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ABSTRACT

The lottery ticket hypothesis has sparked the rapid development of pruning al-
gorithms that perform structure learning by identifying a sparse subnetwork of a
large randomly initialized neural network. The existence of such ’winning tick-
ets’ has been proven theoretically but at suboptimal sparsity levels. Contemporary
pruning algorithms have furthermore been struggling to identify sparse lottery
tickets for complex learning tasks. Is this suboptimal sparsity merely an artifact of
existence proofs and algorithms or a general limitation of the pruning approach?
And, if very sparse tickets exist, are current algorithms able to find them or are fur-
ther improvements needed to achieve effective network compression? To answer
these questions systematically, we derive a framework to plant and hide target ar-
chitectures within large randomly initialized neural networks. For three common
challenges in machine learning, we hand-craft extremely sparse network topolo-
gies, plant them in large neural networks, and evaluate state-of-the-art lottery
ticket pruning methods. We find that current limitations of pruning algorithms to
identify extremely sparse tickets are likely of algorithmic rather than fundamental
nature and anticipate that our planting framework will facilitate future develop-
ments of efficient pruning algorithms, as we have addressed the issue of missing
baselines in the field raised by Frankle et al. (2021). Our code is publicly available
at www.github.com/RelationalML/PlantNSeek.

1 INTRODUCTION

Deep learning has achieved breakthroughs in multiple challenging areas pertaining to machine learn-
ing, in particular in areas for which we lack competitive hand-crafted algorithms. The benefits of
overparameterization for training with SGD (Belkin et al., 2019) seem to call for ever wider and
deeper neural network (NN) architectures, which are computationally demanding to learn and de-
ploy. Training smaller, adequately regularized NNs from scratch could be a remedy but it commonly
seems to fail due to inadequate parameter initialization, as Frankle & Carbin (2019) noted in their
seminal paper. As proof of concept that this problem is solvable, they proposed the lottery ticket
(LT) hypothesis, which states that a small, well trainable subnetwork can be identified by pruning a
large, randomly initialized NN, opening the field to discover such subnetworks or ’winning tickets’.

Based on the findings of Zhou et al. (2019), Ramanujan et al. (2020) went even further and conjec-
tured the existence of strong lottery tickets, i.e., subnetworks of randomly initialized NNs that do not
require any further training. This strong LT hypothesis holds the promise that training NNs could
potentially be replaced by efficient NN pruning, which simultaneously performs structure learning
by identifying a task specific sparse neural network architecture. The existence of strong LTs has
also been proven formally for networks without (Malach et al., 2020; Pensia et al., 2020; Orseau
et al., 2020) and with potentially nonzero biases (Fischer et al., 2021; Burkholz et al., 2022).

While these types of proofs show existence in realistic settings, the sparsity of the constructed tick-
ets is likely not optimal, as they represent a target parameter by multiple neurons of degree 1. The
construction and proof of the generalized strong LT hypothesis raises two question – is the subopti-
mal sparsity merely an artifact of existence proofs or a general limitation of the pruning approach?
And, if very sparse tickets exist, are current algorithms able to find them or are further improvements
needed to achieve effective network compression? These questions cannot be answered by compar-
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ing LT pruning algorithms solely on standard benchmark datasets (Frankle et al., 2021), but demand
the comparison with known ground truth LTs. To fill this gap and generate baselines with known
ground truth, we here propose an algorithm to plant and hide arbitrary winning tickets in randomly
initialized NNs and construct sparse tickets that reflect common challenges in machine learning. We
use this experimental set-up to compare state-of-the-art pruning algorithms designed to search for
lottery tickets.

Our results indicate that state-of-the-art methods achieve only sub-optimal sparsity levels. This sug-
gests that previous challenges to identify highly sparse winning tickets as subnetworks of randomly
initialized dense networks (Frankle et al., 2020; Ramanujan et al., 2020) can be explained by al-
gorithmic limitations rather than fundamental problems with LT existence. In our experiments, the
qualitative trends how methods compare to each other are consistent with previous results on image
classification tasks (Tanaka et al., 2020; Frankle et al., 2021) indicating that our experimental set-up
exposes pruning algorithms to realistic challenges. In addition, we identify an opportunity to im-
prove state-of-the-art pruning algorithms in order to find strong LTs of better sparsity. Our proposed
planting framework will enable the evaluation of future progress in this direction.

Contributions 1) We prove the existence of strong lottery tickets with sparse representations. 2)
Inspired by the proof, we derive a framework that allows us to plant and hide strong tickets in neural
networks and thus create benchmark data with known ground truth. 3) We construct sparse represen-
tations of four types of tickets that reflect typical machine learning problems. 4) We systematically
evaluate state-of-the-art pruning methods that aim to discover tickets on these three problems against
the ground truth tickets and highlight key challenges.

1.1 RELATED WORK

LT pruning approaches for neural networks can be broadly categorized into three groups, pruning
before, during, or after training. While methods that sparsify the network during (LeCun et al.,
1990; Mozer & Smolensky, 1989; Han et al., 2015; Frankle & Carbin, 2019; Srinivas & Babu, 2016;
Lee et al., 2020), or after training (Savarese et al., 2020; LeCun et al., 1990; Hassibi & Stork, 1992;
Dong et al., 2017; Li et al., 2017; Molchanov et al., 2017) help in reducing computational resources
required for inference, they are, however, less helpful in reducing resources at training time but
can make a difference if they prune early aggressively (You et al., 2020). They are most useful for
structure learning at lower sparsity levels (Su et al., 2020; Lee et al., 2020).
The LT hypothesis (Frankle & Carbin, 2019) has also promoted the development of neural network
pruning algorithms that prune before training (Wang et al., 2020; Lee et al., 2019; Verdenius et al.,
2020; Tanaka et al., 2020; Ramanujan et al., 2020). Usually, these methods try to find LTs in a
‘weak’ (but powerful) sense, that is to identify a sparse neural network architecture that is well
trainable starting from its initial parameters. These methods score edges in terms of network flow,
which can be quantified by gradients at different stages of pruning, or based on edge weights, and
prune all edges with the lowest scores until the desired sparsity is achieved (Frankle et al., 2021).
Strong LTs are sparse sub-networks that perform well with the initial parameters, hence do not need
to be trained any further (Zhou et al., 2019; Ramanujan et al., 2020). Their existence has been
proven by providing lower bounds on the width of the large, randomly initialized neural network
that contains them (Malach et al., 2020; Pensia et al., 2020; Orseau et al., 2020; Fischer et al., 2021;
Burkholz et al., 2022). In addition, it was shown that multiple candidate tickets exist that are also
robust to parameter quantization (Diffenderfer & Kailkhura, 2021).

Beyond LT pruning, many more methods have been developed to reduce computational resources
and perform structure learning, including dynamic sparse training (Evci et al., 2020; Liu et al.,
2021b), adaptations (Frankle et al., 2020; Renda et al., 2020; Liu et al., 2021a) of Iterative Magni-
tude Pruning (IMP) Han et al. (2015); Frankle & Carbin (2019) and sparse regularization techniques
(Weigend et al., 1991; Savarese et al., 2020). As these approaches do not identify LTs as subnet-
works of randomly initialized NNs, they do not rely on the existence of planted tickets and are
therefore beyond the scope of our experimental analysis. However, the ground truth tickets which
we derived for planting could still provide an interesting baseline to explore whether sparse training
of deep NNs can identify extremely sparse, hand designed NN architectures. Dense NNs are known
to find NN representations that are less sparse than hand crafted architectures (Denker et al., 1987),
yet, the explicit objective of sparse training is to address this issue. We provide the tools to evaluate
progress in this direction by planting known ticket architectures. While the ultimate goal of deep
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learning is to solve problems with otherwise unknown solutions like image classification (Frankle
et al., 2021) or protein structure prediction (Tunyasuvunakool et al., 2021), the design of NN ar-
chitectures for human solvable problems has already in the past provided important insights into
NN properties, including universal approximation (Scarselli & Tsoi, 1998; Yarotsky, 2018) or the
importance of algorithmic alignment (Xu et al., 2020). NNs that compute polynomials (Scarselli &
Tsoi, 1998; Yarotsky, 2018), xor gates (Rumelhart et al., 1986), discrete fast fourier transformation
(Velik, 2008), symmetry groups (Sejnowski et al., 1986), general piecewise linear functions (Arora
et al., 2018), or argmax (Xu et al., 2020) could also present interesting candidates for planting in
future investigations.

