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Abstract. This paper proposes a lightweight short-tweak tweakable block-
cipher (tBC) based authenticated encryption (AE) scheme tHyENA, a
tweakable variant of the high profile NIST LWC competition submission
HyENA. tHyENA is structurally similar to HyENA, however, proper usage
of short-tweaks for the purpose of domain separation, makes the design
much simpler compact. We know that HyENA already achieves a very
small hardware footprint, and tHyENA further optimizes it. To realize
our claim, we provide NIST API compliant hardware implementation
details and benchmark for tHyENA against HyENA and several other
well-known sequential feedback-based designs. The implementation re-
sults depict that when instantiated with the tBC TweGIFT, tHyENA
achieves an extremely low hardware footprint - consuming only around
680 LUTs and 260 slices while maintaining the full rate and the almost
birthday bound security. To the best of our knowledge, this figure is
significantly better than all the known implementation results of other
lightweight ciphers with sequential structures.

Keywords: Authenticated Encryption, lightweight, tBC, HyENA, Feedback based
AE, TweGIFT

1 Introduction

In the last few years, lightweight cryptography has seen a growing popularity due
to increasing security demands for lightweight IoT applications such as sensor
networks, healthcare applications, distributed control systems, cyber-physical
systems, etc., where highly resource-constrained devices communicate and need
to be operated with the low hardware area, low power or low energy. Lightweight
cryptography is about developing cryptographic solutions for these resource-
constrained environments and this research direction has been triggered by the
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ongoing NIST Lightweight Standardization Competition (LWC) [20] followed by
CAESAR [12]. As a result, in recent years, the cryptographic community has
witnessed a rise in various lightweight authenticated encryption proposals.

One popular approach to design lightweight AE schemes is to use a sequen-
tial structure as it consumes lesser hardware footprint. Blockcipher (BC) based
sequential AE schemes typically use a feedback function on the previous block-
cipher output, an auxiliary secret state, and the current input (message or asso-
ciated data) block. It outputs the next blockcipher feedback, updates the auxil-
iary secret state and the current output block (in case of message blocks). Thus,
blockcipher-based sequential AE schemes can be well described by the underlying
blockcipher, the auxiliary secret state, and the feedback function. Consequently,
the efficiency and the hardware footprint of the AE scheme also largely depend
on these three components (the underlying blockcipher, the feedback function,
and the auxiliary secret state). In the following context, we assume that we have
an ultra-lightweight and efficient primitive to instantiate the AE scheme. The
efficiency of a construction is primarily dependent upon the rate, the number of
data blocks processed per primitive call. It is well known that a trivial upper
bound on the rate is 1. In this paper, we concentrate only on rate-1 authenti-
cated encryptions with a small hardware footprint such that we can achieve a
lightweight construction along with a high throughput.

1.1 Rate-1 Feedback Based Authenticated Encryption

Zhang et al. in [26], proposed a plaintext feedback-based mode iFEED that has
rate 1. However, it requires a large state size of (3n + k) bits, where n is the
underlying blockcipher’s state size, and k is the key size. CPFB by Montes et
al. [19] is a notable scheme that reduces the state size to (2n + k) bits, at the
cost of a reduction in the rate to 3/4. In CHES 2017, Chakraborti et al. [7]
proposed COFB the first feedback-based AE scheme that achieves rate-1 with an
impressive state size of just 1.5n+ k bits. The main feature of COFB is a novel
feedback function, called combined feedback.

In [8,10], Chakraborti et al. studied a generalized feedback-based rate-1 AE
scheme and showed that it is a necessity for any rate-1 feedback-based AE mode
to have an auxiliary state of n/2-bit to achieve security up to 2n/2 queries, de-
picting the optimality of COFB in the auxiliary state size. However, they have
observed that the use of the combined feedback requires 2.5n-bit XORs, which
could be improved further using a hybrid feedback HyFB, which results in a
hybrid of plaintext feedback and ciphertext feedback. Based on the HyFB feed-
back function, Chakraborti et al. in [5] proposed a rate-1 AE mode called HyENA,
that uses an n/2-bit auxiliary secret state, but significantly reduces the XOR
count from 2.5n-bit to 1.5n-bit. This seems to achieve the smallest footprint for
any rate 1 blockcipher based authenticated cipher owing to the fact that it re-
quires the optimal auxiliary state, optimal linear operations. The optimality of
the linear operations can be conjectured from the facts that (i) to implement a
feedback function that takes 2n-bit input and produces n-bit output, one needs
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at least n-bit binary operation, and (ii) XOR is one of the most simple oper-
ations, and hence n-bit XORs seem to achieve the trivial lower bound of any
feedback function.

1.2 Our Contribution

In this paper, we primarily focus on highly optimizing HyENA, i.e. significantly
minimizing the hardware footprint. To achieve the goal, we use a short tweak
tweakable blockcipher based on the well-known blockcipher GIFT [1] to propose a
tweakable variant of HyENA, dubbed as tHyENA. This new variant is structurally
much simpler and removes the redundant operations to reduce the hardware
footprint. tHyENA inherits all the desirable properties of HyENA: (i) single-pass
(one primitive call per data block), (ii) inverse-free (no need for blockcipher
decryption), (iii) extremely low state size and XOR count. Precisely, the use of
tweaks for the purpose of domain separation makes the construction simpler and
removes all the constant field multiplications making the mode even lighter. We
instantiate tHyENA with an ultra-lightweight short-tweak tweakable blockcipher
TweGIFT (designed over the blockcipher GIFT [1]). We also provide concrete
hardware implementation details of tHyENA. The hardware results depicts that
tHyENA with TweGIFT consumes the least hardware area among all the feedback
type (tweakable) block cipher based designs.

1.3 tHyENA in DSCI Light-weight Competition

In 2020, National CoE, the joint initiative of the Data security council of India
and the Ministry of Electronics and IT (MeitY), announced a lightweight cryp-
tography competition named “Lightweight Cipher Design Challenge 2020” [21].
One of the primary objectives of the challenge is to design new lightweight au-
thenticated ciphers, and the best designs will be considered for developing the
prototype for ready industry implementation. The algorithm tHyENA has been
nominated as one of the top three candidates in the challenge and has been
selected for the final round. Interestingly, the construction achieves the lowest
hardware footprint, making it to be the most light-weight design, in terms of
area, in the competition.

