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Abstract
Previous security research efforts orbiting around graphs
have been exclusively focusing on either (de-)anonymizing
the graphs or understanding the security and privacy issues
of graph neural networks. Little attention has been paid to
understand the privacy risks of integrating the output from
graph embedding models (e.g., node embeddings) with com-
plex downstream machine learning pipelines. In this paper,
we fill this gap and propose a novel model-agnostic graph
recovery attack that exploits the implicit graph structural in-
formation preserved in the embeddings of graph nodes. We
show that an adversary can recover edges with decent ac-
curacy by only gaining access to the node embedding ma-
trix of the original graph without interactions with the node
embedding models. We demonstrate the effectiveness and
applicability of our graph recovery attack through extensive
experiments.

1 Introduction
Many complex systems can be represented as graphs, such
as social networks, communication networks, function call
graphs, biomedical graphs, and the World Wide Web [35,
42, 56]. Graph embedding algorithms [6, 19, 77] have been
long researched to obtain effective graph representations to
represent these networks concisely in low dimensional Eu-
clidean vectors. Upon such transformation, these embedding
vectors can make graph analytics tasks efficient and facili-
tate numerous solutions to real world problems, e.g., node
classification [69], community detection [48], link predic-
tion/recommendation [43], binary similarity detection [18,
82,85], malware detection [16,52], fraud detection [70], and
bot detection [2].

It is well recognized that graphs contain sensitive and pri-
vate information about the nodes (e.g., node attributes, the
relationships among the nodes, etc.). Previous security re-
search efforts orbiting around graphs have been focusing
on either (de-)anonymizing the graphs [31, 45, 84] or un-
derstanding the security and privacy issues of graph neu-
ral networks [26, 62, 66, 71, 72, 80, 81]. Specifically, graph
anonymization techniques [31, 45, 84] perturb the original
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graph data to protect users’ privacy while preserving as much
data utility as possible. In contrast, graph de-anonymization
techniques focus on unveiling sensitive private information
from graphs. In recent years, inspired by the membership
inference attack [63], we have witnessed several successful
link re-identification attacks against graph neural networks
that extract private links contained in the training data via
these GNN models [26, 71, 78, 81]. Note that the node em-
beddings are not privacy preserving by design. Yet, they
are pervasively used in many graph analytics tasks as afore-
mentioned. To our surprise, understanding and quantifying
the privacy risks of integrating them with the complex ML
pipeline vin a model-agnostic setting remains unexplored,
hence our focus in this paper.

As such, we fill this gap and quantify the privacy risks
of integrating node embeddings with downstream data ana-
lytics/machine learning pipelines. Our attack’s application
scenarios (see Section 3.2) lie in the complex ML systems
where raw graph data is part of the learning process but can-
not be directly obtained by the attackers due to data segrega-
tion policy and/or privacy policy. Instead, the attackers only
gain access to the transformed graph data (i.e., the node em-
beddings of the original graph). They cannot interact with
the node embedding models since such pipelines usually op-
erate in one direction. For instance, the data holder may
have integrated with the malicious machine learning solution
providers (i.e., MLaaS providers) from the AWS Market-
place [47,65], or the data holder is part of a vertical federated
learning environment in an enterprise [71]. In both cases, the
node embeddings are part of the learning process and can be
obtained by either the malicious MLaaS providers [47,65] or
the insiders [71] in the pipeline.

Concretely, our study addresses two research questions
- can we recover the edges with decent accuracy from the
node embedding matrix and can we recover a graph struc-
ture that is similar to the original graph with respect to the
graph properties? - without knowledge of and the interac-
tions with the node embedding models. Note that these two
research questions were discussed in the link re-identification
attacks [14, 26, 71]. They, however, follow the adversarial
machine learning methodology and assume the interaction
with the target model using shadow datasets and the super-
vision information from the feedback. Our attack does not
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assume such capabilities (see Section 3), which is more prac-
tical in the real world. Our Contributions. In this pa-

per, we propose MNEMON - a joint graph metric learning
and self-supervised learning based graph recovery attack - to
tackle these two questions. MNEMON first leverages the
background information (i.e., the origin of the node embed-
ding matrix) to estimate the average node degree. It then
uses graph metric learning with a multi-head attention mech-
anism to construct a data specific distance metric from a
given node embedding matrix. Coupling with graph met-
ric learning, MNEMON employs graph autoencoder frame-
work to iteratively optimize a graph structure through self-
supervised graph regularization (i.e., the learning objectives
are generated from the data itself). Upon the termination of
the process, the learned graph structure constitutes the recov-
ered graph from the node embedding matrix.

We stress that our goal is not perfectly recovering a graph
from its node embedding matrix. Rather, we focus on un-
derstanding and quantifying the privacy risks of integrating
them with the complex ML pipeline.

A successful graph recovery attack can lead to severe con-
sequences. For instance, in the context of social networks,
MNEMON allows an adversary to gain direct knowledge of
sensitive and private social relationships. Also, certain graph
data is often expensive to obtain (e.g., protein interaction net-
works collected from lab studies). MNEMON can pose a
direct threat to the intellectual property of the data holder as
well. In summary, we make the following contributions.

• We propose a novel model-agnostic graph recovery attack
that exploits the implicit graph structural information pre-
served in the node embedding vectors. We show that the
attacker can unveil the private and sensitive graph struc-
tural information with decent accuracy from the node em-
beddings.

• We systematically define the threat model to character-
ize an adversary’s background knowledge and realistic ap-
plication scenarios. Extensive evaluation of four popu-
lar node embedding models using four benchmark graph
datasets demonstrates the efficacy of our attacks.

• We discuss a preliminary mitigation mechanism to defend
against the graph recovery attack. Our results demonstrate
that MNEMON could be partially mitigated with some
utility trade-off.

2 Preliminaries
2.1 Notations
We denote an undirected, attributed graph as G = (V,E,X),
where V= {vi}n

i=1 represents the nodes, E⊆{(v,u)|v,u∈V}
denotes the edges, and X = {xi}n

i=1 denotes the node fea-
tures, where xi represents the node feature of vi. |E| denotes
the graph size (i.e., the number of edges). The original and
the recovered graphs are denoted as GO and GR respectively.
Let A ∈Rn×n represent the (weighted) adjacency matrix. As

Table 1: Summary of the notations. We use lowercase letters to
denote scalars, bold lowercase letters to denote vectors and bold
uppercase letters to denote matrices.

Notation Description

G = (V,E,X) graph (network)
GO / GR original/recovered graph
n number of nodes
A ∈ Rn×n (weighted) adjacency matrix
X node features
v,u node
d dimension of node embeddings
H ∈ Rn×d node embedding matrix
hv node embedding of node v
t t-th iteration
k (estimated) average node degree
f node embedding model
φ learnable embedding distance function
L loss function

such, G can also be represented as G = (A,X). The nota-
tions introduced here and used in the following sections are
summarized in Table 1.

