
41

Subcubic Certificates for CFL Reachability

DMITRY CHISTIKOV, University of Warwick, UK

RUPAK MAJUMDAR,Max Planck Institute for Software Systems, Germany

PHILIPP SCHEPPER, CISPA Helmholtz Center for Information Security, Germany

Many problems in interprocedural program analysis can be modeled as the context-free language (CFL)
reachability problem on graphs and can be solved in cubic time. Despite years of efforts, there are no known
truly sub-cubic algorithms for this problem. We study the related certification task: given an instance of CFL
reachability, are there small and efficiently checkable certificates for the existence and for the non-existence
of a path? We show that, in both scenarios, there exist succinct certificates (𝑂 (𝑛2) in the size of the problem)
and these certificates can be checked in subcubic (matrix multiplication) time. The certificates are based on
grammar-based compression of paths (for reachability) and on invariants represented as matrix inequalities
(for non-reachability). Thus, CFL reachability lies in nondeterministic and co-nondeterministic subcubic time.

A natural question is whether faster algorithms for CFL reachability will lead to faster algorithms for
combinatorial problems such as Boolean satisfiability (SAT). As a consequence of our certification results,
we show that there cannot be a fine-grained reduction from SAT to CFL reachability for a conditional lower
bound stronger than 𝑛𝜔 , unless the nondeterministic strong exponential time hypothesis (NSETH) fails. In a
nutshell, reductions from SAT are unlikely to explain the cubic bottleneck for CFL reachability.

Our results extend to related subcubic equivalent problems: pushdown reachability and 2NPDA recognition;
as well as to all-pairs CFL reachability. For example, we describe succinct certificates for pushdown non-
reachability (inductive invariants) and observe that they can be checked in matrix multiplication time. We
also extract a new hardest 2NPDA language, capturing the łhard corež of all these problems.

CCS Concepts: · Theory of computation → Design and analysis of algorithms; Formal languages and

automata theory.

Additional Key Words and Phrases: CFL reachability, subcubic certification, pushdown reachability

ACM Reference Format:

Dmitry Chistikov, Rupak Majumdar, and Philipp Schepper. 2022. Subcubic Certificates for CFL Reachability.
Proc. ACM Program. Lang. 6, POPL, Article 41 (January 2022), 29 pages. https://doi.org/10.1145/3498702

1 INTRODUCTION

Context-free reachability is a fundamental problem in interprocedural program analysis, verification
of recursive programs, and database theory [Alur et al. 2005; Bouajjani et al. 1997; Dolev et al. 1982;
Melski and Reps 2000; Reps et al. 1995; Yannakakis 1990]. For a fixed context-free language (CFL)
L over an alphabet Σ, given a directed graph 𝐺 = (𝑉 , 𝐸), an edge-labeling function 𝜆 : 𝐸 → Σ,
and two vertices 𝑠, 𝑡 ∈ 𝑉 , the L-reachability problem asks if there is a path from 𝑠 to 𝑡 in 𝐺

such that the word formed by concatenating the labels along the path belongs to L. It is well-
known that the problem can be solved in time cubic in the size of the graph for any fixed CFL.

Authors’ addresses: Dmitry Chistikov, Centre for Discrete Mathematics and its Applications (DIMAP) & Department of
Computer Science, University of Warwick, Coventry, UK, d.chistikov@warwick.ac.uk; Rupak Majumdar, Max Planck
Institute for Software Systems, Kaiserslautern, Germany, rupak@mpi-sws.org; Philipp Schepper, CISPA Helmholtz Center
for Information Security, Saarbrücken, Germany, philipp.schepper@cispa.saarland.

© 2022 Copyright held by the owner/author(s).
2475-1421/2022/1-ART41
https://doi.org/10.1145/3498702

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 41. Publication date: January 2022.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3498702
https://doi.org/10.1145/3498702

41:2 Dmitry Chistikov, Rupak Majumdar, and Philipp Schepper

However, despite many years of efforts, we only know speedups by logarithmic factors (i.e., to
𝑂 (𝑛3/log𝑛), where 𝑛 = |𝑉 |) [Chaudhuri 2008; Rytter 1985], leading to a conjecture that no better
algorithms (that is, 𝑂 (𝑛3−𝜀) for 𝜀 > 0) are possible for this and several related problems [Heintze
and McAllester 1997]. In recent years, a number of results in fine-grained complexity give credence
to the conjecture by demonstrating various conditional lower bounds for the problem [Abboud
et al. 2015; Chatterjee et al. 2018; Mathiasen and Pavlogiannis 2021]. Even so, the possibility of
algorithms with running time 𝑛𝜔 or above has not been ruled out. Here, 𝜔 < 2.4 is the matrix
multiplication exponent [Coppersmith and Winograd 1990; Vassilevska Williams 2012].

In this paper, we study the related problem of certifying an instance of CFL reachability. Intuitively,
this problem asks for easily verifiable proofs of inclusion or non-inclusion. Given a (positive or
negative) instance of CFL reachability, we ask if there is an efficiently checkable proof that will
convince anyone that the instance is indeed positive or negative.

Formally, a certificate system for CFL reachability consists of two algorithms (the checkers), one
for positive instances and one for negative instances. Each checker takes as input an instance of the
problem and an additional string (called the certificate) and accepts or rejects. The positive (resp.
negative) checker is complete if for each positive (resp. negative) instance, there is a certificate that
makes it accept, and sound if for each negative (resp. positive) instance, there is no certificate that
makes it accept. Of course, since the instance can be decided in cubic time, a certificate system is
non-trivial only if the checkers run in subcubic time (in the size of the instance).

Our main result shows that CFL reachability has subcubic certificate systems: every positive
or negative instance has a quadratic certificate and a checker that runs in 𝑂 (𝑛𝜔) time, 𝑛 = |𝑉 |.

• For a positive instance of the problem, a naive certificate is a path from 𝑠 to 𝑡 witnessing
inclusion. Unfortunately, this is not an efficient certificate, since it is known that the shortest
path can be exponentially long in the size of the graph. We show that the shortest path is
well-compressible by a context free grammar of size 𝑂 (𝑛2) in the number of vertices of the
graph. Moreover, given such a compressed representation, there is a checker verifying in
time 𝑂 (𝑛2) that the grammar indeed encodes a witness path.

• For a negative instance of the problem, a certificate is an inductive invariant that demonstrates
non-reachability. We show that such an inductive invariant can be represented using relations
between a constant number of 𝑛 × 𝑛 matrices, and there is a checker verifying in time
𝑂 (𝑛𝜔) that such an encoding does represent an inductive invariant. Additionally, if we allow
randomization, there is a randomized checker running in 𝑂 (𝑛2) time.

• Certificates of the above two kinds can be combined into a single subcubic certificate for the
all-pairs version of the problem, where the task is to identify all pairs of vertices 𝑠, 𝑡 such
that 𝑡 is L-reachable from 𝑠 . (The definition of certificate systems is extended appropriately.)

Summing up, CFL reachability can be certified in subcubic time. This result illuminates a conceptu-
ally new aspect of an old problem. Certificate systems make it possible to separate two possibly
independent phases of computation, finding a solution to a computational problem and verifying it.
We consider complexity-theoretic implications of our result. Impagliazzo and Paturi [2001]

introduced the strong exponential time hypothesis (SETH), which informally states that SAT has
no algorithms better than exhaustive search. Over the years, SETH has become a fundamental
assumption relative to whichmany fine-grained complexity results are proved [VassilevskaWilliams
2018]. For example, SETH implies current (quadratic) algorithms for orthogonal vectors or edit
distance problems are optimal. A natural question is if SETH also implies that cubic algorithms for
CFL reachability are optimal.
Our result shows that such a reduction would be very difficult to find. Carmosino et al. [2016]

extended SETH to the nondeterministic strong exponential time hypothesis (NSETH), which states

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 41. Publication date: January 2022.

Subcubic Certificates for CFL Reachability 41:3

that there is no algorithm for Boolean tautology better than exhaustive search, even with nonde-
terministic guessing. They show that both proving and refuting NSETH imply breakthroughs in
computational complexity. Our subcubic certification result implies that any conditional lower
bound for CFL reachability from SAT and SETH will show that NSETH does not hold. In particular,
such a conditional lower bound will lead to a breakthrough in circuit lower bounds.
Thus, the importance of 𝑂 (𝑛𝜔) verification of certificates is that it rules out fine-grained re-

ductions from SAT to CFL reachability. This is a (conditional) negative answer to the question
above, and possibly a step towards resolving the question of Chaudhuri [2008] whether the all-pairs
version of CFL reachability can be reduced to Booleanmatrix multiplication. In fact, even the yes/no
version of the problem (with 𝑠 and 𝑡 given) is already very difficult. We discuss further implications
in fine-grained complexity with other related work below.

A model checking problem closely related to CFL reachability is pushdown reachability [Bouaj-
jani et al. 1997; Finkel et al. 1997]. Our results lead to a subcubic certificate system for pushdown

reachability too, by extracting quadratic certificates from the standard saturation-based algo-
rithm and the triplet construction for PDA to CFG conversion. Indeed, by exploiting fine-grained
reductions between CFL reachability, pushdown reachability, the emptiness problem for push-
down automata, and the recognition problem for two-way nondeterministic pushdown automata
(2NPDA), we show all these problems (as well as other related problems known in the literature)
have subcubic certificate systems. Our constructions and reductions have several implications. First,
succinct certificates for pushdown (non-)reachability checkable in subcubic time can have potential
applications in checking proofs of programs [Necula 1997] and in łexportsž of model checking such
as certificate set analysis in trust management systems [Jha and Reps 2004]. Second, our reductions
lead to a new insight beyond certification. We identify a new hardest 2NPDA language, that is, a
fixed 2NPDA language 𝐿0 such that for every 2NPDA language 𝐿 there is a homomorphism ℎ such
that𝑤 ∈ 𝐿 iff ℎ(𝑤) ∈ 𝐿0. A different hardest language was previously found by Rytter [1981] using
language-theoretic techniques. However, our proof and reductions strengthen the link between
2NPDA language recognition and CFL reachability, pointing to the hardest instances of the latter.

Contributions. We make the following contributions.

(1) We propose certificate systems for positive and negative instances of CFL reachability, with
certificates of size 𝑂 (𝑛2) which can be verified in time subcubic in the size of the graph. We
prove these systems sound and complete (Section 3).

(2) We show that our certificate systems extend: to subcubic equivalent problems such as push-
down reachability, the emptiness problem for PDA, and 2NPDA language recognition (Sub-
sections 5 and 6.1); as well as to all-pairs CFL reachability (Subsection 3.3). We also show
they support verification in randomized quadratic time (with correct certificates never re-
jected), based on Freivalds’ algorithm for verifying matrix multiplication [Freivalds 1979]
(Subsection 3.2).

(3) We show that the influential strong exponential-time hypothesis (SETH) is unlikely to explain
the cubic bottleneck for CFL reachability. We prove that a hypothetical fine-grained reduction
from SAT for a conditional lower bound stronger than 𝑛𝜔 Ð roughly speaking, stronger
lower bounds for program analysis Ð would lead to a breakthrough in circuit complexity
(Section 4).

(4) Based on fine-grained reductions, we find a new hardest 2NPDA language (Subsection 6.2).

Related work. In a quest to classify the complexity of problems in P, fine-grained reductions

interlink the asymptotic running time of algorithms for various problems. A fine-grained reduction
shows that a faster algorithm for one problem automatically implies a faster algorithm for another

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 41. Publication date: January 2022.

41:4 Dmitry Chistikov, Rupak Majumdar, and Philipp Schepper

problem. Conversely, the existence of fine-grained reductions can be interpreted as conditional lower
bounds: no faster algorithm exists, unless a state-of-the-art algorithm for a well-known problem
is actually suboptimal. For example, a truly sub-quadratic algorithm for Orthogonal Vectors will
lead to a 2(1−𝜀)𝑛-time algorithm for SAT, breaking SETH [Vassilevska Williams 2018]. Similarly, the
𝑘-Clique conjecture states that no (randomized or deterministic) algorithm can detect a 𝑘-Clique

on an 𝑛-vertex graph in time 𝑂 (𝑛
𝜔𝑘

3 −𝜀) for 𝜀 > 0. Abboud et al. [2015] show a reduction from the
𝑘-Clique problem to CFL recognition, giving a conditional lower bound of order 𝑛𝜔 and matching
Valiant’s �̃� (𝑛𝜔) upper bound for the problem [Valiant 1975]. This lower bound applies to CFL
reachability as well. Chatterjee et al. [2018], using Lee’s result [Lee 2002], reduce Boolean matrix
multiplication to Dyck-𝑘 reachability (for growing 𝑘), showing that faster algorithms for the latter
avoiding matrix multiplication would be a breakthrough. Chatterjee and Osang [2017] show a
similar reduction to PDA emptiness.
More broadly, a range of problems in formal languages are now being approached with tools

from modern algorithms and complexity [Fernau 2019]. Our work contributes to this ongoing
effort. Backurs and Indyk [2016] and Bringmann et al. [2017] find SAT-based conditional lower
bounds for regular expression matching problems. De Oliveira Oliveira and Wehar [2018] show
reductions between triangle finding, 3SUM, and the non-emptiness of intersection of two or three
DFA. Potechin and Shallit [2020] show a reduction from Orthogonal Vectors to the acceptance
problem for (a subclass of) NFA and a reduction from triangle finding to (unary) NFA acceptance.
Fernau and Krebs [2017] establish conditional lower bounds for a variety of automata-theoretic
problems beyond P.Wehar and co-authors have shown that faster algorithms for various intersection
non-emptiness problems have consequences for structural complexity classes [de Oliveira Oliveira
and Wehar 2020; Swernofsky and Wehar 2015; Wehar 2014].
The idea of certification has a long history in computing and in algorithmics [McConnell et al.

2011]. In the context of pushdown reachability in verification, witness generation for yes-instances
is supported by model checking tools such as Moped [Schwoon 2002]. In data management, the
need to explain query results (data provenance) in graph databases has motivated Hellings [2020] to
define certificates for yes-instances of CFL reachability, polynomial in the size of the input instance
(and in the size of the grammar). These are, however, not subcubic. In comparison, our certificates
are 𝑂 (𝑛2) in size, and we also provide certificates for no-instances. These two features are key for
our result that SETH is unlikely to explain the cubic bottleneck for CFL reachability.
We discuss further related work in Section 6.

2 CONTEXT-FREE REACHABILITY AND DYCK-2 REACHABILITY

Let L be a fixed language. Given a directed graph 𝐺 = (𝑉 , 𝐸), an edge-labeling function 𝜆 : 𝐸 → Σ,
and two vertices 𝑠, 𝑡 ∈ 𝑉 , the L-reachability problem asks if there is a path from 𝑠 to 𝑡 (possibly
repeating vertices and edges) such that the word formed by concatenating the labels along the
path belongs to L [Yannakakis 1990]. When L is a fixed context-free language, the problem is
called CFL reachability. CFL reachability plays a foundational role in several areas within computer
science. To the best of our knowledge, it first appears in the work by Dolev, Even, and Karp [1982]
as the combinatorial core in the security analysis of a cryptographic protocol. Yannakakis [1990]
and Melski and Reps [2000] elucidate the role of this problem in the context of database theory and
interprocedural program analysis, respectively, providing in particular a historical sketch.
In formal language theory, L-reachability and CFL reachability can be seen as providing an

algorithmic perspective on the classic definition of rational index of a language [Boasson et al.
1981; Pierre 1992]. These problems have also been studied under the name łregular realizabilityž

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 41. Publication date: January 2022.

Subcubic Certificates for CFL Reachability 41:5

𝑎 𝑏

𝑐 𝑑

𝑒

(

(

[

]

]

)

[

)

(a)

−→
𝑎𝑐 →

−→
𝑎𝑒 ·

−→
𝑒𝑐

−→
𝑎𝑒 → (𝑎, 𝑏) ·

−→
𝑏𝑑 · (𝑑, 𝑒)

−→
𝑒𝑐 → (𝑒, 𝑏) ·

−→
𝑏𝑑 · (𝑑, 𝑐)

−→
𝑏𝑑 → (𝑏, 𝑐) ·

−→
𝑐𝑐 · (𝑐, 𝑑)

−→
𝑐𝑐 → 𝜀

(b)

©«

1 1 1 1 1

1 1 1 1 1

0 0 1 1 1

0 0 1 1 1

0 0 1 1 1

ª®®®®®¬
(c)

Fig. 1. (a) Example: labelled graph (𝐺, 𝜆), main input to D2Reach. (b) Yes-certificate: walk scheme for

(𝐺, 𝜆, 𝑎, 𝑐). (c) No-certificate: separator for (𝐺, 𝜆, 𝑒, 𝑏). Vertices are ordered alphabetically: 𝑎 is 1, 𝑏 is 2, etc.

