Graph Unlearning

Min Chen Zhikun Zhang* Tianhao Wang
CISPA Helmholtz Center for CISPA Helmholtz Center for University of Virginia
Information Security, Germany Information Security, Germany USA
Michael Backes Mathias Humbert Yang Zhang
CISPA Helmholtz Center for University of Lausanne CISPA Helmholtz Center for
Information Security, Germany Switzerland Information Security, Germany

ABSTRACT

Machine unlearning is a process of removing the impact of some
training data from the machine learning (ML) models upon re-
ceiving removal requests. While straightforward and legitimate,
retraining the ML model from scratch incurs a high computational
overhead. To address this issue, a number of approximate algo-
rithms have been proposed in the domain of image and text data,
among which SISA is the state-of-the-art solution. It randomly par-
titions the training set into multiple shards and trains a constituent
model for each shard. However, directly applying SISA to the graph
data can severely damage the graph structural information, and
thereby the resulting ML model utility. In this paper, we propose
GraphEraser, a novel machine unlearning framework tailored to
graph data. Its contributions include two novel graph partition al-
gorithms and a learning-based aggregation method. We conduct
extensive experiments on five real-world graph datasets to illus-
trate the unlearning efficiency and model utility of GraphEraser. It
achieves 2.06x (small dataset) to 35.94% (large dataset) unlearning
time improvement. On the other hand, GraphEraser achieves up to
62.5% higher F1 score and our proposed learning-based aggregation
method achieves up to 112% higher F1 score.!

CCS CONCEPTS

« Security and privacy; « Computing methodologies — Ma-
chine learning;

KEYWORDS

Machine Unlearning; Graph Neural Networks; Machine Learning
Security and Privacy

ACM Reference Format:

Min Chen, Zhikun Zhang, Tianhao Wang, Michael Backes, Mathias Hum-
bert, Yang Zhang. 2022. Graph Unlearning. In Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security (CCS °22),
November 7-11, 2022, Los Angeles, CA, USA. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3548606.3559352

*Corresponding author.
1Our code is available at https://github.com/MinChen00/Graph-Unlearning.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CCS 22, November 7-11, 2022, Los Angeles, CA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9450-5/22/11...$15.00
https://doi.org/10.1145/3548606.3559352

1 INTRODUCTION

Data protection has attracted increasing attentions recently, and
several regulations have been proposed to protect the privacy of
individual users, such as the General Data Protection Regulation
(GDPR) [17] in the European Union, the California Consumer Pri-
vacy Act (CCPA) [7] in California, the Personal Information Protec-
tion and Electronic Documents Act (PIPEDA) [40] in Canada, and
the Brazilian General Data Protection Law (LGPD) in Brazil [18].
One of the most important and controversial articles in these regu-
lations is the right to be forgotten, which entitles data subject the
right to delete their data from an entity storing it. In the context
of machine learning (ML), researchers have argued that, under the
requirement of the right to be forgotten, the model provider has
the obligation to eliminate any impact of the data whose owner
requested to be forgotten, which is referred to as machine unlearn-
ing [5, 8].

A deterministic machine unlearning approach consists in remov-
ing the revoked sample and retraining the ML model from scratch.
Given that this method can be computationally prohibitive when
the underlying dataset is large, many approximate machine un-
learning methods have been proposed [5, 8, 9, 19, 21, 24, 29, 37].
Among the existing solutions, the SISA (Sharded, Isolated, Sliced,
and Aggregated) is the most general one in terms of model archi-
tecture [5]. The basic idea of SISA is to randomly split the training
dataset into several disjoint shards and train each shard model sep-
arately. Upon receiving an unlearning request, the model provider
only needs to retrain the corresponding shard model.

SISA has been designed to handle image and text data in the
Euclidean space. However, numerous important real-world datasets
are represented in the form of graphs, such as social networks [41],
financial networks [55], biological networks [20], recommender
systems [39, 61], and transportation networks [14]. In order to take
advantage of the rich information contained in graphs, a new family
of ML models, graph neural networks (GNNs), has been recently
proposed and has already shown great promise [6, 14, 27, 32, 39, 49,
51, 58]. The core idea of GNNs is to transform the graph data into
low-dimensional vectors by aggregating the feature information
from neighboring nodes. Similar to other ML models, GNNs can
be trained on sensitive graphs such as social networks [39, 41, 45],
where the data subject may request to revoke their data. However,
learning representative GNNs rely on graph structural information.
Randomly partitioning the nodes into sub-graphs as in SISA could
severely damage the resulting model utility. Therefore, there is a
pressing need for novel methods for unlearning previously seen —
but revoked - data samples in the context of GNNs.

https://doi.org/10.1145/3548606.3559352
https://github.com/MinChen00/Graph-Unlearning
https://doi.org/10.1145/3548606.3559352

CCS *22, November 7-11, 2022, Los Angeles, CA, USA

Our Contributions. In this paper, we propose GraphEraser, an ef-
ficient unlearning framework to achieve high unlearning efficiency
and reserve high model utility in GNNs. Concretely, we first identify
two common types of machine unlearning requests in the context
of GNNs, namely node unlearning and edge unlearning. We then
propose a general pipeline for machine unlearning in GNN models.

To permit efficient retraining while keeping the structural in-
formation of the graph, we propose two graph partition strategies.
The first strategy focuses on the graph structural information and
tries to preserve it to the greatest extent by relying on commu-
nity detection. Our second strategy takes both graph structural
and node feature information into consideration. In order to keep
both pieces of information, we transform the node features and
graph structure into embedding vectors that we then cluster into
different shards. However, a graph partitioned by traditional com-
munity detection[42, 43, 52, 64] and clustering methods might lead
to highly unbalanced shard sizes due to the structural properties of
real-world graphs [20, 64]. In such case, many (if not most) of the
revoked samples would belong to the largest shard whose retrain-
ing time would be substantial and the unlearning process would
then become highly inefficient. We propose a general principle for
balancing the shards resulting from the graph partition and instan-
tiating it with two novel balanced graph partition algorithms to
avoid this situation. In addition, considering that the different shard
models do not uniformly contribute to the final prediction, we fur-
ther propose a learning-based aggregation method that optimizes
the importance score of the shard models to eventually improve
the global model utility.

We show in the experimental results that GraphEraser can effec-
tively improve the unlearning efficiency. For instance, the average
unlearning time is up to 2.06X shorter on the smallest dataset and
up to 35.94x shorter on the largest dataset compared to retrain-
ing from scratch, while GraphEraser achieves comparable model
utility with retraining from scratch. In addition, GraphEraser also
provides an advanced model utility than random partitioning. Con-
cretely, GraphEraser achieves up to 62.5% higher F1 score than that
of random partitioning. Furthermore, our learning-based aggrega-
tion method can effectively improve the model utility compared to
the mean and majority-vote aggregation methods. Our proposed
learning-based aggregation achieves up to 93% higher F1 score than
that of the mean aggregation and 112% higher F1 score than that of
the majority vote aggregation .

In summary, we make the following contributions.

e To the best of our knowledge, GraphEraser is the first approach
that addresses the machine unlearning problem for GNN models.
Concretely, we formally define two types of machine unlearning
requests in the context of GNN and propose a general pipeline
for graph unlearning.

e We propose a unified principle to achieve balanced graph par-
titioning and instantiate it with two balanced graph partition
algorithms.

e To improve the model utility resulting from GraphEraser, we
propose a learning-based aggregation method.

e We conduct extensive experiments on five real-world graph
datasets and four state-of-the-art GNN models to illustrate the un-
learning efficiency and model utility resulting from GraphEraser.

Min Chen et al.

Table 1: Summary of the notations.

Notation ‘ Description

G =(V,AX) Graph

uveV Nodes in G

euw Edge that connects u and v

A Adjacency matrix of G

X Attributes associated with V

Nu Neighborhood nodes of u

Ey Node embedding of u

dx / dg Dimension of attributes / embeddings
[Aggregation operation in message passing
¥ Updating operation in message passing
m Message received from neighbors

2 PRELIMINARIES

2.1 Graph Neural Networks

We denote an attributed graph by G = (V, A, X), where YV is the
set of all nodes, A € {0, 1}™ " is the adjacency matrix (n = |V|),
and X € R™X js the feature matrix with dx being the dimension
of node features. We further denote e, , as an edge between u and
v in G. We summarize the frequently used notations in Table 1.

The high-level intuition behind GNNs is that the neighboring
nodes in a graph tend to have similar features. The GNN models
are designed so that each node can aggregate information from
its neighbors and form an embedding (e.g., a size-512 vector). The
node embeddings can then be used to conduct downstream tasks,
such as node classification [26, 39, 51], link prediction [56, 63], and
graph classification [57, 59].

In this paper, we focus on the node classification task, whose
goal is to use a GNN to predict the label of a node u € V given
the node’s features X, and its neighbors’ information. To train a
GNN, we rely on the technique called message passing, we refer the
readers to Appendix A of [10] for more details.?

2.2 Machine Unlearning

Thanks to new legislation ensuring the “right to be forgotten”,
individuals can now formally request the deletion of their data from
the service provider (or the data controller). In the ML context, this
implies that the model provider should delete the revoked sample
from its training set. Still, it should also eliminate any influence of
the revoked sample on the resulting ML model.

Retraining from Scratch. The most direct way to implement un-
learning is to delete the revoked sample and retrain the ML model
from scratch by using as training set the original dataset without
the deleted sample. Retraining from scratch is an effective and easy-
to-enforce method for unlearning. However, when the model is
complex and the original training dataset is large, the computa-
tional overhead of retraining becomes prohibitive. To reduce the
computational overhead, many approximation approaches have
been proposed [5, 8, 21, 29], among which SISA [5] is the most
flexible one in terms model architecture.

SISA. SISA refers to Sharded, Isolated, Sliced, and Aggregated,
which is an ensemble learning-based method that can handle dif-
ferent ML model architectures. With this approach, the training

2Due to space limitation, we put all the appendices to our technical report [10].

Graph Unlearning

Prediction Task

Unlearning Task

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

Figure 1: A schematic view of the framework of GraphEraser. It partitions the original training graph into disjoint shards,
parallelly trains a set of shard models ¥;, and learns an optimal importance score a; for each shard model. When a node
w needs prediction, GraphEraser sends w to all the shard models and obtains the corresponding posteriors, which are then
aggregated using the optimal importance score «; to make the prediction. When a node u mounts an unlearning request,
GraphEraser removes u from the corresponding shard and retrains the shard model.

set D, is first partitioned into k disjoint shards Z);, Z)g, e ,D(],‘ .
These k shards are then used separately to train a set of ML models
7';1, 7';2, cee ,‘7—'Ok . At inference time, the k individual predictions
from the different shard models are simply aggregated (e.g., with
majority voting) to provide a global prediction. When the model
owner receives a request to delete a new data sample, it just needs
to retrain the shard model whose shard contains this sample, lead-
ing to a significant time gain with respect to retraining the whole
model from scratch.

3 GRAPH UNLEARNING

3.1 Problem Definition

In the context of GNNs, the training set D, is in the form of a
graph G,, and a sample x € D, corresponds to a node u € G,. For
presentation purposes, we use training graph to represent training
set in the rest of this paper. We identify two types of machine
unlearning scenarios in the GNN setting, namely node unlearning
and edge unlearning.

Node Unlearning. For a trained GNN model ¥, the data of each
data subject corresponds to a node in the GNN’s training graph
Go- In node unlearning, when a data subject u asks the model
provider to revoke all their data, this means the model provider
should unlearn u’s node features and their links with other nodes
from the GNN’s training graph. Taking social network as an exam-
ple, node unlearning means a user’s profile information and social
connections need to be deleted from the training graph of a target
GNN. Formally, for node unlearning with respect to a node u, the
model provider needs to obtain an unlearned model 7, trained on
Gu = Go \ {Xu, euo|Vv € Ny}, where Xy, is the feature vector of u.
Edge Unlearning. In edge unlearning, a data subject wants to
revoke one edge between their node u and another node v. Still
using social network as an example, edge unlearning means a so-
cial network user wants to hide their relationship with another
individual. Formally, to respond to the unlearning request for ey, 5,
the model provider needs to obtain an unlearned model ¥, trained
on Gy = Go \ {ewnlv € Ny}. The features of the two nodes remain
in the training graph.

