
Boosting the Security
of Blind Signature Schemes

Jonathan Katz1, Julian Loss2?, and Michael Rosenberg1??

1 University of Maryland
jkatz2@gmail.com,micro@cs.umd.edu

2 CISPA Helmholtz Center for Information Security
lossjulian@gmail.com

Abstract. Existing blind signature schemes that are secure for poly-
nomially many concurrent executions of the signing protocol are either
inefficient or rely on non-standard assumptions (even in the random-oracle
model). We show the first efficient blind signature schemes achieving
this level of security based on the RSA, factoring, or discrete-logarithm
assumptions (in the random-oracle model). Our core technique involves
an extension and generalization of a transform due to Pointcheval (Euro-
crypt ’98) that allows us to boost the number of signatures supported by
a certain class of blind signature schemes.

1 Introduction

A blind signature scheme [?] consists of an interactive protocol executed
between a signer S (holding a secret key sk) and a user U (holding a
messagem and the signer’s public key pk), by which U obtains a signature σ
on m. Blindness ensures that S learns nothing about m, and in fact is
even unable to link (m,σ) to the execution of the protocol in which σ
was generated. One-more unforgeability means that if U executes the
signing protocol ` times, it should be unable to generate valid signatures
on more than ` messages. Even in the random-oracle model, known blind
signature schemes that support polynomially many signatures are either
inefficient [?,?,?,?,?], rely on non-standard assumptions or the algebraic
group model [?,?,?,?,?,?,?], or are secure only for sequential executions of
the signing protocol [?,?,?]. Known efficient schemes that rely on standard
assumptions such as RSA, factoring, the hardness of computing discrete
logarithms, or the hardness of SIS [?,?,?,?,?,?] are concurrently secure
but their signature size becomes unacceptably large as the number of

? Work done while at the University of Maryland.
?? Work supported by a National Defense Science and Engineering Graduate (NDSEG)

Fellowship.

signatures they can support grows; moreover, they cannot support an a
priori unbounded (but still polynomial) number of signatures. (JK: Is
that accurate?) Furthermore, for many schemes this limitation is known
to be inherent as there is an efficient attack [?,?,?] when the number of
signatures issued concurrently is sufficiently large.

In an effort to obtain an efficient blind signature scheme secure for issu-
ing more signatures, Pointcheval [?] showed a transform for “boosting” the
security of the Okamoto-Schnorr blind signature scheme [?,?]. Specifically,
under the assumption that the Okamoto-Schnorr blind signature scheme
is secure for logarithmically many sequential executions of the signing
protocol (which itself can be shown to hold in the random-oracle model,
based on the hardness of computing discrete logarithms), the transformed
scheme is secure for polynomially many sequential executions of the signing
protocol.1 The resulting scheme, however, has a significant drawback: it
requires the signer to refuse to issue any further signatures if a user is ever
caught cheating. Thus, while the scheme could be used in a setting where
the signer interacts with a single user repeatedly (and thus the signer
would be justified in refusing to interact with that user once that user is
caught cheating), the scheme is not appropriate for standard applications
of blind signatures where the signer interacts with many users, some of
whom may collude. Indeed, in the latter setting a single malicious user
could easily carry out a devastating denial-of-service attack by interacting
with the signer once and cheating, thus preventing the signer from issuing
any further signatures. Note further that an abort by the user during an
execution of the signing protocol is considered cheating, so even transient
network failures during an honest execution of the protocol may lead to
the same result.

1.1 Our Contributions

Inspired by Pointcheval’s transform, we show a new transform for boosting
the security of certain blind signature schemes. Our transform has the
following advantages compared to Pointcheval’s result:

1. As with Pointcheval’s transform, our transform boosts security in the
following sense: if the original scheme BS is secure for logarithmically
many executions of the signing protocol, then the transformed scheme
CCBS is secure for polynomially many executions. Importantly, how-

1 We have identified a bug in Pointcheval’s result, in that the transformed scheme does
not satisfy blindness. This is easy to fix, though.

ever, in our case the transformed scheme CCBS does not require the
signer to stop issuing signatures if cheating is detected.

2. Moreover, if BS is secure for (logarithmically many) concurrent execu-
tions of the signing protocol, then CCBS is secure for (polynomially
many) concurrent executions as well. This is in contrast to Pointcheval’s
transform, which is not secure for concurrent executions of the signing
protocol even if the original scheme is concurrently secure.

3. Our transform can be applied to any blind signature scheme BS con-
structed in a certain way from a linear function family [?], in contrast
to Pointcheval’s transform that is specific to the Okamoto-Schnorr
scheme.2 In particular, our transform can be applied to the Fiat-
Shamir, Okamoto-Guillou-Quisquater, and Okamoto-Schnorr blind
signature schemes, all of which can be proven secure (for logarithmi-
cally many (JK: concurrent?) executions) under standard assumptions
in the random-oracle model. Our transform can also be applied to the
Schnorr blind signature scheme, which was recently proven secure (for
logarithmically many executions) in the algebraic group model [?].

4. As in Pointcheval’s transform, the size of signatures in the transformed
scheme CCBS is (almost) the same as in the underlying scheme BS.

Overall, then, our work gives the first efficient blind signature schemes
that are secure for an unbounded polynomial number of concurrent exe-
cutions of the signing protocol, based on standard assumptions (in the
random-oracle model).

1.2 Overview

In this section we give a high-level overview of our transform and its proof
of security. Our treatment is deliberately informal, and we refer the reader
to Section 3 for details of our scheme. We let BS denote a blind signature
scheme that is secure for logarithmically many executions of the signing
protocol, and for which our transform applies. This in particular means
that the signing protocol of BS has a three-round structure in which the
signer sends the first message. We denote the messages sent in each round
of the protocol as R, c, and s, respectively.

Pointcheval’s transform. We begin by recalling Pointcheval’s transform
and its proof of security. (Pointcheval’s transform was only defined for the
Okamoto-Schnorr scheme, but our work shows that it can be applied to a

2 Pointcheval states that his transform can be adapted to apply to the Okamoto-
Guillou-Quisquater scheme, but does not give details (or a proof).

larger class of schemes.) The basic idea of Pointcheval’s transform is to use
1-out-of-2 cut-and-choose to catch (in a limited sense) cheating behavior
of a user U . In more detail, the transformed scheme works roughly as
follows for a user who wants to obtain a signature on a message m:

1. U runs two parallel executions of BS (we refer to each as a ses-
sion) where the messages to be signed are µ1 = H′(m,ϕ1) and
µ2 = H′(m,ϕ2), respectively. (Here, H′ is a random oracle and ϕ1, ϕ2

are random strings.) The transformed protocol begins by having U
send a commitment com1 to µ1 and its randomness for the first session,
and a commitment com2 to µ2 and its randomness for the second ses-
sion. These commitments also rely on a random oracle, which enables
extraction in the proof of one-more unforgeability (see below).

2. S runs two executions of BS to obtain initial messages R1, R2, which
it sends to U .

3. U responds with c1, c2, which are the second messages of its two
executions of BS.

4. S then chooses a uniform I ∈ {1, 2} and challenges U to open commit-
ment com3−I and thus demonstrate that it behaved honestly in the
corresponding session. If the commitment is opened correctly, then S
sends the final message sI for the unopened session and U uses BS to
compute a signature on µI (which is defined to be a signature on m in
the transformed scheme). If U is caught cheating, then S aborts and
refuses to issue any more signatures (see further discussion below).

