
Input Invariants
Dominic Steinhöfel

CISPA Helmholtz Center for Information Security
Saarbrücken, Germany

dominic.steinhoefel@cispa.de

Andreas Zeller
CISPA Helmholtz Center for Information Security

Saarbrücken, Germany
zeller@cispa.de

ABSTRACT
How can we generate valid system inputs? Grammar-based fuzzers
are highly e�cient in producing syntactically valid system inputs.
However, programs will often reject inputs that are semantically
invalid. We introduce ISLa, a declarative speci�cation language for
context-sensitive properties of structured system inputs based on
context-free grammars. With ISLa, it is possible to specify input
constraints like “a variable has to be de�ned before it is used,” “the
‘�le name’ block must be 100 bytes long,” or “the number of columns
in all CSV rows must be identical.”

Such constraints go into the ISLa fuzzer, which leverages the
power of solvers like Z3 to solve semantic constraints and, on top,
handles quanti�ers and predicates over grammar structure. We
show that a few ISLa constraints su�ce to produce 100% semanti-
cally valid inputs while still maintaining input diversity. ISLa can
also parse and precisely validate inputs against semantic constraints.

ISLa constraints can be mined from existing input samples. For
this, our ISLearn prototype uses a catalog of common patterns,
instantiates these over input elements, and retains those candidates
that hold for the inputs observed and whose instantiations are fully
accepted by input-processing programs. The resulting constraints
can then again be used for fuzzing and parsing.

CCS CONCEPTS
• Software and its engineering! Software testing and debug-
ging; Speci�cation languages; Constraint and logic languages;
Syntax; Semantics; Parsers; Software reverse engineering; Documen-
tation; • Theory of computation ! Grammars and context-
free languages; Formalisms.

KEYWORDS
fuzzing, speci�cation language, grammars, constraint mining

ACM Reference Format:
Dominic Steinhöfel and Andreas Zeller. 2022. Input Invariants. In Proceed-
ings of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE ’22), No-
vember 14–18, 2022, Singapore, Singapore.ACM,NewYork, NY, USA, 12 pages.
https://doi.org/10.1145/3540250.3549139

This work is licensed under a Cre-
ative Commons “Attribution 4.0 In-
ternational” license.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9413-0/22/11.
https://doi.org/10.1145/3540250.3549139

1 INTRODUCTION
Automated software testing with random inputs (fuzzing) [20] e�ec-
tively �nds bugs in programs. Pure random inputs can quickly dis-
cover errors in input processing. Yet, if a program expects complex
structured inputs (e.g., C programs, JSON expressions, or binary
formats), the chances of randomly producing valid inputs that are
accepted by the parser and reach deeper functionality are low.

Language-based fuzzers [9, 13, 14] overcome this limitation by
generating inputs from a speci�cation of a program’s expected
input language, frequently expressed as a Context-Free Grammar
(CFG). This considerably increases the chance of producing an input
passing the program’s parsing stage and reaching its core logic. Yet,
while being great for parsing, CFGs are often too coarse for producing
inputs. Consider, e.g., the language of XML documents (without
document type). In XML, the identi�ers of opening and closing
tags have to match each other, as in “<name>text</name>.” Such
matching cannot be expressed in a CFG. Even though a CFG can
be used for parsing (cf. Fig. 1), using it as a producer for fuzzing
will typically yield non-matching inputs like “<O L=�cmV�>B7</P>.”
Such invalid inputs are still useful for testing the parser, but hardly
ever reach functionality beyond input rejection.

To allow for precise production, we can switch to a di�erent
formalism. However, existing solutions all have their drawbacks.
Using general purpose code to produce inputs or enriching gram-
mars with such code is closely tied to an implementation language,
and does not allow for parsing and recombining inputs, which is a
common feature of modern fuzzers. Unrestricted grammars can in
principle specify any computable input property, but we see them
as “Turing tar-pits,” in which “everything is possible, but nothing
of interest is easy” [23]—just try, for instance, to express that some
number is the sum of two input elements.

In this paper, we bring forward a di�erent solution by introduc-
ing a (programming and target) language-independent, declarative
speci�cation language named ISLa (Input Speci�cation Language)
for expressing semantic constraints over CFGs. By enriching existing
grammars with constraints, we leverage the simplicity of CFGs,
while signi�cantly extending their expressiveness. ISLa is designed
as a general-purpose formalism to specify the format even of highly
complex program inputs. It can be used to produce such inputs
automatically, making ISLa a highly e�ective fuzzer that can pass
all validation steps; and it can be used to parse inputs and validate
constraints, making ISLa an e�ective validator of inputs.

To formalize an input format in and for ISLa, one starts with
the de�nition of a CFG. If a grammar is not already available, it is
possible to extract it from inputs [18] and programs [10]. Then, one
iteratively strengthens the de�nition by adding more and more ISLa
constraints until the represented language is a su�ciently close
approximation of the target language—an invariant over all inputs.

https://orcid.org/0000-0003-4439-7129
https://orcid.org/0000-0003-4719-8803
https://doi.org/10.1145/3540250.3549139
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en
https://doi.org/10.1145/3540250.3549139

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Dominic Steinhöfel and Andreas Zeller

hxml-treei F hxml-openclose-tagi
| hxml-open-tagi hinner-xml-treei hxml-close-tagi

hinner-xml-treei F hTEXT i | hxml-treei
| hinner-xml-treei hinner-xml-treei

hxml-open-tagi F ‘<’ hid i ‘>’ | ‘<’ hid i ‘�’ hxml-a�ributei ‘>’
hxml-close-tagi F ‘</’ hid i ‘>’
hxml-openclose-tagi F ‘<’ hid i ‘/>’ | ‘<’ hid i ‘�’ hxml-a�ributei ‘/>’
hxml-a�ributei F hid i ‘=�’ hTEXT i ‘�’

| hxml-a�ributei ‘�’ hxml-a�ributei
hid i F hid-no-pre�x i | hid-with-pre�x i
hid-no-pre�x i F hID-START -CHARi hID-CHARi⇤
hid-with-pre�x i F hid-no-pre�x i ‘:’ hid-no-pre�x i

Figure 1: A context-free grammar for XML. Lexer rules (for
the capitalized nonterminals) are omitted.

<xml-tree>.<xml-open-tag>.<id> = <xml-tree>.<xml-close-tag>.<id>

Listing 1: ISLa constraint for well-balanced XML.
forall <xml-tree> tree=�<{<id> opid}[<xml-attribute>]><inner-xml-

õ! tree></{<id> clid}>� in start:
(= opid clid)

Listing 2: Core-ISLa constraint for well-balanced XML.

To get an idea of ISLa constraints, consider Listing 1, referring
to the grammar in Fig. 1. The constraint expresses that the hidis
of opening and closing tags—in all XML trees that are not self-
closing—are equal. Programmers write such constraints in the sim-
pli�ed layer of the ISLa language. Our solver translates it to the
“Core-ISLa” constraint in Listing 2. The Core-ISLa version explicitly
quanti�es over all hxml-treei elements, binds its constituents to
variables using pattern matching and expresses the equality using
the SMT-LIB formula [1] “(= opid clid).” This is typical for an
ISLa constraint: It �rst identi�es derivation tree elements, and then
poses constraints over these elements. During fuzzing, ISLa then
would produce matching pairs of opening and closing hidis.

The resulting valid inputs can be used as seed inputs for muta-
tional fuzzers like AFL. The ISLa solver can be integrated into the
�tness function of evolutionary fuzzers, guiding their mutations to-
ward semantically valid inputs; the solver can quickly reject invalid
inputs without having to run actual tests.

Yet, where would ISLa constraints come from? Testers can write
ISLa constraints manually, thus ensuring input validity, and add
additional constraints to further control the inputs generated. How-
ever, they can also mine constraints from existing inputs. To this
end, our ISLearn tool uses a catalog of common constraint patterns,
instantiates these over all inputs and input elements, and retains
those constraint candidates that hold for all inputs. The catalog
holds patterns to identify matching elements, length relations, arith-
metic relations, checksums, and more. ISLearn is similar in spirit to
the Daikon function-level invariant detector [7]. On top, ISLearn
can verify and re�ne constraint candidates by having the program
under test check whether derived concrete inputs are valid.

After illustrating ISLa by example (Section 2), this paper makes
the following contributions:

A speci�cation language for input constraints. We propose a
formalism (ISLa) for augmenting existing context-free gram-
mars with context-sensitive constraints. ISLa has a rich declar-
ative layer, separating semantic properties (constraints) from
syntactic properties (the grammar). We formally de�ne its syn-
tax and semantics in Section 3. To the best of our knowledge,
ISLa is the �rst formalism to express context-sensitive constraints
for the generation of system inputs.

Semantic fuzzing. We describe an e�cient procedure to gener-
ate inputs satisfying ISLa constraints (and their grammars),
and discuss our implementation (Section 4). To the best of our
knowledge, ISLa is the �rst fuzzer (and checker) to make use of
such constraints, giving users unprecedented means to specify
which system inputs should be generated.

Mining input constraints. We introduce ISLearn, a system for
automatically mining input constraints in conjunctive normal
form based on a con�gurable pattern catalog (Section 5). To
the best of our knowledge, ISLearn is the �rst approach to infer
such invariants from given system inputs.

ISLa and its constraints are e�ective. In our evaluation (Section 6),
we formalize semantic properties from diverse languages, namely
XML, a subset of C, reStructuredText, CSV �les, and TAR archives.
Our results demonstrate that already a few lines of ISLa speci�-
cations su�ce to generate 100% precise inputs while maintaining
diversity. On top, our constraint miner ISLearn can extract precise
invariants about ICMP packets, DOT graphs, and Racket programs.
After discussing related work (Section 7), Section 8 closes with
conclusion and future work. Our electronic appendix [25] provides
further formalizations, explanations, examples, and proofs.

2 ISLA BY EXAMPLE
Let us illustrate the expressive power of ISLa by detailing our XML
example. When randomly feeding an XML processor (e.g., Python’s
xml.etree package) with inputs generated from the XML grammar
in Fig. 1 using a grammar fuzzer, we obtain not only one, but three
kinds of errors: (1) “Mismatched tag,” (2) “duplicate attribute,” and
(3) “unbound pre�x.” By adding ISLa speci�cations to the XML
grammar, we can substantially increase the portion of valid XML
we pass to the processor. Moreover, these speci�cations document
XML features relevant to the parser of our test target.

Since ISLa is closed under conjunction, we can incrementally re-
�ne the speci�cation simply by adding individual input constraints
until we are satis�ed with the quality of the generated inputs or
the value of the speci�cation as a documentation measure.

From the invalid inputs generated from the XML grammar, about
52% are invalid due to a mismatched tag, and about 22% because of
an unbound pre�x. Let us address these.

2.1 Matching Tags
The ISLa constraints in Listings 1 and 2 addresses the problem of
mismatched tags by enforcing that the two IDs match. The Core-
ISLa version (Listing 2) uses a universal quanti�er (forall) over
all sub expressions of type hxml-treei, which is the speci�ed type
of the bound variable tree. Types are nonterminals from the ref-
erence grammar (here the XML grammar in Fig. 1) or the special
type int for quanti�ers over numbers. The present quanti�er uses

Input Invariants ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

pattern matching. ISLa only considers matches conforming to the
pattern (in quotation marks); in the case of a successful match,
not only the quanti�ed variable tree but also the variables opid
and clid in the pattern (in curly braces) are bound to the corre-
sponding parts of the matched input segment. Match expressions
may contain optional elements in square brackets to capture multi-
ple expansion alternatives. The core of the forall formula is an
SMT-LIB S-expression stating that opid and clid are equal. Since
ISLa extends the SMT-LIB language [28], it supports all its string
constraints. A Core-ISLa constraint contains exactly one constant
symbol, which determines the type of described inputs. By default,
this is a symbol start of type hstarti, which can be customized by
a declaration “const name: type;” before the actual constraint.

Simpli�ed ISLa. ISLa’s simpli�ed language layer allows us to
write this constraint much more concisely. Listing 1 is the simpli-
�ed version of the Core-ISLa constraint in Listing 2. In simpli�ed
ISLa, we can use the more common, mathematical in�x syntax for
binary expressions, i.e., “x = y” instead of “(= x y).” Furthermore,
the forall quanti�er can be omitted. Instead, we directly use its
type hxml-treei in the equation. This implicitly adds a forall quan-
ti�er over hxml-treei elements. To access immediate children of
hxml-treei elements, we use a notation inspired by the XPath ab-
breviated syntax [3]. For example, <xml-tree>.<xml-open-tag>
refers to the �rst hxml-open-tagi element among the children of an
hxml-treei element in a derivation tree, if any.

In simpli�ed ISLa, “in start” in quanti�ers is a default and can
be omitted. Furthermore, variable names in quanti�ers, such as var
in “forall <type> var=�...�: ...,” can be omitted if we are
only interested in the variables bound by the match pattern. Sim-
pli�ed and Core-ISLa syntax can be mixed in the same constraint.
In the end, all constraints are translated to Core-ISLa.

Since ISLa constraints are closed under conjunction (and) and
disjunction (or), it is easy to re�ne (or relax) constraints. ISLa is
thus well suited for targeted testing, or, e.g., for describing a speci�c
class of inputs that trigger a bug in a debugging scenario. Thanks
to its declarative nature, it can also be used for formulating human-
readable speci�cations of the expected inputs of a system.

2.2 Binding Pre�xes
Next, we specify a property avoiding “unbound pre�x” errors. An
“unbound pre�x” error is raised when tag or attribute identi�ers in
XML documents contain a namespace pre�x, such as ns1 and ns2 in
“<ns1:tag ns2:attr=�. . .�/>,” which is not declared in the same
or an outer tag. This is an example of a def-use property that is
also common in programming languages: A used identi�er must be
de�ned in some outer scope or at some preceding position. One adds
the attribute “xmlns:ns1=�some�text�” to declare namespace ns1,
where frequently, the quoted text contains a URL. The property
we aim for is expressed more precisely as: “For all identi�ers with
a pre�x ? , there is a surrounding XML tree C such that there is
an attribute xmlns:? in the attributes list of C ’s opening tag.” We
emphasized words corresponding to ISLa language elements. There
is one subtlety, though: We have to distinguish pre�xes in attribute
and tag identi�ers, since the special attribute xmlns does not have
to be declared, as it is used precisely to declare other namespaces.

Again, we can express both cases in isolation to incrementally
re�ne the speci�cation. Here, we regard the slightly more compli-
cated case of pre�xes in attribute identi�ers. Listing 3 shows the
ISLa speci�cation for this case.

1 forall <xml-attribute> attr=�{<id-no-prefix> prefix_use}:{<id-no-
õ! prefix> maybe_def}=\�<text>\��: (

2 not prefix_use = �xmlns� implies
3 exists <xml-tree> outer_tag=
4 �<<id> {<xml-attribute> cont_attr}><inner-xml-tree></<id>>�: (
5 inside(attr, outer_tag) and
6 exists <xml-attribute>=
7 �xmlns:{<id-no-prefix> prefix_def}=\�<text>\�� in cont_attr:
8 (not prefix_def = �xmlns� and prefix_use = prefix_def)))

Listing 3: ISLa constraint for binding pre�xes in attribute
identi�ers (reference grammar: Fig. 1)

The ISLa code closely resembles the natural language speci�ca-
tion we described previously, except that we specialized it to only
quantify over attributes (Line 1) and generally permit the xmlns
pre�x (Line 2) using an implication: Only if the pre�x is not xmlns,
it must be explicitly de�ned.

