoint for i 6= j ∈ [k] . Now, until
you encounter some path Vi, color any in manner half-edges of vertices in A inductively starting at
u in such a way that edge configurations E are satisfied on every edge and only vertex configurations
from V ′ are used. Use the definition of `-full set to find a coloring of any such Vi and continue in a
similar manner until the whole A is colored.

Proposition 14 (`-full ⇒ LOCAL(O(log n))). Let Π = (Σ,V, E) be an LCL with an `-full set
V ′ ⊆ V. Then Π can be solved in O(log n) rounds in LOCAL.

Proof. The proof uses a variant of the rake-and-compress decomposition considered in [35].
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The Decomposition The decomposition is parameterized an integer `′ ≥ 1, and it decomposes
the vertices of T into 2L− 1 layers

V = V R
1 ∪ V C

1 ∪ V R
2 ∪ V C

2 ∪ V R
3 ∪ V C

3 ∪ · · · ∪ V R
L ,

with L = O(log n). We write GC
i to denote the subtree induced by the vertices

(⋃L
j=i+1 V

R
j

)
∪(⋃L−1

j=i V
C
j

)
. Similarly, GR

i is the subtree induced by the vertices
(⋃L

j=i V
R
j

)
∪
(⋃L−1

j=i V
C
j

)
. The

sets V R
i and V C

i are required to satisfy the following requirements.

� Each v ∈ V R
i has degree at most one in the graph GR

i .

� Each v ∈ V C
i has degree exactly two in the graph GC

i . Moreover, the V C
i -vertices in GC

i form
paths with s vertices, with `′ ≤ s ≤ 2`′.

For any given constant `′ ≥ 1, it was shown in [35] that such a decomposition of a tree T can be
computed in O(log n) rounds. See Figure 8 for an example of such a decomposition with `′ = 4.

The Algorithm Given such a decomposition with `′ = max{1, `−2}, Π can be solved in O(log n)
rounds by labeling the vertices in this order: V R

L , V C
L−1, V R

L−1, . . ., V R
1 , as follows. The algorithm

only uses the vertex configurations in the `-full set V ′.

Labeling V R
i Suppose all vertices in V R

L , V
C
L−1, V

R
L−1, . . . , V

C
i have been labeled using V ′. Recall

that each v ∈ V R
i has degree at most one in the graph GR

i . If v ∈ V R
i has no neighbor in V R

L ∪
V C
L−1 ∪ V R

L−1 ∪ · · · ∪ V C
i , then we can label the half edges surrounding v by any c ∈ V ′. Otherwise,

v ∈ V R
i has exactly one neighbor u in V R

L ∪V C
L−1∪V R

L−1∪· · ·∪V C
i . Suppose the vertex configuration

of u is c, where the half-edge label on {u, v} is a ∈ c. A simple observation from the definition of
`-full sets is that for any c ∈ V ′ and any a ∈ c, there exist c′ ∈ V ′ and a′ ∈ c′ in such a way that
{a, a′} ∈ E . Hence we can label the half edges surrounding v by c′ ∈ V ′ where the half-edge label
on {u, v} is a′ ∈ c′.

Labeling V C
i Suppose all vertices in V R

L , V
C
L−1, V

R
L−1, . . . , V

R
i+1 have been labeled using V ′. Recall

that the V C
i -vertices in GC

i form degree-2 paths P = (v1, v2, . . . , vs), with `′ ≤ s ≤ 2`′. Let
P ′ = (x, v1, v2, . . . , vs, y) be the path resulting from appending to P the neighbors of the two end-
points of P in GC

i . The two vertices x and y are in V R
L ∪ V C

L−1 ∪ V R
L−1 ∪ · · · ∪ V R

i+1, so they have
been assigned half-edge labels using V ′. Since P ′ contains at least `′+ 2 ≥ ` vertices, the definition
of `-full sets ensures that we can label v1, v2, . . . , vs using vertex configurations in V ′ in such a way
that the half-edge labels on {x, v1}, {v1, v2}, . . . , {vs, y} are all in E .

6.2 Necessity

We start by sketching that (2.) in Theorem 16 is necessary for BAIRE and fiid.

Theorem 17 (Bernshteyn [19]). Let Π = (Σ,V, E) be an LCL and suppose that Π ∈ BAIRE or
Π ∈ fiid. Then Π admits an `-full set V ′ ⊆ V for some ` > 0.

Proof Sketch. We start with BAIRE. Suppose that every Borel acyclic ∆-regular graph admits a
Borel solution on a τ -comeager set for every compatible Polish topology τ . In particular, this holds
for the Borel graph induced by the standard generators of the free product of ∆-copies of Z2 on
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𝑉1
𝑅

𝑉1
𝐶

𝑉2
𝑅

𝑉2
𝐶

This is an illustration of the top layers of a rake and compress decomposition that we use in proving ell-full -> LOCAL O(log n). 

Figure 8: The variant of the rake-and-compress decomposition used in the proof of Proposition 14.

the free part of the shift action on the alphabet {0, 1} endowed with the product topology. Let
F be such a solution. Write V ′ ⊆ V for the configurations of half-edge labels around vertices that
F outputs on a non-meager set. Let C be a comeager set on which F is continuous. Then, every
element of V ′ is encoded by some finite window in the shift on C, that is, for each element there are
a k ∈ N and function s : B(1, k) → {0, 1} such that F is constant on the set Ns ∩ C (where Ns is
the basic open neighbourhood determined by s, and B(1, k) is the k-neighbourhood of the identity
in the Cayley graph of the group). Since V ′ is finite, we can take t > 0 to be the maximum of such
k’s. It follows by standard arguments that V ′ is `-full for ` > 2t+ 1.

A similar argument works for the fiid, however, for the sake of brevity, we sketch a shorter
argument that uses the fact that there must be a correlation decay for factors of iid’s. Let Π ∈ fiid.
That is, there is an Aut(T )-equivariant measurable function from iid’s on T (without colored edges
this time) into the space of Π-colorings. Let V ′ be the set of half-edges configurations around
vertices that have non-zero probability to appear. Let u, v ∈ T be vertices of distance k0 ∈ N. By
[6] the correlation between the configurations around u and v tends to 0 as k0 → ∞. This means
that if the distance is big enough, then all possible pairs of V ′ configurations need to appear.

To finish the proof of Theorem 16 we need to demonstrate the following theorem. Note that
LOCAL(no(1)) = LOCAL(O(log n)) according to the ω(log n) – no(1) complexity gap [35].

Theorem 18. Let Π = (Σ,V, E) be an LCL solvable in LOCAL(no(1)) rounds. Then there exists
an `-full set V ′ ⊆ V for some ` ≥ 2.

The rest of the section is devoted to the proof of Theorem 18. We start with the high-level
idea of the proof. A natural attempt for showing LOCAL(no(1)) ⇒ `-full is to simply take any
LOCAL(no(1)) algorithm A solving Π, and then take V ′ to be all vertex configurations that can
possibly occur in an output of A. It is not hard to see that this approach does not work in general,
because the algorithm might use a special strategy to label vertices with degree smaller than ∆.
Specifically, there might be some vertex configuration c used by A so that some a ∈ c will only be
used to label virtual half edges. It will be problematic to include c in V ′.

To cope with this issue, we do not deal with general bounded-degree trees. Instead, we construct
recursively a sequence (W ∗1 ,W

∗
2 , . . . ,W

∗
L) of sets of rooted, layered, and partially labeled tree in a

special manner. A tree T is included in W ∗i if it can be constructed by gluing a multiset of rooted
trees in W ∗i−1 and a new root vertex r in a certain fixed manner. A vertex is said to be in layer i if
it is introduced during the i-th step of the construction, i.e., it is introduced as the root r during
the construction of W ∗i from W ∗i−1. All remaining vertices are said to be in layer 0.