It is not difficult to show that the transformed scheme is blind if BS is
blind, and so the main challenge is to prove one-more unforgeability of
the transformed scheme for polynomially many executions. This is shown
by reduction to the one-more unforgeability of BS for logarithmically
many executions. The idea of the reduction is as follows. Each time
the adversarial user U∗ sends its commitments in the first round of the
transformed protocol, the reduction uses the random-oracle queries of U∗
to try to extract the randomness of U∗ for both sessions. If this cannot
be done for either session, then U∗ will not succeed in the cut-and-choose
(except with negligible probability) and so simulation is easy. If extraction
can be done for both sessions, then the reduction will be able to simulate
an execution of BS on its own, regardless of the value of I. The remaining
case is when the reduction is able to extract the randomness for only one
of the two sessions; in that case, we say U∗ attempts to cheat. U∗ can
then succeed in the cut-and-choose with probability 1/2 (in which case we
say U∗ successfully cheats), and the reduction will be unable to simulate

BS for the unopened session in that case (since it was unable to extract
the randomness for that session). Instead, in this case the reduction will
interact with the real signer in the underlying scheme BS, forwarding
messages in the obvious way between the signer and U∗. (One must show
that a forgery by U∗ in the transformed scheme implies that the reduction
can compute a forgery in BS with high probability, but this is irrelevant
for the discussion that follows.)

To complete the proof, we must argue that with overwhelming proba-
bility the reduction interacts with the signer for the underlying scheme
BS only logarithmically many times. Although the formal analysis is quite
involved, intuitively this holds because each time U∗ attempts to cheat it
is caught with probability 1/2. Thus, the probability that U∗ successfully
cheats t times (and thus causes the reduction to interact with the signer t
times) before being caught is 2−t, and hence t is super-logarithmic in the
security parameter with only negligible probability. This highlights why
it is essential that the signer must refuse to run any more executions of
the signing protocol once it detects cheating: if it did not, then U∗ could
attempt to cheat in polynomially many executions and successfully cheat
(in expectation) in half of those. Since each instance of successful cheating
requires the reduction to interact with the signer in BS, this would mean
that the transform would then (at best) be able to double the number of
executions of the signing protocol that can be supported.

Our transform. We follow a template similar to Pointcheval’s transform,
but since we wish to support an unbounded (polynomial) number of
executions of the signing protocol we need to modify things to bound
the number of times an adversarial user U∗ can successfully cheat in the
cut-and-choose. Our key insight is that we can do this by using 1-out-
of-N cut-and-choose, where N increases with the number of executions.3

That is, we consider following Pointcheval’s general approach, but in the
(N − 1)st execution of the transformed protocol we instead use 1-out-of-N
cut-and-choose on the underlying scheme BS. The probability that U∗
can successfully cheat in the (N − 1)st execution is now 1/N , so even if
U∗ attempts to cheat in every one of its p executions of the transformed
protocol, the expected number of times it can successfully cheat is

1

2
+

1

3
+ · · ·+ 1

p+ 1
< ln(p+ 1).

3 In fact, it suffices to have N depend linearly on the number of times cheating is
detected (cf. Section 3.3), but we ignore this optimization in our informal overview.

An appropriate concentration bound implies that for any polynomial p
(which bounds the number of executions U∗ runs), the probability that
U∗ successfully cheats super-logarithmically many times is negligible.

We remark that although the complexity of our signing protocol grows,
the other parameters of the scheme—namely, the size of the keys, the size
of the signatures, and the cost of verification—are fixed and essentially the
same as in the original scheme BS. The round complexity of our signing
protocol is also constant.

Comparison with generic constructions. The complexity of the sign-
ing protocol in our scheme is (roughly) N times the complexity of the
signing protocol in BS, where N is the number of executions. (But see
footnote 3.) One might therefore wonder whether our scheme is better than
a generic construction of a blind signature scheme where signing involves
running a secure two-party computation (2PC) protocol for computing
any (standard) signature [?]. (The details are more complex, but are
unimportant for the purposes of this discussion.) This generic approach,
however, has several drawbacks compared to our scheme.

1. Such a generic construction would not be concurrently secure without
additional complexity and/or without assuming some form of trusted
setup or non-standard hardness assumptions.

2. The efficiency of such a generic construction (even restricting atten-
tion to sequential security) is unclear, but we conservatively estimate
(based on work of Jayaraman et al. [?]) that secure 2PC of an Okamoto-
Schnorr signature at the 96-bit security level would have communica-
tion complexity at least 109× that of our protocol when N = 2. Thus,
our signing protocol would have better communication complexity
for N < 109. The comparison would be even more favorable for our
scheme at higher security levels.

3. Efficient and provably secure signature schemes rely on the random-
oracle model, but secure computation of a signature would require a
circuit for the hash function instantiating the random oracle. Security
of the resulting protocol in this case is unclear.

Notwithstanding the above, we note that the generic approach does have
two advantages compared to our scheme: First, the signer is stateless,
whereas in our scheme the signer is required to maintain (a small amount
of) state. Second, the signatures produced in the generic scheme are
identical to signatures in the underlying scheme, whereas in our scheme
(as in Pointcheval’s) signatures include an additional random value.

Another generic construction of blind signatures is given by Fischlin [?].
Roughly, in his scheme the signer signs a commitment to m; the signature
computed by the user consists of a non-interactive zero-knowledge proof of
knowledge (NIZKPoK) of a signed commitment on m. Fischlin’s scheme is
concurrently secure. Nevertheless, the signatures produced by his scheme
are much larger than standard signatures (even if SNARKs are used for
the NIZKPoK); also, as with the generic construction discussed above,
the concrete efficiency of this approach—especially if one wants to rely on
standard assumptions—is unclear.

2 Preliminaries

We give definitions for blind signature schemes and linear function families,
and recall a generic construction of the former from the latter.

Notation. We denote the security parameter by κ. We write a← S to
denote that a is drawn uniformly from set S. For a randomized algorithm A
we write y ← A(x) to denote that A returns y when run on input x. For
a positive integer N we let [N] = {1, . . . , N}.

2.1 Blind Signatures

We define the syntax of a blind signature scheme, followed by definitions
of blindness and one-more unforgeability.

Definition 1 (Blind signature scheme). A blind signature scheme is
a tuple of algorithms BS = (Gen,S,U ,Vrfy) such that:

– The key-generation algorithm Gen takes as input the security parame-
ter 1κ and outputs a public/secret key pair (pk, sk) as well as initial
state stS .

– The signer algorithm S is an interactive algorithm that takes as input
a secret key sk and can (atomically) read/write a global variable stS
during its execution. At the end of its execution, it outputs either ⊥
(indicating an abort) or 1 (indicating a successful execution). When S
outputs 1 at the end of an execution we call that execution complete.

– The user algorithm U is an interactive algorithm that takes as input a
public key pk and a message m. At the end of its execution, it either
outputs ⊥ (indicating an abort) or a signature σ.

– The verification algorithm Vrfy takes as input a public key pk, a mes-
sage m, and a signature σ, and outputs a bit b indicating “accept”
(b = 1) or “reject” (b = 0).

