
tardigrade: An Atomic Broadcast Protocol for
Arbitrary Network Conditions

Erica Blum1, Jonathan Katz1?, and Julian Loss2??

1 University of Maryland College Park
{erblum,jkatz2}@umd.edu

2 CISPA Helmoltz Center for Information Security
lossjulian@gmail.com

Abstract. We study the problem of atomic broadcast—the underlying
problem addressed by blockchain protocols—in the presence of a ma-
licious adversary who corrupts some fraction of the n parties running
the protocol. Existing protocols are either robust for any number of cor-
ruptions in a synchronous network (where messages are delivered within
some known time ∆) but fail if the synchrony assumption is violated, or
tolerate fewer than n/3 corrupted parties in an asynchronous network
(where messages can be delayed arbitrarily) and cannot tolerate more
corruptions even if the network happens to be well behaved.

We design an atomic broadcast protocol (tardigrade) that, for any
ts ≥ ta with 2ts + ta < n, provides security against ts corrupted parties
if the network is synchronous, while remaining secure when ta parties
are corrupted even in an asynchronous network. We show that tardi-
grade achieves optimal tradeoffs between ts and ta. Finally, we show a
second protocol (upgrade) with similar (but slightly weaker) guarantees
that achieves per-transaction communication complexity linear in n.

Keywords: Atomic broadcast · Byzantine agreement · Consensus.

1 Introduction

Atomic broadcast [?] is a fundamental problem in distributed computing that
can be viewed as a generalization of Byzantine agreement (BA) [?,?]. Roughly
speaking, a BA protocol allows a set of n parties to agree on a value once, even
if some parties are Byzantine, i.e., corrupted by an adversary who may cause
them to behave arbitrarily. In contrast, an atomic broadcast (ABC) protocol
allows parties to repeatedly agree on values by including them a totally-ordered,
append-only log maintained by all parties. (Formal definitions are given in Sec-
tion ??. Note that ABC is not obtained by simply repeating a BA protocol

? Work performed under financial assistance award 70NANB19H126 from the U.S.
Department of Commerce, National Institute of Standards and Technology, and also
supported in part by NSF award #1837517.

?? Portions of this work were done while at University of Maryland and Ruhr University
Bochum.

2 E. Blum et al.

multiple times; this point is discussed further below.) Atomic broadcast is used
as a building block for state machine replication, and has received renewed at-
tention in recent years for its applications to blockchains and cryptocurrencies.

Different network models for atomic broadcast can be considered. In a syn-
chronous network [?, ?, ?, ?, ?], all messages are delivered within some known
time ∆. In an asynchronous network [?,?], messages can be delayed arbitrarily.
(Some work assumes the partially synchronous model [?], where messages are
delivered within some time bound ∆ that is unknown to the parties. We do not
consider this model in our work.) Assuming a public-key infrastructure (PKI),
atomic broadcast is feasible for ts < n adversarial corruptions in a synchronous
network, but only for ta < n/3 faults in an asynchronous network. A natural
question is whether it is possible to design a protocol that can withstand strictly
more than n/3 faults if the network happens to be synchronous, without entirely
sacrificing security if the network happens to be asynchronous. More precisely,
fix two thresholds ta, ts with ta ≤ ts. Is it possible to design a network-agnostic
atomic broadcast protocol that (1) tolerates ts corruptions if it is run in a syn-
chronous network and (2) tolerates ta corruptions if it is run in an asynchronous
network? Depending on one’s assumptions about the probabilities of different
events, a network-agnostic protocol could be preferable to either a purely syn-
chronous protocol (which loses security if the network is asynchronous) or a
purely asynchronous one (which loses security if there are n/3 or more faults).

We settle the above question in a model where there is a trusted dealer who
distributes information to the parties in advance of the protocol execution:

– We present an atomic broadcast protocol, tardigrade,1 that achieves the
above for any ta, ts satisfying ta + 2ts < n. We also prove that no atomic
broadcast protocol can provide the above guarantees2 if ta+ 2ts ≥ n, and so
tardigrade is optimal in terms of the thresholds it tolerates.

– We also describe a second protocol, upgrade, that is sub-optimal in terms
of ta, ts but has asymptotic communication complexity comparable to state-
of-the-art asynchronous atomic broadcast protocols (see Table ??).

Our work is inspired by work of Blum et al. [?], who show analogous results
(with the same thresholds) for the simpler problem of Byzantine agreement. We
emphasize that ABC is not realized by simply repeating a (multi-valued) BA
protocol multiple times. In particular, the validity property of BA guarantees
only that if a value is used as input by all honest parties then that transaction
will be output by all honest parties. In the context of ABC, however, each honest
party holds a local buffer containing multiple values called transactions. Trans-
actions may arrive at arbitrary times, and there is no way to ensure that all
honest parties will input the same transactions to some execution of an underly-
ing BA protocol. (Although generic transformations from BA to ABC are known

1 Tardigrades, also called water bears, are microscopic animals known for their ability
to survive in extreme environments.

2 This does not contradict the existence of synchronous ABC protocols for ts < n,
since such protocols are insecure in an asynchronous setting even if no parties are
corrupted.

Atomic Broadcast for Arbitrary Network Conditions 3

Protocol Communication Network model

HoneyBadger [?] O(n · |tx|) Asynchronous

BEAT1 / BEAT2 [?] O(n2 · |tx|) Asynchronous

Dumbo1 / Dumbo2 [?] O(n · |tx|) Asynchronous

tardigrade O(n2 · |tx|) Network-agnostic

upgrade O(n · |tx|) Network-agnostic

Table 1. Per-transaction communication complexity of ABC protocols, for transactions
of length |tx|, assuming infinite block size and suppressing dependence on the security
parameter for simplicity.

in other settings [?], no such transformation is known for the network-agnostic
setting we consider.) Indeed, translating the approach of Blum et al. from BA
to ABC introduces several additional challenges. In particular, as just noted, in
the context of atomic broadcast there is no guarantee that honest parties ever
use the same transaction, making it more challenging to prove liveness. A cen-
tral piece of our construction is a novel protocol for the fundamental problem of
asynchronous common subset (ACS). Our ACS protocol achieves non-standard
security properties that turn out to be generally useful for constructing proto-
cols in a network-agnostic setting; it has already served as a crucial ingredient
in follow-up work [?] on network-agnostic secure computation.

1.1 Related Work

There is extensive prior work on both Byzantine agreement and atomic broad-
cast/SMR/blockchain protocols; we do not provide an exhaustive survey, but
instead focus only on the most closely related works.

Miller et al. [?] already note that well-known SMR protocols that tolerate
malicious faults (e.g., [?,?]) fail to achieve liveness in an asynchronous network.
The HoneyBadger protocol [?] is designed for asynchronous networks, but only
handles t < n/3 faults even if the network is synchronous.

Several of the most prominent blockchain protocols rely on synchrony [?,?];
Nakamoto consensus, in particular, relies on the assumption that messages will
be delivered much faster than the time required to solve proof-of-work puzzles,
and is insecure if the network latency is too high or nodes become (temporarily)
partitioned from the network.

We focus on designing a single protocol that may be run in either a syn-
chronous or asynchronous network while providing security guarantees in either
case. Related work includes that of Malkhi et al. [?] and Momose and Ren [?],
who consider networks that may be either synchronous or partially synchronous;
Liu et al. [?], who design a protocol that tolerates a minority of malicious faults
in a synchronous network and a minority of fail-stop faults in an asynchronous
network; and Guo et al. [?] and Abraham et al. [?], who consider temporary
disconnections between two synchronous network components.

4 E. Blum et al.

A different line of work [?,?,?,?] designs protocols with good responsiveness.
Roughly, such protocols still require synchrony, but terminate in time propor-
tional to the actual message-delivery time δ rather than the upper bound on
the network-delivery time ∆. Kursawe [?] gives a protocol for an asynchronous
network that terminates more quickly if the network is synchronous (but does
not tolerate more faults in that case). Finally, other work [?,?,?,?] considers a
model where synchrony is available for some (known) period of time, and the
network is asynchronous afterward.