We show that each T ∈ W ∗L admits a correct labeling that extends the given partial labeling,
as these partial labelings are computed by a simulation of A. Moreover, in these correct labelings,
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the variety of possible configurations of half-edge labels around vertices in different non-zero layers
is the same for each layer. This includes vertices of non-zero layer whose half-edges are labeled by
the given partial labeling. We simply pick V ′ to be the set of all configurations of half-edge labels
around vertices that can appear in a non-zero layer in a correct labeling of a tree T ∈ W ∗L. Our
construction ensures that each c ∈ V ′ appears as the labeling of some degree-∆ vertex in some tree
that we consider.

The proof that V ′ is an `-full set is based on finding paths using vertices of non-zero layers
connecting two vertices with any two vertex configurations in V ′ in different lengths. These paths
exist because the way rooted trees inW ∗i−1 are glued together in the construction ofW ∗i is sufficiently

flexible. The reason that we need A to have complexity LOCAL(no(1)) is that the construction of
the trees can be parameterized by a number w so that all the trees have size polynomial in w and
the vertices needed to be assigned labeling are at least distance w apart from each other. Since the
number of rounds of A executed on trees of size wO(1) is much less than w, each labeling assignment
can be calculated locally and independently. The construction of the trees as well as the analysis
are based on a machinery developed in [35]. Specifically, we will consider the equivalence relation
?∼ defined in [35] and prove some of its properties, including a pumping lemma for bipolar trees.

The exact definition of
?∼ in this paper is different from the one in [35] because the mathematical

formalism describing LCL problems in this paper is different from the one in [35]. After that, we
will consider a procedure for gluing trees parameterized by a labeling function f similar to the
one used in [35]. We will apply this procedure iteratively to generate a set of trees. We will show
that the desired `-full set V ′ ⊆ V can be constructed by considering the set of all possible correct
labeling of these trees.

The Equivalence Relation
?∼ We consider trees with a list of designated vertices v1, v2, . . . , vk

called poles. A rooted tree is a tree with one pole r, and a bipolar tree is a tree with two poles s
and t. For a tree T with its poles S = (v1, v2, . . . , vk) with deg(vi) = di < ∆, we denote by h(T,S)

the function that maps each choice of the virtual half-edge labeling surrounding the poles of T to
YES or NO, indicating whether such a partial labeling can be completed into a correct complete
labeling of T . More specifically, consider

X = (I1, I2, . . . , Ik),

where Ii is a size-(∆−di) multiset of labels in Σ, for each 1 ≤ i ≤ k. Then h(T,S)(X) = YES if there
is a correct labeling of T such that the ∆ − di virtual half-edge labels surrounding vi are labeled
by Ii, for each 1 ≤ i ≤ k. This definition can be generalized to the case T is already partially
labeled in the sense that some of the half-edge labels have been fixed. In this case, h(T,S)(X) = NO
whenever X is incompatible with the given partial labeling.

Let T be a tree with poles S = (v1, v2, . . . , vk) and let T ′ be another tree with poles S′ =

(v′1, v
′
2, . . . , v

′
k) such that deg(vi) = deg(v′i) = di for each 1 ≤ i ≤ k. Then we write T1

?∼ T2 if
h(T,S) = h(T ′,S′).

Given an LCL problem Π, it is clear that the number of equivalence classes of rooted trees and
bipolar trees w.r.t.

?∼ is finite. For a rooted tree T , denote by Class1(T ) the equivalence class of T .
For a bipolar tree H, denote by Class2(H) the equivalence class of H.

Subtree Replacement The following lemma provides a sufficient condition that the equivalence
class of a tree T is invariant of the equivalence class of its subtree T ′. We note that a real half edge
in T might become virtual in its subtree T ′. Consider a vertex v in T ′ and its neighbor u that is in
T but not in T ′. Then the half edge (v, {u, v}) is real in T and virtual in T ′.
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Lemma 6 (Replacing subtrees). Let T be a tree with poles S. Let T ′ be a connected subtree of T
induced by U ⊆ V , where V is the set of vertices in T . We identify a list of designated vertices
S′ = (v′1, v

′
2, . . . , v

′
k) in U satisfying the following two conditions to be the poles of T ′.

� S ∩ U ⊆ S′.

� Each edge e = {u, v} connecting u ∈ U and v ∈ V \ U must satisfy u ∈ S′.

Let T ′′ be another tree with poles S′′ = (v′′1 , v
′′
2 , . . . , v

′′
k) that is in the same equivalence class as T ′.

Let T ∗ be the result of replacing T ′ by T ′′ in T by identifying v′i = v′′i for each 1 ≤ i ≤ k. Then T ∗

is in the same equivalence class as T .

Proof. To prove the lemma, by symmetry, it suffices to show that starting from any correct labeling
L of T , it is possible to find a correct labeling L∗ of T ∗ in such a way that the multiset of the
virtual half-edge labels surrounding each pole in S remain the same.

Such a correct labeling L∗ of T ∗ is constructed as follows. If v ∈ V \U , then we simply adopt the
given labeling L of v in T . Next, consider the vertices in U . Set X = (I1, I2, . . . , Ik) to be the one
compatible with the labeling L of T restricted to the subtree T ′ in the sense that Ii is the multiset
of the virtual half-edge labels surrounding the pole v′i of T ′, for each 1 ≤ i ≤ k. We must have
hT ′,S′(X) = YES. Since T ′ and T ′′ are in the same equivalence class, we have hT ′′,S′′(X) = YES,
and so we can find a correct labeling L′′ of T ′′ that is also compatible with X. Combining this
labeling L′′ of the vertices U in T ′′ with the labeling L of the vertices V \ U in T , we obtain a
desired labeling L∗ of T ∗.

We verify that L∗ gives a correct labeling of T ∗. Clearly, the size-∆ multiset that labels each
vertex v ∈ V is in V, by the correctness of L and L′′. Consider any edge e = {u, v} in T ∗. Similarly,
if {u, v} ⊆ V \ U or {u, v} ∩ (V \ U) = ∅, then the size-2 multiset that labels e is in E , by the
correctness of L and L′′. For the case that e = {u, v} connects a vertex u /∈ V and a vertex
v ∈ V \ U , we must have u ∈ S′ by the lemma statement. Therefore, the label of the half edge
(u, e) is the same in both L and L∗ by our choice of L′′. Thus, the size-2 multiset that labels e is
in E , by the correctness of L.

We verify that the virtual half-edge labels surrounding each pole in S are the same in both L
and L∗. Consider a pole v ∈ S. If v ∈ V \ U , then the labeling of v is clearly the same in both L
and L∗. If v /∈ V \ U , then the condition S ∩ U ⊆ S′ in the statement implies that v ∈ S′. In this
case, the way we pick L′′ ensures that the virtual half-edge labels surrounding v ∈ S′ are the same
in both L and L∗.

In view of the proof of Lemma 6, as long as the conditions in Lemma 6 are met, we are able
to abstract out a subtree by its equivalence class when reasoning about correct labelings of a tree.
This observation will be applied repeatedly in the subsequent discussion.

A Pumping Lemma We will prove a pumping lemma of bipolar trees using Lemma 6. Suppose
Ti is a tree with a root ri for each 1 ≤ i ≤ k, then H = (T1, T2, . . . , Tk) denotes the bipolar tree
resulting from concatenating the roots r1, r2, . . . , rk into a path (r1, r2, . . . , rk) and setting the two
poles of H by s = r1 and t = rk. A simple consequence of Lemma 6 is that Class2(H) is determined
by Class1(T1),Class1(T2), . . . ,Class1(Tk). We have the following pumping lemma.