(see, e.g., [Vyalyi 2011; Vyalyi and Rubtsov 2015]). Lang [1994] explains a connection between
L-reachability and chart parsing.
For CFL reachability, without loss of generality, the fixed language can be assumed to be the

Dyck-2 language. This is the language of balanced parentheses with two kinds of parenthesis
symbols. Formally, it is the context free language over the alphabet {(,), [,]} defined by the
following context-free grammar:

𝑆 → 𝑆𝑆 | (𝑆) | [𝑆] | 𝜀

The Dyck-2 reachability problem, denoted D2Reach, is the L-reachability problem when L is the
Dyck-2 language. Figure 1a shows an example input graph for this problem. The following claim
(an algorithmic version of Exercise 6.2.7 in [Hopcroft et al. 2006]) shows restricting to D2Reach is
without loss of generality.

Claim 1. Let (𝐺, 𝜆, 𝑠, 𝑡) be an instance of the CFL reachability problem. There is a linear-time

reduction (in the bit-size of the input) to an instance (𝐺 ′, 𝜆′, 𝑠 ′, 𝑡 ′) of the Dyck-2 reachability problem.

In addition to the decision (yes/no) version of the problem, we also study the all-pairs version,
denoted All-Pairs-D2Reach: on input (𝐺, 𝜆), the output of the All-Pairs-D2Reach problem is a 0ś1
matrix 𝑅 of size |𝑉 | × |𝑉 | in which 𝑅𝑠𝑡 = 1 if and only if (𝐺, 𝜆, 𝑠, 𝑡) is a yes-instance of D2Reach.

We call an algorithm truly subcubic if it has (worst-case) running time𝑂 (𝑛3−𝜀) for some constant
𝜀 > 0, where 𝑛 denotes the bit length of the input. Practical implementations use a summarization-
based 𝑂 (|𝑉 |3) algorithm [Reps et al. 1995]; note that |𝑉 | ≤ 𝑛. Using Rytter’s trick [Rytter 1985],
Chaudhuri [2008] shows that the L-reachability problem is 𝑂 (|𝑉 |3/log |𝑉 |) for any fixed context-
free language.1 However, no truly subcubic algorithm is known for this problem. Although Boolean
matrix multiplication reduces to this problem, which diminishes the hope for faster combinatorial

algorithms (avoiding fast matrix multiplication), the best known conditional lower bound for the
problem has order |𝑉 |𝜔 , where 𝜔 is the matrix multiplication exponent. On the other hand, Dyck-1
reachability (the language of balanced parentheses with one kind of parentheses) can be solved in
time �̃� (|𝑉 |𝜔) [Bradford 2018; Bringmann 2018; Mathiasen and Pavlogiannis 2021; Vyalyi 2019],
matching best conditional lower bounds.
1If the CFL is not fixed, solving CFL reachability seems to require a product construction of the PDA with the graph, which
incurs a blowup quadratic in the size of the graph. We do not know any algorithm better than𝑂 (𝑛6/log𝑛) for this problem,
where 𝑛 is the bit size of the input.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 41. Publication date: January 2022.

41:6 Dmitry Chistikov, Rupak Majumdar, and Philipp Schepper

3 CERTIFICATES FOR REACHABILITY AND NON-REACHABILITY

In this section we show that, while truly subcubic algorithms for Dyck-2 reachability are not known,
solutions to Dyck-2 reachability have small and efficiently checkable certificates. In particular,
regardless of whether a given instance 𝑥 of D2Reach is a yes- or a no-instance, there exists a
certificate 𝑦 of truly subcubic size which witnesses this fact and can be checked in time truly
subcubic in the size of 𝑥 .

An instance 𝒙 = (𝐺, 𝜆, 𝑠, 𝑡) of D2Reach is a yes-instance if there is a walk from 𝑠 to 𝑡 labeled with
a string from Dyck-2, and a no-instance otherwise.
In the following definitions, ∥𝒙 ∥ denotes the size of an instance 𝒙 . In the context of Dyck-2

reachability, this will be the number of vertices in the graph: if 𝐺 = (𝑉 , 𝐸), we write ∥𝒙 ∥ = |𝑉 |.

Definition 2. We say that a decision problem D has subcubic certificates for yes-instances
(respectively, no-instances) if, for some real number 𝜀 > 0, there is an algorithm 𝑀 and a function

𝑝 : N→ N, 𝑝 (𝑛) = 𝑂 (𝑛3−𝜀), such that for every instance 𝒙 of D:

(completeness) if 𝒙 is a yes-instance (respectively, no-instance), then there is a string 𝑢 of length

at most 𝑝 (∥𝒙 ∥), called a certificate, such that𝑀 accepts (𝒙, 𝑢) in time 𝑝 (∥𝒙 ∥), and

(soundness) if 𝒙 is a no-instance (respectively, yes-instance), then for every string 𝑢 the algorithm

𝑀 rejects (𝒙, 𝑢) in time 𝑝 (∥𝒙 ∥).

Note that the running time of𝑀 is subcubic in |𝑉 |, which is at most the bit size of the instance,
and not in the size of the certificate. Also note that, in the soundness condition, if the length of
the supplied string 𝑢 exceeds 𝑝 (∥𝒙 ∥), we can assume that the algorithm 𝑀 will reject the pair
(𝒙, 𝑢) without having to read the entire input. (Intuitively, only certificates of length ≤ 𝑝 (∥𝒙 ∥) are
expected.)

Theorem 3. D2Reach has subcubic certificates for both yes- and no-instances.

These certification schemes allow us to verify, given the additional certificate, whether an instance
of D2Reach is a positive or a negative instance in sub-cubic time. Theorem 3 follows by combining
Lemma 8 and Lemma 16 proved in Subsections 3.1 and 3.2 below.
Theorem 3 can be extended to the all-pairs setting, based on the following definition.

Definition 4. Let 𝑓 : 𝑋 → 𝑌 be a computable function. We say that 𝑓 has subcubic certificates if,
for some real number 𝜀 > 0, there is an algorithm𝑀 and a function 𝑝 : N→ N, 𝑝 (𝑛) = 𝑂 (𝑛3−𝜀), such

that for every instance 𝒙 ∈ 𝑋 :

(completeness) there is a string 𝑢 of length at most 𝑝 (∥𝒙 ∥), called a certificate, such that 𝑀

accepts (𝒙, 𝑓 (𝒙), 𝑢) in time 𝑝 (∥𝒙 ∥), and

(soundness) for every 𝑦 ≠ 𝑓 (𝒙) and for every string 𝑢 of length at most 𝑝 (∥𝒙 ∥), the algorithm

𝑀 rejects (𝒙, 𝑦,𝑢) in time 𝑝 (∥𝒙 ∥).

Definition 4 is related to the properties required of so-called certifying algorithms, see McConnell
et al. [2011, Section 5].

Theorem 5. All-Pairs-D2Reach has subcubic certificates.

Theorem 5 is proved in Subsection 3.3 below.
We will refer extensively to walks in labelled directed graphs. For a labelled directed graph

(𝑉 , 𝐸, 𝜆 : 𝐸 → {(,), [,]}), a walk from 𝑢 ∈ 𝑉 to 𝑣 ∈ 𝑉 is a sequence of edges 𝜋 := 𝑒0 . . . 𝑒𝑘 from
𝐸, for 𝑘 ≥ 0, such that for each 𝑖 ∈ {1, . . . , 𝑘}, edge 𝑒𝑖−1 arrives at the same vertex that edge
𝑒𝑖 departs from, and moreover 𝑒0 departs from 𝑢 and 𝑒𝑘 arrives at 𝑣 . This walk is valid if the
word 𝜆(𝑒0) . . . 𝜆(𝑒𝑘) belongs to the Dyck-2 language. A subwalk of a walk 𝑒0 . . . 𝑒𝑘 is a contiguous
subsequence 𝑒𝑖 . . . 𝑒 𝑗 of edges, possibly empty.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 41. Publication date: January 2022.

Subcubic Certificates for CFL Reachability 41:7

3.1 Certificates for Yes-Instances: Compressed Walks

We describe our certificate system for yes-instances of D2Reach. These certificates are witnesses
for reachability. We fix an instance of D2Reach: 𝐺 = (𝑉 , 𝐸) a directed graph, 𝜆 : 𝐸 → {(,), [,]} an
edge-labeling function, and 𝑠, 𝑡 ∈ 𝑉 source and target vertices.
A first attempt is to provide a valid walk as a certificate (witness). However, it is well-known

that the shortest valid walk can be exponential in the size of the input, namely it can be of length
exp(Θ(|𝑉 |2/log |𝑉 |)), and this bound is tight [Pierre 1992]. (For an intuition, one can think of a
pushdown automaton accepting only words of length exponential in its size and longer.)

One can construct a polynomial-sized certificate by providing the summaries constructed during
CFL reachability [Reps et al. 1995]. However, the size of summaries can be Θ(|𝑉 |3), and we need
an additional idea for a subcubic certificate.

Ourmain observation to get subcubic certificates is that there is always some valid walk (including
the shortest one in particular) that is well-compressible and has a small representation (of size
𝑂 (|𝑉 |2)); and it is efficient to check (in time𝑂 (|𝑉 |2)) that such a compressed walk is indeed a valid
walk. Moreover, for every no-instance, one cannot get any valid walks, compressed or otherwise.

The following definition łinlinesž the concept of a straight-line program, which is an łacyclicž
context-free grammar that generates one word only. Straight-line programs are at the core of
general-purpose compression algorithms such as LZ77 (see, e.g., [Lohrey 2012]).

Definition 6. For an instance of D2Reach, denote by
−→
𝑉 2 a fresh copy of the set 𝑉 2, written as

−→
𝑉 2

= {
−→
𝑢𝑣 | (𝑢, 𝑣) ∈ 𝑉 2}. A walk scheme is a context-free grammar with the set of terminal symbols 𝐸,

a set of nonterminal symbols NT ⊆
−→
𝑉 2, and the axiom

−→
𝑠𝑡 ∈ NT, where:

• for each nonterminal
−→
𝑢𝑣 ∈ NT there is exactly one production, which moreover has the form:

(a)
−→
𝑢𝑣 →

−→
𝑢𝑤

−→
𝑤𝑣 for some𝑤 ∈ 𝑉 , or

(b)
−→
𝑢𝑣 → 𝑒

−→
𝑥𝑦 𝑓 for some edges 𝑒 = (𝑢, 𝑥) ∈ 𝐸 and 𝑓 = (𝑦, 𝑣) ∈ 𝐸 with 𝜆(𝑒) · 𝜆(𝑓) ∈ {(), []}, or

(c)
−→
𝑢𝑢 → 𝜀 for some 𝑢 ∈ 𝑉 , and

• the directed graph with vertices NT and the following set of edges is acyclic:{
(
−→
𝑎𝑏,

−→
𝑐𝑑) |

−→
𝑐𝑑 occurs on the right-hand side of the production of

−→
𝑎𝑏

}
. (1)

Example 7. For the input graph we saw previously in Fig. 1a, a walk scheme that witnesses
reachability for the pair (𝑎, 𝑐) is shown in Fig. 1b.

Lemma 8. The following statements hold:

• Every walk scheme has size 𝑂 (|𝑉 |2) and bit size 𝑂 (|𝑉 |2 log |𝑉 |).

• An instance of D2Reach is a yes-instance if and only if there exists a walk scheme for it.

• There is a deterministic algorithm that runs in time 𝑂 (|𝑉 |2) and decides if a given grammar is

a walk scheme for a given instance of D2Reach.

For the proof of Lemma 8, we need the following auxiliary result.

Claim 9. Let G be a context-free grammar with 𝐿(G) ≠ ∅. Suppose G contains more than one

production with the same nonterminal on the left-hand side. Then by removing all of them but one we

can obtain a grammar G′ with 𝐿(G′) ≠ ∅.

We first show the proof of the lemma using Claim 9.

Proof of Lemma 8. The first assertion is straightforward. We split the rest of the proof into
three parts.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 41. Publication date: January 2022.

41:8 Dmitry Chistikov, Rupak Majumdar, and Philipp Schepper

Soundness. We first suppose that for a given instance of D2Reach there exists a walk scheme,W,
and show that the instance must be a yes-instance. Consider the directed graph from the acyclicity
condition in the definition of walk schemes, denote it 𝐷 . We will consider all vertices of 𝐷 , i.e.,

nonterminals from NT, in any reversed topological ordering. In other words, whenever
−→
𝑐𝑑 occurs

on the right-hand side of the production of
−→
𝑎𝑏, we will consider

−→
𝑐𝑑 before

−→
𝑎𝑏. We will show by

induction that, for every
−→
𝑢𝑣 ∈ NT, the (one) word generated by

−→
𝑢𝑣 is a valid walk from𝑢 to 𝑣 . (Recall

that a walk is valid if it is labelled by a Dyck-2 word.) Indeed, it suffices to consider the three types
of productions:

(1) for a production of the form
−→
𝑢𝑣 →

−→
𝑢𝑤

−→
𝑤𝑣 , we know from the inductive hypothesis that

−→
𝑢𝑤

generates a valid walk from 𝑢 to𝑤 , and
−→
𝑤𝑣 a valid walk from𝑤 to 𝑣 , so their concatenation

is a valid walk from 𝑢 to 𝑣 ;

(2) for a production of the form
−→
𝑢𝑣 → 𝑒

−→
𝑥𝑦 𝑓 with edges 𝑒 = (𝑢, 𝑥) ∈ 𝐸 and 𝑓 = (𝑦, 𝑣) ∈ 𝐸, we

know from the inductive hypothesis that
−→
𝑥𝑦 generates a valid walk from 𝑥 to 𝑦, and since

𝜆(𝑒) · 𝜆(𝑓) ∈ {(), []}, the result of the concatenation is a valid walk from 𝑢 to 𝑣 ;

(3) finally, productions of the form
−→
𝑢𝑢 → 𝜀 correspond to trivial valid walks (containing no

edges) and represent the induction base.

As the axiom of the grammarW is
−→
𝑠𝑡 , we conclude that there is a valid walk from 𝑠 to 𝑡 , which

means that the instance of D2Reach we consider is a yes-instance.

Completeness. In the converse direction, let us prove that that every yes-instance of D2Reach

has a walk scheme. Consider such an instance, (𝐺, 𝜆, 𝑠, 𝑡), and consider a walk from 𝑠 to 𝑡 , call it 𝜋 .
We construct a walk scheme in several steps.

First consider a context-free grammar G with the set of terminal symbols 𝐸, set of nonterminal

symbols
−→
𝑉 2, and axiom

−→
𝑠𝑡 . The set of productions is determined as follows. For each nonterminal

−→
𝑢𝑣 ∈

−→
𝑉 2, we include all productions of the form:

•
−→
𝑢𝑣 →

−→
𝑢𝑤

−→
𝑤𝑣 for all𝑤 ∈ 𝑉 ;

•
−→
𝑢𝑣 → 𝑒

−→
𝑥𝑦 𝑓 where 𝑒 = (𝑢, 𝑥) ∈ 𝐸 and 𝑓 = (𝑦, 𝑣) ∈ 𝐸 such that 𝜆(𝑒) · 𝜆(𝑓) ∈ {(), []};

•
−→
𝑢𝑢 → 𝜀 for all 𝑢 ∈ 𝑉 .

Induction on the structure of 𝜋 shows that 𝜋 ∈ 𝐿(G), so 𝐿(G) ≠ ∅.
We can now prune the set of productions of the grammar G using Claim 9, as well as apply

standard procedures of removing useless (non-productive or unreachable) nonterminals in context-
free grammars (see, e.g., [Hopcroft et al. 2006, Section 7.1]). We perform these steps until all three
have no effect on the grammar. The resulting grammar W satisfies all conditions in the definition
of walk schemes, except possibly the acyclicity condition. We claim that W must satisfy that

condition too. Indeed, the transformations applied so far ensure that 𝐿(W) ≠ ∅. Let NT ⊆
−→
𝑉 2 be

the set of nonterminals ofW. Assume for the sake of contradiction that the directed graph with

vertices NT and edges (1) contains a directed cycle. Let
−→
𝑎𝑏 ∈ NT be a vertex on this cycle. Since all

nonterminals of W are reachable and productive, there exists a valid parse tree with respect to W

that contains a node labelled by
−→
𝑎𝑏. By definition of the graph, and since every nonterminal in W

has exactly one production, this node has a descendant labelled with
−→
𝑎𝑏. By the same reasoning,

this descendant also has a descendant labelled with
−→
𝑎𝑏, etc., which cannot be the case as the tree is

finite. This contradiction means that the graph must be acyclic, so W is in fact a walk scheme.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 41. Publication date: January 2022.

