
Elastic-Tweak: A Framework for Short Tweak
Tweakable Block Cipher

Avik Chakraborti1, Nilanjan Datta2, Ashwin Jha3, Cuauhtemoc Mancillas
Lopez4, Mridul Nandi5, Yu Sasaki6

1 University of Exeter, UK
2 Institute for Advancing Intelligence, TCG CREST, Kolkata, India

3 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
4 Computer Science Department, CINVESTAV-IPN, Mexico

5 Indian Statistical Institute, Kolkata, India
6 NTT Secure Platform Laboratories, Japan

avikchkrbrti@gmail.com, nilanjan.datta@tcgcrest.org, ashwin.jha@cispa.de,

cuauhtemoc.mancillas83@gmail.com, mridul.nandi@gmail.com,

sasaki.yu@lab.ntt.co.jp

Abstract. Tweakable block cipher (TBC), a stronger notion than stan-
dard block ciphers, has wide-scale applications in symmetric-key schemes.
At a high level, it provides flexibility in design and (possibly) better secu-
rity bounds. In multi-keyed applications, a TBC with short tweak values
can be used to replace multiple keys. However, the existing TBC con-
struction frameworks, including TWEAKEY and XEX, are designed for
general purpose tweak sizes. Specifically, they are not optimized for short
tweaks, which might render them inefficient for certain resource con-
strained applications. So a dedicated paradigm to construct short-tweak
TBCs (tBC) is highly desirable. In this paper, as a first contribution,
we present a dedicated framework, called the Elastic-Tweak framework
(ET in short), to convert any reasonably secure SPN block cipher into
a secure tBC. We apply the ET framework on GIFT and AES to con-
struct efficient tBCs, named TweGIFT and TweAES. These short-tweak
TBCs have already been employed in recent NIST lightweight competi-
tion candidates, LOTUS-LOCUS and ESTATE. As our second contribu-
tion, we show some concrete applications of ET-based tBCs, which are
better than their block cipher counterparts in terms of key size, state
size, number of block cipher calls, and short message processing. Some
notable applications include, Twe-FCBC (reduces the key size of FCBC
and gives better security than CMAC), Twe-LightMAC Plus (better rate
than LightMAC Plus), Twe-CLOC, and Twe-SILC (reduces the number of
block cipher calls and simplifies the design of CLOC and SILC).

Keywords: TBC, GIFT, AES, TWEAKEY, XEX, ESTATE, LOTUS-LOCUS

1 Introduction

Since their advent in late 1970’s, block ciphers [1,2] have become the ubiquitous
building blocks in various symmetric-key cryptographic algorithms, including

encryption schemes [3], message authentication codes (MACs) [4], and authenti-
cated encryption [5]. Due to their wide-scale applicability, block ciphers are also
the most well-analyzed symmetric-key primitives. As a result, the cryptographic
community bestows a high degree of confidence in block cipher based designs.
Block cipher structures are more or less well formalized and there are formal
ways to prove the security of a block cipher against the classical linear [6] and
differential [7] attacks. The literature is filled with a plethora of block cipher
candidates, AES [2] being the most notable among them. AES is currently the
NIST standard block cipher [2], and it is the recommended choice for several
standardized encryption, MAC and AE schemes such as CTR [3], CMAC [4],
AES-GCM [8] etc. A recent block cipher proposal, named GIFT [9] has generated
a lot of interest due to its ultra-lightweight nature.

1.1 Some Issues in Block Cipher Based Designs

Key Size of Designs: Several designs use more than one independent block
cipher keys, which could be an issue for storage constrained applications. Some
notable examples of such designs are sum of permutations [10, 11], EDM [12],
EWCDM [12], CLRW2 [13], GCM-SIV-2 [14], Benes construction [15]. While some
of these designs have been reduced to single key variants, reducing a multi-keyed
design to single-key design is, in general, a challenging problem.

Auxiliary Secret State: FCBC, a three-key MAC by Black and Rogaway
[16], is a CBC-MAC type construction. CMAC [4], the NIST recommended MAC
design, reduces number of keys from three to one by using an auxiliary secret
state (which is nothing but the encryption of zero block). Though CMAC is
NIST recommended MAC design, it costs an extra block cipher call (compared
to FCBC) and holds an additional state. This may be an issue in hardware
applications, where area and energy consumption are very crucial parameters.
Further FCBC [17, 18] allows more number of queries per key, as compared to
CMAC [19].

Simplicity of Designs: Design simplification, is a closely related topic to
the single-keyed vs. multi-keyed debate. A simple design could be beneficial for
real life applications, and better understanding of designs themselves. Often,
the single-keyed variant of a block cipher based design is much more complex
than the multi-keyed version, both in implementation and security analysis. This
is due to the several auxiliary functions used chiefly for domain separation. For
instance CLOC and SILC [20] use several functions depending upon the associated
data and message length. In contrast, the multi-keyed variants of CLOC and SILC
would be much simpler.

Short Message Processing: An essential requirement in lightweight appli-
cations is efficient short input data processing, while minimizing the memory
consumption and precomputation. In use cases with tight requirements on delay
and latency, the typical packet sizes are small (way less than 1 Kilobytes) as
large packets occupy a link for longer duration, causing more delays to subse-
quent packets and increasing latency. For example, Zigbee, Bluetooth low energy

2

and TinySec [21] limit the maximum packet lengths to 127 bytes, 47 bytes and
128 bytes, respectively. Similarly, CAN FD [22], a well-known transmission pro-
tocol in automotive networks, allows message length up to 64 bytes. The packet
sizes in EPC tag [23], which is an alternate to the bar code using RFID, is
typically 12 bytes.

Cryptographic designs with low latency for shorter messages could be highly
beneficial for such applications. As it turns out, for many designs short message
performance is not that good due to some constant overhead. For instance CMAC
uses one block cipher call to generate a secret state, and SUNDAE [24] uses the
first call of block cipher to distinguish different possibilities of associated data
and message lengths. So, to process a single block message, SUNDAE requires
two block cipher calls. CLOC and SILC [20] have similar drawbacks. They cost
2 and 4 calls to process a single block message. LightMAC Plus [25], feeds a
counter-based encoded input to the block cipher, which reduces the rate.7

1.2 Motivation of short-tweak TBC

Tweakable Block Ciphers: The Hasty Pudding cipher [26], an unsuccess-
ful candidate for AES competition, was one of the first tweakable block ciphers.8

Later, Liskov et al. in formalized this in their foundational work on tweakable
block ciphers [27]. Tweakable block ciphers (TBCs) are more versatile and find a
broad range of applications, most notably in authenticated encryption schemes,
such as OCB [28], COPA [29], and Deoxys [30]; and message authentication codes,
such as ZMAC [31], NaT [32], and ZMAC+ [33]. TBCs can be designed from
scratch [26, 34, 35], or they can be built using existing primitives like block ci-
phers, and public permutations. LRW1, LRW2 [27], CLRW2 [13], XEX [36] and
XHX [37] are some examples of the former category, whereas Tweakable Even-
Mansour [32] is an example of the latter.

Tweakable block cipher can actually solve most of the aforementioned issues
in block ciphers quite easily. A secure TBC with distinct tweaks is actually
equivalent to independently keyed instantiations of a secure block cipher. This
naturally gives a TBC based single-keyed design for any block cipher based
multi-keyed design. For example, one can use this equivalence to define a single-
keyed version of FCBC which is as secure as FCBC. This resolves the issues with
CMAC. In some cases, TBCs can also avoid the extra block cipher calls. It also
helps to simplify designs like CLOC and SILC.

In all these cases, we observe that a short tweak space (in most of the cases
2-bit or 4-bit tweaks) is sufficient. In other words, a short-tweak tweakable block
cipher (in short we call tBC) would suffice for resolving these issues. An tBC is
better than large tweak TBCs in two respects: (i) state size for holding tweak is
small, and most importantly (ii) tBC would potentially be more efficient than
large tweak TBCs.