1.2 Paper Organization

We describe our model in Section ??, and give formal definitions in Section ??.
In Section ??, we describe a protocol for the asynchronous common subset
(ACS) problem. Then, in Section ??, we show how to construct a network-
agnostic atomic broadcast protocol (tardigrade) achieving optimal security
tradeoffs using ACS and other building blocks. In Section ??, we present a sec-
ond atomic broadcast protocol (upgrade) that achieves per-transaction com-
munication complexity linear in n at the cost of tolerating fewer corruptions.
Additional constructions, formal proofs, and supplementary results are included
in the full version of the paper.3

2 Model

We consider protocols run by n parties P1, . . . , Pn, over point-to-point authen-
ticated channels. Some fraction of these parties are controlled by an adversary,
and may deviate arbitrarily from the protocol. For simplicity, we generally as-
sume a static adversary who corrupts parties prior to the start of the protocol;
in Section ??, however, we do briefly discuss how tardigrade can be modified
to tolerate an adaptive adversary who may corrupt parties as the protocol is
executed. Parties who are not corrupted are called honest.

In our model, the network has two possible states. The state is fixed prior
to the beginning of the execution; however, the state is not known to the hon-
est parties. When the network is synchronous, all parties begin the protocol at
the same time, parties’ clocks progress at the same rate, and all messages are
delivered within some known time ∆ after they are sent. The adversary is able
to adaptively delay and reorder messages arbitrarily (subject to the bound ∆).
When the network is asynchronous, the adversary is able to delay messages for
arbitrarily long periods of time (as long as all messages are eventually delivered).
The parties still have local clocks in the asynchronous setting; however, in this
case their clocks are only assumed to be monotonically increasing. In particular,
parties’ clocks are not necessarily synchronized, and they may start the protocol
at different times.

3 Available at: eprint.iacr.org/2020/142.pdf

Atomic Broadcast for Arbitrary Network Conditions 5

We assume the network is either synchronous or asynchronous for the life-
time of the protocol. A more general model would consider a network that al-
ternates between periods of synchrony and asynchrony. Our adaptively secure
protocol (cf. Section ??) tolerates an asynchronous network that later becomes
synchronous so long as the attacker does not exceed ta corruptions until all it-
erations initiated while the network was asynchronous are complete, and does
not exceed ts corruptions overall. Handling a synchronous network that later
becomes asynchronous is only interesting if some mechanism is provided to “un-
corrupt” parties (as in the proactive setting). This is outside our model, and we
leave treatment of this case as an interesting direction for future work.

We assume a trusted dealer who initializes parties with some information
prior to execution of the protocol. Specifically, we assume the dealer distributes
keys for threshold signature and encryption schemes, each secure for up to ts
corruptions. In a threshold signature scheme there is a public key pk, private
keys sk1, . . . , skn, and (public) signature verification keys (pk1, . . . , pkn). Each
party Pi receives ski, pk, and (pk1, . . . , pkn), and can use its secret key ski to
create a signature share σi on a message m. A signature share from party Pi on
a message m can be verified using the corresponding public verification key pki
(and is called valid if it verifies successfully); for this reason, we can also view such
a signature share as a signature by Pi on m. We often write 〈m〉i as a shorthand
for the tuple (i,m, σi), where σi is a valid signature share on m with respect
to Pi’s verification key, and implicitly assume that invalid signature shares are
discarded. A set of ts+1 valid signature shares on the same message can be used
to compute a signature for that message, which can be verified using the public
key pk; a signature σ on a message m is called valid if it verifies successfully
with respect to pk. We always implicitly assume that parties use some form of
domain separation when signing to ensure that signature shares are valid only
in the context in which they are generated.

In a threshold encryption scheme, there is a public encryption key ek, (pri-
vate) decryption keys dk1, . . . , dkn, and public verification keys vk1, . . . , vkn that
can be used, as above, to verify that a decryption share is correct (relative to
a particular ciphertext). A party Pi can use its decryption key dki to generate
a decryption share of a ciphertext c; any set of ts + 1 correct decryption shares
enable recovery of the underlying message m. Security requires that no collection
of ts parties can decrypt on their own.

We idealize the threshold signature and encryption schemes for simplicity,
but they can be instantiated using any of several known protocols; in particular,
we only require CPA-security for the threshold encryption scheme. We assume
that signature shares and signatures have size O(κ), where κ is the security
parameter; this is easy to ensure using a collision-resistant hash function. We
assume that encrypting a message m of length |m| produces a ciphertext of
length |m|+O(κ), and that decryption shares have length O(κ); these are easy
to ensure using standard KEM/DEM mechanisms.

6 E. Blum et al.

3 Definitions

In this section, we formally define atomic broadcast and relevant subprotocols.
Throughout, when we say a protocol achieves some property, we include the
case where it achieves that property with overwhelming probability in a security
parameter κ. Additionally, in some cases we consider protocols where parties
may not terminate even upon generating output; for this reason, we mention
termination explicitly in our definitions when applicable.

Many of the definitions below are parameterized by a threshold t. This will
become relevant in later sections, where we will often analyze a protocol’s proper-
ties in a synchronous network with ts corruptions, as well as in an asynchronous
network with ta corruptions.

3.1 Broadcast and Byzantine Agreement

A reliable broadcast protocol allows parties to agree on a value chosen by a des-
ignated sender. Honest parties are not guaranteed to terminate; hence, reliable
broadcast is weaker than standard broadcast. However, if there is some honest
party who terminates, then all honest parties terminate.

Definition 1 (Reliable broadcast). Let Π be a protocol executed by parties
P1, . . . , Pn, where a designated sender P ∗ ∈ {P1, . . . , Pn} begins holding input v∗

and parties terminate upon generating output.

– Validity: Π is t-valid if the following holds whenever at most t parties are
corrupted: if P ∗ is honest, then every honest party outputs v∗.

– Consistency: Π is t-consistent if the following holds whenever at most t
parties are corrupted: either no honest party outputs a value, or all honest
parties output the same value v.

If Π is t-valid and t-consistent, then we say it is t-secure.

We reserve the term “broadcast” for reliable broadcast. When a party Pi
sends a message m to all parties (over point-to-point channels), we say that Pi
multicasts m.

Byzantine agreement (BA) is closely related to broadcast. In a BA protocol,
there is no designated sender; instead, each party has their own input and the
parties would like to agree on an output.

Definition 2 (Byzantine agreement). Let Π be a protocol executed by parties
P1, . . . , Pn, where each party Pi begins holding input vi ∈ {0, 1}.
– Validity: Π is t-valid if the following holds whenever at most t of the parties

are corrupted: if every honest party’s input is equal to the same value v, then
every honest party outputs v.

– Consistency: Π is t-consistent if whenever at most t parties are corrupted,
every honest party outputs the same value v ∈ {0, 1}.

– Termination: Π is t-terminating if whenever at most t parties are corrupted,
every honest party terminates with some output in {0, 1}.

If Π is t-valid, t-consistent, and t-terminating, then we say it is t-secure.

Atomic Broadcast for Arbitrary Network Conditions 7

3.2 Asynchronous Common Subset

Informally, a protocol for the asynchronous common subset (ACS) problem [?]
allows n parties, each with some input, to agree on a subset of those inputs.
(The term “asynchronous” in the name is historical, and one can also consider
protocols for this task in the synchronous setting.)

Definition 3 (ACS). Let Π be a protocol executed by parties P1, . . . , Pn, where
each Pi begins holding input vi ∈ {0, 1}∗, and parties output sets of size at most n.

– Validity: Π is t-valid if the following holds whenever at most t parties are
corrupted: if every honest party’s input is equal to the same value v, then
every honest party outputs {v}.

