(2022) Differentially Describing Groups of Graphs.
|
Text
gragra-coupette,dalleiger,vreeken-preprint.pdf - Draft Version Download (604kB) | Preview |
Abstract
How does neural connectivity in autistic children differ from neural connectivity in healthy children or autistic youths? What patterns in global trade networks are shared across classes of goods, and how do these patterns change over time? Answering questions like these requires us to differentially describe groups of graphs: Given a set of graphs and a parti- tion of these graphs into groups, discover what graphs in one group have in common, how they systematically differ from graphs in other groups, and how multiple groups of graphs are related. We refer to this task as graph group analysis, which seeks to describe similarities and differences between graph groups by means of statistically significant subgraphs. To per- form graph group analysis, we introduce GRAGRA, which uses maximum entropy modeling to identify a non-redundant set of subgraphs with statistically significant associations to one or more graph groups. Through an extensive set of ex- periments on a wide range of synthetic and real-world graph groups, we confirm that GRAGRA works well in practice.
Item Type: | Conference or Workshop Item (A Paper) (Paper) |
---|---|
Divisions: | Jilles Vreeken (Exploratory Data Analysis) |
Conference: | AAAI National Conference of the American Association for Artificial Intelligence |
Depositing User: | Sebastian Dalleiger |
Date Deposited: | 17 Dec 2021 10:43 |
Last Modified: | 17 Dec 2021 10:43 |
Primary Research Area: | NRA1: Trustworthy Information Processing |
URI: | https://publications.cispa.saarland/id/eprint/3556 |
Actions
Actions (login required)
View Item |