General Unlearning Objectives. In the design of machine un-
learning algorithms, we consider two major factors: unlearning
efficiency and model utility. The former is related to the retraining
time when receiving an unlearning request. This time should be
as short as possible. The latter is related to the unlearned model’s
prediction accuracy. Ideally, the prediction accuracy should be close
to retraining from scratch. In summary, the unlearning algorithm
should satisfy two general objectives: High Unlearning Efficiency
and Comparable Model Utility.

Challenges of Unlearning in GNNs. As mentioned before, the
state-of-the-art approach for machine unlearning is SISA [5], which
randomly partitions the training set into multiple shards and trains
a constituent model for each shard. SISA has shown to achieve high
unlearning efficiency and comparable model utility for ML models
whose inputs reside in the Euclidean space, such as images and
texts. However, the input of a GNN is a graph, and data samples,
i.e,, nodes of the graph, are not independent identically distributed.
Naively applying SISA on GNNs for unlearning, i.e., randomly par-
titioning the training graph into multiple shards, will destroy the
training graph’s structure which may result in large model utility
loss. One solution is to rely on community detection methods to
partition the training graph by the detected communities, which
can preserve the graph structure to a large extent. However, directly
adopting classical community detection methods may lead to highly
unbalanced shards in terms of shard size due to the specific struc-
tural properties of real-world graphs [20, 42, 64] (see Section 4.1
for more details). In consequence, the efficiency of the unlearning
process will be affected. Indeed, a revoked record would be more
likely to belong to a large shard whose retraining time would be
larger. Therefore, in the context of GNNs, the unlearning algorithm
should satisfy the following objectives:

¢ G1: Balanced Shards. Different shards should share a similar
size in terms of the number of nodes in each shard. In this way,
each shard’s retraining time is similar, which improves the ef-
ficiency of the whole graph unlearning process. Enforcing this
objective can automatically satisfy the general unlearning pursuit
of high unlearning efficiency.

CCS *22, November 7-11, 2022, Los Angeles, CA, USA

1
—

ot

Number of Nodes

Number of Nodes

““H““\\\\\\\\\\\
Shard ID

Shard ID

(a) LPA (Top 100 shards) (b) Embedding clustering
Figure 2: Distribution of shard sizes with classical graph par-
tition methods on the Cora dataset.

e G2: Comparable Model Utility. Graph structural information
is the major factor that determines the performance of GNN [26,
32, 57]. To achieve comparable model utility, i.e., high prediction
accuracy in node classification tasks, each shard should preserve
the structural properties of the training graph.

3.2 GraphEraser Framework

To address the above mentioned challenges of unlearning in GNNs,
we propose GraphEraser, which consists of the following three
phases: Balanced graph partition, shard model training, and shard
model aggregation. The general framework of GraphEraser is illus-
trated in Figure 1.

Balanced Graph Partition. It is a crucial step of GraphEraser to
fulfill the two requirements defined in Section 3.1. We propose
to use balanced graph partition methods to partition the training
graph into disjoint shards. We discuss the existing balanced graph
partition methods in Section 8, and explain our proposed two bal-
anced graph partition methods in Section 4.

Shard Model Training. After the training graph is partitioned,
the model owner can train one model for each of the shard graph,
referred to as the shard model (F;). All shard models share the same
model architecture. To further speed up the training process, the
model owner can train isolated shard models in parallel.

Shard Model Aggregation. At the inference phase, for predicting
the label of node w, GraphEraser sends the corresponding data (the
features of w, the features of its neighbors, and the graph structure
among them) to all the shard models simultaneously, and the final
prediction is obtained by aggregating the predictions from all the
shard models. We discuss the existing aggregation strategies and
introduce our learning-based aggregation LBAggr in Section 5.

4 BALANCED GRAPH PARTITION

In this section, we introduce the graph partition module. Consid-
ering the node features and graph structural information in graph
data, we identify three graph partition strategies.

o Strategy 0. Consider the node feature information only and
randomly partition the nodes. Concretely, we assume the node
features are independently and identically distributed as in SISA.
In this sense, we can randomly partition the graph based on its
node IDs.

This strategy can perfectly satisfy G1 (Balanced Shards) in Sec-
tion 3.1, while it cannot satisfy G2 (Comparable Model Utility)
since it can destroy the structural information of the graph. Thus,

Min Chen et al.

(a) Initial state (c) Stable state

(b) Propagation

Figure 3: Illustration of LPA’s workflow. Different colors rep-
resent different shards.

we treat this strategy as a baseline strategy. To address G2, we also
propose Strategy 1 and Strategy 2.

o Strategy 1. Consider the structural information only and try to
preserve it as much as possible. One promising approach to do
this is relying on community detection [52, 53].

o Strategy 2. Consider both the structural information and the
node features. To implement this, we can first represent the
node features and graph structure into low-dimensional vectors,
namely node embeddings, and then cluster the node embeddings
into different shards.

However, directly applying them can result in a highly unbalanced
graph partition due to the underlying structural properties of real-
world graphs (see the distribution of shard sizes with classical
partition methods in Figure 2). To address this issue, we propose
a general principle for achieving balanced graph partition (corre-
sponding to G1), and apply this principle to design new approaches
to achieve balanced graph partition for both Strategy 1 and Strat-
egy 2. In the following, we elaborate on our balanced graph parti-
tion algorithms for Strategy 1 and Strategy 2.

4.1 Community Detection Method

For Strategy 1, we rely on community detection, which aims
at dividing the graph into groups of nodes with dense connec-
tions internally and sparse connections between groups. A spec-
trum of community detection methods have been proposed, such
as Louvain [64], Infomap [43], and Label Propagation Algorithm
(LPA) [42, 52]. Among them, LPA has the advantage of low compu-
tational overhead and superior performance. Thus, in this paper, we
rely on LPA to design our graph partition algorithm. For consistency
purposes, we use shard to represent the community.

Label Propagation Algorithm. Figure 3 gives an illustration of
the workflow of LPA. At the initial state, each node is assigned a
random shard label (Figure 3a). During the label propagation phase
(Figure 3b — Figure 3c), each node sends out its own label, and
updates its label to be the majority of the labels received from its
neighbors. For instance, the yellow node with a dashed outline
in Figure 3b will change its label to blue because the majority
of its neighbors (two nodes above it) are labeled blue. The label
propagation process iterates through all nodes multiple times until
convergence (there are no nodes changing their labels).
Unbalanced Partition. LPA is intriguing and powerful; however,
directly applying the classical LPA results in a highly unbalanced
graph partition. For instance, Figure 2a shows the distribution of
shard size on the Cora dataset [60] (2166 nodes in the training

Graph Unlearning

graph). We observe that the largest shard contains 113 nodes, while
the smallest one contains only 2 nodes. Directly adopting the un-
balanced shards detected by the classical LPA does not satisfy G1,
which severely affects the unlearning efficiency. For instance, if the
revoked node is in the largest shard, there is not much benefit in
terms of unlearning time.

General Principle to Achieve Balanced Partition. To address
the above issue, we propose a general recipe to achieve balanced
graph partition. Given the desired shard number k and maximal
shard size J, we define a preference for every node-shard pair rep-
resenting the node is assigned to the shard (which is referred to
as destination shard). This results in k X n node-shard pairs with
different preference values. Then, we sort the node-shard pairs by
preference values. For each pair in descending preference order, we
assign the node to the destination shard if the current number of
nodes in that destination shard does not exceed 6.

Balanced LPA (BLPA). Following the general principle for achiev-
ing balanced partition, we define the preference as the neighbor
counts (the number of neighbors belonging to a destination shard) of
the node-shard pairs, and the node-shard pairs with larger neighbor
counts have higher priority to be assigned.

Algorithm 1 gives the workflow of BLPA. The algorithm takes
as input the set of nodes V, the adjacency matrix A, the number of
desired shards k, the maximum number of nodes in each shard 6,
maximum iteration T, and works in four steps as follows:

e Step 1: Initialization. We first randomly assign each node to
one of the k shards (Line 2).

o Step 2: Reassignment Profiles Calculation. For each node u,

we denote its reassignment profile using a tuple (u, Csr¢, Cysy, &),

where Cg,c and Cyq; are the current and destination shards of
node u, ¢ is the neighbor counts of the destination shard Cg;

(Line 5 - Line 7). We store all the reassignment profiles in F.

Step 3: Reassignment Profiles Sorting. We rely on the intu-

ition that the reassignment profile with larger neighbor counts

should have a higher priority to be fulfilled; thus we sort F in

descending order by ¢ and obtain Fs (Line 8).

o Step 4: Label Propagation. Finally, we enumerate every in-
stance of Fg. If the size of the destination shard Cy,; does not
exceed the given threshold §, we add the node u to the destina-
tion shard and remove it from the current shard (Line 9 - Line 12).
After that, we remove all the remaining tuples containing node
u from Fy.

The BLPA algorithm repeats steps 2-4 until it reaches the maximum
iteration T, or the shard does not change (Line 14 - Line 15).
Algorithm Analysis. The computational complexity of BLPA de-
pends on the size of the reassignment profile F. Based on its defini-
tion, the number of tuples of each node u in F equals to the number
of neighbors of u. Thus, the computational complexity of BLPA is
O(n-dgye), where n is the number of nodes, and dgye is the average
node degree of the training graph.

Regarding the convergence of BLPA, it is difficult to theoretically
prove the convergence. Instead, we conduct empirical experiments
to validate the convergence performance by checking the number
of changed nodes in each iteration. The experimental results show
that the ratio of moved nodes gradually approximates to zero within
30 iterations on all five datasets.

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

Algorithm 1: BLPA Algorithm

Input: The set of all nodes V, adjacency matrix A, number
of shards k, maximum number of nodes in each
shard §; maximum iteration T;
Output: Shards C = {C1,Cy,---,Cr};
1 Initialization:
2 Randomly allocate all nodes into k shards and obtain
Co = {CO,C(Z), e ,CZ}, step t = 0;
3 Label Propagation:
4+ while True do

5 foreach node u in V do
6 foreach shard C g in {Cilo € Ny,v € C;} do
7 ‘ Store tuple (u, Csp¢, Cygs, &) in F;
8 Sort F by & in descending order and obtain Fq;
9 foreach tuple in Fs do
10 if |C; | < 6 then
st
11 C;st — (C;;tl U u;
12 Cgrc — Cg;cl \ u;
13 Remove all the remaining tuples containing

node u from Fg;

14 if t > T or the shard does not change then
15 break;

16 t—t+1;

17 return C'.

4.2 Embedding Clustering Method

For Strategy 2, we rely on embedding clustering, which considers
both the node feature and graph structural information for the
partitioning. Specifically, we first use a pretrained GNN model to
obtain all the node embeddings, and then we perform clustering
on the resulting node embeddings.

Embedding Clustering. We can adopt any state-of-the-art GNN
models introduced in Section 2.1 to project each node into an em-
bedding space. With respect to clustering, we rely on the widely
used k-means algorithm[30], which consists of three phases: Ini-
tialization, nodes reassignment, and centroids updating. In the ini-
tialization phase, we randomly sample k centroids which represent
the “center” of each shard. In the node reassignment phase, each
node is assigned to its “nearest” shard in terms of the Euclidean
distance from the centroids. In the centroids updating phase, the
new centroids are recalculated as the average of all the nodes in
their corresponding shard.

Similar to the case of the LPA method, directly using k-means
can also produce highly unbalanced shards. In Figure 2b, we observe
that on the Cora dataset, the largest shard contains 10.24% of the
nodes, while the smallest one only contains 1.05% of the nodes.
Balanced Embedding k-means (BEKM). Following the same prin-
ciple for achieving a balanced partition, we propose BEKM as
shown in Algorithm 2. We define the preference as the Euclidean
distance between the node embedding and the centroid of the
shard for all the node-shard pairs. A shorter distance implies a
higher priority. BEKM takes as input the set of all node embed-
dings E = {Ej,Ey, -, Ep}, the number of desired shards k, the

CCS *22, November 7-11, 2022, Los Angeles, CA, USA

maximum number of node embeddings in each shard §, the maxi-
mum number of iterations T, and works in four steps as follows:

o Step 1: Initialization. We first randomly select k centroids C° =
{c}.C3,---,CY} (Line 2).
o Step 2: Embedding-Centroid Distance Calculation. Then,
we calculate all the pairwise distance between the node embed-
dings and the centroids, which results in nxXk embedding-centroid
pairs. These pairs are stored in F (Line 5 - Line 7).
Step 3: Embedding-Centroid Distance Sorting. We rely on
the intuition that the embedding-centroid pairs with closer dis-
tance have higher priorities; thus we sort F in ascending order
and obtain Fg (Line 8).
Step 4: Node Reassignment and Centroid Updating. For each
embedding-centroid pair in Fs, if the size of C; is smaller than
6, we assign node u to shard C; (Line 9 - Line 15). After that,
we remove all the remaining tuples containing node i from F;.
Finally, the new centroids are calculated as the average of all the
nodes in their corresponding shards.