Lemma 7 (Pumping lemma). There exists a finite number `pump > 0 such that as long as k ≥
`pump, any bipolar tree H = (T1, T2, . . . , Tk) can be decomposed into H = X ◦Y ◦Z with 0 < |Y | < k
so that X ◦ Y i ◦ Z is in the same equivalence class as H for each i ≥ 0.
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Proof. Set `pump to be the number of equivalence classes for bipolar trees plus one. By the pi-
geon hole principle, there exist 1 ≤ a < b ≤ k such that (T1, T2, . . . , Ta) and (T1, T2, . . . , Tb)
are in the same equivalence class. Set X = (T1, T2, . . . , Ta), Y = (Ta+1, Ta+2, . . . , Tb), and Z =
(Tb+1, Tb+2, . . . , Tk). As we already know that Class2(X) = Class2(X ◦ Y ), Lemma 6 implies that
Class2(X ◦ Y ) = Class2(X2 ◦ Y ) by replacing X by X ◦ Y in the bipolar tree X ◦ Y . Similarly,
Class2(X ◦ Y i) is the same for for each i ≥ 0. Applying Lemma 6 again to replace X ◦ Y by X ◦ Y i

in H = X ◦ Y ◦ Z, we conclude that X ◦ Y i ◦ Z is in the same equivalence class as H for each
i ≥ 0.

A Procedure for Gluing Trees Suppose that we have a set of rooted trees W . We devise a
procedure that generates a new set of rooted trees by gluing the rooted trees in W together. This
procedure is parameterized by a labeling function f . Consider a bipolar tree

H = (T l1, T
l
2, . . . , T

l
`pump

, Tm, T r1 , T
r
2 , . . . , T

r
`pump

)

where Tm is formed by attaching the roots r1, r2, . . . , r∆−2 of the rooted trees Tm1 , Tm2 , . . . , Tm∆−2

to the root rm of Tm.
The labeling function f assigns the half-edge labels surrounding rm based on

Class2(H l),Class1(Tm1 ),Class1(Tm2 ), . . . ,Class1(Tm∆−2),Class2(Hr)

where H l = (T l1, T
l
2, . . . , T

l
`pump

) and Hr = (T r1 , T
r
2 , . . . , T

r
`pump

).
We write Tm∗ to denote the result of applying f to label the root rm of Tm in the bipolar tree

H, and we write
H∗ = (T l1, T

l
2, . . . , T

l
`pump

, Tm∗ , T
r
1 , T

r
2 , . . . , T

r
`pump

)

to denote the result of applying f to H. We make the following observation.

Lemma 8 (Property of f). The two equivalence classes Class1(Tm∗ ) and Class2(H∗) are determined
by

Class2(H l),Class1(Tm1 ),Class1(Tm2 ), . . . ,Class1(Tm∆−2),Class2(Hr),

and the labeling function f .

Proof. By Lemma 6, once the half-edge labelings of the root rm of Tm is fixed, Class1(Tm∗ ) is de-
termined by Class1(Tm1 ),Class1(Tm2 ), . . . ,Class1(Tm∆−2). Therefore, indeed Class1(Tm∗ ) is determined
by

Class2(H l),Class1(Tm1 ),Class1(Tm2 ), . . . ,Class1(Tm∆−2),Class2(Hr),

and the labeling function f . Similarly, applying Lemma 6 to the decomposition of H∗ into H l, Tm∗ ,
and Hr, we infer that Class2(H∗) depends only on Class2(H l), Class1(Tm∗ ), and Class2(Hr).

The three sets of trees Xf (W ), Yf (W ), and Zf (W ) are constructed as follows.

� Xf (W ) is the set of all rooted trees resulting from appending ∆ − 2 arbitrary rooted trees
T1, T2, . . . , T∆−2 in W to a new root vertex r.

� Yf (W ) is the set of bipolar trees constructed as follows. For each choice of 2`pump + 1 rooted
trees T l1, T

l
2, . . . , T

l
`pump

, Tm, T r1 , T
r
2 , . . . , T

r
`pump

from Xf (W ), concatenate them into a bipolar
tree

H = (T l1, T
l
2, . . . , T

l
`pump

, Tm, T r1 , T
r
2 , . . . , T

r
`pump

),

let H∗ be the result of applying the labeling function f to H, and then add H∗ to Yf (W ).
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� Zf (W ) is the set of rooted trees constructed as follows. For each

H∗ = (T l1, T
l
2, . . . , T

l
`pump

, Tm∗ , T
r
1 , T

r
2 , . . . , T

r
`pump

) ∈ Yf (W ),

add (T l1, T
l
2, . . . , T

l
`pump

, Tm∗ ) to Zf (W ), where we set the root of T l1 as the root, and add

(Tm∗ , T
r
1 , T

r
2 , . . . , T

r
`pump

) to Zf (W ), where we set the root of T r`pump
as the root.

We write Class1(S) =
⋃
T∈S{Class1(T )} and Class2(S) =

⋃
H∈S{Class2(H)}, and we make the

following observation.

Lemma 9 (Property ofXf (W ), Yf (W ), and Zf (W )). The three sets of equivalence classes Class1(Xf (W )),
Class2(Yf (W )), and Class1(Zf (W )) depend only on Class1(W ) and the labeling function f .

Proof. This is a simple consequence of Lemmas 6 and 8.

A Fixed Point W ∗ Given a fixed labeling function f , we want to find a set of rooted trees W ∗

that is a fixed point for the procedure Zf in the sense that

Class1(Zf (W ∗)) = Class1(W ∗).

To find such a set W ∗, we construct a two-dimensional array of rooted trees {Wi,j}, as follows.

� For the base case, W1,1 consists of only the one-vertex rooted tree.

� Given that Wi,j as been constructed, we define Wi,j+1 = Zf (Wi,j).

� Given that Wi,j for all positive integers j have been constructed, Wi+1,1 is defined as follows.
Pick bi as the smallest index such that Class1(Wi,bi) = Class1(Wi,ai) for some 1 ≤ ai < bi. By
the pigeon hole principle, the index bi exists, and it is upper bounded by 2C , where C is the
number of equivalence classes for rooted trees. We set

Wi+1,1 = Wi,ai ∪Wi,ai+1 ∪ · · · ∪Wi,bi−1.

We show that the sequence Class1(Wi,ai),Class1(Wi,ai+1),Class1(Wi,ai+2), . . . is periodic with a
period ci = bi − ai.

Lemma 10. For any i ≥ 1 and for any j ≥ ai, we have Class1(Wi,j) = Class1(Wi,j+ci), where
ci = bi − ai.

Proof. By Lemma 9, Class1(Wi,j) depends only on Class1(Wi,j−1). Hence the lemma follows from
the fact that Class1(Wi,bi) = Class1(Wi,ai).

Next, we show that Class1(W2,1) ⊆ Class1(W3,1) ⊆ Class1(W4,1) ⊆ · · · .

Lemma 11. For any i ≥ 2, we have Class1(Wi,1) ⊆ Class1(Wi,j) for each j > 1, and so Class1(Wi,1) ⊆
Class1(Wi+1,1).

Proof. Since Wi,1 =
⋃
ai−1≤l≤bi−1−1Wi−1,l, we have⋃

ai−1+j−1≤l≤bi−1+j

Wi−1,l ⊆Wi,j
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according to the procedure of constructing Wi,j . By Lemma 10,

Class1

 ⋃
ai−1≤l≤bi−1−1

Wi−1,l

 = Class1

 ⋃
ai−1+j−1≤l≤bi−1+j

Wi−1,l


for all j ≥ 1, and so we have Class1(Wi,1) ⊆ Class1(Wi,j) for each j > 1. The claim Class1(Wi,1) ⊆
Class1(Wi+1,1) follows from the fact that Wi+1,1 =

⋃
ai≤l≤bi−1Wi,l.

Set i∗ to be the smallest index i ≥ 2 such that Class1(Wi,1) = Class1(Wi+1,1). By the pigeon
hole principle and Lemma 11, the index i∗ exists, and it is upper bounded by C, the number of
equivalence classes for rooted trees. We set

W ∗ = Wi∗,1.