2.3 Targeted Testing
With ISLa speci�cations, we can go beyond constraints for semantic
validity for application-speci�c, targeted testing. Imagine an XML
processor that allows associating tags with URLs de�ned using
dedicated attributes web:baseurl and web:query for base URLs
and query strings. We can enforce the existence of a tag using both
of these attributes somewhere in any produced system input:
exists <xml_attribute> attributes: (
exists <xml-attribute> attr in attributes:
attr.<id> = �web:baseurl� and

exists <xml-attribute> attr in attributes:
attr.<id> = �web:query�)

The XML processor performs some input validation and rejects
all inputs where the values of these attributes exceed a length of 100
characters. We force all generated inputs to respect this constraint
by adding the following speci�cation:
forall <xml-attribute>=�web:<id-no-prefix>={<text> text}�:
str.len(text) <= 100

After parsing an XML �le, the processor assembles a complete
URL by joining the base URL and the query string. However, let
us assume its input validation is buggy: The result is stored in a
character array of length 150, and we thus get a bu�er over�ow
when the base URL and the query string together exceed a length
of 150 characters. We can then explicitly generate inputs triggering
this bug by encoding this property as an ISLa constraint. Such
inputs would be valuable for developers or security researchers, as
a regression test validating a �x for a potential exploit:
forall <xml-attribute> attrs:
forall <xml-attribute> attr_1=�web:baseurl={<text> t1}� in attrs:
forall <xml-attribute> attr_2=�web:query={<text> t2}� in attrs:
str.len(t1) + str.len(t2) > 150

2.4 Mining Constraints
Constraints like the ones described above can also be mined from
existing inputs. To mine constraints such as the XML constraint in

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Dominic Steinhöfel and Andreas Zeller

Listing 2, we create a schematic version of it that is independent of
the choice of a particular grammar:
forall <?NONTERMINAL>=�{<?MATCHEXPR(opid, clid)>}�: opid = clid

This pattern can be added to the catalog of our ISLearn system,
enabling the system to infer similar constraints for a di�erent gram-
mar. The placeholder <?NONTERMINAL> represents any nontermi-
nal in that grammar; <?MATCHEXPR(opid, clid)> represents any
suitable match expression for an instantiation of <?NONTERMINAL>,
containing two nonterminal occurrences that are bound to variables
opid and clid. ISLearn generates candidate instantiations from
such patterns and then �lters those that hold for a set of given or
automatically generated sample inputs. Hence, given a set of XML
inputs, ISLearn can easily learn the constraint in Listing 2.

To avoid overspecialization toward a small set of inputs, ISLearn
can automatically validate constraint candidates—by generating
further inputs from them and checking whether these inputs would
be accepted by the program. This also works in debugging scenarios:
If we have a set of inputs for which a speci�c property holds (say,
the length of some input element exceeds some constant), ISLearn
will not only learn that constraint, but can also ensure that further
instantiations of the constraint reproduce the failure.

2.5 Summary
With these examples, we have demonstrated how ISLa constraints
precisely characterize input classes associated to some program be-
havior. Developers can use these descriptions to obtain semantically
valid inputs, describe the conditions of discovered bugs, and for
targeted triggering of such bugs. Given existing inputs, ISLearn can
determine constraints that precisely characterize input properties
and program behavior.

Note that without ISLa and ISLearn, implementing any of these
constraints can be a tiresome experience. While a handwritten gen-
erator can easily ensure matching XML tags or usage of tags from
a dictionary, proper handling of namespaces is already a challenge
and solving arithmetic constraints over multiple elements will be
increasingly di�cult. Extending such a generator to be compos-
able and usable as a parser for checking or mutating inputs will
require an e�ort comparable to implementing most of ISLa, but the
resulting tool will not be nearly as versatile.

3 ISLA SYNTAX AND SEMANTICS
ISLa constraints are built from a signature of grammar, predicate,
and variable symbols. We �rst formally de�ne CFGs, following [15,
Chapter 5]; afterward, we introduce ISLa signatures.

De�nition 3.1 (Context-Free Grammar). AContext-Free Grammar
(CFG) is a tuple⌧ = (# ,) , %, () of (1) a set of nonterminal symbols# ,
(2) a set of terminal symbols) disjoint from# , (3) a set of productions
% mapping nonterminals = 2 # to an (expansion) alternative. An
alternative is a string of terminal or nonterminal symbols. Formally,
% ✓ # ⇥ (# [))⇤; and (4) a designated start symbol (2 # .

By convention, we surround nonterminal symbols with angular
brackets (e.g., hstarti). Signatures contain a special nonterminal
symbol “int” for numeric variables representing derivation trees
whose string representations correspond to a natural number.

De�nition 3.2 (ISLa Signature). A signature is a tuple ⌃ =
(⌧, PSym,VSym) of a grammar ⌧ = (# ,) , %, (), a set of predicate
symbols PSym of strictly positive arity, and a set of typed vari-
able symbols VSym. The type vtype(E) of E 2 VSym is a symbol
= 2 # [{int}, int 8 # .

We now de�ne the syntax of Core-ISLa formulas. We assume un-
derspeci�ed sets Trmbool (vars) of Boolean SMT-LIB terms with free
variables vars. These sets contain the constants true and false,
and S-expressions (f 01 . . . 0=), where f is an =-ary function
symbol of Bool sort and the 08 are SMT expressions of suitable
sort. Formulas in Trmbool (vars) may contain uninterpreted string
constants whose names coincide with the names in vars. For the
precise de�nition of SMT-LIB terms, we refer to the SMT-LIB stan-
dard [1] and the repository of SMT-LIB theories [27]. Apart from
SMT-LIB expressions, quanti�ers, and Boolean combinators, ISLa
uses predicate formulas with predicate symbols from PSym. While
our de�nition of Core-ISLa formulas is parametric in PSym, the ISLa
solver comes with a set of prede�ned predicates such as inside
from Listing 3. For a list of ISLa’s built-in predicates, we refer to our
electronic appendix [25] and the ISLa language speci�cation [24].

De�nition 3.3 (Core-ISLa Formulas). The set Fml of ISLa formulas
for a signature ⌃ = (⌧, PSym,VSym), with ⌧ = (# ,) , %, (), is
inductively de�ned as:

(1) i 2 Fml if i 2 Trmbool (VSym).
(2) ? (E1, . . . , E=) 2 Fml for each predicate symbol ? 2 PSym

with arity = and E8 2 VSym.
(3) (not i), (i andk), (i ork) are in Fml for i,k 2 Fml.
(4) forall type G in ~:i and exists type G in ~:i are in Fml

for G,~ 2 VSym, vtype(G) = type 2 # [{int}, and i 2 Fml.
(5) forall type G=“mexp” in~:i and its existential counterpart

exists type G=“mexp” in ~:i are in Fml if G,~ 2 VSym,
vtype(G) = type 2 # , and i 2 Fml, and mexp is a string
consisting of symbols in # [) , non-nested lists “[· · ·]” of
such symbols (optional symbols), and variables references
“{C E},” where E 2 VSym and C = vtype(E).

We use “i implies k” as a shorthand for “(not i) or k .”
The set Fml is relative to a signature ⌃, left implicit for simplicity.

Parentheses can be omitted according to the following precedence
rules: Quanti�ers bind stronger than negation, which binds stronger
than conjunction, which binds stronger than disjunction.

We only consider (“top-level”) ISLa formulas containing exactly
one unbound variable, which is the default start constant, or the
one speci�ed in the optional const declaration.

Simpli�ed ISLa. The simpli�ed ISLa language features are de�ned
in terms of a translation to Core-ISLa. We brie�y list these features
and sketch how they are mapped; for a more detailed discussion,
we refer to the ISLa language speci�cation [24].
Generalized SMT-LIB expressions. ISLa allows writing binary

SMT-LIB expressions in in�x syntax “x op y” and all other
expressions in standardmathematical pre�x syntax “f(...).”
They are mapped to SMT-LIB S-expressions.

Omission of “in start.” Omitting the “in ...” part in a quanti-
�ed expression is permitted. It defaults to “in start,” where
start is replaced by an explicitly speci�ed constant, if any.

Input Invariants ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

E1 : hxml-treei

E2 : hxml-open-tagi

E6 : ‘<’ E7 : hidi

E13 : ‘a’

E8 : ‘>’

E3 : hinner-xml-treei

E5 : htexti

E9 : ‘x’

E4 : hxml-close-tagi

E10 : ‘</’ E11 : hidi

E14 : ‘a’

E12 : ‘>’

Figure 2: Example XML derivation tree.

Omission of bound variable names. Variable names in quanti-
�ers, such as “var” in “forall <type> var: ...,” are op-
tional. The Core-ISLa translation introduces a fresh variable.

Free nonterminals. Nonterminal types can be used instead of
variables in atomic formulas and “in ...” expressions. The
mapping to Core-ISLa adds a new, top-level forall quanti-
�er binding a fresh variable, and replaces occurrences of the
nonterminal in the original formula with that variable.

“X-Path“ expressions. The notation “parent.<child>[i]” (child
axis) allows addressing the 8-th immediate <child> element
of parent; “[i]” is optional and defaults to “[1].” The de-
scendant axis expression “parent..<child>” refers to all
<child> elements in the subtree of parent (i.e., not only im-
mediate children). Child and descendant axis expressions can
be chained to longer expressions. They can be used instead
of variables in atomic formulas and “in ...” expressions.
Child axis expressions translate to match expressions; de-
scendant axis expressions to universal quanti�ers.

Semantics. The semantics of an ISLa constraint are all strings
derivable from the reference grammar that satisfy the constraint.
To make this precise, we �rst de�ne derivation trees. Then, we �x
the meaning of ISLa constraints by de�ning a validation judgment.

De�nition 3.4 (Derivation Tree). A derivation tree for a CFG⌧ =
(# ,) , %, () is a rooted ordered tree such that (1) all vertices E are
labeled with symbols label(E) 2 # [) , where the root is labeled
with (, (2) if E1, . . . , E: are the children of a node labeled with =,
then there is a production (=, (B1, . . . , B:)) 2 % such that for all E8 ,
label(E8) = B8 . For a derivation tree C , we write leaves(C) for the set
of its leaves, and label(C) for the label of its root. A derivation tree
is closed if ; 2) for all ; 2 leaves(C), and open otherwise. T (⌧) is
the set of all (closed and open) derivation trees for ⌧ .

Example 3.5. Fig. 2 visualizes the derivation tree of the XML doc-
ument “<a>x” for the XML grammar in Fig. 1: The tree’s root,
E1, is labeled with the grammar’s start symbol hxml-treei; its edges
conform to the possible grammar derivations. Consider, e.g., node E2
and its immediate children E6, E7, and E8. According to De�nition 3.4,
there has to be a production (hxml-open-tagi, (‘<’, hidi, ‘>’)) in the
grammar, which is indeed the case, since ‘<’ hidi ‘>’ is an expansion
alternative (the �rst one) for the nonterminal hxml-open-tagi. The
leaves leaves(C) are {E6, E13, E8, E9, E10, E14, E12}. The tree C is closed,
since all leaves are labeled with terminal symbols. It would be open
if we removed the subtree rooted in any tree node (but the root).

We convert a derivation tree to a string (written “str (C)”) by
concatenating its leaves in order of their occurrence. If C is the tree
from Fig. 2, we have str (C) =“<a>x”.

Match Expressions. For evaluating ISLa formulas, we have to
match quanti�ed formulas with match expressions against deriva-
tion trees. To that end, we use a partial function match(C,mexpr)
from trees C and match expressions mexpr to mappings from vari-
ables to subtrees. We say that there is a match< for C and mexpr if
match returns a such a mapping. Our implementation parses the
match expression and recursively matches the result against C .

Validation. We de�ne the semantics of Core-ISLa formulas (the
semantics of the simpli�ed ISLa language features follows from
their translation to Core-ISLa) by a validation judgment c,f, V |= i ,
where c and f are interpretations of predicate symbols and SMT
expressions, and the variable assignment V is a substitution of
derivation trees for variables. The intuition of this judgment is that
i holds (evaluates to true) when instantiating free variables in i
according to V under the interpretations of predicates and SMT
expressions as provided by c and f . We write V (i) for the substitu-
tion of free variables in i by their assignments in V , and V [E 7! C]
for the updated assignment where the variable E is now mapped
to the tree C . For a match< = match(C,mexpr,), we write V [<] for
V [E1 7! C1] · · · [E= 7! C=], where E8 7! C8 are all assignments in<.
The primitive substitution of C for E is denoted by {E 7! C}. By V#

we denote the assignment of variables to strings instead of trees: If
V associates E with C , V# associates E with str (C).

In the de�nition of the validation judgment, > and ? represent
semantic truth and falsity, resp. Note that we expect f to always
return > or ?. Timeouts, not uncommon for SMT solvers, are usu-
ally no problem for closed formulas without free variables. Should
the solver time out anyway, we interpret this as ?.

De�nition 3.6 (ISLa Validation). Let ⌃ = (⌧, PSym,VSym) be a
signature, c : PSym ! T (⌧)⇤ ! {>,?} an interpretation of
predicate symbols, f : Trmbool (;) ! {>,?} an interpretation
of closed SMT S-expressions, and V a variable assignment. We
inductively de�ne the judgment c,f, V |= i as
(1) c,f, V |= i i� i 2 Trmbool (;) and f (V#(i)) = >.
(2) c,f, V |= ? (E1, . . . , E=) i� c (?) (V (E1), . . . , V (E=)) = >.
(3) c,f, V |= not i i� not c,f, V |= i .
(4) c,f, V |= i andk i� c,f, V |= i and c,f, V |= k .
(5) c,f, V |= i ork i� c,f, V |= i or c,f, V |= k .
(6) c,f, V |= forall type E in F:i i� c,f, V [E 7! C] |= i holds

for all subtrees C in V (F) whose root is labeled with type 2 # .
(7) c,f, V |= forall int = in i: i� c,f, V [= 7! C] |= i holds for

all trees C such that str (C) represents a number in {0, 1, 2, . . . }.
(8) c,f, V |= exists type E in F:i i� c,f, V [E 7! C] |= i holds

for some subtree C in V (F) whose root is labeled with type 2 # .
(9) c,f, V |= exists int = in i: i� c,f, V [= 7! C] |= i holds for

some tree C such that str (C) represents a number in {0, 1, 2, . . . }.
(10) c,f, V |= forall type E=“mexpr” in F:i i� c,f, V [E 7!

C] [<] |= i holds for all subtrees C with root A in V (F) such
that label(A) = type and there is a match< = match(C,mexpr).

(11) c,f, V |= exists type E=“mexpr” in F:i i� c,f, V [E 7!
C] [<] |= i holds for a subtree C with root A in V (F) such that
label(A) = type and there is a match< = match(C,mexpr).

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Dominic Steinhöfel and Andreas Zeller

Figure 3: ISLa solver schema. Bold arrow lines depict themain
solver loop. Light gray rectangles aremain constraint-solving
components; the remaining ones are auxiliary components.

Example 3.7. Consider the constraint for well-balanced XML
trees from Listing 2, and the XML tree C from Fig. 2 for the doc-
ument “<a>x.” We evaluate whether this tree is well-formed,
starting from an initial assignment V = {start 7! C}. Since the
outermost element of the constraint is a universal formula with
match expression, Item (10) of De�nition 3.6 applies. Thus, we have
to prove that c,f, {start 7! C}[E 7! C] [<] |= i holds for all in-
stantiations, i.e., tree elements with root hxml-treei matching the
match expression (i.e., not a self-closing tag). There is a match< in
C , instantiating opid to a and clid to a. Thus, it remains to show
that f ((= �a� �a�)) = >, which is the case.