The BEKM algorithm repeats steps 2-4 until it reaches the maxi-
mum iteration T, or the centroid does not change (Line 16 - Line 17).
Algorithm Analysis. Similar to BLPA, the computational com-
plexity of BEKM depends on the size of F. Since there are n nodes
and k shards, the computational complexity of BEKM is O (k-n). We
also empirically validate the convergence performance of BEKM.

4.3 Discussion

Choice of Graph Partition Algorithms. The choice between
BLPA and BEKM depends on the GNN structure. In Section 6.3, we
provide a guideline on which one to choose. In addition, we empha-
size that GraphEraser is a general framework for graph unlearning,
and any other balanced graph partition methods can be plugged
into it. In Section 6.5, we empirically compare our proposed BLPA
and BEKM with several existing representative balanced graph par-
tition methods, and show that our proposed methods are either
more computational efficient or better performing.

Guarantee of Unlearning. Note that the shard models are de-
terministically unlearned but the clustering (graph partition) is
not; thus, GraphEraser is doing approximate unlearning. As such,
we empirically quantify the possible information leakage using
the state-of-the-art information leakage quantification method for
machine unlearning system [11] in Section 6.6, and show that
GraphEraser does not leak much extra information.

Furthermore, from a legal-scholarship perspective, does not re-
partition the graph also satisfies the right to be forgotten. Note that
legal-scholarship is vague and open to different explanations; below
we just explain our understanding. The third item of Art. 7 in the
GDPR states that: “The data subject shall have the right to withdraw
his or her consent at any time. The withdrawal of consent shall not
affect the lawfulness of processing based on consent before its
withdrawal.” In our case, graph partition is a preprocessing step
of the graph dataset, and the partitioned graph can be regarded
as another form of the raw training graph. It suffices to delete the
data owners’ revoked data from the processed data, e.g., remove
the revoked node from the partitioned graph in our case, instead
of removing the revoked data from the raw dataset and redo the
preprocess operations. This is supported by the application of the

Min Chen et al.

Algorithm 2: BEKM Algorithm

Input: Node embeddings E = {Ey, Ep, - - - , E, }, the number
of clusters k, maximum number of nodes embedding
in each cluster §; maximum number of iteration T;
Output: Clusters C = {C1,Cy, - - ,Ci};
1 Initialization:
2 Randomly select k centroids 0 = {9, Cg, cee ,Cz}, step
t=0;
3 while True do

4 Nodes Reassignment:

5 foreach node embedding i € E do

6 foreach centroid j € C do

7 ‘ Store ||E; — Cj||2 in F;

8 Sort F in ascending order and obtain F.

9 foreach node i and centroid j in Fg do

10 if |C§| < § then

11 C; — C;. U i;

12 Remove all the remaining tuples containing

node i from Fg;
13 Centroids Updating:

14 foreach cluster j € C! do

" Zisc; E;
15 Cj = T}l;
16 if t > T or the centroid do not change then
17 ‘ break;
18 te—t+1;

19 return C.

right to be forgotten in search engines [4]: When the data owners
ask to delete their data from the search results of a search engine,
the service providers such as Google only need to directly delete
the data from the current search results, instead of rerunning the
ranking and recommendation algorithms on the raw data.

5 LEARNING-BASED AGGREGATION (LBAggr)

Existing Aggregation Strategies. The most straightforward ag-
gregation strategy, also mainly used in [5], is majority voting, where
each shard model predicts a label and w takes the label predicted
most often. We refer to this aggregation strategy as MajAggr. An
alternative solution is to gather the posterior vectors of all shard
models and average them to obtain aggregated posteriors. The tar-
get nodes are predicted as the highest posterior in this aggregation.
We refer to this aggregation strategy as MeanAggr.

Note that different shard models can have different contributions

to the final prediction; thus allocating the same importance score for
all shard models during the aggregation phase might not achieve
the best prediction accuracy.
Our Proposal. In this section, we propose a learning-based ag-
gregation method LBAggr. We assign an importance score to each
shard model, which can be learned based on the following loss
function.

min E
a weg,

L (Z a; - Fi(Xw, Nw), y)
i=0

A Ml (1)
i=0

Graph Unlearning

Algorithm 3: GraphEraser

Input: Training graph Gy, GNN model type f, number of
shards k, maximum number of nodes in each shard
§, maximum iteration T;
Output: Shard models ¥ = {71, 2, - - , Fr }, importance
scores @ = {ay, ag, - - - A };
Graph Partition:
if the GNN model type f is GCN: then
Partitioning Gy into k shards with Algorithm 1 and
obtain Gs = {GL, G2 -~ . Gk
4 else
Partitioning Gy into k shards with Algorithm 2 and
obtain Gs = {Gy, GZ,-- -, G&%
Shard Model Training:
Using G to train shard models ¥ = {F1, F2, - - , Fr 5
Importance Scores Learning:

[

[T I X

5

=Y

N

®

©

Randomly sampling a set of nodes Vp from Gy;
10 Replacing Gy in Equation 1 with V) and train «;

11 return ¥, a.

oy

where X,, and N,, are the feature vector and neighborhood of
a node w from the training graph, y is the true label of w, F(-)
represents shard model i, @; is the importance score for %;(-), and
m is the total number of shards. We regulate the summation of
all importance scores to 1. Further, £ represents the loss function
and we adopt the standard cross-entropy loss in this paper. The
regularization term || - || is used to reduce overfitting.

Solving the Optimization Problem. We can run gradient descent
to find the optimal « to solve the optimization problem. However,
directly running gradient descent can result in negative values
in a. To address this issue, after each gradient descent iteration,
we map the negative importance score back to 0. The mapping
the negative importance scores to 0 follows the general idea of
projected gradient descent (PGD) [2]. In addition, the summation
of the importance scores could deviate from 1. We first tried to
normalize the importance score using the summation of current
scores in each iteration; however, we empirically found that the
loss could be extremely unstable across different epochs. Thus, we
instead use the softmax function for normalization in each iteration.
Importance Scores Unlearning. Note that the nodes that learn
the optimal importance scores can also be revoked by their data
subjects. Therefore, we need to relearn the shard importance scores
if a request-to-unlearn node is used to train the LBAggr, and this
learning time is counted as part of the unlearning time. To reduce
this relearning time, we propose to use only a small random subset
of nodes from the training graph to relearn. We empirically show
in Section 6.4 that using only 10% of the nodes in the training graph
can achieve comparable utility as using all nodes. In this sense,
relearning the optimal shard importance scores is unnecessary
when the unlearned nodes are not used to train the LBAggr.

5.1 Putting Things Together: GraphEraser

Algorithm 3 illustrates the overall workflow of GraphEraser. It
takes as input the training graph Gy, the GNN model type f, and all

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

necessary parameters for Algorithm 1 and Algorithm 2 (k, §, and T).
If f is a GCN, we invoke Algorithm 1 to partition Go; otherwise, we
use Algorithm 2 (Line 1 - Line 5). We then use the partitioned graph
G to train a set of shard models ¥ (Line 6). Finally, we randomly
sample a set of nodes V) from Gy to train the importance scores
a for each shard models. The shard models and importance scores
produced by GraphEraser can be used to predict the label of new
samples. When some nodes or edges are revoked by the data owner,
we only need to retrain the corresponding shard model.

6 EVALUATION

In this section, we first evaluate the unlearning efficiency and model
utility of GraphEraser, respectively. Second, we conduct exper-
iments to show the superiority of our proposed learning-based
aggregation method LBAggr. Third, we compare our proposed bal-
anced graph partition methods with existing methods. Fourth, we
illustrate the unlearning power of GraphEraser.

In addition, we investigate the following issues, and due to space
limitation, the corresponding results are deferred to the appendix
of our technical report [10]: (1) We investigate the correlation be-
tween the properties of the shard models and the importance scores
resulting from LBAggr. (2) We investigate the impact of graph struc-
ture in a more controllable manner. (3) We show the robustness
of GraphEraser to the number of unlearned nodes/edges. (4) We
conduct ablation studies to show the impact of k and § on the
unlearning efficiency and model utility.

6.1 Experimental Setup

Datasets. We conduct our experiments on five widely used pub-
lic graph datasets [32, 47], including Cora, Citeseer, Pubmed [60],
CS [44], and Physics [44]. Table 2 summarizes the statistics of all the
datasets. Cora, Citeseer, and Pubmed are citation datasets, where
the nodes represent the publications, and there is an edge between
two publications if one cites the other. The node features are binary
vectors indicating the presence of the keywords from a dictionary,
and the class labels represent the publications’ research field. CS
and Physics are coauthor datasets, where two authors are connected
if they collaborate on at least one paper. The node features repre-
sent paper keywords for each author’s papers, and the class labels
indicate each author’s most active fields of study.

GNN Models. We evaluate the efficiency and utility of GraphEraser

on four state-of-the-art GNN models, including SAGE, GCN, GAT,

and GIN, their details are discussed in Appendix A [10]. For each

GNN model, we stack two layers of GNN modules. All the models

are implemented with the PyTorch Geometric? library. All the GNN

models (including the shard models) considered in this paper are
trained for 100 epochs. We use Adam optimizer and set default
learning rate to 0.01 with 0.001 weight decay.

Metrics. In the design of GraphEraser, we mainly consider two

aspects of performance, unlearning efficiency and model utility.

e Unlearning Efficiency. Directly measuring the unlearning time
for one unlearning request is inaccurate due to the diversity of
shards. Thus, we calculate the average unlearning time for 100 in-
dependent unlearning requests. Concretely, we randomly sample
100 nodes/edges from the training graph, record the retraining

Shttps://github.com/rusty1s/pytorch_geometric

https://github.com/rusty1s/pytorch_geometric

CCS *22, November 7-11, 2022, Los Angeles, CA, USA

Table 2: Dataset statistics.

Dataset ‘Category #. Nodes # Edges # Classes #. Features

Cora Citation 2,708 5,429 7 1,433
Citeseer | Citation 3,327 4,732 6 3,703
Pubmed | Citation 19,717 44,338 3 500

CS Coauthor 18,333 163,788 15 6805
Physics | Coauthor 34,493 495,924 5 8415

time of their corresponding shard models, and calculate the aver-
age retraining time.

o Model Utility. We use the Micro F1 score to measure the model
utility, which is widely used to evaluate the prediction ability of
GNN models on multi-class classification [23]. The F1 score is a
harmonic mean of precision and recall, and can provide a good
measure of the incorrectly classified cases.

Competitors. We have two natural baselines: The training from
scratch method (which is referred to as Scratch) and the random
method (which is based on partitioning the training graph randomly
rely on Strategy 0, and we refer it to as Random). The Scratch
method can achieve good model utility but its unlearning efficiency
is low. On the other hand, the Random method can achieve high
unlearning efficiency but suffers from poor model utility.

We implement both community detection and embedding clus-
tering based graph partition methods in Section 4 for GraphEraser.
For presentation purpose, we refer them to as GraphEraser-BLPA
and GraphEraser-BEKM, respectively.

Experimental Settings. For each dataset, we randomly split the
whole graph into two disjoint parts, where 80% of nodes are used
in training GNN models, and 20% of nodes are used to evaluate
the model utility. Note that the graph partition algorithms are only
applied to the training graph. By default, we set the number of
shards k for Cora, Citeseer, Pubmed, CS, and Physics to 20, 20, 50,
30, and 100, respectively, which ensures each shard is trained on a
reasonable number of nodes and edges. The maximum number of
nodes in each shard § is set as f%]. We validate the effectiveness of
this setting in Appendix G [10]. The maximum number of iterations
T of both BLPA and BEKM are set to 30 as we empirically showed
that T = 30 can guarantee the convergence of both algorithms.
Besides, we set the embedding dimension of BEKM as 32. Note
that if the embedding dimension is large, the dimension reduction
method might help.

