
Input Invariants
Dominic Steinhöfel

CISPA Helmholtz Center for Information Security

Saarbrücken, Germany

dominic.steinhoefel@cispa.de

Andreas Zeller

CISPA Helmholtz Center for Information Security

Saarbrücken, Germany

zeller@cispa.de

ABSTRACT
Grammar-based fuzzers are highly efficient in producing syntac-

tically valid system inputs. However, as context-free grammars

cannot capture semantic input features, generated inputs will often

be rejected as semantically invalid by a target program. We pro-

pose ISLa, a declarative specification language for context-sensitive
properties of structured system inputs based on context-free gram-

mars. With ISLa, it is possible to specify input constraints like “a
variable has to be defined before it is used,” “the length of the ‘file

name’ block in a TAR file has to equal 100 bytes,” or “the number

of columns in all CSV rows must be identical.”

ISLa constraints can be used for parsing or validation (“Does an

input meet the expected constraint?”) as well as for fuzzing, since
we provide both an evaluation and input generation component. ISLa
embeds SMT formulas as an island language, leveraging the power

of modern solvers like Z3 to solve atomic semantic constraints.

On top, it adds universal and existential quantifiers over the struc-
ture of derivation trees from a grammar, and structural (“X occurs

before Y”) and semantic (“X is the checksum of Y”) predicates.
ISLa constraints can be specified manually, but also mined from

existing input samples. For this, our ISLearn prototype uses a cat-

alog of common patterns (such as the ones above), instantiates

these over input elements, and retains those candidates that hold

for the inputs observed and whose instantiations are fully accepted

by input-processing programs. The resulting constraints can then

again be used for fuzzing and parsing.

In our evaluation, we show that a few ISLa constraints suffice to

produce inputs that are 100% semantically valid while still maintain-

ing input diversity. Furthermore, we confirm that ISLearnmines use-

ful constraints about definition-use relationships and (implications

between) the existence of “magic constants”, e.g., for programming

languages and network packets.
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1 INTRODUCTION
Automated software testing with random inputs (fuzzing) [19] is
an effective technique for finding bugs in programs. Pure random

inputs can quickly discover errors in input processing. Yet, if a

program expects complex structured inputs (e.g., C programs, JSON

expressions, or binary formats), the chances of randomly produc-

ing valid inputs that are accepted by the parser and reach deeper

functionality are low.

Language-based fuzzers [8, 12, 13] overcome this limitation by

generating inputs from a specification of a program’s expected

input language, frequently expressed as a Context-Free Grammar
(CFG). This considerably increases the chance of producing an input
passing the program’s parsing stage and reaching its core logic. Yet,

while being great for parsing,CFGs are often too coarse for producing
inputs. Consider, e.g., the language of XML documents (without

document type). This language is not context free.1 Still, it can be

approximated by a CFG. Fig. 1 shows an excerpt of a CFG for XML.

When we used a coverage-based fuzzer to produce 10,000 strings

from this grammar, exactly one produced document (<O L="cmV">
↩→ B7</O>) contained a matching tag pair. This result is typical for

language-based fuzzers used with a language specification designed

for parsing which therefore is more permissive than a language

specification for producing would have to be. This is unfortunate,

as hundreds of language specifications for parsing exist.

To allow for precise production, we need to enrich the grammar

with more information, or switch to a different formalism. However,

existing solutions all have their drawbacks. Using general purpose
code to produce inputs, or enriching grammars with such code is

closely tied to an implementation language, and does not allow

for parsing and recombining inputs, which is a common feature of

modern fuzzers. Unrestricted grammars can in principle specify any

computable input property, but we see them as “Turing tar-pits,” in

which “everything is possible, but nothing of interest is easy” [22]—

just try, for instance, to express that some number is the sum of two

input elements. Finally, one could also replace CFGs by a different
formalism; but this would mean to renounce a concept that many

developers know (e.g., from the ANTLR parser generator or RFCs).

In this paper, we bring forward a different solution by propos-

ing a (programming and target) language-independent, declarative
specification language named ISLa (Input Specification Language)
for expressing context-sensitive constraints over CFGs. By enriching

existing grammars with constraints, we leverage the simplicity of

CFGs, while permitting to significantly extend their limited ex-

pressiveness. When formalizing a new target language, one starts

with the definition of a CFG (which, for many languages, might be

readily available somewhere in the internet). Then, one iteratively

strengthens the definition by adding more and more ISLa constraints

1
Apply the pumping lemma with <a𝑛b𝑛></a𝑛b𝑛>.
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⟨xml-tree⟩ F ⟨xml-openclose-tag⟩
| ⟨xml-open-tag⟩ ⟨inner-xml-tree⟩ ⟨xml-close-tag⟩

⟨inner-xml-tree⟩ F ⟨text ⟩ | ⟨xml-tree⟩
| ⟨inner-xml-tree⟩ ⟨inner-xml-tree⟩

⟨xml-open-tag⟩ F ‘<’ ⟨id ⟩ ‘>’ | ‘<’ ⟨id ⟩ ‘␣’ ⟨xml-attribute⟩ ‘>’
⟨xml-close-tag⟩ F ‘</’ ⟨id ⟩ ‘>’
⟨xml-openclose-tag⟩ F ‘<’ ⟨id ⟩ ‘/>’ | ‘<’ ⟨id ⟩ ‘␣’ ⟨xml-attribute⟩ ‘/>’
⟨xml-attribute⟩ F ⟨id ⟩ ‘="’ ⟨text ⟩ ‘"’

| ⟨xml-attribute⟩ ‘␣’ ⟨xml-attribute⟩

Figure 1: A context-free grammar for XML (excerpt)

Listing 1: ISLa constraint for well-balanced XML expressions.
1 forall <xml-tree> tree="<{<id> opid}[<xml-attribute>]><inner-xml-

↩→ tree></{<id> clid}>" in start:

2 (= opid clid)

until the represented language is a sufficiently close approximation

of the target language—an invariant over all inputs.
To get an idea of ISLa constraints, consider Listing 1, referring to

the grammar in Figure 1. The constraint expresses that for all XML

trees composed of an opening tag with ⟨id⟩ opid and a closing tag

with ⟨id⟩ clid, both ⟨id⟩s have to be equal, as expressed by the SMT

formula “(= opid clid)”. This is typical for an ISLa constraint: It

first identifies individual elements in the derivation tree, and then

poses constraints over these elements. During fuzzing, ISLa would

then produce matching pairs of opening and closing ⟨id⟩s.
The resulting valid inputs can be used as seed inputs for muta-

tional fuzzers like AFL. ISLa’s constraint checker can be integrated

into the fitness function of evolutionary fuzzers, guiding their muta-

tions toward semantically valid inputs; ISLa’s checker can quickly

reject invalid inputs without having to run actual tests.

While a grammar for ISLa can be extracted from inputs [17] and

programs [9], where would ISLa constraints come from? Testers can

write ISLa constraints manually, thus ensuring input validity, and

add additional constraints to further control the inputs generated.

However, they can alsomine constraints from existing inputs. To this
end, our ISLearn tool uses a catalog of common constraint patterns,
instantiates these over all inputs and input elements, and retains

those constraint candidates that hold for all inputs. The catalogue

holds patterns to identify matching elements, length relations, arith-

metic relations, checksums, and more. ISLearn is similar in spirit to

the Daikon function-level invariant detector [6]. On top, ISLearn

can automatically verify and refine constraint candidates by having

the program under test check whether derived concrete inputs are

valid. ISLearn can thus infer precise XML constraints from existing

XML inputs, including the one in Listing 1.

After illustrating ISLa by example (Section 2), this paper makes

the following contributions:

A specification language for input constraints. We propose a

formalism (ISLa) for augmenting existing context-free gram-

mars with context-sensitive constraints. We formally define the

syntax and semantics of ISLa constraints (Section 3). ISLa has

a rich declarative layer, separating semantic properties (con-

straints) from syntactic properties (the grammar). To the best

of our knowledge, ISLa is the first formalism for expressing

context-sensitive constraints of system inputs.

A precise input generator. We describe an efficient procedure

to generate inputs satisfying ISLa constraints (and their gram-

mars), and discuss our implementation (Section 4). To the best

of our knowledge, ISLa is the first fuzzer (and checker) to make

use of such constraints, giving users unprecedented means to

specify which system inputs should be generated.

Mining input constraints. We introduce ISLearn, a system for

automatically mining input constraints in disjunctive normal

form based on a configurable pattern catalogue (Section 5). To

the best of our knowledge, ISLearn is the first approach to infer

such invariants from given system inputs.

ISLa and its constraints are effective. In our evaluation (Section 6),

we formalize semantic properties from diverse languages, namely

XML, a subset of C, reStructuredText, CSV files, and TAR archives.

Our results demonstrate that already a few lines of ISLa specifi-

cations suffice to generate 100% precise inputs while maintaining

diversity. On top, our constraint miner ISLearn can extract precise

invariants about ICMP packets, DOT graphs, and Racket programs.

After discussing related work (Section 7), Section 8 closes with

conclusion and future work.

2 ISLA BY EXAMPLE
Let us illustrate the expressive power of ISLa by detailing our XML

example. When randomly passing inputs generated from the XML

grammar in Fig. 1 using a grammar fuzzer to an XML processor

(e.g., Python’s xml.etree package), we obtain not only one, but

three kinds of errors: (1) “Mismatched tag,” (2) “duplicate attribute,”

and (3) “unbound prefix.” By adding ISLa specifications to the XML

grammar, we can substantially increase the portion of valid XMLwe

pass to an XML processor. Moreover, these specifications document

XML features relevant for the parser of our test target.

Since ISLa is closed under conjunction, we can incrementally re-

fine the specification simply by adding individual input constraints

until we are satisfied with the quality of the generated inputs or

the value of the specification as a documentation measure.

From the inputs generated from the XML grammar, about 50%

are invalid due to an unbound prefix, and about 20% because of a

mismatched tag. Let us address these.

2.1 Matching Tags
The ISLa constraint in Listing 1 addresses the problem of mis-
matched tags by enforcing that the two IDs match. It uses a uni-

versal quantifier (forall), quantifying over all sub expressions of
type ⟨xml-tree⟩, which is the specified type of the bound variable

tree. Types are nonterminals from the reference grammar (here

the XML grammar in Fig. 1) or the special type int for quantifiers

over numbers. The present quantifier uses pattern matching. ISLa
only considers matches conforming to the pattern (in quotation

marks); in the case of a successful match, not only the quantified

variable tree, but also the variables in the pattern (in curly braces)

are bound to the corresponding parts of the matched input seg-

ment. Match expressions may contain optional elements in square

brackets to capture multiple expansion alternatives. The core of

2
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the forall formula is an SMT-LIB S-expression stating that vari-

ables opid and clid are equal. Since ISLa extends the SMT-LIB

language [24], it supports all its string constraints. An ISLa con-

straint contains exactly one constant symbol, which determines

the type of the inputs described by the constraint. By default, this

is a symbol start of type ⟨start⟩, which can be customized by a

declaration const name: type; before the actual constraint.

Since ISLa constraints are closed under conjunction (and) and
disjunction (or), it is easy to refine (or relax) constraints. ISLa is

thus well suited for targeted testing, or, e.g., for describing a specific
class of inputs that trigger a bug in a debugging scenario. Thanks

to its declarative nature, it can also be used for formulating human-

readable specifications of the expected inputs of a system.

2.2 Binding Prefixes
Next, we specify a property avoiding “unbound prefix” errors. An

“unbound prefix” error is raised when tag or attribute identifiers in

XML documents contain a namespace prefix, such as ns1 and ns2 in
<ns1:tag ns2:attr=". . ."/>, which is not declared in the same or

an outer tag. This is an example of a def-use property which is also

common in programming languages: A used identifier must be de-
fined in some outer scope or at some preceding position. To declare

namespace ns1, one adds the attribute xmlns:ns1="some␣text"
where usually (but not necessarily), the quoted text contains a URL.

The property we aim for is expressed more precisely as: “For all
identifiers with a prefix 𝑝 in any XML tree, there is a surrounding
XML tree 𝑡 such that there is an attribute xmlns:𝑝 in the attributes

list of 𝑡 ’s opening tag.” We emphasized words corresponding to

ISLa language elements. There is one subtlety, though: We have to

distinguish prefixes in attribute and tag identifiers, since the special

attribute xmlns does not have to be declared, as it is used precisely

to declare other namespaces.

Again, we can express both cases in isolation to incrementally

refine the specification. Here, we regard the slightly more compli-

cated case of prefixes in attribute identifiers. Listing 2 shows the

ISLa specification for this case.

Listing 2: ISLa constraint for binding prefixes in attribute
identifiers (reference grammar: Fig. 1)

1 forall <xml-attribute> attribute in start:

2 forall <id-with-prefix> prefix_id=

3 "{<id-no-prefix> prefix_use}:<id-no-prefix>" in attribute:

4 ((= prefix_use "xmlns") or
5 exists <xml-tree> outer_tag="<<id> {<xml-attribute> cont_attr}>

↩→ <inner-xml-tree></<id>>" in start:

6 (inside(attr, outer_tag) and
7 exists <xml-attribute> def_attr="xmlns:{<id-no-prefix>

↩→ prefix_def}=\"<text>\"" in cont_attr:

8 (= prefix_use prefix_def)))

The ISLa code quite literally follows the natural language specifi-

cation we described previously, except that we specialized it to only

quantify over attributes (Line 1) and generally permit the xmlns
prefix (Line 4) using a disjunction: Either the prefix is xmlns, or it
must be explicitly defined.