De�nition 3.8 (ISLa Semantics). Let i 2 Fml be an ISLa formula
with the single free variable 2 for the signature (⌧, PSym,VSym),
and c , f be interpretations for predicates and SMT formulas. We
de�ne the semantics »i… of i as

»i… B {str (C) | C 2 T (⌧) ^ closed (C) ^ c,f, {2 7! C} |= i}.

4 SOLVING ISLA CONSTRAINTS
Our ISLa solver stepwise expands elements from a queue of Condi-
tioned Derivation Trees (CDTs). A CDT is a pair � ù C , where � is a
set of ISLa formulas and C a—possibly open—derivation tree. Intu-
itively, the conjunction of the formulas in � constrains the inputs
represented by C , similarly as »i… constrains the language of the
grammar. Open trees represent the possibly in�nite set of deriva-
tion trees that can be derived from them by expansion according to
the grammar rules; imposing constraints potentially reduces the
set of applicable rules and thus the represented concrete trees. On
the other hand, closed derivation trees only stand for themselves. If
a constraint is added to a closed tree, the result is either empty (if
the tree does not satisfy the constraint) or consists of the tree itself.

To enable references to trees in constraints, we assign unique,
numeric identi�ers to derivation tree nodes. These identi�ers may
be used instead of free variables in ISLa formulas (variables bound
by quanti�ers may not be replaced with tree identi�ers).

Consider, for example, the ISLa constraint

i = forall hidi id in start: str.len(id) = 3

constraining the XML grammar in Fig. 1 to identi�ers of length
3. Let C be a tree consisting of a single (root) node with identi�er

1, and labeled with hstarti. Then, »i… is identical to the strings
represented by the CDT

{forall hidi id in 1: str.len(id) = 3)} ù C .

Fig. 3 schematically represents the ISLa constraint solver. We
formalized the solver as a CDT transition system in our electronic
appendix [25]. Starting with the CDT above, the solver expands the
open tree C according to the grammar and adds the resulting CDT
into the queue. The queue itself is a priority queue. The order of
CDTs inside the queue is determined by a con�gurable cost function.

Expansion continues as long as it gets us nearer to matching
the universal quanti�er (in the example, until an hidi nonterminal
symbol is contained in the trees resulting from the expansion).
Eventually, the following state will be added to the queue:

{forall hidi id in 1: str.len(id) = 3)} ù <hidi/>

Now, the universal quanti�er matches and is instantiated. Let 4
be the identi�er of the subtree labeled with the hidi nonterminal.
Then, we obtain (using bold font for the tree identi�er in the SMT
formula resulting from the instantiation):

{str.len(4) = 3,

forall hidi id in 1: str.len(id) = 3)} ù <hidi/>

The solver now removes the quanti�ed formula from the con-
straint set, since there is no chance of obtaining another hidi by
further expansion. Next, it invokes the SMT solver to obtain a solu-
tion for the formula str.len(4) = 3. If we simply asked the solver
for a string of length 3, we would not necessarily receive an answer
matching the language of the hidi nonterminal; for example, the
solver could produce a sequence of three space characters. Thus,
we use the “Grammar to regex” component to produce a regular ex-
pression describing the desired syntax, which we add to the solver
query. While generally, it is not possible to precisely transform a
CFG into a regular expression, it is often feasible for small sub
grammars, like the one for the hidi nonterminal. Otherwise, we
create an approximate regular expression by unfolding problematic
recursions up to a �xed bound.

The solution returned by the solver is parsed into a derivation
tree and substituted for the subtree with identi�er 4; the SMT
formula is removed from the constraint set. This results in a set of
CDTs (the number of solutions requested from the SMT solver is
con�gurable) with empty constraint sets and closed trees such as
{} ù <abc/>. Since there are no constraints and open tree leaves
left, <abc/> is immediately output as a solution of the constraint.

The solver not only stops tree expansion if it can be sure that no
universal quanti�er can eventually be matched by doing so; it also
only expands open subtrees for which this is the case. Consequently,
there are situations where the constraint set is empty, and the
associated derivation tree still open. In that case, any expansion
of the tree is admissible. The solver then calls a standard grammar
fuzzer to close the tree using random expansions (again, the number
of requested solutions is con�gurable). This procedure ensures that
the solver does not generate too many solutions that look alike by
considering all possible grammar expansions in all cases.

There are twomore constraint solver components, which provide
solutions for existential quanti�ers and semantic predicates.

Input Invariants ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

Existential Quanti�ers. Existential quanti�ers (e.g., “there is an
outer XML tag de�ning a given namespace”) not matching the cur-
rent derivation tree are eliminated using the “tree insertion” com-
ponent, which searches for opportunities to insert the requested
tree into the existing constrained derivation tree. The inserted tree
contains a node labeled with the nonterminal type of the variable
bound by the quanti�er, and optionally contains subtrees for match
expression elements. For the XML namespace example, the compo-
nent will, e.g., replace an existing hxml-treei subtree with the tree
to insert, and in turn add the replaced tree as a subtree of the in-
serted tree. Tree insertion can cause violations of already eliminated
constraints. Thus, the original constraint is re-inserted afterward.
If none of the already solved constraints were violated, the added
constraint is quickly eliminated again. Alternatively, the added CDT
is discarded, or further insertions are performed

Semantic Predicates. ISLa distinguishes structural and semantic
predicates. Structural predicates, like “inside” in Listing 3, evalu-
ate to true or false. Semantic predicates, for which speci�c solvers
have to be implemented, can additionally evaluate to an assignment,
similarly to SMT formulas, or “not ready” if the result di�ers for dif-
ferent expansions of open argument derivation trees. We use them
to address shortcomings of SMT solvers or the SMT-LIB language.
Classic use cases are checksum predicates—encoding checksums
in SMT-LIB is cumbersome at least—and structure-aware predi-
cates like the count predicate used in our CSV case study, which
produces rows with a speci�c number of columns.

Quanti�ers over Integers. Existential numeric quanti�ers are elim-
inated by introducing fresh numeric constants. Universal quan-
ti�ers are more complicated. If their core restricts the range
of the quanti�ed variable, ISLa enumerates all possible values.
Additionally, the solver implements transformations for formu-
las of a speci�c structure. For example, formulas of the shape
“forall int i: exists <A> elem: not A(elem, i)” get

exists int i: (
exists <A> elem�: phi(elem�, i) and
exists <A> elem: not phi(elem, i))

if A(elem, i) holds for exactly one i when elem is �xed. The
result can be solved by fresh constant introduction.

Conjunctions, Disjunctions, Negations. The solver pushes nega-
tions inside formulas, splits conjunctions into several elements of
the constraint set of one CDT, and disjunctions into several CDTs.

Cost Function. The choice of the cost function impacts the
solver’s performance, both in terms of e�ciency (generated in-
puts per second) and diversity (input features covered). Our cost
function computes the weighted geometric mean of di�erent cost
factors. We provide a sensible default weight vector. Furthermore,
weights can be manually con�gured, and we provide an optimizer
using an evolutionary algorithm for choosing good weights. We
currently consider �ve cost factors: (1) Tree closing cost.We approx-
imate the cost to close a derivation tree by the sum of the estimated
instantiation e�ort for all leaf nonterminal symbols. (2) Constraint
cost. This assigns higher cost to constraints that are more expensive
to solve, notably existential quanti�ers that have to be eliminated
by tree insertion. (3) Derivation depth. Assigning higher costs to

CDTs generated later in the process can prevent starvation of states
added earlier. (4) k-path coverage. We use the k-path coverage met-
ric [11] to determine the context-sensitive input feature coverage
of derivation trees. We penalize trees covering only few k-paths.
The concrete value of k is con�gurable; the default is 3. (5) Global
k-path coverage. This factor assigns a higher cost to trees whose k–
paths have already been covered by existing trees in the queue. The
history of covered paths is reset once all paths have been covered.

5 MINING ISLA CONSTRAINTS
The ISLa components introduced so far enable developers to manu-
ally specify input constraints based on an analysis of input formats,
and use the constraints for input validation and generation. With
these constraints, developers do not have to code domain-speci�c
input generators or checkers; furthermore, ISLa constraints can
easily be re�ned and specialized, e.g., by adding another constraint
for targeted testing. Yet, the full potential of such a declarative
speci�cation language materializes when we automatically mine
input constraints from samples and automatic experiments. This
enables us to connect any observable program behavior with con-
straints on system inputs. Example behaviors of interest include
normal completion, reaching some point in code, or crashing.

To that end, we developed ISLearn, a miner for input constraints.
ISLearn is inspired by Daikon [7], a tool for learning unit-level pro-
gram invariants from dynamic execution traces. Daikon checks for
invariants from a prede�ned set of patterns (e.g., value ranges, sort-
edness). ISLearn also uses patterns. The main di�erences to Daikon
are: (1) ISLearn mines and combines quanti�ed, structure-aware
formulas; Daikon generates invariants over literals or simple collec-
tions, (2) Daikon requires a meaningful test suite to obtain feasible
unit-level execution traces. ISLearn can automatically generate more
inputs satisfying a program property, and reduce those inputs to
their essential features, (3) ISLearn also considers negative inputs
(not satisfying a property) to estimate the speci�city of invariants,
and (4) ISLearn can easily be extended with more patterns by adding
them to a human-readable con�guration �le. Manual extensions
may not be required, though: ISLearn comes with a default catalog
populated with general patterns and patterns inspired by our ISLa
case studies. All these are unique features of ISLearn.

The main inputs to the ISLearn system, apart from a grammar of
the input language (possibly mined by other tools [10, 18]), are sets
of positive and negative sample inputs, and a program property (e.g.,
the program terminates normally). Both are optional: Invariants
can be mined from inputs only, and inputs can be automatically
generated from only the property.

Patterns are de�ned in a superset of the ISLa language, enriched
with placeholders for nonterminal types (<?NONTERMINAL>), match
expressions (<?MATCHEXPR(params)>, where params is a list of vari-
ables that should be bound in the instantiated match expression,
and string constants (<?STRING>). The <?DSTRINGS> placeholder
can be instantiated by multiple strings; the surrounding, atomic
ISLa formula is expanded for all instantiations.

Consider the constraint for pre�x bindings in XML attributes
from Listing 3. We abstract this constraint to an ISLearn pattern
by replacing all nonterminal types and match expressions by cor-
responding placeholders. The constant �xmlns� is abstracted by

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Dominic Steinhöfel and Andreas Zeller

forall <?NONTERMINAL> attribute=�{<?MATCHEXPR(prefix_use)>}�
in start: (not prefix_use = <?DSTRINGS> implies

exists <?NONTERMINAL> outer_tag=�{<?MATCHEXPR(cont_attribute)>}�
in start: (inside(attribute, outer_tag) and

exists <?NONTERMINAL> def_attribute=
�{<?MATCHEXPR(prefix_def)>}� in cont_attribute:

prefix_use = prefix_def))

Listing 4: ISLearn pattern obtained from Listing 3

a <?DSTRINGS> placeholder to permit instantiations by multiple
keywords. The resulting pattern is shown in Listing 4.

This is not the only possible abstraction. In fact, to recover an
equivalent invariant for the original XML constraint, we need to
introduce another variable ns_prefix in the match expression
for def_attribute for binding the constant xmlns, along the con-
straint “ns_prefix = <?STRING>.” However, the pattern in List-
ing 4 is already useful. In our evaluation (Section 6), we applied
ISLearn to languages that did not inform our pattern catalog. One
of our evaluation targets is the Racket language from the Lisp fam-
ily. Since Racket programs are, similarly to XML, tree structures,
the �rst abstraction of the XML pattern can be instantiated to a
de�nition-use invariant for Racket. The <?DSTRINGS> placeholder
is instantiated by all functions used in the learning samples, such
as *, +, and sqrt. The constraint prefix_use = <?DSTRINGS> is
expanded to multiple equalities, one for each used function.

We explain how ISLearn works along the example of the
Graphviz DOT language from our evaluation (Section 6.3). We
aim for the invariant that edges in directed graphs (“digraph”) are
directed (“->”), and edges in undirected graphs (“graph”) are undi-
rected (“--”). ISLearn operates in three phases. The input augmen-
tation phase generates more input samples satisfying (positive) and
violating (negative) the program property using a grammar fuzzer
and a grammar-, property-, and k-path-aware mutation fuzzer. The
obtained inputs are optionally reduced afterward. Then, learning
samples are selected from the positive inputs, minimizing their size
while maximizing total k-path coverage. For DOT, example learn-
ing inputs are “graph { a -- b; }” and “digraph { a -> b; }.”
An example of a negative input is “graph { a -> b; }.”

The candidate generation phase instantiates selected patterns
from the catalog based on the given learning inputs in several steps.
For DOT, we can instantiate the pattern “String Existence:”

exists <?NONTERMINAL> elem in <?NONTERMINAL>:

elem = <?STRING>

For example, the �rst step instantiates nonterminal placehold-
ers in quanti�ers and match expression placeholder arguments.
The results after each instantiation phase are approximately �ltered
using an ISLa checker for schematic formulas. The �ltering is con-
servative: Whenever some learning input might satisfy a partially
instantiated pattern, that pattern is retained. Two useful instantia-
tions of “String Existence” for DOT are

“exists <GRAPH> elem in <graph>: elem = �graph�” and
“exists <edgeop> elem in <edge_stmt>: elem = �->�.”
Finally, the �ltering and combination phase combines candidate

invariants to conjunctions of disjunctions satisfying con�gurable
target values for recall and speci�city. First, we evaluate for each
candidate which of the positive and negative inputs it satis�es. From
the two learning inputs shown above, the �rst one satis�es the �rst
constraint, and the second one the second constraint. Then, we

combine candidates to disjunctions up to a con�gurable size, such
that the percentage of positive inputs satisfying the combination
exceeds the recall threshold and the recall estimate is greater than
that of both candidates alone. For example, we would combine
the candidate instantiations above, such that the result satis�es
both learning inputs. In the next step, we combine the disjunctions
to conjunctions to maximize the amount of negative inputs not
satisfying the resulting combinations (speci�city). For instance, the
negative input “graph { a -> b; }” satis�es our newly formed
disjunction. Thus, we combine it to a conjunction with a similarly
shaped disjunction, onlywith “digraph” and “--” instead of “graph”
and “->.” The result has 100% recall and speci�city. ISLearn ranks
invariants according to their recall and speci�city estimates.

Implementation. The ISLa solver and ISLearn are implemented
in Python.1 We use the Z3 SMT solver and a grammar fuzzer based
on the Fuzzing Book [32] for �nishing unconstrained trees. We im-
plemented additional libraries for grammar graph operations (e.g.,
k-paths) and approximating grammars with regular expressions.

6 EVALUATION
To evaluate ISLa and ISLearn, we pose three research questions:
RQ1 To which degree do ISLa constraints contribute to the

e�ciency and precision of the input generator? With
this question, we evaluate how much bene�t one gets (in
terms of more valid inputs) for how much cost (in terms of
having to specify ISLa constraints).

RQ2 How diverse are inputs generated from ISLa constraints?
Here, we want to ensure that ISLa does not overspecialize (for
instance, by producing only a small set of concrete inputs).

RQ3 What are the recall and speci�city of invariants mined
by ISLearn?We evaluate how useful the invariants mined
by ISLearn, and speci�cally the default patterns, are to de-
scribe the circumstances of normal program behavior.