Subcubic Certificates for CFL Reachability 41:9

Verification algorithm. The condition NT ⊆
−→
𝑉 2 and the choice of the axiom can be checked in

time 𝑂 (|𝑉 |2). The fact that there is exactly one production per nonterminal can be checked under
the same time constraints; and so can the form of these productions and compatibility with the
instance of D2Reach. Finally, depth-first searchśbased topological sort procedure can be used to
detect the existence of directed cycles; it runs in time linear in the number of edges, which is at
most |𝑉 |2. □

Remark 10. There is nothing special about Dyck-2 in the construction, and a similar certificate
can be constructed for any fixed CFG.

We now finish the proof by proving Claim 9.

Proof of Claim 9. Let 𝑁 be the nonterminal from the statement of the lemma. If 𝑁 is not
productive, i.e., cannot derive any word, then all of its productions can be removed without any
effect on 𝐿(G). This is simply because 𝑁 cannot appear in any successful derivation. We will
therefore assume that 𝑁 is productive.
Consider the parse tree of any successful derivation from 𝑁 . We can find in this parse tree a

vertex labelled with 𝑁 such that none of its descendants is labelled with 𝑁 . The subtree 𝑇𝑁 rooted
at this vertex corresponds to a derivation that applies some production 𝑃 : 𝑁 → 𝜉 first and never
uses 𝑁 again.

By removing all other productions with left-hand side 𝑁 from G, we obtain a new grammar G′.
Let us show that 𝐿(G′) ≠ ∅. Indeed, let 𝑆 be the axiom of G. As 𝑆 is productive, 𝑢 ∈ 𝐿(G) for
some word 𝑢. Consider any parse tree 𝑇 of 𝑢 in G. If 𝑇 contains no occurrence of 𝑁 , then it is
already a valid parse tree with respect to G′, and we are done. Otherwise, for every node labelled
with 𝑁 in 𝑇 from which the shortest path to the root has no other occurrence of 𝑁 , we replace the
corresponding subtree by 𝑇𝑁 . This results in a valid parse tree with respect to G′, because 𝑇𝑁 has
one occurrence of 𝑁 only, namely at its root, where the production applied is 𝑃 . The new parse
tree is a derivation of some word in 𝐿(G′), which concludes the proof. □

We already mentioned a link to compressed words above. Our proof of Lemma 8 finds a context-
free grammar that generates exactly one word and, if brought to Chomsky normal form, has𝑂 (|𝑉 |2)

nonterminals. Importantly, while it is in general a PSPACE-complete problem to decide whether
such a compressed word is accepted by a pushdown automaton (see, e.g., the survey [Lohrey 2012,
section 9.4] and references therein), our grammar has special structure, leading to an efficient
verification algorithm.

3.2 Certificates for No-Instances: Inductive Invariants

Fix an instance of D2Reach. For ease of notation, we will assume that𝑉 = {1, . . . , |𝑉 |}. A certificate
for no-instances will be a separator, as defined next. Such a certificate is essentially an inductive
invariant, certifying non-reachability.

Let 𝐴(, 𝐴[, 𝐴), 𝐴] be four 0ś1 matrices of size |𝑉 | × |𝑉 | that are adjacency matrices for the graph
𝐺 restricted to sets of edges with labels (, [,),], respectively.

Let 𝐼 denote the |𝑉 | × |𝑉 | identity matrix. We write 𝐴 ≤ 𝐵 for matrices 𝐴 = (𝑎𝑖 𝑗) and 𝐵 = (𝑏𝑖 𝑗)

of the same size whenever 𝑎𝑖 𝑗 ≤ 𝑏𝑖 𝑗 for all 𝑖 , 𝑗 .

Definition 11. A separator for an instance of D2Reach is a 0ś1 matrix𝑀 of size |𝑉 | × |𝑉 | such

that the following five conditions are satisfied:

𝐼 ≤ 𝑀, 𝐴(·𝑀 · 𝐴) ≤ 𝑀,

𝑀 ·𝑀 ≤ 𝑀, 𝐴[·𝑀 · 𝐴] ≤ 𝑀, and𝑀𝑠,𝑡 = 0,
(2)

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 41. Publication date: January 2022.

41:10 Dmitry Chistikov, Rupak Majumdar, and Philipp Schepper

where addition and multiplication are Boolean, and 𝑠 and 𝑡 are the source and target vertex in the

instance of D2Reach.

Example 12. For the input graph in Fig. 1a, a separator for the pair (𝑒, 𝑏) is shown in Fig. 1c.
Denoting this matrix by𝑀 = (𝑚𝑖 𝑗), we easily see that 𝐼 ≤ 𝑀 ,𝑀 ·𝑀 ≤ 𝑀 , and𝑚52 = 0. Instead of
performing the other required multiplications, we observe that since both (-edges in the graph
depart from vertices 𝑎 and 𝑏, we can conclude that 𝐴(·𝑀 · 𝐴) ≤ 𝑀 . Likewise, both]-edges arrive
at vertices 𝑐 and 𝑑 , and hence 𝐴[·𝑀 · 𝐴] ≤ 𝑀 .

Lemma 13. The following statements hold:

• Every separator has bit size 𝑂 (|𝑉 |2).

• An instance of D2Reach is a no-instance if and only if there exists a separator for it.

• There is a deterministic algorithm that runs in time 𝑂 (|𝑉 |𝜔) and decides if a given matrix is a

separator for a given instance of D2Reach.

Proof. We split the proof into four parts, with the first assertion being an easy observation.

Completeness. First consider a no-instance of D2Reach. Take the matrix𝑀 = (𝑚𝑖 𝑗), where each
𝑚𝑖 𝑗 is 1 if there is a valid walk from vertex 𝑖 to vertex 𝑗 . It is clear that𝑚𝑠𝑡 = 0, because the instance
is a no-instance. We now show that the four matrix constraints in Equation (2) are satisfied:

• 𝐼 ≤ 𝑀 because for each vertex 𝑖 the empty walk from 𝑖 to 𝑖 is valid;
• 𝑀 ·𝑀 ≤ 𝑀 because the concatenation of two valid walks is a valid walk;
• 𝐴(·𝑀 ·𝐴) ≤ 𝑀 and 𝐴[·𝑀 ·𝐴] ≤ 𝑀 because every walk 𝑒 · 𝜋 · 𝑒 ′ is valid whenever 𝜋 is valid
and 𝑒 and 𝑒 ′ are labelled by a matching pair of parentheses, either (,) or [,].

This shows that there is a separator for each no-instance.

Remark 14. Our completeness proof gives a separator in which the (𝑖, 𝑗)-entry of 𝑀 is 1 iff
(𝐺, 𝜆, 𝑖, 𝑗) is a yes-instance of D2Reach. This fact will be significant in the sequel.

Soundness. In the converse direction, consider an arbitrary instance of D2Reach. We show that
for every valid walk 𝜋 from a vertex 𝑢 to a vertex 𝑣 in the graph, all separators must satisfy the
condition𝑚𝑢𝑣 = 1 where 𝑀 = (𝑚𝑖 𝑗). (It then follows that yes-instances have no separators.) We
use induction on the label of walk 𝜋 , which is simply the concatenation of individual edge labels:

• The base case is the empty label, 𝜀. The walk 𝜋 must then be the empty walk, from some
vertex 𝑢 to itself. We recall that 𝐼 ≤ 𝑀 for every separator; so indeed𝑚𝑖𝑖 must be set to 1 for
all vertices 𝑖 , and for the chosen vertex 𝑖 = 𝑢 in particular.

• If the walk 𝜋 is labelled by 𝛼 · 𝛽 , where both 𝛼 and 𝛽 are nonempty Dyck-2 words, then there
exists a vertex𝑤 such that 𝜋 = 𝜋 ′ · 𝜋 ′′ and 𝜋 ′ and 𝜋 ′′ are valid walks from 𝑢 to𝑤 and from
𝑤 to 𝑣 , respectively. By the inductive hypothesis,𝑚𝑢,𝑤 = 𝑚𝑤,𝑣 = 1. Since 𝑀 · 𝑀 ≤ 𝑀 , we
conclude that𝑚𝑢,𝑣 = 1 in this case as well.

• Finally, suppose the label of the walk 𝜋 is (𝛼), for some Dyck-2 word 𝛼 . (The case [𝛼] is
analogous.) Then 𝜋 = 𝑒 · 𝜋 ′ · 𝑓 , where 𝑒 and 𝑓 are individual edges, say from 𝑢 to 𝑢 ′ and
from 𝑣 ′ to 𝑣 (for some 𝑢 ′, 𝑣 ′ ∈ 𝑉), and 𝜋 ′ is a valid walk from 𝑢 ′ to 𝑣 ′. The edges 𝑒 = (𝑢,𝑢 ′)

and 𝑓 = (𝑣 ′, 𝑣) have labels (and), respectively. By the inductive hypothesis,𝑚𝑢′𝑣′ = 1. We
now recall that 𝐴(· 𝑀 · 𝐴) ≤ 𝑀 . On the left-hand side, the matrix product has a positive
entry in position 𝑢𝑣 , because

(
𝐴(

)
𝑢,𝑢′ =

(
𝐴)

)
𝑣′,𝑣 = 1 by the definition of 𝐴(and 𝐴). Therefore

𝑚𝑢𝑣 = 1.

This concludes the proof of the second assertion of the lemma.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 41. Publication date: January 2022.

Subcubic Certificates for CFL Reachability 41:11

Verification algorithm. The algorithm from the third assertion of the lemma verifies all conditions
in the definition of separator directly. This means, in particular, performing five Boolean matrix
multiplications (worst-case time 𝑂 (|𝑉 |𝜔), computing over the integers first), four inequalities
between matrices (worst-case time 𝑂 (|𝑉 |2)), and a single equality constraint on one of the entries
(constant time). □

The deterministic algorithm from Lemma 13 reduces the verification of separators to 5 Boolean
matrix multiplications. While this result has complexity-theoretic consequences (see Section 4
below), it may appear unsatisfactory, as many theoretical algorithms for fast matrix multiplication
are impractical. This leads to the idea of verification with a randomized, faster algorithm.

For a nonnegative integer matrix 𝑁 , denote by bool(𝑁) the matrix obtained from 𝑁 by replacing
every nonzero element by 1.

Definition 15. A composite separator for an instance of D2Reach is a sextuple of |𝑉 | × |𝑉 |

matrices, (𝑀𝑆 , 𝑀𝑆𝑆 , 𝑀(𝑆 , 𝑀[𝑆 , 𝑀(𝑆), 𝑀[𝑆]), where all entries belong to {0, 1, . . . , |𝑉 |2}, and moreover

all entries of𝑀𝑆 belong to {0, 1}, and such that the following ten conditions are satisfied:

𝐼 ≤ 𝑀𝑆 , 𝐴(·𝑀𝑆 = 𝑀(𝑆 , 𝐴[·𝑀𝑆 = 𝑀[𝑆 ,

𝑀𝑆 ·𝑀𝑆 = 𝑀𝑆𝑆 , 𝑀(𝑆 · 𝐴) = 𝑀(𝑆), 𝑀[𝑆 · 𝐴] = 𝑀[𝑆],

bool(𝑀𝑆𝑆) ≤ 𝑀𝑆 , bool(𝑀(𝑆)) ≤ 𝑀𝑆 , bool(𝑀[𝑆]) ≤ 𝑀𝑆 , and (𝑀𝑆)𝑠,𝑡 = 0,

(3)

where 𝑠 and 𝑡 are the source and target vertex in the instance of D2Reach.

We emphasize that addition and multiplication in Equation (3) are integer (unlike Equation (2)).

Lemma 16. The following statements hold:

• Every composite separator has 𝑂 (|𝑉 |2) entries and bit size 𝑂 (|𝑉 |2 log |𝑉 |).

• An instance of D2Reach is a no-instance if and only if there exists a composite separator for it.

• There is a deterministic algorithm that runs in time 𝑂 (|𝑉 |𝜔) and decides if a given sextuple of

|𝑉 | × |𝑉 | matrices is a composite separator for a given instance of D2Reach.

• There is a randomized algorithm that runs in time 𝑂 (|𝑉 |2) and decides if a given sextuple of

|𝑉 | × |𝑉 | matrices is a composite separator for a given instance of D2Reach. In the case it is, the

algorithm never errs; otherwise the algorithm flags an issue with probability ≥ 0.5.

Proof. The first three assertions are shown similarly to the proof of Lemma 13. For example,
in the completeness proof we choose 𝑀𝑆 as 𝑀 from Lemma 13 and show that picking the other
matrices𝑀𝑆𝑆 , 𝑀(𝑆 , 𝑀[𝑆 , 𝑀(𝑆), 𝑀[𝑆] so that all the five matrix equalities among the constraints (3)
are satisfied leads to the satisfaction of the remaining (four) inequality constraints.

Randomized verification algorithm. The algorithm from the final assertion of the lemma, instead
of computing matrix products, runs Freivalds’ algorithm for verifying them [Freivalds 1979].
Recall that Freivalds’ algorithm for verifying 𝐴 · 𝐵 = 𝐶 for some 𝑛 × 𝑛 matrices 𝐴, 𝐵, and 𝐶

proceeds by picking a 0ś1 vector 𝑢 ∈ {0, 1}𝑛 uniformly at random and checking if 𝐴 · (𝐵𝑢) = 𝐶𝑢.
The algorithm runs in 𝑂 (𝑛2) time and has error probability 1/2. The properties of the algorithm
are transferred directly to give a 𝑂 (|𝑉 |2) bound. Since we have five products in Equation (3) to
check, we reduce the error probability in an individual check to 1/16 by running it 4 times, so that
the overall error probability is at most 5/16 ≤ 1/2. □

Remark 17. Once again, there is nothing special about the Dyck-2 language in our certificate sys-
tems. One can readily see that the conditions we impose on (e.g., composite) separators correspond
to the following context-free grammar for the Dyck-2 language:

𝑆 → 𝑆𝑆 | 𝑃) | 𝑄] | 𝜀 𝑃 → (𝑆 𝑄 → [𝑆 .

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 41. Publication date: January 2022.

41:12 Dmitry Chistikov, Rupak Majumdar, and Philipp Schepper

Replacing this grammar with a different one, we obtain a certificate system (for no-instances) for
the CFL reachability problem where the fixed CFL is represented by any fixed CFG.

Remark 18. Could the speedup offered by Freivalds’ algorithm be matched by a deterministic pro-
cedure? In a model of computation with unit-cost integer arithmetic, integer matrix multiplication
can be verified in deterministic time𝑂 (𝑛2) [Kimbrel and Sinha 1993; Korec and Wiedermann 2014].
For RAM with 𝑂 (log𝑛)-bit arithmetic operations, derandomization of Freivalds’ algorithm is an
open problem even in the nondeterministic setting. However, if the number of errors in the product
is guaranteed to be 𝑂 (𝑛2−𝜀), then a deterministic 𝑂 (𝑛3−𝜀)-time algorithm is known [Künnemann
2018]. Over an appropriate class of algebraic structures, the verification of matrix products has been
linked with their computation by Vassilevska Williams and Williams [2018].

3.3 Certificates for All-Pairs CFL Reachability

An appropriate combination of certificates for the yes/no version of Dyck-2 reachability can be
used as a certificate for the all-pairs setting. The number of required yes-certificates (walk schemes)
can, however, be large. For a quadratic upper bound on the total size, an additional argument is
needed.

Definition 19. A combined witness for an instance (𝐺, 𝜆) of All-Pairs-D2Reach is a pair (W,S)

where:

• W is a walk scheme as in Definition 6, except no axiom is distinguished;

• S is a separator as in Definition 11;

• for all pairs (𝑠, 𝑡) ∈ 𝑉 2, if the (𝑠, 𝑡)-entry of𝑀 in the separator S is 1, then the walk schemeW

has a nonterminal
−→
𝑠𝑡 .

Example 20. For our running example from Fig. 1a, a combined witness is shown in Fig. 2.

Lemma 21. The following statements hold:

• Every combined witness has size 𝑂 (|𝑉 |2) and can be encoded with 𝑂 (|𝑉 |2 log |𝑉 |) bits.

• Every instance of All-Pairs-D2Reach has a combined witness.

• There is a deterministic algorithm that runs in time 𝑂 (|𝑉 |𝜔) and checks if its input is a valid

combined witness for a given instance of All-Pairs-D2Reach.

Proof. The first and last assertions are consequences of Lemmas 8 and 13. The proof of the
second assertion relies on the properties of certification schemes for yes- and no-instances of
D2Reach. Indeed, let us first invoke the completeness of no-certificates (Lemma 13). Given an
instance of All-Pairs-D2Reach, consider the set 𝑌 of all pairs (𝑠, 𝑡) such that (𝐺, 𝜆, 𝑠, 𝑡) is a yes-
instance of D2Reach. There is an appropriate separator W in which the (𝑠, 𝑡)-entry of 𝑀 is 1 iff
(𝑠, 𝑡) ∈ 𝑌 . This is by Remark 14 (page 10). A combination of walk schemes for all these yes-instances
could be used for certification; however, their number is only known to be bounded by |𝑉 |2, so we
need to find a single walk scheme that captures all relevant (𝑠, 𝑡).