1.2 NOTATION AND TERMINOLOGY

Let f(x) denote a bounded function, without loss of generality f : [−1, 1]
n0 → [−1, 1]

nL , that
is parameterized as a deep neural network with architecture n̄ = [n0, n1, ..., nL], i.e., depth L and
widths nl for layers l = 0, ..., L with ReLU activation function ϕ(x) := max(x, 0). It maps an
input vector x(0) to neurons x

(l)
i as x(l) = ϕ

(
W (l)x(l−1) + b(l)

)
, where W (l) ∈ Rnl−1×nl is

the weight matrix, and b(l) ∈ Rnl is the bias vector of Layer l. We will establish approximation
results with respect to the supremum norm ∥g∥∞ := supx∈[−1,1]n0 ∥g∥2 defined for any function
g on the domain [−1, 1]

n0 . Assume furthermore that a LT fϵ can be obtained by pruning a large
mother network f , which we indicate by writing fϵ ⊂ f0. If fϵ achieves a similar performance after
training the non-zero parameters as training all parameters of f0, we call fϵ a weak LT. If fϵ does not
require any further training, we call it a strong LT. Note that every strong LT is automatically also a
weak LT and any algorithm that prunes the initial network f0 identifies a LT that could, in principle,
be a strong LT. The sparsity level ρ of fϵ is then defined as the fraction of non-zero weights that
remain after pruning, i.e., ρ =

(∑
l

∥∥∥W (l)
ϵ

∥∥∥
0

)
/
(∑

l

∥∥∥W (l)
0

∥∥∥
0

)
, where ∥·∥0 denotes the l0-norm,

which counts the number of non-zero elements in a vector or matrix. Another important quantity
that influences the existence probability of lottery tickets is the in-degree of a node i in layer l of the
target f , which we define as the number of non-zero connections of a neuron to the previous layer
plus 1 if the bias is non-zero, i.e., k(l)i :=

∥∥∥W (l)
i,:

∥∥∥
0
+
∥∥∥b(l)i

∥∥∥
0
, where W

(l)
i,: is the i-th row of W (l).

The maximum degree of all neurons in layer l is denoted as kl,max.

2 EXISTENCE OF STRONG LOTTERY TICKETS

Pruning algorithms that search for strong LTs achieve sparsity levels of around 0.5 but not sub-
stantially smaller if the resulting models should be able to compete with the accuracy of the entire,
trained mother network (Ramanujan et al., 2020). Proofs of the existence of strong lottery tickets
give no clear indication whether this is an algorithmic shortcoming, which could be overcome, or a
fundamental limitation of pruning randomly initialized networks alone. The reason is that existing
proofs (Malach et al., 2020; Pensia et al., 2020; Orseau et al., 2020; Fischer et al., 2021) guarantee
high existence probabilities of subnetworks that have double the depth and 2 − 30 times the width
of the target network and thus non-optimal sparsity. Based on their 2L construction, Malach et al.
(2020) even went so far to conclude that training by pruning might be computationally at least as
hard as training shallower NNs. However, it is well known that specific function classes can be
approximated in significantly more parameter efficient ways by deeper NNs rather than shallower
ones (Mhaskar et al., 2017; Yarotsky, 2018) and also be learned more efficiently (Schmidt-Hieber,
2020). Thus, by leveraging its full depth, the randomly initialized 2L deep NN might contain a
much sparser strong LT than any of the ones whose existence has been proven.

As a first step towards making claims about the existence of very sparse representations, we therefore
prove next a lower bound on the probability that a target NN of general architecture is contained in a
larger, randomly initialized NN with the same depth as the target network. As many relevant targets
have known representations of lower sparsity than what is covered by this bound, we will afterwards
propose a planting algorithm to design experiments that can distinguish between algorithmic and
fundamental limitations of pruning for strong LTs.
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Figure 1: Benchmark data. Shown are samples from the Circle (left) and Helix (right) task.

2.1 LOWER BOUND ON EXISTENCE PROBABILITY

Pruning a randomly initialized NN usually finds a strong LT that is close to a target network but
does not recover the original parameters exactly. First, we need to understand how these errors in
the parameters affect the final network output and what error sizes are acceptable. For completeness,
we restate Lemma 1 of Fischer et al. (2021) that guarantees an ϵ approximation of the entire network.
Lemma 1 (Error propagation). Assume ϵ > 0 and let the target network f and its approximation fϵ
have the same architecture. If every parameter θ of f and corresponding θϵ of fϵ in layer l fulfils
|θϵ − θ| ≤ ϵl for

ϵl := ϵ

(
L
√

nlkl,max

(
1 + sup

x∈[−1,1]n0

∥∥∥x(l)
∥∥∥
1

)
L∏

k=l+1

(∥∥∥W (l)
∥∥∥
∞

+ ϵ/L
))−1

,

then it follows that ∥f − fϵ∥∞ ≤ ϵ.

Respecting the allowed errors ϵl, we can next establish a lower bound on the existence probability
of a specific target network assuming standard initialization schemes with necessary non-zero bias
initialization (Fischer et al., 2021). The main argument is a union bound over matching each target
neuron i (with ki parameters) with neurons of the mother network in the corresponding layer.
Theorem 2 (Lower bound on existence probability). Assume that ϵ ∈ (0, 1) and a target network
f with depth L and architecture n̄ are given. Each parameter of the larger deep neural net-
work f0 with depth L and architecture n̄0 is initialized independently, uniformly at random with
w

(l)
ij ∼ U

([
−σ

(l)
w , σ

(l)
w

])
and b

(l)
i ∼ U

([
−
∏l

k=1 σ
(k)
w ,

∏l
k=1 σ

(k)
w

])
. Then, f0 contains a rescaled

approximation fϵ of f with probability at least

P (∃fϵ ⊂ f0 : ∥f − λfϵ∥∞ ≤ ϵ) ≥
L∏

l=1

(
1−

nl∑
i=1

(1− ϵki

l )nl,0

)
,

where ϵl is defined as in Eq. (1) and the scaling factor is given by λ =
∏L

l=1 1/σ
(l)
w .

We could obtain similar results for initially normally distributed weights and biases, we would just
have to substitute ϵl by ϵl/2. A proof is provided in Appendix A.2.

Thm. 2 provides us with an intuition for what kind of targets we can expect to find. First of all, it
tells us that a large number of nodes in a layer, and more importantly nodes with large in-degree ki,
render the existence of a specific network architecture as strong LT less likely. Each additional layer
reduces the probability further. Moreover, we observe that the last layer is a bottleneck, as it usually
has the same width as in the large initial network. A higher width of the mother network is clearly
advantageous. Note that we could turn this theorem also into a lower bound on the width nl,0 of the
larger mother network as it is common in existence proofs. Fig. 6 in Appendix A.2 supports this
intuition with the visualization of an example. Assuming the same width nl,0 = n0 and nl = n

across layers, we would receive roughly n0 ≥ C log(Ln/δ)maxl

(
ϵ−kmax
l

)
. Even though it is poly-

nomial in the relevant parameters, it only provides a practical existence proof for extremely sparse
architectures. We therefore have to resort to planting to answer fundamental questions about abil-
ities of pruning algorithms. In fact, the proof of the above theorem inspires the planting algorithm
introduced next.
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2.2 PLANTING STRONG LOTTERY TICKETS

As we have discussed, the LTs that exist with high probability rarely fulfill criteria of interest, such
as low sparsity, favorable generalization properties, or adversarial robustness. We therefore propose
to plant winning tickets with such desirable properties within randomly initialized neural networks.
This approach offers the flexibility to design experiments of different degrees of difficulty and gen-
erate training and test data based on a ground truth.

A simple approach to planting a target f in a network f0 would be to select a random subset of
neurons in each layer and set them to their target values and otherwise randomly initialize the rest.
This, however, would usually lead to a trivially detectable ticket because the target parameters are
much larger than the initialized parameters of the larger mother network. The reason is that both
networks produce output that lies in a similar range (ideally the one of the training labels). Yet, the
target network has to achieve this by adding up a much smaller number of parameters. A different
perspective on the same issue is that a pruned lottery ticket needs to be scaled up to compensate
for the lost parameters. Note the scaling factor λ in Theorem 2 for that purpose. Thus, at least, we
would need to scale the target parameters appropriately during planting.

We follow a more general approach that also applies to networks f0 whose parameters have not been
randomly initialized and that captures the full variability of possible target solutions by allowing for
different scaling factors per neuron. We search in each layer of f0 for suitable neurons that best
match a target neuron in f , starting from the first layer. Given that we matched all neurons in layer
l−1, we try to establish their connections to neurons in the current layer l. A best match is decided by
minimizing the l2-distance to its potential input parameters thereby adjusting for an optimal scaling
factor. For example, let neuron i in Layer l of the target f have non-zero parameters θ = (b,w) that
point to already matched neurons in Layer l − 1. Each neuron j in Layer l of f0 that we have not
matched yet could be a potential match for i. Let the corresponding parameters of j be m. The match
quality between i and j is assessed by qθ(m) = ∥θ − λ(m)m∥2, where λ(m) = θTm/ ∥m∥22 is
the optimal scaling factor. The best matching parameters m∗ = argminm qθ(m) are replaced by
rescaled target parameters θ/λ(m∗) in f0. We provide pseudocode and details in App. A.3.