Evaluation Subjects. To evaluate RQ1 and RQ2, we identi�ed
frequently occurring context-sensitive language properties: (1) Dec-
laration of identi�ers (def-use), (2) rede�nition—identi�ers must not
be declared more than once (redef), and (3) length or counting prop-
erties (len-cnt). For speci�c languages, we addressed (4) well-bal-
anced XML expressions (“Balance”), (5) correct TAR checksums
(“Checksum”), and (6) consecutive list numbering (“Numbering”).

To cover these properties, we chose input languages of di�er-
ent character: (1) One highly structured (XML) and one more hu-
man-readable (reStructuredText (reST))markup language, (2) a data
exchange format (CSV), (3) a programming language (Scriptsize-C),
and (4) a binary format (TAR). Scriptsize-C extends Tiny-C [8] by
explicit variable declarations. For each of these languages, we ex-
tracted grammars from their speci�cations; for XML, we extended a
pre-existing grammar from the Fuzzing Book [32] with namespace
pre�xes. We then added ISLa semantic constraints to all of these.

The TAR archive format represents properties of binary inputs;
it comes with strict length constraints (block sizes) and requires
the computation of a checksum. Checksums are generally out of

1ISLa and ISLearn are available at https://github.com/rindPHI/isla and https://github.
com/rindPHI/islearn. They also are published in the Python Package Index (PyPI), see
https://pypi.org/project/isla-solver/ and https://pypi.org/project/islearn/.

https://github.com/rindPHI/isla
https://github.com/rindPHI/islearn
https://github.com/rindPHI/islearn
https://pypi.org/project/isla-solver/
https://pypi.org/project/islearn/

Input Invariants ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

Table 1: Overview of evaluation targets and their properties.
Properties in italic font are not covered by our speci�cations.

Language Test Target def-use redef len-cnt other
Scriptsize-C clang 3 3 7 Nontermination

Over�ow
XML xml.etree 3 3 7 Balance
TAR tar 3 3 3 Checksum
reST rst2html 3 3 3 Numbering
CSV csvlint 7 7 3 7
Racket racket
DOT dot To be mined in Section 6.3
ICMP Echo pythonping

Table 2: ISLa E�ciency, precision, and input diversity

Constraints LOC E�ciency Precision Diversity Length
Inputs/min Inputs/min (%) %k-paths #Chars

(none) — 470 113 (24) 53 2 (1)
+ def-use 6 963 136 (14) 51 28 (28)C

+ no-redef 4 387 387 (100) 58 26 (27)
(none) — 809 140 (17) 66 10 (5)
+ balance 2 452 95 (21) 85 41 (35)
+ def-use 11 435 60 (14) 78 42 (44)X

M
L

+ no-redef 5 126 126 (100) 91 44 (48)
(none) — 572 0 (0) 0 0
+ length 44 20 0 (0) 0 0
+ checksum 3 18 4 (22) 86 3,700 (4,096)TA

R

+ reference 14 19 19 (100) 87 4,121 (4,096)
(none) — 258 88 (34) 100 13 (10)
+ reference 6 492 393 (80) 100 32 (32)
+ length 7 404 379 (94) 100 33 (33)
+ numbering 7 547 534 (98) 100 32 (33)re

ST

+ no-redef 4 404 404 (100) 100 31 (31)
(none) — 804 490 (61) 100 9 (8)

CS
V

+ columns 4 127 127 (100) 100 1,103 (828)

The “E�ciency” column considers all produced inputs; “Precision,” “Diversity,” and
“Length” only valid (accepted) inputs. “Length” is the mean (median) length of all valid
inputs. We evaluated k-path coverage for both k=3 and k=4.

the scope of SMT-LIB, which is why we implemented a dedicated
semantic predicate for TAR checksums (15 lines of code).

For ISLearn, we chose three additional languages to evaluate
how well patterns from our catalog transfer to new application
scenarios. Again, we aimed at choosing a diverse range of evaluation
targets: (1) a functional programming language (Racket), (2) a graph
description language (DOT), and (3) a binary format (ICMP packets).

Table 1 gives an overview of languages, test targets, and proper-
ties used in our evaluation. For the ISLearn subjects, we leave the
properties open, since the goal is to discover their invariants. For
ground truth, we chose test targets processing each language.

6.1 RQ1: Precision
ISLa aims to produce more valid inputs, at the e�ort of specifying
input constraints. Since ISLa is closed under conjunction, speci�ca-
tions can be added until a satisfying precision is reached. Table 2
relates the lines of ISLa code for a semantic property and the result-
ing precision. The “(none)” rows stand for “no constraint” added.
Here, we ran the grammar fuzzer ISLa uses to close unconstrained
open derivation trees. For each language, the rows below “(none)”
show the results of the ISLa generator when adding the speci�ed
constraint on top of the ones appearing above. The �rst constraint
is the one with the most positive e�ect on precision; similarly for
the others. The “Precision” column shows the number of valid in-
puts generated per minute, with the percentage of valid inputs in
parentheses. Only 17% of generated XML inputs are valid without

constraints; 140 valid XML documents are generated perminute. For
TAR, not a single input is valid. The “E�ciency” column displays the
generation speed irrespectively of validity. With the exception of
TAR, we observe that ISLa generates dozens to hundreds of inputs
per minute, including a high number of valid ones.2 All values are
obtained from the average of two one-hour runs of the generator.

For every constraint added, we provide its length in lines of
Core-ISLa code. For Listing 2 (balance in Table 2), the length is 2.

Mostly, precision increases with each additional constraint. A
typical example is reST, where the �rst constraint already increases
precision from 34% to 80%. For XML, 18 lines of constraints achieve
100% precision. Without constraints, the 17% of valid inputs are al-
most exclusively made of hxml-openclose-tagi elements only. Of the
inputs containing an hxml-open-tagi element, only 0.03% are valid.

A few ISLa constraints su�ce to drastically increase
the percentage of valid inputs.

Interestingly, relative precision declines when adding the def-
use property to XML. This stems from the fact that the solver is
now directed toward introducing more attributes with namespace
pre�xes, which introduces more (invalid) attribute repetitions. The
no-redef constraint increases precision up to 100%. A similar phe-
nomenon can be observed for Scriptsize-C. Still, for all subjects, a
few constraints increase the precision to 100%.

ISLa constraints can ensure that all inputs are valid.

Wewould like to emphasize that 100% precision is not a necessary
goal. If 80% valid reST documents are su�cient for testing a reST
processor, one may decide to stop adding constraints after reference.

The most verbose property is the “length” property for TAR,
where each �eld of the archive has to conform to strict length
bounds. Yet, the constraint consists of a conjunction of simple
constraints (most of them two lines only). If we do not provide
length and checksum constraints, we cannot produce even a single
valid TAR �le.

6.2 RQ2: Diversity
A test generator should produce inputs exercising di�erent lan-
guage features, by which one can expect to reach di�erent paths
in the language processor [11]. Essentially, 100% precision can be
reached by always producing the same, small input. To validate
that ISLa generates diverse and thus interesting inputs, we compute
their accumulated k-path coverage [11], assessing how many paths
of length : in the grammar are present in a derivation tree. The
higher the :-path coverage, the higher the diversity.

The “Diversity” column in Table 2 shows the percentage of ac-
cumulated 3- and 4-paths during a one-hour run per all 3/4-paths
in the grammar. For example, generating XML documents from the
grammar only achieves 66% coverage, while we cover 91% of all
3/4-paths when adding all three constraints. We only count valid
inputs accepted by the program under test.

Generally, inputs produced by ISLa have better diversity than
inputs produced without constraints. Only for Scriptsize-C, there

2There is much potential in optimizing ISLa for speed; e.g., parallel processing of the
solver queue and solving simple formulas such as equations without SMT solver calls.

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Dominic Steinhöfel and Andreas Zeller

is a small decrease in diversity after adding the �rst constraint; this
is compensated after the addition of the second.

To shed some light on the solver’s behavior for CSV and
Scriptsize-C, we collected information about input length. Length is
not a particularly good coverage measure: One can always choose,
e.g., long identi�ers. However, we observe that, in particular for
CSV and C, most inputs generated by the grammar fuzzer are triv-
ial; the most common valid C program generated by the grammar
fuzzer is “;”. In general, the ISLa solver clearly outperforms the
grammar fuzzer in terms of the complexity of the generated inputs.

ISLa covers the diversity of the underlying grammar.

6.3 RQ3: ISLearn
We populated the pattern catalog for ISLearn with abstractions of
the patterns used for the ISLa evaluation targets. In addition, we
added some simple properties about magic constants, most notably
“String Existence” from Section 5. In this research question, we
assess how well ISLearn can be used to mine invariants describing
circumstances of normal program behavior (i.e., whether an input
is accepted by the program under test) with these patterns. We
are particularly interested in two questions: (1) If an input is valid
(accepted by the program), what is the probability that the mined
invariant classi�es the input as such (i.e., the ISLa solver reports
that the input satis�es the invariant)? This is captured by the recall
of the invariant. (2) Conversely, if an input is invalid, what are the
chances that the mined invariant classi�es it accordingly? This is
assessed by the speci�city of the invariant.

To evaluate recall and speci�city, we chose seed sets of training
and validation inputs. For Racket andDOT, we obtained valid Racket
and DOT �les from GitHub. We separated those inputs into sets
of training and validation inputs of equal size. Subsequently, we
expanded the training and validation sets to 50 inputs each using
both a mutation-based and a grammar fuzzer. Similarly, we collect
negative inputs (not accepted by the programs under test) into sets
of negative training and validation inputs, each of size 50. For ICMP
Echo, our third evaluation target, we generated random, valid echo
request and reply packets using the “pythonping” library. To obtain
negative samples, we created arbitrary (not necessarily Echo) ICMP
packets, 20% of those with an incorrect checksum value.

ISLearn already estimates recall and speci�city of invariant can-
didates based on the supplied sample inputs and returns the top-
ranked result. We assessed the quality of that invariant using the
validation sets. If, e.g., an input from the positive validation set does
not satisfy the invariant, the input is a false negative (FN).

Table 3 presents the confusion matrices for our evaluation. For
DOT, ISLearn discovered the invariant that edges in directed graphs
are directed (->), and undirected (--) for undirected graphs. The
invariant is slightly too weak, as it only requires one correct edge in
each “edge statement,” which, however, can contain multiple (right
orwrong) edges. In the case of ICMPEcho packets, the system learns
that the value of the “type” is 0 (reply) or 8 (response). It wrongly
classi�es three packets with wrong checksums as valid. Adding
a pattern for a semantic predicate computing internet checksum
achieves 100% speci�city. Both of these invariants are obtained
from combined instantiations of the “string existence” pattern. We

Classi�ed as
Input True False Total
True TP = 50 FN = 0 50
False FP = 8 TN = 42 50
Total 58 42 100

Recall = 100%, Speci�city = 84%
Precision = 86%, Accuracy = 92%

(a) DOT

Classi�ed as
Input True False Total
True TP = 50 FN = 0 50
False FP = 3 TN = 47 50
Total 53 47 100

Recall = 100%, Speci�city = 94%
Precision = 94%, Accuracy = 97%

(b) ICMP Echo

Classi�ed as
Input True False Total
True TP = 36 FN = 14 50
False FP = 8 TN = 42 50
Total 44 56 100

Recall = 72%, Speci�city = 84%
Precision = 82%, Accuracy = 78%

(c) Racket (XML pattern)

Classi�ed as
Input True False Total
True TP = 36 FN = 14 50
False FP = 5 TN = 45 50
Total 41 59 100

Recall = 72%, Speci�city = 90%
Precision = 88%, Accuracy = 81%

(d) Racket (XML + reST pattern)

Table 3: Confusion matrices for RQ3

already mentioned that a def-use invariant for variables in Racket
can be obtained from a pattern derived from an XML invariant; this
leads to 72% recall and 84% speci�city. Onemissing semantic feature
is a def-use property for functions. We discovered that by weakening
the def-use pattern obtained from reST, taking into account pre-
de�ned function symbols that have not been de�ned, we obtain a
suitable invariant for this property. The confusionmatrix in Table 3d
demonstrates that this increases speci�city to 90%. The—compared
to DOT and ICMP—low recall stems from the fact that not all pre-
de�ned functions appear in the training set.

ISLearn mines invariants of high recall and speci�city based on
patterns for re-occurring input properties.

6.4 Threats to Validity
We supported our claim that ISLa is a useful speci�cation language
by expressing context-sensitive properties of �ve subject input
languages. Whether indeed ISLa is su�ciently expressive and its
solver su�ciently precise depends onwhether our choice of subjects
is representative. There is a potential threat of over�tting, i.e., that
we designed ISLa and ISLearn to exactly �t the test subjects. We
mitigate this threat by choosing diverse languages, i.e., not only
programming ormarkup languages, or binary formats, but amixture
of those. Furthermore, we identi�ed and clustered context-sensitive
properties of the test subjects. This supports the claim that those
are representative and can be transferred to di�erent targets, as
does the fact that an XML pattern could be used for Racket.

7 RELATEDWORK
Parser Speci�cations. ISLa provides a framework to specify input

requirements, or preconditions, of a program. It targets the sys-
tem level, where inputs are generally strings. Parser generators like
ANTLR3 and the pioneer yacc [16] promoted CFGs for specify-
ing complex structured inputs. However, speci�cations designed
for parsing inputs are rarely speci�c enough to also be used for
producing valid inputs, which is the gap that ISLa �lls.

3https://www.antlr.org/

https://www.antlr.org/

Input Invariants ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

Attribute Grammars. Attribute grammars [17] associate gram-
mar symbols with synthesized and derived attributes. This allows
checking semantic properties; if attributes use a general-purpose
programming language, one can express arbitrarily complex seman-
tic properties. The meta-compiler JastAdd [12], for instance, sup-
ports imperative speci�cations in Java; the same holds for ANTLR
(Java) and yacc (C). ISLa’s mix of quanti�ers, structural predicates,
and SMT-LIB assertions allows expressing important input proper-
ties and can be used for parsing and producing inputs alike.

Grammar-Based Test Generation. Context-Free Grammars are
well suited for syntax-aware test input generation. CSmith [30] and
LangFuzz [14] use CFGs as a basis to randomly create syntactically
valid C and JavaScript programs, respectively; Grammarinator [13]
produces inputs from ANTLR grammars. The underlying gram-
mars are typically handwritten, but can also be mined from pro-
grams [10] and inputs [18]. ISLa �ts between Grammarinator and
CSmith: It can produce inputs from di�erent language models like
Grammarinator, but ful�lls semantic properties like CSmith. Yet, the
probability that Grammarinator will create a valid TAR �le from a
CFG approaches zero, and CSmith can only generate—well—C �les.

Test Generation with Semantic Properties. FormatFuzzer [6] is
a fuzzer for binary formats. It is parameterized with binary tem-
plates as language models. Those resemble C structs, but come with
added code for satisfying semantic constraints, including complex
expressions, control statements, and functions. These constraints
are strictly local, though, mainly supporting checksums and length
�elds for binary formats. Non-local and complex constraints, such
as def-use properties, have to be programmatically implemented.
ISLa’s constraints, in contrast, are declarative, can apply to arbitrary
elements in the derivation tree, and are easily solved using Z3.

Pan et al. [22] useHigher-Order Attribute Grammars [29] for fuzz
testing, providing custom predicates for parse tree manipulation
(e.g., length constraints and checksum computation) in a general-
purpose programming language. The approach neither supports
parsing nor generation from scratch.

