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Abstract
We study the learnability of symbolic finite state automata, a model shown useful in many applications
in software verification. The state-of-the-art literature on this topic follows the query learning
paradigm, and so far all obtained results are positive. We provide a necessary condition for efficient
learnability of SFAs in this paradigm, from which we obtain the first negative result. The main focus
of our work lies in the learnability of SFAs under the paradigm of identification in the limit using
polynomial time and data. We provide a necessary condition and a sufficient condition for efficient
learnability of SFAs in this paradigm, from which we derive a positive and a negative result.
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1 Introduction

Symbolic finite state automata, SFAs for short, are an automata model in which transitions
between states correspond to predicates over a domain of concrete alphabet letters. Their
purpose is to cope with situations where the domain of concrete alphabet letters is large or
infinite. As an example for automata over finite large alphabets consider automata over the
alphabet 2AP where AP is a set of atomic propositions; these are used in model checking [21].
Another example, used in string sanitizer algorithms [32], are automata over predicates on
the Unicode alphabet which consists of over a million symbols. An infinite alphabet is used
for example in event recording automata, a determinizable class of timed automata [2] in
which an alphabet letter consists of both a symbol from a finite alphabet, and a non-negative
real number. Formally, the transition predicates in an SFA are defined wrt. an effective
Boolean algebra as defined in §2.

SFAs have proven useful in many applications [23, 44, 10, 34, 45, 39] and consequently
have been studied as a theoretical model of automata. Many algorithms for natural operations
and decision problems regarding these automata already exist in the literature, in particular,
Boolean operations, determinization, and emptiness [49]; minimization [22]; and language
inclusion [35]. Recently the subject of learning automata in verification has also attracted
attention, as it has been shown useful in many applications, see Vaandrager’s survey [48].

There already exists substantial literature on learning restricted forms of SFAs [31, 36, 11,
37, 19], as well as general SFAs [25, 9], and even non-deterministic residual SFAs [20]. For
other types of automata over infinite alphabets, [33] suggests learning abstractions, and [47]
presents a learning algorithm for deterministic variable automata. All these works consider
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27:2 Inferring Symbolic Automata

the query learning paradigm, and provide extensions to Angluin’s L∗ algorithm for learning
DFAs using membership and equivalence queries [4]. Unique to these works is the work [9]
which studies the learnability of SFAs taking as a parameter the learnability of the underlying
algebras, providing positive results regarding specific Boolean algebras.

While Argyros and D’Antoni’s work [9] is a major advancement towards a systematic
way for obtaining results on learnability of SFAs, as it examines the learnability of the
underlying algebra, the obtained result allows inferring only positive results, as it relies on a
specific query learning algorithm, and does not provide means for obtaining a negative result
regarding query learning of SFAs over certain algebras. We provide a necessary condition for
efficient learnability of SFAs in the query learning paradigm. From this result we obtain a
negative result regarding query learning of SFAs over the propositional algebra. This is, to
the best of our knowledge, the first negative result on learning SFAs with membership and
equivalence queries and thus gives useful insights into the limitations of the L∗ framework in
this context.

The main focus of our work lies on the learning paradigm of identification in the limit
using polynomial time and data, or its strengthened version efficient identifiability. We
provide a necessary condition a class of SFAs M should meet in order to be identified in the
limit using polynomial time and data, and a sufficient condition a class of SFAs M should
meet in order to be efficiently identifiable. These conditions are expressed in terms of the
existence of certain efficiently computable functions, which we call GeneralizeM, ConcretizeM,
and DecontaminateM. We then provide positive and negative results regarding the learnability
of specific classes of SFAs in this paradigm. In particular, we show that the class of SFAs
over any monotonic algebras is efficiently identifiable.

2 Preliminaries

2.1 Effective Boolean Algebra
A Boolean Algebra A can be represented as a tuple (D,P, J·K,⊥,⊤,∨, ∧,¬) where D is a set
of domain elements; P is a set of predicates closed under the Boolean connectives, where
⊥,⊤ ∈ P; the component J·K : P → 2D is the so-called semantics function. It satisfies
the following three requirements: (i) J⊥K = ∅, (ii) J⊤K = D, and (iii) for all φ,ψ ∈ P,
Jφ ∨ ψK = JφK ∪ JψK, Jφ ∧ ψK = JφK ∩ JψK, and J¬φK = D \ JψK. A Boolean Algebra is
effective if all the operations above, as well as satisfiability, are decidable. Henceforth, we
implicitly assume Boolean algebras to be effective.

One way to define a Boolean algebra is by defining a set P0 of atomic formulas that
includes ⊤ and ⊥ and obtaining P by closing P0 for conjunction, disjunction and negation.
For a predicate ψ ∈ P we say that ψ is atomic if ψ ∈ P0. We say that ψ is basic if ψ is a
conjunction of atomic formulas.

We now introduce two Boolean algebras that are discussed extensively in the paper.

The Interval Algebra is the Boolean algebra in which the domain D is the set Z∪{−∞,∞}
of integers augmented with two special symbols with their standard semantics, and the set
of atomic formulas P0 consists of intervals of the form [a, b) where a, b ∈ D and a ≤ b. The
semantics associated with intervals is the natural one: J[a, b)K = {z ∈ D | a ≤ z and z < b}.

The Propositional Algebra is defined wrt. a set AP = {p1, p2, . . . , pk} of atomic proposi-
tions. The set of atomic predicates P0 consists of the atomic propositions and their negations
as well as ⊤ and ⊥. The domain D consists of all the possible valuations for these propositions,



D. Fisman, H. Frenkel and S. Zilles 27:3

q0 q1

[0, 100) [0, 200)

[100, ∞) [200, ∞)
Figure 1 The SFA M over AN

thus it is Bk where B= {0, 1}. The semantics of an atomic predicate p is given by JpiK =
{v ∈ Bk | v[i] = 1}, and similarly J¬piK = {v ∈ Bk | v[i] = 0}.1

2.2 Symbolic Automata
A symbolic finite automaton (SFA) is a tuple M = (A, Q, qι, F,∆) where A is a Boolean
algebra, Q is a finite set of states, qι ∈ Q is the initial state, F ⊆ Q is the set of final states,
and ∆ ⊆ Q× PA ×Q is a finite set of transitions, where PA is the set of predicates of A.

We use the term letters for elements of D where D is the domain of A and the term
words for elements of D∗. A run of M on a word a1a2 . . . an is a sequence of transitions
⟨q0, ψ1, q1⟩⟨q1, ψ2, q2⟩ . . . ⟨qn−1, ψn, qn⟩ satisfying that ai ∈ JψiK, that ⟨qi, ψi+1, qi+1⟩ ∈ ∆ and
that q0 = qι. Such a run is said to be accepting if qn ∈ F . A word w = a1a2 . . . an is said to be
accepted by M if there exists an accepting run of M on w. The set of words accepted by an SFA
M is denoted L(M). We use L̂(M) for the set {⟨w, 1⟩ | w ∈ L(M)} ∪ {⟨w, 0⟩ | w /∈ L(M)}.