2 Preliminaries

For n ∈ N, we write {0, 1}∗ and {0, 1}n to denote the set of all binary strings
(including the empty string λ), and the set of all n-bit strings, respectively.
Throughout we fix even integer n as the block size in bits, and often refer to n-
bit strings as blocks. For all X ∈ {0, 1}∗, |X|, referred as the length of X, denotes
the number of bits in X. For any X ∈ {0, 1}n, XL and XR denote the most and
least significant n/2 bits of X, respectively. For all practical purposes, we use
the little endian format for representing binary strings, i.e., the least significant
bit is the right most bit. We use the notation ⊕ to denote binary addition. For
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two strings X,Y ∈ {0, 1}∗, X‖Y denotes the concatenation of X and Y . We use

the notation (X`−1, . . . , X0)
n← X to denote parsing of the string X into ` blocks

such that for 0 ≤ i ≤ ` − 2, |Xi| = n and 1 ≤ |X`−1| ≤ n. For any predicate E ,
the expression E?a : b evaluates to a if E is true, and b otherwise. For any binary
string X with |X| ≤ n, we define the padding function Pad as

Pad(X) =

{
X if |X| mod n = 0

0n−|X|−1‖1‖X otherwise.

For any binary string X, the truncate function Trunci(X) returns the least sig-
nificant i bits of X.

The set {0, 1}n/2 can be viewed as the finite field F2n/2 consisting of 2n/2 ele-
ments. We interchangeably think of an element A ∈ F2n/2 in any of the following
ways: (i) as an n/2-bit string an

2−1 . . . a1a0 ∈ {0, 1}n/2; (ii) as a polynomial

A(x) = an
2−1x

n/2−1 + an
2−2x

n
2−2 + · · ·+ a1x+ a0 over the field F2; (iii) a non-

negative integer a < 2n/2; (iv) an abstract element in the field. Addition in F2n/2

is just bitwise XOR of two n/2-bit strings, and hence denoted by ⊕. P (x) de-
notes the primitive polynomial used to represent the field F2n/2 , and α denotes
the primitive element in this representation. The multiplication of A,B ∈ F2n/2

is defined as A � B := A(x) · B(x) (mod P (x)), i.e. polynomial multiplication
modulo P (x) in F2.

For a finite set X , X ← X denotes the uniform at random sampling of X
from X . Let γ = (γ[1], . . . , γ[s]) be a tuple of equal-length strings. We define
mColl(γ) = m if there exist distinct i1, . . . , im ∈ [1..s] such that γ[i1] = · · · =
γ[im] and m is the maximum of such integer. We say that {i1, . . . , im} is an
m-multi-collision set for γ.
Tweakable Blockcipher: For n, τ, κ ∈ N, E-n/κ/τ denotes a tweakable block-
cipher family E, parameterized by the block length n, key length κ, and tweak
length τ . For K ∈ {0, 1}κ, T ∈ {0, 1}τ , and M ∈ {0, 1}n, we use ETK(M) :=
E(K,T,M) to denote invocation of the encryption function of E on key K,
tweak T , and input M .

2.1 Authenticated Encryption

An authenticated encryption (AE) is a symmetric-key primitive that provides
both data confidentiality (or privacy), and authenticity of the input plaintext.
Often, practical scenarios additionally require authenticity for some associated
data. In this case, we extend the ambit of AE to AE with associated data func-
tionality or AEAD, which guarantees privacy for the input message and authen-
ticity for the input message and associated data.

Formally, an AEAD scheme AE is a tuple of algorithms (Enc,Dec) defined
over the key space K, nonce space N , associated data space A, message and
ciphertext space M, and tag space T , where:

AE.Enc : K×A×N×M→M×T AE.Dec : K×N×A×M×T →M∪{⊥},
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and ⊥ denotes the error symbol indicating authentication failure.

The encryption function AE.Enc instantiated with key K ∈ K, takes a nonce
N ∈ N (which is usually a unique value for each invocation), an associated
data A ∈ A, and a plaintext M ∈M as input, and outputs a tagged-ciphertext
(C, T ) where |C| = |M |. The corresponding decryption function AE.Dec instan-
tiated with key K, takes (N ′, A′, C ′, T ′) ∈ N × A × M × T , and returns a
decrypted plaintext M ′ when (N,A,C, T ) authenticates successfully, and it re-
turns the error symbol ⊥ otherwise. For all key K ∈ K, we write AE.EncK(·, ·) :=
AE.Enc(K, ·, ·) and AE.DecK(·, ·, ·) := AE.Enc(K, ·, ·, ·). For correctness in de-
cryption, it is required that AE.Dec(K,N,A,AE.Enc(K,N,A,M)) = M for all
(K,N,A,M) ∈ K ×N ×A×M.

In addition to the block size n, we fix positive even integers κ and η to denote
the key size andnonce size, respectively, in bits. Throughout this document, we
fix n = 128, κ = 128, η = 96, and tag size = n.

2.2 Security Definitions

Adversary: A (q, t)-adversary A is an interactive algorithm with access to
an oracle, that runs in time at most t, and makes at most q oracle queries. By
convention, t = ∞ denotes computationally unbounded (information-theoretic)
and deterministic adversaries. Throughout, we make the plausible assumption
that the adversary is non-trivial, i.e., it never makes a duplicate query. Whenever,
the adversarial queries are allowed to be of arbitrary length, we parametrize the
adversary with additional parameters. For example, an adversary that makes
queries of length at most ` blocks, and total length of all queries at most σ blocks
is referred as (q, `, σ, t)-adversary. We write AO ⇒ x to denote the compound
operation: “adversary A outputs x after interacting with oracle O”.

Tweakable Blockcipher Security: The security of any tweakable block-
cipher family is formalized in terms of the notion of tweakable pseudorandom
permutation. Formally, the tweakable pseudorandom permutation or TPRP ad-
vantage of any adversary A against tweakable blockcipher E is defined as

Advtprp
E (A) :=

∣∣Pr[AEK ⇒ 1]− Pr[AΠ ⇒ 1]
∣∣ ,

where Π is a uniform at random tweakable permutation sampled from the set of
all tweakable permutations over {0, 1}n with tweak space {0, 1}τ . For ε ≥ 0, the
blockcipher E is called a (q, t, ε)-TPRP if

Advtprp
E (q, t) := max

A
Advprp

E (A) ≤ ε,

where the maximum is taken over all (q, t)-adversary.