Dewey et al. [5] propose to program grammars and constraints
in Prolog using its Constraint Logic Programming (CLP) library for
language-based test generation. All their predicates are application-
speci�c, which is the exception for ISLa. There is no tool such as
ISLearn to infer Prolog programs. ISLa supports all Z3 theories,
whereas CLP only supports integer arithmetic. Finally, CLP-based
language fuzzers cannot be used for parsing.

Property-Based Testing. Pioneered by QuickCheck [2], Property-
Based Testing (PBT) produces data structures of the host language
to test individual functions against user-de�ned properties. This al-
lows expressing features in the host programming language, which
is not available when working with unstructured system inputs.
ProSyT [4] and Luck [19] generate data structures for Erlang and
Haskell, resp., separating semantic constraints from data types.

Generally, the concept of parsing and mutating existing data is
not present in PBT. One exception is Zest [21], which leverages
program feedback to create syntactically valid input mutants exer-
cising interesting program paths. The central di�erence between
ISLa and all PBT approaches is that ISLa operates at the system
level, producing system inputs rather than internal data structures.

Mining Invariants. Daikon [7] is the seminal work for extracting
invariant candidates from program executions—pre- and postcon-
ditions as well as data invariants; its pattern matching approach
is the inspiration for ISLearn. Recent advances in the �eld focus
on program veri�cation, loop invariants, and the usage of neural
networks [31]. Unlike ISLearn, all these approaches operate at the
unit level, and cannot generate targeted executions to re�ne invari-
ants. To the best of our knowledge, ISLearn is the �rst approach to
specify, determine, and re�ne invariants at the system level.

8 CONCLUSION AND FUTUREWORK
We proposed ISLa, a declarative speci�cation language for context-
sensitive constraints of system inputs. In our framework, syntactic
language constraints are speci�ed using Context-Free Grammars
(CFGs), which are great for parsing, but often too coarse for gener-
ating inputs. Context-sensitive re�nements are expressed by ISLa
constraints, using the vocabulary de�ned by the CFG. We formally
de�ned ISLa’s syntax and semantics and demonstrated that our ISLa
solver can be used to generate semantically correct inputs signi�-
cantly faster than by generating from a CFG alone. Furthermore, we
introduced the ISLearn input invariant miner, which automatically
produces useful ISLa speci�cations based on a program property
and/or sample inputs.

Besides further re�ning the ISLa and ISLearn implementation,
our future work will focus on the following topics:

Fuzzer integration. ISLa-generated inputs can serve as high-
quality seed inputs for graybox fuzzers like AFL; ISLa’s check-
ers can quickly �lter out invalid generated inputs. Further-
more, ISLa could improve the performance of hybrid fuzzers
by serving as a language for exchanging constraints between
the symbolic execution and fuzzing components. This idea
has been put forward by the authors of the Driller [26] paper,
but has not yet been put into practice.

Testing strategies. Aprobabilistic variant of ISLearn could quickly
learn which input features correlate with program behaviors
(including failures or speci�c coverage); this allows for test
generation techniques exploring syntax and semantics.

Constraint synthesis. Besides checking patterns, techniques from
program synthesis would have great potential for generating
constraints from examples.

Constraints as oracles. As ISLa allows extracting and assessing
arbitrary input elements, it can also check outputs for con-
straints. This allows using ISLa constraints as oracles (that
could also be learned via ISLearn).

Detecting anomalies. Decomposing inputs and outputs provides
plenty of syntactical and semantic features that can be used
for learning commonalities and anomalies; learned correla-
tions can be reinforced by ISLa-generated tests.

The ISLa and ISLearn prototypes are available at

https://github.com/rindPHI/isla
https://github.com/rindPHI/islearn

REFERENCES
[1] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. 2017. The SMT-LIB Standard:

Version 2.6. Technical Report. Department of Computer Science, The University
of Iowa. Available at www.SMT-LIB.org.

https://github.com/rindPHI/isla
https://github.com/rindPHI/islearn

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Dominic Steinhöfel and Andreas Zeller

[2] Koen Claessen and John Hughes. 2000. QuickCheck: A Lightweight Tool for
Random Testing of Haskell Programs. In Proceedings of the Fifth ACM SIGPLAN
International Conference on Functional Programming (ICFP), Martin Odersky and
Philip Wadler (Eds.). ACM, 268–279. https://doi.org/10.1145/351240.351266

[3] James Clark and Steve DeRose. 1999. XML Path Language (XPath), 2.5: Abbrevi-
ated Syntax. https://www.w3.org/TR/1999/REC-xpath-19991116/#path-abbrev
Accessed: 2022-08-23.

[4] Emanuele De Angelis, Fabio Fioravanti, Adrián Palacios, Alberto Pettorossi, and
Maurizio Proietti. 2019. Property-Based Test Case Generators for Free. In Tests
and Proofs - 13th International Conference, TAP@FM 2019, Porto, Portugal, October
9-11, 2019, Proceedings (Lecture Notes in Computer Science, Vol. 11823), Dirk Beyer
and Chantal Keller (Eds.). Springer, 186–206. https://doi.org/10.1007/978-3-030-
31157-5_12

[5] Kyle Dewey, Jared Roesch, and Ben Hardekopf. 2014. Language Fuzzing Using
Constraint Logic Programming. In ACM/IEEE International Conference on Auto-
mated Software Engineering, ASE 2014, Ivica Crnkovic, Marsha Chechik, and Paul
Grünbacher (Eds.). ACM, 725–730. https://doi.org/10.1145/2642937.2642963

[6] Rafael Dutra, Rahul Gopinath, and Andreas Zeller. 2021. FormatFuzzer: E�ective
Fuzzing of Binary File Formats. CoRR abs/2109.11277 (2021). arXiv:2109.11277
https://arxiv.org/abs/2109.11277

[7] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. 1999.
Dynamically Discovering Likely Program Invariants to Support Program Evolu-
tion. In Proceedings of the 1999 International Conference on Software Engineering,
(ICSE), Barry W. Boehm, David Garlan, and Je� Kramer (Eds.). ACM, 213–224.
https://doi.org/10.1145/302405.302467

[8] Marc Feeley. 2001. Tiny-C Compiler. https://www.iro.umontreal.ca/~felipe/
IFT2030-Automne2002/Complements/tinyc.c. Accessed: 2021-10-06.

[9] Patrice Godefroid, Adam Kiezun, and Michael Y. Levin. 2008. Grammar-Based
Whitebox Fuzzing. In Proceedings of the ACM SIGPLAN 2008 Conference on Pro-
gramming Language Design and Implementation (PLDI), Rajiv Gupta and Saman P.
Amarasinghe (Eds.). ACM, 206–215. https://doi.org/10.1145/1375581.1375607

[10] Rahul Gopinath, Björn Mathis, and Andreas Zeller. 2020. Mining Input Grammars
from Dynamic Control Flow. In Proceedings 28th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FST), Prem Devanbu, Myra B. Cohen, and Thomas Zimmermann (Eds.).
ACM, 172–183. https://doi.org/10.1145/3368089.3409679

[11] Nikolas Havrikov and Andreas Zeller. 2019. Systematically Covering Input
Structure. In 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 189–199. https://doi.org/10.1109/ASE.2019.00027

[12] Görel Hedin and Eva Magnusson. 2001. JastAdd—A Java-Based System for
Implementing Front Ends. Electron. Notes Theor. Comput. Sci. 44, 2 (2001), 59–78.
https://doi.org/10.1016/S1571-0661(04)80920-4

[13] Renáta Hodován, Ákos Kiss, and Tibor Gyimóthy. 2018. Grammarinator: A
Grammar-Based Open Source Fuzzer. In Proceedings of the 9th ACM SIGSOFT
InternationalWorkshop on Automating TEST Case Design, Selection, and Evaluation,
Wishnu Prasetya, Tanja E. J. Vos, and Sinem Getir (Eds.). ACM, 45–48. https:
//doi.org/10.1145/3278186.3278193

[14] Christian Holler, Kim Herzig, and Andreas Zeller. 2012. Fuzzing with Code
Fragments. In Proceedings of the 21th USENIX Security Symposium, Tadayoshi
Kohno (Ed.). USENIX Association, 445–458. https://www.usenix.org/conference/
usenixsecurity12/technical-sessions/presentation/holler

[15] John E. Hopcroft, Rajeev Motwani, and Je�rey D. Ullman. 2007. Introduction to
Automata Theory, Languages, and Computation, 3rd Edition. Addison-Wesley.

[16] Stephen C Johnson. 1979. Yacc: Yet Another Compiler-Compiler. https://www.
cs.utexas.edu/users/novak/yaccpaper.htm. Accessed: 2021-11-19.

[17] Donald E. Knuth. 1990. The Genesis of Attribute Grammars. In Proceedings of the
International Conference on Attribute Grammars and their Applications (Lecture

Notes in Computer Science, Vol. 461), Pierre Deransart and Martin Jourdan (Eds.).
Springer, 1–12. https://doi.org/10.1007/3-540-53101-7_1

[18] Neil Kulkarni, Caroline Lemieux, and Koushik Sen. 2021. Learning Highly Recur-
sive Input Grammars. In 36th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2021, Melbourne, Australia, November 15-19, 2021. IEEE,
456–467. https://doi.org/10.1109/ASE51524.2021.9678879

[19] Leonidas Lampropoulos, Diane Gallois-Wong, Catalin Hritcu, John Hughes, Ben-
jamin C. Pierce, and Li-yao Xia. 2017. Beginner’s Luck: A Language for Property-
Based Generators. In Proceedings of the 44th ACM SIGPLAN Symposium on Princi-
ples of Programming Languages (POPL) 2017, Giuseppe Castagna and Andrew D.
Gordon (Eds.). ACM, 114–129. https://doi.org/10.1145/3009837.3009868

[20] Barton P. Miller, Lars Fredriksen, and Bryan So. 1990. An Empirical Study of
the Reliability of UNIX Utilities. Commun. ACM 33, 12 (1990), 32–44. https:
//doi.org/10.1145/96267.96279

[21] Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike Papadakis, and Yves Le
Traon. 2019. Semantic Fuzzing with Zest. In Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA), Dongmei
Zhang and Anders Møller (Eds.). ACM, 329–340. https://doi.org/10.1145/3293882.
3330576

[22] Fan Pan, Ying Hou, Zheng Hong, Lifa Wu, and Haiguang Lai. 2013. E�cient
Model-based Fuzz Testing Using Higher-order Attribute Grammars. J. Softw. 8, 3
(2013), 645–651. https://doi.org/10.4304/jsw.8.3.645-651

[23] Alan J. Perlis. 1982. Epigrams on Programming. ACM SIGPLAN Notices 17, 9
(1982), 7–13. https://doi.org/10.1145/947955.1083808

[24] Dominic Steinhöfel. 2022. The ISLa Language Speci�cation. https://rindphi.
github.io/isla/islaspec/ Accessed: 2022-08-23.

[25] Dominic Steinhöfel and Andreas Zeller. 2022. Electronic Appendix to “Input
Invariants”. CoRR abs/2208.12049 (2022). https://doi.org/10.48550/arXiv.2208.
12049 arXiv:2208.12049

[26] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.
2016. Driller: Augmenting Fuzzing Through Selective Symbolic Execution. In
23rd Annual Network and Distributed System Security Symposium, NDSS 2016, San
Diego, California, USA, February 21-24, 2016. The Internet Society.

[27] The SMT-LIB Initiative. 2021. SMT-LIB Theories. http://smtlib.cs.uiowa.edu/
theories.shtml. Accessed: 2021-10-19.

[28] Cesare Tinelli, Clark Barrett, and Pascal Fontaine. 2020. Theory Strings (SMT-LIB
Version 2.6). http://smtlib.cs.uiowa.edu/theories-UnicodeStrings.shtml. Accessed:
2021-10-07.

[29] Harald Vogt, S. Doaitse Swierstra, and Matthijs F. Kuiper. 1989. Higher-Order
Attribute Grammars. In Proceedings of the ACM SIGPLAN’89 Conference on Pro-
gramming Language Design and Implementation (PLDI), Richard L. Wexelblat
(Ed.). ACM, 131–145. https://doi.org/10.1145/73141.74830

[30] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and Un-
derstanding Bugs in C Compilers. In Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI) 2011,
Mary W. Hall and David A. Padua (Eds.). ACM, 283–294. https://doi.org/10.1145/
1993498.1993532

[31] Jianan Yao, Gabriel Ryan, JustinWong, Suman Jana, and Ronghui Gu. 2020. Learn-
ing Nonlinear Loop Invariants with Gated Continuous Logic Networks. In Pro-
ceedings of the 41st ACM SIGPLAN Conference on Programming Language Design
and Implementation (London, UK) (PLDI 2020). Association for Computing Ma-
chinery, New York, NY, USA, 106–120. https://doi.org/10.1145/3385412.3385986

[32] Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gordon Fraser, and Christian
Holler. 2021. Grammar Coverage. In The Fuzzing Book. CISPA Helmholtz Center
for Information Security. Accessed: 2021-11-13.

https://doi.org/10.1145/351240.351266
https://www.w3.org/TR/1999/REC-xpath-19991116/#path-abbrev
https://doi.org/10.1007/978-3-030-31157-5_12
https://doi.org/10.1007/978-3-030-31157-5_12
https://doi.org/10.1145/2642937.2642963
https://arxiv.org/abs/2109.11277
https://arxiv.org/abs/2109.11277
https://doi.org/10.1145/302405.302467
https://www.iro.umontreal.ca/~felipe/IFT2030-Automne2002/Complements/tinyc.c
https://www.iro.umontreal.ca/~felipe/IFT2030-Automne2002/Complements/tinyc.c
https://doi.org/10.1145/1375581.1375607
https://doi.org/10.1145/3368089.3409679
https://doi.org/10.1109/ASE.2019.00027
https://doi.org/10.1016/S1571-0661(04)80920-4
https://doi.org/10.1145/3278186.3278193
https://doi.org/10.1145/3278186.3278193
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/holler
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/holler
https://www.cs.utexas.edu/users/novak/yaccpaper.htm
https://www.cs.utexas.edu/users/novak/yaccpaper.htm
https://doi.org/10.1007/3-540-53101-7_1
https://doi.org/10.1109/ASE51524.2021.9678879
https://doi.org/10.1145/3009837.3009868
https://doi.org/10.1145/96267.96279
https://doi.org/10.1145/96267.96279
https://doi.org/10.1145/3293882.3330576
https://doi.org/10.1145/3293882.3330576
https://doi.org/10.4304/jsw.8.3.645-651
https://doi.org/10.1145/947955.1083808
https://rindphi.github.io/isla/islaspec/
https://rindphi.github.io/isla/islaspec/
https://doi.org/10.48550/arXiv.2208.12049
https://doi.org/10.48550/arXiv.2208.12049
https://arxiv.org/abs/2208.12049
http://smtlib.cs.uiowa.edu/theories.shtml
http://smtlib.cs.uiowa.edu/theories.shtml
http://smtlib.cs.uiowa.edu/theories-UnicodeStrings.shtml
https://doi.org/10.1145/73141.74830
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/3385412.3385986

ar
X

iv
:2

20
8.

12
04

9v
1

 [c
s.P

L]
 2

5
A

ug
 2

02
2

Electronic Appendix to “Input Invariants”

Dominic Steinhöfel
CISPA Helmholtz Center for Information Security

Saarbrücken, Germany
dominic.steinhoefel@cispa.de

Andreas Zeller
CISPA Helmholtz Center for Information Security

Saarbrücken, Germany
zeller@cispa.de

In this electronic appendix to our paper “Input Invariants” [3],
we provide additional examples, formal de!nitions, theorems, and
proof sketches. Furthermore, we show the invariants that ISLearn
mined in our evaluation (RQ3). For more information on the ISLa
language, we also refer to the ISLa language speci!cation [2].