An SFA is said to be deterministic if for every state q ∈ Q and every letter a ∈ D we have
that |{⟨q, ψ, q′⟩ ∈ ∆ | a ∈ JψK}| ≤ 1, namely from every state and every concrete letter there
exists at most one transition. It is said to be complete if |{⟨q, ψ, q′⟩ ∈ ∆ | a ∈ JψK}| ≥ 1 for
every q ∈ Q and a ∈ D, namely from every state and every concrete letter there exists at least
one transition. It is not hard to see that, as is the case for finite automata (over concrete
alphabets), non-determinism does not add expressive power but does add succinctness. When
A is deterministic we use ∆(q, w) to denote the state A reaches on reading word w from
state q. If ∆(qι, w) = q then w is termed an access word to state q.

▶ Example 1. Consider the SFA M given in Fig.1. It is defined over the algebra AN which
is the interval algebra restricted to the domain D = N ∪ {∞}. The language of M is the set
of all words over D of the form w1 · d · w2 where w1 is some word over the domain D, the
letter d satisfies 0 ≤ d < 100 and all letters of the word w2 are numbers smaller than 200.

3 Learning SFAs

In grammatical inference, loosely speaking, we are interested in learning a class of languages
L over an alphabet Σ, from examples which are words over Σ. Examples for classes of
languages can be the set of regular languages, the set of context-free languages, etc. A
learning algorithm, aka a learner, is expected to output some concise representation of the
language from a class of representations R for the class C. For instance, in learning the
class Lreg of regular languages one might consider the class Rdfa of DFAs, or the class
Rlin of right linear grammars, since both are capable of expressing all regular languages.2
We often say that a class of representations R is learnable (or not) when we mean that a
class of languages L is learneable (or not) via the class of representations R. Complexity of
learning an unknown language L ∈ L via R is typically measured wrt. the size of the smallest

1 In this case a basic formula is a monomial.
2 The class of regular languages was shown learnable via various representations including DFAs [4],

NFAs [16], and AFAs (alternating finite automata) [7].
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27:4 Inferring Symbolic Automata

representation RL ∈ R for L. For instance, when learning Lreg via Rdfa a learner is expected
to output a DFA for an unknown language in time that is polynomial in the number of states
of the minimal DFA for L.

In our setting we are interested in learning regular languages using as a representation
classes of SFAs over a certain algebra. To measure complexity we must agree on how to
measure the size of an SFA. For DFAs, the number of states is a common measure of size,
since the DFA can be fully described by a representation of size polynomial in the number of
states. In the case of SFA the situation is different, as the size of the predicates labeling the
transitions can vary greatly. In fact, if we measure the size of a predicate by the number of
nodes in its parse DAG, then the size of a formula can grow unboundedly. The size and
structure of the predicates influence the complexity of their satisfiability check, and thus the
complexity of the corresponding algorithms. Another thing to note is that there might be a
trade-off between the size of the transition predicates and the number of transitions; e.g. a
predicate of the form ψ1 ∨ ψ2 . . . ∨ ψk can be replaced by k transitions, each one labeled by
one ψi for 1 ≤ i ≤ k.

The literature defines an SFA as normalized if for every two states q and q′ there exists
at most one transition from q to q′. This definition prefers fewer transitions over potentially
complicated predicates. By contrast, preferring simple transitions at the cost of increasing
the number of transitions, leads to neat SFAs. An SFA is termed neat if all transition
predicates are basic predicates. In [27] we proposed to measure the size of an SFA by three
parameters: the number of states (n), the maximal out-degree of a state (m) and the size of
the most complex predicate (l); we then analyzed the complexity of the standard operations
on SFAs, with particular attention to the mentioned special forms. Another important factor
regarding size and canonical forms of SFAs, is the underlying algebra, specifically, whether it
is monotonic or not.

Monotonicity A Boolean algebra A over domain D is said to be monotonic if there exists a
total order < on the elements of D, there exist two elements d−∞, d∞ such that d−∞ ≤ d and
d ≤ d∞ for all d ∈ D, and an atomic predicate ψ ∈ P0 can be associated with two concrete
values a and b such that JψK = {d ∈ D | a ≤ d < b}. The interval algebra (given in §2.1) is
clearly monotonic, as is the similar algebra obtained using R (the real numbers) instead of Z
(the integers). On the other hand, the propositional algebra is clearly non-monotonic.

Learning Paradigms The exact definition regarding learnability of a class depends on the
learning paradigm. In this work we consider two widely studied paradigms: learning with
membership and equivalence queries, and identification in the limit using polynomial time
and data. Their definitions are provided in the respective sections.

Non-Trivial Classes of SFAs In the sequel we would like to prove results regarding non-trvial
classes of SFAs, which are defined as follows.

▶ Definition 2. A class of SFAs M over a Boolean Algebra A with a set of predicates P is
termed non-trivial if for every predicate φ ∈ P the SFA Mφ = (A, {qι, qac, qrj}, qι, {qac},∆)
where ∆ = {⟨qι, φ, qac⟩, ⟨qι,¬φ, qrj⟩, ⟨qrj ,⊤, qrj⟩, ⟨qac,⊤, qrj⟩} is in M. Note that Mφ accepts
only words of length one consisting of a concrete letter satisfying φ, and it is minimal among
all complete deterministic SFAs accepting this language (minimal in both number of states
and number of transitions).
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4 Efficient Identifiability

While in active learning (e.g. query learning) the learner can select any word and query
about its membership in the unknown language, in passive learning the learner is given a set
of words, and for each word w in the set, a label bw indicating whether w is in the unknown
language or not. Formally, a sample for a language L is a finite set S consisting of labeled
examples, that is, pairs of the form ⟨w, bw⟩ where w is a word and bw ∈ {0, 1} is its label,
satisfying that bw = 1 if and only if w ∈ L. The words that are labeled 1 are termed positive
words, and those that are labeled 0 are termed negative words. Note that if L is recognized
by M, we have that S ⊆ L̂(M) (as defined in §.2.2). If S is a sample for L we often say
that S agrees with L. Given two words w,w′, we say that w and w′ are not equivalent wrt.
S, denoted w ̸∼S w′, iff there exists z such that ⟨wz, b⟩, ⟨w′z, b′⟩ ∈ S and b ̸= b′. Otherwise
we say that w and w′ are equivalent wrt. S, and write w ∼S w′.

Given a sample S for a language L over a concrete domain D, it is possible to construct a
DFA that agrees with S in polynomial time. Indeed one can create the prefix-tree automaton,
a simple automaton that accepts all and only the positively labeled words in the sample.
Clearly the constructed automaton may not be the minimal automaton that agrees with
S. There are several algorithms, in particular the popular RPNI [42], that minimize the
prefix-tree automaton, and due to state merging may accept an infinite language. Obviously
though, this procedure is not guaranteed to return an automaton for the unknown language,
as the sample may not provide sufficient information. For instance if L = aL1 ∪ bL2 and
the sample contains only words starting with a, there is no way for the learner to infer L2
and hence also L correctly. One may thus ask, given a language L, what should a sample
contain in order for a passive learning algorithm to infer L correctly, and can such sample be
of polynomial size with respect to a minimal representation (e.g., a DFA) for the language.