AEAD Security: The security of any nonce-based AEAD scheme can be
modeled in terms of the NAEAD notion,. In this model, the adversary is nonce-
respecting, i.e., assuming single-key setting, no pair of distinct encryption queries
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share the same public nonce value. Formally, the NAEAD advantage of any
adversary A against AEAD scheme AE is defined as

Advnaead
AE (A) :=

∣∣∣Pr[AAE.EncK ,AE.DecK ⇒ 1]− Pr[A$,⊥ ⇒ 1]
∣∣∣ ,

where $ returns an independent and uniform at random string of length τ + |M |
for each queried message M . Note that, we overload the ⊥ notation to denote
the “always fail” oracle, which returns ⊥ in all cases, except when A makes a
query (N,A,C, T ), such that there exists an earlier query (N,A,M) to $ and
(C, T ) is the corresponding response, in which case the always fail oracle returns
M . For ε ≥ 0, the AEAD AE is called a (qe, qv, `e, `v, σe, σv, t, ε)-NAEAD if

Advnaead
AE (qe, qv, `e, `v, σe, σv, t) := max

A
Advnaead

AE (A) ≤ ε,

where the maximum is taken over all (qe, qv, `e, `v, σe, σv, t)-adversary, i.e., all
adversary A such that

• the number of encryption queries is bounded by qe; each encryption query
length is at most `e blocks; and the total length across all encryption queries
is at most σe blocks.
• the number of decryption queries is bounded by qv; each decryption query

length is at most `v blocks; and the total length across all decryption queries
is at most σv blocks.

In addition, we let q = qe + qv, ` = `e + `v and σ = σe + σv.

Note on AEAD Security Conventions: It is worth noting here that the NAEAD
security notion subsumes [14, 24] the conventional security notions such as pri-
vacy and integrity, and provides a combined and uniform security argument for
the concerned AEAD scheme. Although our security analysis will follow the
NAEAD notion, we briefly define the conventional notions as we present our
security claims in terms of the conventional notions.

Privacy Security: We define the privacy advantage of any adversary A
against AEAD scheme AE as

Advpriv
AE (A) :=

∣∣∣Pr[AAE.EncK = 1]− Pr[A$ = 1]
∣∣∣ .

Integrity Security: We say that any adversary A forges an AEAD scheme
AE, ifA is able to compute a tuple (N,A,C, T ) satisfying AE.DecK(N,A,C, T ) 6=
⊥, without querying (N,A,M) for some M to AE.EncK and receiving (C, T ),
i.e., (N,A,C, T ) is a non-trivial forgery. The forging advantage for A is defined
as

Advint-ctxt
AE (A) := Pr[AAE.EncK ,AE.DecK forges].

3 tHyENA Authenticated Encryption Mode

The tHyENA authenticated encryption mode receives an encryption key K ∈
{0, 1}κ, a nonce N ∈ {0, 1}r, an associated data A ∈ {0, 1}∗, and a message
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N E0
K HyFB E1

K HyFB E1
K HyFB E

2/3
K Y

A0

2∆

A1

22∆

Aa−1

2a∆

· · ·

Y HyFB E6
K E6

KHyFB HyFB E
7/8

K T

M0 C0 M1 C1 Mm−1 Cm−1

2a+1∆ 2a+2∆ 2a+m∆

· · ·

Fig. 1: tHyENA authenticated encryption mode for a block associated data and m
block message.

N E0
K HyFB E1

K HyFB E1
K HyFB E

4/5
K T

A0

2∆

A1

22∆

Aa−1

2a∆

· · ·

Fig. 2: tHyENA authenticated encryption mode for a block associated data and empty
message.

M ∈ {0, 1}∗ as inputs, and returns a ciphertext C ∈ {0, 1}|M | and a tag T ∈
{0, 1}n.

The decryption algorithm receives a key K ∈ {0, 1}κ, an associated data
A ∈ {0, 1}∗, a nonce N ∈ {0, 1}r, a ciphertext C ∈ {0, 1}∗ and a tag T ∈ {0, 1}n
as inputs and return the plaintext M ∈ {0, 1}|C|, corresponding to the ciphertext
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N E0
K HyFB E3

K Y

0n

2∆

Y HyFB E6
K E6

KHyFB HyFB E
7/8

K T

M0 C0 M1 C1 Mm−1 Cm−1

2a+1∆ 2a+2∆ 2a+m∆

· · ·

Fig. 3: tHyENA authenticated encryption mode for empty associated data and m block
message.

N E0
K HyFB E5

K T

0n

2∆

Fig. 4: tHyENA authenticated encryption mode for empty associated data and empty
message.

C, if the tag T authenticates. Complete specification of tHyENA is presented in
Algorithm 5 and the corresponding pictorial description can be found in Figure
1, 2, 3, 4. We use the same hybrid feedback function as defined in [5]. For
completeness, we have given the corresponding pictorial representation in Figure
6 and 7.
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Algorithm tHyENA-Enc(K,N,A,M)

1. Y ← E0
K(N)

2. ∆← YR

3. ∆← 2�∆
4. (Y,∆)← Proc-AD(Y,A)
5. if |M | 6= 0 then
6. (Y,C)← Proc-TXT(Y,∆,M,+)
7. T ← Y
8. return (C, T )

Algorithm tHyENA-Dec(K,N,A,C, T )

1. Y ← E0
K(N)

2. ∆← YR

3. ∆← 2�∆
4. (Y,∆)← Proc-AD(Y,A)
5. if |C| 6= 0 then
6. (Y,M)← Proc-TXT(Y,∆,C,−)
7. T ′ ← Y
8. if T ′ = T then return M
9. else return ⊥

Algorithm HyFB(Y,∆,M)

1. C ← Trunc|M|(Y )⊕M
2. M ← Pad(M), C ← Pad(C)
3. B ←

(
ML‖(CR ⊕∆)