We will apply the same argument as in the proof of Lemma 8: construct a grammar G and then
prune it accordingly. The only change is that, initially, we will introduce an auxiliary nonterminal
in the grammar, denoted 𝑋 . This nonterminal 𝑋 will be the axiom of the grammar, and it will have

a single production 𝑋 →
−−→
𝑠1𝑡1

−−→
𝑠2𝑡2 . . .

−−→
𝑠𝑘𝑡𝑘 where {(𝑠1, 𝑡1), (𝑠2, 𝑡2), . . . , (𝑠𝑘 , 𝑡𝑘)} = 𝑌 . This ensures that

all nonterminals on the right-hand side of this production are reachable; they are all productive for
the same reason as in Lemma 8. We transform the grammar in exactly the same way as previously,
observing that 𝑋 and its defining production will stay unchanged. In particular, all 𝑘 nonterminals
−→
𝑠𝑖𝑡𝑖 will be retained. As 𝑋 never occurs on the right-hand side of productions, the grammar will

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 41. Publication date: January 2022.

Subcubic Certificates for CFL Reachability 41:13

−→
𝑏𝑒 → (𝑏, 𝑎) ·

−→
𝑎𝑑 · (𝑑, 𝑒)

−→
𝑎𝑑 →

−→
𝑎𝑒 ·

−→
𝑒𝑑

−→
𝑒𝑑 → (𝑒, 𝑏) ·

−→
𝑏𝑐 · (𝑐, 𝑑)

−→
𝑏𝑐 → (𝑏, 𝑎) ·

−→
𝑎𝑒 · (𝑒, 𝑐)

−→
𝑎𝑐 →

−→
𝑎𝑒 ·

−→
𝑒𝑐

−→
𝑎𝑒 → (𝑎, 𝑏) ·

−→
𝑏𝑑 · (𝑑, 𝑒)

−→
𝑒𝑐 → (𝑒, 𝑏) ·

−→
𝑏𝑑 · (𝑑, 𝑐)

−→
𝑏𝑑 → (𝑏, 𝑐) ·

−→
𝑐𝑐 · (𝑐, 𝑑)

𝑀 =

©«

1 0 1 1 1

0 1 1 1 1

0 0 1 0 0
0 0 0 1 0
0 0 1 1 1

ª®®®®®¬

𝐴(·𝑀 ·𝐴) =

©«

0 1 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

ª®®®®®¬
·

©«

1 0 1 1 1

0 1 1 1 1

0 0 1 0 0
0 0 0 1 0
0 0 1 1 1

ª®®®®®¬
·

©«

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

0 0 1 0 0

ª®®®®®¬
=

©«

0 0 1 0 1

0 0 1 0 1

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

ª®®®®®¬
≤ 𝑀

𝐴[·𝑀 ·𝐴] =

©«

0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0

ª®®®®®¬
·

©«

1 0 1 1 1

0 1 1 1 1

0 0 1 0 0
0 0 0 1 0
0 0 1 1 1

ª®®®®®¬
·

©«

0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 0

ª®®®®®¬
=

©«

0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 1 1 0

ª®®®®®¬
≤ 𝑀

𝑀 ·𝑀 =

©«

1 0 1 1 1

0 1 1 1 1

0 0 1 0 0
0 0 0 1 0
0 0 1 1 1

ª®®®®®¬
·

©«

1 0 1 1 1

0 1 1 1 1

0 0 1 0 0
0 0 0 1 0
0 0 1 1 1

ª®®®®®¬
=

©«

1 0 1 1 1

0 1 1 1 1

0 0 1 0 0
0 0 0 1 0
0 0 1 1 1

ª®®®®®¬
≤ 𝑀

Fig. 2. Above: combined witness for the graph in Fig. 1a, consisting of walk scheme (shown without 𝜀-

productions, and with all other productions already sorted) and separator. Below: verification of matrix

inequalities (except 𝐼 ≤ 𝑀) for the separator.

again be acyclic. Thus, removing𝑋 at the end of the process will lead to an axiom-less walk scheme;
and all the conditions of Definition 19 will be satisfied. □

Theorem 5 follows from Lemma 21.
Replacing separators with composite separators (Definition 15) in our construction of combined

certificates (Definition 19) enables a randomized checker that runs in time 𝑂 (|𝑉 |2), based on
Lemma 16. The checker never errs on correct certificates and rejects any incorrect one with
probability ≥ 0.5.

4 COMPLEXITY IMPLICATIONS

Fine-grained complexity research shows that even small improvements in (the exponent of) the
running time of many algorithmic problems, such as orthogonal vectors or edit distance, would auto-
matically give faster algorithms for Boolean satisfiability (SAT) [Vassilevska Williams 2018]. Would
improvements over Chaudhuri’s 𝑂 (𝑛3/log𝑛)-time algorithm for D2Reach also have consequences
for SAT? Here we show that subcubic certificates give an answer to this question.

Complexity-theoretic summary of Section 3. Leaving out sharper bounds on certificate size and
polylog(𝑛) factors (required in the Turing model), Lemmas 8 and 16 imply:

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 41. Publication date: January 2022.

41:14 Dmitry Chistikov, Rupak Majumdar, and Philipp Schepper

Theorem 22. D2Reach ∈ NTIME(𝑛2) ∩ co-NTIME(𝑛𝜔) ∩ co-MATIME1 (𝑛
2).

For this summary, we recall that a language 𝐿 ∈ NTIME(𝑡) iff there is a nondeterministic
Turing machine 𝑀 that runs in time 𝑂 (𝑡 (|𝑥 |)) for input 𝑥 and accepts 𝐿 and 𝐿 ∈ co-NTIME(𝑡)

iff its complement is in NTIME(𝑡). Also, (cf. [Tell 2019]) 𝐿 ∈ MATIME1 (𝑡) (Merlin-Arthur time,
introduced by Babai [1985]) iff there exists a deterministic machine𝑀 that takes inputs 𝑥,𝑦, 𝑧 where
|𝑦 | = |𝑧 | = 𝑂 (𝑡 (|𝑥 |)), runs in time 𝑂 (𝑡 (|𝑥 |)), and such that for every 𝑥 ,

𝑥 ∈ 𝐿 ⇒ ∃𝑦. Pr
𝑧
[𝑀 (𝑥,𝑦, 𝑧) accepts] = 1, 𝑥 ∉ 𝐿 ⇒ ∀𝑦. Pr

𝑧
[𝑀 (𝑥,𝑦, 𝑧) accepts] ≤ 1/2,

where the probability is with respect to the uniform distribution of 𝑧 in {0, 1}𝑡 (|𝑥 |) . Finally,
co-MATIME1 (𝑡) is the class of complements of languages in MATIME1 (𝑡).
In a nutshell, Merlin can perform arbitrary computation (think nondeterministic guessing)

but Arthur does not trust him and verifies the results in order to be convinced of their validity.
Importantly, the certification itself involves no chance taking (i.e., the certificate system is sound
and complete), and it is only the verification procedure that may rely on statistical evidence to
convince Arthur.
Theorem 22 is a restatement of Theorem 3. Membership in NTIME(𝑛2) follows because the

nondeterministic machine guesses a𝑂 (𝑛2) certificate for a yes-instance and checks it in𝑂 (𝑛2) time.
Membership in co-NTIME(𝑛𝜔) follows because a nondeterministic machine for the complement
of D2Reach guesses a 𝑂 (𝑛2) certificate for a no-instance and verifies it in 𝑂 (𝑛𝜔) time. Finally,
membership in co-MATIME1 (𝑛

2) follows because Merlin provides a 𝑂 (𝑛2) certificate for a no-
instance and Arthur verifies the certificate using a randomized 𝑂 (𝑛2) algorithm. (In the above, we
ignore polylogarithmic factors.)

Fine-grained complexity of D2Reach. In fine-grained complexity, perhaps the most influential
hypothesis, and the ultimate source of many lower bounds, is the strong exponential-time hypothesis

(SETH) [Impagliazzo and Paturi 2001], stating (roughly) that there is no algorithm for SAT (or,
equivalently, for TAUT) better than exhaustive enumeration. The nondeterministic strong exponential-

time hypothesis (NSETH) [Carmosino et al. 2016] extends it further.

Hypothesis 23 (SETH). For every 𝜀 > 0, there exists a 𝑘 so that 𝑘-SAT is not in DTIME[2𝑛 (1−𝜀)],
where 𝑘-SAT is the language of all satisfiable Boolean formulas in 𝑘-CNF.

Hypothesis 24 (NSETH). For every 𝜀 > 0, there exists a 𝑘 so that 𝑘-TAUT is not inNTIME[2𝑛 (1−𝜀)],
where 𝑘-TAUT is the language of all Boolean tautologies in 𝑘-DNF.

In both hypotheses, 𝑛 is the number of variables. It is unknown whether SETH and NSETH are
true. NSETH implies SETH, and SETH implies P ≠ NP. Carmosino, Gao, Impagliazzo, Mihajlin,
Paturi, and Schneider [2016] explore consequences of NSETH and show that both proving and
refuting it would lead to interesting consequences. In particular, NSETH implies the absence of
fine-grained reductions from SAT to a number of problems and ¬NSETH implies circuit lower
bounds.

Intuitively, a fine-grained reduction from (𝐿, 𝑡 (𝑛)) to (D2Reach, 𝑛
𝑐) means that, for every 𝜀 > 0,

an 𝑂 (𝑛𝑐−𝜀)-time algorithm for D2Reach implies a 𝑂 (𝑡 (𝑛)1−𝛿) algorithm for problem 𝐿 for some
𝛿 = 𝛿 (𝜀) > 0. This is not unlike usual Turing reductions (allowing multiple queries), tracking the
precise exponents in the running time bounds.
We show that, because of our subcubic certificate systems (Section 3), there exists no fine-

grained reduction from SAT (as well as from any SETH-hard problem) to D2Reach that would imply
hardness beyond 𝑛𝜔 , unless NSETH fails. Since disproving NSETH would mean breakthroughs in
proof complexity as well as in circuit complexity, a fine-grained reduction from SAT to D2Reach, if
one exists, will be difficult to find.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 41. Publication date: January 2022.

Subcubic Certificates for CFL Reachability 41:15

We first state the result informally and provide the intuition behind the proof. Then we provide
the formal details.

Theorem 25 (Informal Version). Unless NSETH fails, there is no fine-grained reduction from

(SAT, 2𝑛) to (D2Reach, 𝑛
𝜔+𝛾) for any 𝛾 > 0.

Intuition of the proof. This sketch expands the idea of Carmosino et al. [2016]. We will argue
that if there is a reduction from SAT that gives a conditional lower bound for D2Reach stronger
than 𝑛𝜔 , say 𝑛𝛼 for 𝛼 > 𝜔 , then there is a nondeterministic algorithm for TAUT that runs in time
𝑂 (2𝑛 (1−𝜀)) on an input CNF with 𝑛 variables.

The idea of the proof is to combine the hypothetical reduction with a fast guess-and-check
procedure for D2Reach. A fine-grained reduction can be thought of as a computer program that
makes one or more łblack-boxž calls to D2Reach. In the case at hand, this program implements
a deterministic algorithm for SAT. Given an instance of TAUT, we negate the input and run the
algorithm for SAT. We will run a slightly modified program, as follows:

• Firstly, instead of running standard deterministic algorithms for D2Reach for each call to
D2Reach in the reduction, we will substitute a nondeterministic guess-and-check procedure.
This procedure relies on nondeterminism and subcubic certification systems for D2Reach

(Theorem 3). It guesses if the current instance is a positive or a negative instance, and a
corresponding certificate (a walk scheme or separator). It then runs a subcubic verification
algorithm, confirming that the instance is a yes- or no-instance, respectively. Accordingly,
it then returns true or false. The upshot is that the answer to every call to D2Reach can be
certified with a short (subcubic) witness.

• Secondly, whenever the original reduction returns a (Boolean) answer, this answer is flipped:
instead of łtruež we return łfalsež, and instead of łfalsež we return łtruež. This is because we
want to supply an answer to the TAUT input.

Since some of the calls to D2Reach have positive answers and some negative answers, we require
both certification schemes for this algorithm to work.
In computational complexity terms, this composition of the two programs gives us a nondeter-

ministic algorithm that solves TAUT. One can think of this as follows: given a SAT/TAUT instance,
consider the execution of the program as described above. The protocol of this execution, containing
certificates for each call to D2Reach, can be used to certify that the given SAT/TAUT instance has
whichever answer it does. This is due to the correctness of the original reduction and the properties
of the certification schemes (Section 3).
But we can now recall that, for the original reduction, the running times must łcompose wellž:

that is, if we substitute any 𝑂 (𝑛𝛼−𝜀)-time algorithm for D2Reach, then the reduction will yield an
𝑂 (2𝑛 (1−𝛿))-time algorithm for SAT, for some 𝛿 = 𝛿 (𝜀) > 0. (Notice the 𝛼 in the first exponent; this
parameter comes with the reduction, which gives a conditional lower bound of 𝑛𝛼 .) We effectively
substituted nondeterministic and co-nondeterministic algorithms for D2Reach, both running in
matrix multiplication time. Since 𝛼 > 𝜔 where 𝜔 is the matrix multiplication exponent, we can take
any 𝜀 ∈ (0;𝛼 − 𝜔). Instead of running time, let us now look at the length of the entire execution
protocol: this should give us the bound 𝑂 (2𝑛 (1−𝛿)) with the same 𝛿 = 𝛿 (𝜀). As argued above,
this protocol witnesses the answer to the given SAT/TAUT instance. In other words, we have a
nondeterministic algorithm for TAUT with this running time, breaking NSETH.

Fine-grained reductions and proof of Theorem 25: formal details. To formally state Theorem 25,
we need the following definitions (see [Carmosino et al. 2016; Vassilevska Williams 2018]). Let
𝐿1 and 𝐿2 be languages, and let 𝑇1 and 𝑇2 be time bounds, i.e., functions N → N. We interpret
pairs (𝐿𝑖 ,𝑇𝑖) as problems with their conjectured (or presumed) complexities. We say that (𝐿1,𝑇1)

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 41. Publication date: January 2022.

41:16 Dmitry Chistikov, Rupak Majumdar, and Philipp Schepper

fine-grained reduces to (𝐿2,𝑇2), written (𝐿1,𝑇1) ≤FGR (𝐿2,𝑇2), if (a) for all 𝜀 > 0, there is 𝛿 > 0 and a
deterministic Turing reduction𝑀𝐿2 from 𝐿1 to 𝐿2 such that the running time of𝑀 is at most 𝑇 1−𝛿

1
and such that (b) if 𝑄 (𝑀,𝑥) denotes the set of queries made by𝑀 to the 𝐿2 oracle on an input 𝑥 of
length 𝑛, then the query lengths obey the time bound∑︁

𝑞∈𝑄 (𝑀,𝑥)

(𝑇2 (|𝑞 |))
1−𝜀 ≤ (𝑇1 (𝑛))

1−𝛿 .

Intuitively, a fine-grained reduction from (𝐿1,𝑇1) to (𝐿2,𝑇2) enables algorithmic savings for 𝐿2 to
be transferred to 𝐿1. That is, if 𝐿2 can be solved in time 𝑇 1−𝜀

2 , then 𝐿1 can be solved in time 𝑇 1−𝛿
1 . A

language 𝐿 with time complexity 𝑇 is SETH-hard if (SAT, 2𝑛) ≤FGR (𝐿,𝑇).

Theorem 26 ([Carmosino et al. 2016, Theorem 2 and Corollary 2]). Suppose NSETH holds

and a problem 𝐿 belongs to NTIME[𝑇] ∩ co-NTIME[𝑇]. Then (SAT, 2𝑛) ≰FGR (𝐿,𝑇 1+𝛾) for any 𝛾 > 0.
Also, for any 𝐿′ that is SETH-hard with time 𝑇 ′, and any 𝛾 > 0, we have (𝐿′,𝑇 ′) ≰FGR (𝐿,𝑇 1+𝛾).

We are now ready to formulate Theorem 25 rigorously.

Theorem 27 (Theorem 25 restated). Unless NSETH fails, (SAT, 2𝑛) ≰FGR (D2Reach, 𝑛
𝜔+𝛾) for

any 𝛾 > 0.

It remains to observe that Theorem 25 follows from Theorem 3 and 26.

5 CERTIFICATES FOR PUSHDOWN NON-REACHABILITY

While CFL reachability is a central problem in program analysis, an analogous problem in model
checking is pushdown reachability [Bouajjani et al. 2000, 1997; Finkel et al. 1997; Schwoon 2002],
formalized as follows.