The following lemma shows that Class1(Zf (W ∗)) = Class1(W ∗), as needed.

Lemma 12. For any i ≥ 2, if Class1(Wi,1) = Class1(Wi+1,1), then Class1(Wi,j) is the same for all
j ≥ 1.

Proof. By Lemma 10 and the way we construct Wi+1,1, we have

Class1(Wi,j) ⊆ Class1(Wi+1,1) for each j ≥ ai.

By Lemma 11, we have

Class1(Wi,1) ⊆ Class1(Wi,j) for each j > 1.

Therefore, Class1(Wi,1) = Class1(Wi+1,1) implies that Class1(Wi,j) = Class1(Wi,1) for each j ≥ ai.
Hence we must have Class1(Zf (Wi,1)) = Class1(Wi,1), and so Class1(Wi,j) is the same for all j ≥
1.

We remark that simply selecting W ∗ to be any set such that Class1(Zf (W ∗)) = Class1(W ∗) is
not enough for our purpose. As we will later see, it is crucial that the set W ∗ is constructed by
iteratively applying the function Zf and taking the union of previously constructed sets.

A Sequence of Sets of Trees We define W ∗1 = W ∗ and W ∗i = Zf (W ∗i−1) for each 1 < i ≤ L,
where L is some sufficiently large number to be determined.

The way we choose W ∗ guarantees that Class1(W ∗i ) = Class1(W ∗) for all 1 ≤ i ≤ L. For
convenience, we write X∗i = Xf (W ∗i ) and Y ∗i = Yf (W ∗i ). Similarly, Class1(X∗i ) is the same for all
1 ≤ i ≤ L and Class2(Y ∗i ) is the same for all 1 ≤ i ≤ L.

Our analysis will rely on the assumption that all rooted trees in W ∗ admit correct labelings.
Whether this is true depends only on Class1(W ∗), which depends only on the labeling function f .
We say that f is feasible if it leads to a set W ∗ where all the rooted trees therein admit correct
labelings. The proof that a feasible labeling function f exists is deferred.

The assumption that f is feasible implies that all trees in W ∗i , X∗i , and Y ∗i , for all 1 ≤ i ≤ L,
admit correct labelings. All rooted trees in X∗i admit correct labelings because they are subtrees
of the rooted trees in W ∗i+1. A correct labeling of any bipolar tree H ∈ Y ∗i can be obtained by
combining any correct labelings of the two rooted trees in W ∗i+1 resulting from H.
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Layers of Vertices We assign a layer number λ(v) to each vertex v in a tree based on the step
that v is introduced in the construction

W ∗1 →W ∗2 → · · · →W ∗L.

If a vertex v is introduced as the root vertex of a tree in X∗i = Xf (W ∗i ), then we say that the
layer number of v is λ(v) = i ∈ {1, 2, . . . , L}. A vertex v has λ(v) = 0 if it belongs to a tree in W ∗1 .

For any vertex v with λ(v) = i in a tree T ∈ X∗j with i ≤ j, we write Tv to denote the subtree
of T such that Tv ∈ X∗i where v is the root of Tv.

We construct a sequence of sets R1, R2, . . . , RL as follows. We go over all rooted trees T ∈ X∗L,
all possible correct labeling L of T , and all vertices v in T with λ(v) = i ∈ {1, 2, . . . , L}. Suppose
that the ∆ − 2 rooted trees in the construction of Tv ∈ X∗i = Xf (W ∗i ) are T1, T2, . . ., T∆−2, and
let ri be the root of Ti. Consider the following parameters.

� ci = Class1(Ti).

� ai is the real half-edge label of v in Tv for the edge {v, ri}, under the correct labeling L of T
restricted to Tv.

� I is the size-2 multiset of virtual half-edge labels of v in Tv, under the correct labeling L of
T restricted to Tv.

Then we add (c1, c2, . . . , c∆−2, a1, a2, . . . , a∆−2, I) to Ri.

Lemma 13. For each 1 ≤ i < L, Ri is determined by Ri+1.

Proof. We consider the following alternative way of constructing Ri from Ri+1. Each rooted tree
T ′ in W ∗i+1 = Zf (W ∗i ) can be described as follows.

� Start with a path (r1, r2, . . . , r`pump+1), where r1 is the root of T ′.

� For each 1 ≤ j ≤ `pump + 1, append ∆− 2 rooted trees Tj,1, Tj,2, . . . , Tj,∆−2 ∈W ∗i to rj .

� Assign the labels to the half edges surrounding r`pump+1 according to the labeling function f .

Now, consider the function φ that maps each equivalence class c for rooted trees to a subset of
Σ defined as follows: a ∈ φ(c) if there exist

(c1, c2, . . . , c∆−2, a1, a2, . . . , a∆−2, I) ∈ Ri+1

and 1 ≤ j ≤ ∆− 2 such that c = cj and a = aj .
We go over all possible T ′ ∈W ∗i+1 = Zf (W ∗i ). Note that the root r of T ′ has exactly one virtual

half edge. For each b ∈ Σ such that {a, b} ∈ E for some a ∈ φ(Class1(T ′)), we go over all possible
correct labelings L of T ′ where the virtual half edge of r is labeled b. For each 1 ≤ j ≤ `pump + 1,
consider the following parameters.

� cl = Class1(Tj,l).

� al is the half-edge label of rj for the edge {rj , rj,l}.

� I is the size-2 multiset of the remaining two half-edge labels of v.
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Then we add (c1, c2, . . . , c∆−2, a1, a2, . . . , a∆−2, I) to Ri.
This construction of Ri is equivalent to the original construction of Ri because a correct labeling

of T ′ ∈ W ∗i can be extended to a correct labeling of a tree T ∈ X∗L that contains T ′ as a subtree
if and only if the virtual half-edge label of the root r of T ′ is b ∈ Σ such that {a, b} ∈ E for some
a ∈ φ(Class1(T ′)).

It is clear that this construction of Ri only depends on Class1(W ∗i ), the labeling function f , and
the function φ, which depends only on Ri+1. Since the labeling function f is fixed and Class1(W ∗i )
is the same for all i, we conclude that Ri depends only on Ri+1.

Lemma 14. We have R1 ⊆ R2 ⊆ · · · ⊆ RL.

Proof. For the base case, we show that RL−1 ⊆ RL. In fact, our proof will show that Ri ⊆ RL for
each 1 ≤ i < L. Consider any

(c1, c2, . . . , c∆−2, a1, a2, . . . , a∆−2, I) ∈ Ri.

Then there is a rooted tree T ∈ X∗i that is formed by attaching ∆− 2 rooted trees of equivalence
classes c1, c2, . . . , c∆−2 to the root vertex so that if we label the half edges surrounding the root
vertex according to a1, a2, . . . , a∆−2, and I, then this partial labeling can be completed into a
correct labeling of T .

Because Class1(W ∗i ) = Class1(W ∗L), there is also a rooted tree T ′ ∈ X∗L that is formed by
attaching ∆− 2 rooted trees of equivalence classes c1, c2, . . . , c∆−2 to the root vertex. Therefore, if
we label the root vertex of T ′ in the same way as we do for T , then this partial labeling can also
be completed into a correct labeling of T ′. Hence we must have

(c1, c2, . . . , c∆−2, a1, a2, . . . , a∆−2, I) ∈ RL.

Now, suppose that we already have Ri ⊆ Ri+1 for some 1 < i < L. We will show that
Ri−1 ⊆ Ri. Denote by φi and φi+1 the function φ in Lemma 13 constructed from Ri and Ri+1.
We have φi(c) ⊆ φi+1(c) for each equivalence class c, because Ri ⊆ Ri+1. Therefore, in view of the
alternative construction described in the proof of Lemma 13, we have Ri−1 ⊆ Ri.