)
4. X ← B ⊕ Y
5. return (X,C)

Algorithm HyFB−(Y,∆,C)

1. M ← Trunc|C|(Y )⊕ C
2. M ← Pad(M), C ← Pad(C)
3. B ←

(
ML‖(CR ⊕∆)

)
4. X ← B ⊕ Y
5. return (X,M)

Algorithm Proc-AD(Y,A)

1. if |A| = 0 then
2. (X, ?)← HyFB(Y,∆, 0n)
3. t← (|M | 6= 0)? 3 : 5
4. Y ← Et

K(X)
5. else
6. (Aa−1, . . . , A0)

n← A
7. for i = 0 to a− 2
8. (X, ?)← HyFB(Y,∆,Ai)
9. Y ← E1

K(X)
10. ∆← 2�∆
11. (X, ?)← HyFB(Y,∆,Aa−1)
12. t ← ((|M | 6= 0) and (|Aa−1| =

n))? 2 : 3 : 4 : 5
13. Y ← Et

K(X)
14. ∆← 2�∆
15. return (Y,∆)

Algorithm Proc-TXT(Y,∆,D, dir)

1. (Dd−1, . . . , D0)
n← D

2. for i = 0 to d− 2
3. if dir = + then
4. (X,Oi)← HyFB(Y,∆,Di)
5. else
6. (X,Oi)← HyFB−(Y,∆,Di)
7. ∆← 2�∆
8. Y ← E6

K(X)
9. if dir = + then

10. (X,Od−1)← HyFB(Y,∆,Dd−1)
11. else
12. (X,Od−1)← HyFB−(Y,∆,Dd−1)
13. t← (|Dd−1| = n)? 7 : 8
14. Y ← Et

K(X)
15. return (Y, (Od−1‖ . . . ‖O0))

Fig. 5: Formal Specification of tHyENA Authenticated Encryption and Decryption
algorithm. For any n-bit string S, we define SL (and SR) as the most (and least)

significant n/2 bits of S i.e. (SL, SR)
n/2← S. We use the notation ? to denote values

that we do not care.
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YL

YR

⊕ XL

ML CL

⊕ ⊕ XR

CR MR ∆

(a) HyFB+ module.

YL

YR

⊕ XL

ML CL

⊕ ⊕ XR

CR MR ∆

(b) HyFB- module.

Fig. 6: HyFB+ and HyFB- module of tHyENA for full data blocks.

YL

YR

⊕ XL

ML CL

Pad Trunc

⊕ XR

⊕ ⊕CR

MR

∆

b·cd·e

‖

10∗

(a) HyFB+ module.

YL

YR

XL

⊕ ⊕ML

CL

d·e b·c

‖

10∗

⊕ ⊕ XR

CR MR ∆

TruncPad

(b) HyFB- module.

Fig. 7: HyFB+ and HyFB- module of tHyENA for partial data blocks.

3.1 Features and Design Rationale

Here, we summarize the salient features and design rationale of tHyENA:

(i) Inverse-Free: tHyENA is an inverse-free authenticated encryption algo-
rithm. Both encryption and verified decryption of the algorithm do not require
any decryption call to the underlying block cipher. This reduces the overall hard-
ware footprint significantly, especially in the combined encryption-decryption
implementations.
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(ii) Optimal: tHyENA requires (a + m + 1) many block cipher invocations
to process an a block associated-data and m block message. In [6], it has been
shown that this is the optimal number of non-linear primitive calls required for
any nonce based authenticated encryption. This feature is particularly important
for short messages from the perspective of energy consumption, which is directly
dependent upon the number of non-linear6 primitive calls.

(iii) Low State-size: tHyENA requires a state size as low as 3n/2-bits along
with the key state.

(iv) Low XOR Count: To achieve optimal, inverse-free authenticated ciphers
with low state, a possible direction is to use the combined feedback approach
where (i) the previous block cipher output is XORed with the plaintext to gener-
ate the ciphertext, and (ii) the next block cipher input is defined as the XOR of
the plaintext with some linear function of the previous block cipher output. This
technique was used in the popular authenticated encryption mode COFB [9]. It
is easy to see that such combined feedback function require at least 2n bits of
XOR operations (when operated on n bit data), along with some additional
XOR operations required for the linear function mentioned above. On the con-
trary, in tHyENA, we use the concept of hybrid feedback or HyFB, where the
block cipher input is defined partially via ciphertext feedback and partially via
plaintext feedback. This reduces the number of the XOR operations to only n
bits.

(v) No Swap or Field Multiplication by 3 or 32: tHyENA does not re-
quire the constant field multiplications by 3 or 32, or the swap operation during
finalization, as required in HyENA. It uses the short tweaks efficiently to handle
all the necessary domain separations. This is extremely helpful in having very
low area footprint.

3.2 HyENA vs tHyENA

There are two significant changes in the tHyENA design over HyENA [5].

• The first significant difference between tHyENA and HyENA is that tHyENA
uses Tweakable Blockcipher (TBC) whereas HyENA uses Blockcipher (BC).
This change significantly optimizes the hardware area and throughput. It
also improves the proof structure (the proof is more well structured now).
• The second significant difference is the secret internal state update. We are

simplifying the secret state update and can reduce the update overheads
significantly by making the design more compact.

The above-mentioned modifications ensure that the new design tHyENA has the
following advantages over HyENA:

(i) First, HyENA uses 3 : 1 128-bit Multiplexors and other field multiplications
with 3 (68-bit XOR and 1-bit left) or 32 (uses field multiplication by 3 twice in

6 In general, non-linear primitives consume significantly more energy as compared to
linear counterparts
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sequence and this reduces the throughput) that acquire a significant amount of
hardware area and reduce the throughput. The main reason behind this usage
of multiplexors and field multiplication is the domain separation of the inputs
(that means, differentiating nonce, message, associated data, and the number of
data bits in the last input block for each data type). We use a novel technique
of using a TBC instead of a BC (and additional operations). Generally, in most
of the TBC-based algorithms, the tweak is used as a counter. In this design,
we take a completely different approach and we use the tweak to separate the
domains. In general, there are few domains in most of the designs and a small 4-
bit tweak is sufficient to separate the domains (e.g, the 4-bit tweak can separate
24 = 16 domains) and circuit area for tweak updates can be reduced a lot. In
tHyENA, we use a TBC that deals with small 4-bit tweaks and the area for this
tweak processing circuit is very small (only a few 4-bit XORs) as compared to
3 : 1 128-bit Multiplexors plus field multiplication by 3 or 32. This technique,
can significantly reduce the hardware area and increase the throughput a bit.