One approach to answer these questions is captured in the paradigm of identification in
the limit using polynomial time and data. This model was proposed by Gold [28], who also
showed that it admits learning of regular languages represented by DFAs. We follow de la
Higuera’s more general definition [24].3 This definition requires that for any language L in a
class of languages L represented by R, there exists a sample SL of size polynomial in the
size of the smallest representation R ∈ R of L (e.g., the smallest DFA for L), such that a
valid learner can infer the unknown language L from the information contained in SL. The
set SL is then termed a characteristic sample.4 Here, a valid learner is an algorithm that
learns the target language exactly and efficiently. In particular, a valid learner produces in
polynomial time a representation that agrees with the provided sample. The learner also has
to correctly learn the unknown language L when given the characteristic sample SL as input.
Moreover, if the input sample S subsumes SL yet is still consistent with L, the additional
information in the sample should not “confuse” the learner; the latter still has to output
a correct representation for L. (Intuitively, this requirement precludes situations in which
the sample consists of some smart encoding of the representation that the learner simply
deciphers. In particular, the learner will not be confused if an adversary “contaminates” the

3 This paradigm may seem related to conformance testing. The relation between conformance testing for
Mealy machines and automata learning of DFAs has been explored in [14].

4 De la Higuera’s notion of characteristic sample is a core concept in grammatical inference, for various
reasons. Firstly, it addresses shortcomings of several other attempts to formulate polynomial-time
learning in the limit [5, 43]. Secondly, this notion has inspired the design of popular algorithms for
learning formal languages such as, for example, the RPNI algorithm [42]. Thirdly, it was shown to bear
strong relations to a classical notion of machine teaching [30]; models of the latter kind are currently
experiencing increased attention in the machine learning community [50].
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27:6 Inferring Symbolic Automata

characteristic sample by adding labeled examples for the target language.) We provide the
formal definition after the following informal example.

▶ Example 3. For the class of DFAs, let us consider the regular language L = a∗ over the
alphabet {a, b}. Further, consider a sample set S = {⟨ϵ, 1⟩, ⟨a, 1⟩, ⟨b, 0⟩, ⟨bb, 0⟩, ⟨ba, 0⟩} for L.
There is a valid learner for the class of all DFAs that uses the sample S as a characteristic
sample for L. By definition, such a learner has to output a DFA for L when fed with S, but
also has to output equivalent DFAs whenever given any superset of S as input, as long as this
superset agrees with L. Naturally, the sample S is also consistent with the regular language
L′ = {ϵ, a}. However, this does not pose any problem, since the same learner can use a
characteristic sample for L′ that disagrees with L, for example, S ′ = {⟨ϵ, 1⟩, ⟨a, 1⟩, ⟨aa, 0⟩}.
When defining a system of characteristic samples like that, the core requirement is that the
size of a sample be bounded from above by a function that is polynomial in the size of the
smallest DFA for the respective target language.

▶ Definition 4 (identification in the limit using polynomial time and data). A class of languages
L is said to be identified in the limit using polynomial time and data via representations in
a class R if there exists a learning algorithm A such that the following requirements are met.
1. Given a finite sample S of labeled examples, A returns a hypothesis R ∈ R that agrees

with S in polynomial time.
2. For every language L ∈ L, there exists a sample SL, termed a characteristic sample, of

size polynomial in the minimal representation R ∈ R for L such that the algorithm A
returns a correct hypothesis when run on any sample S for L that subsumes SL.

Note that the first condition ensures polynomial time and the second polynomial data.
However, the latter is not a worst-case measure; the algorithm may fail to return a correct
hypothesis on arbitrarily large finite samples (if they do not subsume a characteristic set).

Note also that the definition does not require the existence of an efficient algorithm that
constructs a characteristic sample for each language in the underlying class. When such
an algorithm is also available we say that the class is efficiently identifiable. In the full
version of the paper we provide an example of a class of languages that possesses polynomial-
size characteristic sets, yet without the ability to construct such sets effectively. Since we
are concerned with learning classes of automata we formulate the definition of efficient
identification directly over classes of automata.

▶ Definition 5 (efficient identification). A class of automata M over an alphabet Σ is said to
be efficiently identified if the following two requirements are met.
1. There exists a polynomial time learning algorithm Infer : 2(Σ∗×{0,1}) → M such that, for

any sample S, we have S ⊆ L̂(Infer(S)).
2. There exists a polynomial time algorithm Char : M → 2(Σ∗×{0,1}) such that, for every

M ∈ M and every sample S satisfying Char(M) ⊆ S ⊆ L̂(M), the automaton Infer(S)
recognizes the same language as M.

When we apply this definition for a class of SFAs over a Boolean algebra A with domain
D and predicates P, the characteristic sample is defined over the concrete set of letters D
rather than the set of predicates P because this is the alphabet of the words accepted by
an SFA (inferring an SFA from a set of words labeled by predicates can be done using the
methods for inferring DFAs, by considering the alphabet to be the set of predicates).

Throughout this section we study whether a class of SFAs M is efficiently identifiable.
That is, we are interested in the existence of algorithms InferM and CharM satisfying the
requirements of Def.5. In §4.1 we provide a necessary condition for a non-trivial class of SFAs
to be identified in the limit using polynomial time and data. In §4.2 we provide a sufficient
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condition for a non-trivial class of SFAs to be efficiently identifiable. On the positive side,
we show in §4.3 that the class of SFAs over the interval algebra is efficiently identifiable. On
the negative side, we show in §4.4 that SFAs over the general propositional algebra cannot
be identified in the limit using polynomial time and data.

Efficient Identification of DFAs
Before investigating efficient identification of SFAs, it is worth noting that DFAs are efficiently
identifiable. We state a result that provides more details about the nature of these algorithms,
since we need it later, in §.4.3, to provide our positive result. Intuitively, it says that there
exists a valid learner such that if D is a minimal DFA recognizing a certain language L then
the learner can infer L from a characteristic sample consisting of access words to each state of
D and their extensions with distinguishing words (words showing each pair of states cannot
be merged) as well as one letter extensions of the access words that are required to retrieve
the transition relation.

▶ Theorem 6 ([42]). I. The class of DFAs is efficiently identifiable via procedures CharDFA
and InferDFA. II. Furthermore, these procedures satisfy that if D is a minimal and complete
DFA and CharDFA(D) = SD then the following holds:
1. SD contains a prefix-closed set A of access words. Moreover, A can be chosen to contain

only lex-access words, i.e., only the lexicographically smallest access word for each state.
2. For every u1, u2 ∈ A it holds that u1 ̸∼SD u2.
3. For every u, v ∈ A and σ ∈ Σ, if ∆(qι, uσ) ̸= ∆(qι, v) then uσ ̸∼SD v.

We briefly describe CharDFA and InferDFA.
The algorithm CharDFA works as follows. It first creates a prefix-closed set of access

words to states. This can be done by considering the graph of the automaton and running an
algorithm for finding a spanning tree from the initial state. Choosing one of the letters on each
edge, the access word for a state is obtained by concatenating the labels on the unique path
of the obtained tree that reaches that state. If we wish to work with lex-access words, we can
use a depth-first search algorithm that spans branches according to the order of letters in Σ,
starting from the smallest. The labels on the paths of the spanning tree constructed this way
will form the set of lex-access words. Let S be the set of access words (or lex-access words).
Next the algorithm turns to find a distinguishing word vi,j for every pair of state si, sj ∈ S

(where si ̸= sj). It holds that any pair of states of the minimal DFA has a distinguishing
word of size quadratic in the size of the DFA. Let E be the set of all such distinguishing
words. Then the algorithm returns the set SD = {⟨w,D(w)⟩ | w ∈ (S ·E) ∪ (S · Σ ·E)} where
D(w) is the label D gives w (i.e. 1 if it is accepted, and 0 otherwise). It is easy to see that
SD satisfies the properties of Thm.6.