The Set of Vertex Configurations V ′ By Lemmas 13 and 14, if we pick L to be sufficient
large, we can have R1 = R2 = R3. More specifically, if we pick

L ≥ C∆−2 ·
(
|Σ|+ 1

|Σ| − 1

)
+ 3,

then there exists an index 3 ≤ i ≤ L such that Ri = Ri−1, implying that R1 = R2 = R3. Here C is

the number of equivalence classes for rooted trees and
(|Σ|+1
|Σ|−1

)
is the number of size-2 multisets of

elements from Σ.
The set V ′ is defined by including all size-∆ multisets {a1, a2, . . . , a∆−2} ∪ I such that

(c1, c2, . . . , c∆−2, a1, a2, . . . , a∆−2, I) ∈ R1

for some c1, c2, . . . , c∆−2.
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The Set V ′ is `-full To show that the set V ′ is `-full, we consider the subset V∗ ⊆ V ′ defined
by the set of vertex configurations used by the labeling function f in the construction of Yf (W ∗i ).
The definition of V∗ is invariant of i as Class1(W ∗i ) is the same for all i. Clearly, for each x ∈ V∗,
there is a rooted tree T ∈ W ∗2 where the root of a subtree T ′ ∈ X∗1 of T has its size-∆ multiset of
half-edge labels fixed to be x by f , and so V∗ ⊆ V ′.

For notational simplicity, we write x
k↔ x′ if there is a correct labeling of a k-vertex path

(v1, v2, . . . , vk) using only vertex configurations in V ′ so that the vertex configuration of v1 is x and
the vertex configuration of vk is x′. If it is further required that the half-edge label of v1 for the

edge {v1, v2} is a ∈ x, then we write (x, a)
k↔ x′. The notation (x, a)

k↔ (x′, a′) is defined similarly.

Lemma 15. For any x ∈ V ′ \ V∗ and a ∈ x, there exist a vertex configuration x′ ∈ V∗ and a

number 2 ≤ k ≤ 2`pump + 1 such that (x, a)
k↔ x′.

Proof. Let T ∈W ∗L be chosen so that there is a correct labeling L where x is a vertex configuration
of some vertex v with λ(v) = 2.

To prove the lemma, it suffices to show that for each of the ∆ neighbors u of v, it is possible to
find a path P = (v, u, . . . , w) meeting the following conditions.

� w is a vertex whose half-edge labels have been fixed by f . This ensures that the vertex
configuration of w is in V∗.

� All vertices in P are within layers 1,2, and 3. This ensures that the vertex configuration of
all vertices in P are in V ′.

� The number of vertices k in P satisfies 2 ≤ k ≤ 2`pump + 1.

We divide the proof into three cases. Refer to Figure 9 for an illustration, where squares are
vertices whose half-edge labels have been fixed by f .

Case 1 Consider the subtree Tv ∈ X∗2 of T whose root is v. In view of the construction of the set
Xf (W ∗2 ), v has ∆− 2 children u1, u2, . . . , u∆−2 in Tv, where the subtree Ti rooted at ui is a rooted
tree in W ∗2 .

For each 1 ≤ i ≤ ∆−2, according to the structure of the trees in the set W ∗2 = Zf (W ∗1 ), there is
a path (ui = w1, w2, . . . , w`pump+1) in Ti containing only layer-1 vertices, where the half-edge labels
of w`pump+1 have been fixed by f . Hence P = (v, ui = w1, w2, . . . , w`pump+1) is a desired path with
k = `pump + 2 vertices.

Case 2 Consider the subtree T ′ ∈ W ∗3 = Zf (W ∗2 ) that contains v in T . Similarly, according to
the structure of the trees in the set W ∗3 = Zf (W ∗2 ), there is a path (r = w′1, w

′
2, . . . , w

′
`pump+1) in

T ′ containing only layer-2 vertices so that r is the root of T ′, v = w′i for some 1 ≤ i′ ≤ `pump + 1,
and the half-edge labels of w′`pump+1 have been fixed by f . Since x ∈ V ′ \V∗, we have v 6= w′`pump+1.

Hence P = (v = w′i, w
′
i+1, . . . , w

′
`pump+1) is a desired path with 2 ≤ k ≤ `pump + 1 vertices.

Case 3 There is only one remaining neighbor of v to consider. In view of the construction
of Xf (W ∗3 ), there is a layer-3 vertex v′ adjacent to the vertex r, the root of the tree T ′ ∈ W ∗3
considered in the previous case. If the half-edge labels of v′ have been fixed by f , then P = (v =
w′i, w

′
i−1, . . . , w

′
1 = r, v′) is a desired path. Otherwise, similar to the analysis in the previous case,

we can find a path P ′ = (v′, . . . , w) connecting v′ to a vertex w whose half-edge labels have been
fixed by f . All vertices in P ′ are of layer-3, and the number of vertices in P ′ is within [2, `pump +1].
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Combining P ′ with the path (v = w′i, w
′
i−1, . . . , w

′
1 = r, v′), we obtain the desired path P whose

number of vertices satisfies 2 ≤ k ≤ 2`pump + 1.

𝑣

𝑢1

𝑢𝑖

𝑢∆−2

𝑤1𝑤2𝑤ℓpump+1
…

…
…

𝑤1
′𝑤2

′𝑤ℓpump+1
′ …

𝑟

𝑤 𝑣′

…

𝑃′

Layer 3

Layer 2

Layer 1

This is an illustration for first lemma for the proof that N’ is ell-full. 
Squares are vertices whose labels have been fixed by the labeling function f.
The drawing shows that v is reachable to labeled vertices via paths of finite length via any of its Delta neighbors. 

Figure 9: An illustration for the proof of Lemma 15.

For Lemma 16, note that if a appears more than once in the multiset x, then we still have
a ∈ x \ {a}.

Lemma 16. For any a ∈ x ∈ V∗, a′ ∈ x′ ∈ V∗, and 0 ≤ t ≤ `pump − 1, we have (x, b)
k↔ (x′, b′)

for some b ∈ x \ {a} and b′ ∈ x′ \ {a′} with k = 2`pump + 4 + t.

Proof. For any a ∈ x ∈ V∗, we can find a rooted tree Tx,a ∈ W ∗2 such that the path (v1, v2, . . .,
v`pump+1) of the layer-1 vertices in Tx,a where v1 = r is the root of Tx,a satisfies the property that the
half-edge labels of v`pump+1 have been fixed to x by f where the half-edge label for {v`pump , v`pump+1}
is in x \ {a}.

Now, observe that for any choice of (∆− 2)(`pump + 1) rooted trees

{Ti,j}1≤i≤`pump+1,1≤j≤∆−2

in W ∗2 , there is a rooted tree T ′ ∈ W ∗3 = Zf (W ∗2 ) formed by appending Ti,1, Ti,2, . . ., Ti,∆−2 to ui
in the path (u1, u2, . . ., u`pump+1) and fixing the half-edge labeling of u`pump+1 by f . All vertices in
(u1, u2, . . . , u`pump+1) are of layer-2.

We choose any T ′ ∈ W ∗2 with Ti,j = Tx,a and Ti′,j′ = Tx′,a′ such that i′ − i = t + 1. The
possible range of t is [0, `pump − 1]. Consider any T ∈ W ∗L that contains T ′ as its subtree,
and consider any correct labeling of T . Then the path P resulting from concatenating the path
(v`pump+1, v`pump , . . . , v1) in Tx,a, the path (ui, ui+1, . . . , ui′), and the path (v′1, v

′
2, . . . , v

′
`pump+1) in

Tx′,a′ shows that (x, b)
k↔ (x′, b′) for k = (`pump + 1) + (t+ 2) + (`pump + 1) = 2`pump + 4 + t. See

Figure 10 for an illustration.
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For the rest of the proof, we show that the desired rooted tree Tx,a ∈ W ∗2 exists for any
a ∈ x ∈ V∗. For any x ∈ V∗, we can find a bipolar tree

H∗ = (T l1, T
l
2, . . . , T

l
`pump

, Tm∗ , T
r
1 , T

r
2 , . . . , T

r
`pump

) ∈ Y ∗1 = Yf (W ∗1 )

such that the vertex configuration of the root rm of Tm∗ is fixed to be x by the labeling function f .
Then, for any a ∈ x, at least one of the two rooted trees in W ∗2 = Zf (W ∗1 ) resulting from cutting
H∗ satisfies the desired requirement.