(ii) Second, using a TBC makes the design simpler and removes several avoid-
able operations (for example, constant field multiplications with 3 or 32, and the
swap operation can be avoided in tHyENA). This makes the construction cleaner,
more modular (e.g, we can now replace the blockcipher and several avoidable
operations with a simple TBC). The security proof is now much simpler, well
structured, and easily readable. To be precise, we adopt the Coefficient H tech-
nique for the security proof and HyENA has 8 bad cases to consider. However,
due to the simpler structure of tHyENA, we need only 3 bad cases for the security
proof of tHyENA.

3.3 Instantiation of tHyENA with TweGIFT

We instantiate tHyENA with tBC TweGIFT-128, or simply TweGIFT, the 128-bit
tweakable block cipher with 4-bit tweak and 128-bit key. As the name suggests,
it is a tweakable variant of the GIFT [1] block cipher. TweGIFT is composed of
40 rounds and each round is composed of five operations: SubCells, PermBits,
AddRoundKey, AddRoundConstant, and AddTweak. The first four operations are
identical to that of GIFT. In AddTweak, the 4-bit tweak is first expanded to a
32-bit value:

(x1, x2, x3, x4)→ (X,X,X,X) , X ← (x1, x2, x3, x4, S⊕x1, S⊕x2, S⊕x3, S⊕x4),

where S = x1⊕ x2⊕ x3⊕ x4. Then the 32-bit value is XORed to the state at an
interval of 5 rounds. Technically speaking, it adds the expanded 32-bit tweak to
bit positions 4i+ 3, i = 0 . . . 31. A detailed description can be found in [2].

4 On the Security of tHyENA Mode of Operation

In this section, we prove the NAEAD security of tHyENA in shape of the following
theorem.
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Theorem 1. Let Q = qe + σe + qv + σv. For Q ≤ 2
n
2−1, we have

Advnaead
tHyENA(qe, qv, `e, `v, σe, σv, t) ≤ Advtprp

E (Q, t′) +
2σe
2n/2

+
2σ2

e

2n
+
qv
2n

+
2nσv
2n/2

.

where t′ = t+O(Q).

Without loss of generality, we can assume that Q ≤ 2n/2−1, since otherwise
the result is vacuously true. First, we replace the block cipher EK with a uni-
form random tweakable permutation Π using the standard hybrid argument, and
then replace Π with a uniform random tweakable function Γ : {0, 1}τ×{0, 1}n →
{0, 1}n using the standard TRP-TRF switching lemma. The cost of these tran-
sitions is accounted in the first two terms of our bound. We will employ the
Coefficient-H technique for the rest of the proof. Before delving further into the
proof we briefly describe this technique in the next subsection.

4.1 Coefficient-H Technique

The coefficient-H technique by Patarin [22, 23] is a tool to upper bound the
distinguishing advantage of any deterministic and computationally unbounded
distinguisher A in distinguishing the real oracle R from the ideal oracle I. We
describe the technique in context of the NAEAD security game, i.e., we take
R = (AE.Enc,AE.Dec) and I = ($,⊥).

The collection of all queries and responses that A made and received to and
from the oracle is called the transcript of A, denoted as ω. Let Λre and Λid

denote the transcript random variable induced by A’s interaction with R and I,
respectively. Let Ω be the set of all transcripts. A transcript τ ∈ Ω is said to be
attainable if Pr[Λid = ω] > 0, i.e., it can be realized by A’s interaction with I.

Theorem 2. For ε1, ε2 ≥ 0, suppose there is a set Ωbad ⊆ Ω, that we call the
set of bad transcripts, such that the following conditions hold:

• Pr[Λid ∈ Ωbad] ≤ ε1; and
• For any τ /∈ Ωbad, τ is attainable and

Pr[Λre = τ ]

Pr[Λid = τ ]
≥ 1− ε2.

Then, for any computationally unbounded and deterministic distinguisher A, we
have

Advnaead
AE (A) ≤ ε1 + ε2.

We skip the proof of Theorem 2 as it is readily available in several previous
works including [11,18].

4.2 Notations and Initial Setup

Fix a (qe, qv, `e, `v, σe, σv,∞)-adversary A that interacts with either the real
oracle, i.e.,

R := (tHyENA.Enc, tHyENA.Dec),

or the ideal oracle, i.e., I := ($,⊥), making at most
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1. qe encryption queries (N+
i , A

+
i ,M

+
i )i=1..qe , each of length l+i ≤ `e, with an

aggregate of total σe many blocks, and
2. attempts to forge with qv many queries (N−i , A

−
i , C

−
i , T

−
i )i=1..qv , each of

length l−i ≤ `v, having a total of σv many blocks.

We assume that for 1 ≤ i ≤ qe, M+
i and A+

i have m+
i and a+i blocks respectively,

and for 1 ≤ j ≤ qv, C
−
j and A−j have m−j and a−j blocks respectively. So,

l+i = m+
i + a+i and l−j = m−j + a−j . We use the notation X,Y to denote the

intermediate variables. Let

(Si[0], Si[1], · · · , Si[l+i −1])← (A+
i [0], · · · , A+

i [a+i −1],M+
i [0], · · · ,M+

i [m+
i −1]).

Let (λ+i [j] : 1 ≤ i ≤ qe, 0 ≤ j ≤ l+i ) denote the tweak sequence in the encryption
queries. Similarly, we have the tweak sequence (λ−i [j] : 1 ≤ i ≤ qv, 0 ≤ j ≤ l−i ) in
the decryption queries. Note that, one can easily deduce these tweak sequences
just by observing the query inputs.

If bitwise representation of n-bit string G is (Gn−1 · · ·G0). Then for u > w,
we denote (Gu · · ·Gw) by Gu−w which is a u−w+ 1-bit substring of G from uth

bit to wth bit of G.