We require perfect correctness: for all (pk, sk) output by Gen and all mes-
sages m, if S(sk) and U(pk,m) execute the protocol honestly then S out-
puts 1 and the signature σ output by U satisfies Vrfypk(m,σ) = 1.

The above definition allows the signer to be stateful, and this will be
the case for our construction. For simplicity, however, we leave the state
implicit in our definitions.

Definition 2 (Blindness). For blind signature scheme BS = (Gen, S,
U , Vrfy) and an adversary A, consider the following experiment:

1. A(1κ) outputs a public key pk and a pair of messages m0,m1. A
uniform bit b← {0, 1} is also chosen.

2. Run AU(pk,mb),U(pk,m1−b)(1κ), where A may run one execution with
each of its oracles, but may arbitrarily interleave its oracle calls.

3. When both executions are completed, let σb, σ1−b be the (local) outputs
of the respective oracles. If σ0 =⊥ or σ1 =⊥, then A is given ⊥;
otherwise, A is given σ0, σ1. Finally, A outputs b′.

4. A succeeds iff b′ = b.

The advantage of A is the probability that it succeeds in the above ex-
periment minus 1/2. We say BS satisfies blindness if for all probabilistic
polynomial-time A, the advantage of A is negligible. BS is perfectly blind
if the advantage is 0 even for unbounded A.

The above definition allows the malicious signer to use a maliciously
generated public key pk. A weaker definition that is often considered in
the literature assumes pk is generated honestly using the key-generation
algorithm of BS. We refer to the corresponding notion of security as
blindness for honestly generated keys.

Definition 3 (One-more unforgeability). Let ` : N → N. For blind
signature scheme BS = (Gen, S, U , Vrfy) and adversary A, consider the
following experiment:

1. Generate keys (pk, sk)← Gen(1κ).
2. Run AS(sk)(pk), where A may initiate an arbitrary number of execu-

tions with its oracle (arbitrarily interleaving its oracle calls), so long
as S completes at most ` = `(κ) of those executions.

3. A outputs `+ 1 message-signature pairs (m1, σ1), . . . , (m`+1, σ`+1).
4. A succeeds if all {mi} are distinct and Vrfypk(mi, σi) = 1 for all i.

BS satisfies `-one-more unforgeability if for all probabilistic polynomial-
time A, the probability that A succeeds is negligible. BS satisfies one-more
unforgeability if it is `-one-more unforgeable for all polynomial `.

The above definition allows concurrent executions of the signing pro-
tocol. A weaker definition considers only sequential executions. (Formally,
this would mean that if A initiates a new session with its oracle S(sk),
then the oracle terminates the currently active session.) We refer to the
corresponding notion of security as sequential (`-)one-more unforgeability.

2.2 Linear Function Families

A linear function family [?] is a tuple of probabilistic polynomial-time
algorithms LF = (PGen,F, Ψ). The parameter-generation algorithm PGen
takes as input the security parameter 1κ and returns parameters par that, in
particular, define abelian groups S, D, and R (written additively). (These
correspond to a set of “scalars,” a “domain,” and a “range,” respectively).
We require the existence of a “scalar multiplication” map · : S × D → D
such that for all s ∈ S and x, x′ ∈ D we have s · (x + x′) = s · x + r · x′
and 0 · x = s · 0 = 0. (We stress that it is not necessarily the case that
(s + s′) · x = s · x + s′ · x; see further below.) We also require a map
· : S ×R → R with analogous properties. Finally, it should be possible to
efficiently sample uniform elements from S and D.

For concreteness, the reader may want to keep in mind the linear
function family where S = D = Zq and R is a cyclic group G of prime
order q (written multiplicatively). (Looking ahead to the next section, this
is the linear function family that underlies the Schnorr blind signature
scheme.) We have scalar multiplication maps s · x = s · x (mod q) for
s, x ∈ Zq and s · g = gs for g ∈ G. We give other examples of linear
function families in Appendix A.

The linear evaluation function F = Fpar takes as input a point x ∈ D
and returns an element y ∈ R. We require that for all s ∈ S and x, y ∈ D,
it holds that F(s ·x+y) = s ·F(x)+F(y). We also require4 that F is smooth:
namely, that F(x) is uniform in R when x is uniform in D. We say LF
has a pseudo torsion-free element in the kernel if there exists z∗ ∈ D such
that (1) F(z∗) = 0, and (2) for all distinct s, s′ ∈ S, we have s · z∗ 6= s′ · z∗.
(Note this implies z∗ 6= 0.)

Returning to our running example: if par includes a uniformly selected
generator g ∈ G we can define F(x) = gx, which is clearly linear. In
this example, however, the linear function family does not have a pseudo
torsion-free element in the kernel.

4 For our results it suffices for F(x) to have high min-entropy when x ∈ D is uniform.
But it is easier to state our results assuming smoothness.

The distributor function Ψ = Ψpar takes as input an element y ∈ R
and points s, s′ ∈ S, and outputs a point in D. For all y in the range of F
and s, s′ ∈ S, we require

(s+ s′) · y = s · y + s′ · y + F(Ψ(y, s, s′)).

Intuitively, the distributor function Ψ outputs a correction term that
corrects for the fact that the group operation in S may not distribute
over R. (Thus, the distributor function is the zero function whenever the
scalar multiplication map does distribute, as in our running example).

We define two security properties for linear function families.

Definition 4 (Preimage resistance). For a linear function family LF
and an adversary A consider the following experiment:

1. Generate parameters par← PGen(1κ) and choose x← D.
2. Run A(par,F(x)) to obtain x′ ∈ D.
3. A succeeds if F(x′) = F(x).

LF is preimage resistant if for all probabilistic polynomial-time A, the
probability that A succeeds is negligible. LF is (t, εPRE)-preimage resistant if
every A running in time at most t succeeds with probability at most εPRE.

Definition 5 (Collision resistance). For a linear function family LF
and an adversary A consider the following experiment:

1. Generate parameters par← PGen(1κ).
2. Run A(par) to obtain x1, x2 ∈ D.
3. A succeeds if F(x1) = F(x2) and x1 6= x2.

LF is collision resistant if for all probabilistic polynomial-time A, the prob-
ability that A succeeds is negligible.

The linear function family in our running example is preimage resistant
if the discrete-logarithm problem is hard in G, and unconditionally collision
resistant (since F is a bijection).

2.3 Blind Signatures from Linear Function Families

Hauck et al. [?] showed that several blind signature schemes from the
literature, including the Schnorr, Okamoto-Schnorr, Fiat-Shamir, and
Okamoto-Guillou-Quisquater schemes, can be viewed as being derived
from linear function families. We recall their generic construction of a blind
signature scheme BS[LF] from a linear function family LF. The secret key

S(sk, pk) U(pk,m)

r ← D

R := F(r)
R−−−−−−−−−−−−−→ α← D; β ← S

R′ := R+ F(α) + β · pk
c′ := H(m,R′)

c←−−−−−−−−−−−− c := c′ + β

s := r + c · sk s−−−−−−−−−−−−→
if F(s) 6= R+ c · pk

abort

s′ := s+ α+ Ψ(pk, c,−c′)
σ := (c′, s′)

output σ

Fig. 1. The signing protocol for blind signature scheme BS[LF], where LF is a linear
function family and H : {0, 1}∗ → S is modeled as a random oracle.

is chosen as a uniform element sk ∈ D and the corresponding public key is
pk := F(sk). The signing protocol, where U holds a message m, proceeds
as follows. (See Figure 1.) In the first step, S samples r ← D and sends
R := F(r) to U . Then U samples blinding parameters α← D and β ← S
that it uses to compute a “blinded commitment” R′ := R+ F(α) + β · pk,
computes c′ := H(m,R′), and sends the blinded challenge c := c′ + β to
S. In the last round of the protocol, S replies with s := r + c · sk, and
U checks that F(s) = R+ c · pk. (If not, U aborts). Finally, U computes
s′ := s+α+Ψ(pk, c,−c′) and outputs the signature σ := (c′, s′). Signature
verification is done by checking whether c′ = H(m,F(s′)− c′ · pk).