𝑥′

Layer 2

Layer 1

𝑥

𝑏

𝑏′

𝑣1𝑣2𝑣ℓpump+1
…

𝑣1
′𝑣2

′𝑣ℓpump+1
′ …

𝑢𝑖𝑢𝑖′

2 ≤ 𝑖′ − 𝑖 + 1 ≤ ℓpump + 1

This is an illustration for second lemma for the proof that N’ is ell-full. 
The drawing shows that we can connect vertex configurations x and x’ via paths for various lengths. 

Figure 10: An illustration for the proof of Lemma 16.

In the subsequent discussion, the length of a path refers to the number of edges in a path. In
particular, the length of a k-vertex path is k − 1.

The following lemma is proved by iteratively applying Lemma 16 via intermediate vertex con-
figurations x̃ ∈ V∗.

Lemma 17. For any a ∈ x ∈ V∗ and a′ ∈ x′ ∈ V∗, we have (x, b)
k↔ (x′, b′) for some b ∈ x \ {a}

and b′ ∈ x′ \ {a′} for all k ≥ 6`pump + 10.

Proof. By applying Lemma 16 for three times, we infer that Lemma 16 also works for any path
length k− 1 = (k1 − 1) + (k2 − 1) + (k3 − 1), where ki − 1 = 2`pump + 3 + ti for 0 ≤ ti ≤ `pump − 1.

Specifically, we first apply Lemma 16 to find a path realizing (x, b)
k1↔ x̃ for some x̃ ∈ V∗, and

for some b ∈ x \ {a}. Let ã ∈ x̃ be the real half-edge label used in the last vertex of the path. We

extend the length of this path by k2 − 1 by attaching to it the path realizing (x̃, b̃)
k2↔ x̃, for some

b̃ ∈ x̃ \ {ã}. Finally, let c̃ ∈ x̃ be the real half-edge label used in the last vertex of the current path.

We extend the length of the current path by k3 by attaching to it the path realizing (x̃, d̃)
k3↔ (x′, b′),

for some d̃ ∈ x̃ \ {x̃}, and for some b′ ∈ x′ \ {a′}. The resulting path realizes (x, b)
k↔ (x′, b′) for

some b ∈ x \ {a} and b′ ∈ x′ \ {a′}.
Therefore, Lemma 16 also works with path length of the form k − 1 = 6`pump + 9 + t, for any

t ∈ [0, 3`pump − 3].
Any k − 1 ≥ 6`pump + 9 can be written as k − 1 = b(2`pump + 3) + (6`pump + 9 + t), for some

t ∈ [0, 3`pump − 3] and some integer b ≥ 0. Therefore, similar to the above, we can find a path
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showing (x, b)
k↔ (x′, b′) by first applying Lemma 16 with path length 2`pump + 3 for b times, and

then applying the above variant of Lemma 16 to extend the path length by 6`pump + 9 + t.

We show that Lemmas 15 and 17 imply that V ′ is `-full for some `.

Lemma 18 (V ′ is `-full). The set V ′ is `-full for ` = 10`pump + 10.

Proof. We show that for any target path length k − 1 ≥ 10`pump + 9, and for any a ∈ x ∈ V∗ and

a′ ∈ x′ ∈ V∗, we have (x, a)
k↔ (x′, a′).

By Lemma 15, there exists a vertex configuration x̃ ∈ V∗ so that we can find a path P realizing

(x, a)
`1↔ x̃ for some path length 1 ≤ (`1−1) ≤ 2`pump. Similarly, there exists a vertex configuration

x̃′ ∈ V∗ so that we can find a path P ′ realizing (x′, a′)
`2↔ x̃′ for some path length 1 ≤ (`2 − 1) ≤

2`pump.
Let ã be the real half-edge label for x̃ in P , and let ã′ be the real half-edge label for x̃′ in P ′. We

apply Lemma 17 to find a path P̃ realizing (x, b)
˜̀
↔ (x′, b′) for some b ∈ x̃ \ {ã} and b′ ∈ x̃′ \ {ã′}

with path length
˜̀− 1 = (k − 1)− (`1 − 1)− (`2 − 1) ≥ 6`pump + 9.

The path formed by concatenating P1, P̃ , and P2 shows that (x, a)
k↔ (x′, a′).

A Feasible Labeling Function f exists We show that a feasible labeling function f exists
given that Π can be solved in LOCAL(no(1)) rounds. We will construct a labeling function f in such
a way each equivalence class in Class1(W ∗) contains only rooted trees that admit legal labeling.
That is, for each c ∈ Class1(W ∗), the mapping h associated with c satisfies h(X) = YES for some
X.

We will consider a series of modifications in the construction

W → Xf (W )→ Yf (W )→ Zf (W )

that do not alter the sets of equivalence classes in these sets, conditioning on the assumption that
all trees that we have processed admit correct labelings. That is, whether f is feasible is invariant
of the modifications.

Applying the Pumping Lemma Let w > 0 be some target length for the pumping lemma. In
the construction of Yf (W ), when we process a bipolar tree

H = (T l1, T
l
2, . . . , T

l
`pump

, Tm, T r1 , T
r
2 , . . . , T

r
`pump

),

we apply Lemma 7 to the two subtrees H l = (T l1, T
l
2, . . . , T

l
`pump

) and Hr = (T r1 , T
r
2 , . . . , T

r
`pump

) to

obtain two new bipolar trees H l
+ and Hr

+. The s-t path in the new trees H l
+ and Hr

+ contains w+x
vertices, for some 0 ≤ x < `pump. The equivalence classes do not change, that is, Class2(H l) =
Class2(H l

+) and Class2(Hr) = Class2(Hr
+).

We replace H l by H l
+ and replace Hr by Hr

+ in the bipolar tree H. Recall that the outcome of
applying the labeling function f to the root r of the rooted tree T`pump+1 depends only on

Class2(H l),Class1(Tm1 ),Class1(Tm2 ), . . . ,Class1(Tm∆−2),Class2(Hr),

so applying the pumping lemma to H l and Hr during the construction of Yf (W ) does not alter
Class1(Tm∗ ) and Class2(H∗) for the resulting bipolar tree H∗ and its middle rooted tree Tm∗ , by
Lemma 8.
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Reusing Previous Trees During the construction of the fixed point W ∗, we remember all
bipolar trees to which we have applied the feasible function f .

During the construction of Yf (W ). Suppose that we are about to process a bipolar tree H, and
there is already some other bipolar tree H̃ to which we have applied f before so that Class2(H l) =
Class2(H̃ l), Class1(Tmi ) = Class1(T̃mi ) for each 1 ≤ i ≤ ∆ − 2, and Class2(Hr) = Class2(H̃r). Then
we replace H by H̃, and then we process H̃ instead.

By Lemma 8, this modification does not alter Class1(Tm∗ ) and Class2(H∗) for the resulting
bipolar tree H∗.

Not Cutting Bipolar Trees We consider the following different construction of Zf (W ) from
Yf (W ). For each H∗ ∈ Yf (W ), we simply add two copies of H∗ to Zf (W ), one of them has
r = s and the other one has r = t. That is, we do not cut the bipolar tree H∗, as in the original
construction of Zf (W ).