2.3 CONSTRUCTION OF TARGETS FOR PLANTING

Based on the proposed planting algorithm, we generate sparse tickets for three problems that ex-
pose general pruning algorithms to common challenges in machine learning: a basic classification
problem, regression problem, and manifold learning problem (Bishop, 2006). On purpose, these are
designed to avoid high computational burdens and, most importantly, have sparse neural network
architectures with variable depth.

Regression of a ReLU unit (ReLU) The ReLU unit ϕ(x) is an essential building block of state-of-
the-art neural networks. It is particularly interesting to study because we know the optimal solution
and can guarantee that it exists with high probability. Assuming a mother network f0 of depth L,
a ReLU can be implemented with a single neuron per layer. Any path through the network with
positive weights

∏L
l=1 ϕ(wil−1ilx) defines a ReLU with scaling factor λ =

∏L
l=1 wil−1il for indices

il in Layer l with wil−1il > 0. Note that each random path fulfills this criterion with probability 0.5L

so that even random pruning has a considerable chance to find an optimal ticket. A winning path
exists with probability

∏L
l=1(1 − 0.5nl,0), which is almost 1 even in relatively small networks. As

a ticket with optimal sparsity exists with high probability, we would not need to plant it. However,
to give also pruning algorithms a chance that do not specifically prune biases, we set ticket biases
to zero. As we will see in experiments, despite this simplification, pruning algorithms are severely
challenged and cannot find an optimally sparse ticket.

Classification of rings (Circle). Another basic building block of many functions, in particular,
radial symmetric functions, is the radius or l2-norm of a vector. It is also an important operation to
represent products via the relation xy = 0.25((x+y)2−(x−y)2). We derived a sparse representation
that leverages the full depth of a given network, as its sparsity improves with increasing depth. In
Fig. 1 we visualize the related 4-class classification problem with 2-dimensional inputs. The output
is 4-dimensional, where each output unit fc(x) corresponds to the probability fc(x) that an input
(x1, x2) ∈ [−1, 1]2 belongs to class c that is computed with softmax activation functions. The
decision boundaries are defined in the last layer based on inputs of the form g(x1, x2) = x2

1+x2
2. The
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Layer 1-2 Layer 3

Layer 4

Input

(a) Mirroring along axes
for Circle.

(b) Circle architec-
ture with depth L = 5.

sj

slope m
j

(c) Univariate function
approximation.

(d) Helix architecture
with depth L = 5.

Figure 2: (a) Visualization of the first layers of Circle representing g(x1, x2) = x2
1 + x2

2. (c)
Univariate deep neural network parametrization with outer weights a

(i)
j = ∆mj = mj − mj−1.

(b+d) Ticket architectures, edge width is proportional to the absolute weight value, blue indicates a
negative sign, yellow a positive sign. Neurons are colored by bias sign, gray indicates zero biases.

high symmetry of g(x1, x2) allows us to construct a particularly sparse representation by mirroring
data points along axes as visualized in Figure 2 (a). Each consecutive layer l mirrors the previous
layer along the axis a(l) = (cos(π/2l−1), sin(π/2l−1)). To enable higher precision for networks
of smaller depth, the second to last layer approximates h(x) = x2 for each component. This is
unnecessary for representations of high enough depth. The details of our construction are explained
in App. A.4.2. Fig. 2 (b) shows an exemplary architecture of the planted ticket, for which we can
vary the depth and width of the second to last layer. The lower bound on the existence probability
given by Thm. 2 (without planting) for the architecture shown in Fig. 2 (b) is numerically 0 for
mother networks of width nl = 100 as in our experiments and ϵl = 0.005, even when we disregard
the last bottleneck layer. For unrealistic high width nl = 105 however, the bound is 0.47 and thus
detection becomes theoretically feasible for extreme sparsity levels.

Identification of a submanifold (Helix) Another common problem in machine learning is to learn
lower dimensional functions that are embedded in a higher dimensional space. In Fig. 1 we show
our minimal regression example in form of a helix. As we have observed that many pruning algo-
rithms have the tendency to keep a higher number of neurons closer to the input (and sometimes
also the output layer), we construct a ticket that has similar properties, see Fig. 2 (d). This should
ease the task for pruning algorithms to find the planted winning ticket but, as we show in our ex-
periments, this Helix problem is surprisingly challenging. The helix has three output coordinates
f1(x) = (5π + 3πx) ∗ cos(5π + 3πx)/(8π), f2(x) = (5π + 3πx) ∗ sin(5π + 3πx)/(8π), and
f3(x) = (5π + 3πx)/(8π) for 1-dimensional input x ∈ [−1, 1]. We can approximate each of the
components fi(x) by an univariate deep neural network ni(x) =

∑N
j=1 a

(i)
j ϕ(x − sj) + b(i) with

depth L = 2 (see Fig. 2 (c) and App. A.4.3), which is achieved by the first layers, while the last
layers basically represent the identity. An interesting feature of this example is that highest width
could be assigned to almost any layer of the architecture, which makes Helix a good candidate to
provoke layer collapse in different pruning algorithms. The lower bound on the existence probabil-
ity given by Thm. 2 (without planting) for the architecture shown in Fig. 2 (d) is numerically 0 for
mother networks of any reasonable width, because nodes in the third layer have too large in-degrees.
We therefore have to resort to planting.

Strong tickets based on trained neural networks Even though we cannot expect to construct
sparse baseline solutions for benchmark image classification tasks, we can leverage the fact that
weak LTs can currently be identified at lower sparsity levels than strong LTs (see our experiments).
To answer the question whether state-of-the-art pruning algorithms can find sparse strong LTs in
the setting of standard benchmark data, we plant a trained weak LT in a randomly initialized (VGG
like) neural network. Note that the proposed pruning algorithm can also be applied to convolutional
layers in addition to fully connected ones.

3 EXPERIMENTS

We utilize our planting framework to answer the question whether LT pruning algorithms that iden-
tify subnetworks of randomly initialized neural networks are able to identify highly sparse LTs,
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Figure 3: Singleshot results. Performance of discovered tickets against target sparsities as mean
and value ranges (minimum and maximum) across 25 runs. In order of appearance: Circle after
pruning (strong ticket), Circle, ReLU, and Helix after training (weak ticket). Results after
pruning look similar across tasks. Baseline ticket (leftmost sparsity) is given by black dashed line.

ideally in a strong sense but we also analyze weak LTs. Hypothetically, it could be possible that
pruning algorithms for weak LTs only have to resort to training the identified LT because a highly
sparse strong LT does not exist with high probability. Yet, if we guarantee the existence of a sparse
strong LT, the algorithms would be able to find it and would not require further training. Similarly,
if we insist on finding extremely sparse architectures, it might be necessary to give up the search for
initial LTs (Frankle et al., 2020; Renda et al., 2020; Liu et al., 2021a). If this were true, we should
be able to find highly sparse LTs with the original pruning algorithm if we ensure the existence of a
solution by planting.

We reject these hypotheses with our experiments, in which we randomly initialize a dense neural
network of width nl = 100 and depth L = 5 by He initialization with nonzero biases (Fischer
et al., 2021) and plant one of our constructed targets into the initial network. To show that our
experiments reflect realistic conditions, we also compare the general trends to results on standard
image classification. For reproducibility, we provide details on data, networks, and experimental
setup in App. B.1. In general, we report averages over results across 10 independent runs, as well as
obtained value ranges as minimum and maximum. We compare only pruning methods that identify
lottery tickets as subnetworks of randomly initialized neural networks, as these could potentially
find our planted solution or an equally performing one. GRASP, SNIP, SYNFLOW, MAGNITUDE
pruning, and RANDOM pruning (Wang et al., 2020; Lee et al., 2019; Tanaka et al., 2020; Frankle &
Carbin, 2019) are thus considered, which are algorithms to discover weak tickets, and EDGE-POPUP,
which is designed to find strong tickets (Ramanujan et al., 2020).