If both parties follow the protocol honestly, then

s′ = s+ α+ Ψ(pk, c,−c′) = c · sk + r + α+ Ψ(pk, c,−c′).

Thus,

F(s′)− c′ · pk = F(c · sk + r + α+ Ψ(pk, c,−c′))− c′ · pk

= c · pk− c′ · pk + F(Ψ(pk, c,−c′)) + F(r) + F(α)

= (c− c′) · pk + F(r) + F(α)

= β · pk +R+ F(α) = R′,

and so verification succeeds. This demonstrates correctness of the scheme.

Hauck et al. [?] show that BS[LF] is perfectly blind for honestly gener-
ated keys. Their proof extends to full blindness (i.e., even for maliciously
generated keys) when BS[LF] corresponds to the Schnorr or Okamoto-
Schnorr blind signature schemes. They also show the following result about
one-more unforgeability of BS[LF]:

Theorem 1 ([?]). Let LF be a linear function family with a torsion-free
element in the kernel, and model H as a random oracle. Then if there is an
adversary against `-one-more unforgeability of BS[LF] that runs in time t,
initiates at most p ≥ ` executions, makes at most qH queries to H, and
has success probability ε, there is an adversary against collision resistance
of LF running in time t′ = 2t and having success probability at least

ε′ = Ω

((
ε

2
− (qH · (p− `))`+1

|S|

)3

· 1

q2H · `3

)
.

Theorem 1 requires LF to have a pseudo torsion-free element in
the kernel, and thus applies to the Okamoto-Schnorr, Okamoto-Guillou-
Quisquater, and Fiat-Shamir blind signature schemes. (See Appendix A.)
However, there are examples of other schemes matching the template
of Figure 1 that can be proven secure without relying on Theorem 1.
In particular, recent work [?] has proven security of the Schnorr blind
signature scheme in the algebraic group model under the one-more discrete
logarithm assumption, with a bound similar to the one above.

It is worth reflecting on the concrete bounds given by the above
theorem. Assuming 0 < p − ` ≈ ` and qH � ` > 0, the bound in the
theorem is only meaningful if q`H < |S|, or ` · log qH < log |S|. If all we
are willing to assume is that |S| is super-polynomial, then the theorem
cannot give meaningful security beyond (at best) ` = O(log κ). Taking
|S| = 22κ (a natural choice in practice) and allowing qH = poly(κ), the
theorem implies security for ` = o(κ/ log κ). In general, the signature size
must grow linearly in `; moreover, the theorem does not give a scheme
supporting an unbounded (polynomial) number of signatures, since for any
choice of log |S| = poly(κ) an adversary initiating ` = 2 log |S| executions
makes the theorem inapplicable.

3 Boosting Security of Blind Signatures

We now present our cut-and-choose blind signature scheme CCBS[LF]. (We
assume the reader has read the informal overview in Section 1.2.) As in
BS[LF], the secret key is a uniform element sk← D and the corresponding

S(sk, pk); state N U(pk,m)

atomically increment N
N−−−−−−−−−−−−−→ for i ∈ [N] :

αi ← D; βi ← S
ϕi, γi ← {0, 1}κ

µi := H′(m,ϕi)

for i ∈ [N]:
com1, . . . , comN←−−−−−−−−−−−−− comi := H′(αi, βi, µi, γi)

ri ← D

Ri := F(ri)
R1, . . . , RN−−−−−−−−−−−−−−−→ for i ∈ [N] :

R′i := Ri + F(αi) + βi · pk
c′i := H(µi, R

′
i)

c1, . . . , cN←−−−−−−−−−−−− ci := c′i + βi

I ← [N]
I−−−−−−−−−−−−−→

{(αi, βi, µi, γi)}i6=I←−−−−−−−−−−−−−−−−
for i ∈ [N] \ {I} :

R′i := Ri + F(αi) + βi · pk
if ∃i ∈ [N] \ {I} s.t

comi 6= H′(αi, βi, µi, γi)

or ci 6= H(µi, R
′
i) + βi

abort

sI := rI + cI · sk
sI−−−−−−−−−−−−−→ if F(sI) 6= RI + cI · pk

abort

s′I := sI + αI + Ψ(pk, cI ,−c′I)
σ := (c′I , s

′
I , ϕI)

output σ

Fig. 2. The signing protocol for blind signature scheme CCBS[LF], where H : {0, 1}∗ → S,
H′ : {0, 1}∗ → {0, 1}2κ are modeled as random oracles.

public key is pk := F(sk). Now, however, the signer S additionally maintains
a counter N that is initialized to 1. The signing protocol for a message m
then proceeds as follows (cf. Figure 2):

1. S atomically increments its counter (see further discussion below) and
sends the updated counter N to the user U .

2. Informally, U runs N executions of BS[LF], using the “message” µi =
H′(m,ϕi) in the ith execution. (We refer to each execution of the
underlying scheme BS[LF] as a session.) Here, ϕi ∈ {0, 1}κ is a uniform

string and H′ is modeled as a random oracle. Thus, in the first step, for
i ∈ [N] the user chooses randomness αi, βi for the ith session of BS[LF]
and sends a commitment comi = H′(αi, βi, µi, γi), where γi ∈ {0, 1}κ
is another uniform string.

3. S runs N sessions of BS[LF] to obtain initial messages R1, . . . , RN ,
which it sends to U . In response, U computes c1, . . . , cN using BS[LF]
and the randomness it chose earlier.

4. S then chooses a uniform index I ∈ [N] and sends it to U . The
user reveals (αi, βi, µi, γi) for all i 6= I (thus opening all but its Ith
commitment), and S verifies that U behaved honestly in all the opened
sessions. If cheating is detected, then S aborts the entire execution.

5. If U behaved honestly in the opened sessions, S uses BS[LF] to compute
a response s := rI − cI · sk for the Ith (unopened) session.

6. U computes a signature (c′I , s
′
I) on µI using BS[LF]. It then outputs

the signature (c′I , s
′
I , ϕI) on m.

A signature σ = (c′, s′, ϕ) on a message m is verified by checking that (c′, s′)
is a valid signature on µ = H′(m,ϕ) in the underlying scheme BS[LF].

The counter is used to ensure that each execution of the protocol uses
a different value for the cut-and-choose parameter N . (In Section 3.3,
we show that it is possible to do better.) In the concurrent setting, it is
therefore important to ensure that the counter is incremented atomically
so this property holds across all the concurrent executions.