We are given a pushdown automaton (PDA) P = (𝑄, Γ,Δ), where 𝑄 is a finite set of states, Γ is a
finite alphabet of stack symbols, and Δ ⊆ (𝑄 × Γ) × (𝑄 × Γ

≤2) is a set of transitions, and an initial
configuration (𝑞0, 𝛾0) ∈ 𝑄 × Γ. We are additionally given a regular set of configurations 𝑅 specified
by a P-automaton: this is a usual, 𝜀-free nondeterministic finite automaton (NFA) over the alphabet
Γ in which the set of control states is 𝑆 ⊇ 𝑄 and the transition relation is 𝛿 ⊆ 𝑆 × Γ × 𝑆 . A set of
final states, 𝐹 ⊆ 𝑆 , is usually taken to be disjoint from 𝑄 . Such a P-automaton is said to accept a
configuration (𝑞,𝑤) ∈ 𝑄 × Γ

∗ of the PDA P iff there is a walk from control state 𝑞 to some 𝑞 ∈ 𝐹

labelled by the word𝑤 ; in other words, if𝑤 is accepted by this NFA when started from 𝑞 as initial
state. We ask if the PDA P has a run from (𝑞0, 𝛾0) to some configuration from 𝑅.

We adapt our certificate system to pushdown reachability. For yes-certificates of size 𝑂 (|Γ | |𝑆 |2),
we can convert the PDA to an equivalent CFG using the standard triplet construction (see,
e.g., [Hopcroft et al. 2006, Chapter 6]) on the łsumž of P and the P-automaton and repeat the second
half of the completeness argument from Subsection 3.1. Explicitly, a certificate is a łsub-grammarž
of this CFG that is a straight-line program.
We now show how to certify that a given initial configuration cannot reach any configuration

from a given regular set 𝑅. The classic saturation algorithm for computing Pre∗ (𝑅), the set of
(reflexive, transitive) predecessors of configurations in 𝑅, takes a P-automaton A as input and
iteratively adds transitions to it by the following rule:

P has transition (𝑝,𝐴) → (𝑞,𝑤), A has walk 𝑞
𝑤
−→ 𝑠 ⇒ add transition 𝑝

𝐴
−→ 𝑠 to A. (4)

By the following claim, saturation under (4) implies overapproximation of Pre∗ (𝑅). The converse
inclusion is more subtle and will not be required.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 41. Publication date: January 2022.

Subcubic Certificates for CFL Reachability 41:17

Claim 28 (see, e.g., [Carayol and Hague 2014, Section 3.2]). A P-automaton A accepts all

configurations from Pre∗ (𝑅) if (i) it contains all transitions of the original P-automaton and (ii) it is

saturated, i.e., applying rule (4) does not change the transition relation.

Our certificate system for non-reachability relies on the observation that the update rule (4)
can be expressed using matrix multiplication. A certificate is a finite family of matrices,𝑀𝐴,𝑀𝐴,𝐵 ,
𝑀𝐴,𝐵,𝐶

1 ,𝑀𝐴,𝐵,𝐶
2 , for all 𝐴, 𝐵,𝐶 ∈ Γ, satisfying the following conditions:

𝑃𝐴 ≤ 𝑀𝐴, (𝑀𝛾0)𝑞0,𝑓 = 0 for all 𝑓 ∈ 𝐹 ,

𝑇𝐴,𝜀 ≤ 𝑀𝐴,

bool(𝑀𝐴,𝐵) ≤ 𝑀𝐴, 𝑀𝐴,𝐵
= 𝑇𝐴,𝐵 ·𝑀𝐵,

bool(𝑀𝐴,𝐵,𝐶
2) ≤ 𝑀𝐴, 𝑀𝐴,𝐵,𝐶

1 = 𝑇𝐴,𝐵𝐶 ·𝑀𝐵, 𝑀𝐴,𝐵,𝐶
2 = 𝑀𝐴,𝐵,𝐶

1 ·𝑀𝐶 ,

(5)

where we assume with no loss of generality that 𝑆 = {1, . . . , |𝑆 |} and denote by 𝑃𝐴 the 𝐴-transition

matrix of the original P-automaton and, for all 𝐴 ∈ Γ,𝑤 ∈ Γ
≤2, by 𝑇𝐴,𝑤

= (𝑡
(𝐴,𝑤)
𝑖 𝑗) the 0ś1 matrix

of size |𝑆 | × |𝑆 | in which 𝑡
(𝐴,𝑤)
𝑖 𝑗 = 1 if 𝑖, 𝑗 ∈ 𝑄 and P contains a transition (𝑖, 𝐴) → (𝑗,𝑤). The

following proposition summarises the properties of this system:

Proposition 29.

• Certificates have 𝑂 (|Γ |3 |𝑆 |2) entries.

• An instance of PDA emptiness is a no-instance iff there exists a certificate for it.

• The conditions can be verified by a deterministic algorithm with running time 𝑂 (|Γ |3 |𝑆 |𝜔)

or a randomized algorithm with running time 𝑂 (|Γ |3 |𝑆 |2) that accepts valid certificates with

probability one and rejects invalid ones with probability ≥ 0.5.

Proof. Let A be a P-automaton (saturated or not). For each 𝐴 ∈ Γ, let𝑀𝐴
= (𝑚𝑖 𝑗) denote the

𝐴-transition matrix of A, that is, the 0ś1 matrix of size |𝑆 | × |𝑆 | in which𝑚𝑖 𝑗 = 1 if A contains

a transition 𝑖
𝐴
−→ 𝑗 and𝑚𝑖 𝑗 = 0 otherwise. Then rule (4) can be decomposed into the following

updates, for all 𝐴, 𝐵,𝐶 ∈ Γ:

𝑀𝐴 := bool(𝑀𝐴 +𝑇𝐴,𝜀),

𝑀𝐴 := bool(𝑀𝐴 +𝑇𝐴,𝐵 ·𝑀𝐵),

𝑀𝐴 := bool(𝑀𝐴 +𝑇𝐴,𝐵𝐶 ·𝑀𝐵 ·𝑀𝐶).

The composition of certificates (5) and the verification algorithms follow as in Subsection 3.2. □

Matrix constraints of Equation (5) define a backwards invariant for the pushdown system P in
question, an overapproximation of the set of configurations from which 𝑅 is reachable.

Corollary 30. PDA emptiness has subcubic certificates if |Γ | = 𝑂 (|𝑆 |𝛽) for 𝛽 < 1 − 𝜔/3, where 𝜔
is the matrix multiplication exponent.

6 DISCUSSION: FINE-GRAINED LANDSCAPE AND A HARDEST D2Reach INSTANCE

6.1 2NPDA Completeness

In interprocedural program analysis, the lack of algorithms with running time 𝑂 (𝑛3−𝜀) is referred
to as łthe cubic bottleneckž. Heintze and McAllester [1997] captured this phenomenon by the class
of ł2NPDA-completež problems. Here ł2NPDAž stands for two-way nondeterministic pushdown

automata, a model of computation that extends standard PDA with the ability to move back and
forth on the (read-only) input tape [Aho et al. 1968]. A problem is 2NPDA-complete (following

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 41. Publication date: January 2022.

41:18 Dmitry Chistikov, Rupak Majumdar, and Philipp Schepper

Neal [1989]) if it is subcubic equivalent to 2NPDA recognition: given a word, does it belong to the
language of a fixed 2NPDA. Heintze and McAllester show a number of 2NPDA-complete problems,
including ground monadic rewriting reachability (see also [Neal 1989]), data flow reachability,
control flow reachability, and certain (non-)typability problems. Melski and Reps [2000] show a
reduction from CFL reachability to data flow reachability and set constraints (and thus to 2NPDA
recognition) and a reverse reduction from data flow reachability to an instance of CFL reachability
where the language is not fixed.

The following result appears to be folklore but is not found in the literature, strengthening the
reduction of Melski and Reps to show hardness of CFL reachability for the fixed Dyck-2 language.
The equivalence between problems (1) and (2) is sketched by Chaudhuri [2008]. While we state the
result for PDA emptiness, one can equivalently (or additionally) state it for pushdown reachability.
We defer technical details to Section 7.

Proposition 31. The following problems either all have truly subcubic algorithms, or none of them

do: (1) 2NPDA language recognition, (2) PDA language emptiness, and (3) D2Reach.

Proof (sketch). We show three reductions:

• In 2NPDA recognition to PDA emptiness, each control state of the PDA remembers the
position of the 2NPDA on the input tape and the control state of the 2NPDA. The size of PDA
is linear in the length of the input word, because the 2NPDA is fixed.

• In PDA emptiness to D2Reach, the graph mimics the transition diagram of the PDA. Stack
symbols from Γ are encoded by sequences of opening parentheses of two kinds of length
⌈log |Γ |⌉. Push transitions are modelled by sequences of edges with these labels, and pop
transitions by sequences with matching closing parentheses. The reduction is linear-time,
because the bit size of the PDA accounts for the log |Γ | factor.

• In the last reduction, we give a fixed 2NPDA that solves D2Reach. The 2NPDA guesses a path
through the graph, maintaining at the bottom of the stack a sequence 𝜎 ∈ {(, [}∗, and the
current vertex at the top of the stack. The length of the input word is proportional to the bit
size of the graph (adjacency lists). □

As a corollary, all of these problems have subcubic certificate schemes, and an analogue of
Theorem 3 holds for them too (worked out for PDA emptiness in Section 5). Theorem 25 on the
absence of SETH-hardness also extends to PDA emptiness and 2NPDA recognition.
For upper bounds, note that 2NPDA recognition is solvable in time 𝑂 (|𝑤 |3/log |𝑤 |) [Rytter

1985], and language emptiness for PDA in time 𝑂 (𝑛3/log𝑛). Language emptiness is undecidable
for 2NPDA, even when the automata are deterministic and use a counter instead of a pushdown.
(This observation makes the cubic recognition algorithm somewhat surprising in comparison.)

The PDA emptiness to Dyck-2 reachability reduction from Proposition 31, combined with
Chaudhuri’s algorithm for CFL reachability [Chaudhuri 2008], implies a slightly subcubic bound
for PDA emptiness. Indeed, Chaudhuri shows how to solve instances of CFL reachability for a fixed
language (including the Dyck-2 language) in time 𝑂 (𝑛3/log𝑛), where 𝑛 is the number of nodes in
the graph. Suppose we start with a PDA emptiness instance with 𝑠 states, 𝑡 transitions, and 𝑟 stack
symbols. Note that we can safely ignore the input alphabet symbols. The bit size of the instance is
𝑏 = 𝑂 (𝑡 log(𝑠 + 𝑟)). The reduction from Lemma 36 gives an instance of Dyck-2 reachability with
𝑂 (𝑏) nodes. Chaudhuri solves it in time 𝑂 (𝑏3/log𝑏), which is subcubic in the bit size of the input
of PDA emptiness (although not necessarily subcubic in 𝑠 + 𝑡). This complexity seems folklore
but was never made explicit. In particular, łtextbookž algorithms for PDA emptiness go through
equivalent context-free grammars [Hopcroft et al. 2006], for which a cubic blow-up is unavoidable
in the worst case [Goldstine et al. 1982].

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 41. Publication date: January 2022.

Subcubic Certificates for CFL Reachability 41:19

6.2 A Hardest 2NPDA Language

We observe that the hardness of 2NPDA recognition is witnessed by a single łhardestž 2NPDA
language: recognition for an arbitrary 2NPDA can be reduced to a single 2NPDA. Suppose some
2NPDA A over Σ is given and the input to 2NPDA recognition for A is a word 𝑤 . Applying
our cycle of reductions from Proposition 31 (to PDA emptiness, then to Dyck-2 reachability, and
then back to 2NPDA recognition), we get another word 𝑢 = 𝑢 (A,𝑤) and a 2NPDA B = B(A,𝑤)

such that B accepts 𝑢 iff A accepts 𝑤 . But B in fact doesn’t depend on A or 𝑤 , because it is a
fixed 2NPDA for D2Reach. One refers to such languages as hardest 2NPDA languages, because
the recognition problem for 𝐿(B) cannot be easier than the recognition problem for any 2NPDA
language 𝐿. The following theorem states this result in language-theoretic terms. (Recall that a
homomorphism is a mapping, say ℎ : Σ∗ → Σ

∗
0, such that ℎ(𝑢𝑣) = ℎ(𝑢)ℎ(𝑣) for all 𝑢, 𝑣 ∈ Σ

∗.)

Theorem 32. There exists a 2NPDA A0 over an input alphabet Σ0 with the following property: for

every 2NPDA A over every finite Σ there is a homomorphism ℎ : Σ∗ → Σ
∗
0 such that, for all𝑤 ∈ Σ

+,

𝑤 ∈ 𝐿(A) if and only if ℎ(𝑤) ∈ 𝐿(A0).

Essentially, B = A0. Working out the details shows that the mapping 𝑢 (A, ·) can be made a
homomorphism for every A. This requires an appropriate encoding for inputs to A0. Technical
details are provided in Section 8; we only sketch the intuition here.

Remark 33. Rytter [1981] showed there is a fixed hardest 2NPDA language 𝐿0,2 based on the
classic hardest context-free language by Greibach [1973]. Theorem 32 identifies a different hardest
2NPDA language. In contrast with Rytter’s proof, our construction is self-contained and does not
depend on Greibach’s hardest CFL. Instead, our new hardest 2NPDA language is an encoding of a
restricted version of Dyck-2 Reachability.

We now describe the hardest language 𝐿(A0). The alphabet is Σ0 = {(,), [,], #, 1,−, ∗}. The
language contains only words of the form

ℓ1𝑜1 ∗ . . . ∗ ℓ𝑞𝑜𝑞︸ ︷︷ ︸
block

ℓ𝑞+1𝑜𝑞+1 ∗ . . . ∗ ℓ𝑟𝑜𝑟︸ ︷︷ ︸
block

. . . # . . . ∗ ℓ𝑚𝑜𝑚︸ ︷︷ ︸
block

(6)

and the membership of such words in the language is determined as follows. Consider a directed
graph 𝐺 = (𝑉 , 𝐸) with 𝑉 = {1, . . . , 𝑛} where 𝑛 is the number of blocks separated by the vertex
marker #. An edge 𝑒 = (𝑖, 𝑗) belongs to 𝐸 if and only if the 𝑖th block has a subword ℓ𝑝𝑜𝑝 with
ℓ𝑝 ∈ {(,), [,]}, 𝑜𝑝 = 1𝑘 or 𝑜𝑝 = −1𝑘 where 𝑗 = 𝑖 + 𝑘 (or 𝑗 = 𝑖 − 𝑘 , respectively) and this subword
is preceded and followed by symbols from {#, ∗} or tape endmarker. The edge label is in this
case 𝜆(𝑒) = ℓ𝑖 . (If for some 𝑖 and 𝑘 the index 𝑗 is łoff the tapež, the tape endmarker counts as one
virtual vertex and then the counting reverses the direction, łreflectingž off the endmarker.) The
word belongs to 𝐿(A0) if and only if (𝐺, 𝜆, 1, 𝑛) is a yes-instance of D2Reach, i.e., if 𝐺 contains a
walk from 1 to 𝑛 labelled by a word from the Dyck-2 language.

To sum up, this restricted version of 2NPDA recognition is the łhard corež of the problem: by
Theorems 32 and 31, in order to find subcubic algorithms forD2Reach, it suffices to handle instances
obtained from it (exploiting any structural properties). PDA emptiness and D2Reach are already
hard for sparse graphs: a truly subcubic algorithm for either problem restricted to graphs with a
linear number of edges would already result in a breakthrough algorithm for 2NPDA recognition.

2Actually, Rytter only proves that, for all 𝑤 ∈ Σ
+, one has 𝑤 ∈ 𝐿 iff ℎ (𝑤$) ∈ 𝐿0.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 41. Publication date: January 2022.

41:20 Dmitry Chistikov, Rupak Majumdar, and Philipp Schepper

7 APPENDIX I: PROOF OF PROPOSITION 31

Preliminary Definitions. Two-way nondeterministic pushdown automata (2NPDA) [Gray, Harrison,
and Ibarra 1967] are a powerful formalism introduced in the 1960s. 2NPDA have the form A =

(𝑄, Σ, Γ, 𝛿, 𝑞0, 𝐹), where 𝑄 is a finite set of states, Σ are Γ are finite alphabets of input and stack
symbols, respectively, 𝑞0 ∈ 𝑄 is the initial state, 𝐹 ⊆ 𝑄 is the set of final states, and a transition
relation 𝛿 ⊆ 𝑄 × Σ × Γ ×𝑄 × Γ

∗ × {−1, 0, +1}. We assume Σ contains two designated łend of tapež
symbols ◁ and ▷. We assume that Γ contains a designated łend of stackž symbol 𝑍0 such that any
transition (𝑞, 𝜎, 𝑍0, 𝑞

′,𝑤, 𝑑) ∈ 𝛿 satisfies𝑤 = 𝑍0. Thus, no transition of A replaces 𝑍0 on the stack
with a different symbol; also, no transition pushes 𝑍0.