7 No. of message blocks processed per block cipher call.
8 It used the term “spice” for tweaks.

3

The TWEAKEY Framework: At Asiacrypt ’14, Jean et al. presented a generic
framework for TBC construction, called TWEAKEY [38], that considers the
tweak and key inputs in a unified manner. Basically, the framework formalized
the concept of tweak-dependent keys. The TWEAKEY framework gave a much
needed impetus to the design of TBCs, with several designs like Kiasu [39], De-
oxys [30], SKINNY and Mantis [40] etc. As TWEAKEY is conceptualized with
general purpose tweak sizes in mind, it is bit difficult to optimize TWEAKEY
for tBC. For instance, take the example of SKINNY-128. To process only 4-bit
tweak, the additional register is limited but their computation modes must move
from TK1 to TK2, which increases the number of rounds by 8. This in turn af-
fects the throughput of the cipher. Although, some TWEAKEY-based designs,
especially Kiasu-BC [39] do not need additional rounds, yet this is true in most of
the existing TWEAKEY-based designs. We also note here that Kiasu-BC, which is
based on AES, is weaker than AES by one round, as observed in several previous
cryptanalytic works [41–43].

So, there is a need for a generic design framework for tBC, which (i) can
be applied on top of a block cipher, (ii) adds minimal overheads, and (iii) is as
secure as the underlying block cipher.

XE and XEX: Rogaway [36], proposed two efficient ways of converting a block
cipher into a tweakable block cipher, denoted by XE and XEX. These methods
are widely used in various modes such as PMAC [44], OCB [45], COPA [29],
ELmD [46] etc. However, XE and XEX have several limitations with respect to
a short tweak space, notably (i) security is limited to birthday bound, and (ii)
precomputation and storage overhead to generate the secret state. In addition,
it also requires to update the secret state for each invocation, which might add
some overhead.

1.3 Our Contributions

Our main contributions can be divided into two parts:

1. Elastic-Tweak Framework: In this work, we address the above issues
and propose a generic framework, called the Elastic-Tweak framework (ET in
short), to transform a block cipher into a short tweak TBC. We consider “short
tweaks” of size less than equal to 16 bits and greater than equal to 4 bits.
This small size ensures that the tweak storage overhead is negligible. In this
framework, given the block cipher, we first expand the short tweak using linear
code, and then inject the expanded tweak at intervals of some fixed number of
rounds, say r. Designs under this framework can be flexibly built over a secure
block cipher, and are as secure as the underlying block cipher.

The ET framework distributes the effect of the tweak into the block cipher
state that can generate several active bytes. In particular we choose a linear code
with high branch number to expand the input tweak. This design is particularly
suitable for short tweaks to ensure the security against differential cryptanalysis
because the small weight of the short input always results in a large weight of
the output.

4

Another advantage of the framework is the easiness of the security evaluation.
First, for zero tweak value, the plaintext-ciphertext transformation is exactly the
same as the original cipher (i.e. it has backward compatibility feature). There-
fore, to evaluate the security of the new construction, we only need to consider
the attacks that exploit at least one non-zero tweak. Second, the large weight of
the expanded tweak ensures relatively high security only with a small number
of rounds around the tweak injection. This allows a designer to focus on the se-
curity of the r-round transformation followed by the tweak injection and further
followed by the r-round transformation, which is called “2r-round core.”

We instantiate this framework with several designs over two well known block
ciphers AES [2] and GIFT [9] with different tweak sizes varying from 4 to 16.
Several of these candidates have already been extensively analyzed in [47,48] in
terms of security and performance due to their use in NIST lightweight compe-
tition candidates, LOTUS-LOCUS [49] and ESTATE [50]. However, we refer the
full version [51] for the thorough security analysis (Sect 4, [51]) and performance
evaluation (Sect 3.4 and Appendix C, [51]).

2. Applications of tBC: Here we demonstrate the applicability of tBC in
various constructions:
1. Reducing the Key Size in Multi-Keyed Modes: The primary applica-

tion of tBC is to reduce the key space of several block cipher based modes
that use multiple independently sampled keys. We depict the applicability
of tBC on FCBC MAC, Double Block Hash-then-Sum (DbHtS) paradigm,
Sum of permutations, EDM, EWCDM, CLRW2, GCM-SIV-2 and the Benes
construction.

2. Efficient Processing of Short Messages: tBC can be used to reduce the
number of block cipher calls, which in turn reduces the energy consumption
for short messages. We take the instance of Twe-LightMAC Plus to demon-
strate this application of tBC. Twe-LightMAC Plus achieves a higher rate
as compared to it’s original counterpart LightMAC Plus. In addition, the
number of keys is reduced from 3 to 1. However, this is also applicable to
Twe-CLOC and Twe-SILC (tBC based counterparts of CLOC and SILC [20]
respectively).

3. Replacement for XE and XEX. tBC can be viewed as an efficient replace-
ment of XE and XEX especially when we target short messages (say of size
up to 1 MB). In such cases, instead of using a secret state (that we need
to precompute, store and update), one can simply use tBC with the block-
counters as the tweak. The applicability of this paradigm can be depicted
on several MAC modes such as PMAC; encryption mode such as COPE and
AEAD modes such as ELmD, COLM.
In addition to the above applications, we show that tBCs can also simplify

the internal structures of various block cipher based authenticated encryption
modes. For example, CLOC, SILC use several auxiliary functions mainly for do-
main separation. We propose tBC-based variants for these, named Twe-CLOC
and Twe-SILC, which simplify the original designs (by cleaning up the auxiliary
functions) and reduces the number of block cipher calls. These in turn help in

5

reducing the area of hardware implementation, and significantly increasing the
throughput for short messages.

2 Preliminaries

Notations: For n ∈ N, [n] denotes the set {1, . . . , n}, and {0, 1}n denotes the
set of all n-bit binary strings. We use {0, 1}+ to denote the set of all non-empty
binary strings. ⊥ denotes the empty string and {0, 1}∗ = {0, 1}+ ∪{⊥}. For any
string X ∈ {0, 1}n, |X| denotes the number of bits in X, and for i ∈ [|X|], xi
denotes the i-th significant bit (x|X| being the most significant bit). For X ∈
{0, 1}+ and n ∈ N, (X)[`] := (X1, . . . , X`)

n← X, denotes the n-bit block parsing
of X into (X)[`], where |Xi| = n for [` − 1], and X` ∈ [n]. For k ≤ n ∈ N, and
X ∈ {0, 1}n, bXck := X1 . . . Xk. The expression a ? b : c evaluates to b if a is
true and c otherwise.

For n,m ∈ N, Perm(n) denotes the set of all permutations over {0, 1}n, and
Func(m,n) denotes the set of all functions from {0, 1}m to {0, 1}n. For n, κ ∈ N,
TPerm(κ, n) denotes the set of all families of permutations Pk := P (k, ·) ∈
Perm(n) indexed by k ∈ {0, 1}κ. By extending notation, we use TPerm(κ, τ, n)
to denote the set of all families of permutations Pk,t ∈ Perm(n), indexed by
(k, τ) ∈ {0, 1}κ × {0, 1}τ .

(Tweakable) Block Cipher: A block cipher with key size κ and block size
n is a family of permutations E ∈ TPerm(κ, n). For a fixed key k ∈ {0, 1}κ,
we write Ek(·) = E(k, ·), and its inverse is written as E−1k (·). A tweakable block
cipher with key size κ, tweak size τ , and block size n is a family of permutations
E ∈ TPerm(κ, τ, n). For a fixed key k ∈ {0, 1}κ and tweak t ∈ {0, 1}τ , we write
Etk(·) = E(k, t, ·), and its inverse is written as E−tk (·). Throughout this paper we
fix κ, τ, n ∈ N as the key size, tweak size, and block size, respectively, of the
given (tweakable) block cipher.

2.1 Security Definitions

(Tweakable) Random Permutation and Random Function: For any
finite set X , X←$X denotes uniform and random sampling of X from X .