2.3 Targeted Testing
With ISLa specifications, we can go beyond constraints for semantic

validity for application-specific, targeted testing. Imagine an XML

processor which allows associating tags with URLs that are defined

using dedicated attributes web:baseurl and web:query for base

URLs and query strings. We can enforce the existence of a tag using

both of these attributes somewhere in any produced system input:

exists <xml-tree> tree="<<id> {<xml-attribute> attributes}[/]>[<

↩→ inner-xml-tree><xml-close-tag>]" in start:

(exists <xml-attribute> attribute="{attr_id}=<text>" in attributes:

(= attr_id "web:baseurl") and
exists <xml-attribute> attribute="{attr_id}=<text>" in attributes:

(= attr_id "web:query"))

The XML processor performs some input validation and rejects

all inputs where the values of these attributes exceed a length of 100

characters. We force all generated inputs to respect this constraint

by adding the following specification:

forall <xml-attribute> attribute="web:<id-no-prefix>={<text> text}"

in start: (<= (str.len text) 100)

After parsing an XML file, the processor assembles a complete

URL by joining the base URL and the query string. However, let

us assume its input validation is buggy: The result is stored in a

character array of length 150, and we thus get a buffer overflow
when the base URL and the query string together exceed a length

of 150 characters. We can then explicitly generate inputs triggering
this bug by encoding this property as an ISLa constraint. Such

inputs would be valuable for developers or security researchers, as

a regression test validating a fix for a potential exploit:

forall <xml-attribute> attributes in start:

forall <xml-attribute> attribute_1="web:baseurl={<text> text_1}"

in attributes:

forall <xml-attribute> attribute_2="web:query={<text> text_2}"

in attributes:

(> (+ (str.len text_1) (str.len text_2)) 150)

2.4 Mining Constraints
Constraints like the ones described above can also be mined from

existing inputs. For this purpose, we create a schematic version of

the constraint in Listing 1 which is independent from the choice of a
particular grammar:
forall <?NONTERMINAL> container="{<?MATCHEXPR(opid, clid)>}"

in start: (= opid clid)

This pattern can be added to the catalog of our ISLearn sys-

tem, enabling the system to infer similar constraints for a different

grammar. The placeholder <?NONTERMINAL> represents any nonter-
minal in that grammar; <?MATCHEXPR(opid, clid)> represents

any suitable match expression for an instantiation of container,
containing two nonterminal occurrences that are bound to variables

opid and clid. ISLearn generates candidate instantiations from

such patterns, and then filters those that hold for a set of given or

automatically generated sample inputs. Hence, given a set of XML

inputs, ISLearn can easily learn the constraint in Listing 1.

To avoid overspecialization toward a small set of inputs, ISLearn

can automatically validate constraint candidates—by generating

further inputs from them and checking whether these inputs would

be accepted by the program. This also works in debugging scenarios:
If we have a set of (XML) inputs for which a specific property holds

(say, the length of some input element exceeds some constant),

ISLearn will not only learn that constraint, but can also ensure that

further instantiations of the constraint reproduce the failure.

3
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2.5 Summary
With these examples, we have demonstrated how ISLa constraints

precisely characterize input classes associated to some program

behavior. Developers can make use of these descriptions to obtain

semantically valid inputs, to describe the conditions of discovered
bugs, for targeted triggering of such bugs. Given existing inputs,

ISLearn can determine constraints that precisely characterize input

properties and program behavior.

Note that without ISLa and ISLearn, implementing any of these

constraints can be a tiresome experience. While a handwritten gen-

erator can easily ensure matching XML tags or usage of tags from

a dictionary, proper handling of namespaces is already a challenge,

and solving arithmetic constraints over multiple elements will be

increasingly difficult. Extending such a generator to be compos-

able and usable as a parser for checking or mutating inputs will

require an effort comparable to implementing most of ISLa, but the

resulting tool will not be nearly as versatile.

3 ISLA SYNTAX AND SEMANTICS
ISLa constraints are built from a signature of grammar, predicate,

and variable symbols. We first formally define CFGs, following [14,

Chapter 5]; afterward, we introduce ISLa signatures.

Definition 3.1 (Context-Free Grammar). AContext-Free Grammar

(CFG) is a tuple 𝐺 = (𝑁,𝑇 , 𝑃, 𝑆) of (1) a set of nonterminal symbols
𝑁 , (2) a set of terminal symbols𝑇 disjoint from 𝑁 , where the special

terminal symbol 𝜖 ∈ 𝑇 represents the empty string, (3) a set of

productions 𝑃 mapping nonterminal symbols 𝑛 ∈ 𝑁 an (expansion)
alternative. An alternative is a string of terminal or nonterminal

symbols. Formally, 𝑃 ⊆ 𝑁 × (𝑁 ∪𝑇 )𝑘 for some number 𝑘 > 0; and

(4) a designated start symbol 𝑆 ∈ 𝑁 .

By convention, we surround nonterminal symbols with angular

brackets (e.g., ⟨start⟩). Signatures contain a special nonterminal

symbol int for numeric variables representing derivation trees

whose string representations correspond to a natural number.

Definition 3.2 (ISLa Signature). A signature is a tuple Σ =

(𝐺, PSym,VSym) of a grammar 𝐺 = (𝑁,𝑇 , 𝑃, 𝑆), a set of predicate
symbols PSym of strictly positive arity, and a set of typed vari-

able symbols VSym. The type vtype(𝑣) of 𝑣 ∈ VSym is a symbol

𝑛 ∈ 𝑁 ∪ {int}, int ∉ 𝑁 .

In the following definition of ISLa formulas, we assume an un-

derspecified set Trmbool (VSym) of SMT-LIB formulas (terms of sort

Bool). That is, this set contains the constants true and false, and
S-expressions (f 𝑎1 . . . 𝑎𝑛), where f is an 𝑛-ary function symbol

of Bool sort and the 𝑎𝑖 are SMT expressions of suitable sort. Formu-

las in Trmbool (VSym) may contain uninterpreted String constants

whose names coincide with the names in VSym. For the precise

definition of SMT-LIB terms, we refer to the SMT-LIB standard [1]

and the repository of SMT-LIB theories [23].

Definition 3.3 (ISLa Formulas). The set Fml of ISLa formulas for
a signature Σ = (𝐺, PSym,VSym), with 𝐺 = (𝑁,𝑇 , 𝑃, 𝑆), is induc-
tively defined as:

(1) 𝜑 ∈ Fml if 𝜑 ∈ Trmbool (VSym).
(2) 𝑝 (𝑣1, . . . , 𝑣𝑛) ∈ Fml each predicate symbol 𝑝 ∈ PSym with

arity 𝑛 and 𝑣𝑖 ∈ VSym.

𝑣1 : ⟨xml-tree⟩

𝑣2 : ⟨xml-open-tag⟩

𝑣6 : ‘<’ 𝑣7 : ⟨id⟩

𝑣13 : ‘a’

𝑣8 : ‘>’

𝑣3 : ⟨inner-xml-tree⟩

𝑣5 : ⟨text⟩

𝑣9 : ‘x’

𝑣4 : ⟨xml-close-tag⟩

𝑣10 : ‘</’ 𝑣11 : ⟨id⟩

𝑣14 : ‘a’

𝑣12 : ‘>’

Figure 2: Example XML derivation tree.

(3) (not 𝜑), (𝜑 and𝜓 ), (𝜑 or𝜓 ) are in Fml for 𝜑,𝜓 ∈ Fml.

(4) forall type 𝑥 in 𝑦:𝜑 and exists type 𝑥 in 𝑦:𝜑 are in Fml

for 𝑥,𝑦 ∈ VSym, vtype(𝑥) = type ∈ 𝑁 ∪ int, and 𝜑 ∈ Fml.

(5) forall type 𝑥=“mexp” in 𝑦:𝜑 and its existential coun-

terpart exists type 𝑥=“mexp” in 𝑦:𝜑 are in Fml, where

𝑥,𝑦 ∈ VSym, vtype(𝑥) = type ∈ 𝑁 , and 𝜑 ∈ Fml, and mexp
is a string consisting of symbols in 𝑁 ∪𝑇 , non-nested lists of
such symbols (optional symbols), and variables 𝑣 ∈ VSym.

We use 𝜑 implies 𝜓 as a shorthand for (not 𝜑) or 𝜓 .

The set Fml is relative to a signature Σ, left implicit for simplicity.

Parentheses can be omitted according to the following precedence

rules: Quantifiers bind stronger than negation, which binds stronger

than conjunction, which binds stronger than disjunction.

We only consider (top-level) ISLa formulas which contain exactly
one unbound variable, which is the default start variable, or the
one specified in the optional const declaration.

Semantics. The semantics of an ISLa constraint are all strings

derivable from the reference grammar that satisfy the constraint.

To make this precise, we first define derivation trees. Then, we fix

the meaning of ISLa constraints by defining a validation judgment.

Definition 3.4 (Derivation Tree). A derivation tree for a CFG𝐺 =

(𝑁,𝑇 , 𝑃, 𝑆) is a rooted ordered tree such that (1) all vertices 𝑣 are

labeled with symbols label(𝑣) ∈ 𝑁 ∪𝑇 , where the root is labeled

with 𝑆 , (2) if 𝑣1, . . . , 𝑣𝑘 are the children of a node labeled with 𝑛,

then there is a production (𝑛, 𝑠1, . . . , 𝑠𝑘 ) ∈ 𝑃 such that for all 𝑣𝑖 ,

label(𝑣𝑖 ) = 𝑠𝑖 . For a derivation tree 𝑡 , we write leaves(𝑡) for the set
of its leaves, and label(𝑡) for the label of its root. A derivation tree

is closed if 𝑙 ∈ 𝑇 for all 𝑙 ∈ leaves(𝑡), and open otherwise. We define

closed (𝑡) B ∀𝑙 ∈ leaves(𝑡) : 𝑙 ∈ 𝑇 , and open(𝑡) B ¬closed (𝑡).
T (𝐺) is the set of all (closed and open) derivation trees for 𝐺 .

Example 3.5. Fig. 2 visualizes the derivation tree of the XML doc-

ument <a>x</a> for the XML grammar in Fig. 1: The root of the tree,

𝑣1, is labeled with the grammar’s start symbol ⟨xml-tree⟩; its edges
conform to the possible grammar derivations. Consider, e.g., node 𝑣2
and its immediate children 𝑣6, 𝑣7, and 𝑣8. According to Definition 3.4,

there has to be a production (⟨xml-open-tag⟩, ‘<’, ⟨id⟩, ‘>’) in the

grammar, which is indeed the case, since ‘<’ ⟨id⟩ ‘>’ is an expansion

alternative (the first one) for the nonterminal ⟨xml-open-tag⟩. The
leaves leaves(𝑡) are {𝑣6, 𝑣13, 𝑣8, 𝑣9, 𝑣10, 𝑣14, 𝑣12}. The tree 𝑡 is closed,
since all leaves are labeled with terminal symbols. It would be open
if we removed the subtree rooted in any tree node (but the root).

We convert a derivation tree to a string by concatenating its

leaves in order of their occurrence. We write str (𝑡) for the string ob-
tained from 𝑡 . If 𝑡 is the tree from Fig. 2, we have str (𝑡) = <a>x</a>.

4
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Matching Match Expressions. For evaluating ISLa formulas, we

have to match quantified formulas with match expressions against

derivation trees. To that end, we use a function match(𝑡,mexpr),
where 𝑡 is a tree andmexpr a match expression. It returns a mapping

of variables to subtrees. We say that there is a match𝑚 for 𝑡 and

mexpr if match returns a non-empty mapping. Our implementation

performs a greedy match, but uses backtracking to account for, e.g.,

recursive structures. For optional elements in match expressions, it

considers all possibilities of present and non-present optionals.

Validation. The semantics of ISLa formulas is defined by a val-
idation judgment 𝜋, 𝜎, 𝛽 |= 𝜑 , where 𝜋 and 𝜎 are interpretations

of predicate symbols and SMT expressions, and the variable as-

signment 𝛽 is a substitution of derivation trees for variables. The

intuition of this judgment is that𝜑 holds (evaluates to true) when as-
signing free variables in 𝜑 according to 𝛽 under the interpretations

of predicates and SMT expressions as provided by 𝜋 and 𝜎 . We write

𝛽 (𝜑) for the substitution of free variables in 𝜑 by their assignments

in 𝛽 , and 𝛽 [𝑣 ↦→ 𝑡] for the updated assignment where the variable

𝑣 is now mapped to the tree 𝑡 . For a match𝑚 = match(𝑡,mexpr,),
we write 𝛽 [𝑚] for 𝛽 [𝑣1 ↦→ 𝑡1] · · · [𝑣𝑛 ↦→ 𝑡𝑛], where 𝑣𝑖 ↦→ 𝑡𝑖 are all

assignments in𝑚. The primitive substitution of 𝑡 for 𝑣 is denoted

by {𝑣 ↦→ 𝑡}. By 𝛽↓ we denote the assignment of variables to strings
instead of trees: If 𝛽 associates 𝑣 with 𝑡 , 𝛽↓ associates 𝑣 with str (𝑡).

In the definition of the validation judgment, ⊤ and ⊥ represent

semantic truth and falsity, resp. Note that we expect 𝜎 to always re-

turn ⊤ or ⊥. Timeouts, not uncommon for SMT solvers, are usually

no problem for concrete formulas without free variables. Should

the solver time out anyway, we interpret this as ⊥.

Definition 3.6 (ISLa Validation). Let Σ = (𝐺, PSym,VSym) be a
signature, 𝜋 : PSym → T (𝐺)∗ → {⊤,⊥} an interpretation of

predicate symbols, 𝜎 : Trmbool (∅) → {⊤,⊥} an interpretation

of closed SMT S-expressions, and 𝛽 a variable assignment. We

inductively define the judgment 𝜋, 𝜎, 𝛽 |= 𝜑 as

(1) 𝜋, 𝜎, 𝛽 |= 𝜑 iff 𝜑 ∈ Trmbool (∅) and 𝜎 (𝛽↓(𝜑)) = ⊤.
(2) 𝜋, 𝜎, 𝛽 |= 𝑝 (𝑣1, . . . , 𝑣𝑛) iff 𝜋 (𝑝) (𝛽 (𝑣1), . . . , 𝛽 (𝑣𝑛)) = ⊤.
(3) 𝜋, 𝜎, 𝛽 |= not 𝜑 iff not 𝜋, 𝜎, 𝛽 |= 𝜑 .

(4) 𝜋, 𝜎, 𝛽 |= 𝜑 and𝜓 iff 𝜋, 𝜎, 𝛽 |= 𝜑 and 𝜋, 𝜎, 𝛽 |= 𝜓 .