2.2 Node Embedding

Definition. In this paper, we focus on node embedding,
which plays a central role in graph embedding techniques.
As the name suggests, a node embedding model f maps
nodes to d-dimensional vectors that capture their structural
properties and node features (if available). Formally, a node
embedding model is defined as f : G→H, where H ∈ Rn×d

represents node embedding matrix where d denotes the di-
mension of the embeddings (d� n) and hv ∈H denotes the
node embedding vector of node v. The node embeddings of
connected nodes maintain “approximate closeness” to each
other in the latent space (e.g., hv and hu should be close in
the Euclidean space if v and u are connected in the graph).

Overview. There exists abundant previous work on node
embedding models [6, 19, 77]. Broadly speaking, these tech-
niques can be grouped into two categories - matrix factoriza-
tion based approaches and deep learning based approaches.

• Matrix factorization based approaches. The essence of
these approaches is treating node embedding as a dimen-
sionality reduction problem and factorizing graph adja-
cency matrix or node proximity/similarity matrix to obtain
node embedding [32]. The core idea of these approaches is
that the graph property to be preserved can be interpreted
as pairwise node similarities or node proximity in a low di-
mensional space by matrix factorization. In general, matrix
factorization methods can be classified into two categories
- node proximity matrix factorization and graph Laplacian
eigenmaps factorization.

• Deep learning (DL) based approaches. The pioneer DL-
based approaches include DeepWalk [53], Node2Vec [20],
and their variants. These approaches first generate a set of
truncated random walk paths sampled from a graph, then
apply deep learning techniques (e.g., SkipGram) to the
sampled paths, consequently learning node embeddings.
In recent years, we also witnessed the rise of Graph Neural
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Networks (GNNs). These GNN models are a type of Neu-
ral Network which directly operates on the Graph struc-
ture via message passing between the nodes of graphs,
and encoding the nodes into a low dimensional space (e.g.,
GCN [36], GraphSAGE [23]). They can take node features
into consideration and do not need random walk paths.

We refer the audience to [6,19,77] for the overview of node
embedding techniques and other graph tasks (e.g., graph-
level embedding, graph-level classification, etc.).

3 Threat Model
3.1 Attack Setting
We frame our attack in a model agnostic setting. We assume
that the adversary only has access to the node embedding ma-
trix H together with the background information of the ori-
gin from which the embedding matrix was leaked (see Sec-
tion 3.2 for detailed application scenario discussion). The
attackers do not have any knowledge of the node embedding
model, and they cannot tamper with its internals (e.g., model
parameters, model architecture). We strictly require that the
attackers cannot interact with the target model, and do not
have the auxiliary data to train a shadow model using the
feedback from the target model.

Remarks. It is important to note that our attack setting
is different from the existing adversarial machine learning
settings, whereas the interaction with the target model (i.e.,
querying the target model via publicly accessible API) and
the availability of auxiliary data (e.g., nodes with features
and labels, etc.) are indispensable. Our attack, however, as-
sumes neither. That is, we strictly require that the attackers
cannot interact with the target model, and do not have the
auxiliary data to query a target model and use the query re-
sults to train a shadow model. In other words, this setting
eliminates the supervise information from the target model
and consequently renders the previous link re-identification
attacks inapplicable, hence the novelty of our attack. We pro-
vide a detailed discussion in Section 7 to distinguish our at-
tack from the existing ones.

3.2 Attack Scenarios
We consider our attack’s application scenarios lie in those
complex ML systems where graph data is part of the learning
process but cannot be directly obtained by the attackers due
to data segregation policy and/or privacy policy. As such, we
discuss three real world scenarios below.

• The first attack scenario is the insider threat in a complex
enterprise ML environment. In this scenario, a company
enforces rigid data protection and segregation policies to
guard the security of raw data. As a result, one department
may have sensitive user private profile and relationship in-
formation (i.e., graph data with node features), and an-
other department has the user purchase history. To train a
joint model (e.g., a personalized recommender system) that
leverages the data from different departments, the com-
pany needs to perform vertical federated learning [75]. In-

stead of supplying the graph data to the central model, the
department that holds the graph data may generate node
embeddings that preserve the utility (i.e., user closeness
without disclosing the exact edges) and facilitate the learn-
ing task. The insider then obtains the node embeddings
during this learning process and leaks them to the attack-
ers. This attack scenario is in line with the setting recently
discussed by Wu et al. [71].

• The second attack scenario is the malicious third-party
provider that is already part of the data holder’s data an-
alytics or machine learning pipeline. For example, the
data holder may have integrated with the malicious ma-
chine learning solution providers (i.e., MLaas providers)
from the AWS Marketplace. In this case, the upstream data
holder, without knowing the implications, passes the node
embedding matrix to the rouge provider for downstream
analytical tasks, such as data visualization, link prediction,
node classification, profiling, etc. The attackers can then
obtain the node embedding matrix from the data holder
through the rouge provider. This attack scenario is in line
with the malicious machine learning provider scenario dis-
cussed by Song et al. [65] and Malekzadeh et al. [47].

• The third attack scenario is security misconfiguration in the
ML environment. For instance, researchers may leverage
the free computing resources (e.g., GPUs) offered by Co-
lab, and connect it to their private Github repository. Due
to such misconfigurations, the notebooks containing the
node embeddings are leaked (i.e., wrongly using “anyone
on the Internet with this link can view” instead of “send to
the specific users”). This attack scenario is in line with the
real world misconfigured S3 buckets leakage discussed by
Continella et al. [12].

Background Information Acquisition. Besides, given the
first two attack scenarios, the attackers can easily obtain the
background information of the origin of the embedding ma-
trix (e.g., from which companies the matrices come from).
With fair reconnaissance efforts (e.g., correlating the owner
of Colab notebooks with Github handles), the attacker may
also infer the origin of the embedding matrix in the third sce-
nario. In summary, these three attack scenarios are tangible
and match our attack setting.

3.3 Attack Goals
The primary goal of the attackers is uncovering the edges
with decent accuracy from the node embedding matrix. At-
taining this goal would enable the attacker to expose pri-
vate and sensitive relationships among the nodes rather than
the “approximate closeness” offered by the node embeddings
(see Section 2). Nevertheless, due to the strict attack setting,
it is impractical for the attackers to faultlessly retrieve all the
edges from the node embedding matrix. As a result, the sec-
ondary goal of the attackers is recovering a graph structure
AR that is similar to the original graph AO with respect to the
graph properties. Achieving this goal would enable the at-
tackers to gain additional knowledge of the original graph as
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a whole and perform graph mining tasks, which in turn vio-
lates the intellectual property of the data holder or can facili-
tate advanced attacks, such as re-identifying individuals [31],
structural data de-anonymization [30], etc. For example, re-
covering a graph with similar triangle counts and joint degree
distribution to the original graph would enable the attacker to
gain insights into the underlying user engagement in a social
network. This information itself is sensitive and proprietary.

Non-goals. Recall our attack setting in Section 3.1 that the
attackers only have the node embedding matrix and the back-
ground information of the origin of the embedding matrix,
and cannot interact with the target model with auxiliary data.
We thereby cannot infer node features (i.e., attribute infer-
ence attack) since we do not have any auxiliary data (i.e., we
do not know the format of the original node features). Simi-
larly, we cannot steal the target model (i.e., model extraction
attack) nor can we understand the privacy leakage from the
target model itself as we do not interact with it. Finally, our
attack focuses on the node-level embeddings. We thus do not
attack the graph-level embeddings [6, 19, 77].