The algorithm InferDFA, given a sample of words S, infers from it in polynomial time
a DFA that agrees with S. Moreover, if S subsumes the characteristic set SD of a DFA D
then InferDFA returns a DFA that recognizes D. Let W be the set of words in the given
sample S (without their labels). Let R be the set of prefixes of W and C the set of suffixes
of W . Note that ϵ ∈ R and ϵ ∈ C. Let r0, r1, . . . be some enumeration of R and c0, c1, . . .

some enumeration of C where r0 = c0 = ϵ. The algorithm builds a matrix M of size |R| × |C|
whose entries take values in {0, 1, ?}, and sets the value of entry (i, j) as follows. If ricj is
not in W , it is set to ?. Otherwise it is set to 1 iff the word ricj is labeled 1 in S. We get
that ri ∼S rj iff for every k such that both M(i, k) and M(j, k) are different than ? we have
that M(i, k) = M(j, k). The algorithm sets R0 = {ϵ}. Once Ri is constructed, the algorithm
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27:8 Inferring Symbolic Automata

tries to establish whether for r ∈ Ri and σ ∈ Σ, rσ is distinguished from all words in Ri. It
does so by considering all other words r′ ∈ Ri and checking whether r ∼S r′. If rσ is found
to be distinct from all words in Ri, then Ri+1 is set to Ri ∪ {rσ}. The algorithm proceeds
until no new words are distinguished. Let k be the iteration of convergence. If not all words
in Rk are in W (that is M(i, 0) =? for some ri ∈ Rk), the algorithm returns the prefix-tree
automaton. Otherwise, the states of the constructed DFA are set to be the words in Rk. The
initial state is ϵ and a state ri is classified as accepting iff M(i, 0) = 1 (recall that the entry
M(i, 0) stands for the value of ri · ϵ in S). To determine the transitions, for every r ∈ Rk
and σ ∈ Σ, recall that there exists at least one state r′ ∈ R that cannot be distinguished
from rσ. The algorithm then adds a transition from r on σ to r′.

4.1 Necessary Condition
We make use of the following definitions. A sequence ⟨Γ1, . . . ,Γm⟩ consisting of sets of concrete
letters Γi ⊆ D is termed a concrete partition of D if the sets are pairwise disjoint (namely
Γi ∩ Γj = ∅ for every i ̸= j). Note that we do not require that in addition

⋃
1≤i≤k Γi = D.

We use Πconc(D,m) to define the set of all concrete partitions of size m over D. A sequence
of predicates ⟨ψ1, . . . , ψm⟩ over a Boolean algebra A on a domain D is termed a predicate
partition if JψiK ∩ JψjK = ∅ for every i ≠ j, and in addition

⋃
≤i≤kJψiK = D. That is, here we

do require the assignments to the predicates cover the domain. We use Πpred(P,m) to define
the set of all predicate partitions of size m over P.

▶ Definition 7. A function fg from a concrete partition to a predicate partition is termed
generalizing if fg(⟨Γ1, . . . ,Γm⟩) = ⟨ψ1, . . . , ψk⟩ implies k = m and JψiK ⊇ Γi for all
1 ≤ i ≤ m.
A function fc from a predicate partition to a concrete partition is termed concretizing if
fc(⟨ψ1, . . . , ψm⟩) = ⟨Γ1, . . . ,Γk⟩ implies k = m and Γi ⊆ JψiK for all 1 ≤ i ≤ m.

Note that fg and fc are variadic functions (i.e. can take any number of parameters). We
can define their k-adic versions as those that work only on partitions of size k. In particular,
their dyadic versions work only on partitions of size 2.

We say that fg (resp. fc) is efficient if it can be computed in polynomial time. Note that
if fc is efficient then the sets Γi in the constructed concrete partition are of polynomial size.

We are now ready to provide a necessary condition for identifiability in the limit using
polynomial time and data.

▶ Theorem 8. A necessary condition for a non-trivial class of SFAs MA over a Boolean
algebra A to be identified in the limit using polynomial time and data is that there exist
efficient dyadic concretizing and generalizing functions, ConcretizeA : Πpred(P, 2) → Πconc(D, 2)
and GeneralizeA : Πconc(D, 2) → Πpred(P, 2), satisfying that

if ConcretizeA(⟨ψ1, ψ2⟩) = ⟨Γ1,Γ2⟩
and GeneralizeA(⟨Γ′

1,Γ′
2⟩) = ⟨φ1, φ2⟩

where Γi ⊆ Γ′
i for every 1 ≤ i ≤ 2

then JφiK = JψiK for every 1 ≤ i ≤ 2.

Proof. Assume that MA is identified in the limit using polynomial time and data. That
is, there exist two algorithms CharSFA : MA → 2D∗×{0,1} and InferSFA : 2D∗×{0,1} →
MA satisfying the requirements of Def.4. We show that efficient dyadic concretizing and
generalizing functions do exist.

We start with the definition of ConcretizeA . Let ⟨φ1, φ2⟩ be the argument of ConcretizeA .
Note that φ2 = ¬φ1 by the definition of a predicate partition. The implementation of



D. Fisman, H. Frenkel and S. Zilles 27:9

ConcretizeA invokes CharSFA on the SFA Mφ1 accepting all words of length one consisting
of a concrete letter satisfying φ1, as defined in Def.2. Let S be the returned sample. Let Γ1
be the set of positively labeled words in the sample. Note that all such words are of size one,
namely they are letters. Let Γ2 be the set of letters that are first letters in a negative word
in the sample. Then ConcretizeA returns ⟨Γ1,Γ2⟩.

We turn to the definition of GeneralizeA . Given ⟨Γ1,Γ2⟩ the implementation of GeneralizeA

invokes InferSFA on sample S = {⟨γ, 1⟩ | γ ∈ Γ1}∪{⟨γ, 0⟩ | γ ∈ Γ2}∪{⟨γγ′, 0⟩ | γ, γ′ ∈ Γ1∪Γ2}.
That is, all one-letter words satisfying Γ1 are positively labeled, all one-letter words satisfying
Γ2 are negatively labeled, and all words of length 2 using some of the given concrete letters,
are negatively labeled. Let M be the returned SFA when given S ′ ⊇ S as an input. Let Ψ1
be the set of all predicates labeling some edge from the initial state to an accepting state,
and let Ψ2 be the set of all predicates labeling some edge from the initial state to a rejecting
state. Let φ = (

∨
ψ∈Ψ1

ψ) ∧ (
∧
ψ∈Ψ2

¬ψ). Then GeneralizeA returns ⟨φ,¬φ⟩.
It is not hard to verify that the constructed methods GeneralizeA and ConcretizeA satisfy

the requirements of the theorem. ◀

The following example shows that for some Boolean algebras, such functions exist, even
for a generalization of the requirement for variadic versions of Concretize and Generalize.

▶ Example 9. Consider the class MAN of SFAs over the algebra AN of Ex.1 and consider the
functions ConcretizeAN(⟨[d1, d

′
1), [d2, d

′
2), . . . , [dm, d′

m)⟩) = ⟨{d1}, . . . , {dm}⟩ and GeneralizeAN

(⟨Γ1, . . . ,Γm⟩) = ⟨[min Γπ(1),min Γπ(2)), [min Γπ(2),min Γπ(3)), . . . , [min Γπ(m),∞)⟩ where π
is the permutation on (1, . . . ,m) satisfying max Γπ(i) < min Γπ(i+1) for every 1 ≤ i < m.
Then, ConcretizeAN and GeneralizeAN satisfy the variadic generalization of the conditions of
Thm.8.