(5) 𝜋, 𝜎, 𝛽 |= 𝜑 or𝜓 iff 𝜋, 𝜎, 𝛽 |= 𝜑 or 𝜋, 𝜎, 𝛽 |= 𝜓 .

(6) 𝜋, 𝜎, 𝛽 |= forall type 𝑣 in 𝑤:𝜑 iff 𝜋, 𝜎, 𝛽 [𝑣 ↦→ 𝑡] |= 𝜑 holds

for all subtrees 𝑡 in 𝛽 (𝑤) whose root is labeled with type ∈ 𝑁 .

(7) 𝜋, 𝜎, 𝛽 |= forall int 𝑛 in 𝜑: iff 𝜋, 𝜎, 𝛽 [𝑛 ↦→ 𝑡] |= 𝜑 holds for

all trees 𝑡 such that str (𝑡) represents a number in {0, 1, 2, . . . }.
(8) 𝜋, 𝜎, 𝛽 |= exists type 𝑣 in 𝑤:𝜑 iff 𝜋, 𝜎, 𝛽 [𝑣 ↦→ 𝑡] |= 𝜑 holds

for some subtree 𝑡 in 𝛽 (𝑤) whose root is labeled with type ∈ 𝑁 .

(9) 𝜋, 𝜎, 𝛽 |= exists int 𝑛 in 𝜑: iff 𝜋, 𝜎, 𝛽 [𝑛 ↦→ 𝑡] |= 𝜑 holds for

some tree 𝑡 such that str (𝑡) represents a number in {0, 1, 2, . . . }.
(10) 𝜋, 𝜎, 𝛽 |= forall type 𝑣=“mexpr” in 𝑤:𝜑 iff 𝜋, 𝜎, 𝛽 [𝑣 ↦→

𝑡] [𝑚] |= 𝜑 holds for all subtrees 𝑡 with root 𝑟 in 𝛽 (𝑤) such
that label(𝑟 ) = type and there is a match𝑚 = match(𝑡,mexpr).

(11) 𝜋, 𝜎, 𝛽 |= exists type 𝑣=“mexpr” in 𝑤:𝜑 iff 𝜋, 𝜎, 𝛽 [𝑣 ↦→
𝑡] [𝑚] |= 𝜑 holds for a subtree 𝑡 with root 𝑟 in 𝛽 (𝑤) such that

label(𝑟 ) = type and there is a match𝑚 = match(𝑡,mexpr).

Example 3.7. Consider the constraint for well-balanced XML

trees from Listing 1, and the XML tree 𝑡 from Fig. 2 for the doc-

ument <a>x</a>. We evaluate whether this tree is well-formed,

Figure 3: ISLa solver schema. Bold arrow lines depict themain
solver loop. Light gray rectangles aremain constraint solving
components; the remaining ones are auxiliary components.

starting from an initial assignment 𝛽 = {start ↦→ 𝑡}. Since the
outermost element of the constraint is a universal formula with

match expression, Item (10) of Definition 3.6 applies. Thus, we have

to prove that 𝜋, 𝜎, {start ↦→ 𝑡}[𝑣 ↦→ 𝑡] [𝑚] |= 𝜑 holds for all in-

stantiations, i.e., tree elements with root ⟨xml-tree⟩ matching the

match expression (i.e., not a self-closing tag). There is exactly one

such match𝑚 in 𝑡 , instantiating opid to a and clid to a. Thus, it
remains to show that 𝜎 ((= "a" "a")) = ⊤, which is the case.

Definition 3.8 (ISLa Semantics). Let 𝜑 ∈ Fml be an ISLa formula

with the single free variable 𝑐 for the signature (𝐺, PSym,VSym),
and 𝜋 , 𝜎 be interpretations for predicates and SMT formulas. We

define the semantics ⟦𝜑⟧ of 𝜑 as

⟦𝜑⟧ B {str (𝑡) | 𝑡 ∈ T (𝐺) ∧ closed (𝑡) ∧ 𝜋, 𝜎, {𝑐 ↦→ 𝑡} |= 𝜑}.

4 SOLVING ISLA CONSTRAINTS
Our ISLa solver stepwise expands elements from a queue of Condi-
tioned Derivation Trees (CDTs). A CDT is a pair Φ ⊲ 𝑡 , where Φ is a

set of ISLa formulas and 𝑡 a—possibly open—derivation tree. Intu-

itively, the conjunction of the formulas in Φ constrains the inputs

represented by 𝑡 , similarly as ⟦𝜑⟧ constrains the language of the

grammar. Open trees represent the possibly infinite set of deriva-

tion trees that can be derived from them by expansion according to

the grammar rules; imposing constraints potentially reduces the

set of applicable rules and thus the represented concrete trees. On

the other hand, closed derivation trees only stand for themselves. If

a constraint is added to a closed tree, the result is either empty (if

the tree does not satisfy the constraint) or consists of the tree itself.

To facilitate references to trees in constraints, we assign unique,

numeric identifiers to derivation tree nodes. These identifiers may

be used instead of free variables in ISLa formulas (variables bound

by quantifiers may not be replaced with tree identifiers).

Consider, for example, the ISLa constraint

𝜑 = forall ⟨id⟩ id in start: (= (str.len id) 3)

constraining the XML grammar in Fig. 1 to identifiers of length

3. The variable start occurs free in that formula. Let 𝑡 be a tree

consisting of a single (root) node with identifier 1, and labeled with

⟨start⟩. Then, ⟦𝜑⟧ is identical to the strings represented by the CDT

{forall ⟨id⟩ id in 1: (= (str.len id) 3)} ⊲ 𝑡 .
5



CISPA Tech Report, March 2022, CISPA Dominic Steinhöfel and Andreas Zeller

Fig. 3 schematically represents the ISLa constraint solver. Starting

with the CDT above, the solver expands the open tree 𝑡 according

to the grammar and adds the resulting CDT into the queue. The

queue itself is a priority queue. The order of CDTs inside the queue
is determined by a configurable cost function.

Expansion continues as long as it gets us nearer to matching the

universal quantifier (in the example, until another ⟨id⟩ nonterminal

symbol is contained in the represented trees of the expansion).

Eventually, the following state will be added to the queue:

{forall ⟨id⟩ id in 1: (= (str.len id) 3)} ⊲ <⟨id⟩/>

Now, the universal quantifier matches and is instantiated. Let 4

be the identifier of the subtree labeled with the ⟨id⟩ nonterminal.

Then, we obtain (using bold font for the tree identifier in the SMT

formula resulting from the instantiation):

{(= (str.len 4) 3),

forall ⟨id⟩ id in 1: (= (str.len id) 3)} ⊲ <⟨id⟩/>

The solver now removes the quantified formula from the con-

straint set, since there is no chance of obtaining another ⟨id⟩ by
further instantiation. Next, it invokes the SMT solver to obtain a

solution for the formula (= (str.len 4) 3). If we would simply

ask the solver for a string of length 3, we would not necessarily

receive an answer matching the language of the ⟨id⟩ nonterminal;

for example, the solver could produce a sequence of three space

characters. Thus, we use the “Grammar to regex” component to

produce a regular expression describing the desired syntax, which

we add to the solver query. While generally, it is not possible to pre-
cisely transform a CFG into a regular expression, it is often feasible

for small sub grammars, like the one for the ⟨id⟩ nonterminal. Oth-

erwise, we create an approximate regular expression by unfolding

problematic recursions up to a fixed bound.

The solution returned by the solver is parsed into a derivation

tree and substituted for the subtree with identifier 4; the SMT for-

mula is removed from the constraint set. This results in a set of

CDTs (the number of solutions requested from the SMT solver is

configurable) with empty constraint sets and closed trees such as

{} ⊲ <abc/>. Since there are no constraints and open tree leaves

left, <abc/> is immediately output as a solution of the constraint.

The solver not only stops tree expansion if it can be sure that no

universal quantifier can eventually be matched by doing so; it also

only expands open subtrees for which this is the case. Consequently,

there are situations where the constraint set is empty, and the

associated derivation tree still open. In that case, any expansion

of the tree is admissible. The solver then calls a standard grammar

fuzzer to close the tree using random expansions (again, the number

of requested solutions is configurable). This procedure ensures that

the solver does not generate too many solutions that look alike by

considering all possible grammar expansions in all cases.

There are twomore constraint solver components, which provide

solutions for existential quantifiers and semantic predicates.

Existential Quantifiers. Existential quantifiers (e.g., “there is an
outer XML tag defining a given namespace”) not matching the cur-

rent derivation tree are eliminated using the “tree insertion” com-

ponent, which searches for opportunities to insert the requested

tree into the existing constrained derivation tree. The inserted tree

contains a node labeled with the nonterminal type of the variable

bound by the quantifier, and optionally contains subtrees for match

expression elements. For the XML namespace example, the compo-

nent will, e.g., replace an existing ⟨xml-tree⟩ subtree with the tree

to insert, and in turn add the replaced tree as a subtree of the in-
serted tree. Tree insertion can cause violations of already eliminated
constraints. Thus, the original constraint is re-inserted afterward.

If none of the already solved constraints were violated, the added

constraint is quickly eliminated again. Alternatively, the added CDT

is discarded, or further insertions are performed

Semantic Predicates. ISLa distinguishes structural and semantic
predicates. Structural predicates, like “inside” in Listing 2, evalu-

ate to true for false. Semantic predicates, for which specific solvers

have to be implemented, can additionally evaluate to an assignment,
similarly to SMT formulas, or “not ready” if the result differs for dif-
ferent expansions of open argument derivation trees. We use them

to address shortcomings of SMT solvers or the SMT-LIB language.

Classic use cases are checksum predicates—encoding checksums

in SMT-LIB is cumbersome at least—and structure-aware predi-

cates like the count predicate used in our CSV case study, which

produces rows with a specific number of columns.

Quantifiers over Integers. Existential numeric quantifiers are

eliminated by introducing fresh numeric constants. Their univer-

sal counterparts are more complicated. If the core of such a for-

mula constrains the range of the quantified variable, ISLa enumer-

ates all possible values. Additionally, the solver implements some

transformation-based approaches for formulas of specific structure.

Conjunctions, Disjunctions, Negations. The solver pushes nega-
tions inside formulas, splits conjunctions into several elements of

the constraint set of one CDT, and disjunctions into several CDTs.

Cost Function. The choice of the cost function impacts the

solver’s performance, both in terms of efficiency (generated in-

puts per second) and diversity (input features covered). Our cost

function computes the weighted geometric mean of different cost
factors. We provide a sensible default weight vector. Furthermore,

weights can be manually configured, and we provide an optimizer

using an evolutionary algorithm for choosing good weights. We

currently consider five cost factors: (1) Tree closing cost.We approx-

imate the cost to close a derivation tree by the sum of the estimated

instantiation effort for all leaf nonterminal symbols. (2) Constraint
cost. This assigns higher cost to constraints that are more expensive

to solve, notably existential quantifiers that have to be eliminated

by tree insertion. (3) Derivation depth. Assigning higher costs to

CDTs generated later in the process can prevent starvation of states

added earlier. (4) k-path coverage. We use the k-path coverage met-

ric [10] to determine the context-sensitive input feature coverage

of derivation trees. We penalize trees covering only few k-paths.

The concrete value of k is configurable; the default is 3. (5) Global
k-path coverage. This factor assigns a higher cost to trees whose k–

paths have already been covered by existing trees in the queue. The

history of covered paths is reset once all paths have been covered.

6
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Listing 3: ISLearn pattern obtained from Listing 2
1 forall <?NONTERMINAL> attribute="{<?MATCHEXPR(prefix_use)>}"

2 in start: ((= prefix_use <?DSTRINGS>) or
3 exists <?NONTERMINAL> outer_tag="{<?MATCHEXPR(cont_attribute)>}"

4 in start: (inside(attribute, outer_tag) and
5 exists <?NONTERMINAL> def_attribute=

6 "{<?MATCHEXPR(prefix_def)>}" in cont_attribute:

7 (= prefix_use prefix_def)))

5 MINING ISLA CONSTRAINTS
The ISLa components introduced so far enable developers to manu-
ally specify input constraints based on an analysis of input formats;

and to use these constraints for input validation and generation.

With these constraints, developers do not have to code domain-

specific input generators or checkers; furthermore, ISLa constraints

can easily be refined and specialized, e.g., by adding another con-

straint for targeted testing. Yet, the full potential of such a declar-

ative specification language materializes when we automatically
mine input constraints from samples and automatic experiments.

This enables us to connect any observable program behavior with
constraints on system inputs. Example behaviors of interest include

normal completion, reaching some point in code, or crashing.

To that end, we developed ISLearn, a miner for input constraints.
ISLearn is inspired by Daikon [6], a tool for learning likely unit-level

program invariants from dynamic execution traces. Daikon checks

for invariants from a predefined set of patterns (e.g., value ranges
and sortedness). ISLearn also uses patterns. The main differences

to Daikon are: (1) ISLearn mines conjunctions of disjunctions of

quantified, structure-aware formulas; Daikon generates invariants

over literals or simple collections, (2) Daikon requires a meaningful

test suite to obtain feasible unit-level execution traces. ISLearn can

automatically generate more inputs satisfying a program property,

and reduce those inputs to their essential features, (3) ISLearn also

considers negative inputs (not satisfying a property) to estimate the

specificity of invariants, and (4) ISLearn can easily be extended with
more patterns by adding them to a human-readable configuration

file. All these are unique features of ISLearn.

The main inputs to the ISLearn system, apart from a grammar of
the input language, are sets of positive and negative sample inputs,
and a program property (e.g., the program terminates normally).

Both are optional: Invariants can be mined from inputs only, and

inputs can be automatically generated from only the property.

Patterns are defined in a superset of the ISLa language, enriched

with placeholders for nonterminal types (<?NONTERMINAL>), match
expressions (<?MATCHEXPR(params)>, where params is a list of vari-
ables that should be bound in the instantiated match expression,

and string constants (<?STRING>). The <?DSTRINGS> placeholder

can be instantiated by multiple strings; the surrounding, atomic

ISLa formula is expanded to a disjunction for all instantiations.