Theorem 2. Let LF be a linear function family that is preimage resistant
and let H,H′ be modeled as random oracles. If BS[LF] satisfies blindness (for
honestly generated keys), then CCBS[LF] satisfies blindness (for honestly
generated keys). If BS[LF] is (sequentially) `-one-more unforgeable for any
` = O(log κ), then CCBS[LF] is (sequentially) `-one-more unforgeable for
any ` = poly(κ).

We separately consider blindness and one-more unforgeability in the
sections that follow.

3.1 Blindness

This section is dedicated to a proof of the following:

Theorem 3. Let H′ be modeled as a random oracle. If BS[LF] satisfies
blindness (resp., blindness for honestly generated keys), then CCBS[LF]
satisfies blindness (resp., blindness for honestly generated keys).

Concretely, if there is an adversary A against blindness of CCBS[LF]
that runs in time t, makes at most qH′ queries to H′, uses counters NL, NR

in its executions with the user, and has advantage ε, then there is an
adversary B against blindness of BS[LF] that runs in time t′ ≈ t and has

advantage at least 1
NL·NR ·

(
ε− 2·(NL+NR)·qH′

22κ

)
.

Proof. We consider the case of blindness for maliciously generated keys,
but the proof holds also for honestly generated keys. Fix an adversary A
attacking blindness of CCBS[LF], let SuccA be the event that A succeeds,
and let ε = ε(κ) be the advantage of A so that Pr[SuccA] = 1

2 + ε. In an
execution of the experiment used to define blindness of CCBS[LF], the
adversary interacts with two instances of U ; we use superscripts L,R to
denote variables used in the left and right interactions, respectively. Let
NL, NR be the values of the counters that A sends in its two interactions
with U , and let Bad be the event that A makes any H′-queries of the
following form:

– H′(?, ϕL
i) for i = 1, . . . , NL (resp., H′(?, ϕR

i) for i = 1, . . . , NR). (In the
case of ϕL

IL
, ϕR

IR
, this must occur before those values are revealed to A

as part of the signatures output by U .)
– H′(?, ?, ?, γLi) for i = 1, . . . , NL (resp., H′(?, ?, ?, γRi) for i = 1, . . . , NR)

before γLi (resp., γRi) is sent by U to A in round 6.

In particular, since γL
IL

(resp., γR
IR

) is not sent in round 6, event Bad occurs

if A makes a query of the form H′(?, ?, ?, γL
IL

) (resp., H′(?, ?, ?, γR
IR

)) at
any point during the experiment. If qH′ denotes the number of queries A
makes to H′, it is immediate that

Pr[SuccA ∧ Bad] ≥ 1

2
+ ε− 2 · (NL +NR) · qH′

22κ
.

We now construct an adversary B attacking blindness of BS[LF]. Intu-
itively, B simulates A’s oracle calls by locally running all-but-one of the
sessions of BS[LF] honestly, and using its own oracles (which correspond to
two executions of the user algorithm for BS[LF]) to simulate the remaining
instance. B works as follows:

1. Throughout, H′-oracle calls made by A are handled in the natural
way.5 If event Bad occurs, B aborts and outputs a uniform bit.

2. B runs A to obtain pk,m0,m1. It then chooses uniform µ0, µ1 ∈ {0, 1}κ
and outputs pk, µ0, µ1.

3. B handles the interaction of A with its left oracle by playing the role
of U in an execution of CCBS[LF], as follows:

5 We do not need to model H as a random oracle; our proof holds as long as BS[LF] is
secure when using H. For this reason we do not mention how calls to H are handled.

(a) When A sends NL, choose uniform iL ∈ [NL] and uniform values
γL
iL
, ϕL

iL
, comL

iL
∈ {0, 1}κ. For i ∈ [NL] \ {iL}, run U honestly to

obtain comL
i . Send comL

1, . . . , comL
NL to A.

(b) When A sends RL
1 , . . . , R

L
NL , then B forwards RL

iL
to its own left

oracle to receive response cL
iL

. For i ∈ [NL]\{iL}, it runs U honestly

to obtain cLi , and then sends cL1, . . . , c
L
NL to A.

(c) When A sends IL, then B aborts and outputs a uniform bit if
IL 6= iL. Otherwise, it responds in the natural way.

(d) When A sends the final message sL
IL

, then B forwards this to its
own left oracle.

B handles the interaction of A with its right oracle in an exactly
analogous manner.

4. When B is given the output of its own oracles, it does the following.
If the output was ⊥, it gives ⊥ to A. Otherwise, B is given signature
(c′0, s

′
0) on µ0 and signature (c′1, s

′
1) on µ1; it gives (c′0, s

′
0, ϕ

L
iL

) and

(c′1, s
′
1, ϕ

R
iR

) to A and programs H′(m0, ϕ
L
iL

) = µ0 and H′(m1, ϕ
R
iR

) = µ1.
Finally, it outputs whatever bit is output by A.

First observe that the probability of event Bad is unchanged in the
above. Let Guess be the event that IL = iL and IR = iR. If Bad does not
occur by the time A sends the latter of IL or IR, then the view of A at that
point is independent of iL, iR and so Pr[Guess] = 1/NLNR. Furthermore,
if Guess occurs and Bad does not occur then the simulation provided by
B is perfect, and B succeeds iff A succeeds. Letting SuccB be the event
that B succeeds, we thus have

Pr[SuccB] =
1

2
· Pr[Guess ∨ Bad] + Pr[SuccA ∧ Guess ∧ Bad]

≥ 1

2
+

1

NL ·NR
·
(
ε− 2 · (NL +NR) · qH′

22κ

)
.

Asymptotically, if the advantage of B is negligible (by blindness of
BS[LF]), and NL, NR, qH′ are polynomial,6 then ε is negligible as well.

3.2 One-More Unforgeability

In this section we show:

6 Technically, we can enforce that NL, NR are polynomial by requiring the counter N
sent by S to be represented in unary (so NL, NR are bounded by the running time
of A). In practice one might fix a large polynomial bound B and require N ≤ B.

Theorem 4. Let LF be a linear function family that is preimage resistant
and let H,H′ be modeled as random oracles. If BS[LF] is (sequentially) `-
one-more unforgeable for any ` = O(log κ), then CCBS[LF] is (sequentially)
`-one-more unforgeable for any ` = poly(κ).

Concretely, assume LF is (t, εPRE)-preimage resistant and there is an
adversary against (sequential) `-one-more unforgeability of CCBS[LF] that
runs in time t, initiates p executions, makes at most qH queries to H
and qH′ queries to H′, and has success probability ε. Then there is an
adversary against (sequential) λ-one-more unforgeability of BS[LF], where
λ = 3 ln(p+ 1) + ln(2/ε), that runs in time t′ ≈ t, initiates p executions,
makes at most qH queries to H, and has success probability at least

ε′ =
ε

2
−
q2H′ + p · qH′

22κ
− p2 · (p2 + qH)

|R|
− p · εPRE

Proof. Let A be an adversary attacking the one-more unforgeability of
CCBS[LF] and having success probability ε. We let qH, qH′ denote the
number of queries A makes to H,H′, respectively, let ` denote the number
of complete executions of the signing protocol run by A, and let p denote
the total number of executions of the signing protocol by A, including
ones that are aborted early by S. (These are all polynomial in the security
parameter, but we leave this dependence implicit.) For simplicity, we make
some assumptions about the behavior of A that are without significant loss
of generality; specifically, we assume that if A sends αi, βi, µi, γi during an
execution of the signing protocol where the corresponding message from
the signer was Ri then it had previously queried H′(αi, βi, µi, γi) as well
as H(µi, Ri + F(αi) + βi · pk), and that if A outputs a message/signature
pair (m, (c′, s′, ϕ)) then it had previously queried H′(m,ϕ).