We would like to relate the necessary condition on the learnability of a class of SFAs
over a Boolean algebra A to the learnability of the Boolean algebra A itself. For this
we need to first define efficient identifiability of a Boolean algebra A. Since to learn an
unknown predicate we need to supply two sets: one of negative examples and one of positive
examples, it makes sense to say that a Boolean algebra A with predicates P over domain D
is efficiently identifiable if there exist efficient dyadic concretizing and generalizing functions,
ConcretizeA : Πpred(P, 2) → Πconc(D, 2) and GeneralizeA : Πconc(D, 2) → Πpred(P, 2) satisfying
the criteria of Theorem 8. Using this terminology we can state the following corollary.

▶ Corollary 10. Efficient identifiability of the Boolean algebra A is a necessary condition for
identification in the limit using polynomial time and data of any non-trivial class of SFAs
over A.

4.2 Sufficient Condition
We turn to discuss a sufficient condition for the efficient identifiability of a class of SFAs MA

over a Boolean algebra A. To prove that MA is efficiently identifiable, we need to supply
two algorithms CharSFAMA and InferSFAMA as required in Def.5. The idea is to reduce
the problem to efficient identifiablity of DFAs, namely to use the algorithms CharDFA
and InferDFA provided in Thm.6. The implementation of CharSFA, given an SFA M
will transform it into a DFA DM by applying ConcretizeA on the partitions induced by the
states of the DFA. The resulting DFA DM will not be equivalent to the given SFA M, but
it may be used to create a sample of words SM that is a characteristic set for M, see Fig.2.
To implement InferSFA we would like to use InferDFA to obtain, as a first step, a DFA
from the given sample, then at the second step, apply GeneralizeA on the concrete-partitions
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Figure 2 A schematic description of algorithms CharSFA and InferSFA XX:

Algorithm 1 ConcretizeMA (M)

Input: An SFA M, function ConcretizeA

Output: a DFA DM
1 function ConcretizeMA (M = ÈA, Q, qÿ, F,�Í)
2 �M :=

t
qœQ ConcretizeA(fiq)

3 �D := ÿ
4 for all q, qÕ œ Q,Â œ fiq, d œ �M do
5 if Èq, Â, qÕÍ œ � and d œ JÂK then
6 �D := �D fi Èq, d, qÕÍ
7 return DM := È�M, Q, qÿ, F,�DÍ

Algorithm 2 GeneralizeMA (M)

Input: A DFA D, function GeneralizeA

Output: An SFA M
1 function GeneralizeMA (D = È�, Q, qÿ, F,�DÍ)
2 �M := ÿ
3 for all q œ Q do
4 for all qi œ Q do �i := {“ | Èq, “, qiÍ œ �D}
5 ÈÂ1, . . . , ÂnÍ := GeneralizeA(È�1, . . . ,�nÍ)
6 for all qi œ Q do �M := �M fi Èq, Âi, qiÍ
7 return M := ÈA, Q, qÿ, F,�MÍ

Algorithm 1 ConcretizeMA (M)

XX:

Algorithm 1 ConcretizeMA (M)

Input: An SFA M, function ConcretizeA

Output: a DFA DM
1 function ConcretizeMA (M = ÈA, Q, qÿ, F,�Í)
2 �M :=

t
qœQ ConcretizeA(fiq)

3 �D := ÿ
4 for all q, qÕ œ Q,Â œ fiq, d œ �M do
5 if Èq, Â, qÕÍ œ � and d œ JÂK then
6 �D := �D fi Èq, d, qÕÍ
7 return DM := È�M, Q, qÿ, F,�DÍ

Algorithm 2 GeneralizeMA (M)

Input: A DFA D, function GeneralizeA

Output: An SFA M
1 function GeneralizeMA (D = È�, Q, qÿ, F,�DÍ)
2 �M := ÿ
3 for all q œ Q do
4 for all qi œ Q do �i := {“ | Èq, “, qiÍ œ �D}
5 ÈÂ1, . . . , ÂnÍ := GeneralizeA(È�1, . . . ,�nÍ)
6 for all qi œ Q do �M := �M fi Èq, Âi, qiÍ
7 return M := ÈA, Q, qÿ, F,�MÍ

Algorithm 2 GeneralizeMA (M)

induced by the DFA states. A subtle issue that we need to cope with is that inference should
succeed also on samples subsuming the characteristic sample. The fact that this holds for
inference of the DFA does not suffice, since we are guaranteed that the inference of the DFA
will not be confused if the sample contains more labeled words, as long as the new words
are over the same alphabet. In our case the alphabet of the sample can be a strict subset
of the concrete letters D (and if D is infinite, this surely will be the case).5 So we need an
additional step to remove words from the given sample if they are not over the alphabet of
the characteristic sample. We call a method implementing this DecontaminateMA .

Formally, we first define the extension of ConcretizeA and GeneralizeA to automata instead
of partitions, which we term ConcretizeMA and GeneralizeMA (with M in the subscript).

The formal definition of ConcretizeMA is given in Alg.1. Let M = (A, Q, qι, F,∆) be an SFA.
Then ConcretizeMA (M) is the DFA DM = (Σ, Q, qι, F,∆D) where ∆D is defined as follows.
For each state q ∈ Q let πq = ⟨ψ1, . . . , ψm⟩ be the predicate partition consisting of all
predicates labeling a transition exiting q in M. Intuitively, in D, the outgoing transitions
of each state q correspond to ConcretizeA(πq). That is, let ConcretizeA(πq) = ⟨Γ1, . . . ,Γm⟩.
Then, if ⟨q, ψi, q′⟩ ∈ ∆, then ⟨q, γ, q′⟩ ∈ ∆D for every γ ∈ Γi.
The formal definition of GeneralizeMA is given in Alg.2. Let D = (Σ, Q, qι, F,∆D) be a
DFA. We define GeneralizeMA (D) wrt. an algebra A as follows. Let M = (A, Q, qι, F,∆M)
where ∆M is defined as follows. For each state q ∈ Q let ⟨Γ1, . . . ,Γm⟩ be the concrete
partition consisting of letters labeling outgoing transitions from q. Note that ⟨Γ1, . . . ,Γm⟩
is a concrete partition, since D is a DFA. Let GeneralizeA(⟨Γ1, . . . ,Γm⟩) = ⟨ψ1, . . . , ψm⟩.
Then, ⟨q, ψi, q′⟩ ∈ ∆M if Γi is the set of letters labeling transitions from q to q′ in D.

We are now ready to define the conditions the decontaminating function has to satisfy.

5 In the full version of this paper we provide an example illustrating this problem for the class of SFAs
over a monotonic algebra Am , for which respective methods ConcretizeAm and GeneralizeAm exist.
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▶ Definition 11. A function fd : 2(D∗×{0,1}) → 2(D∗×{0,1}) is called decontaminating for a
class of SFAs M and a respective ConcretizeM function if the following holds. Let M ∈ M be
an SFA, and D = ConcretizeM(M). Let SD = CharDFA(D). Then, for every S ′ ⊇ SD s.t.
S ′ agrees with M, it holds that SD ⊆ fd(S ′) ⊆ (S ′ ∩ ΓD), where ΓD is the alphabet of SD.

As before we say that fd is efficient if it can be computed in polynomial time. We can
now provide the sufficient condition.