In general, this modification might alter Class1(Zf (W )). However, it is not hard to see that
if all trees in Yf (W ) already admit correct labelings, then Class1(Zf (W )) does not alter after the
modification.

Specifically, let T be a rooted tree in Zf (W ) with the above modification. Then T is identical
to a bipolar tree H∗ = (T1, T2, . . . , Tk) ∈ Yf (W ), where there exists some 1 < i < k such that the
root ri of Ti has its half-edge labels fixed by f . Suppose that the root of T is the root r1 of T1. If
we do not have the above modification, then the rooted tree T ′ added to Zf (W ) corresponding to
T is (T1, T2, . . . , Ti), where the root of T ′ is also r1.

Given the assumption that all bipolar trees in Yf (W ) admit correct labelings, it is not hard
to see that Class1(T ′) = Class1(T ). For any correct labeling L′ of T ′, we can extend the labeling
to a correct labeling L of T by labeling the remaining vertices according to any arbitrary correct
labeling of H∗. This is possible because the labeling of ri has been fixed. For any correct labeling
L of T , we can obtain a correct labeling L′ of T ′ by restricting L to T ′.

Simulating a LOCAL Algorithm We will show that there is a labeling function f that makes
all the rooted trees in W ∗ to admit correct solutions, where we apply the above three modifications
in the construction of W ∗. In view of the above discussion, such a function f is feasible.

The construction of W ∗ involves only a finite number k of iterations of Zf applied to some
previously constructed rooted trees. If we view the target length w of the pumping lemma as a
variable, then the size of a tree in W ∗ can be upper bounded by O(wk).

Suppose that we are given an arbitrary no(1)-round LOCAL algorithm A that solves Π. It is
known [35, 32] that randomness does not help for LCL problems on bounded-degree trees with
round complexity Ω(log n), so we assume that A is deterministic.

The runtime of A on a tree of size O(wk) can be made to be at most t = w/10 if w is chosen
to be sufficiently large.

We pick the labeling function f as follows. Whenever we encounter a new bipolar tree H to
which we need to apply f , we simulate A locally at the root rm of the middle rooted tree Tm in H.
Here we assume that the pumping lemma was applied before simulating A. Moreover, when we do
the simulation, we assume that the number of vertices is n = O(wk).

To make the simulation possible, we just locally generate arbitrary distinct identifiers in the
radius-t neighborhood S of rm. This is possible because t = w/10 is so small that for any vertex
v in any tree T constructed by recursively applying Zf for at most k iterations, the radius-(t+ 1)
neighborhood of v intersects at most one such S-set. Therefore, it is possible to complete the
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identifier assignment to the rest of the vertices in T so that for any edge {u, v}, the set of identifiers
seen by u and v are distinct in an execution of a t-round algorithm.

Thus, by the correctness of A, the labeling of all edges {u, v} are configurations in E and the
labeling of all vertices v are configurations in V. Our choice of f implies that all trees in W ∗ admit
correct labeling, and so f is feasible. Combined with Lemma 18, we have proved that LOCAL(no(1))
⇒ `-full.

7 Open Problems

Here we collect some open problems we find interesting.

1. What is the relation of ffiid,MEASURE, fiid? In particular is perfect matching in the class ffiid
or MEASURE?

2. Are there LCL problems whose uniform complexity is nontrivial and slower than poly log 1/ε?

3. Suppose that ΠG is a homomorphism LCL, is it true that ΠG ∈ BOREL if and only if
ΠG ∈ O(log∗(n))?

4. Are there finite graphs of chromatic number bigger than 2∆− 2 such that the corresponding
homomorphism LCL is not in BOREL? See also Remark 4.
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Jukka Suomela. New classes of distributed time complexity. In Proceedings of the 50th Annual
ACM SIGACT Symposium on Theory of Computing, pages 1307–1318, 2018.

[15] Alkida Balliu, Juho Hirvonen, Dennis Olivetti, and Jukka Suomela. Hardness of minimal
symmetry breaking in distributed computing. In Proceedings of the 2019 ACM Symposium
on Principles of Distributed Computing, pages 369–378, 2019.

[16] Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schneider. The locality of
distributed symmetry breaking. Journal of the ACM, 63(3):20, 2016.
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A Missing Proof of Lemma 2

Proof. We define an acyclic ∆ regular graph T on some standard probability space (X,µ) and then
show that any measurable solution of Π on T implies that Π ∈ fiid.

Suppose that there is a fixed distinguished vertex ∗ in T∆, the root. Let Aut∗(T∆) be the
subgroup that fixes the root. Then it is easy to see that Aut∗(T∆) is a compact group. It is a basic
fact that Y = [0, 1]T∆ with the product Borel structure is a standard Borel space and the product
Lebesgue measure λ is a Borel probability measure on Y . Consider the shift action Aut∗(T∆) y Y
defined as

α · x(v) = x(α−1(v)),

where v ∈ T∆ and α ∈ Aut∗(T∆). Since Aut∗(T∆) is compact, we have that the quotient space

X := [0, 1]T∆/Aut∗(T∆)

is a standard Borel space, see [75]. Moreover, since the shift action preserves λ, we have that

µ := λ/Aut∗(T∆)

is a Borel probability measure on X.
We define T on (X,µ) as follows. Let [x], [y] ∈ X, where x, y ∈ Y and [−] denotes the Aut∗(T∆)-

equivalence class. We put ([x], [y]) ∈ T if and only if there is a neighbor v of the root in x such
that y is isomorphic to x with v as the root. Note that this definition is independent of the choice
of representatives of [x] and [y]. Moreover, T is acyclic and ∆-regular with probability 1. A
standard argument shows that every measurable solution to an LCL Π on T yields a fiid solution
by composition with the quotient map.
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B Missing Proof of Theorem 10

Proof. It remains to verify that the LLL algorithms of Fischer and Ghaffari [49, Section 3.1.1] and
Chang et al. [33, Section 5.1] can be turned into an algorithm that does not rely on the knowledge
of n. As discussed in [33, Section 5.1], these two algorithms can be combined together to solve the
tree-structured LLL problem in O(log log n) rounds when the underlying tree has bounded degree.

Before we explain the main ideas in these algorithms, consider the following setup. Let A1 and
A2 be two distributed algorithms that do not rely on knowing n and that have a round complexity
of g1(n) and g2(n), respectively. We now want to compose these two algorithms in the following
sense. We are interested in the output of A2 when the input of A2 is equal to the output of
A1. Then, we can compute this composition with a distributed algorithm that works without the
knowledge of n and which has a round complexity of O(g1(n) + g2(n)). This statement might
seem obvious at first sight, but one needs to be careful. In particular, as the resulting algorithm
needs to work without the knowledge of n it cannot compute the value g1(n). Therefore, it cannot
explicitly tell the vertices in which round they should start to run the second algorithm. However,
this is not a problem as vertices can start to run the second algorithm as soon as their neighbors
are ready. In subsequent rounds, vertices might need to temporarily stall as some neighbors might
not have received all the necessary information from all of their neighbors and so on, but this is
not a problem. From this discussion, it should be easy to see that the algorithm indeed finishes
after O(g1(n) + g2(n)) rounds. In case the algorithms are randomized the failure probability of the
resulting algorithm might increase up to a factor of 2.

This composition result makes it easier to verify that the algorithms of [33, 49] indeed works
without the knowledge of n, as we can verify that this is the case for all its subroutines in isolation.