4.3 Overview of Attack Transcript

We begin with a description of the ideal oracle which consists of two phases.

• Online phase: For the ith encryption query (N+
i , A

+
i = (Ai[0], . . . , A+

i [ai−
1]),M+

i = (M+
i [0], . . . , M+

i [mi−1])), the oracle samples (Y +
i [a+i ], . . . , Y +

i [l+i ])←$

{0, 1}n(m+
i +1) independently. It next sets the tag T+

i = Y +
i [l+i ] and C+

i =
(C+

i [0], . . . , C+
i [m+

i − 1]) where C+
i [j] = Y +

i [j + a+i ] ⊕M+
i [j] for 0 ≤ j ≤

m+
i − 1 and returns (C+

i , T
+
i ) to A.

• Offline phase: After A makes all the queries the oracle samples other Y +

values as Y +
i [j]←$ {0, 1}n, for 0 ≤ j ≤ ai − 1.

For convenience, we slightly modify the experiment where we reveal to the
adversary A (after A made all its queries and obtains corresponding responses
but before it outputs its decision) the Y +-values and now the adversary can set
all intermediate values X+

i [j] using Si[j] and Y +
i [j]. Note that ∆+

i = bY +
i [0]c

and ∆−i = bY −i [0]c.
Overall, the transcript of the adversary ω := (ωe, ωv) be the list of queries and
responses of A that constitutes the query response transcript of A, where

• ωe = (N+
i , A

+
i ,M

+
i , X

+
i , Y

+
i , T

+
i )i=1..qe ,

• ωv = (N−j , A
−
j , C

−
j , T

−
j ,⊥)j=1..qv .

A prefix for a decryption query is defined as the common prefix blocks between
the decryption query input string and an encryption query (if any) output string
prepended with the nonce and the associated data. The length of the longest
common prefix for the ith decryption query is denoted as pi. Note that if the
decryption query uses a fresh nonce (not occurred during encryption queries),
then it does not share any common prefix with any of the encryption queries
then we set pi = −1.
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4.4 Identifying and Bounding Bad Events

We say that a transcript is bad if one of the following conditions is satisfied:

B1: mcoll(dX+e) > n, where dX+e := (dX+
i [j]e : 1 ≤ i ≤ qe, 1 ≤ j ≤ l+i ).

B2: there exists (i, j) 6= (i′, j′), such that, λ+i [j] = λ+i′ [j
′] ∧X+

i [j] = X+
i′ [j
′].

B3: there exists i, (i′, j′), such that, λ−i [pi+1] = λ+i′ [j
′]∧X−i [pi+1] = X+

i′ [j
′].

The following lemma bounds the probability of bad transcripts in ideal oracle.

Lemma 1. For σe ≤ 2
n
2−1, we have

Pr[Λid ∈ Ωbad] ≤
2σe
2n/2

+
2σ2

e

2n
+
nqv
2n/2

.

Proof. By definition of bad transcripts, we have

Pr[Λid ∈ Ωbad] = Pr[B1 ∨ B2 ∨ B3]

≤ Pr[B1] + Pr[B2] + Pr[B3|¬B1]. (1)

Now, we bound the probability terms on the right hand side one by one:

Bounding Pr[B1]: The event B1 is a multicollision event for uniformly chosen

n many n/2-bit strings out of σe many n/2-bit strings. As the Y +-values are
sampled uniformly and independently in the ideal game, we have,

Pr[B1] ≤
(
σe
n

)
2n/2(n−1)

≤
(

2σe
2n/2

)n
≤ 2σe

2n/2
. (2)

The last inequality follows from the assumption that σe ≤ 2
n
2−1.

Bounding Pr[B2]: For any (i, j) 6= (i′, j′), λ+i [j] = λ+i′ [j
′] and j, j′ > 0, we

have the following two possibilities:
(a) j < l+i , j

′ < l+i′ : for any (i, j) 6= (i′, j′),the event X+
i [j] = X+

i′ [j
′] is

nothing but two non-trivial linear equations. One is on dY +
i [j − 1]e &

dY +
i′ [j′ − 1]e and other is on δj � ∆+

i & δj′ � ∆+
i′ for some constants

δj & δj′ . For i 6= i′, we have dY +
i [j − 1]e, dY +

i′ [j′ − 1]e, ∆+
i and ∆+

i′

are independent and uniformly distributed. For i = i′, we have δj 6= δj′

and dY +
i [j−1]e, dY +

i′ [j′−1]e are independent and uniformly distributed.
Hence this event has probability at most 2−n. Therefore,

Pr[X+
i [j] = X+

i′ [j
′]] ≤ (σe − qe)2

2n
.

(b) j = l+i , j
′ = l+i′ : This can be handled in a similar manner as case (a). So,

we have

Pr[X+
i [j] = X+

i′ [j
′]] ≤ q2e

2n
.
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Therefore,

Pr[B2] ≤ (σe − qe)2 + q2e
2n

≤ 2σ2
e

2n
. (3)

Bounding Pr[B3|¬B1]: The condition ¬B1 implies that there are at most n

possible choices for (i′, j′) for any fixed choice of i′. Once we fix (i′, j′), we
get an equality relation in the least significant n/2 bits. Now, we have have
the following cases:
(a) pi = −1: This case is actually not possible. As λ−i [0] = λ+i′ [j] if and only

if j = 0. But N−i 6= N+
i′ (since pi = −1), whence X−i [0] 6= X+

i′ [j
′].

(b) 0 ≤ pi < l−i − 1: Since pi ≥ 0, we have N−i = N+
k for some k. Suppose

k 6= i′. Then we obtain a non-trivial linear equation on ∆+
i′ . Therefore,

the probability in this case is at most nqv
2n/2

. Now, suppose k = i′. Then

we must have j′ 6= pi + 1. Otherwise we get C−i [pi] = C+
k [pi] which con-

tradicts the definition of pi. Hence we get the probability at most qv
2n/2

.

(c) pi = l−i − 1: In this case, j′ must equal to l+i′ (as λ−i [pi + 1] = λ+i′ [j
′]).

Following similar line of argument as in case (b), we get a bound of nqv
2n/2

.

Pr[X−i [l−i ] = X+
i′ [j
′] ∧ ¬B1] ≤ nqv

2n/2
.