Informally, the 2NPDA A has a finite control (states from 𝑄) which reads a symbol of Σ on its
input tape and the top symbol in Γ of a pushdown store. Based on the transition relation 𝛿 , 2NPDA
moves by changing the control state, replacing the top symbol of the pushdown store by a finite
string of symbols (possibly the empty string), and moving its input head at most one symbol left
or right. Initially, the 2NPDA is in state 𝑞0, and its pushdown store consists of the single symbol
𝑍0. The input tape consists of a word𝑤 ∈ (Σ \ {◁,▷})∗ surrounded by a left marker ◁ and a right
marker ▷ and the 2NDPA scans the left marker ◁.

Remark 34. We include the endmarkers ◁ and ▷ in the set Σ here, even though we did not
mention them back in Section 6 when specifying the alphabet Σ0 for our hardest 2NPDA language.
Naturally, all symbols used by automata (including the endmarkers) should be included in the tape
alphabet of these automata.

A configuration of the 2NPDA A is a triple (𝑞,𝑤𝑎𝑥,𝛾), where 𝑞 ∈ 𝑄 , 𝑤, 𝑥 ∈ Σ
∗, 𝑎 ∈ Σ,

and 𝛾 ∈ Γ
+. The łhatž on 𝑎 denotes that the machine is currently scanning the letter 𝑎. We

write (𝑞1, 𝑎1 . . . 𝑎𝑖 . . . 𝑎𝑛, 𝑍𝛾) → (𝑞2, 𝑎1 . . . 𝑎 𝑗 . . . 𝑎𝑛, 𝛾
′𝛾) whenever (𝑞1, 𝑎𝑖 , 𝑍, 𝑞2, 𝛾

′, 𝑑) ∈ 𝛿 for
𝑑 ∈ {−1, 0, +1}, and 𝑗 = 𝑖 + 𝑑 . We require 𝑗 ∈ {1, . . . , 𝑛}, that is, the scan position does not
łfall offž the input word. Note that the input tape is not changed, only the scan position may change.
We write→∗ for the reflexive and transitive closure of→. A word𝑤 ∈ (Σ \ {◁,▷})∗ is accepted by
the 2NPDA if (𝑞0, ◁̂𝑤▷, 𝑍0) →

∗ (𝑞,◁𝑤 ▷̂, 𝑍0) for some 𝑞 ∈ 𝐹 . The language 𝐿(A) of A is the set of
all accepted words (in (Σ \ {◁,▷})∗).
Informally, the 2NPDA has some run that leads it from the initial configuration with the word

on the input tape to a final state. Without loss of generality, we can assume above that a word is
accepted in a final state with the 2NPDA scanning the right endmarker and the pushdown store only
contains 𝑍0. The transition relation is nondeterministic; we only require that some run is accepting.
For the reader familiar with one-way automata, we remark that the role of epsilon-transitions is
played by explicit specification of head movements.

A 1NPDA, or just PDA for short, is a 2NPDA such that 𝛿 ⊆ 𝑄×Σ×Γ×𝑄×Γ
∗×{0, +1}. Informally,

the transitions of a PDA do not allow the scan position to move left, so PDA can only move left
to right. PDA accept exactly the context-free languages. In comparison, 2NPDA are surprisingly
powerful devices. In fact, even their deterministic counterparts (introduced by Stearns et al. [1965])
can recognize languages such as {𝑎𝑛𝑏𝑝 (𝑛) | 𝑛 ≥ 0} where 𝑝 is a fixed polynomial with natural
coefficients and {𝑥#𝑦 | 𝑥 is a subword (factor) of 𝑦} [Galil 1977; Rytter 1987].

We consider the following decision problems for these machine classes. The recognition problem
for a class of machines C asks, for a fixed machine 𝑀 ∈ C and an input word 𝑤 ∈ Σ

∗, if 𝑤 is
accepted by𝑀 , i.e., if𝑤 ∈ 𝐿(𝑀). The emptiness problem for class C asks, given a machine𝑀 ∈ C,
if 𝐿(𝑀) = ∅. Everywhere below, |𝑀 | denotes the bit size of𝑀’s description.
Proposition 31 follows from Lemmas 35, 36, and 37, which we prove next.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 41. Publication date: January 2022.

Subcubic Certificates for CFL Reachability 41:21

Lemma 35. There exists a linear-time algorithm that, given a 2NPDA B and a word𝑤 , outputs a

PDA P such that:

• |P| ≤ 𝑂 (|𝑤 |) for any fixed B and

• the language of P is nonempty iff B accepts𝑤 .

Remark. In fact, |P | ≤ 𝑂 (|B| · |𝑤 |).

Proof. Denote 𝑛 = |𝑤 | and let 𝑆 be the set of control states of B. Construct a PDA P with the
set of control states 𝑄 = {0, 1, . . . , 𝑛 + 1} × 𝑆 . The first component of the states of P corresponds
to a possible position of the input head of the 2NPDA B run on𝑤 . Indeed, when B is run on the
word𝑤 , its head has 𝑛 + 2 possible positions: over any of the 𝑛 letters of𝑤 , over the left endmarker,
and over the right endmarker.
PDA P has the initial state (0, 𝑠0), where 𝑠0 is the initial state of B. Transitions of the (nonde-

terministic) PDA P are defined so that P would simulate the (nondeterministic) computation of
B on 𝑤 . The stack of P is always the same as the stack of B, and the second component of the
control state of P the same as the control state of B. Transitions of B depend on the input letter,
which is available to P, because P ‘remembers’ in the control state where the input head of B
is positionedÐand the input word𝑤 is fixed. Transitions of P need not read any letter from the
input; P accepts (rejects) whenever so does B. It is straightforward to see that both assertions of
the lemma hold. □

Lemma 36. There exists a linear-time algorithm that, given a PDA P, outputs a directed graph

𝐺 = (𝑉 , 𝐸), labels 𝜆 : 𝐸 → {(,), [,]} and two vertices 𝑠, 𝑡 ∈ 𝑉 such that (𝐺, 𝜆, 𝑠, 𝑡) is a yes-instance

of D2Reach iff the language of P is nonempty.

Proof. We show how to construct the required instance of D2Reach given a PDA P =

(𝑄, Σ, Γ, 𝛿, 𝑞0, 𝐹).
The idea is that we encode stack symbols from Γ by sequences of words over the alphabet {(, [};

pushing symbols on the stack corresponds to traversing edges of 𝐺 labeled by opening brackets,
and popping symbolsÐto traversing edges labeled by closing brackets.
Let ℓ = ⌈log |Γ |⌉. Fix any injective maps 𝜙 : Γ → {(, [}ℓ and 𝜓 : Γ → {),]}ℓ such that, for all

𝑍 ∈ Γ, the words𝜓 (𝑍) is obtained from 𝜙 (𝑍) by switching opening brackets to closing brackets
without changing their typeÐi.e., (is replaced by) and [by]; and then reversing the word.

We next construct an auxiliary graph 𝐺 ′
= (𝑉 ′, 𝐸 ′) with labels 𝜆 : 𝐸 → {(,), [,]}. The set 𝑉 ′

contains𝑄 as a subset. For each transition (𝑞, 𝑎, 𝑍, 𝑞′, 𝛾, 𝑑) ∈ 𝛿 , the graph𝐺 ′ contains a path from 𝑞

to 𝑞′ of length ℓ · (1 + |𝛾 |). The edges of this path are labelled by consecutive letters of the word
𝜓 (𝑍) · 𝜙 (𝛾); all intermediate vertices are distinct and are incident to no other edge of 𝐺 ′. It is easy
to see that the number of edges of 𝐺 ′ does not exceed |P |. (Notice that the input letter 𝑎 is ignored
in this construction.)
Recall that the automaton P has a nonempty language if and only if there is a path from its

initial configuration to a final configuration, enabled by some input word from Σ
∗. The initial

configuration 𝑐0 of P has control state 𝑞0 and stack content 𝑍0; and any final configuration 𝑐 has
some control state 𝑞 ∈ 𝐹 and the same stack content 𝑍0. By construction, 𝑐0 →∗ 𝑐 in the PDA P

if and only if the graph 𝐺 ′ has a walk from 𝑞0 to 𝑞 labeled by a word 𝑢 ∈ {(,), [,]}∗ such that
𝜙 (𝑍0) · 𝑢 ·𝜓 (𝑍0) is a Dyck-2 word.

It now remains to obtain the graph𝐺 from𝐺 ′ by adding fresh states 𝑠 and 𝑡 and connecting them
to the other vertices by (1) a path from 𝑠 to 𝑞0 labeled by 𝜙 (𝑍0) and (2) paths from each 𝑞 ∈ 𝐹 to 𝑡
labeled by𝜓 (𝑍0). Each of these paths has length ℓ ; paths of type (2) have ℓ − 1 edges in common.
Now (𝐺, 𝜆, 𝑠, 𝑡) is the instance of D2Reach with the required property. □

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 41. Publication date: January 2022.

41:22 Dmitry Chistikov, Rupak Majumdar, and Philipp Schepper

Lemma 37. There exist a 2NPDA language L ′ and a linear-time algorithm that, given a directed

graph𝐺 = (𝑉 , 𝐸) with labels 𝜆 : 𝐸 → {(,), [,]} and two vertices 𝑠, 𝑡 ∈ 𝑉 , outputs a word𝑤 such that

𝑤 ∈ L ′ iff (𝐺, 𝜆, 𝑠, 𝑡) is a yes-instance of D2Reach.

Remark 38. For the linear time bound, we assume that𝐺 is encoded in binary in the input. If this
is not the case, the running time of the algorithm suffers a slowdown by a factor of 𝑂 (log |𝑉 |).

Proof. Words of the language L ′ are encodings of the quadruples (𝐺, 𝜆, 𝑠, 𝑡), where the vertices
of 𝐺 are encoded in binary. In more detail, every𝑤 ∈ L ′ has the following form: first an encoding
of 𝑠 , then an encoding of 𝑡 , and finally a sequence of encodings of edges of 𝐺 , where every edge
𝑒 ∈ 𝐸 is followed by its label 𝜆(𝑒). All these encodings are separated by delimiters.

The language L ′ is over an alphabet of size 𝑂 (1); a word belongs to L ′ iff it follows the format
we have just described and the graph 𝐺 has a walk from 𝑠 to 𝑡 labeled with a sequence from the
Dyck-2 language over {(,), [,]}. The algorithm from the assertion of the lemma simply writes
down the encodings in the required format; it is clear that the algorithm runs in linear time and
the obtained word belongs to L ′ iff (𝐺, 𝜆, 𝑠, 𝑡) is a yes-instance of D2Reach.

It remains to prove that the languageL ′ is recognized by a 2NPDA. Let us describe this 2NPDA R.
It first reads the input word and checks that it follows the format described above. If this is not the
case, R rejects, otherwise it guesses the required walk in 𝐺 from 𝑠 to 𝑡 as follows. A configuration
of R stores on the stack the following data:

• (at the bottom) a sequence 𝜎 ∈ {(, [}∗, and
• (at the top) a vertex 𝑣 ∈ 𝑉 .

In this configuration, R has already found a walk from 𝑠 ∈ 𝑉 to 𝑣 ∈ 𝑉 labeled with some word
𝜎 ′ ∈ {(,), [,]}∗ that reduces to 𝜎 . (A word 𝜎 ′ ∈ {(,), [,]}∗ reduces to 𝜎 if 𝜎 can be obtained from
𝜎 ′ by a sequence of transformations that replace subwords () and [] with 𝜀.) Here is how R works:

(1) At the beginning, initialize 𝜎 with the empty word and 𝑣 with 𝑠 ∈ 𝑉 , pushing them to the
stack.

(2) Repeatedly guess the next edge 𝑒 ∈ 𝐸 in the walk (leaving the loop nondeterministically after
some iteration):

(a) move the head to the encoding of 𝑒 = (𝑢1, 𝑢2) written on the input tape;
(b) pop the encoding of 𝑣 ∈ 𝑉 from the stack, reading the encoding of 𝑢1 from the input tape

in sync; if 𝑢1 ≠ 𝑣 , reject;
(c) look at the label 𝜆(𝑒):

• if 𝜆(𝑒) ∈ {(, [}, then push 𝜆(𝑒) onto the stack, extending the current 𝜎 ∈ {(, [}∗, and
• if 𝜆(𝑒) ∈ {),]}, then pop the last symbol of 𝜎 ∈ {(, [}∗; proceed if the two symbols form
a matching pair, otherwise reject (also reject if 𝜎 is empty);

(d) push the encoding of 𝑢2 to the stack.
(3) Check if the current vertex 𝑣 is equal to 𝑡 and 𝜎 is empty. Accept if the check succeeds,

otherwise reject.

An accepting computation of R exists iff (𝐺, 𝜆, 𝑠, 𝑡) is a yes-instance of D2Reach. □

8 APPENDIX II: PROOF OF THEOREM 32

Fix an arbitrary 2NPDA A over a finite alphabet Σ. We can assume with no loss of generality that
A has a single final state and that it is different from its initial state: |𝐹 | = 1, 𝑞0 ∉ 𝐹 . (It is an easy
exercise to modify A to ensure this assumption holds.)

Suppose an input word𝑤 ∈ Σ
∗ is given. Lemma 35 reduces 𝐿(A) to the emptiness problem for a

PDA defined as a product of the word𝑤 and 2NPDAA. More concretely, this PDA has control states
𝑄 = {0, 1, . . . , 𝑛+1}×𝑆 where 𝑆 is the set of control states ofA. Note that |𝑄 | = 𝑂 (|𝑤 | · |A|) = 𝑂 (|𝑤 |)

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 41. Publication date: January 2022.

Subcubic Certificates for CFL Reachability 41:23

since A is fixed. Here and below, the constant behind 𝑂 (·) depends on A but not on𝑤 . Similarly,
the stack alphabet of the PDA is fixed too. We now give this PDA as input to a further reduction to
Dyck-2 Reachability (Lemma 36), which produces an instance (𝐺, 𝜆, 𝑠, 𝑡).

Claim 39. The graph 𝐺 has the following properties:

(a) it has 𝑂 (|𝑤 |) vertices (including intermediate ones, resulting from mapping the stack alphabet

into binary words);

(b) its edges are labeled with symbols from {(,), [,]};

(c) there is a linear order on the vertices such that each edge connects two vertices that are 𝑂 (1)
positions away from each other in this order;

(d) the source is first and the sink is last in the order.

Proof of Claim 39. Property (a) is due to the fact that A, and thus its stack alphabet, is fixed.
Property (b) is immediate. Property (c) ultimately reflects the fact that A, as a two-way pushdown
automaton, cannot jump cells of the input tape, that is, its head can only move one cell left or right
if it moves at all Ðthis is represented by 𝑑 ∈ {−1, 0, +1} in the syntax of 2NPDA. Thus, the linear
order on vertices of the graph is inherited from the natural ordering of letters of the input tape,
◁𝑤▷. Reductions to PDA emptiness and D2Reach effectively apply a direct product construction
with a constant factor expansion. Within each block corresponding to an input letter, vertices can be
ordered arbitrarily, provided that the initial state of A comes first and the final state lastÐensuring
property (d). Note that our preprocessing of A ensures that these two states are different, and our
acceptance condition and subsequent reductions do the rest of the work. □

We refer to instances (𝐺, 𝜆, 𝑠, 𝑡) with the properties stated in Claim 39 as those of Restricted
Dyck-2 Reachability.
Suppose 𝑘 ∈ N is chosen such that the constants behind 𝑂 (·) in conditions (a) and (c) are at

most 𝑘 and every vertex has at most 𝑘 outgoing edges. We think of this 𝑘 = 𝑂 (1) as the łwidthž of
the instance, which depends on the original 2NPDA A but not on𝑤 .

Remark 40. The constant𝑂 (1) in property (c) is reminiscent of the bounded pathwidth condition
(see, e.g, [Bienstock et al. 1991]). However, in our case the graph has an even more łregularž
structure. We leave it open whether this structure can be characterized by constant pathwidth and

constant degree (and restricting the direction and labels of the edges). In comparison, Chatterjee
and Osang look at pushdown reachability with constant treewidth [Chatterjee and Osang 2017].

It remains to map this instance of Dyck-2 Reachability to an instance of 2NPDA recognition, for
a fixed 2NPDA which we now define.
For each vertex 𝑣 , let index(𝑣) denote the position of 𝑣 in the order specified in property (c),

ranging from 1 to 𝑂 (|𝑤 |). (Once again, the constant behind 𝑂 (·) depends on A but not on 𝑤 .)
The construction below follows in spirit the proof of Lemma 37 and refines the details in order to
produce a homomorphism ℎ. The key difference is that, to produce the new input word, we will
not write edges as ł(𝑢, 𝑣), 𝜆(𝑢, 𝑣)ž. Instead we will:

1) sort the vertices 𝑢 according to their index(𝑢) ascending and, for each 𝑢, group all the edges
departing from 𝑢 together (each 𝑢 will have at most 𝑘 outgoing edges);

2) write edges (𝑢, 𝑣) as pairs (𝜆(𝑢, 𝑣), offset(𝑢, 𝑣)) where offset(𝑢, 𝑣) = index(𝑣) − index(𝑢), i.e.,
how many vertices to the right the destination of the edge is; this difference is written in
unary notation (without incurring blowup, as this difference cannot exceed 𝑘);

3) write vertices as łseparatorsž between groups of edges.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 41. Publication date: January 2022.