We distinguish two different pruning approaches, singleshot (see Fig. 3) and multishot (see Fig. 4).
In singleshot pruning, which is originally applied in SNIP, SYNFLOW, and GRASP, edges are
scored in a single pass and then pruned to the desired sparsity. Compared to multishot pruning,
this saves a significant amount of resources by preventing training entirely if a strong ticket is found.
If a weak ticket is found, only a small subnetwork needs to be trained once. Multishot pruning leads
usualy to better results (Frankle et al., 2021), because it relies on updated gradient information.
Analogous to iterative magnitude pruning, for each round r, we iteratively reduce the sparsity to
ρr/10, where ρ is the desired network sparsity. Within each round, the current subnetwork is first
trained, then pruned to the current target sparsity, and then reset to initial parameters for the next
round. We analyze the performance of tickets before training to assess whether they qualify as strong
LTs and after training to evaluate whether at least pruning for weak LTs is feasible and can identify
LT of sparsities that can compete with our planted ground truth.
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Figure 4: Multishot results. Performance for Circle (top), ReLU (middle), and Helix (bottom)
for 10 rounds of alternating pruning and training. We provide mean and obtained intervals (minimum
and maximum) of accuracies of the final pruned network across 10 repetitions before (strong ticket,
left) and after (weak ticket, right) final training. Baseline ticket accuracy is indicated in black.

Hand designed ground truth First, we note that training the full network (at sparsity level 1.0) can
solve each of our tasks. Thus, planting does not destroy the general trainability of the initial mother
network. In fact, we would observe the same performances without planting. Second, we find
that none of the approaches is able to discover strong tickets, in particular not the planted ticket, in a
single shot. Moreover, only at sparsity levels ≥ 0.1 the methods are able to find weak tickets. One of
the problems that arise is layer collapse. While layer-wise pruning, i.e., setting a target sparsity per
layer, would prevent this collapse, it still results in an interruption of flow. For Circle classification
task, certain multishot methods are able to recover weak tickets, even at extreme sparsities with just
marginal performance decrease compared to the ground truth ticket. However, only EDGE-POPUP
is able to recover strong tickets for this task, and those tickets have only sparsity levels orders of
magnitude larger than the planted baseline even though we were able to improve the original EDGE-
POPUP algorithm using the described iterative pruning scheme. Furthermore, we observe that all
considered methods struggle more with regression tasks rather than the classification task, as they
can only recover weak tickets of sparsity 0.1 or 0.01 and no strong tickets.

A more detailed analysis for varied network depth, width, noise levels, and pruning strategies, along-
side a comparison with results on standard benchmark data is presented in the appendix. In summary,
we observe similar trends for varying depth and width and find that the analyzed pruning algorithms
seem to be robust to noise in the data. Furthermore, how the methods compare relative to each other
is in line with experiments on image data as reported in the literature (Tanaka et al., 2020; Frankle
et al., 2021). In particular, for all these methods a similar drop around 0.01 sparsity is observed
for different VGG and Resnet architectures. This suggests that our simplified learning tasks expose
pruning algorithms to challenging and in many ways realistic conditions.

VGG with strong tickets While no ground truth solution is known for image classification tasks
on standard benchmark datasets, we can still use our planting framework to answer meaningful
questions in this context, as we demonstrate next. To test the hypothesis whether EDGE-POPUP is
limited to discover strong tickets of suboptimal sparsity of around 0.5, we investigate its capabilities
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Figure 5: VGG16 CIFAR10 results. (Left) Performance for learned weak tickets. (Right) Perfor-
mance of strong tickets discovered by EDGE-POPUP for VGG with planted baseline ticket of sparsity
0.01. Baseline ticket performance is indicated by black line.

to recover a planted baseline ticket from VGG16. For that, we use SYNFLOW to discover a weak
ticket of sparsity 0.01 from VGG16 with multishot pruning, train the weak ticket on CIFAR10, and
plant it back into the network. Running EDGE-POPUP on this network, we observe that it indeed
cannot retrieve the baseline ticket of desired sparsity in this real world setting (see Fig. 5 right).

Comparison with ground truth Our planting framework is designed for the analysis of LT algo-
rithms that seek for subnetworks of randomly initialized NNs. Structure learning methods can also
follow a different approach. While planting is less relevant in this case, we can still compare their
results with our hand-crafted solutions. We show in App. B.4 that neither dynamic sparse train-
ing (Evci et al., 2020) nor LT fine-tuning techniques (Liu et al., 2021a; Renda et al., 2020) find
architectures that are competitive with our constructed ground truth tickets.

4 DISCUSSION & CONCLUSION

We investigated the optimality of existing lottery ticket (LT) pruning methods and their potential
for improvement, both regarding the discovery of strong tickets – subnetworks that perform well at
initialization, as well as weak tickets – subnetworks that perform well after training. Recent works,
in particular by Frankle et al. (2021), evaluated LT pruning methods and showed that no single best
method across considered settings and sparsities exists, and raised the issue of missing baselines in
the field. To tackle this issue, we here proposed an algorithm that plants and hides target networks
within a larger network, thus allowing to generate baseline tickets for rigorous benchmarking. For
three common challenges in machine learning, a classification, regression, and manifold learning
problem, we hand-crafted extremely sparse network topologies, planted them in large, randomly
initialized neural networks, and evaluated the state-of-the-art pruning methods in combination with
different pruning strategies.

Our results indicate that state-of-the-art LT pruning methods achieve in general sub-optimal sparsity
levels, and are not able to recover LTs that are competitive with a planted ground truth. This suggests
that previous challenges to identify highly sparse winning tickets as subnetworks of randomly initial-
ized dense networks (Frankle et al., 2020; Ramanujan et al., 2020) can be explained by algorithmic
limitations rather than fundamental problems with LT existence. While slightly discouraging, these
result on our benchmark data are coherent with reported as well as reproduced classification results
on image data. This shows that our benchmarks, while artificial in nature, reflect realistic conditions
that result in similar trends as real world image data sets would. Moreover, we have shown that
our planting framework can also be used in a real data setting to answer a limited set of questions.
For instance, by planting a trained weak ticket back into a CNN, we established that the failure of
EDGE-POPUP to discover extremely sparse strong lottery tickets is likely an algorithmic rather than
a fundamental limitation. This exemplifies how our framework enables experiments beyond relative
method comparisons, as typically conducted on standard image benchmark data. As our results in-
dicate, several major questions pertaining to neural network pruning are still open: How can pruning
approaches for weak tickets be improved to discover tickets of best possible sparsity? How can we
find weak tickets of high sparsity that match the performance of the large network without interme-
diate training rounds? And how can we discover highly sparse strong lottery tickets? We anticipate
that our contribution can be used and extended to measure progress regarding these questions against
independent sparse and well-performing baseline tickets.
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REPRODUCIBILITY

The code for our experiments is available in the Github repository RELATIONALML/PLANTNSEEK,
which can be accessed with the following url: https://github.com/RelationalML/
PlantNSeek/releases/tag/v1.0-beta. Pseudocode for the discussed planting algorithm
is also available in the supplement alongside the proofs of our theoretical statements and a derivation
of our planted solutions.
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A THEORY

In the following section, we present the proofs of the theorems and lemmas of the main manuscript.
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A.1 ERROR PROPAGATION: PROOF OF LEMMA 1

Statement. Assume ϵ > 0 and let the target network f and its approximation fϵ have the same
architecture. If every parameter θ of f and corresponding θϵ of fϵ in layer l fulfils |θϵ − θ| ≤ ϵl for

ϵl := ϵ

(
L
√
ml

(
1 + sup

x∈[−1,1]n0

∥∥∥x(l−1)
∥∥∥
1

)
L∏

k=l+1

(∥∥∥W (l)
∥∥∥
∞

+ ϵ/L
))−1

,

then it follows that ∥f − fϵ∥∞ ≤ ϵ.

Proof. Our objective is to bound ∥f − fϵ∥∞ ≤ ϵ. We frequently use the triangle inequality and that
|ϕ(x)− ϕ(y)| ≤ |x− y| is Lipschitz continuous with Lipschitz constant 1 to derive∥∥∥x(l) − x(l)

ϵ

∥∥∥
2
≤
∥∥∥h(l) − h(l)
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2

≤
∥∥∥(W (l) −W (l)

ϵ

)
x(l−1)

∥∥∥
2
+
∥∥∥b(l) − b(l)ϵ

∥∥∥
2
+
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ϵ
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ϵ
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with ϵl ≤ ϵ/L. ml denotes the number of parameters in layer l that are smaller than ϵl and ∥W ∥∞ =
maxi,j |wi,j |. Note that ml ≤ nlkl,max. The last inequality follows from the fact that all entries of

the matrix
(
W (l) −W

(l)
ϵ

)
and of the vector (b(l) − b

(l)
ϵ ) are bounded by ϵl and maximally ml

of these entries are non-zero. Furthermore,
∥∥∥W (l)
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≤
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∥∥
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)
follows again from the

fact that each entry of
(
W (l) −W

(l)
ϵ

)
is bounded by ϵl.