We prove the theorem via a sequence of hybrid experiments.

Expt G0. This is the one-more unforgeability experiment where A
interacts with the transformed scheme CCBS[LF].

When A sends a commitment com as part of the second message of
an execution of the signing protocol, we say com is extractable if it was
previously returned as output from a query of the form H′(α, β, µ, γ).

Expt G1. This experiment is identical to G0 except that it aborts (and A
does not succeed) if (1) at any point in the experiment, there is a collision
in H′ or (2) in some execution of the signing protocol, some commitment
comi sent by A is not extractable, but later in the same execution I 6= i
and the signer does not abort (so, in particular, A sends αi, βi, µi, γi for
which H′(αi, βi, µi, γi) = comi). The probability of the first event is at

most q2H′/2
2κ. Focusing on the least i 6= I in each execution of the signing

protocol for which comi is not extractable (if one exists), we see that the
probability of the second event is at most p · qH′/22κ. Hence, A’s success
probability in G1 is at least ε− (q2H′ + p · qH′)/22κ.

Note that in G1 and all subsequent experiments, as long as the exper-
iment is not aborted, any extractable commitment com was previously
returned as output from a unique query of the form H′(α, β, µ, γ). We say
that α, β, µ are associated with com in that case.

In an execution of the signing protocol, we say A successfully cheats if
the signer does not abort the execution (nor does the experiment itself
abort), yet either (1) some commitment sent by A in that execution
was not extractable or (2) for some i, the commitment comi sent in
that execution was extractable with associated values αi, βi, µi, but ci 6=
H(µi, Ri + F(αi) + βi · pk) (where Ri is the value sent by the signer in
the corresponding session). In G1, the only way A can successfully cheat
in some execution is if A sends a single non-extractable commitment
comi and/or a single incorrect ci in that execution, and the challenge I
sent by the signer is equal to i. For an integer N , we let cheatN be the
indicator variable that is equal to 1 iff A successfully cheats in the (unique)
execution of the signing protocol that uses cut-and-choose parameter N .
Let cheat∗ =

∑p+1
N=2 cheatN be the number of times A successfully cheats

in the entire experiment. By the observation made a moment ago, we have
E[cheatN] ≤ 1/N for all N , and so

E[cheat∗] ≤
p+1∑
N=2

1

N
≤ ln(p+ 1).

Expt G2. This experiment is identical to G1 except that it aborts (and
A does not succeed) if cheat∗ > 3 ln(p+ 1) + ln(2/ε). As the cheatN are
(dominated by) independent Bernoulli variables, and cheat∗ is their sum,
we can apply a Chernoff bound to conclude that

Pr[cheat∗ > 3 ln(p+ 1) + ln(2/ε)] ≤ ε/2.

(We defer the full calculation to Appendix B). Hence, A’s success proba-
bility in G2 is at least ε/2− (q2H′ + p · qH′)/22κ.

Expt G3. Here, we change the way each execution of the signing protocol
is run. Now, for each execution of the signing protocol—say, using cut-
and-choose parameter N—first choose uniform j ∈ [N]. Then:

– For i ∈ [N], if comi is not extractable then compute Ri (and si, if
needed) as before. Set Ci :=⊥. (The purpose of Ci will be clear later.)

– For i ∈ [N]\{j}, if comi is extractable with associated values αi, βi, µi,
then compute Ri as before and set R′i := Ri+F(αi)+βi ·pk. If H(µi, R

′
i)

is already defined (before Ri is sent to A), the experiment aborts and
A does not succeed. Otherwise, set H(µi, R

′
i) to a uniform value and

set Ci := H(µi, R
′
i) + βi. Compute si (if needed) as before.

– If comj is extractable with associated values αj , βj , µj , we refer to j
as a programmed session. In this case, choose rj ← D and Cj ← S,
compute Rj := F(rj) +Cj · (−pk) and R′j := Rj + F(αj) + βj · pk, and
program H(µj , R

′
j) := Cj − βj . (This programming is done before Rj

is sent to A.) If H(µj , R
′
j) is already defined, the experiment aborts

(and A does not succeed).

Later in the execution, if I = j and neither the execution nor the
experiment is aborted, compute and send sj := rj +Cj · (−sk) + cj · sk,
where cj is the corresponding value sent by A.

Ignoring for a moment the aborts introduced in this experiment, we
claim that the view of the adversary in each execution of the signing
protocol is identical to its view in G2. This is immediate for all but a
programmed session. But it can be verified that in a programmed session j,
the joint distribution of Rj and sj (if I = j) is identical to the distribution
of those values in G2. (Specifically, sj is uniform in both experiments since
rj is uniform in both cases, and in both experiments Rj = F(sj)− cj ·pk is
fully determined by sj and cj .) Moreover, Cj is uniform even conditioned
on sj and Rj , and so H(µj , R

′
j) is programmed to be a uniform value.

As for the aborts introduced in G3, note that whenever the experi-
ment checks whether H(µ,R′) is already defined, R′ ∈ R is uniform (by
smoothness). Thus, the probability that G3 aborts where G2 would not
is at most p2 · (p2 + qH)/|R|. We conclude that A succeeds in G3 with
probability at least ε/2− (q2H′ + p · qH′)/22κ − p2 · (p2 + qH)/|R|.

Expt G4. Here, we again change each execution of the signing proto-
col. Consider an execution with cut-and-choose parameter N , and let
j, {Ci}i∈[N] be as in the previous experiment. After A sends c1, . . . , cN ,
if it holds that (c1, . . . , cn) = (C1, . . . , Cn) then set I := j; otherwise, set
I := j + 1 (mod N). The rest of the execution is as in G3.

We claim that A’s view in G4 is identically distributed to its view
in G3, and hence its success probability is unchanged. Indeed, in any
particular execution of the protocol, the value of j is independent of both
the view of A before I is sent as well as the {Ci}i∈[N]. Thus, regardless

of whether (c1, . . . , cn) is equal to (C1, . . . , Cn) or not, I is uniformly
distributed in [N] in experiment G4 just as in experiment G3.

In an execution of the signing protocol, we say the programmed session
is completed if I = j and the signer does not abort during the remainder
of the execution of the signing protocol. Note that when the programmed
session is completed, cj = Cj and hence

sI = sj = rj + Cj · (−sk) + cj · sk = rj = rI .

Thus, the only time sk is needed when executing the signing protocol in G4

is when A successfully cheats, in which case the programmed session is
not completed.