Consider the constraint for prefix bindings in XML attribute

from Listing 2. We abstract this constraint to an ISLearn pattern

by replacing all nonterminal types and match expressions by cor-

responding placeholders. The constant "xmlns" is abstracted by

a <?DSTRINGS> placeholder to permit instantiations by multiple

keywords. The resulting pattern is shown in Listing 3.

This is not the only possible abstraction. In fact, to recover an

equivalent invariant for the original XML constraint, we need to

introduce another variable ns_prefix in the match expression

for def_attribute for binding the constant xmlns, along with

an equality constraint “(= ns_prefix <?STRING>)”. However, we
found that the particular pattern in Listing 3 is still useful. In our

evaluation (Section 6), we applied ISLearn to languages which did

not inform our pattern catalog. One of our evaluation targets is

the Racket language from the Lisp family. Since Racket programs

are, similarly to XML, tree structures, the first abstraction of the

XML pattern can be instantiated to a definition-use invariant for

Racket. The <?DSTRINGS> placeholder is instantiated by all func-

tions used in the learning samples, such as *, +, and sqrt. The con-
straint (= prefix_use <?DSTRINGS>) gets a disjunction of equali-

ties, one for each used function. “Def-Use” constraints for languages

like C do not apply to Racket. For example, in Racket it is much

more difficult to distinguish a variable from a function symbol in

expressions than in C, which is why function symbols have to be

explicitly excluded in the constraint. Also, definitions have to occur

in an outer scope instead of before the use of a variable.
ISLearn operates in three phases. The input augmentation phase

uses both a grammar fuzzer and a grammar-, property-, and k-

path-aware mutation fuzzer to generate more input samples, both

satisfying (positive) and violating (negative) the given program

property (if any). The obtained inputs are optionally reduced, main-

taining their relation w.r.t. the program property and the covered

k-paths. Then, learning samples are selected from the positive in-

puts, minimizing their size while maximizing total k-path coverage.

The candidate generation phase instantiates selected patterns

from the catalog based on the given learning inputs in several steps.

For example, the first step instantiates nonterminal placeholders

in quantifiers and match expression placeholder arguments. The

results after each instantiation phase are approximately filtered
using an ISLa checker for schematic formulas. The filtering is con-

servative: Whenever some learning input might satisfy a partially

instantiated pattern, that pattern is retained.

Finally, the filtering and combination phase combines candidate

invariants to conjunctions of disjunctions satisfying configurable

target values for recall and specificity. First, we evaluate for each
candidate which of the positive and negative inputs it satisfies.

Then, we combine candidates to disjunctions up to a configurable

size, such that the percentage of positive inputs satisfying the com-

bination exceeds the recall threshold. Candidates are only combined

if the recall estimate of the combination exceeds the estimate of

all participants. In a next step, we combine the disjunctions to con-

junctions to maximize the amount of negative inputs not satisfying
the resulting combinations (specificity). ISLearn returns invariants

with sufficient specificity and recall estimates, in descending order

according to the values of these estimates.

Implementation. The ISLa core, checker, and solver, as well as

ISLearn are implemented in Python.
2
We use the Z3 SMT solver, and

a coverage-aware grammar fuzzer based on the Fuzzing Book [29]

for closing unconstrained trees. We implemented two additional

libraries for graph operations on CFGs (reachability, k-paths) and

for approximating grammars by regular expressions.

2
The ISLa prototype is available for the ESEC/FST reviewers in an anonymous repos-

itory at https://anonymous.4open.science/r/isla-esec-fse/; the ISLearn prototype is

available at https://anonymous.4open.science/r/islearn-esec-fse/. We will release both

under an open source license after acceptance of this paper.
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Table 1: Overview of evaluation targets and their properties.
Properties in italic font are not covered by our specification.

Language Test Target def-use redef len-cnt other
Scriptsize-C clang ✓ ✓ ✗ Nontermination

Overflow
XML xml.etree ✓ ✓ ✗ Balance

TAR tar ✓ ✓ ✓ Checksum

reST rst2html ✓ ✓ ✓ Numbering

CSV csvlint ✗ ✗ ✓ ✗

Racket racket
DOT dot To be mined in Section 6.3

ICMP Echo pythonping

6 EVALUATION
To evaluate ISLa and ISLearn, we pose three research questions:

RQ1 To which degree do ISLa constraints contribute to the
efficiency and precision of the input generator? With

this question, we evaluate how much benefit does one get
(in terms of more valid inputs) for how much cost (in terms

of having to specify ISLa constraints).

RQ2 How diverse are inputs generated from ISLa constraints?
Here, we want to ensure that ISLa does not overspecialize (for
instance, by producing only a small set of concrete inputs).

RQ3 What are the recall and specificity of invariants mined
by ISLearn?We evaluate how useful the invariants mined

by ISLearn, and specifically the default patterns, are to de-

scribe the circumstances of normal program behavior.

Evaluation Subjects. To evaluate RQ1 and RQ2, we identified

frequently occurring context-sensitive language properties: (1) Dec-

laration of identifiers (def-use), (2) redefinition—identifiers must

not be declared more than once (redef ), and (3) length or counting

properties (len-cnt).
To cover these properties, we chose input languages of differ-

ent character: (1) One highly structured (XML) and one more hu-

man-readable (reStructuredText (reST))markup language, (2) a data
exchange format (CSV), (3) a programming language (Scriptsize-C),
and (4) a binary format (TAR). Scriptsize-C extends Tiny-C [7] by

explicit variable declarations. For each of these languages, we de-

fined grammars from their specification; for XML, we extended a

pre-existing grammar from the Fuzzing Book [29] with namespace

prefixes. We then added ISLa semantic constraints to all of these.

The TAR archive format represents properties of binary inputs;

it comes with strict length constraints (block sizes), and requires

the computation of a checksum. Checksums are generally out of

scope of SMT-LIB, which is why implemented a dedicated semantic

predicate for TAR checksums (15 lines of code).

For ISLearn, we chose three additional languages to evaluate

how well patterns from our catalog transfer to new application

scenarios. Again, we aimed at choosing a diverse range of evaluation

targets: (1) a functional programming language (Racket), (2) a graph
description language (DOT), and (3) a binary format (ICMP packets).

Table 1 gives an overview of languages, test targets, and proper-

ties used in our evaluation. For the ISLearn subjects, we leave the

properties open, since the goal is to discover their invariants. For
ground truth, we chose test targets processing each language.

Table 2: ISLa Efficiency, precision, and input diversity

Constraints LOC Efficiency Precision Diversity Length
Inputs/min Inputs/min (%) %k-paths #Chars

(none) — 504 121(24) 48 1

+ no-redef 4 204 35(17) 52 14C

+ def-use 6 198 198(100) 66 32

(none) — 786 142(18) 80 5

+ balance 2 2,142 2,078(97) 92 44

+ def-use 11 60 57(95) 89 134X
M
L

+ no-redef 5 60 60(100) 88 127

(none) — 749 0(0) 0 0

+ length 44 35 0(0) 0 0

+ checksum 3 30 10(33) 81 3,072T
A
R

+ reference 14 42 42(100) 80 3,072

(none) — 252 86(34) 100 9

+ reference 6 726 428(59) 100 36

+ length 7 462 402(87) 100 34

+ numbering 7 498 483(97) 100 35

r
e
S
T

+ no-redef 4 498 498(100) 100 34

(none) — 774 472(61) 100 8

C
S
V

+ columns 7 30 30(100) 100 1,699

The “Efficiency” column considers all produced inputs; “Precision”, “Diversity” and

“Length” only valid (accepted) inputs. “Length” is the median length of all valid inputs.

We evaluated k-path coverage for both k=3 and k=4.

6.1 RQ1: Precision
The aim of ISLa is to produce more valid inputs, at the effort of

specifying input constraints. Since ISLa is closed under conjunction,

specifications can be added until a satisfying precision is reached.

Table 2 relates the lines of ISLa code for a semantic property and

the resulting overall precision. The “(none)” rows stand for “no

constraint” added. Here, we ran the grammar fuzzer that ISLa uses

to close unconstrained open derivation trees. For each language,

the rows below “(none)” show the results of the ISLa generator

when adding the specified constraint on top of the ones appearing

above. The first constraint is the one with the most positive effect

on precision; similarly for the others. The “Precision” column shows

the number of valid inputs generated per minute, with the percent-

age of valid inputs in parentheses. Only 18% of generated XML

inputs are valid without constraints; 142 valid XML documents are

generated per minute. For TAR, not a single input is valid. The

“Efficiency” column displays the generation speed irrespectively

of validity. We observe that ISLa generates dozens to hundreds of

inputs per minute, including a high number of valid ones. All values

are obtained from a one-hour run of the input generator.

For every constraint added, we provide its length in lines of code.

For Listing 1 (balance in Table 2), the length is 2.

In most cases, the precision increases with each additional con-

straint. For XML, a total of 18 lines of constraints is required to

achieve 100% precision, with the last one going from a value slightly

below 100% towards the totality of all inputs. Interestingly, relative

precision as well as overall efficiency decline when adding the def-
use property to XML. The loss in efficiency can be explained by the

expensiveness of the def-use constraint, which requires complex

derivation tree manipulations. The precision loss stems from the

fact that the solver is now directed towards introducing more at-

tributes with namespace prefixes, which introduces more (invalid)

attribute repetitions. The no-redef constraint increases precision up

to 100%. A similar phenomenon can be observed for Scriptsize-C.

✏ Already with few ISLa constraints, a high number of valid

inputs is generated.

✏ ISLa constraints can ensure that all inputs are valid.
8
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The most verbose property is the “length” property for TAR,

where each field of the archive has to conform to strict length

bounds. Yet, the constraint consists of a conjunction of simple con-

straints (most of them two lines only). If we do not length and check-
sum constraints, we cannot produce even a single valid TAR file.

6.2 RQ2: Diversity
A test generator should produce inputs exercising different lan-

guage features, by which one can expect to reach different paths

in the language processor [10]. Essentially, 100% precision can be

reached by always producing the same, small input. To validate

that ISLa generates diverse and thus interesting inputs, we compute

their accumulated k-path coverage [10], assessing how many paths

in the grammar of length 𝑘 are present in a derivation tree. The

higher the 𝑘-path coverage, the higher the diversity.

The “Diversity” column in Table 2 shows the percentage of accu-

mulated 3- and 4-paths during a one-hour run per all 3/4-paths in

the grammar. For example, generating Scriptsize-C programs from

the grammar only achieves 48% coverage, while we cover 66% of

all 3/4-paths when adding the “no-redef” and “def-use” constraints.

We only count valid inputs accepted by the program under test.

Overall, the inputs produced by ISLa have better diversity than

inputs produced without constraints.

Especially to explain the behavior of the solver for CSV, we also

added the “Length” column to the table. Input length is not a partic-

ularly good coverage measure, as one can always choose, e.g., very

long identifiers. However, we can observe that, in particular for

CSV and C, the inputs generated by the grammar fuzzer are mostly

trivial; the most common valid C program generated by the gram-

mar fuzzer is “;”. In general, the ISLa solver clearly outperforms

the grammar fuzzer in terms of complexity of the generated inputs.

✏ ISLa covers the diversity of the underlying grammar.

6.3 RQ3: ISLearn
We populated the patterns catalog for ISLearn with abstractions of

the patterns used for the ISLa evaluation targets. In addition, we

added a couple of simple properties about magic constants, most

notably the pattern “String Existence”:

forall <?NONTERMINAL> container in start:

exists <?NONTERMINAL> elem in container:

(= elem <?STRING>)

The goal of this research question is to assess how well these

patterns, and the ISLearn system in general, can be used to mine

invariants describing circumstances of normal program behavior

(i.e., whether an input is accepted by the program under test). We

are particularly interested in two questions: (1) If an input is valid
(accepted by the program), what is the probability that the mined

invariant actually classifies the input as such (i.e., the ISLa checker

reports that the input does not satisfy the invariant)? This is cap-

tured by the recall of the invariant. (2) Conversely, if an input is

invalid, what are the chances that the mined invariant classifies it

accordingly? This is assessed by the specificity of the invariant.

To evaluate recall and specificity, we chose seed sets of training
and validation inputs. For Racket andDOT, we obtained valid Racket
or DOT files from GitHub. We separated those inputs into sets

Classified as
Input True False Total
True TP = 50 FN = 0 50

False FP = 8 TN = 42 50

Total 58 42 100

Recall = 100%, Specificity = 84%

Precision = 86%, Accuracy = 92%

(a) DOT

Classified as
Input True False Total
True TP = 50 FN = 0 50

False FP = 3 TN = 47 50

Total 53 47 100

Recall = 100%, Specificity = 94%

Precision = 94%, Accuracy = 97%

(b) ICMP Echo

Classified as
Input True False Total
True TP = 36 FN = 14 50

False FP = 8 TN = 42 50

Total 44 56 100

Recall = 72%, Specificity = 84%

Precision = 82%, Accuracy = 78%

(c) Racket (XML pattern)

Classified as
Input True False Total
True TP = 36 FN = 14 50

False FP = 5 TN = 45 50

Total 41 59 100

Recall = 72%, Specificity = 90%

Precision = 88%, Accuracy = 81%

(d) Racket (XML + reST pattern)

Table 3: Confusion matrices for RQ3

of training and validation inputs of equal size. Subsequently, we

expanded the training and validation sets to 50 inputs each using

both a mutation-based and a grammar fuzzer. Similarly, we collect

negative inputs (not accepted by the programs under test) into

sets of negative training and validation inputs, each of size 50. Our

third evaluation target are ICMP Echo packets (as used by the ping

utility).We generated random, valid echo request and reply packets

with correct checksums using the ‘pythonping‘ library. To obtain

negative samples, we created arbitrary (not necessarily echo) ICMP

packets, 20% of those with an incorrect checksum value.