Implementation. We implement GraphEraser with Python 3.7
and PyTorch 1.7. All experiments are run on an NVIDIA DGX-A100
server with 2 TB memory and Ubuntu 18.04 LTS system. All the
experiments regarding to model utility are run 10 times and we
report the mean and standard deviation.

6.2 Evaluation of Unlearning Efficiency

In this section, we evaluate the unlearning efficiency of different
graph unlearning methods on five datasets and four GNN models.
Setup. Figure 4 illustrates the node unlearning efficiency for dif-
ferent graph unlearning methods. For the shard-based unlearn-
ing methods, i.e., Random, GraphEraser-BLPA, and GraphEraser-
BEKM, each unlearning request time cost consists of two parts:
Retraining the shard models and relearning the importance scores

Min Chen et al.

Table 3: Computational costs of the GraphEraser pipeline on
five datasets. We report the prediction cost and the relearn-
ing cost of LBAggr for BEKM.

Graph Partition Cost | Prediction Cost | Learn Cost of
Dataset | Random BLPA BEKM | Scratch Shard LBAggr
Cora 0.8s 3s 26s 0.002s 0.003s 1.3s
Citeseer 0.5s 2s 20s 0.003s 0.004s 1.5s
Pubmed 1s 20s 240s 0.004s 0.008s 19s
Cs 1s 13s 220s 0.004s 0.009s 25s
Physics 1s 40s 480s 0.005s 0.021s 33s

of LBAggr. As discussed in Section 5, we only use a small portion
of nodes in the training graph to learn the importance scores. The
average relearning time of LBAggr on all datasets is shown in the
last column of Table 3. The results show that the relearning time is
less than 30s for most of the datasets, which is negligible compared
to retraining the shard models.

Results. We observe that the shard-based unlearning methods can
significantly improve the unlearning efficiency compared to the
Scratch method. For all the four GNN models, we observe a similar
time efficiency improvement level. In addition, the relative effi-
ciency improvement of larger datasets (Pubmed, CS, and Physics)
is more significant than that of smaller datasets (Cora and Cite-
seer). For instance, the unlearning time improvement is of 4.16x
for the Cora dataset, 3.08x for the Citeseer dataset, 5.40X for the
Pubmed dataset, 19.25x for the CS dataset, and 35.9x for the Physics
datasets. This is expected. From the Scratch method perspective,
training a large graph can cost a large amount of time. From the
shard-based methods perspective, we can tolerate more shards for
larger graphs while preserving the model utility. Comparing differ-
ent shard-based methods, we observe that GraphEraser-BLPA and
GraphEraser-BEKM have similar unlearning time as Random. This
is made possible by our approach for achieving balanced partition
with BLPA and BEKM (see Section 4).

Additional Time Cost Analysis. Besides the unlearning cost,
there are two additional costs in the GraphEraser pipeline: Graph
partition cost and prediction cost. Table 3 illustrates these two costs
on five datasets. We observe that the graph partition costs of BLPA
and BEKM are higher than Random. This is expected since both
BLPA and BEKM need to iterate multiple times to preserve the
structural information. Once the graph partition is done, we keep
it fixed without unlearning it. In this sense, we can tolerate this
cost since it is only executed once. We empirically validate that
using a fixed partition does not result in noticeable model utility
degradation for GraphEraser [10].

For the prediction cost, the shard-based methods are slightly
more time-consuming compared to the Scratch method, since we
need to obtain the prediction from all shard models and aggregate
them. Fortunately, the prediction cost is negligible since most of
their values are smaller than 0.01 second.

6.3 Evaluation of Model Utility

Next, we evaluate the model utility of different graph unlearning
methods. Table 4 (the red ground columns) shows the experimental
results for node unlearning. For a fair comparison, we also apply
LBAggr for Random.

Graph Unlearning

Cora Citeseer

350

300

. 250
‘ 200
: 150
100

ME

0 (

GAT GIN GCNSAGE GAT GIN GCNSAGE

—

[CIRSTIEN]
o v

—
(=

[

Unlearning Time (s)

=R ey \I
o o

BN Scratch Random

) GAT GIN GCNSAGE

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

Pubmed - CS Physics

Il I Rose Bna 0 Bmen Bome Booo Boww
GAT GIN GCNSAGE GAT GIN GCNSAGE
EmE BLPA EEm BEKM

Figure 4: Comparison of node unlearning efficiency for all graph unlearning methods. BLPA and BEKM stand for GraphEraser-
BLPA and GraphEraser-BEKM unlearning methods, respectively. We omit the results of edge unlearning to avoid repetitive

conclusions.

Table 4: Comparison of F1 scores for unlearning methods and different aggregation methods. Note that the Scratch method

does not need aggregation. We highlight the Scratch method in the green ground and our proposed methods in the red . For

each graph partition strategy, we highlight the best value in bold. For each GNN model, we highlight the best value in blue
bold. We omit the results of edge unlearning due to similar conclusions.

Dataset/ Scratch Random GraphEraser-BLPA GraphEraser-BEKM

Model ‘ ‘ MeanAggr MajAggr LBAggr MeanAggr MajAggr LBAggr MeanAggr MajAggr LBAggr

GAT 0.823 + 0.006 | 0.649 + 0.006 0.638 + 0.010 0.706 + 0.004 | 0.356 + 0.005 0.492 + 0.009 0.727 + 0.009 | 0.672 + 0.004 0.669 + 0.012 0.754 + 0.009
1 GCN 0.739 £ 0.003 | 0.337 £ 0.006 0.188 + 0.004 0.509 + 0.009 | 0.590 £ 0.008 0.319 + 0.007 0.676 + 0.004 | 0.390 £ 0.011 0.247 + 0.012 0.493 + 0.006
8 GIN 0.787 £ 0.013 | 0.760 £ 0.030 0.702 + 0.033 0.736 + 0.021 | 0.681 £ 0.039 0.594 +0.028 0.753 £ 0.015 | 0.758 £ 0.016 0.742 + 0.031 0.801 + 0.018

SAGE 0.824 £ 0.004 | 0.583 £ 0.009 0.572 +0.012 0.682 + 0.013 | 0.354 £ 0.008 0.486 + 0.012 0.684 + 0.014 | 0.673 £ 0.008 0.646 + 0.010 0.740 + 0.013
5 GAT 0.691 £ 0.015 | 0.502 £ 0.012 0.507 £ 0.016 0.631 £ 0.015 | 0.504 + 0.010 0.486 + 0.009 0.676 + 0.004 | 0.744 + 0.007 0.712 + 0.010 0.746 + 0.006
2 GCN 0.493 + 0.006 | 0.263 £ 0.014 0.157 £ 0.011 0.277 + 0.009 | 0.372 + 0.006 0.192 + 0.006 0.450 + 0.006 | 0.298 + 0.005 0.129 + 0.007 0.332 + 0.006
2 GIN 0.587 +0.031 | 0.611 £ 0.028 0.540 + 0.056 0.626 + 0.022 | 0.451 + 0.062 0.447 + 0.032 0.612 + 0.026 | 0.725 + 0.016 0.696 + 0.014 0.739 + 0.020
© SAGE 0.668 £ 0.013 | 0.519 £ 0.024 0.536 + 0.026 0.623 + 0.014 | 0.447 £ 0.007 0.472 + 0.024 0.657 + 0.012 | 0.708 £ 0.003 0.710 + 0.007 0.716 + 0.007
= GAT 0.851 £ 0.004 | 0.852 £ 0.001 0.851 +0.002 0.857 + 0.002 | 0.843 £ 0.002 0.840 + 0.002 0.858 £ 0.003 | 0.853 £ 0.001 0.852 + 0.001 0.860 + 0.003
E GCN 0.748 £ 0.017 | 0.484 £ 0.004 0.207 = 0.000 0.551 + 0.005 | 0.644 + 0.004 0.423 + 0.011 0.718 £ 0.010 | 0.353 £ 0.003 0.207 + 0.000 0.482 + 0.003
"g GIN 0.837 £ 0.015 | 0.854 £ 0.003 0.852 + 0.003 0.856 + 0.003 | 0.849 + 0.002 0.843 + 0.002 0.855 + 0.004 | 0.859 + 0.002 0.851 +0.010 0.859 + 0.003
& SAGE | 0.874 £0.003 | 0.854 +0.002 0.852 +0.003 0.857 +0.002 | 0.841 = 0.003 0.836 + 0.003 0.863 + 0.002 | 0.854 +0.002 0.852 + 0.002 0.862 % 0.002

GAT 0.919 £ 0.004 | 0.880 + 0.001 0.877 +0.001 0.882 + 0.000 | 0.664 + 0.015 0.662 + 0.009 0.858 + 0.004 | 0.885 + 0.001 0.882 + 0.003 0.906 + 0.002
7 GCN 0.903 £ 0.006 | 0.644 £ 0.002 0.528 + 0.001 0.706 + 0.008 | 0.658 £ 0.004 0.440 + 0.003 0.750 £ 0.023 | 0.620 £ 0.003 0.502 + 0.003 0.812 + 0.012
© GIN 0.867 £ 0.005 | 0.856 £ 0.006 0.839 +0.004 0.858 £ 0.005 | 0.655 £ 0.024 0.691 +£0.011 0.789 £ 0.013 | 0.857 £ 0.005 0.844 + 0.005 0.891 + 0.002

SAGE 0.932 £ 0.004 | 0.896 £ 0.005 0.896 + 0.003 0.905 + 0.004 | 0.745 £ 0.009 0.679 + 0.003 0.886 + 0.010 | 0.904 £+ 0.007 0.903 + 0.001 0.927 + 0.002
> GAT 0.955 £ 0.005 | 0.917 £ 0.001 0.915 + 0.001 0.920 + 0.002 | 0.871 £ 0.032 0.858 + 0.044 0.921 £ 0.004 | 0.920 £ 0.001 0.917 + 0.000 0.925 + 0.001
= GCN 0.947 + 0.002 | 0.597 £ 0.001 0.533 +0.001 0.747 + 0.010 | 0.817 + 0.003 0.770 + 0.001 0.858 + 0.008 | 0.575 + 0.003 0.506 + 0.001 0.815 + 0.001
_:‘ GIN 0.934 £ 0.003 | 0.903 £ 0.002 0.916 +0.001 0.921 + 0.002 | 0.842 + 0.009 0.840 + 0.006 0.907 £ 0.003 | 0.924 + 0.002 0.919 + 0.001 0.926 + 0.001
A~ SAGE 0.956 £ 0.005 | 0.712 £ 0.003 0.717 = 0.002 0.823 £ 0.011 | 0.905 £ 0.003 0.894 + 0.003 0.922 + 0.001 | 0.926 £ 0.003 0.924 + 0.002 0.933 + 0.001

Table 5: Comparison of F1 scores for MLP and four GNN
models. A larger gap in F1 scores for MLP and GNN models
means that the graph structural information is more impor-
tant for the GNN models.

Model ‘ Cora Pubmed CS
MLP ‘ 0.657 + 0.019 0.587 £ 0.029 0.868 + 0.002 0.927 + 0.007 0.950 + 0.003

Citeseer Physics

GAT |0.823 £ 0.006 0.691 + 0.015 0.851 + 0.004 0.919 + 0.004 0.955 + 0.005
GCN |0.739 £ 0.003 0.493 + 0.006 0.748 + 0.017 0.903 + 0.006 0.947 + 0.002
GIN |0.787 £ 0.013 0.587 + 0.031 0.837 £ 0.015 0.867 £ 0.005 0.934 + 0.003
SAGE |0.824 + 0.004 0.668 + 0.013 0.874 & 0.003 0.932 + 0.004 0.956 + 0.005

Influence of Datasets. We first observe that on the Cora and
Citeseer datasets, our proposed method, GraphEraser-BEKM and
GraphEraser-BLPA, can achieve a much better F1 score compared
to the Random method. For instance, on the GCN model trained on
the Cora dataset, the F1 score for GraphEraser-BLPA is 0.676, while
the corresponding result is 0.509 for Random. For the Pubmed,

CS, and Physics datasets, the F1 score of the Random method is
comparable to GraphEraser-BEKM and GraphEraser-BLPA, and
can even achieve a similar F1 score as the Scratch method in some
settings. We conjecture this is due to the different contributions
of the graph structural information to the utility of GNN models.
Intuitively, if the graph structural information does not contribute
much to the GNN models, it is not surprising that the Random
method can achieve comparable model utility as GraphEraser-BLPA
and GraphEraser-BEKM.