For a valid message/signature pair (m,σ) = (m, (c′, s′, ϕ)) output by A,
let R′ = F(s′)− c′ · pk and µ = H′(m,ϕ); we say this message/signature
pair is fake if there is a programmed session in which H was programmed
at the point (µ,R′) and, if so, we associate (m,σ) with the unique such
session. (There cannot be more than one programmed session where H′

is programmed at the same point, or else the experiment aborts.) A fake
message/signature pair can thus be associated with a particular commit-
ment comj having associated values αj , βj , µj = µ (recall that a session is
only programmed if the corresponding commitment is extractable), as well
as values rj , Rj , Cj defined by the experiment. Since (c′, s′, ϕ) is a valid
signature on m, we have c′ = H(µ,R′); we also have H(µ,R′) = Cj−βj (by
definition of how programming is done) and thus βj = Cj − c′. Therefore

F(s′) = R′ + c′ · pk

= Rj + F(αj) + βj · pk + c′ · pk

= Rj + Cj · (−pk) + F(αj) + (Cj − c′) · pk + c′ · pk

= Rj + Cj · (−pk) + F(αj)

+ Cj · pk− c′ · pk + F(Ψ(pk, Cj ,−c′)) + c′ · pk

= Rj + Cj · (−pk) + F(αj) + Cj · pk + F(Ψ(pk, Cj ,−c′))
= Rj + F(αj) + F(Ψ(pk, Cj ,−c′)),

and so

F(s′ − αj − Ψ(pk, Cj ,−c′)) = Rj . (1)

There is at most one fake message/signature pair associated with any
programmed session (since the distinct {mi} in A’s output correspond
to distinct {µi = H′(mi, ϕi)} or else the experiment aborts), and so the
number of fake pairs is at most the number of programmed sessions.

Expt G5. Experiment G5 aborts (and A does not succeed) if the number
F of fake pairs exceeds the number of completed, programmed sessions.
Letting E be the event that A succeeds and F exceeds the number
of completed, programmed sessions, we claim that Pr[E] (where this
probability is computed in G4) is at most p · εPRE. To see this, consider
the following adversary C attacking preimage resistance of LF: C is given
par and R ∈ R. It runs G4 with A with the following exception:

For a uniformly chosen execution of the signing protocol (say, the
kth execution), C sets Rj := R + Cj · (−pk) in the programmed
session of that execution (if there is one). If, in that execution,
I = j (so the programmed session is to be completed), C aborts.

Note that if R is uniform then A has no information about k. At the
end of the experiment, if E has occurred then C finds the first fake
message/signature pair (m, (c′, s′, ϕ)) associated with a non-completed,
programmed session. If that session was in execution k (which occurs
with probability at least 1/p), then C can compute a preimage of R using
Equation (1). Since C outputs a preimage with probability at least Pr[E]/p,
it follows that Pr[E] ≤ p · εPRE. Overall, then, A succeeds in G5 with
probability at least ε/2− (q2H′ + p · qH′)/22κ − p2 · (p2 + qH)/|R| − p · εPRE.

Note that the number of completed, programmed sessions is at most
`− cheat∗; therefore, if the number F of fake pairs is at most the number
of completed, programmed sessions, then if A succeeds the number of
valid message/signature pairs output by A that are not fake is

(`+ 1)− F ≥ (`+ 1)− (`− cheat∗) = cheat∗ + 1.

Bounding A’s success probability in G5. To conclude the proof, we
define an adversary B against λ-one-more unforgeability of BS[LF], where
λ = 3 ln(p+ 1) + ln(2/ε). Adversary B works as follows:

1. B is given a public key pk as well as access to a signing oracle for BS[LF]
and an oracle H. It runs A on pk, and simulates experiment G5 for A
as described below. Queries that A makes to H′ are answered by B
with uniform values in the natural way. Queries that A makes to H are
in general answered by simply relaying those queries to B’s oracle H,
except that in programmed sessions B programs H as described in G3.

2. B simulates an execution of the signing protocol for A using cut-and-
choose parameter N as follows. B selects a uniform j ← [N] and
initiates an interaction with its signing oracle for BS[LF]. Let R∗ be
the value that B receives from its signing oracle in the first round.
When A sends com1, . . . , comN , then:

– B sets Rj+1 := R∗ and generates the remaining {Ri}i 6=j+1 as in G5.
It then sends these values to A.

– B then continues to run the signing protocol as in G5. If I = j + 1
and B needs to send sI (i.e., neither the current execution of
the signing protocol nor the experiment itself is aborted) then
B forwards cI to its signing oracle for BS[LF], and returns the
response s∗ to A.

3. At the end of the experiment, if A outputs `+1 valid message/signature
pairs (m, (c′, s′, ϕ)) (where validity is determined relative to CCBS[LF]
and the oracles H,H′ that B simulated for A), then B aborts if the
number of fake message/signature pairs exceeds the number of com-
pleted, programmed sessions. Assuming it has not aborted, B identifies
cheat∗ + 1 valid message/signature pairs that are not fake, and for
each such pair (m, (c′, s′, ϕ)) outputs (H′(m,ϕ), (c′, s′)).

The simulation provided by B is perfect, and thus the probability that
A succeeds when run by B is exactly the probability that A succeeds
in G5. The number of executions of the signing protocol that B initiates
with BS[LF] is p, while the number that B completes is exactly cheat∗

and so is at most 3 ln(p+ 1) + ln(2/ε). Finally, whenever A succeeds then
for any message/signature pair (m, (c′, s′, ϕ)) output by A that is not
fake, the message/signature pair (H′(m,ϕ), (c′, s′)) output by B is a valid
message/signature pair relative to BS[LF] and the oracle H provided to B;
additionally, the messages H′(m,ϕ) are distinct since no collisions were
found in H′. We conclude that the success probability of B is equal to the
success probability of A in G5.

3.3 Improving the Complexity of the Signing Protocol

The complexity of the signing protocol is linear in the cut-and-choose
parameter N , and it is therefore important to minimize that parameter.
In the scheme analyzed thus far, N is incremented each time the signing
protocol is executed. Here, we argue that it suffices to increment the
cut-and-choose parameter only when cheating is detected. Not only is
this strictly better in theory (assuming at least some interactions are
with honest users), but we expect that this optimization would have a
significant impact on efficiency in practice where (1) the signer would
likely know the identity of each user executing the protocol, and could
ban any user the first time they are caught cheating, and (2) we expect
that a majority of users are honest.

The discussion that follows assumes familiarity with the high-level
overview from Section 1.2 and/or the proof of one-more unforgeability from

the previous section. We focus our treatment on the sequential setting,
and briefly discuss at the end how it can be extended to handle concurrent
executions of the protocol.

Recall that in an execution of the signing protocol of our transformed
scheme, we say the adversary successfully cheats if it cheats in a single
session and is not caught by the signer. In a given execution using cut-and-
choose parameter N , the adversary successfully cheats with probability at
most 1/N . For the proof of one-more unforgeability, it is crucial that (over
the course of the entire experiment) the adversary successfully cheats at
most logarithmically many times, except with negligible probability.

Let cheatN be a random variable denoting the number of times, over
the course of the entire one-more unforgeability experiment, the adversary
successfully cheats when the cut-and-choose parameter is N . In the scheme
analyzed thus far, each value of the cut-and-choose parameter is used
only once and so E[cheatN] ≤ 1/N . Thus, assuming the attacker runs p
executions of the signing protocol overall, the expected number of times
the attacker successfully cheats is

p+1∑
N=2

E[cheatN] ≤
p+1∑
N=2

1

N
≤ ln(p+ 1).