2 ISLa by Example

In Section 2, we discussed the semantic properties def-use and re-
de!nition along the XML language. Apart from those, there are
two other re-occurring generic constraints we would like to dis-
cuss: Length properties and complex conditions for which we need
dedicated semantic predicates.

One of the target languages in our evaluation (Section 6) is
reStructuredText (reST), a plaintext markup language used, e.g.,
by Python’s docutils. In reST, document (sub)titles are underlined
with “=” or “-” symbols. However, titles are only valid if the length
of the underline is not smaller than the length of the title text. This
property cannot be expressed in a Context-Free Grammar (CFG);
however, we can easily capture it in an ISLa constraint:

str.len(<section-title>.<underline>) >=

str.len(<section-title>.<title-text>)

The corresponding Core-ISLa constraint is

forall <section-title> title=

"{<title-txt> titletxt}\n{<underline> underline}" in start:

(>= (str.len underline) (str.len titletxt))

There are propertieswhich cannot be expressed using structural
predicates and SMT-LIB formulas alone. A stereotypical case are
checksums occurring in many binary formats, such as in the TAR
archive !le format from our benchmark set. To account for such sit-
uations, we can extend the ISLa language with additional atomic
assertions, so-called semantic predicates. In contrast to structural
predicates such as inside or same_position, which we have seen
before, semantic predicates do not always evaluate to false for in-
valid arguments. Instead, they can suggest a satisfying solution.
The solver logic for individual semantic predicates is implemented
in Python code in our prototype. Once this logic has been imple-
mented, we can pass such predicates as additional signature ele-
ments to both the ISLa evaluator or solver and use them in con-
straints. The following constraint, which is part of our constraint
set for TAR !les, uses a semantic predicate tar_checksum comput-
ing a correct checksum value for the header of a TAR !le.

tar_checksum(<header>, <header..<checksum>)

This corresponds to the Core-ISLa constraint

forall <header> header in start:

forall <checksum> checksum in header:

tar_checksum(header, checksum)

Another use case for semantic predicates is when the SMT
solver frequently times out when looking for satisfying assign-
ments. This happens in particular for constraints involving a com-
plex combination of arithmetic and string (e.g., regular expression)
constraints. For example, valid CSV !les have the property that all
rows have the same numbers of columns. Assuming that we know
the number of columns in the !le header, we could create a reg-
ular expression matching all CSV lines with the same number of
columns.However, if we admit quoted expressions and awide char-
acter range for contained text, these regular expressions get quite
complex, and the problem exceeds the capabilities of current SMT
solvers in our experience. Thus, we implemented a new semantic
predicate count which counts the number of occurrences of some
nonterminal in an input tree, and !xes trees with an insu"cient
number of occurrences if possible. The following ISLa constraint
for the CSV property uses an additional language feature: It in-
troduces a numeric constant colno using the num directive, which
works similarly to let expressions in functional programming lan-
guages. It is primarily—and also in this example—used to enable
information exchange between semantic predicate formulas.

forall <csv-header> hline:

exists int colno: (

str.to_int(colno) >= 3 and

str.to_int(colno) <= 5 and

count(hline, "<raw-field>", colno) and

forall <csv-record> line in start:

count(line, "<raw-field>", colno))

One has to be aware that the order of semantic predicates in a
constraint matters. This is in contrast to all other language atoms:
SMT formulas, in particular, are fed to an SMT solver only after all
universal quanti!ers have been eliminated resp. matched, and eval-
uated en bloc. Semantic predicates, on the other hand, are generally
not compositional. When computing the checksum for a TAR !le,
for instance, it is important that all elements of the !le header are
already !xed at that point, i.e, all semantic predicates on header
elements have to be evaluated before. Consequently, they have to
occur before the checksum predicate in the overall constraint. De-
spite this particularity, semantic predicates are an easy way to in-
crease both the expressiveness and solving performance of ISLa
constraints, and to overcome the limits of SMT-LIB and o#-the-
shelf solvers.

3 ISLa Syntax and Semantics

We provide a more formal de!nition of derivation trees. We use
the symbols < and ≤ to denote the strict and non-strict versions
of the same partial order relation, respectively; for the correspond-
ing covering relation which only holds between parents and their
immediate children, we write ≺.

1

http://arxiv.org/abs/2208.12049v1
https://orcid.org/0000-0003-4439-7129
https://orcid.org/0000-0003-4719-8803

Dominic Steinhöfel and Andreas Zeller

De!nition 3.1 (Derivation Tree). A derivation tree for a CFG! =

(" ,# , $, %) is a rooted ordered tree & = (' ,≤! , ≤") such that (1) the
vertices (∈ ' are labeled with symbols label(() ∈ " ∪# , (2) the
vertical order ≤! ⊆ ' ×' indicates the parent-child relation such
that the partial order (' ,≤!) forms an unordered tree, (3) the sib-
ling order ≤" ⊆ ' ×' yields a partial order (' ,≤") such that two
distinct nodes (1, (2 are comparable by relation ≺" if, and only if,
they are siblings, (4) the root of & is labeled with % , and (5) each
inner node (is labeled by a symbol in) ∈ " and, if (1, . . . , (#
is the ordered list of all immediate children of (, i.e., all distinct
nodes such that (≺! ($ and ($ <" (% for 1 ≤ * < + ≤ , ,
there is a production (), -1, . . . , -#) ∈ $ such that label(() =)
and, for all ($, label(($) = -$. We write leaves(&) for the set of
leaves of & , and label(&) for the label of its root. A derivation tree
is closed if + ∈ # for all + ∈ leaves(&), and open otherwise. We de-
!ne closed (&) ! ∀+ ∈ leaves(&) : + ∈ # , and open(&) ! ¬closed (&).
T (!) is the set of all (closed and open) derivation trees for! .

Example 3.2. We explain the formal de!nition of derivation
trees (De!nition 3.1) along the XML document <a>x. visu-
alized in Figure 2 in our paper [3]. Formally, this tree is repre-
sented as a triple & = (' ,≤! , ≤"), where ' = {(1, . . . , (14}, with
label((1) = 〈xml-tree〉, label((2) = 〈xml-open-tag〉, etc. The verti-
cal order ≤! contains the edges in the !gure: For example, (1 ≤! (2
and (2 ≤! (13. This relation alone only gives us an unordered tree:
When “unparsing” the tree, we could thus obtain the undesired re-
sult xa><></a. Thus, we de!ne a sibling order ≤" to order the im-
mediate children of the same node. For instance, we have (6 ≤" (8
(and (6 ≤" (6, (6 <" (8, and (6 ≺" (7), but not (6 ≤" (9 (since they
have di"erent parents) and (6 ≺" (8 (since they are not immedi-
ate siblings). The tree is not only any ordered tree, but a derivation
tree for the XML grammar in Figure 1 in [3], since it satis!es 4 and
5 of De!nition 3.4 in [3]. The root of the tree, (1, is labeled with
the grammar’s start symbol 〈xml-tree〉 (Item (4)). The tree relations
conform to the possible grammar derivations: Consider, e.g., node
(2 and its immediate children (6, (7, and (8. According to Item (5),
there has to be a production (〈xml-open-tag〉, ‘<’, 〈id〉, ‘>’) in the
grammar, which is indeed the case, since ‘<’ 〈id〉 ‘>’ is an expansion
alternative (the !rst one) for the nonterminal 〈xml-open-tag〉. The
leaf set leaves(&) is {(6, (13, (8, (9, (10, (14, (12}. The tree & is closed,
since all leaves are labeled with terminal symbols. It would be open
if we removed the subtree rooted in any tree node (but the root).

Standard ISLa Predicates. ISLa o"ers a catalog of default sup-
ported predicates. Table 1 provides an overview of those. Structural
predicates can be re-used for many di"erent languages, while se-
mantic predicates are mostly application-speci!c. For this reason,
there is only one semantic predicate included in ISLa per default,
which is the count predicate used in the formalization of CSV.

Matching Match Expressions. Match expressions are matched
against derivation trees by !rst parsing them into abstract parse
trees (with open leaves), and then matching these parse trees
against the derivation tree in question. This process is also de-
scribed in detail in the ISLa language speci!cation [2].

We use a function mexprTrees(# ,mexpr) that takes a nontermi-
nal# and a match expressionmexpr and returns a set of derivation

trees. If the match expression contains optional elements, it is “#at-
tened” !rst. That is, we compute all combinations of activated and
non-activated optional expressions. If there are) optionals in the
match expression, we obtain 2& #attened match expressions. Then,
we parse the #attened expressions using an augmented version
of the reference grammar. The augmented grammar adds expan-
sions “<A> ::= ’<’ ’A’ ’>’” for each nonterminal A, and sim-
ilarly extends the grammar with expansions for variable binders
“{<T> var}.” Due to ambiguities in the grammar, we might obtain
multiple parse trees even for #attened expressions; mexprTrees re-
turns all of them, along with a mapping of bound variables to the
positions of their matches in the respective derivation trees. Af-
ter parsing the match expression, the function matchTrees(& , & ′, $)
matches a derivation tree & against a result (& ′, $) frommexprTrees,
where & ′ is a parse tree and $ a mapping from bound variables to
positions in & ′. Figure 1 shows the de!nition of mexprTrees. In the
de!nition,

• + (&) is the label of the tree & ;
• all alternatives in the de!nition are *mutually exclusive*
(the !rst applicable one is applied);

• by numc(&) we denote the number of children of the deriva-
tion tree & ;

• by child(& , *) we denote the *-th child of t, starting with 1;
• $$ is computed from a mapping $ by discarding all paths in
$ not starting with * and taking the tail (discarding the !rst
element) for all other paths; and

• we use standard set union notation
⋃&

$=1 .$ for combining
variable assignments .$.

Let # be the label of the root of tree & . We de!ne

match(& ,mexpr) !

"#
$

⋃
('′,() ∈mexprTrees () ,mexpr)

{matchTrees(& , & ′, $)}
&'
(
\ {⊥}

4 Solving ISLa Constraints

We provide a formalization of our ISLa constraint solver, including
two correctness theorems and proof sketches.

We formalize input generation for ISLa as a transition system
between Conditioned Derivation Trees (CDTs) Φ ⊲ & , where Φ is a
set of ISLa formulas (interpreted as a conjunction) and & a (pos-
sibly open) derivation tree. Intuitively,

∧
Φ constrains the inputs

represented by & , similarly as ,/- constrains the language of the
grammar. To make this possible, we need to relax the de!nition of
ISLa formulas: Instead of free variables, formulas may contain ref-
erences to tree nodes which they are concerned about. To that end,
tree nodes are assigned unique, numeric identi!ers, which may oc-
cur everywhere in ISLa formulas where a free variable might occur
(variables bound by quanti!ers may not be replaced with tree iden-
ti!ers).

Consider, for example, the ISLa constraint

/ = forall 〈id〉 id in start: (= (str.len id) 17)

constraining the XML grammar in Figure 1 in [3] to identi!ers of
length 17, where id is a bound variable of type 〈ID〉 and start is a
free variable of type 〈start〉. Let & be a tree consisting of a single

2

Electronic Appendix to “Input Invariants”

Table 1: Standard ISLa predicates. The predicate count is a semantic predicate; all other predicates are structural predicates.

Predicate Explanation

after(node1, node2) node1 occurs after node2 (not below) in the parse tree.
before(node1, node2) node1 occurs before node2 (not below) in the parse tree.
consecutive(node1, node2) node1 and node2 are consecutive leaves in the parse tree.
different_position(node1, node2) node1 and node2 occur at di!erent positions (cannot be the same node).
direct_child(node1, node2) node1 is a direct child of node2 in the derivation tree.
inside(node1, node2) node1 is a subtree of node2.
level(PRED, NONTERMINAL, node1, node2) node1 and node2 are related relatively to each other as speci"ed by PRED and

NONTERMINAL (see below). PRED and NONTERMINAL are strings.
nth(N, node1, node2) node1 is the N-th occurrence of a node with its nonterminal symbol within node2. N is

a numeric String.
same_position(node1, node2) node1 and node2 occur at the same position (have to be the same node).

count(in_tree, NEEDLE, NUM) There are NUM occurrences of the NEEDLE nonterminal in in_tree. NEEDLE is a string,
NUM a numeric string or int variable.

matchTrees(! , ! ′, ") :=




⊥ if # (!) ≠ # (! ′) ∨ (numc(! ′) > 0∧

numc(!) ≠ numc(! ′))

[$ ↦→ !] if " = [$ ↦→ ()] for some $

⊥ if matchTrees(child(! , %), child(! ′, %), "!) = ⊥

for any % ∈ [1, . . . , numc(!)]⋃numc (")
!=1

(
matchTrees

(
child(! , %),

child(! ′, %), "!
))

otherwise

Figure 1: Recursive De!nition of&'!(ℎ*+,,- .

(root) node with identi"er 1, and labeled with 〈start〉. Then, *.+ is
identical to the strings represented by the CDT

{forall 〈id〉 id in 1: (= (str.len id) 17)} ⊲ ! .

Our CDT transition system relates an input CDT to a set of output
CDTs. We de"ne two properties of such transitions: A transition
is precise if the input represents at most the set of all strings rep-
resented by all outputs together; conversely, it is complete if the
input represents at least the set of all strings represented by all
outputs. Precision is mandatory for the ISLa producer, since we
have to avoid generating system inputs which do not satisfy the
speci"ed constraints.

To de"ne the semantics of CDTs, we "rst de"ne the closed trees
represented by (the language of) open derivation trees. We need
the concept of a tree substitution: The tree ! [$ ↦→ ! ′] results from
! = (/ ,≤# , ≤$) by replacing the subtree rooted in node $ ∈ / by
! ′, updating / , ≤# and ≤$ accordingly.

De!nition 4.1 (Semantics of Open Derivation Trees). Let ! ∈
T (0) be a derivation tree for a grammar 0 = (1 ,* , ", 2). We de-
"ne the set T (!) ⊆ T (0) of closed derivation trees represented by

! as
T (!) !

{
! [#1 ↦→ !1] · · · [#% ↦→ !%] |

#! ∈ leaves(!) ∧ 3 = |leaves(!) |

∧ (∀4,& ∈ 1 . . .3 : # ≠& → # & ≠ #')

∧ 5! = label(!!) = label(#!)

∧ 0(! = (1 ,* , ",5!) ∧ !! ∈ T (0(!)
}

Observe that for the tree consisting of a single node labeledwith
the start symbol 2 , T (!) is identical to T (2). Furthermore, for any
closed tree ! ′, it holds that T (! ′) = {! ′}.

We re-use the validity judgment de"ned from De"nition 3.6 in
our paper [3] for the semantics de"nition for CDTs by interpreting
tree identi"ers in formulas similarly to variables. Furthermore, the
special variable assignment 6" for the derivation tree ! associates
with each tree identi"er in ! the subtree rooted in the node with
that identi"er. Then, the de"nition is a straightforward specializa-
tion of De"nition 3.8 from [3]:

De!nition 4.2 (Semantics of CDTs). Let Φ ⊆ 2Fml be a set of ISLa
formulas for the signature Σ = (0, PSym,VSym), ! ∈ T (0) be a
derivation tree, and 7 , 8 be interpretations for predicates and SMT
formulas. We de"ne the semantics *Φ ⊲ !+ of the CDT Φ ⊲ ! as

*Φ ⊲ !+ ! {str (! ′) | ! ′ ∈ T (!) ∧ closed (! ′) ∧ 7,8, 6"′ |=
∧

Φ}.