4 MNEMON: Graph Recovery At-
tack

4.1 Attack Overview
At a high level, MNEMON contains three main components.

• The first component (see Section 4.2) leverages the back-
ground information (i.e., the origin of the node embedding
matrix) to estimate the average node degree. The goal is to
estimate a rough average node degree k and the graph size
(i.e., |E| = k×n

2 ).

• The second component (see Section 4.3) leverages graph
metric learning (GML) to learn a data-specific distance
function since it is often difficult to choose a standard met-
ric that fits all the datasets. The goal is to learn multi-head
attention weights and tailor the distance function on a per
node embedding matrix basis.

• The third component (see Section 4.4) learns a graph struc-
ture through Graph AutoEncoder (GAE) framework using
self supervised graph regularization. The goal is to opti-
mize the graph structure and reduce the false positive edges
incurred by the learned metric from the second component.

We iteratively optimize the second and third components as
they are inter-connected.

Specifically, GML learns a distance function to measure
the closeness of two nodes and builds the input graph for
GAE (T = t in Figure 1). GAE then learns to reconstruct this
input graph. If GAE finds certain parts of the input graph are
hard to reconstruct, which is reflected by the self supervised
graph learning loss, it may be due to the input graph built by
GML partially capturing the graph structure. We then merge
the graph structures by combining both the input graph and
output graph of GAE, which enables us to retain the most
confident edges (the transition from T = t to T = t + 1 in

GML ( , )t

GAE ( , )t
GML ( , )t+1

A0 GAE ( , )t+1
H0

,

H0

Gumbel-top-k

At+1

+

A0

T=0 T=t T=t+1

Structure Combination

At H t At+1 Ht+1

Estimate k

Estimate k
from

background 
information

Figure 1: Overview of MNEMON. At timestamp T = 0,
MNEMON estimates the average node degree k and initializes
the seed graph using Gumbel-Top-k trick. At timestamp T = t,
it iteratively learns a data-specific graph distance metric using
GML and optimizes a graph structure in a self-supervised way
using GAE.

Figure 1). The combined graph is then used to guide GML
to update its metric learning process in the next iteration. We
outline MNEMON’s workflow in Figure 1. In the following
sections, we discuss the technical details of our attack.

4.2 Estimate the Average Node Degree
The only clue that the attackers have is the background infor-
mation about the origin of the node embedding matrix. For
instance, in our first attack scenario where the node embed-
ding matrix is leaked by an insider, it is straightforward for
the attackers to obtain such background information. The
attacker’s immediate task is thereby estimating the average
node degree k. The rationale is straightforward. The attack-
ers already know the number of nodes from the embedding
matrix (i.e., n). Yet, due to the combinatorial nature of the
graph, there exist n(n− 1)2 possible edges. As such, if the
attacker can estimate the average node degree k, they can
trivially obtain the estimated size of the original graph (i.e.,
the number of edges) which is equivalent to (k× n)/2. In
this way, the estimated graph size enables them to effectively
learn the graph structure as we will discuss in Section 4.3 and
Section 4.4.

Abundant previous work [13, 24, 25, 38, 41] has already
exemplified that the graphs of similar origins may share sim-
ilar graph properties (e.g., node degree, graph density, small
world phenomenon, local clustering coefficient, etc.). Our
core idea is that the attackers can estimate the average node
degree from the graphs of similar origins and transfer the es-
timated node degree from these graphs to facilitate the attack.
This alleviates the attackers from stealing a sample training
data from the data holder, which, in turn, makes our attack
realistic. For instance, if the attackers know that the node
embeddings come from a Facebook network, they can lever-
age graph sampling methods to sample Facebook networks
publicly available in the Network Data Repository [59] and
estimate the average node degree of the network that they
target (see Section 5 for how we use graph sampling to sam-
ple real world data). These graph sampling methods have
been proven accurate in estimating the average node de-
gree [60]. In this paper, we use the state-of-the-art spiky-
ball sampling [41] implemented in the latest Little Ball of
Fur python library [60] to estimate the average node degree.
Additional details can be found in Section 5.2.
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Notes. The graph sampling process does not interact with
the original node embedding models. It also does not need
the supervision information from the target models as re-
quired by previous research [14, 26, 71]. We also stress that
MNEMON does not estimate or require the precise average
node degree. MNEMON can accommodate the inevitable
estimation error. We provide a detailed study in Section 5.5
to illustrate this capability. For instance, we show that our
attack can still achieve good performance even when the es-
timated average node degree is twice the real average node
degree (see Section 5.5) thanks to graph metric learning (see
Section 4.3) and self-supervised graph structure learning (see
Section 4.4).

4.3 Graph Metric Learning
Upon estimating the average node degree, the common ap-
proach to recover a graph from the node embedding ma-
trix is using kNN algorithm. kNN builds a graph in which
two nodes v and u are connected by an edge if the distance
between the embedding vectors hv and hu is among the k-
th smallest distances. The drawback of kNN algorithm is
that it requires a manually predefined distance function for
neighbor selection. However, it is often difficult to choose
a standard metric that fits all the datasets and tasks of in-
terest. Take a barbell graph for example, which consists of
two dense cliques connected by a long chain. Reflected in
the latent space, the node embedding vectors from two dense
cliques are close to each other (i.e., dense regions), while
those from the long chain are relatively farther to each other
(i.e., sparse regions). A standard distance function, such as
Eucliean or cosine distance, used by kNN may not recover
the edges from the long chain as the distances among them
are inevitably large. Yet, they are equally connected from a
graph perspective. As such, we propose to leverage graph
metric learning in the node embedding space to learn a data-
specific distance function and automatically adjust for both
the dense and sparse regions in the node embedding matrix.
Graph Initialization with Gumbel-Top-k Trick. We fol-
low the approach discussed by Kazi [34] to initialize a seed
graph. We first generate a fully connected graph with edge
normalized distance score using Equation 1.

pvu = e−τδ(hv,hu),∀v,u ∈ V (1)

Here δ is a distance function and τ is a temperature param-
eter controlling the smoothness of the distance scores be-
tween node embedding vectors. Instead of using the Eu-
clidean distance function adopted by Kazi [34], we opt for
cosine distance as the distance function δ, i.e., δ(hv,hu) =
1− cos(hv,hu).

Note that most of the node embeddings are normalized to
facilitate downstream tasks. In this case, Euclidean distance
is proportional to cosine distance, given a well normalized
value range of the node embeddings. When node embed-
dings are not normalized, our framework can also be adjusted
to Euclidean distance. Let P = {pvu} denote the edge prob-
ability matrix. We then leverage Gumbel-Top-k trick [39] to
sample from P, which generalizes Gumbel-Max trick [22] to
draw an ordered sample of size k without replacement from a

categorical distribution by taking the indices of the k largest
perturbed log-probabilities.