We call Π←$ Perm(n) a (uniform) random permutation, and Π̃←$ TPerm(τ, n)
a tweakable (uniform) random permutation on tweak space {0, 1}τ and block

space {0, 1}n. Note that, Π̃i is independent of Π̃j for all i 6= j ∈ {0, 1}τ . We call
Γ←$ Func(m,n) a (uniform) random function from {0, 1}m to {0, 1}n.

We say that a distinguisher is “sane” if it does not make duplicate queries,
or queries whose answer is derivable from previous query responses. Let A(q, t)
denote the class of all sane distinguishers, limited to at most q queries and t
computations.

Tweakable Strong Pseudorandom Permutation (TSPRP): The TSPRP

advantage of any distinguisher A against Ẽ instantiated with key K←$ {0, 1}κ,

6

is defined as

Advtsprp

Ẽ
(A) :=

∣∣∣Pr[AẼ±K = 1]− Pr[AΠ̃± = 1]
∣∣∣ .

The TSPRP security of Ẽ, is defined as

Advtsprp

Ẽ
(q, t) := max

A
Advtsprp

Ẽ
(A). (1)

TPRP or tweakable pseudorandom permutation and its advantage Advtprp

Ẽ
(q, t)

is defined similarly when adversary has no access of the inverse oracle.

Pseudorandom Function (PRF): The PRF advantage of distinguisher A
against a keyed family of functions F := {FK : {0, 1}m → {0, 1}n}K∈{0,1}κ is
defined as

Advprf
F (A) :=

∣∣∣∣ Pr
K←$ {0,1}κ

[AFK = 1]− Pr[AΓ = 1]

∣∣∣∣ .
The PRF security of F against A(q, t) is defined as

Advprf
F (q, t) := max

A
Advprf

F (A). (2)

The keyed family of functions F is called weak PRF family, if the PRF security
holds when the adversary only gets to see the output of the oracle on uniform
random inputs. This is clearly a weaker notion than PRF. We denote the weak
prf advantage as Advwprf

F (q, t).

IV-Based Encryption: An IV-Based Encryption ivE scheme is a tuple Ψ :=
(K,N ,M,Enc,Dec). Encryption algorithm Enc takes a key K ∈ K and a message
M ∈ M and returns (iv, C) = Enc(K,M), where iv ∈ N is the initialization
vector and C ∈ M is the ciphertext. Decryption algorithm Dec takes K, iv, C
and returns M = Dec(K, iv, C). Correctness condition says that for all K ∈ K
and M ∈ M Dec(K,Enc(K,M)) = M . The Priv$ advantage [14, 52–54] of A is
defined as

Advpriv$
ivE (A) :=

∣∣∣Pr
K

[
AEncK = 1

]
− Pr

Γ

[
AΓ = 1

]∣∣∣
where K←$K and Γ is a random function fromM→N×M. The Priv$ security
of ivE, is defined as

Advpriv$
ivE (q, t) := max

A
Advpriv$

ivE (A). (3)

(Nonce-Based) Authenticated Encryption with Associated Data: A
(nonce-based) authenticated encryption with associated data or NAEAD scheme
A consists of a key space K, a (possibly empty) nonce space N , a message space
M, an associated data space A, and a tag space T , along with two functions
Enc : K×N ×A×M→M×T , and Dec : K×N ×A×M×T →M∪ {⊥},
with the correctness condition that for any K ∈ K, N ∈ N , A ∈ A,M ∈ M, we

7

must have Dec(K,N,A,Enc(M)) = M . When the nonce space is empty, we call
the AE scheme a deterministic AE or DAE scheme.

Following the security definition in [14,52–54], we define the NAEAD (DAE
for deterministic AE) advantage of A as

Advae
A (A) :=

∣∣∣Pr
K

[
AEncK,DecK = 1

]
− Pr

Γ

[
AΓ,⊥ = 1

]∣∣∣,
where K←$K and Γ is a random function from N ×A×M→M×T , and ⊥ is
the reject oracle that takes (N,A,C, T) as input and returns the reject symbol
⊥. The NAEAD/DAE security of A, is defined as

Advae
A (q, t) := max

A
Advae

A (A). (4)

3 The Elastic-Tweak Framework

In this section, we introduce the Elastic-Tweak framework (illustrated in Figure
3.1) on SPN based block ciphers that allows one to efficiently design tweakable
block ciphers with short tweaks. As the name suggests, Elastic-Tweak refers to
elastic expansion of short tweaks and we typically consider tweaks of size less
than or equal to 16 bits. Using this framework, one can convert a block cipher
to a short tweak tweakble block cipher denoted by tBC. We briefly recall the
SPN structure on which this framework would be applied. An SPN block cipher
iterates for rnd many rounds, where each round consists of three operations:
(a) SubCells (divides the state into cells and substitutes each cell by an s-bit

S-box which is always non-linear),
(b) LinLayer (uses a linear mixing layer over the full state to create diffusion),

and
(c) AddRoundKey (add a round keys to the state).

The basic idea of the framework is to expand a small tweak (of size t) using
a suitable linear code of high distance and then the expanded tweak (of size
te) is injected (i.e. xored) to the internal block cipher state affecting a certain
number of S-boxes (say, tic). We apply the same process after every gap number
of rounds. An important feature of tBC is that it is implemented using very
low tweak state and without any tweak schedule (only tweak expansion). In the
following, we describe the linear code to expand the tweak and how to inject
the tweak into the underlying block cipher state. If BC denotes the underlying
SPN block cipher, we denote the tweakable block cipher as Twe BC [t, te, tic, gap]
where t, te, tic, gap are suitable parameters as described above.

3.1 Exp: Expanding the Tweak

In this section, we describe our method to expand the tweak T of t bits to an
expanded tweak Te of te bits. We need the parameters to satisfy the following
conditions:
(a) te is divisible by 2t and tic. Let w := te/tic, the underlying word size.

8

(b) w divides t and w ≤ s.
The tweak expansion, called Exp, follows an “Expand then (optional) Copy”
style as follows:

(i) Let τ := t/w, and we view T = (T1, . . . , Tτ) as a 1 × τ vector of elements
from F2w . We expand T by applying a [2τ, τ, τ]-linear code9 over F2w with
the generating matrix Gτ×2τ = [Iτ : Iτ ⊕Jτ], where Iτ is the identity matrix
of dimension τ and J is the all 1 square matrix of dimension τ over F2w .
Let T ′ = T · G be the resultant code. Note that, T ′ can be computed as
S ⊕ T1‖ · · · ‖S ⊕ Tτ where S = T1 ⊕ · · · ⊕ Tτ .

(ii) Finally, we compute the expanded tweak by concatenating te/2t many copies
of T ′ i.e.

Te = T ′‖ · · · ‖T ′.

Note that, Te can be viewed as an application of [tic, τ, tic/2]-linear code on
T . The main rationale behind the choice of this expansion function is that it
generates high distance codes (which is highly desired from the cryptanalysis
point of view) with a low cost (only (2τ − 1) addition over F2w is required).

ExpT
Te

Tweak Expansion and Injection

TeTe Te

P ⊕

RK0

f . . . ⊕

RKgap

f . . . f ⊕

RK2·gap

f f. . . ⊕

RKb rnd−1
gap c.gap

. . . f ⊕

RKrnd

C

Fig. 3.1: Elastic-Tweak Construction.

3.2 Injecting Expanded Tweak into Round Functions

Note that the expanded tweak can be viewed as Te,1‖ · · · ‖Te,tic where each Te,i is
of size w-bits and w ≤ s. Now we xor these tweak in addition to the round keys
in tic number of S-boxes. The exact choices of S-box would be design specific so
that the diffusion due to tweak difference is high.

The tweak injection is optional for each round, the tweak injection starts
from round start and it is injected at an interval of gap rounds and stops at
round end. To be precise, we inject tweak at the round number start, start +
gap , start + 2.gap , . . . , end. To have a uniformity in the tweak injection rounds,
we typically choose start = gap and inject the tweaks at an interval of gap rounds.
This implicitly sets end = gap.b rnd−1

gap c.

9 An [n, k, d]-linear code over a field F is defined by a k × n matrix G called the
generator matrix over F such that for all nonzero vectors v ∈ Fk, v ·G has at least
d many nonzero elements.