▶ Theorem 12. Let MA be a class of SFAs over a Boolean algebra A. If there exist efficient
functions ConcretizeA and GeneralizeA satisfying that

if ConcretizeA(⟨ψ1, . . . , ψm⟩) = ⟨Γ1, . . . ,Γm⟩
and GeneralizeA(⟨Γ′

1, . . . ,Γ′
m⟩) = ⟨φ1, . . . , φm⟩

where Γi ⊆ Γ′
i for every 1 ≤ i ≤ m

then JφiK = JψiK for every 1 ≤ i ≤ m

and in addition there exists an efficient decontaminating function DecontaminateMA , then the
class MA is efficiently identifiable.

Given functions ConcretizeA , GeneralizeA and DecontaminateMA for a class MA of SFAs
over a Boolean algebra A meeting the criteria of Thm.12, we show that MA can be efficiently
identified by providing two algorithms CharSFA and InferSFA, described bellow. These
algorithms make use of the respective algorithms CharDFA and InferDFA guaranteed in
Thm.6.I., as well as the methods provided by the theorem.

We briefly describe these two algorithms, and then turn to prove Thm.12. The algorithm
CharSFA receives an SFA M ∈ M, and returns a characteristic sample for it. It does so by
applying ConcretizeMA (M) (Alg.1) to construct a DFA DM and generating the sample SM
using the algorithm CharDFA applied on the DFA DM.

Algorithm InferSFA, given a sample set S, if S subsumes a characteristic set of an SFA
M, returns an equivalent SFA. Otherwise it suffices with returning an SFA that agrees with
the sample. First, it applies DecontaminateMA to find a subset S ′ ⊆ S over the alphabet
of the subsumed characteristic sample, if such a subsumed sample exists. Then it uses S ′

to construct a DFA by applying the inference algorithm InferDFA on S ′. From this DFA
it constructs an SFA, MS , by applying GeneralizeMA (Alg.2). If the resulting automaton
disagrees with the given sample it resorts to returning the prefix-tree automaton. In brief,

CharSFA(M) = CharDFA(ConcretizeMA (M))

InferSFA(S)=
{

MS :=GeneralizeMA (InferDFA(DecontaminateMA (S))) if S ⊆L̂(MS)
The prefix-tree automaton of S otherwise

In §4.3 we provide methods ConcretizeA , GeneralizeA and DecontaminateMA for SFAs over
monotonic algebras, deriving their identification in the limit result. We now prove Thm.12.

Proof of Thm.12. Given functions ConcretizeA , GeneralizeA , and DecontaminateMA , we show
that the algorithms CharSFA and InferSFA satisfy the requirements of Def.5.

For the first condition, given that CharDFA, DecontaminateMA and GeneralizeA run in
polynomial time, and that the prefix-tree automaton can be constructed in polynomial
time, it is clear that so does InferSFA. In addition, the test performed in the definition of
InferSFA ensures the output agrees with the sample.

For the second condition, note that the sample generated by CharSFA is polynomial in
the size of DM, from the correctness of CharDFA. In addition, since ConcretizeA is efficient,
DM is polynomial in the size of M, and thus SM generated by CharSFA is polynomial in
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M as well. It is left to show that given SM is the concrete sample produced by CharSFA
when running on an SFA M, then when InferSFA runs on any sample S ⊇ SM it returns
an SFA for L(M). Since DecontaminateMA is a decontaminating function, and S ⊇ SM, the
set S ′ = DecontaminateMA (S) satisfies S ′ ⊇ SM and is only over the alphabet ΓM, which is
the alphabet of the DFA DM generated in Alg.1.

From the correctness of InferDFA, given S ′ ⊇ SM, applying InferDFA on the output S ′

of DecontaminateMA results in a DFA D that is equivalent to DM constructed in Alg.1. Since
DM is complete wrt. its alphabet ΓM, for state q of D, the concrete partition ⟨Γ1, . . . ,Γn⟩
generated in Alg.2 line 4, covers ΓM and subsumes the output of ConcretizeMA on πq (Alg.1,
line 2). Thus, since GeneralizeA and ConcretizeA satisfy the criteria of Thm.12, it holds that
the constructed predicates agree with the original predicates. In addition, since S, and
therefore S ′, agrees with M, the test performed in the definition of InferSFA fails and the
returned SFA is equivalent to M. ◀

4.3 Positive Result
We present the following positive result regarding monotonic algebras.

▶ Theorem 13. Let MAm be the set of SFAs over a monotonic Boolean algebra Am . Then
MAm is efficiently identifiable.

In order to prove Thm.13, we show that the sufficient condition holds for the case of
monotonic algebras. In the full version we provide an example that demonstrates how to
apply CharSFA and InferSFA in order to learn an SFA over the algebra AN.

▶ Proposition 14. There exist functions ConcretizeAm and GeneralizeAm for a monotonic
Boolean algebra Am , satisfying the criteria of Thm.12.

Proof. Let D be the domain of Am . We provide the functions ConcretizeAm and GeneralizeAm

and prove that the criteria of Thm.12 hold for them. For ease of presentation, for the function
Concretize we consider basic predicates. Note that for monotonic algebras, basic predicates
are in fact intervals, as a conjunction of intervals is an interval. We can assume all predicates
are basic since, as we show in [27, Lemma 3], for monotonic algebras the transformation
from a general formula to a DNF formula of basic predicates is linear. Then, each basic
predicate in the formula corresponds to a different predicate in the predicate partition. The
definitions of ConcretizeAm and GeneralizeAm are generalizations of the functions ConcretizeAN

and GeneralizeAN given in Ex.9. We define ConcretizeAm (⟨ψ1, . . . ψm⟩) = ⟨Γ1, . . . ,Γm⟩ where
we set Γi = { min{d ∈ D | d ∈ JψiK}} for 1 ≤ i ≤ m. Since Am is monotonic, Γi is well defined
and contains a single element, thus ConcretizeAm is an efficient concretizing function.

We define GeneralizeAm (⟨Γ1, . . . ,Γm⟩) = ⟨ψ1, . . . , ψm⟩, where ψi is defined as follows. Let
Γ =

⋃
1≤i≤m Γi. First, for all 1 ≤ i ≤ m we set ψi = ⊥. Then, we iteratively look for the

minimal element γ ∈ Γ. Let i be such that γ ∈ Γi, and let γ′ be the minimal element in Γ
satisfying γ′ /∈ Γi. We then set ψi = ψi ∨ [γ, γ′), and remove all elements γ ≤ γ′′ < γ′ from
Γ. We repeat the process until for the found γ ∈ Γj , there is no γ′ > γ such that γ′ /∈ Γj . In
that case, we define ψj = ψj ∨ [γ, d∞). Then, Γi ⊆ JψiK and the predicates are disjoint, thus
GeneralizeAm is an efficient generalizing function.