– Consistency: Π is t-consistent if whenever at most t parties are corrupted,
all honest parties output the same set S.

– Liveness: Π is t-live if whenever at most t parties are corrupted, every
honest party generates output.

If Π is t-consistent, t-valid, and t-live, we say it is t-secure.

For our analysis, it will be helpful to define a few additional properties.

Definition 4 (ACS properties). Let Π be as above.

– Set quality: Π has t-set quality if the following holds whenever at most t
parties are corrupted: if an honest party outputs a set S, then S contains the
input of at least one honest party.

– Validity with termination: Π is t-valid with termination if, whenever at
most t parties are corrupted and every honest party’s input is equal to the
same value v, then every honest party outputs {v} and terminates.

– Termination: Π is t-terminating if whenever at most t parties are corrupted,
every honest party generates output and terminates.

3.3 Atomic Broadcast

Protocols for atomic broadcast (ABC) allow parties to maintain agreement on
an ever-growing, ordered log of transactions. An atomic broadcast protocol does
not terminate but instead continues indefinitely. We model the local log held
by each party Pi as a write-once array Blocksi = Blocksi[1],Blocksi[2], Each
Blocksi[j] is initially set to a special value ⊥. We say that Pi outputs a block in
iteration j when Pi writes a set of transactions to Blocksi[j]; similarly, for each
i, j such that Blocksi[j] 6= ⊥, we refer to Blocksi[j] as the block output by Pi in
iteration j. For convenience, we let Blocksi[k : `] denote the contiguous subarray
Blocksi[k], . . . ,Blocksi[`] and let Blocksi[: `] denote the prefix Blocksi[1 : `].

For simplicity, we imagine that each party Pi has a local buffer bufi, and that
transactions are added to parties’ local buffers by some mechanism external to
the protocol (e.g., via a gossip protocol). Whenever Pi outputs a block, they
delete from their buffer any transactions that have already been added to their

8 E. Blum et al.

log. We emphasize that a particular transaction tx may be provided as input
to different parties at arbitrary times, and may be provided as input to some
honest parties but not others.

Definition 5 (Atomic broadcast). Let Π be a protocol executed by parties
P1, . . . , Pn who are provided with transactions as input and locally maintain ar-
rays Blocks as described above.

– Completeness: Π is t-complete if the following holds whenever at most t
parties are corrupted: for all j > 0, every honest party outputs a block in
iteration j.

– Consistency: Π is t-consistent if the following holds whenever at most t
parties are corrupted: if an honest party outputs a block B in iteration j
then all honest parties output B in iteration j.

– Liveness: Π is t-live if the following holds whenever at most t parties are
corrupted: if every honest party is provided a transaction tx as input, then
every honest party eventually outputs a block that contains tx.

If Π is t-consistent, t-live, and t-complete, then we say it is t-secure.

In the above definition, a transaction tx is only guaranteed to be contained
in a block output by an honest party if every honest party receives tx as input.
A stronger definition might require that a transaction is output even if only a
single honest party receives tx as input; however, it is easy to achieve the latter
from the former by requiring honest parties to forward new transactions they
receive to the rest of the parties in the network.

4 ACS with Higher Validity Threshold

A key component of our atomic broadcast protocol is an ACS protocol for asyn-
chronous networks that is secure when the number of corrupted parties is below
a fixed threshold ta, and guarantees validity up to a higher threshold ts. More
precisely, fix ta ≤ ts with ta + 2 · ts < n; we show a ta-secure ACS protocol
that achieves ta-termination, ts-validity with termination, and ta-set quality.
Throughout this section, we assume an asynchronous network. (Of course, the
protocol achieves the same guarantees in a synchronous network.)

Our protocol is adapted from the ACS protocol of Ben-Or et al. [?] (later
adapted by Miller et al. [?]), which is built using subprotocols for reliable broad-
cast and Byzantine agreement. We present our construction in two steps: first,
we describe an ACS protocol Πta,ts

ACS∗ (cf. Figure ??) that is ta-secure and has ta-

set quality, but is non-terminating. Then, we construct a second protocol Πta,ts
ACS

(cf. Figure ??) that uses Πta,ts
ACS∗ as a subprotocol. Πta,ts

ACS inherits security and

set quality from Πta,ts
ACS∗ , and additionally achieves ta-termination and ts-validity

with termination.

Protocol Πta,ts
ACS∗ . At a high level, an execution of Πta,ts

ACS∗ involves one instance
of reliable broadcast and one instance of Byzantine agreement per party Pi,

Atomic Broadcast for Arbitrary Network Conditions 9

denoted Bcasti and BAi, respectively. Informally, Bcasti is used to broadcast
Pi’s input vi, and BAi is used to determine whether Pi’s input will be included
in the final output. When a party receives output v′i from Bcasti, they input 1
to BAi. Once a party has received output from n− ta broadcasts, they input 0 to
any BA instances they have not yet initiated. Each party keeps track of which
BA instances have output 1 using a local variable S∗ := {i : BAi output 1}. At
the end of the protocol, if a party observes a majority value v in the set of values
{v′i}i∈S∗ , it outputs the singleton set {v}; otherwise, it outputs {v′i}i∈S∗ , i.e.,
the set of all values broadcast by parties in S∗.

We assume an ABA subprotocol that is secure for ta < n/3 corruptions and
has communication complexity O(n2), such as the ABA protocol of Mostéfaoui
et al. [?]. We also assume an asynchronous reliable broadcast protocol Bcast
that is ts-valid and ta-consistent with communication complexity O(n2 |v|). It is
straightforward to adapt Bracha’s (asynchronous) reliable broadcast protocol [?]
to achieve these properties; an example construction can be found in the full
version of the paper.

Πta,ts
ACS∗

– Set commit := false and S∗ := ∅.
– Run Bcastj as the sender with input vj , and for each i 6= j run Bcasti

with Pi as the sender.
– Upon Bcasti terminating with output v′i: if Pj has not yet begun running

BAi then begin running it with input 1.
– Upon BAi terminating with output 1: add i to S∗.
– Upon setting |S∗| to n − ta: for any BAi that Pj has not yet begun

running, begin running BAi with input 0.

Predicates:

C1(v): at least n− ts executions {Bcasti}i∈[n] have output v.
C1: ∃v for which C1(v) is true.

C2(v): |S∗| ≥ n−ta, all executions {BAi}i∈[n] have terminated, and a strict
majority of the executions {Bcasti}i∈S∗ have output v.

C2: ∃v for which C2(v) is true.
C3: |S∗| ≥ n − ta, all executions {BAi}i∈[n] have terminated, and all

executions {Bcasti}i∈S∗ have terminated.

Output conditions:
(Event 1) If C1(v) = true for some v and commit = false then:

set commit := true and output {v}.
(Event 2) If C1 = false, C2(v) = true for some v, and commit = false then:

set commit := true and output {v}.
(Event 3) If C1 = C2 = false, C3 = true, and commit = false then:

set commit := true and output {v′i}i∈S∗ .

Fig. 1. An ACS protocol, from the perspective of party Pj with input vj .

10 E. Blum et al.

Lemma 1. Fix ts, ta with ta + 2 · ts < n, and assume there are at most ts
corrupted parties during some execution of Πta,ts

ACS∗ . If an honest party Pi outputs
a set Si, then ∃vj ∈ Si such that vj was input by an honest party Pj.

Proof. We show that Pi’s output Si always includes a value that was output
from an execution of Bcast where the corresponding sender is honest. The lemma
follows from ts-validity of Bcast.

Suppose Pi generates output due to Event 1, so Si is a singleton set {v}.
Pi must have received v as output from at least n − ts executions of {Bcasti}.
Because n− 2ts > ta ≥ 0, at least one of those corresponds to an honest sender.