9

Function Exp[te, w](T)

1. τ ← |T |
w

2. Te ← φ

3. (T1, T2, . . . , Tτ)
w← T

4. T ′ ← T‖(T ⊕ T · Jτ)

5. for i = 1 to te/2t

6. Te ← Te‖T ′

7. return Te

Algorithm tBC [te, tic, gap](X,K, T)

1. w ← te/tic

2. Te ← Exp[te, w](T)

3. for i = 1 to rnd

4. X ← SubCells(X)

5. X ← LinLayer(X)

6. (K,X)← AddRoundKey(K,X, i)

7. if i % gap = 0 and i < rnd

8. AddTweak[tic](X,Te)

9. return X

Fig. 3.2: Function Exp and tBC. Here, AddTweak[tic](X,Te) represents the xoring
tweak in to the state of the block cipher.

Requirements from Twe BC. We must ensure Twe BC should have same
security level as the underlying block cipher.

From the performance point of view, our target is to obtain the above men-
tioned security

“minimizing te (signifies the area) and te.b rnd−1gap c (signifies the energy).”

Features of Twe BC.
1. Our tBC is applied to any SPN based block ciphers.
2. Due to linear expansion of tweak, tBC with zero tweak turns out to be same

as the underlying block cipher (note that we keep same number of rounds
as the block cipher). This feature would be useful to reduce overhead due to
nonzero tweak. Later we see some applications (e.g., application on FCBC)
where the nonzero tweaks is only applied to process the last block.

3.3 Tweakable GIFT and AES

In this section, we provide various instantiation of tBC built upon the two pop-
ular block ciphers GIFT and AES. We are primarily interested on tweak size
4, 8, 16, and hence considered t ∈ {4, 8, 16}.

Instantiation of tBC with 4 bit Tweak. All the recommendations with 4-bit
tweaks have extremely low overhead over the original block cipher and they can
be ideal for reducing multiple keys scheme to an equivalent single key scheme
instance with a minuscule loss in efficiency. Detailed description can be found in
Sect. 4.

(i) GIFT-64[4, 16, 16, 4]. In this case the tweak is expanded from 4 bits to 16 bits
and the expanded tweak is injected at bit positions 4i+ 3, for i = 0 , . . . , 15.

10

(ii) GIFT-128[4, 32, 32, 5]. Here we expand the 4 bit tweak to 32 bits and the
expanded tweak is injected at bit positions 4i+ 3, for i = 0 , . . . , 31.

(iii) AES[4, 8, 8, 2]. Here we expand the 4 bit tweak to 8 bits and the expanded
tweak is injected at the least-significant bits of each of the 8 S-Boxes in the
top two rows.

Instantiation of tBC with 8 and 16 bit Tweak. tBC with tweak size of
8/16-bits are ideal for replacing the length counter bits (or masking) used in
many constructions. Detailed description can be found in Sect. 4.

(i) AES[8, 16, 8, 2]. For 8 bit tweak, we only use AES. The tweak is first extended
to 16 bits and the tweak is injected at the two least-significant bits of each
of the 8 S-Boxes in the top two rows.

(ii) GIFT-128[16, 32, 32, 4]. Here we expand the 16 bit tweak to 32 bits and the
expanded tweak is injected at bit positions 4i+ 3, for i = 0 , . . . , 31.

(iii) AES[16, 32, 8, 2]. Here we expand the 16 bit tweak to 32 bits and expanded
tweak is injected at the four least-significant bits of each of the 8 S-Boxes in
the top two rows.

Cryptanalysis of the proposed candidates: A detailed security analysis
of all the proposed candidates is given in Sect 4 in the full version [51]. We
remark that several of these candidates have already been analyzed in [47–50].

Performance: Sect 3.4 and Appendix C in the full version [51] summarize
the hardware and software performance of all the proposed candidates.

4 Applications of Short-Tweak Tweakable Block Ciphers

In this section, we present some use cases where an efficient tBC would be
beneficial.

4.1 Reducing the Key Size in Multi-Keyed Modes of Operation

Several block cipher based modes of operation employ a block cipher with mul-
tiple independently sampled keys. In general, this is done either to boost the
security, or to simplify the analysis of the overall construction. The number
of keys can be naturally reduced to a single key by replacing the multi-keyed
block cipher with a single keyed tBC where distinct tweaks are used to simulate
independent block cipher instantiations. Proposition 1 below gives the theoret-
ical justification for this remedy. The proof is obvious from the definitions of
(tweakable) random permutation.

11

Proposition 1. For some fixed t ∈ N, and k ∈ [2t]. Let (Π1, . . . ,Πk)←$ (Perm[n])k

and Π̃←$ TPerm[t, n]. Let OΠ;k and OΠ̃;k be two oracles giving bidirectional ac-

cess to (Π1, . . . ,Πk), and (Π̃1, . . . , Π̃k), respectively. Then, for all distinguisher
A, we have

∆A(OΠ;k;OΠ̃;k) :=
∣∣∣Pr[AOΠ;k = 1]− Pr[AOΠ̃;k = 1]

∣∣∣ = 0.

Now, we demonstrate the utility of this idea through some examples.

FCBC MAC: FCBC mode is a 3-key message authentication code, by Black
and Rogaway [16], which is defined as follows:

Σ := EK0

(
Mm−1 ⊕ EK0

(
Mm−2 ⊕ EK0

(
· · · ⊕ (M2 ⊕ EK0(M1))

)))
,

FCBC[E](M) := EKt
(
Σ ⊕ ozp(Mm)

)
, where t← (|Mm| = n)? 1 : 2.

FCBC has not received much appreciation in its existing 3-key form, even though
it offers better security, O(q2/2n + q`2/2n + q2`4/22n) in [17, 18, Theorem 3
and Remark 5], than CMAC [4, 55], O(q2`/2n + q2`4/22n) in [19, Theorem 4.6].
Quantitatively, the number of queries per key increases from 23n/8 to 2n/2 for
message lengths up to 2n/4 blocks. This is mainly due to presence of three keys
which not only costs keys size of the algorithm but it requires to run three key
scheduling algorithms. Keeping these in mind, we define Twe-FCBC, as follows:

Σ := Ẽ0
K

(
Mm−1 ⊕ Ẽ0

K

(
Mm−2 ⊕ Ẽ0

K

(
· · · ⊕ (M2 ⊕ Ẽ0

K(M1))
)))

,

Twe-FCBC[Ẽ](M) := ẼtK
(
Σ ⊕ ozp(Mm)

)
, where t← (|Mm| = n)? 1 : 2.

It is clear that Twe-FCBC is a variant of FCBC, that follows the principle es-
tablished in Proposition 1, and replaces the 3 block ciphers EK0

, EK1
, EK2

with

Ẽ0
K , Ẽ1

K and Ẽ2
K , respectively. Using Proposition 1 and [18, Theorem 3 and Re-

mark 5], we get the PRF security for Twe-FCBC in a straightforward manner in
Proposition 2.

Proposition 2. Assuming all queries are of length ` ≤ 2n/4, and σ ≤ q`, we
have

Advprf

Twe-FCBC[Ẽ]
(t, q, σ) ≤ Advtprp

Ẽ
(t′, σ) +O

(
q2

2n

)
.

Clearly, Twe-FCBC has two major advantages over CMAC- (i) no need to hold
an additional state for final message block masking, (ii) security bound is free of
length factor for all reasonably sized messages (close to 6 Gigabyte for a 128-bit
block cipher). In addition, Twe-FCBC can also avoid the additional block cipher
call used to generate the masking. Due to backward compatibility, except the
last block we have used the original block cipher. So the performance overhead
due to nonzero tweak only applies to the last block cipher call. This features
ensures to get similar performance (or even better) for long message.