3

Dominic Steinhöfel and Andreas Zeller

A CDT Transition System (CDTTS) is simply a transition sys-
tem between CDTs.

De!nition 4.3 (CDT Transition System). A CDTTS for a signature
Σ = (!, PSym,VSym) is a transition system (",→), where, for
Φ ∈ 2Fml and # ∈ T (!), " consists of CDTs Φ ⊲ # , and →⊆ " ×" .
We write cdt → cdt′ if (cdt, cdt′) ∈′→.

Intuitively, one applies CDTTS transitions to an initial con-
straint with a trivial tree only consisting of a root node labeled
with the start nonterminal, and collects “output” CDTs ∅ ⊲ # with
an empty constraint. The trees # of such outputs are solutions to the
initial problem. We call a CDTTS globally precise if all such trees #
are actual solutions, i.e., the system does not produce wrong out-
puts; we call it globally complete if the entirety of trees # from result
CDTs represents the full semantics of the input CDT.

De!nition 4.4 (Global Precision and Completeness). Let (",→) be
a CDTTS, and $cdt be the set of all closed trees # such that cdt →
· · · → ∅⊲# is a derivation in (",→). Then, (",→) is globally precise
if, for each CDT cdt in the domain of →, it holds that 'cdt(⊇
{str (#) |# ∈ $cdt }. The CDTTS is globally complete if it holds that
'cdt(⊆ {str (#) |# ∈ $cdt }.

To enable transition-local reasoning about precision and com-
pleteness, we de!ne notions of local precision and completeness.
Local precision is the property that at each transition step, no
“wrong” inputs are added, and local completeness the property that
no transition step loses information.

De!nition 4.5 (Local Precision and Completeness). A CDTTS
(",→) is precise if, for each CDT cdt in the domain of →, it holds
that 'cdt(⊇

⋃
cdt→cdt′ ('cdt

′(). The CDTTS is complete if it holds
that 'cdt(⊆

⋃
cdt→cdt′ ('cdt

′().

As for “soundness” in !rst-order logic (see, e.g., [4]), local preci-
sion implies global precision, i.e., it su"ces to show that the indi-
vidual transitions are precise to obtain the property for the whole
system. This is demonstrated by the following Lemma 4.6. Note
that the opposite direction does not hold, since a CDTTS could in
theory lose precision locally and recover it globally, although it is
unclear how (and why) such a system should be designed.

Lemma 4.6. A locally precise CDTTS is also globally precise.

Proof. The lemma trivially holds if $cdt = ∅. Otherwise, let
cdt0 → cdt1 → · · · → ∅ ⊲ # be any transition chain s.t. cdt0 = cdt
and # ∈ $cdt . Then, it follows from local precision that 'cdt!(⊇
'cdt!+1(for % = 0, . . . ,&−1, and by transitivity of ⊇ also 'cdt!(⊇
'cdt"(for 0 ≤ % < ' ≤ &. Since '∅ ⊲ # ′(= str (# ′) for closed # ′, the
lemma follows. !

Global completeness cannot easily be reduced to local complete-
ness: It includes the “termination” property that all derivations end
in CDTs with empty constraint set; furthermore, one has to show
that there is an applicable transition for each CDT with non-empty
semantic.

Our ISLa solver prototype implements the CDTTS in Fig. 2. It
solves SMT and semantic predicate constraints by querying the

SMT solver or the predicate oracle, and eliminates existential con-
straints by inserting new subtrees into the current conditioned
tree. Only when the complete constraint has been eliminated, we
!nish o# the remaining incomplete tree by replacing open leaves
with suitable concrete subtrees. This is in principle a complete pro-
cedure; yet, our implementation only considers a !nite subset of
all solutions in solver queries and when performing tree insertion.
Consequently, it usually misses some solutions, but outputs more
diverse results more quickly compared, e.g., to a naive search-based
approach !ltering out wrong solutions.

Transition Rules. In the ISLa CDTTS, we use indexed CDTs Φ⊲# # .
In the index set (, we track previous matches of universal quanti-
!ers to make sure that we do not match the same trees over and
over. Since SMT formulas can now also contain variables, evaluat-
ing them can result in amodel) (an assignment). Note that we can
obtain di#erent assignments by repeated solver calls (negating pre-
vious solutions). We divide the set PSym of predicate symbols into
two disjoint sets PSymst and PSymsem of structural and semantic
predicates. Structural predicates address constraints such as before
orwithin, and they evaluate to, or⊥. Semantic predicates formal-
ize constraints such as speci!c checksum implementations. They
may additionally evaluate to a set of assignments, as in the case
of satis!able SMT expressions, or to the special value “not ready”
(denoted by"). Intuitively, an evaluation results in , (⊥) if all of
(not any of) the derivation trees represented by an abstract tree
satisfy the predicate. Assignments are returned if the given tree
can be completed or “!xed” to a satisfying solution. One may ob-
tain" if the constrained tree lacks su"cient information for such
a computation (e.g., the inputs of a checksum predicate are not yet
determined).

We explain the individual transition rules of the CDTTS from
Fig. 2. Rule (1) uses a function inv : Fml → 2Fml to enforce the in-
variant that all formulas* ∈ Φ are in Negation Normal Form (NNF)
and do not contain top-level conjunctions and disjunctions. Basi-
cally, inv converts its input into Disjunctive Normal Form and re-
turns the disjunctive elements. It is only applicable to CDTs whose
constraints do not satisfy the invariant. Rule (2) eliminates satis-
!ed structural predicate formulas from a constraint set. Existential
quanti!ers over numbers are eliminated in Rule (3) by introducing
a fresh (not occurring in the containing CDT) variable symbol with
the special nonterminal type int for natural numbers.

Rules (4) and (5) eliminate universal formulas that have already
beenmatched with all applicable subtrees, and which cannot possi-
bly bematched against any extension of the (open) tree. This is the
case if the nonterminal type of the quanti!ed variable is not reach-
able from any leaf and, if there is a match expression, the current
tree cannot be completed to a matching one.

Universal formulaswith and withoutmatch expressions are sub-
ject of Rules (6) and (7). First, matching subtrees of the tree)$ (id)
identi!edwith id are collected in a set+ . We only consider subtrees
that are not already matched, i.e., where (, , # ′) is not yet in the in-
dex set (. If+ is empty, the rules are not applicable. Otherwise, the
set Φ of all instantiations of * according to the discovered matches
is added to the constraint set. We record the instantiations (, , # ′),
for all matched trees # ′, in the index set. The output of these rules
is a singleton.

4

Electronic Appendix to “Input Invariants”

{. . . ,!, . . . } ⊲! " → {{. . . ,! ′ . . . } ⊲! " | (1)

! ′ ∈ inv (!) ∧ ! ≠ ! ′} ≠ ∅

Φ ⊲
! " → {Φ \ ! ⊲

! " | ! ∈ Φ ∩ PSymst ∧ # (!) = '} (2)

{. . . , forall int $ in !: , . . . } ⊲! " → (3)

{. . . , {$ ↦→ %}(!), . . . } ⊲! "

where % ∈ VSym is fresh and vtype(%) = int

{. . . ,

"︷!!!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!!!︷
forall type & in id:!, . . . } ⊲! " → {{. . . , . . . } ⊲! "} (4)

if ∀ subrees " ′ of T ('# (id)) :

((, " ′) ∈) ∨ label(" ′) ≠ type

{. . . ,

"︷!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︷
forall type &=“mexpr” in id:!, . . . } ⊲! " → (5)

{{. . . , . . . } ⊲! "} if ∀ subrees " ′ of T ('# (id)) :

((, " ′) ∈) ∨ label(" ′) ≠ type∨

there is no* = match(" ′,mexpr)

{. . . ,

"︷!!!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!!!︷
forall type & in id:!, . . . } ⊲! " → (6){

{. . . ,(, . . . } ∪
⋃

Ψ ⊲
! ∪ ({" }×$) "

}
where

Ψ =
{
'# [& ↦→ " ′] (!) | " ′ ∈ +

}
∧

+ =
{
" ′ | " ′ = '# (id) ∧ ((, " ′) ∉) ∧

label(" ′) = type
}
≠ ∅

{. . . ,

"︷!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︷
forall type &=“mexpr” in id:!, . . . } ⊲! " → (7){

{. . . ,(, . . . } ∪
⋃

Ψ ⊲
! ∪ ({" }×$) "

}
where

Ψ =
{
'# [& ↦→ " ′] [*] (!) | (" ′,*) ∈ +

}
∧

+ =
{
(" ′,*) | " ′ = '# (id) ∧ ((, " ′) ∉) ∧

label(" ′) = type ∧

there is an* = match(" ,mexpr)
}
≠ ∅

Φ ⊲
! " → {Φ ⊲

! " ′ | " ′ ∈ expand∀
Φ
(") ≠ ∅} (8)

Φ ⊲
! " → {Φ \ ! ⊲

! ' (") | (9)

! ∈ Φ ∩ Trmbool (VSym) ∧ ' ∈ , (!) ≠ ⊥}

Φ ⊲
! " → {Φ \ ! ⊲

! ' (") | (10)

! is !rst ! ∈ Φ ∩ PSymsem ∧ ' ∈ # (!) ∉ {⊥,!}}

{. . . ,

"︷!!!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!!!︷
exists type & in id:! , . . . } ⊲! " → (11)⋃

% ∈Ψ

{
{. . . , -, . . . } ⊲! "

}
where

Ψ =
{
'# [& ↦→ " ′] (!) | " ′ ∈ +

}
∧

+ =
{
" ′ | " ′ = '# (id) ∧ ((, " ′) ∉) ∧

label(" ′) = type
}
≠ ∅

{. . . ,

"︷!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︷
exists type &=“mexpr” in id:!, . . . } ⊲! " → (12)⋃

% ∈Ψ

{
{. . . , -, . . . } ⊲! "

}
where

Ψ =
{
'# [& ↦→ " ′] [*] (!) | (" ′,*) ∈ +

}
∧

+ =
{
(" ′,*) | " ′ = '# (id) ∧ ((, " ′) ∉) ∧

label(" ′) = type ∧

there is an* = match(" ,mexpr)
}
≠ ∅

{. . . , exists type & in id:!, . . . } ⊲! " → (13){
{. . . , {& ↦→ nid}(!), . . . } ∪ Φorig ⊲

! {id ↦→ " ′}(") |

(nid, " ′) ∈ insert(makeTree(&), '# (id))

{. . . , exists type &=“mexpr” in id:!, . . . } ⊲! " → (14){
{. . . , {& ↦→ nid}(!), . . . } ∪ Φorig ⊲

! {id ↦→ " ′}(") |

(nid, " ′) ∈ insert(makeTree(&,mexpr), '# (id))

∅ ⊲! " → {∅ ⊲! " ′ | " ′ ∈ T (")} ≠ {∅ ⊲! "} (15)

Φ ⊲
! " → {Φ ⊲

! " ′ | " ′ ∈ T (")} ≠ {Φ ⊲
! "} (16)

if Φ ⊆ {. (. . .) | . ∈ PSymsem}

Figure 2: E!cient ISLa CDTTS Transition Relation

If universal quanti!ers remain which cannot be matched or
eliminated, we expand the current tree in Rule (8). The function
expand∀

Φ
(") returns all possible trees " ′ in which each open leaf

has been expanded one step according to the grammar. However,
we only expand leaves which are bound by a universal quanti!er,
that is, which represent possible subtrees that could be uni!edwith
a universally quanti!ed formula. For this reason, we pass Φ as an
argument. We call the remaining, unbound grammar symbols free
nonterminals. For example, the XML constraint in Listing 2 from
our paper [3] does not restrict the instantiation of 〈text〉 nontermi-
nals. Thus, 〈text〉 is a free nonterminal which we will not expand

with Rule (8). Instead, such nonterminals are instantiated to con-
crete closed subtrees in a single step by Rules (15) and (16). In our
implementation, we use a standard coverage-based fuzzer to that
end. Thus, we avoid producing many strings which only di"er, e.g.,
in identi!er names or text passages within XML tags.

Rules (9) and (10) eliminate satis!able SMT or semantic predi-
cate formulas by querying , or # (there is no transition for unsat-
is!able or “not ready” formulas). The transition result consists of
one instantiation per returned assignment ' .

The only remaining constraints—in satis!able constraint sets—
are existential formulas, and semantic predicate formulas that are

5

Dominic Steinhöfel and Andreas Zeller

not yet ready to provide a solution. Existential formulas can be
matched just like universal ones; but instead of returning one re-
sult with all matches, Rules (11) and (12) return a set of solutions
with one match each.

In addition tomatching, we provide two rules Rules (13) and (14)
to eliminate existential formulas using tree insertion. Note that, as
exception to the general principle that the rules in the CDTTS are
mutually exclusive, we can apply Rules (11) and (12) and Rules (13)
and (14) wherever possible. The insertion routine insert (newTree, ! ,)
guarantees that all returned results contain all nodes from the orig-
inal tree ! as well as the complete tree newTree. Nevertheless, tree
insertion is an aggressive operation that may violate constraints
that were satis!ed before. For this reason, we have to add the orig-
inal constraint Φorig , from which we started solving, again to the
constraint set; if the tree insertion did not violate structural con-
straints, the original constraint can usually be quickly eliminated.
However, tree insertion can also entail the necessity of subsequent
tree insertions, e.g., if a new identi!er was added that needs to
be declared. Our implemented insertion routine prioritizes struc-
turally simple solutions, for which this is usually not necessary. In
the appendix, we provide details on tree insertion.

Finally, Rules (15) and (16) “!nish o"” the remaining open
derivation trees by replacing all open leaves with suitable con-
crete subtrees. In the case of Rule (15), this yields a decisive result
of the CDTTS. Rule (16) addresses residual “not ready” semantic
predicate formulas. We compute the represented closed subtrees
such that all information for evaluating the semantic predicates is
present. After this step, Rule (10) must be applicable.

In the appendix, we argue for the correctness of the subsequent
precision and completeness theorems.

Theorem 4.7. (Precision) The ISLa CDTTS in Fig. 2 is globally
precise.

Proof Sketch. By Lemma 4.6, we prove global precision by
showing that each individual transition rule is locally precise, i.e.,
that the produced states do not represent derivation trees thatwere
not originally in the semantics of the inputs CDT.

Rule (1) is precise since conversion to Disjunctive Normal
Form is equivalence-preserving. Elimination of structural predi-
cates (Rule (2)) is trivially precise (removing a true element from a
conjunction does not change the semantics).

Rules (4) and (5) are precise because a universal quanti!er that
does not match any tree element evaluates to true according to
De!nition 3.6 in our paper [3], and we only remove it if we can
be sure that no possible extension of an open tree will ever match
the quanti!er. If a match is already in the index set, we can be sure
that it already has been considered due to the de!nition of Rules (6)
and (7), which are the only rules ever adding to that set.

Rules (6) and (7) are precise because we only add the matching
instantiations of the inner formula to the (conjunctive) constraint
set.

Tree expansion (Rule (8)) is precise since by considering more
concrete trees, the set of concrete trees represented by the input
CDT is only ever decreased in the outputs (cf. De!nition 4.1).

The elimination of SMT formulas (Rule (9)) is precise since their
semantics is de!ned via the interpretation function " , which we

query to produce valid output states. The same holds for Rule (10)
for semantic predicates.