Next, suppose Pi generates output due to Event 2. Again, Si is a singleton

set {v}. Pi must have seen at least b |S
∗|
2 c + 1 broadcast instances terminate

with output v, and furthermore |S∗| ≥ n − ta. Therefore, Pi has seen at least⌊
n−ta

2

⌋
+ 1 ≥

⌊
2ts
2

⌋
+ 1 > ts executions of {Bcasti} terminate with output v.

Since there are at most ts corrupted parties, at least one of those executions
must correspond to an honest sender.

Finally, suppose Pi generates output due to Event 3, so Si = {v′i}i∈S∗ . Since
there are at most ts corrupted parties and |S∗| − ts ≥ n − ta − ts > ts ≥ 0, at
least one party in S∗ is honest. ut

Lemma 2. If ta + 2 · ts < n, then Πta,ts
ACS∗ is ts-valid.

Proof. Assume at most ts parties are corrupted, and all honest parties have
the same input v. By ts-validity of Bcast, at least n− ts executions of {Bcasti}
(namely, those for which the sender is honest) will eventually output v. It follows
that all honest parties eventually set C1(v) = true, at which point they will
output {v} if they have not already generated output. It only remains to show
that there is no other set an honest party can output.

If an honest party generates output S due to Events 1 or 2, then S is a
singleton set. Since all honest parties have input v, Lemma ?? implies S = {v}.

To conclude, we show that no honest party can generate output due to
Event 3. Assume toward a contradiction that some honest party P generates
output due to Event 3. Then P must have seen Bcasti terminate (say, with out-
put vi) for all i ∈ S∗. Since also |S∗| ≥ n− ta > 2ts, a majority of those execu-
tions {Bcasti}i∈S∗ correspond to honest senders and so (by ts-validity of Bcast)
resulted in output v. But then C2(v) would be true for P , and P would not
generate output due to Event 3. ut

Lemma 3. Fix ta ≤ ts with ta + 2 · ts < n, and assume at most ta parties
are corrupted during an execution of Πta,ts

ACS∗ . If honest parties P1, P2 output sets
S1, S2, respectively, then S1 = S2.

Proof. Say P1 generates output due to event i and P2 generates output due
to event j, and assume without loss of generality that i ≤ j. We consider the
different possibilities.

First, assume i = 1 so Event 1 occurs for P1 and S1 = {v1} for some value v1.
We have the following sub-cases:

Atomic Broadcast for Arbitrary Network Conditions 11

– If Event 1 also occurs for P2, then S2 = {v2} for some value v2. P1 and P2

must have each seen some set of at least n− ts > n/2 executions of {Bcasti}
output v1 and v2, respectively. The intersection of these sets is non-empty;
thus, ta-consistency of Bcast implies that v1 = v2 and hence S1 = S2.

– If Event 2 occurs for P2, then once again S2 = {v2} for some v2. P2 must

have |S∗| ≥ n − ta, and must have seen at least
⌊
|S∗|
2

⌋
+ 1 ≥

⌊
n−ta

2

⌋
+ 1

executions of {Bcasti} output v2. Moreover, P1 must have seen at least n−ts
executions of {Bcasti} output v1. Since

n− ts +

⌊
n− ta

2

⌋
+ 1 ≥ n− ts +

⌊
2ts
2

⌋
+ 1 > n, (1)

these two sets of executions must have a non-empty intersection. But then
ta-consistency of Bcast implies that v1 = v2 and hence S1 = S2.

– If Event 3 occurs for P2 then P2 must have seen all executions {Bcasti}i∈S∗

terminate, where |S∗| ≥ n−ta. We know P1 has seen at least n−ts executions
{Bcasti}i∈[n] output v1, and so (by ta-consistency of Bcast) there are at
most ts executions {Bcasti}i∈[n] that P2 has seen terminate with a value
other than v1. The number of executions of {Bcasti}i∈S∗ that P2 has seen
terminate with output v1 (which is at least (n − ta) − ts > ts) is thus
strictly greater than the number of executions {Bcasti}i∈S∗ that P2 has seen
terminate with a value other than v1 (which is at most ts). But then C2(v1)
would be true for P2. We conclude that Event 3 cannot occur for P2.

Next, assume i = j = 2, so Event 2 occurs for P1 and P2. Then S1 = {v1}
and S2 = {v2} for some v1, v2. Both P1 and P2 must have seen all executions
{BAi}i∈[n] terminate. By ta-consistency of BA, they must therefore agree on S∗.
P1 must have seen a majority of the executions {Bcasti}i∈S∗ output v1; similarly,
P2 must have seen a majority of the executions {Bcasti}i∈S∗ output v2. Then
ta-consistency of Bcast implies v1 = v2.

Finally, consider the case where j = 3 (so Event 3 occurs for P2) but i > 1 (so
P1 generates output due either to Event 2 or 3). As above, ta-consistency of BA
ensures that P1 and P2 agree on S∗. Moreover, P2 must have seen all executions
{Bcasti}i∈S∗ terminate, but without any value being output by a majority of
those executions. But then ta-consistency of Bcast implies that P1 also does not
see any value being output by a majority of those executions, and so Event 2
cannot occur for P1; thus, Event 3 must have occurred for P1. Therefore, ta-
consistency of Bcast implies that P1 outputs the same set as P2. ut

Lemma 4. If ta ≤ ts and ta + 2 · ts < n, then Πta,ts
ACS∗ is ta-live.

Proof. It follows easily from ta-security of Bcast and BA that if any honest party
generates output then all honest parties generate output, so consider the case
where no honest parties have (yet) generated output. Let H denote the indices
of the honest parties. By ts-validity of Bcast, all honest parties eventually see
the executions {Bcasti}i∈H terminate, and so all honest parties input a value to
the executions {BAi}i∈H . By ta-security of BA, all honest parties eventually see
those executions terminate and agree on their outputs. There are now two cases:

12 E. Blum et al.

– If all executions {BAi}i∈H output 1, then it is immediate that all honest
parties have |S∗| ≥ n− ta.

– If BAi outputs 0 for some i ∈ H, then (by ta-validity of BA) some honest
party P must have used input 0 when running BAi. But then P must have
seen at least n − ta other executions {BAi} output 1. By ta-consistency of
BA, this implies that all honest parties see at least n− ta executions {BAi}
output 1, and hence have |S∗| ≥ n− ta.

Since all honest parties have |S∗| ≥ n − ta, they all execute {BAi}i∈[n]. Once
again, ta-termination of BA implies that all those executions will eventually
terminate. Finally, if i ∈ S∗ for some honest party P then P must have seen BAi
terminate with output 1; then ta-validity of BA implies that some honest party
used input 1 when running BAi and hence has seen Bcasti terminate. It follows
that P will see Bcasti terminate. As a result, we see that every honest party can
(at least) generate output due to Event 3. ut

Lemma 5. If ta ≤ ts and ta + 2 · ts < n, then Πta,ts
ACS∗ has ta-set quality.

Proof. If an honest party P outputs S = {v} due to Event 1, then P has seen
at least n − ts executions {Bcasti} terminate with output v. Of these, at least
n− ts− ta > 0 must correspond to honest senders. By ts-validity of Bcast, those
honest parties must have all had input v, and so set quality holds. Alternatively,
say P outputs a set {v} due to Event 2. Then P must have |S∗| ≥ n − ta, and

at least b |S
∗|
2 c + 1 ≥ bn−ta2 c + 1 > ta of the executions {Bcasti}i∈S∗ output v.

At least one of those executions must correspond to an honest party, and that
honest party must have had input v (by ts-validity of Bcast); thus, set quality
holds. Finally, if P output a set S due to Event 3, then S contains every value
output by {Bcasti}i∈S∗ with |S∗ ≥ n − ta. Since S∗ must contain at least one
honest party, set quality follows as before. ut

Theorem 1. Fix ta, ts with ta ≤ ts and ta + 2 · ts < n. Then Πta,ts
ACS∗ is ta-secure

and ts-valid, and has ta-set quality.