12

Double Block Hash-then-Sum: The very basic version of Double-block
Hash-then-Sum or DbHtS [56], is defined as below

DbHtS(M) := EK1(Σ)⊕ EK2(Θ),

where H is a 2n-bit output hash function, (Σ,Θ) := HL(M), and L,K1,K2 are all
sampled independently. DbHtS is a generic design paradigm that captures several
popular BBB secure MACs such as PMAC Plus, LightMAC Plus, SUM ECBC and
3kf9. Using a tBC, the two block cipher keys can now simply be replaced by a
single tweakable block cipher key and two distinct tweaks. Formally, we define
Twe-DbHtS as follows

Twe-DbHtS(M) := Ẽ1
K(Σ)⊕ Ẽ2

K(Θ).

Moreover, one can also generate the dedicated hash key using the tweak-
able block cipher key itself. Suppose the hash function is block cipher based,
then the tBC key can be used along with a different tweak to replace the
dedicated hash key. In all other cases, the hash key can be derived as L :=
(Ẽ0
K(0)‖Ẽ0

K(1)‖ · · · ‖Ẽ0
K(h − 1)), where |L| = hn. Since Ẽ0

K(i)’s are sampled in

without replacement manner, this adds an additional factor of h2

2n due to the
PRP-PRF switching, which can be ignored for small h. One can easily verify
that due to Proposition 1, the result on DbHtS [56, Theorem 2.(iii)] also applies
to Twe-DbHtS. Formally, the security of Twe-DbHtS is given by Proposition 3.

Proposition 3.

Advprf

Twe-DbHtS[H,Ẽ]
(q, `, t) ≤ 2Advtprp

Ẽ
(2q, t′) + Advprf

C∗3 [H,π0,π1,π2]
(q, `, t).

In this way, we have one-key versions of different well known designs PMAC Plus,
LightMAC Plus, SUM ECBC, 3kf9 etc. We note that one key version of PMAC Plus
based on solely block cipher has been proposed [57]. However, one key version
of the other designs either are not known or it can be shown to be secure up to
the birthday bound.10

Sum of Permutations: The sum of permutations is a popular approach of
constructing an n-bit length preserving PRF. Given 2 independent instantia-
tions, EK0 and EK1 , of a secure block cipher over {0, 1}n, the sum of permu-
tations, denoted XOR2, is defined by the mapping x 7→ EK0(x) ⊕ EK1(x). The
XOR2 construction has been proved to be n-bit secure [11]. There is a single
key variant of XOR2, but it sacrifices one bit (i.e. defined from {0, 1}n−1 to
{0, 1}n) for domain separation. Instead, we can use a tBC to simply replace
the two block cipher keys with one tBC key and two distinct tweaks. We define
Twe-XOR2(x) := Ẽ0

K(x)⊕ Ẽ1
K(x). Again combining Proposition 1 with [11, The-

orem 4], we obtain

10 1kf9 is proposed in the ePrint version [58], which later found to be attacked in
birthday complexity [59].

13

Proposition 4. For q ≤ 2n−4,

Advprf
Twe-XOR2(t, q) ≤ Advtprp

Ẽ
(t′, q) + (q/2n)1.5.

Tweaking Various Other Constructions: In the following list, we apply
similar technique as above to several other constructions with multiple keys.
The security of all the tBC-based variants is similar to the multi-key original
constructions, so we skip their explicit security statements.
1. Encrypted Davis Meyer (EDM) [12]: EDM uses two keys and obtains

BBB PRF security. We define the tBC-based variant as follows:

Twe-EDM(x) := Ẽ1
K(Ẽ0

K(x)⊕ x).

2. Encrypted Wegman Carter Davis Meyer (EWCDM) [12]: EWCDM is
a nonce-based BBB secure MAC that requires two block cipher keys and a
hash key. The tBC-based variant of EWCDM is defined as:

Twe-EWCDM(N,M) := Ẽ2
K

(
Ẽ1
K(N)⊕N ⊕HẼ0

K(0)(M)
)
.

3. Chained LRW2 (CLRW2) [13]: The CLRW2 construction is a TBC that
achieves BBB TSPRP security using two independent block cipher keys and
two independent hash keys. We define a tBC-based variant of CLRW2 as
follows:

Twe-CLRW2(M,T) := Ẽ2
K

(
Ẽ1
K(M ⊕ hL1

(T))⊕ hL1
(T)⊕ hL2

(T)
)
⊕ hL2

(T),

where L1 and L2 can be easily derived using Ẽ with dedicated independent
tweaks. It is easy to see that one can easily extend the idea to obtain single
keyed CLRWr [60] using r distinct tweaks.

4. GCM-SIV-2 [14]. GCM-SIV-2 is an MRAE scheme with 2n/3-bit security.
However, it requires 6 independent block cipher keys along with 2 indepen-
dent hash keys. We can easily make it single keyed using a tBC:

V1 := HẼ0
K(0)(N,A,M) , V2 := HẼ0

K(1)(N,A,M)

T1 := Ẽ1
K(V1)⊕ Ẽ2

K(V2) , T2 := Ẽ3
K(V1)⊕ Ẽ4

K(V2),

Ci := Mi ⊕ Ẽ5
K(T1 ⊕ i)⊕ Ẽ6

K(T2 ⊕ i).

Extending the same approach, one can get a single keyed version of GCM-SIV-ras
well.

5. The Benes Construction [15]: The Benes construction is a method to
construct 2n-bit length preserving PRF construction with n-bit security that
uses 8 independent n bit to n bit PRFs. Formally,

L′ := f1(L)⊕ f2(R)

R′ := f3(L)⊕ f4(R)

Benes(L,R) := (f5(L′)⊕ f6(R′), f7(L′)⊕ f8(R′)).

14

Now these fi functions can be constructed using sum of two permutations,
however that would essentially require 16 block cipher keys. With a tBC, we
can reduce the number of keys to one by instantiating fi := Ẽ2i

K ⊕ Ẽ2i+1
K for

each i ∈ [8].

4.2 Efficient Processing for Short Messages

In energy constrained environments, reducing the number of primitive invoca-
tions is crucial, as for short messages, this reduction leads to efficient energy
consumption. The tBC framework can be used to reduce the number of primi-
tive invocations for many existing constructions such as LightMAC Plus [61].

LightMAC Plus is a counter-based PMAC Plus in which 〈i〉m‖Mi is input to
the i-th keyed block cipher call, where 〈i〉m is the m-bit binary representation
of i and Mi is the i-th message block of n −m bits. The counters ensure that
there is no input collision, which indirectly helps in negating the influence of
`. LightMAC Plus has been shown to have O(q3/22n) PRF security. However, it
has two shortcomings: (i) it requires 3 keys, and (ii) it has rate 1−m/n which
increases the number of block cipher calls. This is highly undesirable in low
memory and energy constrained scenarios.

To resolve these shortcomings specifically for short to moderate length mes-
sages (slightly less than 1 Megabyte), we propose Twe-LightMAC Plus, which can
be viewed as an amalgamation of LightMAC Plus [61] and PMACx [33]. The key

M1

E2
K

⊕

M2

E3
K

⊕

M`

E`+1
K

⊕· · ·0

⊕ � �⊕ ⊕· · ·0

2 2
E0

K

E1
K

Σ

Θ
⊕ T

1

Fig. 4.1: Twe-LightMAC construction.

idea is to use the block counters as tweak in hash layer, while having distinct
tweaks for the finalization. The pictorical description of the algorithm is given in
Fig. 4.1. It is easy to see that Twe-LightMAC Plus is single-keyed and it achieves
rate 1. This reduces the number of block cipher calls by up to 50% for short
messages, which has direct effect on reducing the energy consumption. We claim
that Twe-LightMAC Plus is as secure as LightMAC Plus. Formally, we have the
following security result. We note that similar improvements can also be applied
to PMAC, PMAC Plus.

15

Proposition 5. For q ≤ 2n−1,

Advprf

Twe-LightMAC Plus[Ẽ]
(t, q, `) ≤ Advtprp

Ẽ
(t′, q`) +O

(
q3

22n

)
.