To validate whether the graph structural information indeed
diversely affects the GNN models’ performance among different
datasets, we introduce a baseline that uses a 3-layer MLP (multi-
layer perceptron) to train the prediction models for all datasets.
Note that we only use the node features to train the MLP model,
without considering any graph structural information. Table 5 de-
picts the comparison of the F1 scores between the MLP model and
four GNN models on five datasets. We observe that for the Cora
and Citeseer datasets, the F1 score of the MLP model is significantly

CCS *22, November 7-11, 2022, Los Angeles, CA, USA

lower than that of the GNN models, which means the graph struc-
tural information plays a major role in the GNN models. On the
other hand, the MLP model can achieve adequate F1 score com-
pared to the GNN models on Pubmed, CS, and Physics datasets,
which means the graph structural information does not contribute
much in the GNN models.

In conclusion, the contribution of the graph structural informa-
tion to the GNN model can significantly affect the behaviors of
different shard-based graph unlearning methods.

Guideline for Choosing an Unlearning Method. In practice,
we would suggest the model provider evaluate the role of graph
structure before choosing a proper graph unlearning method. To
this end, they can first compare the F1 score of MLP and GNN, if the
gap in the F1 score between MLP and GNN is small, the Random
method can be a good choice since it is much easier to imple-
ment, and it can achieve comparable model utility as GraphEraser-
BLPA and GraphEraser-BEKM. Otherwise, GraphEraser-BLPA and
GraphEraser-BEKM are better choices due to better model utility.

Regarding the choice between the two shard partition methods,
i.e., GraphEraser-BLPA and GraphEraser-BEKM, we empirically
observe that if the GNN follows the GCN structure, one can choose
GraphEraser-BLPA, otherwise, one can adopt GraphEraser-BEKM.
We posit this is because the GCN model requires the node degree in-
formation for normalization (see Section 2.1), and the GraphEraser-
BLPA can preserve more local structural information thus better
preserve the node degree [53].

Comparison with Scratch. Interestingly, we could observe that
GraphEraser-BEKM performs slightly better than Scratch in some
cases. For instance, the F1 score of GraphEraser-BEKM is 0.801
on the Cora dataset and the GIN model, while the corresponding
F1 score of Scratch is 0.787. There are two possible reasons for
this phenomenon. First, sampling often can eliminate some “noise”
in the dataset, which is consistent with the observation of prior
studies [12, 62]. Second, GraphEraser makes the final prediction
by aggregating all submodels’ results, in this sense, GraphEraser
performs an ensemble, another way to improve model performance.

Considering the conclusions for node unlearning and edge un-
learning are similar in terms of both unlearning efficiency and
model utility, the results can be found at Appendix H of our tech-
nique report [10], we only provide the results for node unlearning
in the following parts.

6.4 Effectiveness of LBAggr

To validate the effectiveness of the LBAggr method proposed in
Section 5, we compare with MeanAggr and MajAggr by conducting
experiments on five datasets and four GNN models. Table 4 illus-
trates the F1 scores of different aggregation methods for Scratch,
GraphEraser-BLPA, and GraphEraser-BEKM.

Observations. In general, LBAggr can effectively improve the F1
score in most cases compared to MeanAggr and MajAggr. For
instance, on the Cora dataset with GraphEraser-BLPA unlearn-
ing method, LBAggr achieves 0.357 higher F1 score than that of
MajAggr for the GCN model. We also observe that the MajAggr
method performs the worst in most cases. We posit it is because
MajAggr neglects information of the posteriors obtained from each
shard model. Concretely, if the posteriors of the shard models have

Min Chen et al.

Table 6: Impact of the number of training nodes for learning
LBAggr. “10%” and “1000” stand for randomly selecting 10%
and 1000 nodes from the training graph, respectively. “All”
stands for using all nodes in the training graph. We high-

light our recommended choices in the red ground.

F #.Nodes| Cora
10% 0.70 £ 0.02 0.71 = 0.01 | 0.86 £ 0.00 0.91 £ 0.00 0.93 + 0.00

Citeseer | Pubmed CS Physics

=
< 1000 |0.73+0.01 0.72 +0.02 | 0.86 £ 0.00 0.91 £ 0.01 0.93 £ 0.00
© All 0.74 £ 0.00 0.72 +£0.00 | 0.86 £ 0.00 0.91 +£0.00 0.93 + 0.00
z 10% 0.44 £ 0.00 0.31 +0.01 | 0.48 £0.00 0.81 £ 0.00 0.82 £ 0.00
Q 1000 |0.49+0.01 0.31+0.02|047 +0.01 0.81+0.00 0.80 =+ 0.00
© All 0.50 £ 0.00 0.32 +0.03 | 0.48 £0.00 0.82 +0.01 0.81+0.01
z 10% 0.70 £ 0.00 0.72 + 0.00 | 0.86 + 0.00 0.88 +0.00 0.93 + 0.00
8 1000 | 0.72 +£0.02 0.73 £0.02 | 0.86 £ 0.00 0.89 £ 0.00 0.91 £ 0.03

All 0.76 £ 0.00 0.71 +0.00 | 0.86 £ 0.00 0.89 +0.00 0.93 + 0.00
w 10% 0.71 £ 0.01 0.70 = 0.00 | 0.87 £ 0.00 0.93 £ 0.00 0.94 £ 0.00
g 1000 | 0.73+£0.03 0.71 +0.00 | 0.87 £ 0.00 0.92 +0.00 0.93 £ 0.01
g All 0.74 £ 0.00 0.72 = 0.00 | 0.87 £ 0.00 0.92 £ 0.00 0.94 £ 0.00

high confidence to multiple classes rather than a single class, the
MajAggr method will lose information about the runner-up classes,
leading to bad model utility.

Comparing different GNN models, GCN benefits the most while

GIN benefits the least from LBAggr. In terms of model utility, the
GraphEraser-BLPA method benefits the most from LBAggr. We
conjecture this is because the BLPA partition method can capture
the local structural information while losing some of the global
structural information of the training graph [47, 53]. Using LBAggr
helps better capture the global structural information by assigning
different importance scores to shard models.
Impact of the Number of Training Nodes. As discussed in Sec-
tion 5, to further improve the unlearning efficiency, one can use
a small portion of nodes in the training graph to learn the impor-
tance score. Doing this can effectively reduce the relearning time
of LBAggr, as shown in Section 6.2. Here we evaluate its impact on
the model utility. We experiment on three different cases: randomly
sample 10% of nodes, randomly sample a fixed number of 1,000
nodes, and use all nodes, in the training graph.

Table 6 illustrates the results on five datasets and four GNN
models for GraphEraser-BEKM. We observe that both using 10%
of nodes and using a fixed number of 1,000 nodes can achieve
comparable model utility as that of using all nodes. In practice, we
suggest the model provider to adopt the minimum of 10% and 1,000
to learn the importance scores. In another word, the model provider
can use 10% for small graphs, and use 1,000 for large graphs. The
conclusions are the same for GraphEraser-BLPA.

6.5 Comparison with Existing Balanced Graph
Partition Solutions

In this section, we empirically compare GraphEraser with existing
solutions for balanced graph partitioning [33, 35, 50] in terms of
running time and model utility.

Competitors. These algorithms can be broadly classified into three
categories: The first category considers only the graph structural

Graph Unlearning

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

Table 7: Comparison of F1 scores for different graph partition methods. We highlight our proposed method in the red ground

and the best results in bold.

Dataset Model BLPA-based BEKM-based Minimum Edge Cut

D Vi GraphEraser-BLPA BLPA-LP GraphEraser-BEKM BEKM-Hungarian METIS

GAT 0.727 £ 0.009 0.712 £ 0.006 0.754 = 0.009 0.740 £ 0.006 0.683 + 0.007

8 GCN 0.676 = 0.004 0.668 £ 0.020 0.531 £ 0.009 0.552 £ 0.005 0.458 £ 0.010

8 GIN 0.753 £ 0.015 0.722 £ 0.029 0.801 = 0.018 0.795 £ 0.016 0.703 £ 0.020

SAGE 0.684 + 0.014 0.708 + 0.002 0.740 + 0.013 0.739 £ 0.005 0.694 + 0.008

5 GAT 0.688 + 0.005 0.590 + 0.009 0.738 + 0.006 0.737 £ 0.003 0.615 £ 0.002

H] GCN 0.516 = 0.004 0.504 £ 0.022 0.417 £ 0.018 0.397 £ 0.023 0.457 + 0.006

.-9:’ GIN 0.597 £ 0.021 0.589 + 0.041 0.678 = 0.072 0.655 £ 0.059 0.574 = 0.064

o SAGE 0.642 + 0.005 0.682 £ 0.007 0.743 = 0.002 0.734 £ 0.002 0.677 £ 0.004

L] GAT 0.858 £ 0.003 0.857 £ 0.001 0.860 = 0.003 0.857 £ 0.003 0.841 £ 0.001

E GCN 0.718 + 0.010 0.709 £ 0.004 0.659 £ 0.020 0.628 + 0.034 0.650 £ 0.018

"g GIN 0.855 + 0.004 0.854 + 0.001 0.859 + 0.003 0.853 £ 0.001 0.836 + 0.001

] SAGE 0.863 £ 0.002 0.857 £ 0.003 0.862 + 0.002 0.858 £ 0.00 0.849 + 0.003

GAT 0.858 + 0.004 0.862 £ 0.003 0.906 = 0.002 0.901 £ 0.003 0.891 £ 0.013

GCN 0.750 £ 0.023 0.745 £ 0.004 0.812 = 0.012 0.806 + 0.007 0.782 £ 0.021

GIN 0.789 + 0.013 0.786 + 0.003 0.891 + 0.002 0.883 £ 0.007 0.862 + 0.002

SAGE 0.886 + 0.010 0.889 + 0.023 0.927 + 0.002 0.922 £ 0.002 0.906 £ 0.004

» GAT 0.921 + 0.004 0.918 + 0.004 0.925 + 0.001 0.923 £ 0.001 0.918 £ 0.002

E GCN 0.858 + 0.008 0.856 + 0.005 0.815 + 0.001 0.808 £ 0.001 0.810 + 0.001

_:‘ GIN 0.907 £ 0.003 0.897 £ 0.011 0.926 = 0.001 0.923 £ 0.002 0.895 + 0.003

~ SAGE 0.922 + 0.001 0.913 £ 0.002 0.933 = 0.001 0.931 £ 0.001 0.911 £ 0.005

Table 8: Comparison of graph partition efficiency for differ-
ent balanced graph partition methods. We highlight our pro-
posed partition methods in the red ground.

Dataset BLPA-based BEKM-based Minimum Edge Cut
D GraphEraser LP |GraphEraser Hungarian METIS
Cora 3s 179s 26s 817s 4s
Citeseer 2s 30s 20s 1,309s 3s
Pubmed 20s 301s 240s 174,684s 21s
CS 13s 705s 220s 174,498s 15s
Physics 40s 2,351s 480s 948,790s 58s

information and relies on community detection as GraphEraser-
BLPA. The second category considers the graph structural infor-
mation without relying on community detection. The third cate-
gory considers both structural information and node features as
GraphEraser-BEKM. For each category, we choose one most repre-
sentative method as competitor, and we list the details as follows.

e BLPA-LP [50]. Similar to our proposed GraphEraser-BLPA, this
method achieves a balanced graph partition by constraining the
label propagation process. The general idea is to formulate the
label propagation process as a linear programming problem with
2k (k —1) variables and 2k? + nk(k — 1) constraints, where n and k
are the number of nodes and the number of shards, respectively.
When the size of the graph and the number of shards are large,
solving the linear programming problem is time-consuming.

METIS [33]. The objective of METIS is to obtain the balanced
graph partition while cutting the minimum number of edges.
The computational complexity of METIS is O((n + m) - logk),
where m is the number of edges. We implement this method with
official METIS 5.1.0* and a Python wrapper® for METIS library.