Proof. Lemma ?? proves ts-validity. Lemmas ?? and ?? together prove ta-
liveness and ta-consistency, and Lemma ?? proves ta-set quality. ut

Lemma 6. If ta ≤ ts and ta + 2 · ts < n, then Πta,ts
ACS∗ has ta-set quality.

Proof. If an honest party P outputs S = {v} due to Event 1, then P has seen
at least n − ts executions {Bcasti} terminate with output v. Of these, at least
n− ts− ta > 0 must correspond to honest senders. By ts-validity of Bcast, those
honest parties must have all had input v, and so set quality holds. Alternatively,
say P outputs a set {v} due to Event 2. Then P must have |S∗| ≥ n − ta, and

at least b |S
∗|
2 c + 1 ≥ bn−ta2 c + 1 > ta of the executions {Bcasti}i∈S∗ output v.

At least one of those executions must correspond to an honest party, and that
honest party must have had input v (by ts-validity of Bcast); thus, set quality
holds. Finally, if P output a set S due to Event 3, then S contains every value
output by {Bcasti}i∈S∗ . Since |S∗| ≥ n− ta, S∗ must contain at least one honest
party, and so set quality follows as before. ut

Atomic Broadcast for Arbitrary Network Conditions 13

Protocol Πta,ts
ACS . Protocol Πta,ts

ACS∗ does not guarantee termination. We transform

Πta,ts
ACS∗ to a terminating ACS protocol Πta,ts

ACS using digital signatures. The parties

first run Πta,ts
ACS∗ . When a party Pi generates output Si from that protocol, it then

notifies the other parties by multicasting a signature share〈commit, Si〉i on Si.
Any party who receives enough signature shares to form a signature—or receives
a signature directly—multicasts the signature to all other parties, outputs the
corresponding set, and terminates.

Πta,ts
ACS

– Run Πta,ts
ACS∗ using input vj .

– Upon receiving output Sj from Πta,ts
ACS∗ , multicast 〈commit, Sj〉j .

– Upon receiving ts + 1 signature shares of (commit, S), form a signature
σ on (commit, S), multicast (commit, S, σ), output S, and terminate.

– Upon receiving a valid signature σ of (commit, S), multicast
(commit, S, σ), output S, and terminate.

Fig. 2. A terminating ACS protocol, from the perspective of party Pj with input vj .

Lemma 7. Πta,ts
ACS is ta-terminating.

Proof. If one honest party terminates Πta,ts
ACS then all honest parties will eventu-

ally receive a valid signature and thus terminate Πta,ts
ACS . But as long as no honest

parties has yet terminated, ta-liveness of Πta,ts
ACS∗ implies that all honest parties

will generate output from Πta,ts
ACS∗ ; moreover, ta-consistency of Πta,ts

ACS∗ implies that
all those outputs will be equal to the same set S. So the n− ta ≥ ts + 1 honest
parties will send signature shares on S to all parties, which means that all honest
parties will terminate. ut

Lemma 8. Fix ta, ts with ta ≤ ts and ta + 2 · ts < n. Then Πta,ts
ACS is ta-secure,

ta-terminating, and ts-valid with termination, and has ta-set quality.

Proof. Lemma ?? implies that Πta,ts
ACS is ta-live as well as ta-terminating. If an

honest party outputs a set S from Πta,ts
ACS , then (as long as at most ts parties

are corrupted) at least one honest party must have output S from Πta,ts
ACS∗ . Thus,

Πta,ts
ACS inherits ta-set quality, ta-consistency, and ts-validity (without termina-

tion) from Πta,ts
ACS∗ (cf. Theorem ??). It is straightforward to extend ts-validity to

ts-validity with termination using an identical argument as in Lemma ??. ut

Communication complexity of Πta,ts
ACS . Let |v| be the size of each party’s in-

put. Recall that each instance of Bcast has communication complexity O(n2 |v|),
and each instance of BA has cost O(n2). Since the inner protocol Πta,ts

ACS∗ consists
of n parallel instances of Bcast and BA, the cost of the inner protocol is O(n3 |v|).
In the remaining steps, each party sends a set of size at most n plus a signature
share (or signature) to everyone else, contributing an additional O(n2 ·(n |v|+κ))
communication. The total communication for Πta,ts

ACS is thus O(n3 |v|+ n2κ).

14 E. Blum et al.

5 Network-Agnostic Atomic Broadcast

In this section, we show our main result: for any ts ≥ ta with ta + 2ts < n,
an atomic broadcast protocol that is ts-secure in a synchronous network and
ta-secure in an asynchronous network.

5.1 Technical Overview

At a high level, each iteration of the protocol consists of four main steps. First,
there is an information-gathering phase in which each party sends its input to all
other parties, and waits for a fixed amount of time to receive inputs from others.
Any party who receives enough inputs during the first phase will use them as
input to a synchronous block agreement (BLA) protocol Πts

BLA. If the network
is synchronous and at most ts parties are corrupted, the BLA subprotocol will
output a set of inputs that contains sufficiently many honest parties’ inputs.
The BLA subprotocol is run for a fixed amount of time, with the timeout chosen
to ensure that (with high probability) it will terminate before the timeout if
the network is synchronous. This brings us to the third phase, in which parties
run the ACS protocol Πta,ts

ACS . If a party received output from the BLA protocol
before the timeout, they will use that as their input to the ACS subprotocol;
otherwise, they wait until they have received sufficiently many inputs from other
parties and use those. The final phase occurs once parties have received output
from the ACS protocol. The parties use that output to form the next block.

The BLA and ACS protocols are designed to have complementary security
properties. In particular, if the network is synchronous then the BLA protocol
will ensure that all honest parties use the same input value B in the ACS pro-
tocol. This is exactly why Πta,ts

ACS has ts-validity with termination: so that that,
in this case, all parties will be in agreement on the singleton set {B} after run-
ning Πta,ts

ACS . On the other hand, if the network is not synchronous and at most
ta parties are corrupted, it is possible that Πts

BLA will not succeed, and parties

may input different values to Πta,ts
ACS . However, in this case ta-security of Πta,ts

ACS

ensures that the parties will agree on a set of values B = {β1, β2, . . . }. More-
over, the output-quality property ensures that at least a constant fraction of the
values in B were contributed by honest parties.

5.2 Block Agreement

We use a block-agreement protocol to agree on objects that we call pre-blocks.
(The name alludes to their role in our eventual atomic broadcast protocol, where
they will serve as an intermediate between parties’ raw inputs and the final
blocks.) A pre-block is a vector of length n whose ith entry is either ⊥ or a
message along with a valid signature by Pi on that message. The quality of
a pre-block is defined as the number of entries that are not ⊥; we say that a
pre-block is a k-quality pre-block if it has quality at least k.

Definition 6 (Block agreement). Let Π be a protocol executed by parties
P1, . . . , Pn, where parties terminate upon generating output.

Atomic Broadcast for Arbitrary Network Conditions 15

– Validity: Π is t-valid if whenever at most t of the parties are corrupted and
every honest party’s input is an (n− t)-quality pre-block, then every honest
party outputs an (n− t)-quality pre-block.

– Consistency: Π is t-consistent if whenever at most t of the parties are
corrupted, every honest party outputs the same pre-block B.

If Π is t-valid and t-consistent, then we say it is t-secure.

A synchronous block-agreement protocol can be constructed using a straight-
forward adaptation of the synod protocol by Abraham et al. [?]. (For complete-
ness, a construction and security analysis can be found in the full version.)

Theorem 2. Fix a maximum input length |m|. There is a block-agreement pro-
tocol ΠBLA with communication complexity O(n3κ2 +n2κ|m|) that is t-secure for
any t < n/2 when run in a synchronous network and terminates in time 5κ∆.