That is, we perturb each pvu by adding a Gumbel random
variate ϑvu ∼ Gumbel(0,1). We then select the indices of
the k largest perturbed log-probabilities without replacement.
This process makes the sampling a stochastic relaxation of
kNN [34]. This sampled adjacency matrix (denoted as A0)
constitutes our seed graph structure. Note that δ is used for
sampling purposes only and is not part of our learning targets.
This corresponds to T = 0 in Figure 1.
Learnable Distance Function (φ). Due to the stochastic
nature of Gumbel-Top-k trick, we inevitably obtain an ini-
tial noisy graph structure from the above graph initialization
process. That is, an edge (v,u) in A0 may not exist in the
original graph GO, i.e., a false positive edge. To reduce such
false positives, we propose a learnable distance function φ to
learn a better graph structure. The core idea is that, instead
of using a predefined distance function, we leverage metric
learning [74] to learn a distance metric for the input space of
data (i.e., the node embedding matrix H) from the adjacency
matrix A that preserves the node relationships (i.e., A is used
to supervise the distance learning). In this paper, we adopt
a weighted cosine distance (defined in Equation 2) [8, 83] as
our learnable distance function φ.

φ(hv,hu) = 1− cos(w◦hv,w◦hu) (2)

Here w is a learnable weight vector that is the same dimen-
sion as hv and hu, and ◦ denotes the Hadamard product. Fol-
lowing the procedure discussed in [10,68], we further extend
Equation 2 to a multi-head version as in Equation 3 to in-
crease the expressiveness and stablize the learning process.

φ(hv,hu) = 1− 1
m

m

∑
i=1

cos(wi ◦hv,wi ◦hu) (3)

Here m refers to the number of attention heads. In this way,
we can learn the distance function from multiple perspec-
tives. Note that all node embeddings share the same metric
parameters W = {wi}m

i=1.
Graph Sparsification.

We plug φ into Equation 1 (i.e., replacing δ) and use the
aforementioned Gumbel-Top-k-based sampling trick to ex-
tract an adjacency matrix. Our graph sparsification method
is different from the ε-neighborhood approach used by [10]
which cannot easily control the graph size (i.e., ε is fixed and
may lead to different graph sizes as the learned weighted ad-
jacency matrix also evolves during the learning process).

4.4 Self-Supervised Graph Structure Learn-
ing

Having introduced how we apply the graph metric learning
technique to tune a data-specific distance function in the pre-
vious section, we move on to discuss how we optimize a
graph structure and learn the graph distance metric jointly
via self-supervised learning. The core idea is that we re-
fine the initial noisy graph structure through self-supervised
graph regularization. To this end, we propose to use Graph
AutoEncoder [37] (GAE) with an adaptive graph structure
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Algorithm 1: Graph recovery attack MNEMON

Input : Node embedding matrix H0, background
information B, maximum iteration T ,
hyperparameters τ,α, β, η, m

Output: Learned graph structure AT (i.e., GR)
1 k← EstimateAvgDegree(B)
2 A0← Apply Gumbel-Top-k trick on the fully

connected probabilistic graph P with τ (Equation 1)
to generate the initial seed graph

3 for t← 0 to T −1 do
4 At ← GML(At ,Ht ,m)

5 At+1,Ht+1← GAE(At ,Ht)

6 L←Llap(At+1,H0)+Lspa(At+1,α,β)

7 + Lrec(At+1,At)
8 Backpropagate L
9 At+1←Combine(A0,At+1,η)

10 At+1← Binarize(At+1)

11 end
12 GAE

combination mechanism to iteratively refine the graph struc-
ture learned from the node embedding matrix.
Graph Autoencoder (GAE). Given the adjacency matrix
roughly estimated using the multi-headed distance metric in
Eq.3 and the node embedding vectors as the input, GAE
learns to refine the adjacency matrix as the output. The initial
input of our GAE is G0 = (A0,H0). Here H0 represents the
node embedding matrix obtained by the attackers. A0 rep-
resents the initialized seed graph. In this way, we treat H0

as the node features X of G0. Note that we add a superscript
for ease of description of the following iterative learning pro-
cess.

• Encoder. The encoder is a Z-layer graph convolutional net-
work (GCN) [36]. At the t-th iteration, its input is a graph
Gt = (At ,Ht). The encoder (see Equation 4) learns a latent
representation Ht+1 ∈ Rn×d where each row represents a
node v’s latent representation after encoding.

Ht+1 = GCN(At ,Ht) (4)

• Decoder. We use an inner-product decoder in this pa-
per [36]. The adjacency matrix can be reconstructed using
Equation 5, where σ(x) = 1/(1+e−x) and the output At+1

is a weighted adjacency matrix.

At+1 = σ(Ht+1Ht+1T
) (5)

Note that GAE is a generic framework.
We follow the design by Kipf et al. [37] and use GCN as

the encoder and inner-product as the decoder. This design al-
lows us to use linear GCN [61] to accelerate the computation
and compare to our baseline [14] in Section 5. The adver-
sary can plug in other GNN models into GAE framework.
The audience can use different architectures as encoders and
decoders.

Self-Supervised Graph Regularization. MNEMON can-
not interact with the target model (i.e., the node embedding
model). We therefore rely on several graph regularization
objectives to guide the above GAE-based learning process in
a self-supervised way.

• Graph Laplacian regularization (Llap) [4]. A graph Lapla-
cian regularization assumes that the learned weighted ad-
jacency matrix is smooth with respect to a set of node fea-
tures. In our case, the weighted adjacency matrix is At+1

and the set of node features is the node embedding matrix
H0. Note that our goal is to optimize the graph structure
(i.e., At+1). As we can see in Equation 6, we stress that we
always force that the learned weighted adjacency matrix
At+1 is smooth with respect to the initial node embedding
matrix H0. As such, graph Laplacian regularization can be
interpreted that two connected nodes in the learned graph
structure should be close enough in the latent node embed-
ding space defined by H0.

Llap(At+1,H0)=
1

2n2 ∑
v,u

At+1
vu ‖h0

v−h0
u‖=

1
2

tr(H0T
Lt+1H0)

(6)

where tr denotes trace of matrix, Lt+1 = Dt+1−At+1 and
Dt+1 = ∑v At+1

vu .

• Graph sparsity regularization (Lspa) [33]. In the real world,
the graphs are normally sparse. We use graph sparsity
regularization proposed by Kalofolias et al. [33] to learn
graphs that meet such expectations. As we can see in Equa-
tion 7, graph sparsity regularization encourages that each
node connects to at least another node in the first term, and
penalizes large degrees in the second term naturally aris-
ing from the first term. Graph sparsity regularization can
be interpreted as using α to force the graph degrees to be
positive and β to control the graph sparsity.

Lspa(At+1,α,β) =−α1T log(At+11)+
β

2
‖At+1‖ (7)

where α > 0 and β ≥ 0 are two controlling hyperparame-
ters.

• Graph reconstruction loss (Lrec) [37]. Graph reconstruc-
tion loss forces GAE to learn a latent representation Ht+1

to faithfully rebuild the input adjacency matrix At .

In this paper, we adopt the link prediction as the way to
interpret the reconstruction loss [44] and minimize the bi-
nary cross entropy loss between negative (i.e., non-existing
edges) and positive samples (i.e., existing edges). The loss
function can be found in Equation 8.