Consider now what happens if we modify our scheme so the counter is
only incremented when cheating is detected. (We also assume for simplicity
that the attacker cheats in exactly one session each time it runs the protocol,
as this maximizes the number of times it can successfully cheat.) Then
cheatN is equal to the number of times the attacker successfully cheats
(when the cut-and-choose parameter is N) before being caught. This is
one less than the number of trials (when the cut-and-choose parameter
is N) until the adversary is caught. (Recall that here we are assuming
sequential executions of the signing protocol only.) Since the probability
of being caught in each such trial is (N − 1)/N , we now have

E[cheatN] =
N

N − 1
− 1 =

1

N − 1
,

and so if the attacker runs p executions of the signing protocol overall,
the expected number of times the attacker successfully cheats is at most

p+1∑
N=2

E[cheatN] =

p+1∑
N=2

1

N − 1
≤ 1 + ln p.

Proceeding as in7 the proof of Theorem 4, we can show that the adver-
sary successfully cheats at most logarithmically many times, except with
negligible probability.

Handling concurrent executions. The optimization described above
does not work when there may be concurrent executions of the signing
protocol. (To see what goes wrong, consider the case where the adversary
runs p parallel executions, all using cut-and-choose parameter N = 2. Then
the adversary successfully cheats in roughly half those executions before the
signer detects cheating and has any chance to increment the counter.) For
the argument outlined above to work, the key property we need to ensure
is that the adversary can successfully cheat at most once for each value of
the cut-and-choose parameter. To enforce this, the signer just needs to
make sure that any currently active executions of the signing protocol use
distinct values of the cut-and-choose parameter; moreover, once cheating is
detected in an execution using cut-and-choose parameter N , no subsequent
executions may use cut-and-choose parameter N . So, for example, the
signer can store the largest value of the cut-and-choose parameter N∗ for
which cheating has been detected, and then when initiating an execution
of the signing protocol can use as the cut-and-choose parameter the least
value N > N∗ that is not currently being used by any active execution.

3.4 Concrete Parameter Settings

We sketch how to choose parameters when applying our transform to the
blind Schnorr signature scheme. Here, S = D = Zq and R = G, where G
is a cyclic group of prime order q. We assume κ = 128, p = 217 ≈ 105

and t = qH = qH′ = 280, and seek q > 2256 such that an adversary with
those parameters has advantage (in the sense of one-more unforgeability)
at most 2−23 ≈ 10−7. So, assume toward a contradiction an adversary
as above with advantage at least 2−23 against the transformed scheme.
Taking λ = 52 ≈ 3 ln(p+ 1) + ln 2/ε and assuming the best algorithm for
finding preimages is a generic one (so εPRE ≤ t/q), we can use Theorem 4
to construct an adversary attacking the blind Schnorr signature scheme in
the sense of λ-one-more unforgeability running in about the same time, and
with advantage at least ε′ ≈ 2−24. Setting q > 25167 and using Theorem 1,
this then gives an algorithm running in time 281 and breaking collision
resistance with probability at least 2−255. (This assumes a constant term
of 1 in the big-Ω expression of Theorem 1. (JK: Can we find out what

7 As cheatN now may take values larger than 1, we use Hoeffding’s inequality instead
of a Chernoff bound (which results in a slightly looser reduction).

the constant actually is?)) However, assuming the best algorithm for
finding collisions is a generic one, such an algorithm should break collision
resistance with probability at most 2162/25167 � 2−255. In summary, by
taking q to be at least 5167 bits long, we can achieve the desired security.

(JK: Should we also check blindness?)

References

A Additional Examples of Linear Function Families

In Section 2.2 we defined linear function families, and described the linear
function family that underlies the Schnorr blind signature scheme. Here
we recall additional examples of linear function families from the work of
Hauck et al. [?]. (For all of these examples, the necessary properties are
argued in their work).

Okamoto-Schnorr. Here, par defines a cyclic group G of prime order q,
and also includes uniform generators g1, g2 ∈ G. We let S = Zq, D = Z2

q ,
and R = G, with the scalar multiplication maps s · (x, y) = (s · x, s · y)
(for s, x, y ∈ Zq) and s · g = gs (for g ∈ G). Defining F(x, y) = gx1 · g

y
2 , a

pseudo torsion-free element in the kernel is given by z∗ = (−1, logg2 g1).
Since scalar multiplication between S and R is distributive, Ψ is the zero
function. LF is preimage resistant and collision resistant under the discrete
logarithm assumption in G.

Okamoto-Guillou-Quisquater. Here, par contains N = pq for distinct
primes p, q, a prime λ with gcd(ϕ(N), λ) = gcd(N,λ) = 1, and a value
a ∈ Z∗N . We define S = Zλ under addition modulo λ; define R = Z∗N
under multiplication modulo N ; and define D = Zλ × Z∗N with group
operation given by

(x1, y1) ◦ (x2, y2) :=
(
x1 + x2 mod λ, y1 · y2 · ab

x1+x2
λ
c mod N

)
.

(It can be shown [?] that this is indeed a group.) Scalar multiplication
maps s · b for b ∈ R or b ∈ D are defined as s-fold iteration of the
corresponding group operation. Moreover, define F(x, y) := axyλ mod N

and Ψ(x, s, s′) := (0, xb−
s+s′
λ
c mod N). A pseudo torsion-free element in

the kernel is given by z∗ = (λ − 1, aλ
−1−1 (mod N)), where λ−1 is the

inverse of λ modulo ϕ(N). LF is preimage resistant and collision resistant
under a suitable version of the RSA assumption.

Fiat-Shamir. Here, par contains N = pq for distinct primes p, q along
with a positive integer k, and we define S = Zk2, D = (Z∗N)k, and R =

(QR∗N)k, where QR∗N ⊂ Z∗N denotes the subgroup of quadratic residues
modulo N . The scalar multiplication maps are

(s1, . . . , sk) · (x1, . . . , xk) = (xs11 , . . . , x
sk
k).

Let F(x1, ..., xk) := (x21 (mod N), ..., x2k (mod N)), and define Ψ(x, r, s)

component-wise with Ψ(xi, ri, si) := x
−(ri>si+ri (mod 2))
i (where ri > si+ri

(mod 2) denotes the predicate that returns 1 iff ri = si = 1 (mod 2).
A pseudo torsion-free element in the kernel is z∗ = (−1, ...,−1). LF is
preimage resistant and collision resistant under the factoring assumption.

B Deferred Calculations

Let X be a sum of independent {0, 1}-random variables with µ = E[X].
The multiplicative Chernoff bound states that for all δ > 0

Pr[X ≥ (1 + δ) · µ] ≤ exp

(
− µδ2

2 + δ

)
.

Let X = cheat∗ =
∑p+2

N=2 cheatN . Then for any s > ln(p+ 1) ≥ E[cheatN]
we have

Pr[cheat∗ ≥ s] = Pr

[
cheat∗ ≥

(
1 +

(
s

µ
− 1

))
· µ
]

≤ exp

(
− µ(s/µ− 1)2

2 + (s/µ− 1)

)
.

Using the fact that x2/(2 + x) > x− 2 for all x ≥ 0, the above is at most

exp

(
−µ
(
s

µ
− 3

))
= exp(3µ− s)

If we set s = 3 ln(p+ 1) + ln(2/ε), the above equals ε/2.