5.3 A Network-Agnostic Atomic Broadcast Protocol

We now describe our atomic broadcast protocol tardigrade (cf. Figure ??),
parameterized by thresholds ts and ta. Let L denote a desired maximum block
size, i.e., the maximum number of transactions that can appear in a block. At
a high level, parties agree on each new block via the following steps. First, each
party Pi chooses a set Vi of L/n transactions from among the first L transactions
in its local buffer. (We assume without loss of generality that parties always have
at least L transactions in their buffer, since they can always pad their buffers
with null transactions.) Next, Pi encrypts Vi using a (ts, n)-threshold encryp-
tion scheme to give a ciphertext µi. (As in HoneyBadger [?], transactions are
encrypted to limit the adversary’s ability to selectively censor certain transac-
tions.) Each party signs its ciphertext and multicasts it, then waits for a fixed
period of time to receive signed ciphertexts from the other parties. Whenever a
party receives a signed ciphertext during this time, they add it to a pre-block.
Any party who forms an (n − ts)-quality pre-block in this way within the time
limit will input that pre-block to ΠBLA. The parties then wait for another fixed
period of time to see whether ΠBLA outputs an (n − ts)-quality pre-block. If a
party receives an (n−ts)-quality pre-block as output from ΠBLA within this time
limit, it inputs that pre-block to the ACS protocol Πta,ts

ACS . Otherwise, if some
party does not receive suitable output within the time limit, it inputs a pre-block
containing the signed ciphertexts it received directly from other parties. (In this
case, if a party has not received enough signed ciphertexts to form an (n− ts)-
quality pre-block, it waits for additional ciphertexts to arrive before inputting
its pre-block to Πta,ts

ACS .) At this point, each party waits for Πta,ts
ACS to output a set

of pre-blocks. The output of Πta,ts
ACS is passed into a subroutine ConstructBlock

that performs threshold decryption for each ciphertext in each pre-block in the
set, and combines the resulting transactions into a final block.

Each party begins iteration k when its local clock reaches time Tk := λ · (k−
1), where λ > 0 is a spacing parameter. (The value of λ is irrelevant for the
security proofs, but can be tuned to achieve better performance in practice; see

16 E. Blum et al.

Πta,ts
ABC

For each iteration k = 1, 2, . . . do:

– At time Tk = λ·(k−1): sample V ← ProposeTxs(L/n,L) and encrypt V
using pk to produce a ciphertext µ. Multicast (input, 〈µ〉j).

– Upon receiving a signed input (input, 〈µ〉i) from Pi (for iteration k):
• If this is the first input received for iteration k, create a new pre-

block βkj := (⊥, . . . ,⊥) and set readyk := false.
• If βkj [i] = ⊥: set βkj [i] := 〈µ〉j .
• If Bkj is an (n − ts)-quality pre-block and readyk = false, set

readyk := true.
– At time Tk +∆: if readyk = true, run ΠBLA using input βkj .
– At time Tk +∆+ 5κ∆:
• Terminate ΠBLA (if it has not already terminated). If ΠBLA had

output an (n− ts)-quality pre-block β∗, run Πta,ts
ACS using input β∗.

Else, wait until readyk = true and then run Πta,ts
ACS using input βkj .

• When Πta,ts
ACS terminates with output B∗, run ConstructBlock(B∗)

to produce a block B. Then set Blocks[k] := B and delete from
bufj any transactions that appear in Blocks[k].

ProposeTxs(`,M): choose a set V of ` values {tx1, . . . , tx`} uniformly (with-
out replacement) from the first M values in bufj , then output V .

ConstructBlock(B∗): participate in threshold decryption for each unique ci-
phertext µ in each pre-block β ∈ B∗. Once all decryptions have
finished, output the set B of all unique transactions obtained.

Fig. 3. Our atomic broadcast protocol tardigrade, from the perspective of party Pj .

further discussion in Section ??.) If the network is synchronous, parties’ clocks
are synchronized and so all parties begin each iteration at the same time. If the
network is asynchronous, we do not have this guarantee. In either case, parties
do not necessarily finish agreeing on block k prior to starting iteration k′ > k,
and so it is possible for parties to be participating in several iterations in parallel.

We implicitly assume that messages in each iteration, including messages cor-
responding to the various subprotocols, carry an identifier for the corresponding
iteration so that parties know the iteration to which it belongs. Importantly, the
executions of ΠBLA and Πta,ts

ACS associated with a particular iteration are entirely
separate from those of other iterations.

Theorem 3 (Completeness and consistency). Fix ta, ts with ta ≤ ts and
ta+2·ts < n. Then Πta,ts

ABC is ta-complete/consistent when run in an asynchronous
network, and ts-complete/consistent when run in a synchronous network.

Proof. First, consider the case where at most ts parties are corrupted and the
network is synchronous. In the beginning of each iteration k, each honest party
multicasts a set of transactions, and so every honest party can form an (n− ts)-
quality pre-block by time Tk +∆. Thus, every honest party starts running ΠBLA

Atomic Broadcast for Arbitrary Network Conditions 17

at time Tk +∆ using an (n − ts)-quality pre-block as input. By ts-security of
ΠBLA in a synchronous network (note ts < n/2), with overwhelming probability
every honest party outputs the same (n − ts)-quality pre-block β∗ from ΠBLA

by time Tk +∆+ 5κ∆. Therefore, each honest party inputs β∗ to Πta,ts
ACS . By

ts-validity with termination of Πta,ts
ACS , every honest party obtains the same out-

put B∗ from Πta,ts
ACS . So all honest parties eventually receive n − ts > ts valid

decryption shares for each ciphertext in each pre-block of B∗, and they all output
the same block.

The case where the network is asynchronous and at most ta parties are
corrupted is similar. In each iteration, each honest party multicasts a set of
transactions and so every honest party eventually receives input from at least
n− ta ≥ n− ts distinct parties and can form an (n− ts)-quality pre-block. This
means that every honest party eventually runs Πta,ts

ACS using an (n − ts)-quality

pre-block as input. By ta-security of Πta,ts
ACS , all honest parties eventually receive

the same output B∗ from Πta,ts
ACS . So all honest parties will eventually receive

n− ta > ts valid decryption shares for each ciphertext in each pre-block of B∗,
and they all output the same block. ut

In what follows, we let Blocks[k] denote the block output by honest parties
in iteration k. We now turn our attention to liveness. We begin by proving a
bound on the number of honest parties who contribute transactions to a block.
Formally, we say that an honest party Pi contributes transactions to a block B :=
ConstructBlock(B∗) if there is a pre-block β ∈ B∗ such that B[i] 6= ⊥. Using this
lower bound, we show that any transaction that is at the front of most honest
parties’ buffers will eventually be output with overwhelming probability. Liveness
follows by arguing that any transaction that is in the buffer of all honest parties
will eventually move to the front of most honest parties’ buffers.

Lemma 9. Fix ta, ts with ta ≤ ts and ta + 2 · ts < n, and assume at most
ta parties are corrupted and the network is asynchronous, or at most ts parties
are corrupted and the network is synchronous. Then in an execution of Πta,ts

ABC ,
for any block B output by an honest party, at least n − (ts + ta) honest parties
contributed transactions to B.

Proof. First, consider the case where at most ta parties are corrupted and the
network is asynchronous. As shown in the proof of Theorem ??, every honest
party executes Πta,ts

ACS using an (n−ts)-quality pre-block as input. Thus, the input

of every honest party to Πta,ts
ACS contains at least n− (ts+ ta) ciphertexts created

by honest parties. By ta-set quality of Πta,ts
ACS , the output of Πta,ts

ACS contains some
honest party’s input and the lemma follows.