Lrec =
1

2n2 ‖A
t◦log(At+1)+(1−At)◦log(1−At+1)‖2

F

(8)

where ◦ is elementwise product and 1 is an all-ones matrix.
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To summarize, Lrec forces GAE to learn simultaneously the
updated latent representation Ht+1 and a graph adjacency
matrix At+1 decoded from Ht+1 to faithfully rebuild the in-
put adjacency matrix At . Llap and Lspa makes the learned
graph smooth and sparse. Note that all these three supervi-
sory signals are from the data itself.

Learning Objective. Equation 9 summarizes the objective
function of the self-supervised graph structure learning.

L = Llap +Lspa +Lrec

W∗, A∗ = arg min
W, A

L(W,A,H0) (9)

By minimizing Equation 9, we can jointly refine the graph
structure and the graph metric function φ. The learning pro-
cess is executed with two alternating steps. First, we refine
the distance metric φ by updating the multi-heads parameters
wi=1...m, given the current estimation of the graph structure
(Section 4.3). Second, we estimate the graph structure using
the current distance metric φ (Section 4.4). The two steps are
complementary to each other and boost the overall accuracy
of graph structure recovery.

It is worth noting that all three loss functions are empir-
ically comparable in magnitude in our evaluation. The ad-
versary can weigh the losses to accommodate their specific
attack targets in Equation 9.

Adaptive Graph Structure Combination. The learned
weighted graph structure At+1 is then combined with the
input graph structure A0 using Equation 10. This structure
combination step can be interpreted as a denoising function
to reduce false positive edges incurred by the initial adja-
cency matrix A0. That is, GAE learns to reconstruct a graph
structure At+1 given its structure At and node feature Ht . The
edges reconstructed with high confidence are likely to appear
the original graph. we use η in Equation 10 to control the up-
date rate of A0 using At+1, and iteratively filter out the false
positive edges from the initial graph structure.

At+1 = (1−η)A0 +ηAt+1 (10)

Note that At+1 remains a weighted adjacency matrix af-
ter combination. At the end of each iteration, however,
we need to obtain the learned graph structure in a binary
form to guide graph metric learning in the next iteration.
To this end, we first apply an entrywise clipping function,
clip(x) = min(max(0,x),1), to At+1. We then use the same
Bernoulli binarization strategy outlined in [9] to obtain the
binary adjacency matrix At+1.

Specifically, we treat each element of the weighted adja-
cency matrix At+1 as the parameter of a Bernoulli distribu-
tion and sample independently to produce the final binary
adjacency matrix.

Summary. We summarize the whole learning process (i.e.,
Section 4.2, Section 4.3 and Section 4.4) in Algorithm 1. Ad-
ditional details (e.g., complexity analysis) can be found in
Appendix A.

Table 2: Summary of datasets.

Dataset Category |V| |E| |X| d|E|/|V|e Density

Cora Citation 2,708 5,429 1,433 4 0.0014
Citeseer Citation 4,230 5,358 602 3 0.0006
Actor Co-Occurrence 7,600 33,544 931 9 0.0011
Facebook Social 4,039 88,234 1,283 43 0.011

5 Evaluation
5.1 Experimental Setup
Datasets. We use 4 public benchmark datasets to evaluate
the performance of our graph reconstruction attack, includ-
ing Cora [76], Citeseer [76], Actor [51], and Facebook [49].
Cora and Citeseer are citation networks with nodes represent-
ing publications and edges indicating citations among these
publications. Actor is the actor-only induced subgraph of the
film-director-actor-writer network used in [51]. Each node
corresponds to an actor, and the edge between two nodes de-
notes co-occurrence on the same Wikipedia page. Facebook
is a social network where nodes represent Facebook users
and edges are friendships. We use these datasets to verify
the efficacy of our attack given graphs with different charac-
teristics (e.g., origin, graph size, density, node feature size,
etc.). For example, Facebook is a social network, it has a
well known small world phenomenon and tight community
structures among the nodes while the other networks are rel-
atively sparse. Statistics of these datasets are summarized in
Table 2.
Node Embedding Models ( f ). We use four popular
node embedding models - network embedding as sparse ma-
trix factorization (NetSMF) [54], Deepwalk (abbreviated as
DW) [53], Node2Vec (abbreviated as N2V) [20] and graph
convolutional network (GCN) [36] - to generate node embed-
dings for our evaluation. These four node embedding mod-
els are representative of the existing node embedding model
families. Network embedding as sparse matrix factoriza-
tion (NetSMF) [54] improves NetMF [55] and represents the
state-of-the-art matrix factorization based approach to gener-
ate node embeddings. Deepwalk and Node2Vec are two well
known shallow neural network-based (i.e., a neural network
with one hidden layer) node embedding techniques. Graph
convolutional network (GCN) is a widely used deep neural
network based approach for graph representation learning.
Note that NetMF, Deepwalk, and Node2Vec generate node
embedding using graph structural information only, while
GCN considers both node feature and graph structure. As
such, these models also cover different real world use cases
whereas node embeddings can be generated with different
inputs. For reproducibility purposes, we outline their details
below.

• NetSMF. We use the Pytorch implementation by the orig-
inal authors [7]. The window size of approximate matrix
is 10. The number of negative nodes in sampling is 1. We
run the path sampling algorithm for 100 iterations.

• Deepwalk. We use the DGL implementation of Deepwalk.
The learning rate is set to 0.1. The number of negative
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nodes in sampling is 5. The random walk length is fixed at
80, and we run 10 random walks per node.

• Node2Vec. We also use the DGL implementation of
Node2Vec. The number of negative nodes in sampling is
5. The random walk length is fixed at 50, and we run 100
random walks per node. p and q are set to 0.25 and 4 re-
spectively by default.

• Graph Convolutional Network (GCN). We use the Py-
torch Geometric implementation of GCN. Our GCN model
consists of 2 layers as suggested by the original authors.
For the first hidden layer, we set the hidden unit size to
twice the size of input vectors. For the second layer, we set
the hidden unit size to the embedding size. We use ReLU
as the activation function between layers. Node embed-
dings are generated using link prediction as the objective
function. We train the GCN model for 400 epochs.

For all node embedding models, we set their output embed-
ding size (i.e., d) to 64, 128, and 256 for our evaluation.
These sizes are commonly used in the real world practices
balancing between the expressiveness of the node embed-
dings and the computational complexity of the downstream
tasks. Besides, we use the largest connected components
from all four datasets to accommodate these node embedding
models in our evaluation.

Competitors. We implement three baseline methods de-
tailed below for comparison study.

• Direct Recovery. This baseline computes the pairwise
similarity matrix from the embeddings of the original
graph and reconstructs the graph by choosing the top
k× n/2 pairs (i.e., edges) of the largest pairwise similar-
ity scores. It is a straightforward attack strategy that can
be leveraged by the adversaries since the embeddings of
similar nodes should be close in the latent spaces (see Sec-
tion 2). Note that our implementation of direct recovery is
identical to the decoder used by Duddu et al. [14] to recon-
struct graphs.

• kNN Graph. We employ the widely used kNN algorithm
(see Section 2) as the second baseline. kNN builds a graph
in which two nodes v and u are connected by an edge if the
distance between hv and hu is among the k-th smallest dis-
tances. We use cosine similarity as the distance function.