By accumulating all the cases above, we get

Pr[B3|¬B1] ≤ nqv
2n/2

. (4)

The result follows from Eq. (1)–(4).

4.5 Good Transcript Analysis

We fix ω ∈ Ωgood. Let ω = (ωe, ωv), where

ωe = (N+
i , A

+
i ,M

+
i , X

+
i , Y

+
i , T

+
i )i=1..qe ,

and
ωv = (N−i , A

−
i , C

−
i , T

−
i ,⊥)i=1..qv .

First, it is easy to see that

Pr[Λid = ω] = 1/2n(σe+qe) (5)

Next, we consider the real world. As ¬B2 holds, all the inputs of the tweakable
random function are distinct and hence all the Y +-values are independent and
uniformly distributed. Therefore, Pr[Λree = ωe] = 1

2n(σe+qe)
. Now, we have

Pr[Λre = ω] = Pr[(Λree,Λrev) = (ωe, ωv)]

= Pr[Λrev = ωv|Λree = ωe]× Pr[Λree = ωe]

=
1

2n(σe+qe)
× Pr[Λrev = ωv|Λree = ωe]

=
1

2n(σe+qe)
× (1− Pr[Λrev 6= ωv|Λree = ωe]) (6)
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Let E be the event that ∀1 ≤ i ≤ qv, pi + 1 < j ≤ l−i , X−i [j] = X+
i′ [j
′] and

λ−i [j] = λ+i′ [j
′] for some (i′, j′). Here we remark that, in case of HyENA one

needs to consider another type of collision, where X−i [j] = X−i [j′′] for some
j′ < j′′. However, this is not required in our case due to dedicated tweak for
tag generation. As the event ¬B3 holds for the good transcript, Y −i [pi + 1] is
uniformly random. Due to the property of feedback function, X−i [pi + 2] is also
uniformly random.
Now we need to calculate Pr[Λrev = ωv|Λree = ωe].

Pr[Λrev = ωv|Λree = ωe] = 1− Pr[Λrev 6= ωv|Λree = ωe]

= 1− (Pr[Λrev 6= ωv, E|Λree = ωe] + Pr[¬E|Λree = ωe])
(7)

Here, Pr[Λrev 6= ωv, E|Λree = ωe] is the probability that ∃1 ≤ i ≤ qv such that T−i
is correct. But T−i = Y −i [l−i ] and the event E implies that Y −i [l−i ] is uniformly
random. Hence Pr[Λrev 6= ωv, E|Λree = ωe] is the probability of guessing T−i
correctly. Therefore,

Pr[Λrev 6= ωv, E|Λree = ωe] ≤
qv
2n

(8)

Now, consider Pr[¬E|Λree = ωe]. The event ¬E can be described as: for all 1 ≤
i ≤ qv and pi+ 1 ≤ j ≤ l−i , X−i [j] = X+

i1
[j1] for some i1, j1. The event ¬B1 holds

for good transcripts. Hence (i1, j1) can take at most n values. Then for a fixed
i, we have

Pr[X−i [j] = X+
i1

[j1]] ≤ n.l−i
2n/2

. Since
∑

1≤i≤qv (l−i ) ≤ σv, summing over all 1 ≤ i ≤
qv, we have

Pr[Λrev 6= ωv,¬E|Λree = ωe] ≤
nσv
2n/2

(9)

From Eq. (5)-(9), we get

Pr[Λre = ω] ≥ 1

2n(σe+qe)
×
(

1− qv
2n
− nσv

2n/2

)
≥ Pr[Λid = ω]×

(
1− qv

2n
− nσv

2n/2

)
.

The result follows from Coefficient-H Theorem 2 in combination with Lemma 1.

A Note on the Security of TweGIFT. In our AEAD algorithm, we utilize
the tweakable pseudorandom permutation security of TweGIFT. Since TweGIFT
is an extension of GIFT-128 blockcipher – a well-known and studied cipher – it
benefits from the extensive analysis [13,17,25,27] already present for GIFT-128.
Indeed, for tweak value 0 (the setting for majority of TweGIFT calls made in our
algorithm), TweGIFT is exactly similar to GIFT-128 blockcipher, whence all the
cryptanalytic results directly translate to this case. In addition, TweGIFT-128
has also been analyzed as a dedicated tweakable blockcipher in [2–4].
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Table 1: Clock cycles per message byte for tHyENA

Message length (Bytes)
16 32 64 128 256 512 1024 2048 4096 16384 32768 262144

cpb 10.3125 6.469 4.547 3.586 3.105 2.865 2.745 2.685 2.655 2.633 2.629 2.625

5 Hardware Implementation Results

tHyENA aims to achieve a lightweight implementation on low resource devices.
tHyENA has a simple structure with a blockcipher and a few linear operations.
It has a small state size and the complete circuit size is dominated by the under-
lying blockcipher. In this section we provide hardware implementation details of
tHyENA instantiated with the GIFT blockcipher.

5.1 Clock Cycle Analysis

We provide a conventional way for speed estimation, i.e, the number of clock
cycles to process input bytes. Since tHyENA processes at least one associated
data (AD) block (one dummy block when AD is empty), we calculate the cpb
assuming one AD block and m message blocks. We use 40 round GIFT and need
40 cycles for the GIFT module. We use 2 more cycles to compute the feedback
and update the ∆ value. Overall, tHyENA needs (42(m+ 1)+ 81) cycles. Table 1
shows the number of average cycles per input message bytes, which we call cycles
per byte (cpb). The cpb is (42(m + 1) + 81)/16m and it converges to 2.625 for
very large m.

5.2 Hardware Architecture

tHyENA is based on E-t-M paradigm and the message blocks are processed along
with the associated data blocks to generate the ciphertext blocks and the tag.
We use the same circuit for both the associated data and ciphertext processing
as they are computed similarly. Only a change in the blockcipher tweak value for
the two types of input data is required to distinguish. We provide the hardware
architecture and briefly describe the individual components of this architecture.
For the sake of simplicity, we remove the control unit from Fig. 8 and present
a separate control unit in Fig. 9. The main components in the hardware circuit
are briefly described below.