Thus, at the last layer it holds for all x ∈ [−1, 1]n0 that

∥f(x)− fϵ(x)∥2 =
∥∥∥x(L) − x(L)
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ϵ

L
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using the definition of ϵl in the last step.

A.2 EXISTENCE OF SPARSE LOTTERY TICKETS: PROOF OF THEOREM 2

Next, we prove the following lower bound on the probability that a very sparse lottery ticket exists.
Statement. Assume that ϵ ∈ (0, 1) and a target network f with depth L and architecture n̄
are given. Each parameter of the larger deep neural network f0 with depth L and architec-
ture n̄0 is initialized independently, uniformly at random with w

(l)
ij ∼ U

([
−σ

(l)
w , σ

(l)
w

])
and

b
(l)
i ∼ U

([
−
∏l

k=1 σ
(k)
w ,

∏l
k=1 σ

(k)
w

])
. Then, f0 contains a rescaled approximation fϵ of f with

probability at least

P (∃fϵ ⊂ f0 : ∥f − λfϵ∥∞ ≤ ϵ) ≥
L∏

l=1

(
1−

nl∑
i=1

(1− ϵki

l )nl,0

)
,

where ϵl is defined as in Eq. (1) and the scaling factor is given by λ =
∏L

l=1 1/σ
(l)
w .

Proof. As shown by Fischer et al. (2021), the scaling of the output by λ simplifies the above pa-
rameter initialization to an equivalent setting, in which each parameter is distributed as wij , bi ∼
U [−1, 1], while the overall output is scaled by the stated scaling factor λ, again assuming that all
parameters are bounded by 1 − ϵ. Each parameter in Layer l needs to be approximated up to error
ϵl according to Lemma 1. To match the same sparsity level of f , for each neuron i in each Layer l
of f , we have to find exactly one neuron in the same layer (Layer l) of f0 that represents i. We start
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with matching neurons at Layer 1 (given the input in Layer 0) and proceed iteratively by matching
neurons in Layer l given the already matched neurons in Layer l − 1.

Let us pick a random neuron in Layer l of f0. How high is the probability that it is a match with
a given target neuron i in layer l of f? The neuron i consists of ki parameters that have to be
matched. Since the corresponding neurons in layer l − 1 of f and f0 have already been matched
according to our assumption, we only have one possible candidate θ0 for each of the ki parameters
θi. For uniformly distributed parameters, we have |θi − θ0| ≤ ϵl with probability ϵl. For normally
distributed θ0 ∼ N (0, 1), the probability is at least ϵl/2 (as long as |θ0 ± ϵ| ≤ 1. This can be
seen by Taylor approximation of the cdf of a standard normal Φ(z + ∆z) − Φ(z − ∆z) in z. For
the remainder of the proof, however, we assume uniformly distributed parameters. Thus, all ki
independent parameters are a match with probability ϵki

l . Accordingly, none of the available nl,0

neurons in Layer l is a match with probability
(
1− ϵki

l

)nl,0

.

With the help of a union bound we can deduce that the probability that at least one of the neurons

i in Layer l of f has no match in f0 is smaller or equal to
∑nl

i=1

(
1− ϵki

l

)nl,0

. Therefore, the
converse probability that we find a match for every single neuron in Layer l of f is at least 1 −∑nl

i=1

(
1− ϵki

l

)nl,0

.

Since we have to guarantee a match for each single layer and the matching probability of a new
layer is conditional on the previous layer, we obtain a lower bound on the existence probability of a
lottery ticket by multiplying the layerwise bounds.

This bound is only practical for very sparse target networks f with neurons of small in-degrees ki. It
still shows that the existence of very sparse lottery tickets is possible under the right conditions. To
provide an intuition how this bound on the existence probability depends on the relevant parameters,
we visualize the bound when one component is varied in a simple example, in which all nodes
and layers are homogeneous so that they have identical properties like degree, width, etc. Fig. 6
shows that the bound most critically depends on the degree of a node and the width of the mother
network. Yet, all parameters matter and can make the existence of a LT unlikely. Extreme sparsity
can pose significant challenges to pruning algorithms, as we also see in our experiments with planted
solutions. Inspired by this proof, we therefore explain next how to plant tickets (which could have
variable sparsity levels).

A.3 PLANTING ALGORITHM

The idea of layerwise matching neurons starting with the layer closest to the input can be transferred
to planting. The approach applies to general initial networks f0 whose parameters have not necessar-
ily been randomly initialized and captures the full variability of possible target solutions by allowing
for different scaling factors per neuron. Why are scaling factors necessary? The target network and
the initial mother network need to produce output that lies in a similar range (ideally the one of the
training labels). Yet, the target network has to achieve this by adding up a much smaller number
of parameters spanning a larger range. A different perspective on the same issue is that a pruned
lottery ticket needs to be scaled up to compensate for the lost parameters. Note the scaling factor λ
in Theorem 2 for that purpose. To cover natural degrees of freedom in ReLU networks, we instead
allow for different neuron-wise scaling factors λj > 0. Note that such a scaling can be compensated
by rescaling of parameters in the next layer, as

x
(l+1)
k = ϕ

[∑
i

(w
(l+1)
kj /λj)ϕ

(∑
i

(w
(l)
ji λj)x

(l−1)
i + (b

(l)
j λj)

)
+ b

(l+1)
k

]
.

To apply only a small change to the random mother network during planting, we choose λj together
with matching target neurons and mother network neurons. We search in each layer of f0 for suitable
neurons that best match a target neuron in f , starting from the first hidden layer. Given that we
matched all neurons in layer l − 1, we try to establish their connections to neurons in the current
layer l. A best match is decided by minimizing the l2-distance to its potential input parameters
thereby adjusting for an optimal scaling factor. For example, let neuron i in Layer l of the target f
have non-zero parameters (b,w) that point to already matched neurons in Layer l− 1. With each of
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Figure 6: Visualization of lower bound. Bound on SLT existence probability Eq. (A.2) for ϵl =
0.005, ki = 2, L = 3, nl = 2, and nl,0 = 105. In each plot, one single variable is varied while the
remaining ones are kept fixed.
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Algorithm 1: Planting
input : target f , larger neural network f0
output: f0 with planted f (f ⊂ f0), output scaling factors λ

1 Initialize λold = [1]n0 // scaling factors for input are 1
2 for l = 1 to L− 1 do
3 for all neurons i of f in Layer l do
4 θ := (b,wλold) // scaled parameters of neuron i in f
5 m∗ = argminm qθ(m) // find best match for i in f0
6 Replace m∗ in f0 by θ/λ(m∗)
7 λi = λ(m∗) // remember scaling factor of i in f0
8 end
9 λold = λ

10 end
11 return f0,λ

Algorithm 2: Faster planting by random matching
input : target f , larger neural network f0
output: f0 with planted f (f ⊂ f0), output scaling factors λ

1 Initialize λold = [1]n0 // scaling factors for input are 1
2 for l = 1 to L− 1 do
3 for all neurons i of f in Layer l do
4 θ := (b,wλold) // scaled parameters of i in f
5 m∗ = parameters of random unmatched neuron in f0
6 Replace m∗ in f0 by θ/λ(m∗)
7 λi = λ(m∗) // remember scaling factor of i in f0
8 end
9 λold = λ;

10 end
11 return f0,λ

the matched neurons j′ in Layer l − 1 has been previously associated a scaling factor λold,j′ so that
the corrected θ = (b,wλold) parameters would compute the correct neuron in f0. In Layer l of f0,
each neuron j that we have not matched yet could be a potential match for i. Let the corresponding
parameters of j be m. The match quality between i and j is assessed by

qθ(m) = ∥θ − λ(m)m∥2 ,

where λ(m) = θTm/ ∥m∥22 is the optimal scaling factor. The best matching parameters m∗ =
argminm qθ(m) are replaced by rescaled target parameters θ/λ(m∗) in f0 and we remember the
scaling factor λ(m∗) to consider matches of neurons in Layer l + 1. Note that this rescaling is
necessary to ensure that the neuron is properly hidden and attains similar values as other non-planted
neurons in f0. In addition to the provided pseudocode (Algorithm 1), a Python implementation is
provided online.1

Matching neurons thoroughly can be computational resource intensive, if the target network f con-
sists of a high number of neurons, because each neuron needs to be compared with most of the
neurons in the mother network or at least a significant share of candidate neurons. A fast alternative
is to pick a random neuron in the mother network as a match and choose an appropriate scaling
factor (see Algorithm 2).