41:24 Dmitry Chistikov, Rupak Majumdar, and Philipp Schepper

Putting everything together, the input to the new 2NPDA has the form (6) (see page 19), where
is the vertex marker symbol, ℓ𝑖 ∈ {(,), [,]}, and each 𝑜𝑖 is either the empty word, or 1 . . . 1 or
−1 . . . 1.

Claim 41. The set of valid encodings (6) of Restricted Dyck-2 Reachability can be recognized by a

fixed 2NPDA.

The construction of the 2NPDA in Claim 41 is similar to the reduction of Lemma 37. Instead of
guessing the next vertex, this new 2NPDA A ′

0 łscrollsž left and right in a deterministic way to the
destination of the current edge, counting in unary with the help of its stack. The nondeterministic
choices that A ′

0 makes are which outgoing edge from the current vertex to choose next.
Note that the construction of A ′

0 is independent of 𝑘 , thus identifying a single hardest language,
𝐿(A ′

0). Moreover, for a given initial 2NPDA A this reduction replaces each symbol in𝑤 with𝑂 (1)
vertices and 𝑂 (1) edges, where this 𝑂 (1) depends just on A and not 𝑤 . The exact collection of
these vertices and edges is fully determined by each symbol of 𝑤 , independently of its position
within𝑤 . The vertices are not addressed in any łabsolutež numbering scheme Ð so this mapping
can be realised as a homomorphism.

Remark 42. The use of relative rather than absolute addresses (to encode offsets) appears in a
related context but for a different problem in Neal’s work on taxonomic inference [Neal 1989],
which is at the origin of the connection between 2NPDA and program analysis.

Summary and the endmarkers problem.We now have achieved the following: for every 2NPDA
A there is a homomorphism ℎ1 such that 𝑤 ∈ 𝐿(A) if and only if ℎ1 (⊴𝑤⊵) ∈ 𝐿(A ′

0). Note the
appearance of the endmarkers here. (We use ⊴ instead of ◁ and ⊵ instead of ▷ to avoid a notation
clash in the discussion that follows.) They reflect the fact that, in the chain of our reductions, the
set of control states of the PDA is {0, 1, . . . , 𝑛 + 1} × 𝑆 not {1, . . . , 𝑛} × 𝑆 .
To lift our construction from ⊴𝑤⊵ to just 𝑤 , it may be tempting to appeal to the following

fact, which is not difficult to prove. Let 𝑥,𝑦 ∈ Σ
∗ be fixed. Suppose a 2NPDA accepts a language

𝐿 ⊆ 𝑥 · Σ∗ · 𝑦. Then there exists another 2NPDA which accepts the language {𝑤 | 𝑥𝑤𝑦 ∈ 𝐿}.
Unfortunately, this fact does not quite achieve our goal. This is because the new 2NPDA we

would obtain from it depends on 𝑥 and𝑦. In our context, 𝑥 and𝑦 should be the images of the original
endmarkers, i.e., we would like to have 𝑥 = ℎ1 (⊴) and 𝑦 = ℎ1 (⊵). But these two words depend on
the homomorphism ℎ1, and thus on the 2NPDA A that we started from. This is at odds with our
objective: we need a single 2NPDA for our hardest language, not an entire family dependent on A.
There are several ways to deal with this issue. One is reminiscent of Rytter’s approach [Rytter

1981]: we can decide we are content with keeping a single endmarker in, i.e., we would only like to
find an 𝐿0 such that, for all𝑤 ∈ Σ

+, one has𝑤 ∈ 𝐿 iff ℎ(𝑤$) ∈ 𝐿0. Here $ is a fresh symbol. It is not
very difficult to find such an ℎ and 𝐿0 based on our construction: essentially, the word ℎ1 (⊴) needs
to be merged with the word ℎ1 (⊵) and placed to the right of ℎ1 (𝑤). So we would like to choose
ℎ($) = ℎ1 (⊵)ℎ1 (⊴) and ℎ(𝑎) = ℎ1 (𝑎) for all other symbols 𝑎. The 2NPDA for 𝐿0 is the same as our
2NPDA A ′

0 constructed above, with the following modification. Suppose it starts following an edge
from some vertex (block) to the left but hits the left end of the tape, i.e., the left endmarker ◁. We
now use this symbol to refer to the tape alphabet of the 2NPDA A ′

0 (and not the tape alphabet of
the original machine A). The new 2NPDA will move all the way to the right end of the tape and
continue its search for the destination vertex from the right endmarker ▷. Edges within ℎ1 (⊵) need
not be changed, but the ones among them that lead to the right (offset(𝑢, 𝑣) > 0, or equivalently
𝑜𝑖 ∈ 1+) will make the 2NPDA hit ▷, go back to the left of the tape and continue the search from ◁.

One further technicality that needs to be dealt with is the beginning and end of the computation.
Recall that our Restricted Dyck-2 Reachability asked for a path from the very first vertex to the

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 41. Publication date: January 2022.

Subcubic Certificates for CFL Reachability 41:25

very last one. Since ℎ1 (⊴) moved, we now need to change this convention. More concretely, the
only two vertices that we can distinguish correspond to the last two control states and the head
position over the left endmarker. So the original 2NPDA A needs to be changed accordingly.

While this approach recovers Rytter’s result, we show below that there is a way to eliminate the
extra symbol $ altogether.

Merging endmarker blocks into other symbols. Our solution to the endmarkers problem acknowl-
edges that the words ℎ1 (⊴) and ℎ1 (⊵) cannot be eliminated completely. Indeed, the vertices and
edges that these two words encode correspond to the behaviour of the original 2NPDA A over the
tape endmarkers, and this behaviour can contribute to the computations of A in a nontrivial way.

However, what we can do is to embed all this information into words ℎ(𝑎) for all other symbols 𝑎.
For a first intuition (to be amended later), we would like to set ℎ(𝑎) = ℎ1 (⊴) ∥ ℎ1 (𝑎) ∥ ℎ1 (⊵) for
all non-endmarker symbols 𝑎, where ∥ denotes a specially tailored ternary version of the perfect
shuffle operation. More concretely, let𝑤1,𝑤2,𝑤3 be arbitrary words such that, for some single ℓ ,
we have𝑤𝑖 =

∏ℓ
𝑗=1 #𝑤𝑖, 𝑗 where none of the words𝑤𝑖, 𝑗 contains the vertex marker symbol #. Then

𝑤1 ∥ 𝑤2 ∥ 𝑤3 :=
ℓ∏
𝑗=1

#𝑤1, 𝑗 #𝑤2, 𝑗 #𝑤3, 𝑗 .

This shuffling relies on ℓ being the same for all three arguments, which ultimately means the same
number of vertices (blocks) in all words ℎ1 (𝑎). This is in fact ensured by our constructions above
(although we could always achieve this by introducing extra dummy vertices where necessary).

As a result of this shuffling arrangement, we can think of new input words as having three
interleaving łtracksž, each containing a separate sequence of vertices. Naturally, this requires some
changes to the wiring, as follows.

First, the offsets that specify the edges of the graph departing from the vertices of ℎ1 (𝑎) need to
be updated. This is not difficult. Recall that edge destinations are specified using relative addresses
of vertices. For every edge from a vertex in ℎ1 (𝑎), its offset needs to be multiplied by 3, so that the
edge skips intermediate vertices from copies of ℎ1 (⊴) and ℎ1 (⊵).
Second, we need to provide a way for the new 2NPDA A0 to reach the vertices in ℎ1 (⊴) and

ℎ1 (⊵). To achieve this, we consider the scenario in whichA0 will traverse edges leading to a vertex
in ℎ1 (⊴). (The case of ℎ1 (⊵) is handled in a symmetric way.) Suppose the head of the 2NPDA is
over a block (vertex) within the leftmost ℎ1 (𝑎). Taking an edge with a negative offset, it moves left
but then hits the left tape endmarker ◁. When it does so, the stack of the 2NPDA still contains
the number of vertices to be skipped. The 2NPDA then needs to change from the second (main)
track, which contains the information from ℎ1 (𝑎)s, to the first track, which stores multiple copies
of the word ℎ1 (⊴). Effectively, this amounts to treating ◁ as just another # that on top of its usual
function makes the machine change direction. After that, however, we see that the number of
vertices to be skipped was counted from the right of ℎ1 (⊴) and not from the left where the head
of the automaton is now located. Thus, we reverse the encoding of each of ℎ1 (⊴) and ℎ1 (⊵), as
follows: we re-define our special shuffle as

𝑤1 ∥ 𝑤2 ∥ 𝑤3 :=
ℓ∏
𝑗=1

#𝑤1,ℓ+1−𝑗 #𝑤2, 𝑗 #𝑤3,ℓ+1−𝑗 ,

where 𝑢 is the same word as 𝑢 in which every maximal subword of the form −1𝑚 is replaced with
1𝑚 and each 1𝑚 , without a preceding −, with −1𝑚 . The operation of our 2NPDA will depend on
which łtrackž of the input it is over. The second track is the main mode. Over the first track:

• Edges previously specified by positive offset need to followed to the left instead of to the
right (hence the𝑤1,ℓ+1−𝑗 above and not𝑤1,ℓ+1−𝑗). If the left tape endmarker ◁ is encountered,

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 41. Publication date: January 2022.

41:26 Dmitry Chistikov, Rupak Majumdar, and Philipp Schepper

the automaton transitions to the second (main) track, and only then continues to the right
(in the normal mode).

• Edges specified by the negative offset need to be followed to the right instead of to the left
(again, this matches the𝑤1,ℓ+1−𝑗 above). We note that if the input word for our 2NPDA is the
homomorphic image under ℎ of some word in Σ

∗, then the automaton will never leave the
leftmost ℎ(𝑎) while being on the first track, because the original 2NPDA A cannot move left
from the left endmarker.

The third track is arranged in a similar way.
Importantly, while we apply these changes to ℎ and the łwiringž of the graph, we can keep

the semantics of our hardest language untouched. The łtracksž themselves need not enter the
description of the language. The only new łfeaturež that is necessary is changing the tracks Ð
and this can be achieved simply by specifying that when our new 2NPDA A0 encounters a tape
endmarker during its operation, this endmarker is counted as a virtual vertex and łreflectsž off it,
continuing the countdown in the opposite direction.

However, as was the case with the approach described above and involving $, our new construc-
tion of ℎ breaks the convention about the source and target vertices in the Dyck-2 reachability
instance (albeit in a slightly different way). Because of the effective reversal of vertex ordering
within ℎ1 (⊴) and ℎ1 (⊵), the required adjustment to the original 2NPDA A is that its initial control
state needs to be the last and its (only) final control state the first in the ordering.
To sum up, by applying these adjustments and łcompilingž the homomorphism ℎ the way we

have described, we arrive at the desired 2NPDA A0. (Note that there is freedom in whether we
take 𝜀 ∈ 𝐿(A0) or 𝜀 ∉ 𝐿(A0), but as some 2NPDA languages contain 𝜀 and some do not, their
homomorphic images will necessarily disagree on 𝜀, no matter our choice of the homomorphism.)

ACKNOWLEDGMENTS

This work started in 2016 when Dmitry Chistikov was a postdoctoral researcher in Joël Ouaknine’s
group, supported by the European Research Council (ERC) consolidator grant AVS-ISS (648701).
Rupak Majumdar was supported in part by the the Deutsche Forschungsgemeinschaft project
389792660 TRR 248śCPEC and by the European Research Council under the Grant Agreement
610150 (http://www.impact-erc.eu/) (ERC Synergy Grant ImPACT). Philipp Schepper is part of
Saarbrücken Graduate School of Computer Science, Germany and was partially supported by the
European Research Council (ERC) consolidator grant no. 725978 SYSTEMATICGRAPH.

REFERENCES

Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. 2015. If the Current Clique Algorithms are Optimal, So is
Valiant’s Parser. In IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20

October, 2015. IEEE Computer Society, 98ś117.
Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. 1968. Time and Tape Complexity of Pushdown Automaton Languages.

Information and Control 13, 3 (1968), 186ś206.
Rajeev Alur, Michael Benedikt, Kousha Etessami, Patrice Godefroid, ThomasW. Reps, and Mihalis Yannakakis. 2005. Analysis

of recursive state machines. ACM Trans. Program. Lang. Syst. 27, 4 (2005), 786ś818. https://doi.org/10.1145/1075382.
1075387

László Babai. 1985. Trading Group Theory for Randomness. In Proceedings of the 17th Annual ACM Symposium on

Theory of Computing, May 6-8, 1985, Providence, Rhode Island, USA, Robert Sedgewick (Ed.). ACM, 421ś429. https:
//doi.org/10.1145/22145.22192

Arturs Backurs and Piotr Indyk. 2016. Which Regular Expression Patterns Are Hard to Match?. In IEEE 57th Annual

Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey,

USA, Irit Dinur (Ed.). IEEE Computer Society, 457ś466. https://doi.org/10.1109/FOCS.2016.56
Daniel Bienstock, Neil Robertson, Paul D. Seymour, and Robin Thomas. 1991. Quickly excluding a forest. J. Comb. Theory,

Ser. B 52, 2 (1991), 274ś283. https://doi.org/10.1016/0095-8956(91)90068-U

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 41. Publication date: January 2022.

https://doi.org/10.1145/1075382.1075387
https://doi.org/10.1145/1075382.1075387
https://doi.org/10.1145/22145.22192
https://doi.org/10.1145/22145.22192
https://doi.org/10.1109/FOCS.2016.56
https://doi.org/10.1016/0095-8956(91)90068-U

Subcubic Certificates for CFL Reachability 41:27

Luc Boasson, Bruno Courcelle, and Maurice Nivat. 1981. The Rational Index: A Complexity Measure for Languages. SIAM J.

Comput. 10, 2 (1981), 284ś296. https://doi.org/10.1137/0210020
Ahmed Bouajjani, Javier Esparza, Alain Finkel, Oded Maler, Peter Rossmanith, Bernard Willems, and Pierre Wolper. 2000.

An efficient automata approach to some problems on context-free grammars. Inf. Process. Lett. 74, 5-6 (2000), 221ś227.
https://doi.org/10.1016/S0020-0190(00)00055-7

Ahmed Bouajjani, Javier Esparza, and Oded Maler. 1997. Reachability Analysis of Pushdown Automata: Application to
Model-Checking. In CONCUR ’97: Concurrency Theory, 8th International Conference, Warsaw, Poland, July 1-4, 1997,

Proceedings (Lecture Notes in Computer Science, Vol. 1243). Springer, 135ś150.
Phillip G. Bradford. 2018. Efficient Exact Paths For Dyck and semi-Dyck Labeled Path Reachability. CoRR abs/1802.05239

(2018). arXiv:1802.05239
Karl Bringmann. 2018. Personal communication. (2018).
Karl Bringmann, Allan Grùnlund, and Kasper Green Larsen. 2017. A Dichotomy for Regular Expression Membership Testing.

In 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017,
Chris Umans (Ed.). IEEE Computer Society, 307ś318. https://doi.org/10.1109/FOCS.2017.36

Arnaud Carayol and Matthew Hague. 2014. Saturation algorithms for model-checking pushdown systems. In Proceedings

14th International Conference on Automata and Formal Languages, AFL 2014, Szeged, Hungary, May 27-29, 2014 (EPTCS,

Vol. 151), Zoltán Ésik and Zoltán Fülöp (Eds.). 1ś24. https://doi.org/10.4204/EPTCS.151.1
Marco L. Carmosino, Jiawei Gao, Russell Impagliazzo, Ivan Mihajlin, Ramamohan Paturi, and Stefan Schneider. 2016.

Nondeterministic Extensions of the Strong Exponential Time Hypothesis and Consequences for Non-reducibility. In
Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science, Cambridge, MA, USA, January

14-16, 2016. ACM, 261ś270.
Krishnendu Chatterjee, Bhavya Choudhary, and Andreas Pavlogiannis. 2018. Optimal Dyck reachability for data-dependence

and alias analysis. Proc. ACM Program. Lang. 2, POPL (2018), 30:1ś30:30. https://doi.org/10.1145/3158118
Krishnendu Chatterjee and Georg Osang. 2017. Pushdown reachability with constant treewidth. Inf. Process. Lett. 122 (2017),

25ś29.
Swarat Chaudhuri. 2008. Subcubic algorithms for recursive state machines. In Proceedings of the 35th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL 2008, San Francisco, California, USA, January 7-12, 2008,
George C. Necula and Philip Wadler (Eds.). ACM, 159ś169. https://doi.org/10.1145/1328438.1328460

Don Coppersmith and Shmuel Winograd. 1990. Matrix Multiplication via Arithmetic Progressions. J. Symb. Comput. 9, 3
(1990), 251ś280.