4http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
Shttps://github.com/inducer/pymetis

e BEKM-Hungarian [35]. BEKM-Hungarian shares the general
idea of our GraphEraser-BEKM. The main difference is that it has
a different mechanism in the node reassignment step for achiev-
ing balanced k-means. Concretely, BEKM-Hungarian formulates
the node reassignment step as a matching problem and is approx-
imately solved by the Hungarian algorithm. The computational
complexity of the Hungarian algorithm is O (n®).

The reason why we choose these three algorithms is that they
achieve the-state-of-the-art performance for each category. We
discuss other existing algorithms and how these three algorithms
fit into the whole balanced graph partitioning field in Section 8.
Results. Table 7 and Table 8 illustrate the model utility and graph
partitioning efficiency for different methods. We apply LBAggr for
all the graph partitioning methods for a fair comparison.

In general, graph partitioning methods rely on both graph struc-
tural information and node features. i.e., GraphEraser-BEKM and
BEKM-Hungarian, achieve the best model utility when the target
model is GAT, GIN, and SAGE, which is consistent with the con-
clusion of Section 6.3. Comparing GraphEraser-BEKM and BEKM-
Hungarian, we observe that they achieve similar model utility; how-
ever, the computational complexity of BEKM-Hungarian (O(n?))
is much higher than that of GraphEraser-BEKM (O (k - n)). From
Table 8, we also observe that BEKM-Hungarian is not scalable to
large graphs.

When the target model is GCN, the community detection-based
methods, i.e., GraphEraser-BLPA and BLPA-LP, achieve a better
model utility than the minimum-cut-based method (METIS). We
suspect this is because the GCN model requires the node degree
information for normalization, and the community detection-based
methods can preserve more local structural information, thus better
preserving the node degree. Comparing GraphEraser-BLPA and
BLPA-LP, GraphEraser-BLPA is more efficient than BLPA-LP (see
Table 8) while achieving comparable model utility.

http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
https://github.com/inducer/pymetis

CCS *22, November 7-11, 2022, Los Angeles, CA, USA

Table 9: Attack AUC of membership inference against our
GraphEraser (Aj) and deterministic unlearning (Aj).

Model GAT GCN GIN SAGE
Dataset Ar Arr Ar Arr Ar Arr Ar A

Cora 0.512 0.508 | 0.511 0.510 | 0.513 0.510 | 0.511 0.510
Citeseer | 0.515 0.510 | 0.510 0.510 | 0.513 0.513 | 0.512 0.510
Pubmed | 0509 0.510 | 0.511 0.509 | 0.512 0.511 | 0.510 0.511

Cs 0.510 0.509 | 0.520 0.511 | 0.515 0.514 | 0.515 0.513
Physics | 0519 0515 | 0.518 0.512 | 0.512 0.510 | 0.517 0.517

Remarks. GraphEraser is a general framework for GNN unlearn-
ing; any balanced graph partitioning method which meets the re-
quirements in Section 3.1 can be adopted. Therefore, we encourage
the community to develop more efficient and better performing
balanced graph partitioning algorithms for graph unlearning.

6.6 Unlearning Power of GraphEraser

Since our method is highly empirical, we adopt the state-of-the-
art attack against machine unlearning [11] to quantify the extra
information leakage of GraphEraser when the graph is not re-
partitioned. In particular, Chen et al. [11] showed that the attackers,
using an enhanced membership inference attack [48], can deter-
mine whether a target sample exists in the original model and
is revoked from the unlearned model when they have access to
both the original and unlearned model. Here we quantify the extra
information leakage of GraphEraser as the attack’s performance
difference between deterministic unlearning and GraphEraser un-
learning. Concretely, we introduce two scenarios of membership
inference attacks. We start from the same set of original shard
models. In scenario 1, the unlearned models are obtained by di-
rectly deleting the revoked nodes from the corresponding shard
graph, and retrain the corresponding shard models. This is how
GraphEraser generates the unlearned models. In scenario 2, we
retrain from scratch (re-partition the graph, and train a set of new
shard models). This type of unlearning deterministically unlearn
every component while it is extremely time-consuming. Denoting
the two scenarios as Ay and Ajy, the extra information leakage is
the difference of the attack AUC between A and Aj;. We use the
implementation® of [11] to conduct our experiments. The experi-
mental results in Table 9 show that the attack AUC of both A; and
Ajr are close to 0.5 (random guessing), meaning that GraphEraser
does not leak much extra information. This is also consistent with
the observation of [11] that the membership inference performs
bad on SISA based method due to the fact that the aggregation
reduces the influence of a specific sample on its global model.

7 DISCUSSION

Guarantee to the right to be forgotten. Note that when the
adversaries have access to both the original and the unlearned
models, the presence of the deleted node might be inferred using
the friendship information of the graph. A previous study [11]
has shown that machine unlearning is vulnerable to membership
inference attack. However, these attacks are orthogonal to our work
since the primary goal of machine unlearning is to comply with
“legitimate regulations” such as the GDPR. In this sense, as long as

Shttps://github.com/MinChen00/UnlearningLeaks

Min Chen et al.

the model is trained without the revoked sample, the requirement
of the right to be forgotten is satisfied. To mitigate the potential
attacks, one can deploy some defense mechanisms as discussed
in [11], which can be add-ons of GraphEraser.

Compatibility with Commercial Graph Services. Compared
with the existing graph-learning-based services, the additional cost
of GraphEraser is graph partition; however, once the partition is
defined, we can keep it fixed without extra effort. The process of
training shard models is the same as the existing services. Once this
pipeline is built, the maintenance effort of dealing with unlearning
requests is much lower than existing services, since GraphEraser
only needs to retrain the sub-model containing the deleted samples.
Additional Cost of Maintaining Massive Shards. One might
argue that maintaining the shard models is more expensive than
maintaining one global model. However, in machine unlearning,
the cost of retraining the global model is much higher than main-
taining the shard models. Comparing to maintaining one global
model, the additional cost of maintaining the shard models comes
from two sources: (1) Additional prediction time cost due to the
aggregation process; (2) Additional storage cost of storing multiple
shard models instead of storing one global model. From the time
cost perspective, we have empirically shown in Section 6.2 that the
additional prediction time introduced by the shard-based methods
is much less than the retraining time of the global model. From the
economic cost perspective, it is well-known that the computation
cost (of retraining the global model) is much higher than the storage
cost (of renting disk for storing the shard models) [5]. For instance,
the storage costs are of $0.026/GB per month on Google Cloud,
$0.023/GB per month on Amazon Web Services, and $0.018/GB
per month on Azure at the time of writing. Instead, renting the
cheapest GPUs starts at $0.35/hour on Google Cloud, $0.526/hour
on Amazon Web Services, and $0.90/hour on Azure.

Adaptive Machine Unlearning. Gupta et. al [25] define the no-
tion of (&, B, y)-unlearning, which enforces that the output of any
unlearning algorithm should be similar to retraining from scratch.
The authors prove that the general family of distributed learning
and unlearning algorithms such as SISA method satisfies (a, f, y)-
unlearning in the non-adaptive setting (unlearning requests arrive
in a non-adaptive way), but it does not satisfy («, 5, y)-unlearning in
the adaptive setting. As GraphEraser belongs to this general family,
GraphEraser also satisfies (a, f, y)-unlearning in the non-adaptive
setting, but does not satisfy the adaptive setting.

Handling Different Scenarios. In real-world applications, nodes
are also likely to be inserted into the training graph of the GNN
model. We can insert the node to the shard containing the highest
number of its neighbors and retrain the corresponding shard model.
We refer the readers to [10] for handling a scenario where the
removal request comes independently from a specific community.

8 RELATED WORK

Machine Unlearning. The notion of machine unlearning was first
proposed by Cao et al. [8]. Subsequently, the research in machine
unlearning has proceeded into two directions: Deterministic un-
learning and approximate unlearning. The objective of deterministic
unlearning (some papers call it exact unlearning) is to guarantee that
the influence of the revoked samples are completely removed from

https://github.com/MinChen00/UnlearningLeaks

Graph Unlearning

the target model. The straightforward approach of retraining the
global model from scratch perfectly satisfies deterministic unlearn-
ing; however, it is computationally infeasible when the dataset is
large. To reduce the computational cost of retraining from scratch,
Cao et al. [8] consider statistical query learning and dissect the
model into a summation form, so that removing a sample can be
done efficiently by subtracting the summand corresponds to that
sample. However, the algorithm in [8] only applies to learning al-
gorithms that can be transformed into summation form, limiting
itself not for neural networks.

Recently, Ginart et al. [19] have proposed the notion of (e, §)-
approximate unlearning in a way reminiscent of DP [15, 16, 54,
65, 66]. It guarantees that the output distribution of the unlearned
model is close to the model trained without the revoked samples. For-
mally, an unlearning algorithm Uy satisfies (e, §)-approximate un-
learning if Pr [A(D-;) € S|D-;] < €-Pr [Ua(D, A(D),i) € S|D_;]+
6, where A is the learning algorithm, D is the training dataset, S is
the possible output of the model, and i is the revoked sample. In this
sense, DP is a natural choice to support (€, §)-approximate unlearn-
ing. However, when there are a group of samples to be deleted, we
would need to use group DP, which greatly increases the amount
of noise needed and decreases the model utility; thus, DP is not
directly adopted to implement approximate unlearning [19].

While Ginart et al. [19] proposed a (¢, §)-approximate unlearning
algorithm for the k-means problem, Guo et al. [24] gave approxi-
mate unlearning algorithms for linear and logistic regression. It first
performs a convex optimization step and is followed by a Gaussian
perturbation. The algorithm yields error that grows linearly with
the number of updates. Izzo et al. [29] also focus on linear regres-
sion and show how to improve the run-time per deletion of [24]
from quadratic to linear in the dimension. Neel et al. [37] lever-
ages a distributed optimization that partitions the data, separately
optimizes on each partition, and then averages the parameters. It
guarantees that, for a fixed accuracy target, the run-time of the
update operation is constant in the length of the update sequence,
and it can deal with all convex models.

Due to the strong theoretical requirement of (¢, §)-approximate
unlearning, most of previous studies can only deal with linear or
convex models. Note that GNN is a highly non-convex model, which
makes it difficult to theoretically prove that GraphEraser satisfies
(e, 6)-approximate unlearning; thus, we empirically quantify the
possible information leakage relying on membership inference.
Balanced Graph Partitioning. As discussed in Section 6.5, the
existing balanced graph partitioning algorithms can be broadly clas-
sified into three categories. The first two categories adopt Strategy
1 in Section 4 that only consider graph structural information. The
third category adopt Strategy 2 in Section 4 that consider both
graph structural and node feature information.

Recall that in Section 4.1, community detection can inherently
preserve graph structural information with the cost of unbalanced
partitioning. Thus, the first category of previous studies aim to
modify existing community detection methods to satisfy balanced
community size constraint. In BLPA-LP [50], the authors formulate
the label propagation process as a linear programming problem to
satisfy the community size constraints.

On the other hand, the second category of previous studies do
not rely on community detection. Instead, they directly partition the

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

graph by optimizing some predefined criterion, such as minimizing
the graph cut [13, 46] or maximizing the graph modularity [22, 38].
However, these optimization problems are always NP-hard and can-
not be solved exactly; thus, the researchers proposed many approx-
imate or intuitive algorithms. Spectral graph partitioning [36, 64] is
a widely adopted approach. The general idea is first to calculate the
Laplacian matrix of the graph, then calculate the eigenvectors of the
Laplacian matrix. Each node is mapped to one of the eigenvalues in
the second smallest eigenvector, and the sign of the corresponding
eigenvalues defines the graph partition. One can conduct the spec-
tral graph partitioning method hierarchically to partition the graph
into multiple shards. The main drawback of the spectral methods
is they cannot deal with large-scale graphs. A promising solution
for large-scale graph partitioning is utilizing the multilevel graph
partitioning methods. The general idea is first to contract edges
and obtain smaller graphs, then cut the resulting graph, and finally
unfold back to the original graph with some local improvement cri-
terion [1, 2, 28]. Among the multilevel graph partitioning methods,
METIS [31, 33] is a family of the most widely known techniques
and achieves state-of-the-art performance [3].