A.4 CONSTRUCTION OF TARGETS FOR PLANTING

We propose three toy examples for planting lottery tickets that pose different challenges for pruning
algorithms. Here, we explain the main ideas behind their construction in more detail. A Python

1www.github.com/RelationalML/PlantNSeek
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implementation of related regression and classification problems is provided alongside the supple-
mentary manuscript.

A.4.1 RELU UNIT

Apart from a trivial function f(x) = 0, a univariate ReLU unit f(x) = ϕ(x) = max(x, 0) is the
most sparse lottery ticket that is possible. Assuming a mother network f0 of depth L, a ReLU can
be implemented with a single neuron per layer. Any path through the network with positive weights∏L

l=1 ϕ(wil−1ilx) defines a ReLU with scaling factor λ =
∏L

l=1 wil−1il for indices il in Layer l
with wil−1il > 0.

Note that each random path fulfills this criterion with probability 0.5L so that even random pruning
could have a considerable chance to find an optimal ticket. A winning path exists with probability∏L

l=1(1 − 0.5nl,0), which is almost 1 even in small mother networks. Thus, planting is not really
necessary in this case. Since not all pruning algorithms set biases to zero, however, we still set all
randomly initialized biases along a winning path to zero to make the problem easier.

As we see in experiments, despite this simplification, pruning algorithms are severely challenged in
finding an optimally sparse ticket. Even though basic, a ReLU unit seems to be a suitable benchmark
that is a common building block of other tickets.

A.4.2 CIRCLE

For simplicity, we restrict ourselves to a 4-class classification problem with 2-dimensional input.
The output is therefore 4-dimensional, where each output unit fc(x) corresponds to the probability
fc(x) that an input (x1, x2) ∈ [−1, 1]2 belongs to the corresponding class c with c = 0, 1, 2, 3. As
common, this probability is computed assuming softmax activation functions in the last layer. The
decision boundaries are defined in the last layer based on inputs of the form g(x1, x2). The role
of the first layers with ReLU activation functions of a Circle target f is to compute the function
g(x1, x2) = x2

1 + x2
2, which is fundamental to many problems, in particular to the computation of

radial symmetric functions.

The high symmetry of g(x1, x2) allows us to construct a particularly sparse representation by mir-
roring data points along axes as visualized in Figure 2 (a). With the first two layers (l = 1, 2),
we map each input vector (x1, x2) to the first quadrant by defining x

(1)
1 = ϕ (x1) + ϕ (−x1)

and x
(1)
2 = ϕ (x2) + ϕ (−x2). Thus, Layer l = 1 consists of 4 neurons, i.e., x(1)

1 = ϕ (x1),
x
(1)
2 = ϕ (−x1), x

(1)
3 = ϕ (x2), x

(1)
4 = ϕ (−x2), while Layer l = 2 consists of 2 neurons, i.e.,

x
(2)
1 = ϕ

(
x
(1)
1 + x

(1)
2

)
, x(2)

2 = ϕ
(
x
(1)
3 + x

(1)
4

)
.

Each consecutive layer l mirrors the previous layer (x
(l−1)
1 , x

(l−1)
2 ) along the axis a(l) =

(cos(π/2l−1), sin(π/2l−1)). It achieves this by mapping the neurons of the previous layer to three
neurons, one representing the component of x(l−1) that is parallel to a(l), and two neurons that each
represent the positive or negative signal component that is perpendicular to the axis a(l). The last
two neurons could be added to a single neuron in the next layer if we want to decrease the width of
some layers to 2 in between. To take more advantage of the allowed depth L, we map three neurons
immediately to the next three neurons that represent the mirroring by defining

x
(l)
1 = ϕ

(
a
(l)
1 x

(l−1)
1 + a

(l)
2 x

(l−1)
2 − a

(l)
2 x

(l−1)
3

)
, x

(l)
2 = ϕ

(
a
(l)
2 x

(l−1)
1 − a

(l)
1 x

(l−1)
2 + a

(l)
1 x

(l−1)
3

)
,

x
(l)
3 = ϕ(−h

(l)
2 ).

If the depth of our network is high enough, we could use the parallel component x(l)
1 as estimate

of the radius of the input. To enable higher precision for networks of smaller depth, however,
we also apply to each remaining component a piecewise linear approximation of the univariate
function h(x) = x2 and add those two components. Note that any univariate function can be easily
approximated by a neural network of depth L = 2. The precise approach is explained in our next
example.
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A.4.3 HELIX

To test the ability of pruning algorithms to detect lower dimensional submanifolds, we approximate
a helix with three output coordinates f1(x) = (5π + 3πx) ∗ cos(5π + 3πx)/(8π), f2(x) = (5π +
3πx) ∗ sin(5π + 3πx)/(8π), and f3(x) = (5π + 3πx)/(8π) for 1-dimensional input x ∈ [−1, 1].
As we have observed that many pruning algorithms have the tendency to keep a higher number of
neurons closer to the input (and sometimes also the output layer), we construct a ticket that has
similar properties. This should ease the task for pruning algorithms to find the planted winning
ticket.

Each of the components fi(x) is an univariate function that we can approximate by an univariate
deep neural network ni(x) that encodes a piece-wise linear function (see Figure 2 (c) for an expla-
nation). As neural networks are generally overparameterized, we have multiple options to represent
ni(x). For simplicity, we write it as composition of the identity with a depth L = 2 univariate
network gi(x) of width N in the hidden layer, which can be written as

gi(x) =

N∑
j=1

a
(i)
j ϕ(pj(x− sj)) + b(i),

where the signs pj ∈ {−1, 1} can be chosen arbitrarily (and we chose alternating signs to create
diversity). The knots s = (sj)j∈[N ] mark the boundaries of the linear regions and a = (a

(i)
j )j∈[N ]

indicate changes in slopes m(i)
j = (fi(sj+1)− f(sj)) / (sj+1 − sj) (with sN+1 := sN + ϵ) from

one linear region to the next. a
(i)
j = m

(i)
j − m

(i)
j−1 for 2 ≤ i ≤ N , a(i)1 = m

(i)
1 , and b(i) =

fi(s1) −
∑N

j=1 a
(i)
j ϕ(pj(s1 − sj)). Note that only the outer parameters a

(i)
j are function specific,

while the inner parameters pj and sj can be shared among the functions fi.

We thus create a helix ticket by first mapping the input x ∈ [−1, 1] to [0, 2]. This allows us to
represent the identity in the later layers by ϕ(x) = x, as x ≥ 0. We can always compensate for
the bias +1 by subtracting a bias −1 when needed. f3(x) = (5π + 3πx)/(8π) can therefore be
represented by a path from the input to the output that only contains a single neuron per layer.
We concatenate this path with a neural network that consists of layers that approximate f1(x) and
f2(x) and otherwise identity functions. At Layer l = 2, this network creates neurons of the form
ϕ(pj(x−sj)), where the knots sj mark an equidistant grid of [0, 2]. Layer l = 3 creates two neurons,
one corresponding to x

(2)
1 = f1(x) and one corresponding to x

(2)
2 = f2(x). These can be computed

by linear combination of the previous neurons using the parameters a(i)j and b(i). All the remaining
layers basically encode the identity.

B EXPERIMENTS

In this section, we discuss all relevant parameters and set-ups to reproduce the experimental results.
Furthermore, we provide additional results obtained for singleshot learning spanning different ar-
chitectures and pruning schemes. All source code to run pruning algorithms and to generate the data
is made publicly available.

B.1 HYPERPARAMETERS AND DATA

For each experiment, we generate n = 10000 samples, where input data is sampled from [−1, 1] for
ReLU and Helix and from [−1, 1]3 for Circle. The output for ReLU is computed by f(x) =
max(0, x). For Helix, we compute the three output coordinates as f1(x) = (5π+3πx)∗cos(5π+
3πx)/(8π), f2(x) = (5π+3πx)∗sin(5π+3πx)/(8π), and f3(x) = (5π+3πx)/(8π). For Circle,
we consider circles centered at the origin with radius

√
0.2,

√
0.5, and

√
0.7 as decision boundaries

for the classes. We additionally introduce a small amount of noise to simulate real world data more
closely. For Circle we flip approximately 1% of samples to the next closest class, and for the two
regression problems we introduce additive noise drawn from N (0, 0.01) to each output dimension.
To assess the accuracy respectively mean squared error of the tickets and trained models, we split
off 10% of the data that acts as a hold out test set.
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In general, all initial networks for each specific task are generated using the algorithm explained
in App. B.1. For Circle, we use 10 knots for the piecewise linear approximation, and 30 knots
for the piecewise linear approximations done in Helix. To prune by GRASP, SNIP, SYNFLOW,
MAGNITUDE, and RANDOM and train the derived tickets, we use Adam Kingma & Ba (2015) with
a learning rate of 0.001. We found that this learning rate performed well over all experiments, and
leading to accurate models when there is no pruning. It also corresponds to the default settings
suggested by the authors of SYNFLOW Tanaka et al. (2020). Training of the discovered tickets was
done for 10 epochs across all experiments, where we could always observe a convergence of the
respective score on the validation sets (accuracy or MSE). We measured loss by MSE respectively
cross entropy loss and used a batch size of 32 for all experiments. We report obtained intervals as
minimum and maximum as well as mean across 10 repetitions for multishot, and across 25 repetions
for the main singleshot experiments, all measured on the hold out test set.