• Invert Embedding [9]. We adapt the optimization algo-
rithm (Algorithm 2&3 in Chanpuriya et al. [9]) as our third
baseline to recover a graph from the node embeddings.
Since the attackers cannot obtain the real eigenvalues from
the PPMI matrix in a model agnostic setting, we thereby
use a random diagonal eigenvalue matrix together with the
node embedding matrix to generate the low-rank approx-
imation matrix. We set the other hyperparameters as out-
lined in Chanpuriya et al. [9]. Additional discussion about
invert embedding can be found in Section 7.

The graph size (i.e., the number of edges) of all baselines are
set to k× n/2. We detail how we estimate k in Section 5.2

and how k influences the graph recovery performance in Sec-
tion 5.5.

Hyperparamter Configurations. We set the number of
attention heads m to 16. The temperature τ, graph sparsity
hyperparameters α and β, and the update rate η are set to 1,
0.3, 0.1 and 0.5 respectively. We set the maximum iteration
T to 400. We use a linear graph autoencoder (i.e., Z is set to
1) proposed by Salha et al. [61], which is an effective alterna-
tive to multilayer GCNs. These hyperparameter values offer
consistent performance across different datasets and models
in our evaluation.

Evaluation Metrics. Recall that the attackers have two
main goals. Their primary goal is uncovering the edges with
decent accuracy from the node embedding matrix, and their
secondary goal is recovering a graph structure that is simi-
lar to the original graph with respect to the graph properties.
Bearing them in mind, we use two categories of metrics to
evaluate MNEMON’s performance.

• Edge Metrics. We first use four edge related metrics - pre-
cision (P), recall (R), F1 score (F1), and joint degree dis-
tribution (JDD) - to measure how MNEMON attains the
primary goal. Precision, recall, and F1 are commonly used,
and we apply them to measure the overall capability of
MNEMON recovering the exact edges. The joint degree
distribution is a metric relating to the edge distribution and
provides an additional measurement about 1-hop neighbor-
hoods around a node. It examines each pair of connected
nodes and notes their respective nodal degrees. It is defined
as P(k1,k2) = µ(k1,k2)×m(k1,k2), where µ(k1,k2) = 1 if
k1 = k2 otherwise 2, and m(k1,k2) denotes the number of
edges connecting nodes of degree k1 and k2.

We use SecGraph [29] to calculate the Jaccard similarity
among two JDDs. For all edge metrics, values close to 1
are the best.

• Global Metrics. We then employ three global metrics -
relative Frobenius error, relative triangle error, and rela-
tive average clustering coefficient error - to measure how
MNEMON achieves its secondary goal. The relative error
is defined as the absolute error (i.e., the difference between
the measured value and ground truth value) divided by the
ground truth value. It gives an indication of how good a
measurement is relative to the ground truth value, or in
other words, how much the observed value deviates from
actual value. We use the relative Frobenius error, which
measures the difference between the adjacency matrix AO
and AR, i.e., ‖AO−AR‖F/‖AO‖F . Similarly, we count the
absolute difference between the number of triangles (re-
spectively average clustering coefficient) of GR and that of
GO, then divided by the number of triangles (respectively
average clustering coefficient) of GO to calculate the rel-
ative triangle error (the relative average clustering coeffi-
cient error). For all global metrics, values close to 0 are
the best.

Similar relative error metrics are also used in Chanpuriya
et al. [9].
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Figure 2: Distribution of estimated average node degrees. The
mean and standard deviation of our estimated average node de-
gree of the citation/co-occurrence graphs (Figure 2a) are 4.6 and
0.8. The respective values of social networks (Figure 2b) are
45.7 and 8.4.
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Figure 3: F1 scores and relative triangle error scores of all
basesline methods and MNEMON when given different node
embedding sizes (i.e., 64, 128 and 256). We use Node2Vec to
generate node embedding matrices.

In practice, the audience could potentially leverage
Narayanan-Shmatikov’s attack [50] (and other appropriate
de-anonymization attacks) to measure, to what extent, the
recovered graph can assist the graph de-anonymization task
given different graphs and different levels of background
knowledge.

Runtime Configuration. All the experiments in this paper
are repeated 5 times. For each run, we follow the same exper-
imental setup laid out before. We report the mean and stan-
dard deviation of each metric to evaluate the attack perfor-
mance. In this way, we can delineate objective performance
results without reporting opportunistically optimal results.

5.2 How to Estimate the Average Node De-
gree?

Recall that the only clue that the attackers have is the back-
ground information about the origin of the node embedding
matrix. In this section, we exemplify how the attackers can
estimate the average node degree k from the graphs of similar
origins by leveraging state-of-the-art graph sampling meth-
ods. Note that the attackers can estimate the graph size (i.e.,
the number of edges) which equals to k× n/2. We use the
state-of-the-art spikyball sampling [58] to estimate the aver-
age node degree for our evaluation. It generalizes several
exploration-based sampling schemes (e.g., Snowball sam-
pling, Forest Fire sampling, graph-expander sampling etc.),
and can be applied to any large graphs due to its flexibil-
ity [58].

Specifically, for citation/co-occurrence graphs (e.g., Cora,
Citeseer, and Actor), we use the publicly available citation
graphs - Pubmed and DBLP - to estimate the average node

degree. For each graph, we use spikyball sampling to sam-
ple 30% of the whole graph then estimate the average node
degree from the sampled graph. This process is repeated
300 times. We calculate the mean average node degree as
our final estimation of citation/co-occurrence graphs. For so-
cial network graphs (e.g., Facebook), we randomly select six
graphs (e.g., socfb-BU10, socfb-Carnegie49, socfb-JMU79,
socfb-Lehigh96, socfb-Maine59 and socfb-UCSC68) from
the publicly available FB100 dataset [57] plus one Twitter
graph [49] from SNAP. We also sample 30% of each graph to
estimate the average node degree and repeat this process 300
times per graph. This strategy enables the adversary to sam-
ple enough graphs to cover a wide spectrum of graph proper-
ties.

The estimation results are shown in Figure 2. What can be
seen in Figure 2 is that the estimated average node degrees
may not exactly match the real values but are roughly within
the same order of magnitude. For instance, the mean and
standard deviation of our estimated average node degree of
the citation/co-occurrence graphs (Figure 2a) are 4.6 and 0.8,
while the mean and standard deviation of our estimated aver-
age node degree of social networks are 45.7 and 8.4 respec-
tively. Comparing to the real values in Table 2, the estimated
values are not precise. For instance, the above graph sam-
pling process overestimates the average node degree for the
Cora and Citeseer datasets, while underestimating the aver-
age node degree of the Actor dataset. However, they can offer
the attackers a reasonable starting point to estimate the graph
sizes. We use these estimated values (i.e., 5 for citation/co-
occurrence graphs and 46 for social network graphs) in the
rest of our evaluation. We provide a detailed study on how
MNEMON can attain good performance even when the es-
timated average node degree is almost twice the ground truth
value in Section 5.5.
Takeaways. When only having the background information
about the origin of the node embedding matrix, our sampling
process represents a feasible way that the attackers take to es-
timate the average node degree. The estimated average node
degrees are in the vicinity of the ground truth values but not
exactly matching them.