Based on the (positive and negative) training examples, we let

ISLearn compute an invariant. The system already estimates recall

and specificity based on the supplied sample inputs, and returns the

top-ranked result. We then assessed the quality of that invariant us-

ing the validation sets. If, e.g., an input from the positive validation

set does not satisfy the invariant, the input is a false negative (FN).
Table 3 presents the confusion matrices for our evaluation. For

DOT, ISLearn discovered the invariant that edges in directed graphs

are directed (->), and undirected (--) for undirected graphs. The

invariant is slightly too weak, as it only requires one correct edge in
each “edge statement,” which, however, can contain multiple (right

orwrong) edges. In the case of ICMPEcho packets, the system learns

that the value of the “type” is 0 (reply) or 8 (response). It wrongly

classifies three packets with wrong checksums as valid. Adding

a pattern for a semantic predicate computing internet checksum
achieves 100% specificity. Both of these invariants are obtained

from combined instantiations of the “string existence” pattern. We

already mentioned that a def-use invariant for variables in Racket

can be obtained from a pattern derived from an XML invariant; this

leads to 72% recall and 84% specificity. Onemissing semantic feature

is a def-use property for functions. We discovered that by weakening

the def-use pattern obtained from reST, taking into account pre-

defined function symbols that have not been defined, we obtain a

suitable invariant for this property. The confusionmatrix in Table 3d

demonstrates that this increases specificity to 90%. The—compared

to DOT and ICMP—low recall stems from the fact that not all pre-

defined functions appear in the training set.

✏ ISLearn mines invariants of high recall and specificity based

on patterns for re-occurring input properties.

9
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6.4 Threats to Validity
We supported our claim that ISLa is a useful specification language

by expressing context-sensitive properties of five subject input

languages. Whether indeed ISLa is sufficiently expressive and its

solver sufficiently precise depends onwhether our choice of subjects

is representative. There is a potential threat of overfitting, i.e., that
we designed ISLa and ISLearn to exactly fit the test subjects. We

mitigate this threat by choosing diverse languages, i.e., not only

programming ormarkup languages, or binary formats, but amixture
of those. Furthermore, we identified and clustered context-sensitive

properties of the test subjects. This supports the claim that those

are representative and can be transferred to different targets, as

does the fact that an XML pattern could be used for Racket.

7 RELATEDWORK
Parser Specifications. ISLa provides a framework to specify input

requirements, or preconditions, of a program. It targets the sys-

tem level, where inputs are generally strings. Parser generators like
ANTLR

3
and the pioneer yacc [15] promoted CFGs for specify-

ing complex structured inputs. However, specifications designed

for parsing inputs are rarely specific enough to also be used for

producing valid inputs, which is the gap that ISLa fills.

Attribute Grammars. Attribute grammars [16] associate gram-

mar symbols with synthesized and derived attributes. This allows

checking semantic properties; if attributes use a general-purpose

programming language, one can express arbitrarily complex seman-

tic properties. The meta-compiler JastAdd [11], for instance, sup-

ports imperative specifications in Java; the same holds for ANTLR

(Java) and yacc (C). ISLa’s mix of quantifiers, structural predicates,

and SMT-LIB assertions allows expressing important input proper-

ties and can be used for parsing and producing inputs alike.

Grammar-Based Test Generation. Context-Free Grammars are

well-suited for syntax-aware test input generation. CSmith [27]

and LangFuzz [13] use CFGs as a basis to randomly create syntacti-

cally valid C and JavaScript programs, respectively; Grammarina-

tor [12] produces inputs from ANTLR grammars. The underlying

grammars are typically hand-written, but can also be mined from

programs [9] and inputs [17]. ISLa fits between Grammarinator and

CSmith: It can produce inputs from different language models like
Grammarinator, but fulfills semantic properties like CSmith. Yet, the

probability that Grammarinator will create a valid TAR file from a

CFG approaches zero, and CSmith can only generate—well—C files.

Test Generation with Semantic Properties. FormatFuzzer [5] is

a fuzzer for binary formats. It is parameterized with binary tem-
plates as language models, which resemble C structs, but come with

added code for satisfying semantic constraints, including complex

expressions, control statements and functions. These constraints

are strictly local, though, mainly supporting checksums and length

fields for binary formats. Non-local and complex constraints, such

as def-use properties, have to be programmatically implemented.

ISLa’s constraints, in contrast, are declarative, can apply to arbitrary

elements in the derivation tree, and are easily solved using Z3.

3
https://www.antlr.org/

Pan et al. [21] useHigher-Order Attribute Grammars [26] for fuzz

testing, providing custom predicates for parse tree manipulation

(e.g., length constraints and checksum computation) in a general-

purpose programming language. The approach neither supports

parsing nor generation from scratch.

Dewey et al. [4] propose to express grammars and constraints us-

ing the Prolog Constraint Logic Programming (CLP) framework for

language-based test generation. As Prolog is relatively declarative,

CLP shares the idea of declarative constraints with ISLa; however,

CLP-based language fuzzers also cannot be used for parsing.

Property-Based Testing. Pioneered by QuickCheck [2], Property-

Based Testing (PBT) automatically produces data structures of the
host language to test individual functions against user-defined prop-
erties. This allows expressing features in the host programming

language, which is not available when working with unstructured

system inputs. ProSyT [3] and Luck [18] generate data structures for
Erlang and Haskell, respectively, separating and solving semantic

constraints from data types.

Generally, the concept of parsing and mutating existing data is

not present in PBT. One exception is Zest [20], which leverages

program feedback to create syntactically valid input mutants exer-

cising interesting program paths. The central difference between

ISLa and all PBT approaches is that ISLa operates at the system

level, producing system inputs rather than internal data structures.

Mining Invariants. Daikon [6] is the seminal work for extracting

invariant candidates from program executions—pre- and postcon-

ditions as well as data invariants; its pattern matching approach

is the inspiration for ISLearn. Recent advances in the field focus

on program verification, loop invariants, and the usage of neural

networks [28]. Unlike ISLearn, all these approaches operate at the

unit level, and cannot generate targeted executions to refine invari-

ants. To the best of our knowledge, ISLearn is the first approach to

specify, determine, and refine invariants at the system level.

8 CONCLUSION AND FUTUREWORK
We proposed ISLa, a declarative specification language for context-

sensitive constraints of system inputs. In our framework, syntactic

language constraints are specified using Context-Free Grammars

(CFGs), which are great for parsing, but often too coarse for gener-

ating inputs. Context-sensitive refinements are expressed by ISLa

constraints, using the vocabulary defined by the CFG. We formally

defined ISLa’s syntax and semantics, and demonstrated that our

ISLa solver can be used to generate semantically correct inputs

significantly faster than by generating from a CFG alone. Further-

more, we introduced the ISLearn input invariant miner, which au-

tomatically produces useful ISLa specifications based on a program

property and/or sample inputs.

Besides further refining the ISLa and ISLearn implementation,

our future work will focus on the following topics:

Fuzzer integration. ISLa-generated inputs can serve as high-

quality seed inputs for greybox fuzzers like AFL; ISLa’s check-
ers can quickly filter out invalid generated inputs.

Testing strategies. Aprobabilistic variant of ISLearn could quickly

learn which input features correlate with program behaviors
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(including failures or specific coverage); this allows for test

generation techniques exploring syntax and semantics.

Constraint synthesis. Besides checking patterns, techniques from
program synthesis would have great potential for generating

constraints from examples.

Constraints as oracles. As ISLa allows extracting and assessing

arbitrary input elements, it can also check outputs for con-
straints. This allows using ISLa constraints as oracles (which
could also be learned via ISLearn).

Detecting anomalies. Decomposing inputs and outputs provides

plenty of syntactical and semantic features that can be used

for learning commonalities and anomalies; learned correla-

tions can be reinforced by ISLa-generated tests.

The ISLa and ISLearn prototypes are available at

https://github.com/rindPHI/isla

https://github.com/rindPHI/islearn
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A APPENDIX
In this appendix, we provide additional examples, formal definitions,

theorems, and proof sketches. Furthermore, we show the invariants

that ISLearn mined in our evaluation (RQ3).

2 ISLa by Example
In Section 2, we discussed the semantic properties def-use and re-
definition along the XML language. Apart from those, there are

two other re-occurring generic constraints we would like to dis-

cuss: Length properties and complex conditions for which we need

dedicated semantic predicates.
One of the target languages in our evaluation (Section 6) is

reStructuredText (reST), a plaintext markup language used, e.g.,

by Python’s docutils. In reST, document (sub)titles are underlined

with “=” or “-” symbols. However, titles are only valid if the length

of the underline is not smaller than the length of the title text. This

property cannot be expressed in a CFG; however, we can easily

capture it in an ISLa constraint:

forall <section-title> title=

"{<title-txt> titletxt}\n{<underline> underline}" in start:

(>= (str.len underline) (str.len titletxt))

There are properties which cannot be expressed using structural

predicates and SMT-LIB formulas alone. A stereotypical case are

checksums occurring in many binary formats, such as in the TAR

archive file format from our benchmark set. To account for such

situations, we can extend the ISLa language with additional atomic

assertions, so-called semantic predicates. In contrast to structural

predicates such as inside or same_position, which we have seen

before, semantic predicates do not always evaluate to false for in-

valid arguments. Instead, they can suggest a satisfying solution.
The solver logic for individual semantic predicates is implemented

in Python code in our prototype. Once this logic has been im-

plemented, we can pass such predicates as additional signature

elements to both the ISLa evaluator or solver and use them in con-

straints. The following constraint, which is part of our constraint set

for TAR files, uses a semantic predicate tar_checksum computing

a correct checksum value for the header of a TAR file.

forall <header> header in start:

forall <checksum> checksum in header:

tar_checksum(header, checksum)

Another use case for semantic predicates is when the SMT solver

frequently times out when looking for satisfying assignments. This

happens in particular for constraints involving a complex combina-

tion of arithmetic and string (e.g., regular expression) constraints.

For example, valid CSV files have the property that all rows have

the same numbers of columns. Assuming that we know the number

of columns in the file header, we could create a regular expression

matching all CSV lines with the same number of columns. How-

ever, if we admit quoted expressions and a wide character range

for contained text, these regular expressions get quite complex,

and the problem exceeds the capabilities of current SMT solvers in

our experience. Thus, we implemented a new semantic predicate

count which counts the number of occurrences of some nonter-

minal in an input tree, and fixes trees with an insufficient number

of occurrences if possible. The following ISLa constraint for the

CSV property uses an additional language feature: It introduces a

numeric constant colno using the num directive, which works sim-

ilarly to let expressions in functional programming languages. It

is primarily—and also in this example—used to enable information

exchange between semantic predicate formulas.

forall <csv-header> hline in start:

exists int colno:

((>= (str.to_int colno) 3) and
((<= (str.to_int colno) 5) and
(count(hline, "<raw-field>", colno) and
forall <csv-record> line in start:

count(line, "<raw-field>", colno))))

One has to be aware that the order of semantic predicates in a

constraint matters. This is in contrast to all other language atoms:

SMT formulas, in particular, are fed to an SMT solver only after all

universal quantifiers have been eliminated resp. matched, and eval-

uated en bloc. Semantic predicates, on the other hand, are generally

not compositional. When computing the checksum for a TAR file,

for instance, it is important that all elements of the file header are

already fixed at that point, i.e, all semantic predicates on header

elements have to be evaluated before. Consequently, they have

to occur before the checksum predicate in the overall constraint.

Despite this particularity, semantic predicates are an easy way to

increase both the expressiveness and solving performance of ISLa

constraints, and to overcome the limits of SMT-LIB and off-the-shelf

solvers.

3 ISLa Syntax and Semantics
We provide a more formal definition of derivation trees. We use

the symbols < and ≤ to denote the strict and non-strict versions

of the same partial order relation, respectively; for the correspond-

ing covering relation which only holds between parents and their

immediate children, we write ≺.

Definition A.1 (Derivation Tree). A derivation tree for a CFG 𝐺 =

(𝑁,𝑇 , 𝑃, 𝑆) is a rooted ordered tree 𝑡 = (𝑋, ≤𝑉 , ≤𝑆 ) such that (1) the

vertices 𝑣 ∈ 𝑋 are labeled with symbols label(𝑣) ∈ 𝑁 ∪𝑇 , (2) the

vertical order ≤𝑉 ⊆ 𝑋 × 𝑋 indicates the parent-child relation such

that the partial order (𝑋, ≤𝑉 ) forms an unordered tree, (3) the

sibling order ≤𝑆 ⊆ 𝑋 × 𝑋 yields a partial order (𝑋, ≤𝑆 ) such that

two distinct nodes 𝑣1, 𝑣2 are comparable by relation ≺𝑆 if, and

only if, they are siblings, (4) the root of 𝑡 is labeled with 𝑆 , and

(5) each inner node 𝑣 is labeled by a symbol in 𝑛 ∈ 𝑁 and, if

𝑣1, . . . , 𝑣𝑘 is the ordered list of all immediate children of 𝑣 , i.e., all

distinct nodes such that 𝑣 ≺𝑉 𝑣𝑖 and 𝑣𝑖 <𝑆 𝑣𝑙 for 1 ≤ 𝑖 < 𝑙 ≤ 𝑘 ,

there is a production (𝑛, 𝑠1, . . . , 𝑠𝑘 ) ∈ 𝑃 such that label(𝑣) = 𝑛

and, for all 𝑣𝑖 , label(𝑣𝑖 ) = 𝑠𝑖 . We write leaves(𝑡) for the set of

leaves of 𝑡 , and label(𝑡) for the label of its root. A derivation tree is

closed if 𝑙 ∈ 𝑇 for all 𝑙 ∈ leaves(𝑡), and open otherwise. We define

closed (𝑡) B ∀𝑙 ∈ leaves(𝑡) : 𝑙 ∈ 𝑇 , and open(𝑡) B ¬closed (𝑡).
T (𝐺) is the set of all (closed and open) derivation trees for 𝐺 .