Now, let ⟨Γ1, . . . ,Γm⟩ be the concrete partition obtained from ConcretizeAm when ap-
plied on the predicate partition ⟨ψ1, . . . , ψm⟩. Assume further that the predicate partition
⟨Γ′

1, . . . ,Γ′
m⟩ satisfies Γi ⊆ Γ′

i ⊆ JψiK for 1 ≤ i ≤ m. In particular, min(Γ′
i) = min(Γi), since

Γi contains the minimal elements in JψiK, and Γi ⊆ Γ′
i ⊆ JψiK. Thus applying GeneralizeAm

will result in the same interval, satisfying the criterion of Thm.12. ◀
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XX:

Algorithm 3 DecontaminateMAm
– finding the necessary letters for a characteristic sample

Input: set S over alphabet �
Output: set S Õ over alphabet �Õ

1 function DecontaminateMAm
(S)

2 Aw := {‘}, �Õ := {dinf}, ‡max := dinf
3 repeat
4 for all u œ Aw, by lexicographic order do
5 for all ‡ œ �, by lexicographic order do
6 if ‡ > ‡max and u‡ ”≥S u‡max then
7 if ’‡Õ. ‡max < ‡Õ < ‡ : u‡Õ ≥S u‡max then
8 �Õ := �Õ fi {‡}
9 if ’uÕ œ Aw. u‡ ”≥S uÕ then Aw := Aw fi {u‡}

10 ‡max := ‡

11 ‡max := dinf
12 until �Õ is remained unchanged
13 return S Õ := S fl �Õú

Algorithm 3 DecontaminateMAm
– finding the necessary letters for a characteristic sample

▶ Example 15. Let Γ1 = {0, 100, 400, 500} and Γ2 = {150, 200} over the algebra AN with
domain N ∪ {∞}. Then, GeneralizeAN sets Γ = {0, 100, 150, 200, 400, 500}, and finds the
minimal element in γ which is 0. Since 0 ∈ Γ1, it then looks for the minimal element γ ∈ Γ
such that γ /∈ Γ1, and finds 150 ∈ Γ2. Therefore ψ1 = [0, 150) and Γ is updated to be
Γ = {150, 200, 400, 500}. Next, it finds the minimal element, which is 150 and is in Γ2, and
the minimal element that is not in Γ2 is 400. Then, ψ2 is set to be ψ2 = [150, 400) and
Γ = {400, 500}. Last, ψ1 = [0, 150) ∨ [400,∞) since 400 ∈ Γ1 and there is no greater element
that is not in Γ1.

To show that any class of SFAs MAm over a monotonic algebra Am is efficiently iden-
tifiable, we define in Alg.3 an algorithm that implements a decontaminating function
DecontaminateMAm

, fulfilling the requirements of Thm.12. Loosely speaking, the idea of
the algorithm is to simultaneously collect elements into two sets Aw and Σ′ s.t. Aw will
consist of the minimal representative according to the lexicographic order of each equivalence
class in ∼S and Σ′ will consist of minimal letters aiding to distinguishing these words. When
this process terminates the algorithm returns the subset of words in the sample that consist
of only letters in Σ′.

▶ Lemma 16. Assume the input to DecontaminateMAm
is S with S ⊇ SM for some M ∈ MAm

s.t. SM = CharDFA(ConcretizeMAm
(M)), and DM = ConcretizeMAm

(M) is over alphabet
ΓM. Then for Σ′ constructed by DecontaminateMAm

(Alg.3) it holds that Σ′ =ΓM.

Proof sketch. Let M = (A, Q, qι, F,∆M), DM = ConcretizeMAm
(M) where DM = (ΓM, Q,

qι, F,∆D), and SM = CharDFA(DM). We inductively show that for DecontaminateMAm

given in Alg.3, if its input S satisfies S ⊇ SM then the set Aw is exactly the set of all
lex-access words of states in DM and that Σ′ = ΓM (where ΓM is the alphabet of DM).

First, we show that every u ∈ Aw is a lex-access word and that Σ′ ⊆ ΓM. For the base
case, we have Aw = {ϵ} and Σ′ = {d−∞}. Since ϵ is the minimal element in the lexicographic
order, it holds that ϵ ∈ Aw is indeed a lex-access word (of the state qι). For d−∞ ∈ Σ′, since
ConcretizeAm returns the minimal element of each interval, it holds that d−∞ ∈ ΓM.

For the induction step, assume that Aw contains only lex-access words and that the
current Σ′ is a subset of ΓM. Then, when considering u ∈ Aw in line 4, it holds that u is a
lex-access word of some state q. Then, if σ is added to Σ′ it must be a minimal element of

CSL 2022



27:14 Inferring Symbolic Automata

some interval labeling an outgoing transition from q, thus it is in ΓM, and hence Σ′ ⊆ ΓM.
Let uσ be a word added to Aw in line 9. Thus, for all u′ ∈ Aw it holds that uσ ̸∼S u′.

Claim. In this setting, uσ ̸∼S u′ implies uσ ̸∼SM u′.
See the full version for a detailed proof of the lemma, and in particular, a proof of this claim.

Then, for all u′ ∈ Aw we have ∆D(qι, uσ) ̸= ∆D(qι, u′) where ∆D is the transition relation
of DM. Since u is a lex-access word and σ is minimal, uσ is a lex-access word for ∆D(qι, uσ).
This concludes the first direction.

For the second direction, we show that every lex-access word is in Aw and that ΓM ⊆ Σ′.
The lex-access word ϵ is in Aw. Let uσ be a lex-access word. For all lex-access words u′

found in previous iterations it holds that uσ ̸∼SM u′ from item 2 of Thm.6.II, and thus
uσ ̸∼S u′ since SM ⊆ S. Thus, uσ satisfies the condition of line 9 in Alg.3 and is added to
Aw. For ΓM ⊆ Σ′, let σ ∈ ΓM. From the construction of ConcretizeAm it holds that σ is the
left endpoint of some interval that is an outgoing transition from qι. Then, indeed σ is found
in the first iteration of line 4. Inductively, since Aw contains all lex-access words, for every
state q, the outgoing transitions of q will be considered in some following iteration. Thus, all
minimal letters indicating new intervals are added to Σ′ and we have that ΓM ⊆ Σ′. ◀

▶ Proposition 17. The sufficient condition of Thm.12 holds for the class MAm of SFAs over
a monotonic Boolean algebra Am .

Proof. In Prop.14 we have shown that there exist functions ConcretizeAm and GeneralizeAm

for a monotonic Boolean algebra Am , satisfying the criteria of Thm.12. It is left to show
that DecontaminateMAm

is an efficient decontaminating function. Assume that S ⊇ SM
where SM = CharDFA(ConcretizeMAm

(M)), and ConcretizeMAm
(M) is over alphabet ΓM. In

Lemma 16 we showed that under these assumptions it holds that the alphabet Σ′ of the
returned sample S ′ is ΓM. Then, for the set S ′ returned in line 13 (Alg.3) it holds that
S ′ = S ∩ Γ∗

M. Since S ⊇ SM and Γ∗
M ⊇ SM, it holds that S ′ ⊇ SM and S ′ is defined over

the alphabet ΓM. Therefore, DecontaminateMAm
is a decontaminating function. In addition,

it runs in time polynomial in the size of S, thus the conditions of Thm.12 are met. ◀

4.4 Negative Result
The result of Thm.13 does not extend to the non-monotonic case, as stated in Thm.18
regarding SFAs over the general propositional algebra. Let DB = {Bk}k∈N. Let PB =
{PBk

}k∈N where PBk
is the set of predicates over at most k variables. Let AB be the Boolean

algebra defined over the discrete domain DB and the set of predicates PB, and the usual
operators ∨, ∧ and ¬. Let MAB be the class of SFAs over the Boolean algebra AB. We show
that unless P = NP , this class of SFAs is not efficiently identifiable.

▶ Theorem 18. The class MAB is not efficiently identifiable unless P = NP .