5.3 Is MNEMON Better than the Baselines?
In this section, we aim at studying whether MNEMON is ef-
fective to recover a graph from the node embedding matrix,
or whether the existing baseline methods would be enough
for the task at hand. To address this research question, we
compare MNEMON to the baseline methods discussed in
Section 5.1. All methods use the estimated average node de-
grees outlined in Section 5.2. The node embedding size is
fixed to 256. Due to space limitations, we only report the at-
tack results on the Cora dataset. The results of the other three
datasets can be found in Appendix B.
Performance. The performance comparison results are
shown in Table 3. Overall, direct graph recovery and in-
vert embedding graph recovery cannot recover graphs from
the node embedding matrices given all four node embedding
models. For instance, the F1 scores of these two methods are
no greater than 0.027, indicating that they cannot attain the
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Table 3: Comparison of all baseline methods and MNEMON. We use the Cora dataset and the node embedding size is 256.

Graph
Reocvery
Method

f
Edge Metric Global Metric

Precision Recall F1 JDD Frobenius
Error

Triangle
Error

Clustering Coef.
Error

Direct
Recovery

DW 0.001±0.000 0.002±0.000 0.001±0.000 0.000±0.000 1.647±0.000 6.867±0.000 0.753±0.000
N2V 0.003±0.000 0.006±0.000 0.004±0.000 0.000±0.000 1.645±0.000 7.559±0.000 0.759±0.000

NetSMF 0.013±0.000 0.022±0.000 0.016±0.000 0.311±0.000 1.647±0.000 0.621±0.000 0.228±0.000
GCN 0.001±0.000 0.002±0.000 0.002±0.000 0.000±0.000 1.647±0.000 6.391±0.000 0.653±0.000

Invert
Embedding

DW 0.007±0.005 0.012±0.010 0.009±0.007 0.667±0.092 1.660±0.010 0.866±0.661 0.198±0.008
N2V 0.021±0.008 0.037±0.014 0.027±0.010 0.665±0.030 1.645±0.008 1.869±0.160 0.148±0.005

NetSMF 0.003±0.001 0.005±0.003 0.004±0.002 0.462±0.064 1.676±0.007 0.842±0.789 0.221±0.011
GCN 0.015±0.003 0.026±0.006 0.019±0.004 0.675±0.004 1.657±0.005 0.255±0.158 0.188±0.005

kNN
Graph

DW 0.401±0.000 0.492±0.000 0.442±0.000 0.340±0.000 1.114±0.000 3.029±0.000 0.286±0.000
N2V 0.397±0.000 0.487±0.000 0.438±0.000 0.338±0.000 1.119±0.000 2.185±0.000 0.276±0.000

NetSMF 0.469±0.000 0.575±0.000 0.517±0.000 0.334±0.000 1.037±0.000 2.379±0.000 0.325±0.000
GCN 0.378±0.000 0.463±0.000 0.416±0.000 0.333±0.000 1.140±0.000 2.172±0.000 0.286±0.000

MNEMON

DW 0.492±0.004 0.578±0.003 0.531±0.003 0.840±0.011 1.010±0.005 1.118±0.036 0.215±0.006
N2V 0.506±0.001 0.554±0.003 0.529±0.001 0.724±0.007 0.993±0.001 0.973±0.027 0.228±0.004

NetSMF 0.579±0.002 0.640±0.003 0.608±0.003 0.732±0.006 0.908±0.003 1.263±0.019 0.288±0.004
GCN 0.462±0.002 0.506±0.001 0.483±0.001 0.753±0.006 1.040±0.003 0.864±0.032 0.230±0.005

attacker’s primary goal. At the same time, the global met-
rics of these two baselines are equally underwhelming. Our
results show that such optimization based approach is less ef-
fective in a model agnostic setting. kNN algorithm represents
a de facto approach to recover the edges from node embed-
dings. Our results show that kNN graph can partially recover
the edges from the node embedding matrix. For example,
it can recover the edges from the node embeddings gener-
ated by Node2Vec with a 0.438 F1 score. As we can see
in Table 3, MNEMON outperforms all baseline methods.
Take the node embeddings generated by Node2Vec for ex-
ample, MNEMON achieves 0.529 F1 score, which is 0.091
higher than that of kNN graph recovery. In other words,
MNEMON’s F1 score relatively improves that of kNN graph
recovery by 0.208 (i.e., 0.091/0.438=0.208). If we take the
edges recovered by kNN graph as the upper bound of the ex-
isting privacy risk assessment, MNEMON empirically im-
proves this upper bound by 0.208 per our evaluation results.
Given the combinatorial nature of graph edges (i.e., n(n-1)/2
possibilities) and our strict attack setting (i.e., no interaction
with the node embedding models), such 0.208 relative im-
provement by MNEMON is substantial. Practically speak-
ing, if we position MNEMON in the privacy risk assessment
framework, it would lead to 0.208 increase of the estimated
privacy loss than the de facto risk assessment using kNN al-
gorithm. We also provide a visual explanation to exemplify
MNEMON’s capability in recovery graphs from the node
embedding matrices in Appendix B.

Impact of Node Embedding Size. We use two metrics - F1
score and relative triangle error - to understand the impact of
node embedding size on both baselines and MNEMON. We
use Node2Vec to generate node embedding matrices. The
results are shown in Figure 3. It is straightforward to see that
MNEMON consistently performs better than the baselines
given different node embedding sizes.

Takeaways. The proposed learnable distance function and
adaptive graph structure combination can reduce a reason-
able amount of false edges. They, in turn, enable MNEMON
to recover better graph structure from the node embedding
matrix given different node embedding models and embed-
ding sizes. Besides, kNN graph remains a viable approach

to recover edges from the node embedding matrix. However,
due to its non-learning-based nature, kNN graph is outper-
formed by MNEMON.

5.4 How Effective is MNEMON?
In this section, we evaluate MNEMON on all four datasets
to understand its overall performance. The results are sum-
marized in Table 4. Due to space limitations, we only show
the results when the node embedding size is fixed to 256.
The performance results of 64- and 128-dimensional node
embeddings follow similar patterns and can be found in Ap-
pendix C.