Example A.2. We explain the formal definition of derivation trees

(Definition A.1) along the XML document <a>x</a>. visualized in

Fig. 2. Formally, this tree is represented as a triple 𝑡 = (𝑋, ≤𝑉 , ≤𝑆 ),
where 𝑋 = {𝑣1, . . . , 𝑣14}, with label(𝑣1) = ⟨xml-tree⟩, label(𝑣2) =
⟨xml-open-tag⟩, etc. The vertical order ≤𝑉 contains the edges in the

figure: For example, 𝑣1 ≤𝑉 𝑣2 and 𝑣2 ≤𝑉 𝑣13. This relation alone

only gives us an unordered tree: When “unparsing” the tree, we

could thus obtain the undesired result xa><></a. Thus, we define
12
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Listing 4: Greedily matching match expressions.
1 def match(tree, mexp, result, excluded=()):

2 subtrees = tree.subtrees(PREORDER)

3 curr_var = pop(mexp)

4

5 while subtrees and curr_var:

6 path, subtree = pop(subtrees)

7 if (subtree.value != curr_var.n_type

8 or (path, curr_var) in excluded):

9 continue
10

11 result[curr_var] = (path, subtree)

12 curr_var = pop(mexp, None)
13

14 subtrees = [

15 (p, s) for p, s in subtrees

16 if not p[:len(path)] == path]

17

18 return not subtrees and not curr_elem

a sibling order ≤𝑆 to order the immediate children of the same

node. For instance, we have 𝑣6 ≤𝑆 𝑣8 (and 𝑣6 ≤𝑆 𝑣6, 𝑣6 <𝑆 𝑣8, and

𝑣6 ≺𝑆 𝑣7), but not 𝑣6 ≤𝑆 𝑣9 (since they have different parents) and

𝑣6 ≺𝑆 𝑣8 (since they are not immediate siblings). The tree is not
only any ordered tree, but a derivation tree for the XML grammar

in Fig. 1, since it satisfies Items (4) and (5) of Definition 3.4. The

root of the tree, 𝑣1, is labeled with the grammar’s start symbol

⟨xml-tree⟩ (Item (4)). The tree relations conform to the possible

grammar derivations: Consider, e.g., node 𝑣2 and its immediate

children 𝑣6, 𝑣7, and 𝑣8. According to Item (5), there has to be a

production (⟨xml-open-tag⟩, ‘<’, ⟨id⟩, ‘>’) in the grammar, which is

indeed the case, since ‘<’ ⟨id⟩ ‘>’ is an expansion alternative (the

first one) for the nonterminal ⟨xml-open-tag⟩. The leaf set leaves(𝑡)
is {𝑣6, 𝑣13, 𝑣8, 𝑣9, 𝑣10, 𝑣14, 𝑣12}. The tree 𝑡 is closed, since all leaves
are labeled with terminal symbols. It would be open if we removed

the subtree rooted in any tree node (but the root).

We explain the process of matching quantified formulas with
match expressions against derivation trees along the concrete code
from our implementation (Listing 4). The function match receives a
derivation tree, a match expression, a map for storing the result, and

a list of matches to ignore (which we discuss later). Before calling

match, terminal and nonterminal symbols in the match expression

are converted to “dummy” variables of a randomly chosen, fresh

name. For terminal symbols, the type of these variables (which can

be accessed via the field “n_type”) is the symbol itself. Furthermore,

match is only called after “flattening” the match expression. That

is, we compute all combinations of activated and non-activated

optional expressions. If there are𝑛 optionals in thematch expression,

we obtain 2
𝑛
flattened lists consisting of variables only. Thus, the

match expression mexp which match receives is a list of (ordinary
and dummy) variables, while original match expressions consist of

bound variables, terminal and nonterminal symbols, and, if there

are optional elements, non-nested lists of terminal and nonterminal

symbols. We enumerate all paths and corresponding subtrees in

the tree in pre-order (Line 2). As long as there are still subtrees

and bound elements to match (Line 5), we take the next subtree

(Line 6) and check whether that tree matches the current tree label

(Line 7). If this is the case (we ignore the check in Line 8 for now),

we record the match for the current bound element (Line 11) and

remove all paths below that subtree (Lines 14 to 16). The pointer

for the current element of the match expression (curr_var) is set
to the next bound variable or None (passed as an optional default

value to the pop function) if there are no more elements to match.

A match is complete (and True is returned in Line 18) if there do

not remain unmatched subtrees and the current element pointer is

None; otherwise, we return False.
This greedy match procedure sometimes fails for structures with

recursive nonterminals. Consider the case of a compound XML

attribute <attribute> <attribute>. If we try to match this ex-

pression against a derivation tree whose root is also <attribute>,
match unifies the root with the first <attribute> occurrence in the

match expression, leading to an unsuccessful match. Thus, match is
called by an outer backtracking procedure which excludes selected

matches from an incomplete result assignment, which are then

avoided in Line 8 in subsequent calls of match.
In the following, we use match as match(𝑡,mexpr) for a tree

𝑡 ∈ T (𝐺) and match expression mexpr ∈ (𝑁 ×𝑇 ×VSym)∗, leaving
the conversion of symbols from 𝑁 and 𝑇 to variables, flattening,

and backtracking implicit. The return type of this function is an

optional mapping of variables to subtrees. We say that there is a
match𝑚 for 𝑡 and mexpr if match returns a mapping (and not None).

4 Solving ISLa Constraints
We provide a formalization of our ISLa constraint solver, including

two correctness theorems and proof sketches.

We formalize input generation for ISLa as a transition system

between CDTs Φ ⊲ 𝑡 , where Φ is a set of ISLa formulas (interpreted

as a conjunction) and 𝑡 a (possibly open) derivation tree. Intuitively,∧
Φ constrains the inputs represented by 𝑡 , similarly as ⟦𝜑⟧ con-

strains the language of the grammar. To make this possible, we

need to relax the definition of ISLa formulas: Instead of free vari-

ables, formulas may contain references to tree nodes which they

are concerned about. To that end, tree nodes are assigned unique,

numeric identifiers, which may occur everywhere in ISLa formulas

where a free variable might occur (variables bound by quantifiers

may not be replaced with tree identifiers).

Consider, for example, the ISLa constraint

𝜑 = forall ⟨id⟩ id in start: (= (str.len id) 17)

constraining the XML grammar in Fig. 1 to identifiers of length 17,

where id is a bound variable of type ⟨ID⟩ and start is a free variable
of type ⟨start⟩. Let 𝑡 be a tree consisting of a single (root) node with
identifier 1, and labeled with ⟨start⟩. Then, ⟦𝜑⟧ is identical to the

strings represented by the CDT

{forall ⟨id⟩ id in 1: (= (str.len id) 17)} ⊲ 𝑡 .
Our CDT transition system relates an input CDT to a set of output

CDTs. We define two properties of such transitions: A transition

is precise if the input represents at most the set of all strings rep-
resented by all outputs together; conversely, it is complete if the
input represents at least the set of all strings represented by all

outputs. Precision is mandatory for the ISLa producer, since we

have to avoid generating system inputs which do not satisfy the

specified constraints.

To define the semantics of CDTs, we first define the closed trees

represented by (the language of) open derivation trees. We need

13
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the concept of a tree substitution: The tree 𝑡 [𝑣 ↦→ 𝑡 ′] results from
𝑡 = (𝑋, ≤𝑉 , ≤𝑆 ) by replacing the subtree rooted in node 𝑣 ∈ 𝑋 by

𝑡 ′, updating 𝑋 , ≤𝑉 and ≤𝑆 accordingly.

Definition A.3 (Semantics of Open Derivation Trees). Let 𝑡 ∈ T (𝐺)
be a derivation tree for a grammar 𝐺 = (𝑁,𝑇 , 𝑃, 𝑆). We define the

set T (𝑡) ⊆ T (𝐺) of closed derivation trees represented by 𝑡 as

T (𝑡) B
{
𝑡 [𝑙1 ↦→ 𝑡1] · · · [𝑙𝑘 ↦→ 𝑡𝑘 ] |

𝑙𝑖 ∈ leaves(𝑡) ∧ 𝑘 = |leaves(𝑡) |
∧ (∀𝑗,𝑚 ∈ 1 . . . 𝑘 : 𝑙 ≠𝑚 → 𝑙 𝑗 ≠ 𝑙𝑚)
∧ 𝑛𝑖 = label(𝑡𝑖 ) = label(𝑙𝑖 )
∧ 𝐺𝑛𝑖 = (𝑁,𝑇 , 𝑃, 𝑛𝑖 ) ∧ 𝑡𝑖 ∈ T (𝐺𝑛𝑖 )

}
Observe that for the tree consisting of a single node labeled with

the start symbol 𝑆 , T (𝑡) is identical to T (𝑆). Furthermore, for any

closed tree 𝑡 ′, it holds that T (𝑡 ′) = {𝑡 ′}.
We re-use the validity judgment defined from Definition 3.6 for

the semantics definition for CDTs by interpreting tree identifiers

in formulas similarly to variables. Furthermore, the special vari-

able assignment 𝛽𝑡 for the derivation tree 𝑡 associates with each

tree identifier in 𝑡 the subtree rooted in the node with that iden-

tifier. Then, the definition is a straightforward specialization of

Definition 3.8:

Definition A.4 (Semantics of CDTs). Let Φ ⊆ 2
Fml

be a set of ISLa

formulas for the signature Σ = (𝐺, PSym,VSym), 𝑡 ∈ T (𝐺) be a
derivation tree, and 𝜋 , 𝜎 be interpretations for predicates and SMT

formulas. We define the semantics ⟦Φ ⊲ 𝑡⟧ of the CDT Φ ⊲ 𝑡 as

⟦Φ ⊲ 𝑡⟧ B {str (𝑡 ′) | 𝑡 ′ ∈ T (𝑡) ∧ closed (𝑡 ′) ∧ 𝜋, 𝜎, 𝛽𝑡 ′ |=
∧

Φ}.

A CDT Transition System (CDTTS) is simply a transition system

between CDTs.

Definition A.5 (CDT Transition System). A CDTTS for a signature
Σ = (𝐺, PSym,VSym) is a transition system (𝐶,→), where, for
Φ ∈ 2

Fml
and 𝑡 ∈ T (𝐺), 𝐶 consists of CDTs Φ ⊲ 𝑡 , and →⊆ 𝐶 ×𝐶 .

We write cdt → cdt ′ if (cdt, cdt ′) ∈′→.

Intuitively, one applies CDTTS transitions to an initial constraint

with a trivial tree only consisting of a root node labeled with the

start nonterminal, and collects “output” CDTs ∅ ⊲ 𝑡 with an empty

constraint. The trees 𝑡 of such outputs are solutions to the initial

problem. We call a CDTTS globally precise if all such trees 𝑡 are

actual solutions, i.e., the system does not produce wrong outputs;

we call it globally complete if the entirety of trees 𝑡 from result CDTs

represents the full semantics of the input CDT.

Definition A.6 (Global Precision and Completeness). Let (𝐶,→)
be a CDTTS, and 𝑅cdt be the set of all closed trees 𝑡 such that

cdt → · · · → ∅ ⊲ 𝑡 is a derivation in (𝐶,→). Then, (𝐶,→) is
globally precise if, for each CDT cdt in the domain of →, it holds

that ⟦cdt⟧ ⊇ {str (𝑡) |𝑡 ∈ 𝑅cdt }. The CDTTS is globally complete if it
holds that ⟦cdt⟧ ⊆ {str (𝑡) |𝑡 ∈ 𝑅cdt }.

To enable transition-local reasoning about precision and com-

pleteness, we define notions of local precision and completeness. Lo-

cal precision is the property that at each transition step, no “wrong”

inputs are added, and local completeness the property that no tran-

sition step loses information.

Definition A.7 (Local Precision and Completeness). A CDTTS

(𝐶,→) is precise if, for each CDT cdt in the domain of→, it holds

that ⟦cdt⟧ ⊇ ⋃
cdt→cdt′ (⟦cdt ′⟧). The CDTTS is complete if it holds

that ⟦cdt⟧ ⊆ ⋃
cdt→cdt′ (⟦cdt ′⟧).

As for “soundness” in first-order logic (see, e.g., [25]), local pre-

cision implies global precision, i.e., it suffices to show that the

individual transitions are precise to obtain the property for the

whole system. This is demonstrated by the following Lemma A.8.

Note that the opposite direction does not hold, since a CDTTS could

in theory lose precision locally and recover it globally, although it

is unclear how (and why) such a system should be designed.

Lemma A.8. A locally precise CDTTS is also globally precise.

Proof. The lemma trivially holds if 𝑅cdt = ∅. Otherwise, let
cdt0 → cdt1 → · · · → ∅ ⊲ 𝑡 be any transition chain s.t. cdt0 = cdt
and 𝑡 ∈ 𝑅cdt . Then, it follows from local precision that ⟦cdt𝑘⟧ ⊇
⟦cdt𝑘+1⟧ for 𝑘 = 0, . . . , 𝑛− 1, and by transitivity of ⊇ also ⟦cdt𝑘⟧ ⊇
⟦cdt𝑙⟧ for 0 ≤ 𝑘 < 𝑙 ≤ 𝑛. Since ⟦∅ ⊲ 𝑡 ′⟧ = str (𝑡 ′) for closed 𝑡 ′, the
lemma follows. □

Global completeness cannot easily be reduced to local complete-

ness: It includes the “termination” property that all derivations end

in CDTs with empty constraint set; furthermore, one has to show

that there is an applicable transition for each CDT with non-empty

semantic.

Our ISLa solver prototype implements the CDTTS in Fig. 4. It

solves SMT and semantic predicate constraints by querying the SMT

solver or the predicate oracle, and eliminates existential constraints

by inserting new subtrees into the current conditioned tree. Only

when the complete constraint has been eliminated, we finish off the

remaining incomplete tree by replacing open leaves with suitable

concrete subtrees. This is in principle a complete procedure; yet,

our implementation only considers a finite subset of all solutions in

solver queries and when performing tree insertion. Consequently, it

usually misses some solutions, but outputsmore diverse results more
quickly compared, e.g., to a naive search-based approach filtering

out wrong solutions.

Transition Rules. In the ISLa CDTTS, we use indexed CDTs Φ ⊲𝐼 𝑡 .

In the index set 𝐼 , we track previous matches of universal quantifiers

to make sure that we do not match the same trees over and over.