Mateus de Oliveira Oliveira and Michael Wehar. 2018. Intersection Non-emptiness and Hardness Within Polynomial Time.
In Developments in Language Theory - 22nd International Conference, DLT 2018, Tokyo, Japan, September 10-14, 2018,

Proceedings (Lecture Notes in Computer Science, Vol. 11088), Mizuho Hoshi and Shinnosuke Seki (Eds.). Springer, 282ś290.
https://doi.org/10.1007/978-3-319-98654-8_23

Mateus de Oliveira Oliveira and Michael Wehar. 2020. On the Fine Grained Complexity of Finite Automata Non-emptiness
of Intersection. In Developments in Language Theory - 24th International Conference, DLT 2020, Tampa, FL, USA, May 11-15,

2020, Proceedings (Lecture Notes in Computer Science, Vol. 12086), Natasa Jonoska and Dmytro Savchuk (Eds.). Springer,
69ś82. https://doi.org/10.1007/978-3-030-48516-0_6

Danny Dolev, Shimon Even, and Richard M. Karp. 1982. On the Security of Ping-Pong Protocols. Inf. Control. 55, 1-3 (1982),
57ś68. https://doi.org/10.1016/S0019-9958(82)90401-6

Henning Fernau. 2019. Modern Aspects of Complexity Within Formal Languages. In Language and Automata Theory and

Applications - 13th International Conference, LATA 2019, St. Petersburg, Russia, March 26-29, 2019, Proceedings (Lecture

Notes in Computer Science, Vol. 11417), Carlos Martín-Vide, Alexander Okhotin, and Dana Shapira (Eds.). Springer, 3ś30.
https://doi.org/10.1007/978-3-030-13435-8_1

Henning Fernau and Andreas Krebs. 2017. Problems on Finite Automata and the Exponential Time Hypothesis. Algorithms

10, 1 (2017), 24. https://doi.org/10.3390/a10010024
Alain Finkel, Bernard Willems, and Pierre Wolper. 1997. A direct symbolic approach to model checking pushdown systems.

In Second International Workshop on Verification of Infinite State Systems, Infinity 1997, Bologna, Italy, July 11-12, 1997

(Electronic Notes in Theoretical Computer Science, Vol. 9), Faron Moller (Ed.). Elsevier, 27ś37. https://doi.org/10.1016/S1571-
0661(05)80426-8

Rusins Freivalds. 1979. Fast Probabilistic Algorithms. In Mathematical Foundations of Computer Science 1979, Proceedings,

8th Symposium, Olomouc, Czechoslovakia, September 3-7, 1979 (Lecture Notes in Computer Science, Vol. 74), Jirí Becvár
(Ed.). Springer, 57ś69. https://doi.org/10.1007/3-540-09526-8_5

Zvi Galil. 1977. Some Open Problems in the Theory of Computation as Questions about Two-Way Deterministic Pushdown
Automaton Languages. Mathematical Systems Theory 10 (1977), 211ś228.

Jonathan Goldstine, John K. Price, and Detlef Wotschke. 1982. A pushdown automaton or a context-free grammar: which is
more economical? Theoret. Comput. Sci. 18 (1982), 33ś40.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 41. Publication date: January 2022.

https://doi.org/10.1137/0210020
https://doi.org/10.1016/S0020-0190(00)00055-7
https://arxiv.org/abs/1802.05239
https://doi.org/10.1109/FOCS.2017.36
https://doi.org/10.4204/EPTCS.151.1
https://doi.org/10.1145/3158118
https://doi.org/10.1145/1328438.1328460
https://doi.org/10.1007/978-3-319-98654-8_23
https://doi.org/10.1007/978-3-030-48516-0_6
https://doi.org/10.1016/S0019-9958(82)90401-6
https://doi.org/10.1007/978-3-030-13435-8_1
https://doi.org/10.3390/a10010024
https://doi.org/10.1016/S1571-0661(05)80426-8
https://doi.org/10.1016/S1571-0661(05)80426-8
https://doi.org/10.1007/3-540-09526-8_5

41:28 Dmitry Chistikov, Rupak Majumdar, and Philipp Schepper

Jim Gray, Michael A. Harrison, and Oscar H. Ibarra. 1967. Two-Way Pushdown Automata. Information and Control 11, 1/2
(1967), 30ś70.

Sheila A. Greibach. 1973. The Hardest Context-Free Language. SIAM J. Comput. 2, 4 (1973), 304ś310. https://doi.org/10.
1137/0202025

Nevin Heintze and David A. McAllester. 1997. On the Cubic Bottleneck in Subtyping and Flow Analysis. In Proceedings,

12th Annual IEEE Symposium on Logic in Computer Science (LICS), Warsaw, Poland, June 29 - July 2, 1997. IEEE Computer
Society, 342ś351. https://doi.org/10.1109/LICS.1997.614960

Jelle Hellings. 2020. Explaining Results of Path Queries on Graphs - Single-Path Results for Context-Free Path Queries. In
Software Foundations for Data Interoperability and Large Scale Graph Data Analytics - 4th International Workshop, SFDI

2020, and 2nd International Workshop, LSGDA 2020, held in Conjunction with VLDB 2020, Tokyo, Japan, September 4, 2020,

Proceedings (Communications in Computer and Information Science, Vol. 1281), Lu Qin, Wenjie Zhang, Ying Zhang, You
Peng, Hiroyuki Kato, Wei Wang, and Chuan Xiao (Eds.). Springer, 84ś98. https://doi.org/10.1007/978-3-030-61133-0_7

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. 2006. Introduction to Automata Theory, Languages, and Computation

(3rd Edition). Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.
Russell Impagliazzo and Ramamohan Paturi. 2001. On the Complexity of 𝑘-SAT. J. Comput. Syst. Sci. 62, 2 (2001), 367ś375.

https://doi.org/10.1006/jcss.2000.1727
Somesh Jha and Thomas W. Reps. 2004. Model checking SPKI/SDSI. J. Comput. Secur. 12, 3-4 (2004), 317ś353. http:

//content.iospress.com/articles/journal-of-computer-security/jcs209
Tracy Kimbrel and Rakesh K. Sinha. 1993. A Probabilistic Algorithm for Verifying Matrix Products Using𝑂 (𝑛2) Time and

log2 𝑛 +𝑂 (1) Random Bits. Inf. Process. Lett. 45, 2 (1993), 107ś110. https://doi.org/10.1016/0020-0190(93)90224-W
Ivan Korec and Jirí Wiedermann. 2014. Deterministic Verification of Integer Matrix Multiplication in Quadratic Time.

In SOFSEM 2014: Theory and Practice of Computer Science - 40th International Conference on Current Trends in Theory

and Practice of Computer Science, Nový Smokovec, Slovakia, January 26-29, 2014, Proceedings (Lecture Notes in Computer

Science, Vol. 8327), Viliam Geffert, Bart Preneel, Branislav Rovan, Julius Stuller, and A Min Tjoa (Eds.). Springer, 375ś382.
https://doi.org/10.1007/978-3-319-04298-5_33

Marvin Künnemann. 2018. On Nondeterministic Derandomization of Freivalds’ Algorithm: Consequences, Avenues and
Algorithmic Progress. In 26th Annual European Symposium on Algorithms, ESA 2018, August 20-22, 2018, Helsinki, Finland

(LIPIcs, Vol. 112), Yossi Azar, Hannah Bast, and Grzegorz Herman (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
56:1ś56:16. https://doi.org/10.4230/LIPIcs.ESA.2018.56

Bernard Lang. 1994. Recognition can Be Harder Than Parsing. Comput. Intell. 10 (1994), 486ś494. https://doi.org/10.1111/j.
1467-8640.1994.tb00011.x

Lillian Lee. 2002. Fast context-free grammar parsing requires fast boolean matrix multiplication. J. ACM 49, 1 (2002), 1ś15.
Markus Lohrey. 2012. Algorithmics on SLP-compressed strings: A survey. Groups Complex. Cryptol. 4, 2 (2012), 241ś299.

https://doi.org/10.1515/gcc-2012-0016
Anders Alnor Mathiasen and Andreas Pavlogiannis. 2021. The fine-grained and parallel complexity of Andersen’s pointer

analysis. Proc. ACM Program. Lang. 5, POPL (2021), 1ś29. https://doi.org/10.1145/3434315
Ross M. McConnell, Kurt Mehlhorn, Stefan Näher, and Pascal Schweitzer. 2011. Certifying algorithms. Comput. Sci. Rev. 5, 2

(2011), 119ś161. https://doi.org/10.1016/j.cosrev.2010.09.009
David Melski and Thomas Reps. 2000. Interconvertibility of a class of set constraints and context-free-language reachability.

Theor. Comput. Sci. 248(1-2) (2000), 29ś98.
Radford Neal. 1989. The computational complexity of taxonomic inference. (1989). Unpublished manuscript. Available at

http://www.cs.toronto.edu/~radford/ftp/taxc.pdf.
G.C. Necula. 1997. Proof carrying code. In POPL 97: Principles of Programming Languages. ACM, 106ś119.

Laurent Pierre. 1992. Rational Indexes of Generators of the Cone of Context-Free Languages. Theor. Comput. Sci. 95, 2

(1992), 279ś305. https://doi.org/10.1016/0304-3975(92)90269-L

Aaron Potechin and Jeffrey O. Shallit. 2020. Lengths of words accepted by nondeterministic finite automata. Inf. Process.

Lett. 162 (2020), 105993. https://doi.org/10.1016/j.ipl.2020.105993

Thomas W. Reps, Susan Horwitz, and Mooly Sagiv. 1995. Precise Interprocedural Dataflow Analysis via Graph Reachability.

In Conference Record of POPL’95: 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

San Francisco, California, USA, January 23-25, 1995, Ron K. Cytron and Peter Lee (Eds.). ACM Press, 49ś61. https:

//doi.org/10.1145/199448.199462

Wojciech Rytter. 1981. A Hardest Language Recognized by Two-Way Nondeterministic Pushdown Automata. Inf. Process.

Lett. 13, 4/5 (1981), 145ś146. https://doi.org/10.1016/0020-0190(81)90045-4

Wojciech Rytter. 1985. Fast Recognition of Pushdown Automaton and Context-free Languages. Information and Control 67,

1-3 (1985), 12ś22.

Wojciech Rytter. 1987. 100 exercises in the theory of automata and formal languages. http://wrap.warwick.ac.uk/60795/

Research report RR-99, University of Warwick, Department of Computer Science, available at http://wrap.warwick.ac.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 41. Publication date: January 2022.

https://doi.org/10.1137/0202025
https://doi.org/10.1137/0202025
https://doi.org/10.1109/LICS.1997.614960
https://doi.org/10.1007/978-3-030-61133-0_7
https://doi.org/10.1006/jcss.2000.1727
http://content.iospress.com/articles/journal-of-computer-security/jcs209
http://content.iospress.com/articles/journal-of-computer-security/jcs209
https://doi.org/10.1016/0020-0190(93)90224-W
https://doi.org/10.1007/978-3-319-04298-5_33
https://doi.org/10.4230/LIPIcs.ESA.2018.56
https://doi.org/10.1111/j.1467-8640.1994.tb00011.x
https://doi.org/10.1111/j.1467-8640.1994.tb00011.x
https://doi.org/10.1515/gcc-2012-0016
https://doi.org/10.1145/3434315
https://doi.org/10.1016/j.cosrev.2010.09.009
http://www.cs.toronto.edu/~radford/ftp/taxc.pdf
https://doi.org/10.1016/0304-3975(92)90269-L
https://doi.org/10.1016/j.ipl.2020.105993
https://doi.org/10.1145/199448.199462
https://doi.org/10.1145/199448.199462
https://doi.org/10.1016/0020-0190(81)90045-4
http://wrap.warwick.ac.uk/60795/
http://wrap.warwick.ac.uk/60795/
http://wrap.warwick.ac.uk/60795/

Subcubic Certificates for CFL Reachability 41:29

uk/60795/.

Stefan Schwoon. 2002. Model checking pushdown systems. Ph.D. Dissertation. Technical University Munich, Germany.

http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/schwoon.html

Richard Edwin Stearns, Juris Hartmanis, and Philip M. Lewis II. 1965. Hierarchies of memory limited computations. In 6th

Annual Symposium on Switching Circuit Theory and Logical Design, Ann Arbor, Michigan, USA, October 6-8, 1965. IEEE

Computer Society, 179ś190. https://doi.org/10.1109/FOCS.1965.11

Joseph Swernofsky and Michael Wehar. 2015. On the Complexity of Intersecting Regular, Context-Free, and Tree Languages.

In Automata, Languages, and Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015,

Proceedings, Part II (Lecture Notes in Computer Science, Vol. 9135), Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi,

and Bettina Speckmann (Eds.). Springer, 414ś426. https://doi.org/10.1007/978-3-662-47666-6_33

Roei Tell. 2019. Proving that prBPP=prP is as hard as proving that łalmost NPž is not contained in P/poly. Inf. Process. Lett.

152 (2019). https://doi.org/10.1016/j.ipl.2019.105841

Leslie G. Valiant. 1975. General Context-Free Recognition in Less than Cubic Time. J. Comput. Syst. Sci. 10, 2 (1975), 308ś315.

Virginia Vassilevska Williams. 2012. Multiplying matrices faster than Coppersmith-Winograd. In Proceedings of the 44th

Symposium on Theory of Computing Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012, Howard J. Karloff and

Toniann Pitassi (Eds.). ACM, 887ś898. https://doi.org/10.1145/2213977.2214056

Virginia Vassilevska Williams. 2018. On some fine-grained questions in algorithms and complexity. In International Congress

of Mathematicians (ICM’18). Available at https://eta.impa.br/dl/194.pdf and https://people.csail.mit.edu/virgi/eccentri.pdf.

Virginia Vassilevska Williams and R. Ryan Williams. 2018. Subcubic Equivalences Between Path, Matrix, and Triangle

Problems. J. ACM 65, 5 (2018), 27:1ś27:38.

Mikhail Vyalyi. 2019. Personal communication. (2019).

Mikhail N. Vyalyi. 2011. On regular realizability problems. Probl. Inf. Transm. 47, 4 (2011), 342ś352. https://doi.org/10.1134/

S003294601104003X

Mikhail N. Vyalyi and Alexander A. Rubtsov. 2015. On regular realizability problems for context-free languages. Probl. Inf.

Transm. 51, 4 (2015), 349ś360. https://doi.org/10.1134/S0032946015040043

Michael Wehar. 2014. Hardness Results for Intersection Non-Emptiness. In Automata, Languages, and Programming -

41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part II (Lecture Notes in

Computer Science, Vol. 8573), Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias (Eds.). Springer,

354ś362. https://doi.org/10.1007/978-3-662-43951-7_30

Mihalis Yannakakis. 1990. Graph-Theoretic Methods in Database Theory. In Proceedings of the Ninth ACM SIGACT-SIGMOD-

SIGART Symposium on Principles of Database Systems, April 2-4, 1990, Nashville, Tennessee, USA. ACM Press, 230ś242.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 41. Publication date: January 2022.

http://wrap.warwick.ac.uk/60795/
http://wrap.warwick.ac.uk/60795/
http://wrap.warwick.ac.uk/60795/
http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/schwoon.html
https://doi.org/10.1109/FOCS.1965.11
https://doi.org/10.1007/978-3-662-47666-6_33
https://doi.org/10.1016/j.ipl.2019.105841
https://doi.org/10.1145/2213977.2214056
https://eta.impa.br/dl/194.pdf
https://people.csail.mit.edu/virgi/eccentri.pdf
https://doi.org/10.1134/S003294601104003X
https://doi.org/10.1134/S003294601104003X
https://doi.org/10.1134/S0032946015040043
https://doi.org/10.1007/978-3-662-43951-7_30

	Abstract
	1 Introduction
	2 Context-free reachability and Dyck-2 reachability
	3 Certificates for reachability and non-reachability
	3.1 Certificates for Yes-Instances: Compressed Walks
	3.2 Certificates for No-Instances: Inductive Invariants
	3.3 Certificates for All-Pairs CFL Reachability

	4 Complexity implications
	5 Certificates for pushdown non-reachability
	6 Discussion: Fine-grained landscape and a hardest D2Reach instance
	6.1 2NPDA Completeness
	6.2 A Hardest 2NPDA Language

	7 Appendix I: Proof of Proposition 31
	8 Appendix II: Proof of Theorem 32
	Acknowledgments
	References