Proof. Twe-LightMAC Plus is an instance of Twe-DbHtS, and hence offers similar
security. The security bound of Twe-DbHtS includes a term

Advprf
C∗3 [H,π0,π1,π2]

(q, `, t)

from [56]. One can verify from [56, Proof of Theorem 2.(iii)], that this term is
predominantly bounded by two probabilities:

1. Pr[∃ distinct i, j, k such that Σi = Σj , Θi = Θk].
2. Pr[∃ distinct i, j such that Σi = Σj , Θi = Θj].

Now the hash layer of Twe-LightMAC Plus is exactly same as the PHASHx of [33].
Using similar arguments as in [33, Proof of Theorem 1] it can be shown that 1.
is upper bounded by O(q3/22n), and 2. is upper bounded by O(q2/22n). The
result follows by combining 1 and 2. ut

4.3 A Note on tBC’s Advantages over XE and XEX

The XE and XEX modes, by Rogaway [36], are two reasonably efficient ways
of converting a block cipher into a tweakable block cipher. These methods are
widely used in various modes such as PMAC [44], OCB [45], COPA [29], ELmD [46]

etc. The XE scheme to generate a TBC Ẽ from a BC E is defined as

XE : Ẽi1,··· ,itK (M) := EK(∆⊕M)

where ∆ = αi11 · · ·αitt · L. Here L is generally an n-bit secret state, which is
generated using block cipher call.11 It is sufficient for us to compare XE and
tBC, as XEX is much similar to XE. Now one may think of using XE instead
of tBC to convert multi-keyed modes to single-keyed mode, as above. But in
comparison to tBC, XE lacks two important features:

1. Degradation to Birthday Bound Security: XE (and XEX) is proved
to be birthday bound secure TBC mode. This is not a big issue for birthday
secure multi-keyed modes. In fact, the CMAC mode can be viewed as an
example that uses the XE mode, much in the same way as Twe-FCBC uses
tBC. However, if we use XE in multi-keyed applications such as DbHtS or
XOR2, the security of these constructions would degrade to birthday bound.
So, we cannot use XE or XEX, in a black box fashion, to instantiate the
tweakable variants, without a significant degradation in the security of the
modified mode. In contrast, tBC directly works on the block cipher level,
and hence does not suffer from such degradation unless the block cipher is
itself weak.

11 Alternative constructions to define ∆ can be found in [62,63].

16

2. Additional Computational and Storage Overheads: The XE mode
requires, precomputation of the secret state L, (ii) an additional block ci-
pher invocation to generate L, and (iii) an additional storage to store L.
This cannot be neglected in constrained computation and communication
environments, as mentioned earlier. On the other hand, the tBC framework
incurs far less overheads. In this respect, one can easily define simple tBC-
variants of PMAC [36] (based on XE), COPE [29] (based on XEX), COLM [64]
(XE like processing) etc. much along the same line as Twe-LightMAC Plus.

5 Simplification of Authenticated Encryption Schemes

In this section, we demonstrate some AE schemes that achieve a combination of
advantages discussed in section 4.

5.1 Twe-CLOC and Twe-SILC

We propose tBC variant for CLOC and SILC, called Twe-CLOC and Twe-SILC, re-
spectively. CLOC and SILC are nonce-based authentication encryption (NAEAD)
modes, which aim to optimize the implementation overhead beyond the block ci-
pher calls, the precomputation complexity, and the memory requirement. CLOC
is suitable for uses in embedded processors, and SILC aims to optimize hard-
ware implementation cost. Our choices of CLOC and SILC are motivated by two
factors (see subsection 5.2 below): design simplification and reduction in block
cipher calls.

The three tBC variants are described in Fig. 5.1. We have made minimal
changes in the original schemes. CLOC and SILC employ Encrypt-then-PRF
paradigm and use a variant of CFB [3] mode in its encryption part and a variant
of FCBC in the authentication part.

CFB(V,M, t)

1. M1‖ · · · ‖Mm ←M

2. C1 ← V ⊕M1

3. for i = 2 to m

4. Ci ← bẼ tK(Ci−1)c|Mi| ⊕Mi

5. return (C1‖ · · · ‖Cm)

ivFCBC(T,D, t0, t1, t2)

1. D1‖ · · · ‖Dd ← D

2. for i = 1 to d− 1

3. T ← Ẽ
t0
K (T ⊕Di)

4. t← (|Dd| = n)? t1 : t2

5. T ← Ẽ tK
(
T ⊕ pad(Dd)

)
6. return T

Twe-SILCK(N,A,M)

1. T ← ivFCBC(0n, N‖A, 0, 0‖1, Len‖1)
2. C ← CFB(T,M, 0‖2)
3. T ← ivFCBC(0, C, 1, 0‖3, Len‖0)
4. return (C, T)

Twe-CLOCK(N,A,M)

1. T ← ivFCBC(T,A‖N, 0, 1, 2)
2. C ← CFB(T,M, 3)

3. T ← ivFCBC(0, C, 4, 5, 6)

4. return (C, T)

Fig. 5.1: Encryption and algorithm of Twe-SILC and Twe-CLOC. pad uses 10∗

padding for Twe-CLOC and 0∗ padding for Twe-SILC.

17

5.2 Features of the Proposed AE Schemes

The proposed tBC-based AE schemes offer two added features over the existing
block cipher based schemes.

Design Simplification: Twe-CLOC and Twe-SILC simplifies their respective
original algorithms very efficiently. CLOC and SILC require several linear func-
tions (f , g1, g2, h1, h2 for CLOC and g for SILC) for domain separations and bit
fixing operations. Twe-CLOC and Twe-SILC perform all the domain separations
by using distinct tweaks, which significantly simplifies the design.

Table 5.1: Comparison between the number of (tweakable) block cipher invoca-
tions for original CLOC and SILC, and their tBC counterparts. Here a, and m
denote the length of associated data and plaintext, respectively.

Modes No. of BC calls No. of tBC calls
a 6= 0 a = 0 a 6= 0 a = 0

CLOC a+ 2m+ 1 2m+ 2 a+ 2m 2m

SILC a+ 2m+ 3 2m+ 2 a+ 2m 2m

Energy Efficient for Short Inputs: Apart from the simplification of
the original designs, the proposed AE schemes offer another advantage over
the non-tweaked versions. They require lesser number of block cipher calls for
shorter/empty AD or message processing, which essentially makes them more
efficient in terms of energy consumption. The number of block cipher invocations
required to process an associated data of a blocks and message of m blocks are
given in Table 5.1. As seen from the table, SILC requires 4 block cipher calls to
process 1 block AD and empty message, Twe-SILC requires only 1 block cipher
call.

5.3 Security of the Proposed AE Schemes

Twe-CLOC and Twe-SILC are in essence just the multi-key variants of CLOC and
SILC, respectively. So, intuitively they should be at least as secure as the original
modes, and the security argument for these schemes is relatively easier than the
original schemes. We show in Proposition 6 that our intuitions are correct to a
large extent. For the sake of simplicity, we refrain from giving exact bounds, and
instead give the asymptotic expressions.

We first look at the abstract design paradigm behind Twe-CLOC and Twe-
SILC, which is the so-called Encrypt-then-PRF, or EtPRF.

The EtPRF Paradigm: EtPRF [53, Construction A5] is a design paradigm
to construct NAEAD schemes. It is composed of three stages (illustrated in
Figure 5.2): a random IV generator, G that generates iv using the nonce N
and (possibly) the AD A; an IV-based encryption phase, ivE that generates
the ciphertext C using iv as the random IV; and a tag-generation phase, F
that generates the tag on the input N,A,C. Formally, for key space K × L the
encryption algorithm of EtPRF is defined by the following mapping

(K,L,N,A,M) 7→ ivE(K,N,A,M)
∥∥F (L,N,A, ivE(K,N,A,M)) ,

18

for all (L,K,N,A,M) ∈ L × K × A ×M. Here, C := ivE(K,N,A,M) ∈ M,
and T := F(L,N,A,C) ∈M. Note that, for the sake of simplicity we subsumed
the G function within the ivE phase. In [53], Namprempre et al. showed that the
NAEAD security of an EtPRF scheme, A, given by:

Advae
A (q, `, σ) ≤ Advprf

F (q, `, σ) + Advprf
G (q, `, σ) + Advpriv$

ivE (q, `, σ), (5)

where PRIV denotes the Priv$ security (see section2.1).

ivEK [G] FL

M A N

C T

Fig. 5.2: The EtPRF paradigm based on an IV-based encryption scheme ivE for
the encryption phase, and a PRF F for the tag generation phase. The [G] denotes
that ivE internally uses G to generate the random IV.