The general idea of the third category is first to transform the
attributed graph into node embeddings and use balanced clustering
methods to cluster the node embeddings. In BEKM-Hungarian [35],
the authors modify the reassignment step of k-means algorithm to
achieve balanced clusters. The core idea is to formulate the node re-
assignment problem as a matching problem which is approximately
solved by the Hungarian algorithm. In [34], the authors propose to
use linear regression to estimate the class-specific hyperplanes that
partition each class of the data point from others. A soft balanced
constraint is enforced to achieve balanced clustering. The drawback
of this method is that we cannot precisely control the cluster size.

9 CONCLUSION

In this paper, we propose the first machine unlearning framework
GraphEraser in the context of GNNs. Concretely, we first identify
two types of machine unlearning requests, namely node unlearn-
ing and edge unlearning. We then propose a general pipeline for
machine unlearning in GNN models. To achieve efficient retraining
while keeping the structural information of the graph, we propose a
general principle for balancing the shards resulting from the graph
partitioning and instantiate it with two novel balanced graph parti-
tion algorithms. We further propose a learning-based aggregation
method to improve the model utility. Extensive experiments on
five real-world graph datasets and four state-of-the-art GNN mod-
els illustrate the high unlearning efficiency and high model utility
resulting from GraphEraser.

ACKNOWLEDGMENTS

We thank all anonymous reviewers for their constructive comments.
This work is partially funded by the Helmholtz Association within
the project “Trustworthy Federated Data Analytics” (TFDA) (fund-
ing number ZT-I-O01 4). Tianhao Wang did part of the work while
at Purdue University and Carnegie Mellon University, and was
funded by National Science Foundation (NSF) grant No.1931443, a
Bilsland Dissertation Fellowship, and a Packard Fellowship.

CCS *22, November 7-11, 2022, Los Angeles, CA, USA Min Chen et al.

REFERENCES ACM, 855-864. https://www.doi.org/10.1145/2939672.2939754

[1] Reid Andersen, Fan R. K. Chung, and Kevin J. Lang. 2006. Local Graph Partitioning [24] Chuan Gup, Tom Goldstein, Awni Y. Ha'nnun, anfi Laurens van der Ma:aten.
using PageRank Vectors. In IEEE Symposium on Foundations of Computer Science 2020. Certified Data Removal from Machine Learning Models. In International

(FOCS). IEEE, 475-486. https://www.doi.org/10.1109/FOCS.2006.44 Conference on Machine Learning (ICML). JMLR, 3832-3842.) o
[25] Varun Gupta, Christopher Jung, Seth Neel, Aaron Roth, Saeed Sharifi-Malvajerdi,

[2] Dmitrii Avdiukhin, Sergey Pupyrev, and Grigory Yaroslavtsev. 2019. Multi-)) ”) .
Dimensional Balanced Graph Partitioning via Projected Gradient Descent. In and Chr1§ Waites. 2921' Adaptive Machine Unlearning. In Conference on Neural
Proceedings of the VLDB Endowment (VLDB). VLDB Endowment, 906-919. https: Infarmatton Prucessz@g Systems (NeurIPS). NeurIPS, 16319-16330. https://www.
//www.doi.org/10.14778/3324301.3324307 doi.org/10.48550/arXv.2106.04378 .

[3] Amel Awadelkarim and Johan Ugander. 2020. Prioritized Restreaming Algorithms (26] William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Represen-

tation Learning on Large Graphs. In Conference on Neural Information Processing
Systems (NeurIPS). NeurIPS, 1025-1035.

Songtao He, Favyen Bastani, Satvat Jagwani, Edward Park, Sofiane Abbar, Mo-
hammad Alizadeh, Hari Balakrishnan, Sanjay Chawla, Samuel Madden, and

for Balanced Graph Partitioning. In ACM Conference on Knowledge Discovery and

Data Mining (KDD). ACM, 1877-1887. https://www.doi.org/10.1145/3394486.

3403239 (27
[4] Theo Bertram, Elie Bursztein, Stephanie Caro, Hubert Chao, Rutledge Chin Feman,

=

Peter Fleischer, Albin Gustafsson, Jess Hemerly, Chris Hibbert, Luca Invernizzi,
Lanah Kammourieh Donnelly, Jason Ketover, Jay Laefer, Paul Nicholas, Yuan Niu,
Harjinder Obhi, David Price, Andrew Strait, Kurt Thomas, and Al Verney. 2019.
Five Years of the Right to be Forgotten. In ACM SIGSAC Conference on Computer
and Communications Security (CCS). ACM, 959-972. https://www.doi.org/10.
1145/3319535.3354208

Lucas Bourtoule, Varun Chandrasekaran, Christopher A. Choquette-Choo, Hen-
grui Jia, Adelin Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. 2021.
Machine Unlearning. In IEEE Symposium on Security and Privacy (S&P). IEEE,
141-159. https://www.doi.org/10.1109/SP40001.2021.00019

Jonathan Brophy and Daniel Lowd. 2021. Machine Unlearning for Random Forests.
In International Conference on Machine Learning (ICML). JMLR, 1092-1104.
California Consumer Privacy Act 2018. https://oag.ca.gov/privacy/ccpa.

Yinzhi Cao and Junfeng Yang. 2015. Towards Making Systems Forget with
Machine Unlearning. In IEEE Symposium on Security and Privacy (S&P). IEEE,
463-480. https://www.doi.org/10.1109/SP.2015.35

Yinzhi Cao, Alexander Fangxiao Yu, Andrew Aday, Eric Stahl, Jon Merwine, and
Junfeng Yang. 2018. Efficient Repair of Polluted Machine Learning Systems via
Causal Unlearning. In ACM Asia Conference on Computer and Communications Se-
curity (ASIACCS). ACM, 735-747. https://www.doi.org/10.1145/3196494.3196517
Min Chen, Zhikun Zhang, Tianhao Wang, Michael Backes, Mathias Humbert,
and Yang Zhang. 2021. Graph Unlearning. CoRR abs/2103.14991 (2021).

Min Chen, Zhikun Zhang, Tianhao Wang, Michael Backes, Mathias Humbert,
and Yang Zhang. 2021. When Machine Unlearning Jeopardizes Privacy. In ACM
SIGSAC Conference on Computer and Communications Security (CCS). ACM, 896—
911. https://www.doi.org/10.1145/3460120.3484756

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh.
2019. Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph
Convolutional Networks. In ACM Conference on Knowledge Discovery and Data
Mining (KDD). ACM, 257-266. https://www.doi.org/10.1145/3292500.3330925
Daniel Delling, Andrew V. Goldberg, Ilya P. Razenshteyn, and Renato Fonseca F.
Werneck. 2011. Graph Partitioning with Natural Cuts. In IEEE International
Parallel and Distributed Processing Symposium (IPDPS). IEEE, 1135-1146. https:
//www.doi.org/10.1109/IPDPS.2011.108

Zulong Diao, Xin Wang, Dafang Zhang, Yingru Liu, Kun Xie, and Shaoyao He.
2019. Dynamic Spatial-Temporal Graph Convolutional Neural Networks for
Traffic Forecasting. In AAAI Conference on Artificial Intelligence (AAAI). AAAL
Press, 890-897. https://www.doi.org/10.1609/aaai.v33101.3301890

Linkang Du, Zhikun Zhang, Shaojie Bai, Changchang Liu, Shouling Ji, Peng
Cheng, and Jiming Chen. 2021. AHEAD: Adaptive Hierarchical Decomposition
for Range Query under Local Differential Privacy. In ACM SIGSAC Conference
on Computer and Communications Security (CCS). ACM, 1266-1288. https:
//www.doi.org/10.1145/3460120.3485668

Cynthia Dwork and Aaron Roth. 2014. The Algorithmic Foundations of Dif-
ferential Privacy. In Foundations and Trends in Theoretical Computer Science
(Found. Trends Theor. Comput. Sci.). Now Publishers, Inc., 211-407. https:
/Iwww.doi.org/10.1561/0400000042

General Data Protection Regulation 2016. https://gdpr-info.eu/.

General Personal Data Protection Law 2018. https://iapp.org/media/pdf/resource_
center/Brazilian_General_Data_Protection_Law.pdf.

Antonio Ginart, Melody Y. Guan, Gregory Valiant, and James Zou. 2019. Making
AI Forget You: Data Deletion in Machine Learning. In Conference on Neural
Information Processing Systems (NeurIPS). NeurIPS, 3513-3526.

Michelle Girvan and M. E. J. Newman. 2002. Community Structure in Social and
Biological Networks. In Proceedings of the National Academy of Sciences (PNAS).
National Acad Sciences, 7821-7826. https://www.doi.org/10.1073/pnas.12265379
Aditya Golatkar, Alessandro Achille, and Stefano Soatto. 2020. Eternal Sunshine
of the Spotless Net: Selective Forgetting in Deep Networks. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). IEEE, 9301-9309. https:
/Iwww.doi.org/10.1109/CVPR42600.2020.00932

Benjamin H. Good, Yves-Alexandre de Montjoye, and Aaron Clauset. 2010. Per-
formance of Modularity Maximization in Practical Contexts. In Physical Review

E (Phys. Rev. E). APS, 046106. https://www.doi.org/10.1103/PhysRevE.81.046106
Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable Feature Learning for

Networks. In ACM Conference on Knowledge Discovery and Data Mining (KDD).

Mohammad Amin Sadeghi. 2020. RoadTagger: Robust Road Attribute Inference
with Graph Neural Networks. In AAAI Conference on Artificial Intelligence (AAAI).
AAAI Press, 10965-10972.

Shixun Huang, Yuchen Li, Zhifeng Bao, and Zhao Li. 2021. Towards Effi-
cient Motif-based Graph Partitioning: An Adaptive Sampling Approach. In IEEE
International Conference on Data Engineering (ICDE). IEEE, 528-539. https:
//www.doi.org/10.1109/ICDE51399.2021.00052

Zachary Izzo, Mary Anne Smart, Kamalika Chaudhuri, and James Zou. 2021.
Approximate Data Deletion from Machine Learning Models. In International
Conference on Artificial Intelligence and Statistics (AISTATS). PMLR, 2008-2016.
https://www.doi.org/10.48550/arXiv.2002.10077

Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko,
Ruth Silverman, and Angela Y. Wu. 2002. An Efficient k-Means Clustering
Algorithm: Analysis and Implementation. In IEEE Transactions on Pattern Analysis
and Machine Intelligence (TPAMI). IEEE, 881-892. https://www.doi.org/10.1109/
TPAMI.2002.1017616

George Karypis and Vipin Kumar. 1998. A Fast and High Quality Multilevel
Scheme for Partitioning Irregular Graphs. In SIAM Journal on Scientific Comput-
ing (SIAM 3. Sci. Comput.). STAM, 20.1.359-392. https://www.doi.org/10.1137/
51064827595287997

Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In International Conference on Learning Repre-
sentations (ICLR). OpenReview.net, 23341-23362.

Dominique LaSalle and George Karypis. 2016. A Parallel Hill-Climbing Refine-
ment Algorithm for Graph Partitioning. In International Conference on Parallel
Processing (ICCP). IEEE Computer Society, 236-241. https://www.doi.org/10.
1109/ICPP.2016.34

Hanyang Liu, Junwei Han, Feiping Nie, and Xuelong Li. 2017. Balanced Clustering
with Least Square Regression. In AAAI Conference on Artificial Intelligence (AAAI).
AAAI Press, 2231-2237. https://www.doi.org/10.5555/3298483.3298561

Mikko I. Malinen and Pasi Fr"anti. 2014. Balanced K-Means for Clustering. In
Structural, Syntactic, and Statistical Pattern Recognition - Joint IAPR International
Workshop (S+SSPR). Springer, 2-41. https://www.doi.org/10.1007/978-3-662-
44415-3_4

Frank McSherry. 2001. Spectral Partitioning of Random Graphs. In IEEE Sym-
posium on Foundations of Computer Science (FOCS). IEEE, 529-537. https:
//www.doi.org/10.1109/SFCS.2001.959929

Seth Neel, Aaron Roth, and Saeed Sharifi-Malvajerdi. 2021. Descent-to-Delete:
Gradient-Based Methods for Machine Unlearning. In International Conference on
Algorithmic Learning Theory (ICALT). PMLR, 931-962.