Existential quanti!er matching (Rules (11) and (12)) is precise
since it conforms to De!nition 3.6 in our paper [3] inasmuch it cre-
ates one instantiated CDT for each match in the input CDT. The
original formula is removed from these results, but the instantia-
tion retained.

The tree insertion rules (Rules (13) and (14)) (the most compli-
cated ones in our system due to the complexity of tree tree inser-
tion itself) are trivially to prove, because we add the additional
constraint again to the constraint set.

Finally, Rules (15) and (16) consider more concrete trees and are
therefore precise for the same reasons as Rule (8). !

Theorem 4.8. (Completeness) The ISLa CDTTS in Fig. 2 is glob-
ally complete.

Proof Sketch. To prove the global completeness of our system,
we have to show that the semantics of each input CDT is contained
in the semantics of all reachable CDTs with empty constraint set.
We reduce this problem as follows. First, we show local complete-
ness, i.e., that no information is lost by applying any transition rule
of our CDTTS. Second, we argue that for each valid CDT, there is
an applicable rule in the CDTTS. Third, we argue that for each in-
put CDT, there is one output CDT which is closer to a state with
empty constraint set in the CDTTS than the inputs. From this, we
conclude global completeness as follows: Since for each valid state,
there is a transition step from which get closer to an output state
with empty constraint set, this also holds for each valid state pro-
duced by this step. By additionally requiring that the individual
steps do not lose information, we conclude global completeness.

We argue for the local completeness of a chosen set of CDTTS
rules.

The expansion and !nishing rules are locally complete if all ex-
pansions are considered. This is the case in our CDTTS, although
our actual implementation can only ever consider a !nite set of
solutions.

The same holds for solving SMT formulas. Note that if we only
consider a !nite solution set as in our prototype, it is crucial that
there remain no universal quanti"ers in the constraint set. Other-
wise, we could obtain instantiations that con#ict with formulas ob-
tained from later quanti!er instantiation. This is not a problem in
the theoretic framework, though, since there we consider all pos-
sible solutions, of which at least some will not con#ict with atoms
nested in remaining universal quanti!ers.

Tree insertion, which is easy to show precise, is more problem-
atic to show locally complete, since we add the original constraint
set. However, since we consider all possible insertions, there have
to be some satisfying that constraint, since the input CDT is valid.

Since we de!ned one rule for each syntactic construct in ISLa,
there is one rule for each valid input state. Rule (8), for exam-
ple, only expands nonterminals with potential concrete subtrees
matching existing existential quanti!ers; for all other nontermi-
nals, the !nishing rules will be applicable.

The general measure to show that each transition produces a
state that is closer to an empty constraint set is the size of the

6

Electronic Appendix to “Input Invariants”

constraint set together with the nesting depth of contained quanti-
!ers. If either of these measures decreases in each step, we eventu-
ally reach an empty constraint set. That we get closer to an empty
constraint set is clear to see for all elimination rules. In case of
the matching rules, we reduce the complexity of the constraint set
by peeling o" the outer quanti!er. Again, tree insertion is most
problematic: It peels of the existential quanti!er, but adds the orig-
inal constraint set. Here, it is important to see that there are some
insertions for which we can remove the existential constraint we
eliminated by tree insertion by matching, and that we thus do not
have to keep re-inserting. !

We explain the main building blocks used in our ISLa CDTTS
(Fig. 2) in more detail.

Tracking Instantiations. Our CDTTS stepwise expands open
trees and checks if existing universal quanti!ers match the ex-
panded tree. Expansion does not eliminate a universal quanti!er,
since it might apply to not yet generated subtrees. To avoid end-
lessly instantiating universal quanti!ers with the same trees, we
track already performed universal quanti!er instantiations. To that
end, we augment CDTs with an index set ! consisting of pairs of
universal formulas and trees with which they already have been
uni!ed; we write Φ ⊲

! " for the enhanced structures.

Invariant. We maintain the invariant that all formulas # ∈ Φ

in CDTTSs Φ ⊲ " are in NNF, i.e., negations only occur directly
before predicate formulas and within SMT expressions, and are
free of conjunctions and disjunctions (on top level; they are al-
lowed inside of quanti!ers and within SMT formulas). The func-
tion inv : Fml → 2Fml !rst converts its argument into NNF by
pushing negations inside (e.g., not exists type $ in %:# gets
forall type $ in %: not # , and, for & ∈ Trmbool ('), not & gets
(not &) ∈ Trmbool (')). Then, it converts the result into Disjunc-
tive Normal Form by applying distributivity laws, which yields a
set of disjunction-free formulas in NNF. Finally, it splits all top-
level conjunctions outside SMT expressions in the result set into
multiple formulas.

SMTModels. In Fig. 2, we apply the interpretation (for SMT ex-
pressions to Boolean terms Trmbool (') with a non-empty variable
set ' , i.e., the evaluated expressions may contain uninterpreted
String constants. In this case, the SMT solver will either return⊥ in
case of an unsatis!able constraint (or time out, which we interpret
as ⊥), or an assignment) (a model). Since we can call the solver
repeatedly and ask for di"erent solutions (by adding the negated
previous solutions as assumptions), we assume that we get a set of
assignments of tree identi!ers to new subtrees from (.

Semantic Predicates. We divide the set PSym of predicate sym-
bols into two disjoint sets PSymst and PSymsem of structural and
semantic predicates. Structural predicates address structural con-
straints, such as before or within. They evaluate to $ or ⊥. Seman-
tic predicates formalize more complex constraints, such as speci!c
checksum implementations. In addition to $ or ⊥, semantic predi-
cate formulasmay evaluate to a set of assignments, as in the case of
satis!able SMT expressions, or to the special value “not ready” (de-
noted by"). Intuitively, an evaluation results in$ (⊥) if all of (not
any of) the concrete derivation trees represented by an abstract

tree satisfy the predicate. A set of assignments is returned if there
are reasonable “!xes” of the tree (e.g., all elements relevant for a
checksum computation are determined, such that the checksum
can be computed by the predicate). One may obtain" if the con-
strained tree lacks su#cient information for such a computation;
for instance, we cannot compute a checksum if the summarized
!elds are still abstract.

In contrast to all other constraint types, the order of semantic
predicate formulas within a conjunction matters (we use ordered
sets in the implementation of our CDTs). The reason is that each
semantic predicate comes with its own, atomic solver. Consider,
for example, a binary format which requires a semantic predicate
for the computation of a data !eld (e.g., requiring a speci!c com-
pression algorithm) and another one for a checksum which also
includes the data !eld. Then, one must !rst compute the value of
the data !eld, and then the value of the checksum. Changing this
order would result in an invalid checksum. Since SMT formulas are
composable, we recommend using semantic predicates only if the
necessary computation can either not be expressed in SMT-LIB, or
the solver frequently times out when searching for solutions.

Tree Insertion. Existential constraints can occasionally be solved
by matching them against the indicated subtree, similarly to uni-
versal quanti!ers. In general, though, we have to manipulate the
tree to enforce the existence of the formalized structure. If a suc-
cessful match is not possible, we therefore constructively insert
a new tree into the existing one. The function makeTree($) cre-
ates a new derivation tree consisting of a single root node of type
vtype($). When passing it a match expression mexpr as additional
argument, it creates a minimal open tree rooted in a node of type
label($) and matching mexpr . The function insert(" ′, ") tries to in-
serts the tree " ′ into " . Whether this is possible entirely depends
on " , " ′ and the grammar. In the simplest case, " has an open leaf
fromwhich the nonterminal label(" ′) is reachable. Then, we create
a suitable tree connecting the leaf and the root of " ′ and glue these
components together.

If this is not possible, we attempt to exploit recursive de!nitions
in the grammar. Consider, for example, a partial XML document
according to the grammar in Figure 1 in our paper [3] and the con-
straint exists 〈xml-open-tag〉 optag in tree: (= optag "<a>"),
where and tree points to a node with root of type 〈xml-tree〉. If
there is some opening tag of form <a> in tree, we can eliminate the
constraint. Otherwise, we observe that the nonterminal 〈xml-tree〉
is reachable from itself in the grammar graph. Thus, we can replace
an existing 〈xml-tree〉 node in tree by a number of possible alterna-
tives, comprising <a> 〈xml-tree〉〈xml-close-tag〉, which allows to
insert both the already existing 〈xml-tree〉 and the new opening
tag <a> into the expanded result.

Cost Function. The choice of the right cost function is crucial for
the performance of the solver, both in terms of generation speed
(number of outputs per time) and output diversity (e.g., creation of
deep nestings in the case of XML, or coverage of combinations of
language constructs in the case of C).

7

Dominic Steinhöfel and Andreas Zeller

Our cost function computes the weighted geometric mean of
cost factors cf ! and corresponding weights !! as

cost =

(
"!≠0∏

!=1,...,#

(cf ! + 1)"!

) (∑"! ≠0
!=1,...,# "!

)−1
− 1

We !lter out pairs of cost factors and weights where the weight
is 0; in this case, the corresponding cost factor is deactivated. Fur-
thermore, we avoid the case that the !nal cost value is 0 if one of
the factors is 0 by incrementing each factor by 1, and !nally decre-
menting the result by 1 again.

We chose the following cost factors:

Tree closing cost. We precompute, for each nonterminal in the
grammar, an approximation of the instantiation e"ort of that
nonterminal, roughly by instantiating it several times ran-
domly with a fuzzer, and then summing up the sizes of the
possible grammar expansion alternatives in the resulting tree.
The closing cost for a derivation tree is de!ned as the sum of
the costs of each nonterminal symbol in all open leaves of the
tree.

Constraint cost. Certain constraints are more expensive to solve
than others. In particular, solving existential quanti!ers by tree
insertion is computationally costly. This cost factor assigns
higher cost for constraints with existential and deeply nested
quanti!ers.

Derivation depth penalty. As the solver’s queue !lls up, it be-
comes more improbable for individual queue elements to be
selected next. If we assign a cost to the derivation depth, it
becomes more likely that the solver eventually comes back to
partial solutions discovered earlier, avoiding starvation of such
inputs.

k-path coverage. When choosing between di"erent partial trees,
we generally want to generate those exercising more language
features at once. The k-path coverage metric [1] computes all
paths of length k in a grammar and derivation tree; the propor-
tion of such paths covered by a tree is then the coverage value.
We penalize trees which cover only few k-paths. The concrete
value of k is con!gurable; the default is 3.

Global k-path coverage. For each !nal result produced by the
solver, we record the covered k-paths and from then on pre-
fer solutions covering additional language features. Once all
k-paths in a grammar have been covered, we erase the record.

The in#uence of these cost factors can be controlled by passing a
tuple of weights to the solver. We provide a reasonable default vec-
tor ((11, 3, 5, 20, 10)), but in certain cases, a problem-speci!c tun-
ing might be necessary to improve the performance. Our imple-
mentation provides an evolutionary parameter tuning mechanism,
which runs the solver with randomly chosen weights, and then
computes several generations of weight vectors using crossover
and mutation. The !tness value of a weight vector is determined
by the generation speed, a vacuity estimator, and a k-path-based
coverage measure.

6 Evaluation

6.3 RQ3: ISLearn

In the subsequent Listings 1 to 5, we list the constraints that
ISLearn mined in our case study for our third research question.

((forall <graph_type> container in start:

exists <DIGRAPH> elem in container:

(= elem "digraph") or

forall <edge_stmt> container_0 in start:

exists <edgeop> elem_0 in container_0:

(= elem_0 "--")) and

(forall <graph> container_1 in start:

exists <GRAPH> elem_1 in container_1:

(= elem_1 "graph") or

forall <edge_stmt> container_2 in start:

exists <edgeop> elem_2 in container_2:

(= elem_2 "->")))

Listing 1: Constraint mined by ISLearn for DOT

(forall <expr> attribute=

"<maybe_comments><MWSS>{<name> prefix_use}" in start:

((= prefix_use "sqrt") or

(= prefix_use "string-append") or

. . . or

exists <definition> outer_tag="(<MWSS>define<MWSS>(<MWSS><

↩→ name>{<WSS_NAMES> cont_attribute}<MWSS>)<MWSS><

↩→ expr><MWSS>)"

in start:

(inside(attribute, outer_tag) and

exists <NAME> def_attribute="{<NAME_CHARS> prefix_def}"

↩→ in cont_attribute:

(= prefix_use prefix_def))))

Listing 2: Constraint mined by ISLearn for Racket based on
the XML def-use pattern for pre!xes in attributes

(forall <expr> use_ctx="<maybe_comments><MWSS>(<MWSS>{<name>

↩→ use}<wss_exprs><MWSS>)" in start:

((= use "sqrt") or

(= use "string-append") or

. . . or

exists <definition> def_ctx=

"(<MWSS>define<MWSS>(<MWSS>{<name> def}<WSS_NAMES><

↩→ MWSS>)<MWSS><expr><MWSS>)" in start:

((before(def_ctx, use_ctx) and

(= use def))))) and

(forall <expr> attribute=

"<maybe_comments><MWSS>{<name> prefix_use}" in start:

((= prefix_use "sqrt") or

(= prefix_use "string-append") or

. . . or

exists <definition> outer_tag="(<MWSS>define<MWSS>(<MWSS><

↩→ name>{<WSS_NAMES> cont_attribute}<MWSS>)<MWSS><

↩→ expr><MWSS>)" in start:

(inside(attribute, outer_tag) and

exists <NAME> def_attribute="{<NAME_CHARS> prefix_def}"

↩→ in cont_attribute:

8

Electronic Appendix to “Input Invariants”

(= prefix_use prefix_def))))

Listing 3: Racket constraint based on the XML def-use
pattern in addition to an extended reST def-use pattern

(forall <icmp_message> container in start:

exists <type> elem in container:

(= elem "00 ") or

forall <icmp_message> container_0 in start:

exists <type> elem_0 in container_0:

(= elem_0 "08 ")))

Listing 4: ISLearn constraint for ICMP Echo type !elds

((forall <icmp_message> container in start:

exists <type> elem in container:

(= elem "00 ") or

forall <icmp_message> container_0 in start:

exists <type> elem_0 in container_0:

(= elem_0 "08 ")))) and

forall <icmp_message> container in start:

exists <checksum> checksum in container:

internet_checksum(container, checksum)

Listing 5: Constraint learnedby ISLearn for ICMPEcho after
adding a predicate for Internet Checksums

REFERENCES
[1] Nikolas Havrikov and Andreas Zeller. 2019. Systematically Covering Input Struc-

ture. In 34th IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). IEEE, 189–199. https://doi.org/10.1109/ASE.2019.00027

[2] Dominic Steinhöfel. 2022. The ISLa Language Speci!cation.
https://rindphi.github.io/isla/islaspec/ Accessed: 2022-08-23.

[3] Dominic Steinhöfel and Andreas Zeller. 2022. Input Invariants. In Proceedings
of the 30th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE ’22), November 14–18, 2022,
Singapore. ACM. To appear..

[4] Dirk van Dalen. 1994. Logic and Structure (3rd ed.). Springer.

9

https://doi.org/10.1109/ASE.2019.00027
https://rindphi.github.io/isla/islaspec/

	Abstract
	1 Introduction
	2 ISLa by Example
	2.1 Matching Tags
	2.2 Binding Prefixes
	2.3 Targeted Testing
	2.4 Mining Constraints
	2.5 Summary

	3 ISLa Syntax and Semantics
	4 Solving ISLa Constraints
	5 Mining ISLa Constraints
	6 Evaluation
	6.1 RQ1: Precision
	6.2 RQ2: Diversity
	6.3 RQ3: ISLearn
	6.4 Threats to Validity

	7 Related Work
	8 Conclusion and Future Work
	References