State Registers. The hardware circuit consists of two registers. The primary
state register is used to store the internal state, this register is internally used by
the TweGIFT module. The ∆ register is used to store the ∆ value, this register
is internally used by the X2 module.

Module TweGIFT. The module TweGIFT is used to compute one round of the
underlying tweakable blockcipher. TweGIFT uses an n-bit internal register to
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Fig. 8: Hardware Architecture Diagram

hold the blockcipher internal state. This register is updated with a new state
value whenever the state is updated with the round function or other opera-
tions. TweGIFT also uses an internal control unit, that we are omitting from the
description for simplicity.

Other Modules. Apart from the above two main components, we have a ||
module that concatenates two strings into one, a SPLIT module that splits the
internal state into two parts, and X2 module that multiplies ∆ by 2. The SPLIT
module is mainly used in the hybrid feedback function.

Remark 1. (Combined Encryption and Decryption) In this implementation, we
mainly focus on a combined encryption-decryption circuit. We observe that we
can also implement encryption-only circuits even with a small decrease in hard-
ware area and with the same throughput.

5.3 Control Unit

We also describe the control unit in our implementation. We first list the control
signals and next we describe the states in the control unit.

� Data Signals. The hardware circuit uses several internal data signals con-
trolled by the finite state machine (FSM). The circuit uses the following signals.

• Start: This signal signifies the start of the circuit. This signal makes a
transition from the WAIT to the COMP EK(N) state.

• Rdy: This signal signifies the start of the corresponding module.
• Empty AD: This signal signifies whether the associated data is empty or

not.
• Last AD: This signal signifies whether the current associated data block is

the last or not.
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• Last Msg: This signal signifies whether the current message block is the
last or not.

� FSM. This module controls the hardware circuit for tHyENA. FSM generates
and controls signals to operate the state transitions. It generates and sends
signals to different modules and divides the functionalities of the circuit into
several states. This is depicted in Fig. 9. Note that, for the sake of simplicity
we omit the control unit of the TweGIFT module. This module uses its own
architecture and control unit.

RESET WAIT COMP_EK(N) PROCESS AD PROCESS MSG

EMPTY AD

TAG GEN

Start = 0 Rdy = 0 Empty AD = 0
and

Rdy = 1

Last AD = 0

Last AD = 1

Last Msg = 0

Empty AD = 1
and Rdy = 1

Rdy = 0

Rdy = 0

Start = 1

Fig. 9: Finite State Machine

• RESET: This state resetss all the circuit parameters.
• WAIT: This state signifies the start of the circuit. COMP EK(N). This

state corresponds to the first blockcipher call
• PROCESS AD: This state corresponds to the processing of the associated

data blocks.
• PROCESS MSG: This state corresponds to the processing of the message

blocks.
• EMPTY AD: This state signifies that the associated data is empty and

the control goes to the message processing phase.
• TAG GEN: This state corresponds to the tag generation phase and the

control goes to this state from the PROCESS MSG state after the last
message is processed.

Note that, for decryption, the process is the same, with just a few changes in
some control signals.

5.4 Implementation Results

We implement tHyENA on Virtex 7 (xc7v585tffg1761-3), using VHDL and VI-
VADO. The implementation follows the NIST LWC API. The result includes all
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Table 2: FPGA implementation results of tHyENA and HyENA

Design (Platform)
Slice

Registers LUTs Slices
Frequency

(MHz)
Throughput

(Gbps) Mbps/LUT Mbps/Slice
tHyENA (Virtex 7) 472 679 261 555 1.73 2.548 6.628
HyENA (Virtex 7) 470 725 280 555 1.73 2.386 6.179

the overheads caused by this API. Table 2 presents the implementation results.
We follow the RTL approach and a basic iterative type architecture with 128-bit
datapath. The areas are provided in the number of LUTs and slices. Frequency
(MHz), Throughput (Gbps), and throughput-area efficiencies are also reported
in addition to the hardware areas. Table 2 presents the mapped hardware results
of tHyENA.

We have also made our own implementation for the NIST submission HyENA
under the same setup and using the NIST LWC API. The results for HyENA is
given in Table 2 below. The results reveal that both tHyENA and HyENA achieve
the same frequency but tHyENA is significantly better than HyENA in hardware
area.

5.5 Benchmarking with Feedback Based Constructions

We benchmark our implemented results using the existing FPGA results (note
that, all the other benchmarking candidates are feedback-based similar as tHyENA)
on Virtex 7. We provide comparisons with the implementations from the refer-
ences cited in Table 3 below.

Table 3: Comparison of Lightweight Feedback based AE Modes on Virtex 7. ’-’ denotes
results not available.

Scheme Rate LUT Slices T’put (GBps) Mbps / LUT Mbps / Slice

tHyENA-TweGIFT128 1 679 261 1.73 2.548 6.628

HyENA-GIFT128 1 725 280 1.73 2.386 6.179
COFB[GIFT] [8, 10] 1 771 316 2.230 2.892 6.623

COFB[GIFT]-CAESAR-API [8, 10] 1 1041 355 1.164 1.174 2.604
COFB[AES] [8, 10] 1 1440 564 2.933 2.031 5.191

COFB[AES]-CAESAR-API [8, 10] 1 1496 579 2.747 1.842 4.395
ESTATE-TweGIFT128 [4] 1/2 681 263 0.84 1.23 3.20

SUNDAE-GIFT128 [4] 1/2 931 310 0.84 0.90 2.71
CLOC-AES [15] 1/2 3145 891 2.996 0.488 1.724

CLOC-TWINE [15] 1/2 1689 532 0.343 0.203 0.645
CLOC-AES-Optimized [15, 16] 1/2 - 595 0.695 - 1.17

SILC-AES [15] 1/2 3066 921 4.040 1.318 4.387
SILC-LED [15] 1/2 1685 579 0.245 0.145 0.422

SILC-PRESENT [15] 1/2 1514 548 0.407 0.269 0.743
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Mridul Nandi, and Yu Sasaki. INT-RUP secure lightweight parallel AE modes.
IACR Trans. Symmetric Cryptol., 2019(4):81–118, 2019.

4. Avik Chakraborti, Nilanjan Datta, Ashwin Jha, Cuauhtemoc Mancillas-López,
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