Mark EJ Newman. 2006. Modularity and Community Structure in Networks. In
Proceedings of the National Academy of Sciences (PNAS). National Acad Sciences,
8577-8582. https://www.doi.org/10.1073/pnas.0601602103

Aditya Pal, Chantat Eksombatchai, Yitong Zhou, Bo Zhao, Charles Rosenberg,
and Jure Leskovec. 2020. PinnerSage: Multi-Modal User Embedding Framework
for Recommendations at Pinterest. In ACM Conference on Knowledge Discovery
and Data Mining (KDD). ACM, 2311-2320. https://www.doi.org/10.1145/3394486.
3403280

Personal Information Protection and Electronic Documents Act 2000. https:
//laws-lois.justice.gc.ca/ENG/ACTS/P-8.6/index.html.

Jiezhong Qiu, Jian Tang, Hao Ma, Yuxiao Dong, Kuansan Wang, and Jie Tang. 2018.
DeeplInf: Social Influence Prediction with Deep Learning. In ACM Conference on
Knowledge Discovery and Data Mining (KDD). ACM, 2110-2119. https://www.
doi.org/10.1145/3219819.3220077

Usha Nandini Raghavan, R’eka Albert, and Soundar Kumara. 2007. Near Linear
Time Algorithm to Detect Community Structures in Large-scale Networks. In
Physical Review E (Phys. Rev. E). APS, 036106. https://www.doi.org/10.1103/
PhysRevE.76.036106

Martin Rosvall and Carl T. Bergstrom. 2008. Maps of Random Walks on Complex
Networks Reveal Community Structure. In Proceedings of the National Academy
of Sciences (PNAS). National Acad Sciences, 1118-1123. https://www.doi.org/10.
1073/pnas.0706851105

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan
Giinnemann. 2018. Pitfalls of Graph Neural Network Evaluation. CoRR
abs/1811.05868 (2018).

https://www.doi.org/10.1109/FOCS.2006.44
https://www.doi.org/10.14778/3324301.3324307
https://www.doi.org/10.14778/3324301.3324307
https://www.doi.org/10.1145/3394486.3403239
https://www.doi.org/10.1145/3394486.3403239
https://www.doi.org/10.1145/3319535.3354208
https://www.doi.org/10.1145/3319535.3354208
https://www.doi.org/10.1109/SP40001.2021.00019
https://oag.ca.gov/privacy/ccpa
https://www.doi.org/10.1109/SP.2015.35
https://www.doi.org/10.1145/3196494.3196517
https://www.doi.org/10.1145/3460120.3484756
https://www.doi.org/10.1145/3292500.3330925
https://www.doi.org/10.1109/IPDPS.2011.108
https://www.doi.org/10.1109/IPDPS.2011.108
https://www.doi.org/10.1609/aaai.v33i01.3301890
https://www.doi.org/10.1145/3460120.3485668
https://www.doi.org/10.1145/3460120.3485668
https://www.doi.org/10.1561/0400000042
https://www.doi.org/10.1561/0400000042
https://gdpr-info.eu/
https://iapp.org/media/pdf/resource_center/Brazilian_General_Data_Protection_Law.pdf
https://iapp.org/media/pdf/resource_center/Brazilian_General_Data_Protection_Law.pdf
https://www.doi.org/10.1073/pnas.12265379
https://www.doi.org/10.1109/CVPR42600.2020.00932
https://www.doi.org/10.1109/CVPR42600.2020.00932
https://www.doi.org/10.1103/PhysRevE.81.046106
https://www.doi.org/10.1145/2939672.2939754
https://www.doi.org/10.48550/arXiv.2106.04378
https://www.doi.org/10.48550/arXiv.2106.04378
https://www.doi.org/10.1109/ICDE51399.2021.00052
https://www.doi.org/10.1109/ICDE51399.2021.00052
https://www.doi.org/10.48550/arXiv.2002.10077
https://www.doi.org/10.1109/TPAMI.2002.1017616
https://www.doi.org/10.1109/TPAMI.2002.1017616
https://www.doi.org/10.1137/S1064827595287997
https://www.doi.org/10.1137/S1064827595287997
https://www.doi.org/10.1109/ICPP.2016.34
https://www.doi.org/10.1109/ICPP.2016.34
https://www.doi.org/10.5555/3298483.3298561
https://www.doi.org/10.1007/978-3-662-44415-3_4
https://www.doi.org/10.1007/978-3-662-44415-3_4
https://www.doi.org/10.1109/SFCS.2001.959929
https://www.doi.org/10.1109/SFCS.2001.959929
https://www.doi.org/10.1073/pnas.0601602103
https://www.doi.org/10.1145/3394486.3403280
https://www.doi.org/10.1145/3394486.3403280
https://laws-lois.justice.gc.ca/ENG/ACTS/P-8.6/index.html
https://laws-lois.justice.gc.ca/ENG/ACTS/P-8.6/index.html
https://www.doi.org/10.1145/3219819.3220077
https://www.doi.org/10.1145/3219819.3220077
https://www.doi.org/10.1103/PhysRevE.76.036106
https://www.doi.org/10.1103/PhysRevE.76.036106
https://www.doi.org/10.1073/pnas.0706851105
https://www.doi.org/10.1073/pnas.0706851105

Graph Unlearning

[45] Yun Shen, Yufei Han, Zhikun Zhang, Min Chen, Ting Yu, Michael Backes, Yang
Zhang, and Gianluca Stringhini. 2022. Finding MNEMON: Reviving Memories of
Node Embeddings. In ACM SIGSAC Conference on Computer and Communications
Security (CCS). ACM.

[46] Jianbo Shi and Jitendra Malik. 1997. Normalized Cuts and Image Segmentation.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE,

731-737. https://www.doi.org/10.1109/CVPR.1997.609407

Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjin Wang, and

Yu Sun. 2020. Masked Label Prediction: Unified Message Passing Model for

Semi-Supervised Classification. CoRR abs/2009.03509 (2020).

[48] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. 2017. Mem-
bership Inference Attacks Against Machine Learning Models. In IEEE Symposium
on Security and Privacy (S&P). IEEE, 3-18. https://www.doi.org/10.1109/SP.2017.
41

[49] Wen Torng and Russ B. Altman. 2019. Graph Convolutional Neural Networks
for Predicting Drug-Target Interactions. In Journal of Chemical Information and
Modeling (J. Chem. Inf. Model). ACS, 4131-4149. https://www.doi.org/10.1021/
acs.jcim.9b00628

[50] Johan Ugander and Lars Backstrom. 2013. Balanced Label Propagation for Parti-
tioning Massive Graphs. In ACM International Conference on Web Search and Data
Mining (WSDM). ACM, 507-516. https://www.doi.org/10.1145/2433396.2433461

[51] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2018. Graph Attention Networks. In International Con-
ference on Learning Representations (ICLR). OpenReview.net.

[52] Fei Wang and Changshui Zhang. 2008. Label Propagation through Linear Neigh-
borhoods. In IEEE Transactions on Knowledge and Data Engineering (TKDE). IEEE,
55-67. https://www.doi.org/10.1109/TKDE.2007.190672

[53] Hongwei Wang and Jure Leskovec. 2020. Unifying Graph Convolutional Neural
Networks and Label Propagation. CoRR abs/2002.06755 (2020).

[54] Tianhao Wang, Joann Qiongna Chen, Zhikun Zhang, Dong Su, Yuegiang Cheng,
Zhou Li, Ninghui Li, and Somesh Jha. 2021. Continuous Release of Data Streams
under both Centralized and Local Differential Privacy. In ACM SIGSAC Conference
on Computer and Communications Security (CCS). ACM, 1237-1253. https:
//www.doi.org/10.1145/3460120.3484750

[55] Mark Weber, Giacomo Domeniconi, Jie Chen, Daniel Karl I. Weidele, Claudio
Bellei, Tom Robinson, and Charles E. Leiserson. 2019. Anti-Money Laundering
in Bitcoin: Experimenting with Graph Convolutional Networks for Financial
Forensics. CoRR abs/1908.02591 (2019).

[47

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

Xiaokai Wei, Linchuan Xu, Bokai Cao, and Philip S. Yu. 2017. Cross View Link
Prediction by Learning Noise-resilient Representation Consensus. In International
World Wide Web Conference (WWW). IW3C2, 1611-1619. https://www.doi.org/
10.1145/3038912.3052575

[57] Jun Wu, Jingrui He, and Jiejun Xu. 2019. DEMO-Net: Degree-specific Graph

Neural Networks for Node and Graph Classification. In ACM Conference on
Knowledge Discovery and Data Mining (KDD). ACM, 406-415. https://www.doi.
org/10.1145/3292500.3330950

Yinjun Wu, Edgar Dobriban, and Susan B. Davidson. 2020. DeltaGrad: Rapid
retraining of machine learning models. In International Conference on Machine
Learning (ICML). JMLR, 10355-10366.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful
are Graph Neural Networks. In International Conference on Learning Representa-
tions (ICLR). OpenReview.net.

Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. 2016. Revisiting
Semi-Supervised Learning with Graph Embeddings. In International Conference
on Machine Learning (ICML). JMLR, 40-48. https://www.doi.org/10.5555/3045390.
3045396

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton,
and Jure Leskovec. 2018. Graph Convolutional Neural Networks for Web-Scale
Recommender Systems. In ACM Conference on Knowledge Discovery and Data
Mining (KDD). ACM, 974-983. https://www.doi.org/10.1145/3219819.3219890
Hanging Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Vik-
tor K. Prasanna. 2020. GraphSAINT: Graph Sampling Based Inductive Learning
Method. In International Conference on Learning Representations (ICLR). OpenRe-
view.net.

Muhan Zhang and Yixin Chen. 2017. Weisfeiler-Lehman Neural Machine for
Link Prediction. In ACM Conference on Knowledge Discovery and Data Mining
(KDD). ACM, 575-583. https://www.doi.org/10.1145/3097983.3097996

Xiao Zhang and M. E. J. Newman. 2015. Multiway Spectral Community Detection
in Networks. In Physical Review E (Phys. Rev. E). APS, 052808. https://www.doi.
org/10.1103/PhysRevE.92.052808

Zhikun Zhang, Tianhao Wang, Ninghui Li, Shibo He, and Jiming Chen. 2018.
CALM: Consistent Adaptive Local Marginal for Marginal Release under Local Dif-
ferential Privacy. In ACM SIGSAC Conference on Computer and Communications
Security (CCS). ACM, 212-229.

Zhikun Zhang, Tianhao Wang, Ninghui Li, Jean Honorio, Michael Backes, Shibo
He, Jiming Chen, and Yang Zhang. 2021. PrivSyn: Differentially Private Data
Synthesis. In USENIX Security Symposium (USENIX Security). USENIX, 929-946.

https://www.doi.org/10.1109/CVPR.1997.609407
https://www.doi.org/10.1109/SP.2017.41
https://www.doi.org/10.1109/SP.2017.41
https://www.doi.org/10.1021/acs.jcim.9b00628
https://www.doi.org/10.1021/acs.jcim.9b00628
https://www.doi.org/10.1145/2433396.2433461
https://www.doi.org/10.1109/TKDE.2007.190672
https://www.doi.org/10.1145/3460120.3484750
https://www.doi.org/10.1145/3460120.3484750
https://www.doi.org/10.1145/3038912.3052575
https://www.doi.org/10.1145/3038912.3052575
https://www.doi.org/10.1145/3292500.3330950
https://www.doi.org/10.1145/3292500.3330950
https://www.doi.org/10.5555/3045390.3045396
https://www.doi.org/10.5555/3045390.3045396
https://www.doi.org/10.1145/3219819.3219890
https://www.doi.org/10.1145/3097983.3097996
https://www.doi.org/10.1103/PhysRevE.92.052808
https://www.doi.org/10.1103/PhysRevE.92.052808

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Graph Neural Networks
	2.2 Machine Unlearning

	3 Graph Unlearning
	3.1 Problem Definition
	3.2 GraphEraser Framework

	4 Balanced Graph Partition
	4.1 Community Detection Method
	4.2 Embedding Clustering Method
	4.3 Discussion

	5 Learning-based Aggregation (LBAggr)
	5.1 Putting Things Together: GraphEraser

	6 Evaluation
	6.1 Experimental Setup
	6.2 Evaluation of Unlearning Efficiency
	6.3 Evaluation of Model Utility
	6.4 Effectiveness of LBAggr
	6.5 Comparison with Existing Balanced Graph Partition Solutions
	6.6 Unlearning Power of GraphEraser

	7 Discussion
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