Next, consider the case where at most ts parties are corrupted and the net-
work is synchronous. As shown in the proof of Theorem ??, every honest party
executesΠta,ts

ACS using the same (n−ts)-quality pre-block β as input. By ts-validity

with termination of Πta,ts
ACS , all honest parties output B∗ = {β} from Πta,ts

ACS . Be-
cause β is (n−ts)-quality, it contains at least (n−2ts) honest parties’ ciphertexts;
the lemma follows. ut

18 E. Blum et al.

Lemma 10. Assume the conditions of Lemma ??. Consider an iteration k and
a transaction tx such that, at the beginning of iteration k, all but at most ts
honest parties have tx among the first L transactions in their buffers. Then for
any r > 0, tx is in Blocks[k : k+ r] except with probability at most (1− 1/n)r+1.

Proof. By Lemma ??, at least n − (ts + ta) honest parties contribute transac-
tions to Blocks[k]. So even if ts parties are corrupted, at least one of the n− 2ts
honest parties who have tx among the first L transactions in their buffers con-
tributes transactions to Blocks[k]. That party fails to include tx in the set V of
transactions it chooses with probability

(
L−1
L/n

)
/
(
L
L/n

)
= 1 − 1

n , and so tx is in

Blocks[k] except with probability at most 1 − 1
n . (Note that this does not take

into account the fact that the adversary may be able to choose which honest
parties contribute transactions to B. However, because the parties encrypt their
transactions, the adversary’s choice has no effect on the calculation.) If tx does
not appear in Blocks[k], then we can repeat the argument in all successive iter-
ations k + 1, . . . , k + r until it does. ut

Theorem 4 (Liveness). Fix ta ≤ ts with ta + 2 · ts < n. Then Πta,ts
ABC is ta-live

in an asynchronous network, and ts-live in a synchronous network.

Proof. Suppose all honest parties have received a transaction tx. If, at any point
afterward, tx is not in some honest party’s buffer then tx must have already
been included in a block output by that party (and that block will eventually be
output by all honest parties). If all honest parties have tx in their buffers, then
they each have a finite number of transactions ahead of tx. By completeness,
all honest parties eventually output a block in each iteration. Additionally, by
Lemma ??, at least n−(ts+ta) honest parties’ inputs are incorporated into each
block, and so in each iteration all but at most ts honest parties each remove at
least L/n transactions from their buffers. It follows that eventually all but at
most ts honest parties will have tx among the first L transactions in their buffers.
Once that occurs, Lemma ?? implies that tx is included in the next κ blocks
except with probability negligible in κ. ut

The above shows that a transaction received by all honest parties is eventually
output. This is the standard notion of liveness in asynchronous networks. When
working in a synchronous model, on the other hand, it is common to analyze
liveness in more concrete terms. We provide such an analysis in the full version
of the paper.

5.4 Efficiency and Choice of Parameters

The communication cost per iteration is dominated by the cost of the ACS and
BLA subprotocols. Both ACS and BLA are run on pre-blocks, which have size
L·|tx|+O(n·κ). Thus, each execution of BLA incurs cost O(n3κ2+n2L|tx|κ), and
an execution of ACS incurs cost O(n4κ + n3L|tx|). The overall communication
per block is therefore O(n4κ+ n3κ2 + n3L|tx|+ n2L|tx|κ).

Atomic Broadcast for Arbitrary Network Conditions 19

At the beginning of every iteration, each honest party uniformly selects L/n
transactions from among the first L transactions in its buffer. The following
lemma shows that the expected number of distinct transactions they collectively
choose is O(L):

Lemma 11. Assume the conditions of Lemma ??. In any iteration of Πta,ts
ABC ,

the expected number of distinct transactions contributed by honest parties to the
block B output by the honest parties in that iteration is at least L/4.

Proof. The expectation is minimized when all honest parties have the same L
transactions as the first L transactions in their buffers, so we assume this to be
the case. As in Lemma ??, for some particular such transaction tx, the probability
that some particular honest party fails to include tx in the set V of transactions
it chooses is 1 − 1

n . Since, by Lemma ??, at least n − (ts + ta) > n/3 honest
parties contribute transactions to B, the probability that none of those parties

choose tx is at most
(
1− 1

n

)n/3 ≤ e−1/3 < 3/4, and so tx is chosen by at least
one of those parties with probability at least 1/4. (Once again, we do not take
into account the fact that the adversary may be able to choose which honest
parties contribute transactions because honest parties encrypt the transactions
they choose.) The lemma follows by linearity of expectation. ut

Because each block contains O(L) transactions, the communication cost per
transaction is O((n4κ + n3κ2)/L + n3|tx| + n2|tx|κ). So for L = Θ(nκ), the
amortized communication cost per transaction is O(n3|tx|+ n2|tx|κ).

We remark that although each block contains at least L/4 distinct transac-
tions in expectation, it is possible that some of those transactions are not new,
i.e., they may have already been included in a previous block. This is possible
because honest parties may sample their input in some iteration before having
finished outputting blocks in all previous iterations. Thus, the actual commu-
nication cost per transaction may be higher than what we computed above. In
general, the amount of overlap between blocks will depend on the spacing pa-
rameter λ as well as the actual network conditions and the parties’ local clocks.
If λ is too small, some space in each block may be wasted on redundant trans-
actions; however, setting λ to be too large could introduce unnecessary delays
in a synchronous network. Understanding how different choices of λ affect our
protocol’s performance in various network conditions is an interesting challenge
for future work.

5.5 Optimality of Our Thresholds

We show that our protocol achieves the optimal tradeoff between the security
thresholds. This result does not follow immediately from the impossibility result
of Blum et al. [?] for network-agnostic Byzantine agreement because reductions
from BA to atomic broadcast do not trivially translate to the network-agnostic
setting; however, the main ideas of their proof readily extend to the case of
atomic broadcast.

20 E. Blum et al.

Lemma 12. Fix ta, ts, n with ta + 2ts ≥ n. If an n-party atomic broadcast
protocol is ts-live in a synchronous network, then it cannot also be ta-consistent
in an asynchronous network.

Proof. Assume ta + 2ts = n and fix an ABC protocol Π. Partition the n parties
into sets S0, S1, Sa where |S0| = |S1| = ts and |Sa| = ta. Consider the following
experiment:

– Choose uniform m0,m1 ← {0, 1}κ. At global time 0, parties in S0 begin
running Π holding only m0 in their buffer, and parties in S1 begin running
Π holding only m1 in their buffer.

– All communication between parties in S0 and parties in S1 is blocked. All
other messages are delivered within time ∆.

– Create virtual copies of each party in Sa, call them S0
a and S1

a. Parties in Sba
begin running Π (at global time 0) with their buffers containing only mb,
and communicate only with each other and parties in Sb.

Compare this experiment to a hypothetical execution Esync of Π in a syn-
chronous network, in which parties in S1 are corrupted and simply abort, and
the remaining parties are honest and initially hold only (uniformly chosen) m0 in
their buffer. The views of parties S0∪S0

a in the experiment are distributed iden-
tically to the views of the honest parties in Esync. Thus, ts-liveness of Π implies
that in the experiment, all parties in S0 include m0 in some block. Moreover,
since parties in S0 never receive information about m1, they include m1 in any
block with negligible probability. By a symmetric argument, in the experiment,
all parties in S1 include m1 in some block, and include m0 in any block with
negligible probability.