Singleshot pruning For singleshot pruning, we considered networks of depth 3, 5, 10 each with
layer width 100 for all three data sets on target sparsities {0.01, 0.1, 0.5, 1} and the sparsity of the
ground truth ticket. Additionally, we tested for a network of depth 6 and width 1000 on Circle
for the same sparsity levels. As suggested by Tanaka et al. (2020), we also test SYNFLOW in com-
bination with 100 rounds of pruning for a network of depth 6 and width 100 on Circle. For all
additional singleshot experiments, we provide results in the next section.

Multishot pruning For multishot pruning, we alternated pruning and training for 10 rounds,
where each training step was carried out for 5 epochs, which consistently lead to convergence of
accuracy on the considered Circle data set. Similar to singleshot pruning, we considered target
sparsities {0.01, 0.1, 0.5, 1} and ground truth ticket sparsity.

EDGE-POPUP pruning To prune with EDGE-POPUP, we here used the parameters suggested in
the original code of Ramanujan et al. (2020), which is SGD with momentum of 0.9 and weight
decay 0.0005, combined with cosine annealing of the learning rate. To establish a comparison to
the multishot pruning results, we train the scores for 10 epochs. Additionally, for the experiment
extending EDGE-POPUP by annealing the sparsity level, we slowly reduce the sparsity over time to
ρi/10, where ρ is the desired network sparsity, and i is the current epoch.

B.2 DETAILED DISCUSSION OF RESULTS

Singleshot pruning In singleshot pruning, which is originally applied in SNIP, and GRASP, edges
are scored in a single pass and then pruned to the desired sparsity. Compared to multishot pruning,
this saves significant amounts of resources by preventing training entirely, if a strong ticket is found,
or only training a small subnetwork once, in case a weak ticket is found. For our benchmark data,
we construct networks of depth 5 and width 100 and test the ability of algorithms to discover both
strong and weak tickets. The key results are visualized in Fig. 3, reporting performance of the
algorithms trying to discover tickets at varying sparsity levels across 25 repetitions.

We find that all approaches, including RANDOM pruning, are able to find weak tickets for moderate
sparsity levels for Circle and ReLU, but fail to recover them on the manifold learning task Helix
entirely. Although MAGNITUDE pruning was originally not designed for this pruning strategy, it is
on par with state-of-the-art singleshot methods. For lower sparsity levels ≤ 0.01, in particular
baseline ticket sparsity, all methods fail to recover good subnetworks. Dissecting the results, we
observe layer collapse, meaning that entire layers are masked, thus disrupting flow through the
network. Despite that SYNFLOW was proposed as a solution to this issue, we observe that it also
experiences layer collapse for extreme sparsities, even when pruning for 100 rounds as suggested in
the original paper, performing only slightly better than with one round of pruning (see Supp. B.5).
In summary, with only a single pruning round, most pruning algorithms discover weak tickets at
moderate sparsity, however fail to recover weak tickets of low sparsity and any strong tickets.

Robustness to noise To model real-world settings, all our datasets contain small amounts of noise
as described in Supp. B. To rule out that noise in the data is the primary source for issues with
discovering tickets, we generated Circle datasets with varying levels of noise. The results indicate
that on the one hand, without noise we do not see much of an improvement in terms of discovered
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tickets, but on the other hand observe that the algorithms are robust to even large amounts of noise,
finding tickets with almost similar performance as with no noise at all (see Supp. B.5).

Comparison to results on image data The reported results are in line with experiments on image
data as reported in the literature (Tanaka et al., 2020). In particular, for all these methods a similar
drop around 0.01 sparsity is observed for different VGG and Resnet architectures and image data
sets. Similarly, layer collapse has been reported for image data. The main difference is that for our
data, we know the obtainable sparsity as well as performance of tickets, setting these results into a
context beyond trendline differences of methods for selected sparsity values.

B.3 PRUNING COMBINED WITH TRAINING

While much more resource intensive, iteratively training followed by pruning and resetting to initial
weights, slowly annealing to the desired sparsity, has been proven a successful approach to discover
lottery tickets. Here we extend this pruning scheme to other approaches beyond magnitude pruning.

Multishot pruning To investigate the effect of multishot pruning, we run each of the previous
methods iteratively for 10 rounds on our benchmark datasets (see Fig. 4). Analogous to iterative
magnitude pruning, for each round r, we iteratively reduce the sparsity to ρr/10, where ρ is the
desired network sparsity. Within each round, the current subnetwork is first shortly trained, then
pruned to the current target sparsity, and then reset to initial parameters for the next round. Com-
pared to the singleshot results, we observe that for the classification task, MAGNITUDE, SNIP, and
SYNFLOW are able to retrieve weak tickets of much higher sparsity. Furthermore, these three ap-
proaches are now able to recover weak tickets of moderate sparsities also for the challenging Helix
dataset. Overall, SYNFLOW consistently performs best in discovering weak tickets, even recovering
the extremely sparse baseline ticket for Circle. We also observe that GRASP performs poor over-
all, noting that it is a method designed for singleshot pruning. Examining the results, we see that
GRASP experiences layer collapse already in early iterations with large target sparsities. None of
the above approaches is able to discover a strong ticket.

To discover strong tickets, Ramanujan et al. (2020) proposed EDGE-POPUP, which falls in the same
category of multishot pruning approaches. EDGE-POPUP assigns each model parameter a score
value, which is then actively trained for several rounds while freezing all original parameters, re-
quiring a similar computational effort as multishot pruning. Training EDGE-POPUP for 10 rounds,
we observe that it discovers a strong ticket of sparsity 0.5 for Circle however fails to discover
tickets of different sparsity, which is in line with their original results Ramanujan et al. (2020). Sim-
ilar to other algorithms, we observe layer collapse. We can extend their original algorithm using
annealing as in multishot pruning by slowly decreasing the sparsity in every round, which increases
performance allowing it to discover a subnetwork with reasonable accuracy at 0.1 sparsity. Interest-
ingly, EDGE-POPUP is not able to find any good subnetwork for the regression tasks.

GRASP with local sparsity constraints As observed before, GRASP seems unsuitable for mul-
tishot pruning due to early layer collapse. Several works (You et al., 2020; Tanaka et al., 2020)
considered local sparsity constraints, having a target sparsity for each layer, or even channel. These
however impose unrealistic architecture constraints as layer sparsity is usually imbalanced (Tanaka
et al., 2020), which also holds true for our Circle and Helix benchmarks. With the goal to avoid
layer collapse, we still equipped GRASP with local sparsity constraints per layer (see Supp. B.5).
Yet, the flow through the layers stays interrupted. A possible explanation is that GRASP incorpo-
rates information about weight couplings via the hessian in its pruning strategy, which makes it more
sensitive to removing individual connections from the mask as it happens during iterative pruning.

Comparison to results on image data Our results are coherent with the reported relative trends
on image tasks both for strong and weak tickets (Ramanujan et al., 2020; Tanaka et al., 2020). We
further reproduced results for VGG16 on CIFAR10 with non-zero bias initialization (Fig. 5 left).
In particular, for strong tickets we observe the same trends for EDGE-POPUP spiking at 0.5 sparsity,
performing less well at sparsity 0.1, and not recovering tickets for higher and lower sparsity. Again
consistent with previously reported results, other methods are neither suited nor designed to find
strong tickets. For weak tickets, SYNFLOW performs best, with only a slight margin towards SNIP
and MAGNITUDE. This margin is however much tighter then originally reported in SYNFLOW, as
we allow both SNIP and MAGNITUDE to learn in a multishot fashion, which closely resembles the
approach of iterative magnitude pruning, so that we do not observe layer collapse for these methods.
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Figure 7: Finetuning vs initialization. Performance for Circle (top), ReLU (middle), and Helix
(bottom) for 10 rounds of alternating pruning and training. Visualized are weak ticket performances
(i.e. training on initialized weights) against finetuned subnetworks (i.e. no reset of weights after
final pruning round). Baseline ticket performance in black.