Since SMT formulas can now also contain variables, evaluating

them can result in a model 𝛽 (an assignment). Note that we can

obtain different assignments by repeated solver calls (negating pre-

vious solutions). We divide the set PSym of predicate symbols into

two disjoint sets PSymst and PSymsem of structural and semantic
predicates. Structural predicates address constraints such as before
or within, and they evaluate to ⊤ or ⊥. Semantic predicates formal-

ize constraints such as specific checksum implementations. They

may additionally evaluate to a set of assignments, as in the case

of satisfiable SMT expressions, or to the special value “not ready”

(denoted by⟲). Intuitively, an evaluation results in ⊤ (⊥) if all of
(not any of) the derivation trees represented by an abstract tree

satisfy the predicate. Assignments are returned if the given tree can

be completed or “fixed” to a satisfying solution. One may obtain

14
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{. . . , 𝜑, . . . } ⊲𝐼 𝑡 → {{. . . , 𝜑 ′ . . . } ⊲𝐼 𝑡 | (1)

𝜑 ′ ∈ inv(𝜑) ∧ 𝜑 ≠ 𝜑 ′} ≠ ∅

Φ ⊲𝐼 𝑡 → {Φ \ 𝜑 ⊲𝐼 𝑡 | 𝜑 ∈ Φ ∩ PSymst ∧ 𝜋 (𝜑) = ⊤} (2)

{. . . , forall int 𝑛 in 𝜑: , . . . } ⊲𝐼 𝑡 → (3)

{. . . , {𝑛 ↦→ 𝑐}(𝜑), . . . } ⊲𝐼 𝑡
where 𝑐 ∈ VSym is fresh and vtype(𝑐) = int

{. . . ,

𝜓︷                        ︸︸                        ︷
forall type 𝑣 in id:𝜑, . . . } ⊲𝐼 𝑡 → {{. . . , . . . } ⊲𝐼 𝑡} (4)

if ∀ subrees 𝑡 ′ of T (𝛽𝑡 (id)) :
(𝜓, 𝑡 ′) ∈ 𝐼 ∨ label(𝑡 ′) ≠ type

{. . . ,

𝜓︷                                     ︸︸                                     ︷
forall type 𝑣=“mexpr” in id:𝜑, . . . } ⊲𝐼 𝑡 → (5)

{{. . . , . . . } ⊲𝐼 𝑡} if ∀ subrees 𝑡 ′ of T (𝛽𝑡 (id)) :
(𝜓, 𝑡 ′) ∈ 𝐼 ∨ label(𝑡 ′) ≠ type ∨
there is no𝑚 = match(𝑡 ′,mexpr)

{. . . ,

𝜓︷                        ︸︸                        ︷
forall type 𝑣 in id:𝜑, . . . } ⊲𝐼 𝑡 → (6){

{. . . ,𝜓, . . . } ∪
⋃

Ψ ⊲𝐼 ∪ ({𝜓 }×𝑇 ) 𝑡
}
where

Ψ =
{
𝛽𝑡 [𝑣 ↦→ 𝑡 ′] (𝜑) | 𝑡 ′ ∈ 𝑇

}
∧

𝑇 =
{
𝑡 ′ | 𝑡 ′ = 𝛽𝑡 (id) ∧ (𝜓, 𝑡 ′) ∉ 𝐼 ∧

label(𝑡 ′) = type
}
≠ ∅

{. . . ,

𝜓︷                                     ︸︸                                     ︷
forall type 𝑣=“mexpr” in id:𝜑, . . . } ⊲𝐼 𝑡 → (7){

{. . . ,𝜓, . . . } ∪
⋃

Ψ ⊲𝐼 ∪ ({𝜓 }×𝑇 ) 𝑡
}
where

Ψ =
{
𝛽𝑡 [𝑣 ↦→ 𝑡 ′] [𝑚] (𝜑) | (𝑡 ′,𝑚) ∈ 𝑇

}
∧

𝑇 =
{
(𝑡 ′,𝑚) | 𝑡 ′ = 𝛽𝑡 (id) ∧ (𝜓, 𝑡 ′) ∉ 𝐼 ∧

label(𝑡 ′) = type ∧
there is an𝑚 = match(𝑡,mexpr)

}
≠ ∅

Φ ⊲𝐼 𝑡 → {Φ ⊲𝐼 𝑡 ′ | 𝑡 ′ ∈ expand∀
Φ (𝑡) ≠ ∅} (8)

Φ ⊲𝐼 𝑡 → {Φ \ 𝜑 ⊲𝐼 𝛽 (𝑡) | (9)

𝜑 ∈ Φ ∩ Trmbool (VSym) ∧ 𝛽 ∈ 𝜎 (𝜑) ≠ ⊥}

Φ ⊲𝐼 𝑡 → {Φ \ 𝜑 ⊲𝐼 𝛽 (𝑡) | (10)

𝜑 is first 𝜑 ∈ Φ ∩ PSymsem ∧ 𝛽 ∈ 𝜋 (𝜑) ∉ {⊥,⟲}}

{. . . ,

𝜓︷                        ︸︸                        ︷
exists type 𝑣 in id:𝜑, . . . } ⊲𝐼 𝑡 → (11)⋃

𝜉 ∈Ψ

{
{. . . , 𝜉, . . . } ⊲𝐼 𝑡

}
where

Ψ =
{
𝛽𝑡 [𝑣 ↦→ 𝑡 ′] (𝜑) | 𝑡 ′ ∈ 𝑇

}
∧

𝑇 =
{
𝑡 ′ | 𝑡 ′ = 𝛽𝑡 (id) ∧ (𝜓, 𝑡 ′) ∉ 𝐼 ∧

label(𝑡 ′) = type
}
≠ ∅

{. . . ,

𝜓︷                                     ︸︸                                     ︷
exists type 𝑣=“mexpr” in id:𝜑, . . . } ⊲𝐼 𝑡 → (12)⋃

𝜉 ∈Ψ

{
{. . . , 𝜉, . . . } ⊲𝐼 𝑡

}
where

Ψ =
{
𝛽𝑡 [𝑣 ↦→ 𝑡 ′] [𝑚] (𝜑) | (𝑡 ′,𝑚) ∈ 𝑇

}
∧

𝑇 =
{
(𝑡 ′,𝑚) | 𝑡 ′ = 𝛽𝑡 (id) ∧ (𝜓, 𝑡 ′) ∉ 𝐼 ∧

label(𝑡 ′) = type ∧
there is an𝑚 = match(𝑡,mexpr)

}
≠ ∅

{. . . , exists type 𝑣 in id:𝜑, . . . } ⊲𝐼 𝑡 → (13){
{. . . , {𝑣 ↦→ nid}(𝜑), . . . } ∪ Φorig ⊲𝐼 {id ↦→ 𝑡 ′}(𝑡) |
(nid, 𝑡 ′) ∈ insert (makeTree(𝑣), 𝛽𝑡 (id))

{. . . , exists type 𝑣=“mexpr” in id:𝜑, . . . } ⊲𝐼 𝑡 → (14){
{. . . , {𝑣 ↦→ nid}(𝜑), . . . } ∪ Φorig ⊲𝐼 {id ↦→ 𝑡 ′}(𝑡) |
(nid, 𝑡 ′) ∈ insert (makeTree(𝑣,mexpr), 𝛽𝑡 (id))

∅ ⊲𝐼 𝑡 → {∅ ⊲𝐼 𝑡 ′ | 𝑡 ′ ∈ T (𝑡)} ≠ {∅ ⊲𝐼 𝑡} (15)

Φ ⊲𝐼 𝑡 → {Φ ⊲𝐼 𝑡 ′ | 𝑡 ′ ∈ T (𝑡)} ≠ {Φ ⊲𝐼 𝑡} (16)

if Φ ⊆ {𝑝 (. . . ) | 𝑝 ∈ PSymsem}

Figure 4: Efficient ISLa CDTTS Transition Relation

⟲ if the constrained tree lacks sufficient information for such a

computation (e.g., the inputs of a checksum predicate are not yet

determined).

We explain the individual transition rules of the CDTTS from

Fig. 4. Rule (1) uses a function inv : Fml → 2
Fml

to enforce the

invariant that all formulas 𝜑 ∈ Φ are in Negation Normal Form

(NNF) and do not contain top-level conjunctions and disjunctions.

Basically, inv converts its input into Disjunctive Normal Form and

returns the disjunctive elements. It is only applicable to CDTswhose

constraints do not satisfy the invariant. Rule (2) eliminates satis-

fied structural predicate formulas from a constraint set. Existential

quantifiers over numbers are eliminated in Rule (3) by introducing

a fresh (not occurring in the containing CDT) variable symbol with

the special nonterminal type int for natural numbers.

Rules (4) and (5) eliminate universal formulas that have already

been matched with all applicable subtrees, and which cannot pos-

sibly be matched against any extension of the (open) tree. This is

the case if the nonterminal type of the quantified variable is not

reachable from any leaf and, if there is a match expression, the

current tree cannot be completed to a matching one.

Universal formulas with and without match expressions are

subject of Rules (6) and (7). First, matching subtrees of the tree

15



CISPA Tech Report, March 2022, CISPA Dominic Steinhöfel and Andreas Zeller

𝛽𝑡 (id) identified with id are collected in a set 𝑇 . We only consider

subtrees that are not already matched, i.e., where (𝜓, 𝑡 ′) is not yet in
the index set 𝐼 . If𝑇 is empty, the rules are not applicable. Otherwise,

the set Φ of all instantiations of 𝜑 according to the discovered

matches is added to the constraint set. We record the instantiations

(𝜓, 𝑡 ′), for all matched trees 𝑡 ′, in the index set. The output of these

rules is a singleton.

If universal quantifiers remain which cannot be matched or

eliminated, we expand the current tree in Rule (8). The function

expand∀
Φ (𝑡) returns all possible trees 𝑡

′
in which each open leaf has

been expanded one step according to the grammar. However, we

only expand leaves which are bound by a universal quantifier, that

is, which represent possible subtrees that could be unified with a

universally quantified formula. For this reason, we pass Φ as an

argument. We call the remaining, unbound grammar symbols free
nonterminals. For example, the XML constraint in Listing 1 does

not restrict the instantiation of ⟨text⟩ nonterminals. Thus, ⟨text⟩ is
a free nonterminal which we will not expand with Rule (8). Instead,

such nonterminals are instantiated to concrete closed subtrees in

a single step by Rules (15) and (16). In our implementation, we

use a standard coverage-based fuzzer to that end. Thus, we avoid

producing many strings which only differ, e.g., in identifier names

or text passages within XML tags.

Rules (9) and (10) eliminate satisfiable SMT or semantic predicate

formulas by querying 𝜎 or 𝜋 (there is no transition for unsatisfi-

able or “not ready” formulas). The transition result consists of one

instantiation per returned assignment 𝛽 .

The only remaining constraints—in satisfiable constraint sets—

are existential formulas, and semantic predicate formulas that are

not yet ready to provide a solution. Existential formulas can be

matched just like universal ones; but instead of returning one result

with all matches, Rules (11) and (12) return a set of solutions with
one match each.

In addition to matching, we provide two rules Rules (13) and (14)

to eliminate existential formulas using tree insertion. Note that, as
exception to the general principle that the rules in the CDTTS are

mutually exclusive, we can apply Rules (11) and (12) and Rules (13)

and (14) wherever possible. The insertion routine insert (newTree, 𝑡,)
guarantees that all returned results contain all nodes from the orig-

inal tree 𝑡 as well as the complete tree newTree. Nevertheless, tree
insertion is an aggressive operation that may violate constraints

that were satisfied before. For this reason, we have to add the origi-

nal constraint Φorig , from which we started solving, again to the

constraint set; if the tree insertion did not violate structural con-

straints, the original constraint can usually be quickly eliminated.

However, tree insertion can also entail the necessity of subsequent

tree insertions, e.g., if a new identifier was added that needs to

be declared. Our implemented insertion routine prioritizes struc-

turally simple solutions, for which this is usually not necessary. In

the appendix, we provide details on tree insertion.

Finally, Rules (15) and (16) “finish off” the remaining open deriva-

tion trees by replacing all open leaves with suitable concrete sub-

trees. In the case of Rule (15), this yields a decisive result of the

CDTTS. Rule (16) addresses residual “not ready” semantic predicate

formulas. We compute the represented closed subtrees such that

all information for evaluating the semantic predicates is present.

After this step, Rule (10) must be applicable.

In the appendix, we argue for the correctness of the subsequent

precision and completeness theorems.

Theorem A.9. (Precision) The ISLa CDTTS in Fig. 4 is globally
precise.

Proof Sketch. By Lemma A.8, we prove global precision by

showing that each individual transition rule is locally precise, i.e.,

that the produced states do not represent derivation trees that were

not originally in the semantics of the inputs CDT.

Rule (1) is precise since conversion to Disjunctive Normal Form

is equivalence-preserving. Elimination of structural predicates

(Rule (2)) is trivially precise (removing a true element from a con-

junction does not change the semantics).

Rules (4) and (5) are precise because a universal quantifier that

does not match any tree element evaluates to true according to

Definition 3.6, and we only remove it if we can be sure that no

possible extension of an open tree will ever match the quantifier. If

a match is already in the index set, we can be sure that it already

has been considered due to the definition of Rules (6) and (7), which

are the only rules ever adding to that set.

Rules (6) and (7) are precise because we only add the matching

instantiations of the inner formula to the (conjunctive) constraint

set.

Tree expansion (Rule (8)) is precise since by considering more
concrete trees, the set of concrete trees represented by the input

CDT is only ever decreased in the outputs (cf. Definition A.3).

The elimination of SMT formulas (Rule (9)) is precise since their

semantics is defined via the interpretation function 𝜎 , which we

query to produce valid output states. The same holds for Rule (10)

for semantic predicates.

Existential quantifier matching (Rules (11) and (12)) is precise

since it conforms to Definition 3.6 inasmuch it creates one instanti-

ated CDT for each match in the input CDT. The original formula is

removed from these results, but the instantiation retained.

The tree insertion rules (Rules (13) and (14)) (the most compli-

cated ones in our system due to the complexity of tree tree insertion

itself) are trivially to prove, becausewe add the additional constraint

again to the constraint set.