The pre-shattering phase of the LLL algorithm [49, Section 3.1.1] consists of first computing a
poly(∆)-coloring of T k — the graph obtained from T by connecting any two vertices of distance
at most k in T by an edge — for some k = O(1). It directly follows from the results of [78, 72]
— they adapt Linial’s coloring algorithm in such a way that it works without the knowledge of
n — that the poly(∆)-coloring of T k can be computed without the knowledge of n. Afterwards,
an O(1)-round routine follows that only uses the computed coloring as its input. Hence, the pre-
shattering phase works without the knowledge of n. Once the pre-shattering phase is complete a
subset of the vertices “survive” and the post-shattering phase is executed on the graph induced
by these vertices. Importantly, with high probability all the connected components of the induced
graph have size O(log n). See [49, Lemma 6].

The post-shattering phase of the LLL algorithm [33, Section 5.1] starts by decomposing each
connected component with the following variant of the rake-and-compress process, which consists
of a repeated application of the following two operations.

Rake: Remove all leaves and isolated vertices.

Compress: Remove all vertices that belong to some path P such that (i) all vertices in P have
degree at most 2 and (ii) the number of vertices in P is at least a fixed constant `.

Alternating these two operations on a tree with N vertices decomposes the whole tree in
O(logN) steps. In our case N = O(log n) with high probability and therefore the procedure
finishes after O(log log n) rounds with high probability. Importantly, the rake-and-compress algo-
rithm works without the knowledge of n. At the end of the rake-and-compress procedure, the only
important information each vertex needs to know is in which iteration it got removed.

After this information is computed, the algorithm of [33] computes in O(log∗ n) rounds a certain
coloring variant on a certain subgraph of the input tree. This subgraph can be locally constructed
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given the rake-and-compress decomposition. Again, it is a simple corollary of the results of [78, 72]
that this coloring variant can be computed without the knowledge of n in O(log∗ n) rounds.

The coloring variant together with the rake-and-compress decomposition is then used to compute
a so-called (2, O(logN)) network decomposition of the graph T k for some k = O(1) in O(logN)
rounds [33, Section 6.1]. We do not explain how this network decomposition is computed in detail,
but the idea is to first compute the local output of all the vertices that got removed in the very
last rake-and-compress iteration in O(1) rounds. Directly afterwards, the local output of all the
vertices that got removed one iteration before gets computed in additional O(1) rounds and so on.
Hence the local information of all vertices is computed within O(logN) ·O(1) = O(logN) rounds.
From this description, it is clear that this procedure works without the knowledge of n.

Finally, once the network decomposition of T k is computed, it directly follows from the algorithm
description of [33] that the final computation can be performed by a distributed algorithm without
the knowledge of n in O(logN) rounds.

Hence we have shown that the O(log log n)-round LLL algorithm [33, 49] works without the
knowledge of n.

C Missing Proof of Theorem 14

Proof of Theorem 14. Let x be a vertex of degree strictly bigger than 2. A star S(x) around x
consists of x and vertices of degree 2 that are connected with x by a path with all inner vertices of
degree 2. It is clear that S(x) is connected in G.

Recall that if F is a function we define the iterated preimage of a vertex x as F←(x) =⋃
n∈N F

−n(x). We first specify a canonical one ended orientation on S(x), or, equivalently, a
function F with finite iterated preimages. (In what follows we interchange freely the notion of one
ended orientation and function with finite iterated preimages.) That is to say, if S(x) is infinite
we orient things towards infinity in a one ended fashion (that is always possible), otherwise we fix
an orientation towards any of the boundary points, i.e., there is exactly one point that is directed
outside of S(x). We refer to this orientation as the canonical orientation.

The inductive construction produces an orientation of some vertices together with doubly infinite
lines. The orientation points either to infinity (is one-ended) or towards these doubly infinite lines,
this takes (ℵ0 + 1)-many steps.

For a graph G′ we define a graph H′ on the vertices of degree strictly bigger than 2, where
(x, y) ∈ H′ if there is a path from x to y in G′ that has at most one inner vertex of degree strictly
bigger than 2. Since, in our situation, H′ is always Borel and has degree bounded by ∆2, we can
pick a Borel maximal independent set M′ of H′ by [77].

Inductively along N do the following: Suppose that we are in stage k ∈ N and we have a Borel
set Ok and Gk := G � Ok with the property that every vertex has degree at least 2. We start with
G0 = G and O0 = X. Pick a Borel maximal independent set Mk in Hk that is defined from Gk.
Add to the domain of F every vertex from the star Sk(x) in Gk, where x ∈Mk, and set

Ok+1 = Ok \
⋃

x∈Mk

S(x).

Define F so that it corresponds to the canonical orientation on each Sk(x). By the definition we
have that F (y) ∈ Sk(x) for every y ∈ Sk(x), possibly up to one point z ∈ Sk(x) that satisfies
F (z) ∈ Ok+1. It is easy to see that every x ∈ Ok+1 has degree at least 2 in Gk+1 = G � Ok+1. This
follows from the definition of Mk.
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Set O∞ =
⋂
k∈NOk and write G∞ := G � O∞. It follows from the inductive (finitary) construc-

tion that every vertex x ∈ O∞ has degree at least 2 in G∞. Moreover, the function F satisfies
dom(F ) = X \ O∞ and has finite iterated preimages. This is because, first, for every x ∈ dom(F )
there is k ∈ N such that x ∈ Ok \ Ok+1 and F−1(x) ⊆ X \ Ok+1. Second, F←(x) ∩ Ok is finite by
the definition of F on stars. It follows inductively that F←(x) ∩Ol is finite for every l ≤ k, hence,
F←(x) is finite, whenever x ∈ dom(F ). If x 6∈ dom(F ), then F−1(x) ⊆ dom(F ) is finite and the
claim follows.

Let x ∈ O∞ have degree strictly bigger than 2 and write C1, . . . , C` for the connected compo-
nents of G∞ \{x} in the connected component of x in G∞. Note that ` ≤ ∆. We claim that at least
one of the sets Ci is a one ended line. Suppose not, and write z1, . . . , z` for the closest splitting
points in C1, . . . , C` and pi for the paths that connect x with zi for every i ≤ `. There is k ∈ N
large enough such that the degree of x, z1, . . . , z` is the same in G∞ as in Gk and pi is a path in Gk
whose inner vertices have degree 2. Note that G∞ ⊆ Gk because O∞ ⊆ Ok. SinceMk was maximal
in Hk, there is y ∈ Mk such that (x, y) ∈ Hk. This is because x 6∈ Mk. Similar reasoning implies
that that y 6= zi for any i ≤ `. Let q be the path that connects x and y in Gk. By the choice of k
we have that q extends one of the paths pi. Let y′ be the last point on q such that y′ ∈ O∞. Since
the degree of zi is the same in Gk as in G∞ we have that y′ 6= zi. The degree of y′ in G∞ is at least
2. Suppose it were 3 in Gk, then y′ = y because we must have (x, y) ∈ Hk. In that case removing
S(y) would decrease the degree of zi in Gk+1 and consequently in G∞. Therefore y′ has degree 2 in
Gk. But then y′ is not the last vertex on q such that y′ ∈ O∞, i.e., the other neighbor of y′, that is
the same in Gk and in G∞ must be a vertex on q, a contradiction.

Consider now the graph H∞, where (x, y) ∈ H∞ if and only if x, y ∈ O∞ have degree strictly
bigger than 2 and there is a path from x to y in G∞ with all inner points having degree 2 in G∞.
Consider any Borel (∆ + 1)-coloring of H∞ a decomposition of all vertices of degree strictly bigger
than 2 in G∞ into H∞-independent Borel sets D0, . . . , D∆. Define a one ended orientation of stars
of the form S(x), where x ∈ Di, inductively according to i ≤ ∆ using the canonical orientation,
i.e., in step i ≤ ∆ we work with the graph

G �

O∞ \⋃
j<i

⋃
x∈Dj

S(x)

 .

Note that by the previous argument we have that every such star S(x) is infinite and consequently,
this defines a valid extension of F , i.e., iterated preimages are still finite. It remains to realize that
complement of dom(F ) consists of doubly infinite lines. This finishes the proof.
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