VGG with strong tickets Finally, to put the hypothesis to a test that EDGE-POPUP is limited to
discover strong tickets of suboptimal sparsity of around 0.5, we investigate its capabilities to recover
a planted baseline ticket from VGG16. For that, we use SYNFLOW to discover a weak ticket of
sparsity 0.01 from VGG16 with multishot pruning, trained the weak ticket, and planted it back into
the network. Running EDGE-POPUP on this network, we observe that it indeed cannot retrieve the
baseline ticket of desired sparsity in this real world setting (see Fig. 5 right).

B.4 OTHER PRUNING APPROACHES

Finetuning Recent results indicated that finetuning discovered subnetworks yields better models
than training these subnetworks from scratch (Liu et al., 2021a). In particular, they proposed to
use iterative (magnitude) pruning and skip the resetting of the parameters to their initial values, but
rather continue training the current parameter set, which incurs no additional computational over-
head. Here, we investigate how finetuning affects results on our benchmark data for all considered
methods. We repeat the multishot learning experiments in combination with finetuning and visualize
the results in Fig. 7. For the considered classification task, finetuning matches the performance of
classical ’weak ticket’-training with parameter reset, achieving almost perfect accuracy levels for up
to .01 target sparsity. For even sparser target networks, we see a marginal improvement of MAG-
NITUDE and SYNFLOW by using finetuning, which is however within the confidence of the original
prediction. For the regression tasks we get a slightly different view: here, the original weak tick-
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(c) RIGL on Helix.

Figure 8: RIGL. Performance for Circle (top), ReLU (middle), and Helix (bottom) for 60 rounds
of training with default parameters. We report mean and minimum and maximum values across 10
repetitions. Baseline ticket performance is indicated as black dashed line.

ets already detoriate in performance for relatively dense target networks of .5 or .1 target sparsity.
Notably, for the ReLU task, finetuning does improve ticket performance for those sparsity levels,
such that the algorithms can match the performance of the ground truth ticket. For more extreme
sparsity levels, we see a drastic improvement for MAGNITUDE pruning, but no improvement for
other algorithms or at ground truth ticket performance. For Helix, the results are mixed, where
we observe an improvement at dense target sparsities of .5 similar to before, but no improvement or
even a decrease of performance for smaller target sparsity levels. In summary, on our benchmarks,
finetuning helps to improve performance at relatively large target sparsity levels (> .1), but does not
provide an advantage compared to the common training after parameter reset for extreme sparsities.

RIGL While the main focus of our paper are lottery tickets, we here briefly discuss results for RIGL
(Evci et al., 2020), a state-of-the-art dynamic sparse training approach, which results in sparsified
and trained network architectures which are comparable to trained ’weak’ tickets. For our bench-
mark data, we construct similar networks as for the multishot experiments – i.e. depth 6 and width
100 fully connected networks – and run the available implementation of RIGL with default param-
eters as suggested in the paper, and Adam optimization with the same parameter settings as for all
other considered methods. We train networks for 60 epochs, which results in a comparable amount
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of training time as in the multishot experiments, and note that good performance is reached much
earlier.

The original results reported in Evci et al. (2020) indicate that for their considered (classification)
tasks, RIGL outperforms other dynamic sparse training methods, and that for target sparsity levels of
.1 and lower, performance quickly deteriorates for all methods.2 In the original paper, there was no
exploration of the more extreme sparsities considered here, nor a comparison to ticket pruning other
than SNIP. Our results on Circle match those results, with RIGL being able to match ground
truth ticket performance for sparsity .5 and .1. The performance, however, decreases quickly with
more extreme sparsity levels (see Fig. 8). In comparison with the multishot results, we observe that
SYNFLOW, SNIP, and MAGNITUDE pruning outperform RIGL on this task for the extreme sparsity
levels (compare Fig. 4). Note that the version of SNIP used in the original paper is essentially the
singleshot approach, which indeed performs worse than RIGL (compare Fig. 3). For regression
tasks, we see a similar trend, with RIGL performing comparably good as SNIP for sparsity levels
≥ .1, but the performance decreases rapidly for more extreme target sparsitiy levels. Generally,
for the regression tasks we observe that RIGL is outperformed by the state-of-the-art ticket pruner
SYNFLOW and iterative MAGNITUDE pruning. Yet, RIGL allows for efficient computations, saving
FLOPS by only infrequently updating gradients, which render it the method of choice for target
sparsities of ≥ .1 in specific applications.

B.5 ADDITIONAL RESULTS ON SINGLESHOT LEARNING

Model depth In this section, we provide all results from the singleshot learning for depths 3, 5, 10
and width 100 in Figure 9,10, and 11, respectively. We observe that all methods have problems to
deal with smaller networks, while the results for the larger networks are consistent.

Model width To investigate the effect of layer size, we run an experiment with a network of depth
6 and width 1000 on Circle – as the layer size is an important factor for the theoretical probability
of the existence of tickets – and report the results in Figure 12. We observe that although the network
is much larger, there is barely any change in comparison to the previous results. Note that the results
after training of tickets of individual sparsities cannot be directly compared directly to the other
singleshot results, as the tickets are much larger (due to the much larger number of parameters) and
hence easier to train.

Multiple pruning rounds We report the results of running SYNFLOW with 100 rounds of pruning
on a network of depth 6 and width 100 for Circle in Figure 13. We find that there is again
barely any change to the original singleshot results after pruning, but there is a slight increase in
performance after training compared to the single-round singleshot results.

Noise experiments To test the robustness of pruning algorithms to noise in the data, we considered
the Circle problem with a network of depth 6 and width 100 and varied the amount of noise in
the data to be {0, 0.001, 0.01, 0.1}. We report the results before and after training in Fig. 14.

B.6 ADDITIONAL RESULTS ON MULTISHOT LEARNING

To test whether we can reach an improvement of the performance of tickets discovered by GRASP
using a multishot pruning approach and avoid layer collapse, we ran additional experiments using
a local pruning rate. In particular, we used layer-wise pruning setting the target sparsity of the
parameters of each individual layer to the global sparsity level. We report results in Fig. 15.

2Note that Evci et al. (2020) use percentage of pruned parameters for their plots, i.e. 1−sparsity compared
to our paper.
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Figure 9: Singleshot results depth 3. Performance of discovered tickets for Circle, ReLU, and
Helix against target sparsities as mean and obtained intervals (minimum and maximum) across 25
runs. In order of appearance from top to bottom: Circle, ReLU, and Helix post pruning (left)
and post training performance (right). Baseline tickets have sparsities of .16, .01, and .29, and their
performance is given by black dashed line.
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Figure 10: Singleshot results depth 5. Performance of discovered tickets for Circle, ReLU, and
Helix against target sparsities as mean and obtained intervals (minimum and maximum) across 25
runs. In order of appearance from top to bottom: Circle, ReLU, and Helix post pruning (left)
and post training performance (right). Baseline ticket with leftmost sparsity and performance given
by black dashed line.
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Figure 11: Singleshot results depth 10. Performance of discovered tickets for Circle, ReLU, and
Helix against target sparsities as mean and obtained intervals (minimum and maximum) across 25
runs. In order of appearance from top to bottom: Circle, ReLU, and Helix post pruning (left)
and post training performance (right). Baseline ticket has leftmost sparsity and its performance
given by black dashed line.
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Figure 12: Singleshot results, depth 6 width 1000. Performance on test data are plotted for Circle
against target sparsities. We report mean and obtained intervals (minimum and maximum) across
10 repetitions of ticket performance right after pruning (left) and after training (right). The baseline
ticket performance is indicated by the black dashed line, leftmost sparsity correspond to planted
ticket sparsity.
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Figure 13: Singleshot results for SYNFLOW with 100 pruning rounds. Performance on test data are
plotted for Circle against target sparsities. We report mean and obtained intervals (minimum and
maximum) across 10 repetitions of ticket performance right after pruning (left) and after training
(right). The original network is of depth 6 and width 100. The baseline ticket performance is
indicated by the black dashed line, leftmost sparsity corresponds to planted ticket sparsity.
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Figure 14: Varying noise. Performance of methods for Circle with varying noise for 10 rounds of
alternating pruning and training. We report mean and obtained intervals (minimum and maximum)
of accuracies of the final pruned network across 10 repetitions before (left) and after (right) the final
training. The noise level is indicated by line type. Baseline ticket accuracy is given in black.
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Figure 15: Multishot with local pruning. Performance on test data are plotted for Circle against
target sparsities. We report mean and obtained intervals (minimum and maximum) across 10 repe-
titions of performance after pruning (left) and after training (right). Baseline ticket performance is
indicated by the black line, second to left sparsity correspond to planted ticket sparsity.
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