Finally, Rules (15) and (16) consider more concrete trees and are

therefore precise for the same reasons as Rule (8). □

Theorem A.10. (Completeness) The ISLa CDTTS in Fig. 4 is glob-
ally complete.

Proof Sketch. To prove the global completeness of our system,

we have to show that the semantics of each input CDT is contained

in the semantics of all reachable CDTswith empty constraint set.We

reduce this problem as follows. First, we show local completeness,

i.e., that no information is lost by applying any transition rule of

our CDTTS. Second, we argue that for each valid CDT, there is an

applicable rule in the CDTTS. Third, we argue that for each input

CDT, there is one output CDT which is closer to a state with empty

constraint set in the CDTTS than the inputs. From this, we conclude

global completeness as follows: Since for each valid state, there is a

transition step from which get closer to an output state with empty

constraint set, this also holds for each valid state produced by this

step. By additionally requiring that the individual steps do not lose

information, we conclude global completeness.
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We argue for the local completeness of a chosen set of CDTTS

rules.

The expansion and finishing rules are locally complete if all
expansions are considered. This is the case in our CDTTS, although

our actual implementation can only ever consider a finite set of

solutions.

The same holds for solving SMT formulas. Note that if we only

consider a finite solution set as in our prototype, it is crucial that

there remain no universal quantifiers in the constraint set. Otherwise,
we could obtain instantiations that conflict with formulas obtained

from later quantifier instantiation. This is not a problem in the

theoretic framework, though, since there we consider all possible
solutions, of which at least some will not conflict with atoms nested

in remaining universal quantifiers.

Tree insertion, which is easy to show precise, is more problematic

to show locally complete, since we add the original constraint set.

However, since we consider all possible insertions, there have to
be some satisfying that constraint, since the input CDT is valid.

Since we defined one rule for each syntactic construct in ISLa,

there is one rule for each valid input state. Rule (8), for example,

only expands nonterminals with potential concrete subtrees match-

ing existing existential quantifiers; for all other nonterminals, the

finishing rules will be applicable.

The general measure to show that each transition produces a

state that is closer to an empty constraint set is the size of the con-

straint set together with the nesting depth of contained quantifiers.

If either of these measures decreases in each step, we eventually

reach an empty constraint set. That we get closer to an empty

constraint set is clear to see for all elimination rules. In case of

the matching rules, we reduce the complexity of the constraint set

by peeling off the outer quantifier. Again, tree insertion is most

problematic: It peels of the existential quantifier, but adds the origi-

nal constraint set. Here, it is important to see that there are some

insertions for which we can remove the existential constraint we

eliminated by tree insertion by matching, and that we thus do not

have to keep re-inserting. □

We explain the main building blocks used in our ISLa CDTTS

(Fig. 4) in more detail.

Tracking Instantiations. Our CDTTS stepwise expands open trees
and checks if existing universal quantifiers match the expanded

tree. Expansion does not eliminate a universal quantifier, since

it might apply to not yet generated subtrees. To avoid endlessly

instantiating universal quantifiers with the same trees, we track
already performed universal quantifier instantiations. To that end,

we augment CDTs with an index set 𝐼 consisting of pairs of universal
formulas and trees with which they already have been unified; we

write Φ ⊲𝐼 𝑡 for the enhanced structures.

Invariant. We maintain the invariant that all formulas 𝜑 ∈ Φ
in CDTTSs Φ ⊲ 𝑡 are in NNF, i.e., negations only occur directly

before predicate formulas and within SMT expressions, and are

free of conjunctions and disjunctions (on top level; they are al-

lowed inside of quantifiers and within SMT formulas). The func-

tion inv : Fml → 2
Fml

first converts its argument into NNF by

pushing negations inside (e.g., not exists type 𝑣 in 𝑤:𝜑 gets

forall type 𝑣 in 𝑤: not 𝜑 , and, for 𝜓 ∈ Trmbool (𝑉 ), not 𝜓 gets

(not 𝜓) ∈ Trmbool (𝑉 )). Then, it converts the result into Disjunc-

tive Normal Form by applying distributivity laws, which yields a set
of disjunction-free formulas in NNF. Finally, it splits all top-level

conjunctions outside SMT expressions in the result set into multiple

formulas.

SMT Models. In Fig. 4, we apply the interpretation 𝜎 for SMT ex-

pressions to Boolean terms Trmbool (𝑉 ) with a non-empty variable

set 𝑉 , i.e., the evaluated expressions may contain uninterpreted

String constants. In this case, the SMT solver will either return ⊥ in

case of an unsatisfiable constraint (or time out, which we interpret

as ⊥), or an assignment 𝛽 (a model). Since we can call the solver

repeatedly and ask for different solutions (by adding the negated

previous solutions as assumptions), we assume that we get a set of
assignments of tree identifiers to new subtrees from 𝜎 .

Semantic Predicates. We divide the set PSym of predicate sym-

bols into two disjoint sets PSymst and PSymsem of structural and
semantic predicates. Structural predicates address structural con-
straints, such as before or within. They evaluate to ⊤ or ⊥. Semantic
predicates formalize more complex constraints, such as specific

checksum implementations. In addition to ⊤ or ⊥, semantic predi-

cate formulas may evaluate to a set of assignments, as in the case

of satisfiable SMT expressions, or to the special value “not ready”

(denoted by⟲). Intuitively, an evaluation results in ⊤ (⊥) if all of
(not any of) the concrete derivation trees represented by an abstract

tree satisfy the predicate. A set of assignments is returned if there

are reasonable “fixes” of the tree (e.g., all elements relevant for a

checksum computation are determined, such that the checksum

can be computed by the predicate). One may obtain⟲ if the con-

strained tree lacks sufficient information for such a computation;

for instance, we cannot compute a checksum if the summarized

fields are still abstract.

In contrast to all other constraint types, the order of semantic
predicate formulas within a conjunction matters (we use ordered

sets in the implementation of our CDTs). The reason is that each

semantic predicate comes with its own, atomic solver. Consider, for

example, a binary format which requires a semantic predicate for

the computation of a data field (e.g., requiring a specific compression

algorithm) and another one for a checksum which also includes the

data field. Then, one must first compute the value of the data field,

and then the value of the checksum. Changing this order would

result in an invalid checksum. Since SMT formulas are composable,

we recommend using semantic predicates only if the necessary

computation can either not be expressed in SMT-LIB, or the solver

frequently times out when searching for solutions.

Tree Insertion. Existential constraints can occasionally be solved

by matching them against the indicated subtree, similarly to univer-

sal quantifiers. In general, though, we have to manipulate the tree

to enforce the existence of the formalized structure. If a success-

ful match is not possible, we therefore constructively insert a new
tree into the existing one. The function makeTree(𝑣) creates a new
derivation tree consisting of a single root node of type vtype(𝑣).
When passing it a match expression mexpr as additional argument,

it creates a minimal open tree rooted in a node of type label(𝑣) and
matching mexpr . The function insert (𝑡 ′, 𝑡) tries to inserts the tree

𝑡 ′ into 𝑡 . Whether this is possible entirely depends on 𝑡 , 𝑡 ′ and the

grammar. In the simplest case, 𝑡 has an open leaf from which the
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nonterminal label(𝑡 ′) is reachable. Then, we create a suitable tree
connecting the leaf and the root of 𝑡 ′ and glue these components

together.

If this is not possible, we attempt to exploit recursive defini-

tions in the grammar. Consider, for example, a partial XML doc-

ument according to the grammar in Fig. 1 and the constraint

exists ⟨xml-open-tag⟩ optag in tree: (= optag "<a>"), where
and tree points to a node with root of type ⟨xml-tree⟩. If there is
some opening tag of form <a> in tree, we can eliminate the con-

straint. Otherwise, we observe that the nonterminal ⟨xml-tree⟩ is
reachable from itself in the grammar graph. Thus, we can replace

an existing ⟨xml-tree⟩ node in tree by a number of possible alterna-

tives, comprising <a> ⟨xml-tree⟩⟨xml-close-tag⟩, which allows to

insert both the already existing ⟨xml-tree⟩ and the new opening

tag <a> into the expanded result.

Cost Function. The choice of the right cost function is crucial for

the performance of the solver, both in terms of generation speed

(number of outputs per time) and output diversity (e.g., creation of

deep nestings in the case of XML, or coverage of combinations of

language constructs in the case of C).

Our cost function computes the weighted geometric mean of

cost factors cf 𝑖 and corresponding weights 𝑤𝑖 as

cost =

(
𝑤𝑖≠0∏

𝑖=1,...,𝑛

(cf 𝑖 + 1)𝑤𝑖

) (∑𝑤𝑖≠0

𝑖=1,...,𝑛
𝑤𝑖

)−1
− 1

We filter out pairs of cost factors and weights where the weight

is 0; in this case, the corresponding cost factor is deactivated. Fur-

thermore, we avoid the case that the final cost value is 0 if one

of the factors is 0 by incrementing each factor by 1, and finally

decrementing the result by 1 again.

We chose the following cost factors:

Tree closing cost. We precompute, for each nonterminal in the

grammar, an approximation of the instantiation effort of that

nonterminal, roughly by instantiating it several times randomly

with a fuzzer, and then summing up the sizes of the possible

grammar expansion alternatives in the resulting tree. The clos-

ing cost for a derivation tree is defined as the sum of the costs

of each nonterminal symbol in all open leaves of the tree.

Constraint cost. Certain constraints are more expensive to solve

than others. In particular, solving existential quantifiers by tree

insertion is computationally costly. This cost factor assigns

higher cost for constraints with existential and deeply nested

quantifiers.

Derivation depth penalty. As the solver’s queue fills up, it be-
comes more improbable for individual queue elements to be

selected next. If we assign a cost to the derivation depth, it

becomes more likely that the solver eventually comes back to

partial solutions discovered earlier, avoiding starvation of such

inputs.

k-path coverage. When choosing between different partial trees,

we generally want to generate those exercising more language

features at once. The k-path coverage metric [10] computes

all paths of length k in a grammar and derivation tree; the

proportion of such paths covered by a tree is then the coverage

value. We penalize trees which cover only few k-paths. The

concrete value of k is configurable; the default is 3.

Global k-path coverage. For each final result produced by the

solver, we record the covered k-paths and from then on prefer

solutions covering additional language features. Once all k-

paths in a grammar have been covered, we erase the record.

The influence of these cost factors can be controlled by passing a

tuple of weights to the solver. We provide a reasonable default vec-

tor ((11, 3, 5, 20, 10)), but in certain cases, a problem-specific tuning

might be necessary to improve the performance. Our implementa-

tion provides an evolutionary parameter tuning mechanism, which

runs the solver with randomly chosen weights, and then computes

several generations of weight vectors using crossover and mutation.

The fitness value of a weight vector is determined by the generation

speed, a vacuity estimator, and a k-path-based coverage measure.

6 Evaluation
6.3 RQ3: ISLearn. In the subsequent Listings 5 to 9, we list the

constraints that ISLearn mined in our case study for our third

research question.

Listing 5: Constraint mined by ISLearn for DOT
((forall <graph_type> container in start:

exists <DIGRAPH> elem in container:

(= elem "digraph") or

forall <edge_stmt> container_0 in start:

exists <edgeop> elem_0 in container_0:

(= elem_0 "--")) and

(forall <graph> container_1 in start:

exists <GRAPH> elem_1 in container_1:

(= elem_1 "graph") or

forall <edge_stmt> container_2 in start:

exists <edgeop> elem_2 in container_2:

(= elem_2 "->")))

Listing 6: Constraint mined by ISLearn for Racket based on
the XML def-use pattern for prefixes in attributes
(forall <expr> attribute=

"<maybe_comments><MWSS>{<name> prefix_use}" in start:

((= prefix_use "sqrt") or

(= prefix_use "string-append") or

. . . or

exists <definition> outer_tag="(<MWSS>define<MWSS>(<MWSS><

↩→ name>{<WSS_NAMES> cont_attribute}<MWSS>)<MWSS><

↩→ expr><MWSS>)"

in start:

(inside(attribute, outer_tag) and

exists <NAME> def_attribute="{<NAME_CHARS> prefix_def}"

↩→ in cont_attribute:

(= prefix_use prefix_def))))

Listing 7: Racket constraint based on the XML def-use pattern
in addition to an extended reST def-use pattern
(forall <expr> use_ctx="<maybe_comments><MWSS>(<MWSS>{<name>

↩→ use}<wss_exprs><MWSS>)" in start:

((= use "sqrt") or

(= use "string-append") or

. . . or
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exists <definition> def_ctx=

"(<MWSS>define<MWSS>(<MWSS>{<name> def}<WSS_NAMES><

↩→ MWSS>)<MWSS><expr><MWSS>)" in start:

((before(def_ctx, use_ctx) and

(= use def))))) and

(forall <expr> attribute=

"<maybe_comments><MWSS>{<name> prefix_use}" in start:

((= prefix_use "sqrt") or

(= prefix_use "string-append") or

. . . or

exists <definition> outer_tag="(<MWSS>define<MWSS>(<MWSS><

↩→ name>{<WSS_NAMES> cont_attribute}<MWSS>)<MWSS><

↩→ expr><MWSS>)" in start:

(inside(attribute, outer_tag) and

exists <NAME> def_attribute="{<NAME_CHARS> prefix_def}"

↩→ in cont_attribute:

(= prefix_use prefix_def))))

Listing 8: ISLearn constraint for ICMP Echo type fields

(forall <icmp_message> container in start:

exists <type> elem in container:

(= elem "00 ") or

forall <icmp_message> container_0 in start:

exists <type> elem_0 in container_0:

(= elem_0 "08 ")))

Listing 9: Constraint learned by ISLearn for ICMP Echo after
adding a predicate for Internet Checksums
((forall <icmp_message> container in start:

exists <type> elem in container:

(= elem "00 ") or

forall <icmp_message> container_0 in start:

exists <type> elem_0 in container_0:

(= elem_0 "08 ")))) and

forall <icmp_message> container in start:

exists <checksum> checksum in container:

internet_checksum(container, checksum)
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