Now, consider a hypothetical execution Easync of Π, this time in an asyn-
chronous network. In this execution, parties in S0 and S1 are honest while parties
in Sa are corrupted. The parties in S0 and S1 initially hold m0,m1 ← {0, 1}κ, re-
spectively. The corrupted parties interact with parties in S0 as if they are honest
and have m0 in their buffer, and interact with parties in S1 as if they are honest
and have m1 in their buffer. Meanwhile, all communication between parties in S0

and S1 is delayed indefinitely. The views of the honest parties in this execution
are distributed identically to the views of S0 ∪ S1 in the above experiment, yet
the conclusion of the preceding paragraph shows that ta-consistency is violated
with overwhelming probability. ut

5.6 Adaptive Security

Our analysis of tardigrade assumes a static adversary who must choose the set
of corrupted parties prior to the start of the protocol. In fact, tardigrade is not
secure against an adaptive adversary, since an adaptive adversary can prevent
ΠBLA from terminating within time 5κ∆ by corrupting the parties who are cho-
sen as leaders. It is possible to modify tardigrade to achieve adaptive security
by suitably modifying ΠBLA in a relatively standard way: rather than choosing
a leader who acts as the only proposer, each party will act as the proposer for

Atomic Broadcast for Arbitrary Network Conditions 21

one instance of the propose protocol, and a leader is then chosen retroactively
after all instances terminate. Designing an adaptively secure network-agnostic
atomic broadcast protocol with improved communication complexity is an in-
teresting direction for future work. (Note that the committee-based approach in
the following section is not adaptively secure.)

6 Improving Complexity using Committees

In this section, we describe an extension to tardigrade that achieves lower
amortized communication complexity in the presence of a static adversary. The
improved protocol, upgrade, achieves expected communication complexity per
transaction that is linear in n; specifically, it has expected per-transaction com-
munication complexity O(nκ|tx| + κ2|tx|). This is made possible by delegating
the most expensive steps of tardigrade to a small committee.

To prove security for tardigrade, we often used the fact that any suffi-
ciently large subset of parties contained at least some minimum number of hon-
est parties. We cannot assume this about the committees in upgrade, as the
committee may be constant size, and in particular may be less than the number
of corrupted parties. Instead, we prove that upgrade is secure in a setting with
O(ε) fewer corrupted parties, where ε is a positive constant parameter of the
protocol. More formally, fix ts, ta as before, and fix t̂s such that t̂s ≤ (1− 2ε) · ts
(for some ε > 0); with probability 1 − e−O(ε2κ), the improved ABC protocol is
t̂s-secure in a synchronous network and ta-secure in an asynchronous network.
(Unless otherwise mentioned, all of the claims in this section hold with this
probability.)

As in tardigrade, we assume a trusted dealer who sets up threshold en-
cryption and signature schemes. During the setup phase, the dealer also selects
a committee C ⊂ {P1, . . . , Pn} of size O(κ) and provides each committee mem-
ber Pi ∈ C with a special credential πi that proves Pi is on the committee. (For
example, πi might be a signature 〈i〉D on the index i that can be checked against
the dealer’s public key.) We also assume that there is a collision-resistant hash
function H : {0, 1}∗ → {0, 1}κ known to all the parties.

6.1 Committee-Based Reliable Broadcast

We briefly describe a committee-based reliable broadcast protocol that will prove
useful in our improved ACS construction. The basis for the committee-based
protocol is a plain reliable broadcast protocol Bcast that is ts-valid and ta-
consistent with communication complexity O(n2 |v|) a hash of the sender’s input.
(An example construction can be found in the full version.) The sender sends
their input v individually to each of the committee members. If the hash output
by the reliable broadcast matches this value, the committee members propagate
v to all parties.

The security analysis uses standard techniques for broadcast; for complete-
ness, proofs can be found in the full version.

22 E. Blum et al.

Πta,ts
BB+ (v)

Throughout, let tκ := b (1−ε)·κ·ts
n

c.

– If Pi = P ∗: send input v to each Pj ∈ C, and input h = H(v) to Πts
BB.

– Run Πts
BB.

– If Pi ∈ C and Πts
BB has output h′: upon receiving a message v′ from P ∗

or (v′, h′, πj) from some Pj ∈ C, if H(v′) = h′, multicast (v′, h′, πi).
– Upon receiving (v′′, H(v′′), πj) from at least tκ + 1 distinct Pj ∈ C

(even if Πts
BB has not yet output a value), output v′′ and terminate.

Fig. 4. A reliable broadcast protocol for sender P ∗ and committee C, from the per-
spective of party Pi.

Communication complexity of Πta,ts
BB+ . Running the inner broadcast on hashes

of size O(κ) has communication complexity O(n2κ), while sending the value,
hash, and credential to all parties costs O(nκ(|m|+κ)). Thus, sending a message
of size |m| using the ‘wrapped’ reliable broadcast costs O(n2κ + n|m|κ + nκ2),
while sending it using the inner reliable broadcast alone costs O(n2|m|).

6.2 Committee-Based ACS

We can construct a committee-based ACS protocol (Figure ??) by making two
minor changes to the basic ACS protocol introduced in Section ??. First, the
inner (non-terminating) ACS protocol is modified to use the committee-based
broadcast described in Section ??. Because broadcast is used opaquely by the
inner ACS protocol, this change does not require any special modifications, and
the claims previously proven about the inner ACS protocol still hold. Second,
the termination wrapper is modified so that only the members of the committee
send the output in its entirety. Upon outputting a set S from the inner (non-
terminating) ACS subprotocol, each committee member Pi multicasts S and
〈commit, H(S)〉i, along with the credential they received from the dealer. The
other parties will echo signature shares and hashes, but not the set S itself.

The proof that Πta,ts
ACS+(v) is ta-secure and has t̂s-validity with termination is

very similar to the security proof for the basic ACS protocol, so we omit it.

Communication complexity of Πta,ts
ACS+ . As before, let |m| represent the size of

parties’ inputs. When instantiated using the committee-based broadcast protocol
from Section ??, the communication complexity of the inner ACS protocol is
O(n3κ+ n2|m|κ+ n2κ2). Moving on to the rest of the protocol, we see that the
committee members multicast their output, a signature share, and the credential
they received from the dealer. (Note that the signature share is for a hash of
the output rather than the entire output.) Since the signature share, credential,
and hash are each of size O(κ), this step contributes O(n · κ(n · |m| + κ)) =
O(n2κ · |m|+nκ2). Next, all parties multicast a combined signature of size O(κ),
for a total cost of O(n2κ). All together, the total cost of the improved ACS
protocol is O(n3κ+ n2|m|κ+ n2κ2).

Atomic Broadcast for Arbitrary Network Conditions 23

Πta,ts
ACS+

(vj)

Throughout, let tκ := b (1−ε)·κ·ts
n

c.

– Input vj to Πta,ts
ACS .

– If Pj ∈ C: upon receiving output Sj from Πta,ts
ACS , compute h := H(Sj)

and multicast (Sj , 〈commit, h〉j , πj).
– Upon receiving at least tκ + 1 valid signature shares σi = 〈commit, h〉i

from distinct parties in C on the same value h, form a combined signa-
ture σ for h and multicast (σ, h).

– Upon receiving a valid combined signature σ for some h, multicast σ.
– Upon holding S, σ such that σ is a combined signature for h from parties

in C and S is a set such that H(S) = h, output S and terminate.

Fig. 5. A terminating ACS protocol with predetermined committee C, shown from the
perspective of party Pj with input vj .

6.3 An ABC Protocol with Improved Communication Complexity

Here, we give an overview of upgrade. Because the high-level techniques are
similar to tardigrade, we will highlight the key differences between the two
protocols and defer further details to the full version.

The first (and simplest) difference is that wherever tardigrade would run
an instance of the plain ACS protocol, upgrade runs the improved version
described in Section ??. The second difference concerns how parties choose and
share their inputs, and how those inputs are combined to form a final block.
At the beginning of the protocol, when parties choose a set of transactions to
input, they will now also choose a second, larger input set, which is encrypted
and sent only to the committee members. The committee members form the
large ciphertexts into a separate pre-block, which is used to construct the final
block in case ACS outputs only one small pre-block is output. Sending a large
pre-block all-to-all is costly, so the committee members also form a placeholder
called a block pointer. A block pointer contains a hash of a large pre-block and a
combined signature on that hash by members of the committee. In most steps,
the block pointer can be sent in place of the large pre-block. Although forming
and sharing the block pointer adds some extra communication, we are able to
significantly increase the expected number of distinct transactions.