In case of both Twe-CLOC and Twe-SILC, G and F are variants of Twe-
FCBC, and hence can be shown to have O(σ2/2n) PRF security [16]. ivE phase
is an instance of the CFB mode with random IV, which has been shown to have
O(σ2/2n) security in [65]. Hence, by substituting the relevant bounds in Eq. (5),
we get the following security result for Twe-CLOC and Twe-SILC.

Proposition 6. The security of Twe-CLOC and Twe-SILC is given by:

Advae
Twe-CLOC[Ẽ]

(t, q, `, σ) ≤ Advtprp

Ẽ
(t′, q`) +O(

σ2

2n
),

Advae
Twe-SILC[Ẽ]

(t, q, `, σ) ≤ Advtprp

Ẽ
(t′, q`) +O(

σ2

2n
).

where t, q, `, σ denote the computational time, query bound, maximum query
length, and the total number of tBC calls across all encryption and decryption
queries, respectively.

Remark 1. The security of CLOC and SILC do not follow from Eq. (5), in a
straightforward way, as the tag generation and encryption share the same key.

6 Further Applications and Future Directions

We think that tBC can have several other applications. For instance, consider
a scenario where two multiple algorithms are running on the same platform,
sharing the same secret key. We could find several examples where such an
arrangement could be vulnerable. For example, consider a scenario where AES-
GCM and AES-CMAC are running on the same device, sharing the same secret

19

key. Now, it is easy to see that, an adversary can trivially forge a tag for AES-
CMAC using an encryption query on AES-GCM. tBC can efficiently take care of
such problems by separating these algorithms using different tweak values, i.e.
unique tweak values for each of these algorithms.

We have defined the Elastic-Tweak framework for SPN based block ciphers.
Extending this further for ARX based constructions could be an interesting
problem. Also, it would be interesting to see designs for short-tweak tweakable
public permutations, which might have strong impact on the simplification of
permutation based constructions such as Sponge, Beetle, Minalpher etc.

Acknowledgements. The authors would like to thank all the anonymous re-
viewers of Indocrypt 2021 for their valuable comments. Prof. Mridul Nandi is
supported by the project “Study and Analysis of IoT Security” by NTRO un-
der the Government of India at R.C.Bose Centre for Cryptology and Security,
Indian Statistical Institute, Kolkata. Dr. Ashwin Jha’s work was carried out in
the framework of the French-German-Center for Cybersecurity, a collaboration
of CISPA and LORIA.

References

1. NIST: Data Encryption Standard (AES). FIPS Publication (Withdrawn) 46-3
(1999)

2. 197, N.F.: Advanced Encryption Standard (AES). Federal Information Processing
Standards Publication 197 (2001)

3. Dworkin, M.: Recommendation for Block Cipher Modes of Operation: Methods
and Techniques. NIST Special Publication 800-38A (2001) National Institute of
Standards and Technology.

4. Dworkin, M.: Recommendation for Block Cipher Modes of Operation – Methods
and Techniques. NIST Special Publication 800-38A, National Institute of Stan-
dards and Technology, U. S. Department of Commerce (2001)

5. Dworkin, M.: Recommendation for Block Cipher Modes of Operation: The CCM
Mode for Authentication and Confidentiality. NIST Special Publication 800-38C
(2004) National Institute of Standards and Technology.

6. Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Advances in Cryp-
tology - EUROCRYPT ’93, Proceedings. (1993) 386–397

7. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. In:
Advances in Cryptology - CRYPTO ’90, Proceedings. (1990) 2–21

8. Dworkin, M.: Recommendation for Block Cipher Modes of Operation: Ga-
lois/Counter Mode (GCM) and GMAC. NIST Special Publication 800-38D (2007)
National Institute of Standards and Technology.

9. Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo, Y.: GIFT: A
Small Present - Towards Reaching the Limit of Lightweight Encryption. In: CHES
2017. Proceedings. (2017) 321–345

10. Patarin, J.: Security in O(2n) for the Xor of Two Random Permutations - Proof
with the standard H technique -. IACR Cryptology ePrint Archive 2013 (2013)
368

20

11. Dai, W., Hoang, V.T., Tessaro, S.: Information-Theoretic Indistinguishability via
the Chi-Squared Method. In: Advances in Cryptology - CRYPTO 2017. Proceed-
ings, Part III. (2017) 497–523

12. Cogliati, B., Seurin, Y.: EWCDM: An Efficient, Beyond-Birthday Secure, Nonce-
Misuse Resistant MAC. In: CRYPTO 2016, Proceedings, Part I. (2016) 121–149

13. Landecker, W., Shrimpton, T., Terashima, R.S.: Tweakable Blockciphers with
Beyond Birthday-Bound Security. In: Advances in Cryptology - CRYPTO 2012.
Proceedings. (2012) 14–30

14. Iwata, T., Minematsu, K.: Stronger Security Variants of GCM-SIV. IACR Cryp-
tology ePrint Archive 2016 (2016) 853

15. Patarin, J.: A Proof of Security in O(2n) for the Benes Scheme. In: Progress in
Cryptology - AFRICACRYPT 2008. (2008) 209–220

16. Black, J., Rogaway, P.: CBC MACs for Arbitrary-Length Messages: The Three-Key
Constructions. J. Cryptology 18(2) (2005) 111–131

17. Jha, A., Nandi, M.: Revisiting Structure Graphs: Applications to CBC-MAC and
EMAC. J. Mathematical Cryptology 10(3-4) (2016) 157–180

18. Jha, A., Nandi, M.: Revisiting Structure Graph and Its Applications to CBC-MAC
and EMAC. IACR Cryptology ePrint Archive 2016 (2016) 161

19. Nandi, M.: Improved Security Analysis for OMAC as a Pseudorandom Function.
J. Mathematical Cryptology 3(2) (2009) 133–148

20. Iwata, T., Minematsu, K., Guo, J., Morioka, S., Kobayashi, E.: CLOC and
SILC. Submission to CAESAR (2016) https://competitions.cr.yp.to/round3/
clocsilcv3.pdf.

21. Karlof, C., Sastry, N., Wagner, D.: TinySec: A Link Layer Security Architecture
for Wireless Sensor Networks. In: Proceedings of Embedded Networked Sensor
Systems. SenSys ’04, ACM (2004) 162–175

22. 11898, I.: CAN FD Standards and Recommendations https://www.can-cia.org/
news/cia-in-action/view/can-fd-standards-and-recommendations/2016/9/

30/.
23. EPCglobal: Electronic Product Code (EPC) Tag Data Standard (TDS). Technical

Report http://www.epcglobalinc.org/standards/tds/.
24. Banik, S., Bogdanov, A., Luykx, A., Tischhauser, E.: SUNDAE: Small Universal

Deterministic Authenticated Encryption for the Internet of Things. IACR Trans-
actions on Symmetric Cryptology 2018(3) (Sep. 2018) 1–35

25. Luykx, A., Preneel, B., Tischhauser, E., Yasuda, K.: A MAC Mode for Lightweight
Block Ciphers. In: FSE 2016. (2016) 43–59

26. Schroeppel, R.: The Hasty Pudding Cipher. Submitted candidate for AES (1998)
27. Liskov, M., Rivest, R.L., Wagner, D.A.: Tweakable Block Ciphers. In: CRYPTO

2002. (2002) 31–46
28. Krovetz, T., Rogaway, P.: The Software Performance of Authenticated-Encryption

Modes. In: FSE. (2011) 306–327
29. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E., Yasuda,

K.: AES-COPA v.2. Submission to CAESAR (2015) https://competitions.cr.