Proof. We show that there is no pair of efficient concretizing and generalizing functions
fc : Πpred(PB, 2) → Πconc(DB, 2) and fg : Πconc(DB, 2) → Πpred(PB, 2) unless P = NP . From
Thm.8 it follows that MB is not efficiently identifiable unless P = NP .

Assume towards contradiction that such a pair of functions exist. We provide a polynomial
time algorithm ASAT for SAT. On predicate φ, the algorithm ASAT invokes fc(⟨φ,¬φ⟩).
Suppose the returned concrete partition is ⟨Γ1,Γ2⟩. Then ASAT returns “true” if and only
if Γ1 ̸= ∅. Correctness follows from the fact that if there exists a system of characteristic
samples for PB then the set of positive examples associated with a satisfiable predicate φ
must be non-empty, as otherwise fg cannot distinguish φ from ⊥. ◀
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5 Query Learning

The paradigm of query learning stipulates that the learner can interact with an oracle
(teacher) by asking it several types of allowed queries. Angluin showed, on the negative
side, that regular languages cannot be learned (in the exact model) from only membership
queries (mq) [3] or only equivalence queries (eq) [6]. On the positive side, she showed that
regular languages, represented as DFAs, can be learned using both mq and eq [4]. The
celebrated algorithm, termed L∗, was extended to learning many other classes of languages
and representations, e.g. [46, 15, 1, 16, 7, 38, 8, 41], see the survey [26] for more references.

In particular, an extension of L∗, termed MAT∗, to learn SFAs was provided in [9] which
proved that SFAs over an algebra A can be efficiently learned using MAT∗ if and only if the
underlying algebra is efficiently learnable, and the size of disjunctions of k predicates doesn’t
grow exponentially in k.6 From this it was concluded that SFAs over the following underlying
algebras are efficiently learnable: Boolean algebras over finite domains, equality algebra, tree
automata algebra, and SFAs algebra. Efficient learning of SFAs over a monotonic algebra
using mq and eq was established in [19], which improved the results of [36, 37] by using a
binary search instead of a helpful teacher.

The result of [9] provides means to establish new positive results on learning classes of
SFAs using mq and eq, but it does not provide means for obtaining negative results for query
learning of SFAs using mq and eq. We strengthen this result by providing a learnability
result that is independent of the use of a specific learning algorithm. In particular, we show
that efficient learnability of a Boolean algebra A using mq and eq is a necessary condition
for the learnability of the class of SFAs over A, as we state in Thm. 19.

▶ Theorem 19. A non-trivial class of SFAs M over a Boolean algebra A is polynomially
learnable using mq and eq, only if A is polynomially learnable using mq and eq.

Proof. Assume that M is polynomially learnable using mq and eq, using an algorithm QM.
We show that there exists a polynomial learning algorithm QA for the algebra A using mq and
eq. The algorithm QA uses QM as a subroutine, and behaves as a teacher for QM. Whenever
QM asks a M-mq on word γ1 . . . γk, if k > 1 then QA answers “no”. If k=1 then the M-mq
is essentially an A-mq, thus QA issues this query and passes the answer to QM. Whenever
QM asks a M-eq on SFA M, if M is of the form Mψ for some ψ (as defined in Def.2) then
QA answers “no” to the M-eq and returns some word w ∈ L(M) s.t. |w| > 1 and w was not
provided before, as a counterexample. Otherwise (if the SFA is of the form Mψ for some
ψ) QA asks an A-eq on ψ. If the answer is “yes” then QA terminates and returns ψ as the
result of the learning algorithm; if the answer to the A-eq on ψ is “no”, then the provided
counterexample ⟨γ, bγ⟩ is passed back to QM together with the answer “no” to the M-eq. It
is easy to verify that QA terminates correctly in polynomial time. ◀

From Thm. 19 we derive what we believe to be the first negative result on learning SFAs
from mq and eq, as we show that SFAs over the propositional algebra over k variables ABk

are not polynomially learnable using mq and eq. Polynomiality is measured with respect
to the parameters ⟨n,m, l⟩ representing the size of the SFA and the number k of atomic
propositions. Note that the algebra ABk

is a restriction of the algebra AB considered in §.4.4
and therefore implies a negative result also with regard to the algebra AB considered there.

6 As is the case, for instance, in the OBDD (Ordered Binary Decisions Diagrams) algebra [17].
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We achieve this by showing that no learning algorithm A for the propositional algebra
using mq and eq can do better than asking 2k mq/eq, where k is the number of atomic
propositions.7 We assume the learning algorithm is sound, that is, if S+

i and S−
i are the sets

of positive and negative examples observed by the algorithm up to stage i, then at stage
i+ 1 the algorithm will not ask a mq for a word in S+

i ∪ S−
i or an eq for an automaton that

rejects a word in S+
i or accepts a word in S−

i .
▶ Proposition 20. Let A be a sound learning algorithm for the propositional algebra over
Bk. There exists a target predicate ψ of size k, for which A will be forced to ask at least
2k − 1 queries (either mq or eq).

Proof. Since A is sound, at stage i+ 1 we have S+
i+1 ⊇ S+

i and S−
i+1 ⊇ S−

i and at least one
inclusion is strict. Since the size of the concrete alphabet is 2k, for every round i < 2k, an
adversarial teacher can answer both mq and eq negatively. In the case of eq there must be an
element in Bk \ (S−

i ∪ S+
i ) with which the provided automaton disagrees. The adversary will

return one such element as a counterexample. This forces A to ask at least 2k−1 queries. Note
that for any element v in Bk there exists a predicate φv of size k such that JφvK = {v}. ◀

▶ Corollary 21. SFAs over the propositional algebra ABk
with k propositions cannot be learned

in poly(k) time using mq and eq.

The propositional algebra ABk
is a special case of the n-dimensional boxes algebra.

Learning n-dimensional boxes was studied using mq and eq [29, 18, 12], as well as in the
PAC setting [13]. The algorithms presented in [29, 18, 12, 13] are mostly exponential in n.
Alternatively, [29, 18] suggest algorithms that are exponential in the number of boxes in the
union. In [12] a linear query learning algorithm for unions of disjoint boxes is presented. Since
n-dimensional boxes subsume the propositional algebra, Corollary 21 implies the following.
▶ Corollary 22. The class of SFAs over the n-dimensional boxes algebra cannot be learned in
poly(n) time using mq and eq.

6 Discussion

We examine the question of learnability of a class of SFAs over certain algebras where
the main focus of our study is on passive learning. We provide a necessary condition for
identification of SFAs in the limit using polynomial time and data, as well as a necessary
condition for efficient learning of SFAs using mq and eq. We note that a positive result
on learning SFAs using mq and eq implies a positive result for identification of SFAs in
the limit using polynomial time and data. The latter follows because a systematic set of
characteristic samples {SL}L∈L for a class of languages L may be obtained by collecting
the words observed by the query learner when learning L. However, it does not imply a
positive result regarding the stronger notion of efficient identifiability, as the latter requires
the set to be also constructed efficiently. We thus provide a sufficient condition for efficient
identification of a class of SFAs, and show that the class of SFAs over any monotonic algebra
satisfies these conditions.

We hope that these sufficient or necessary conditions will help to obtain more positive
and negative results for learning of SFAs, and spark an interest in investigating characteristic
samples in other automata models used in verification.

7 In [40] Boolean formulas represented using OBDDs are claimed to be polynomially learnable with mq
and eq. However, [40] measures the size of an OBDD by its number of nodes, which can be exponential
in the number of propositions.
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