yp.to/round2/aescopav2.pdf.
30. Jean, J., Nikolić, I., Peyrin, T.: Deoxys v1.41. Submission to CAESAR (2016)

https://competitions.cr.yp.to/round3/deoxysv141.pdf.
31. Iwata, T., Minematsu, K., Peyrin, T., Seurin, Y.: ZMAC: A Fast Tweakable Block

Cipher Mode for Highly Secure Message Authentication. In: Advances in Cryptol-
ogy - CRYPTO ’17. Proceedings, Part III. (2017) 34–65

32. Cogliati, B., Lampe, R., Seurin, Y.: Tweaking Even-Mansour Ciphers. In:
CRYPTO 2015. Proceedings, Part I. (2015) 189–208

21

33. List, E., Nandi, M.: ZMAC+ - An Efficient Variable-output-length Variant of
ZMAC. IACR Trans. Symmetric Cryptol. 2017(4) (2017) 306–325

34. Crowley, P.: Mercy: A Fast Large Block Cipher for Disk Sector Encryption. In:
Fast Software Encryption – FSE 2000. Proceedings. (2000) 49–63

35. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas,
J., Walker, J.: The Skein Hash Function Family. In: Submission to NIST (round
3), 7(7.5):3. (2010)

36. Rogaway, P.: Efficient Instantiations of Tweakable Blockciphers and Refinements
to Modes OCB and PMAC. In: Advances in Cryptology - ASIACRYPT 2004.
Proceedings. (2004) 16–31

37. Jha, A., List, E., Minematsu, K., Mishra, S., Nandi, M.: XHX - A Framework for
Optimally Secure Tweakable Block Ciphers from Classical Ciphers and Universal
Hashing. IACR Cryptology ePrint Archive 2017 (2017) 1075

38. Jean, J., Nikolic, I., Peyrin, T.: Tweaks and Keys for Block Ciphers: The
TWEAKEY Framework. In: Advances in Cryptology - ASIACRYPT 2014. Pro-
ceedings, Part II. (2014) 274–288

39. Jean, J., Nikolić, I., Peyrin, T.: KIASU v1. Submission to CAESAR (2016) https:
//competitions.cr.yp.to/round1/kiasuv1.pdf.

40. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y.,
Sasdrich, P., Sim, S.M.: The SKINNY Family of Block Ciphers and Its Low-Latency
Variant MANTIS. In: Advances in Cryptology - CRYPTO 2016. Proceedings, Part
II. (2016) 123–153

41. Dobraunig, C., Eichlseder, M., Mendel, F.: Square Attack on 7-Round Kiasu-BC.
In: Applied Cryptography and Network Security - ACNS 2016, Guildford, UK,
June 19-22, 2016. Proceedings. (2016) 500–517

42. Dobraunig, C., List, E.: Impossible-Differential and Boomerang Cryptanalysis
of Round-Reduced Kiasu-BC. In: Topics in Cryptology - CT-RSA 2017 - San
Francisco, CA, USA, February 14-17, 2017, Proceedings. (2017) 207–222

43. Tolba, M., Abdelkhalek, A., Youssef, A.M.: A Meet in the Middle Attack on
Reduced Round Kiasu-BC. IEICE Transactions 99-A(10) (2016) 1888–1890

44. Black, J., Rogaway, P.: A Block-Cipher Mode of Operation for Parallelizable Mes-
sage Authentication. In: Advances in Cryptology - EUROCRYPT 2002. Proceed-
ings. (2002) 384–397

45. Rogaway, P., Bellare, M., Black, J.: OCB: A block-cipher mode of operation for
efficient authenticated encryption. ACM Trans. Inf. Syst. Secur. 6(3) (2003) 365–
403

46. Datta, N., Nandi, M.: Proposal of ELmD v2.1. Submission to CAESAR (2015)
https://competitions.cr.yp.to/round2/elmdv21.pdf.

47. Chakraborti, A., Datta, N., Jha, A., Mancillas-López, C., Nandi, M., Sasaki, Y.:
INT-RUP Secure Lightweight Parallel AE Modes. IACR Trans. Symmetric Cryp-
tol. 2019(4) (2019) 81–118

48. Chakraborti, A., Datta, N., Jha, A., Mancillas-López, C., Nandi, M., Sasaki, Y.:
ESTATE: A Lightweight and Low Energy Authenticated Encryption Mode. IACR
Trans. Symmetric Cryptol. 2020(S1) (2020) 350–389

49. Chakraborti, A., Datta, N., Jha, A., Mancillas-López, C., Nandi, M., Sasaki, Y.:
LOTUS-AEAD and LOCUS-AEAD. Submission to NIST LwC Standardization
Process (Round 2) (2019)

50. Chakraborti, A., Datta, N., Jha, A., Mancillas-López, C., Nandi, M., Sasaki, Y.:
ESTATE. Submission to NIST LwC Standardization Process (Round 2) (2019)

22

51. Chakraborti, A., Datta, N., Jha, A., López, C.M., Nandi, M., Sasaki, Y.: Elastic-
Tweak: A Framework for Short Tweak Tweakable Block Cipher. IACR Cryptol.
ePrint Arch. (2019) 440

52. Gueron, S., Lindell, Y.: GCM-SIV: Full Nonce Misuse-Resistant Authenticated
Encryption at Under One Cycle per Byte. In: ACM SIGSAC Conference on Com-
puter and Communications Security 2015. Proceedings. (2015) 109–119

53. Namprempre, C., Rogaway, P., Shrimpton, T.: Reconsidering Generic Compo-
sition. In: Advances in Cryptology - EUROCRYPT 2014. Proceedings. (2014)
257–274

54. Rogaway, P., Shrimpton, T.: A Provable-Security Treatment of the Key-Wrap
Problem. In: EUROCRYPT 2006. (2006) 373–390

55. Iwata, T., Kurosawa, K.: OMAC: One-Key CBC MAC. In: FSE. (2003) 129–153
56. Datta, N., Dutta, A., Nandi, M., Paul, G.: Double-block Hash-then-Sum: A

Paradigm for Constructing BBB Secure PRF. IACR Trans. Symmetric Cryptol.
2018(3) (2018) 36–92

57. Datta, N., Dutta, A., Nandi, M., Paul, G., Zhang, L.: Single Key Variant of
PMAC Plus. IACR Trans. Symmetric Cryptol. 2017(4) (2017) 268–305

58. Datta, N., Dutta, A., Nandi, M., Paul, G., Zhang, L.: Single Key Variant of
PMAC Plus. IACR Cryptology ePrint Archive 2017 (2017) 848

59. Leurent, G., Nandi, M., Sibleyras, F.: Generic Attacks Against Beyond-Birthday-
Bound MACs. In: Advances in Cryptology - CRYPTO 2018. Proceedings, Part I.
(2018) 306–336

60. Lampe, R., Seurin, Y.: Tweakable Blockciphers with Asymptotically Optimal Se-
curity. In: FSE 2013. Revised Selected Papers. (2013) 133–151

61. Naito, Y.: Blockcipher-Based MACs: Beyond the Birthday Bound Without Mes-
sage Length. In: Advances in Cryptology - ASIACRYPT 2017. Proceedings, Part
III. (2017) 446–470

62. Chakraborty, D., Sarkar, P.: A General Construction of Tweakable Block Ciphers
and Different Modes of Operations. IEEE Trans. Information Theory 54(5) (2008)
1991–2006

63. Granger, R., Jovanovic, P., Mennink, B., Neves, S.: Improved Masking for Tweak-
able Blockciphers with Applications to Authenticated Encryption. In: EURO-
CRYPT 2016. Proceedings, Part I. (2016) 263–293

64. Andreeva, E., Bogdanov, A., Datta, N., Luykx, A., Mennink, B., Nandi, M., Tis-
chhauser, E., Yasuda, K.: COLM v1. Submission to CAESAR (2016) https:

//competitions.cr.yp.to/round3/colmv1.pdf.
65. Wooding, M.: New Proofs for Old Modes. IACR Cryptology ePrint Archive 2008

(2008) 121

23