Edge Metrics. Recall that the primary goal of the attack-
ers is uncovering the edges with decent accuracy from the
node embedding matrix. We thereby use edge metrics out-
lined in Section 5.1 to measure MNEMON’s performance.
Besides, kNN graph remains a viable approach to recover
edges from the node embedding matrix as we explicate in
Section 5.3. We also show the relative improvement scores
in Table 4 to demonstrate to what extent MNEMON can rel-
atively improve from kNN graph. We add a positive sign (+)
next to the relative improvement score to highlight the im-
provement. As we can see from Table 4, MNEMON can
enable the adversary to recover edges from all node embed-
ding matrices generated by all four node embedding mod-
els with good precision and recall. Take the Cora dataset
and the node embedding matrix generated by NetMF for ex-
ample. MNEMON achieves 0.579 precision, 0.640 recall
and 0.608 F1 scores. These scores relatively improve 0.235,
0.113, and 0.176 from those of kNN graph recovery. Simi-
larly, take the Actor dataset and the node embedding matrix
generated by Deepwalk for example, MNEMON achieves
0.687 precision, 0.435 recall, and 0.533 F1 scores. These
scores relatively improve 0.222, 0.088, and 0.138 from those
of kNN graph recovery. The other datasets given all node
embedding models follow similar patterns. At the same time,
MNEMON overwhelmingly outperforms kNN graph given
joint degree distribution similarity metric. Given the above
two examples, JDD similarity scores of MNEMON respec-
tively improve 1.191 and 0.587 from those of kNN graph.
Our results demonstrate that MNEMON can recover a graph
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Table 4: The performance results of MNEMON using all four datasets. We fix the node embedding size to 256. We show the relative
improvement scores in edge metrics to demonstrate to what extent MNEMON can relatively improve from kNN graph. We add a
positive sign (+) next to the relative improvement score to highlight the improvement. We also show the relative error reduction scores
in global metrics to demonstrate to what extent MNEMON can relatively reduce errors incurred by kNN graph. We add a negative
sign (-) next to the relative error reduction score to highlight the difference.

Dataset f
Edge Metrics Global Metrics

Precision Recall F1 JDD Frobenius
Error

Triangle
Error

Clustering Coef.
Error

Cora

DW 0.492±0.004 (+0.226) 0.578±0.003 (+0.174) 0.531±0.003 (+0.201) 0.840±0.011 (+1.471) 1.010±0.005 (-0.104) 1.118±0.036 (-1.911) 0.215±0.006 (-0.071)
N2V 0.506±0.001 (+0.276) 0.554±0.003 (+0.137) 0.529±0.001 (+0.208) 0.724±0.007 (+1.143) 0.993±0.001 (-0.126) 0.973±0.027 (-1.212) 0.228±0.004 (-0.048)

NetSMF 0.579±0.002 (+0.235) 0.640±0.003 (+0.113) 0.608±0.003 (+0.176) 0.732±0.006 (+1.191) 0.908±0.003 (-0.129) 1.263±0.019 (-1.116) 0.288±0.004 (-0.037)
GCN 0.462±0.002 (+0.223) 0.506±0.001 (+0.092) 0.483±0.001 (+0.162) 0.753±0.006 (+1.260) 1.040±0.003 (-0.100) 0.864±0.032 (-1.308) 0.230±0.005 (-0.056)

Citeseer

DW 0.403±0.002 (+0.193) 0.555±0.005 (+0.149) 0.467±0.003 (+0.174) 0.617±0.011 (+1.635) 1.125±0.003 (-0.085) 1.877±0.075 (-2.651) 0.341±0.009 (-0.080)
N2V 0.445±0.001 (+0.271) 0.575±0.002 (+0.149) 0.502±0.001 (+0.217) 0.506±0.007 (+1.137) 1.069±0.002 (-0.127) 1.734±0.039 (-1.665) 0.357±0.005 (-0.059)

NetSMF 0.530±0.002 (+0.229) 0.672±0.001 (+0.091) 0.592±0.001 (+0.168) 0.461±0.005 (+1.048) 0.961±0.002 (-0.133) 2.001±0.056 (-1.419) 0.432±0.003 (-0.056)
GCN 0.414±0.003 (+0.206) 0.529±0.002 (+0.080) 0.465±0.001 (+0.153) 0.527±0.011 (+1.344) 1.105±0.004 (-0.099) 1.467±0.057 (-1.734) 0.330±0.004 (-0.067)

Actor

DW 0.687±0.001 (+0.222) 0.435±0.002 (+0.088) 0.533±0.002 (+0.138) 0.417±0.001 (+0.587) 0.874±0.001 (-0.081) 0.203±0.009 (-0.105) 0.229±0.002 (-0.017)
N2V 0.465±0.001 (+0.356) 0.313±0.000 (+0.282) 0.374±0.000 (+0.312) 0.473±0.003 (+0.293) 1.023±0.001 (-0.083) 0.179±0.007 (-0.387) 0.176±0.001 (-0.035)

NetSMF 0.562±0.002 (+0.240) 0.366±0.001 (+0.136) 0.443±0.001 (+0.179) 0.457±0.003 (+0.406) 0.959±0.001 (-0.074) 0.147±0.013 (-0.758) 0.285±0.002 (-0.025)
GCN 0.373±0.001 (+0.226) 0.263±0.000 (+0.211) 0.308±0.001 (+0.218) 0.505±0.003 (+0.446) 1.086±0.001 (-0.045) 0.280±0.008 (-0.349) 0.153±0.002 (-0.049)

Facebook

DW 0.441±0.001 (+0.028) 0.471±0.001 (+0.066) 0.456±0.001 (+0.046) 0.519±0.006 (+1.745) 1.061±0.001 (-0.009) 0.494±0.002 (+0.213) 0.077±0.001 (+0.006)
N2V 0.468±0.000 (+0.018) 0.487±0.001 (+0.026) 0.477±0.001 (+0.022) 0.444±0.002 (+1.581) 1.033±0.001 (-0.007) 0.545±0.001 (+0.499) 0.090±0.001 (+0.050)

NetSMF 0.454±0.001 (+0.022) 0.502±0.002 (+0.098) 0.476±0.001 (+0.059) 0.457±0.002 (+0.570) 1.050±0.001 (-0.006) 0.424±0.007 (+0.418) 0.081±0.001 (+0.041)
GCN 0.342±0.001 (+0.061) 0.364±0.001 (+0.100) 0.352±0.001 (+0.078) 0.371±0.004 (+1.026) 1.157±0.001 (-0.012) 0.452±0.002 (+0.380) 0.056±0.001 (-0.031)
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Figure 4: F1 scores and relative average clustering coefficient error scores of MNEMON given all four datasets. We fix the node
embedding size to 256.

in which each pair of connected nodes share similar 1-hop
neighborhood as they are in the original graph.
Global Metrics. Recall that the secondary goal of the
attackers is recovering a graph structure that is similar to
the original graph with respect to the graph properties. We
use the global metrics outlined in Section 5.1 to understand
MNEMON’s performance. Similar to the above edge met-
rics, we also compare MNEMON to kNN graph. We show
the relative error reduction scores in Table 4 to demonstrate
to what extent MNEMON can relatively reduce errors in-
curred by kNN graph. We add a negative sign (-) next to
the relative error reduction score to highlight the difference
between MNEMON and kNN graph. As we can see from
Table 4, MNEMON can incur relatively low error scores
given all three global metrics. Take the Actor dataset and
the node embedding matrix generated by GCN for example.
MNEMON’s relative triangle error is 0.280. This indicates
that the graph recovered by MNEMON contains a similar
number of triangles to that of the original graph. At the same
time, this score reduces the relative error made by kNN graph
for 0.349. Note that the estimated average node degree (i.e.,

5) is larger than the ground truth values of both Cora and
Citeseer. This leads to higher relative triangle errors. How-
ever, combined with the edge metrics, we can assert that such
error is due to a combination of reorientation of the specific
edges between the true and the recovery networks, and extra
edges incurred by the overestimation of k. Besides, we com-
pare MNEMON with the invert embedding using the over-
lapping Citeseer dataset and its 256-dimensional NetSMF
node embedding matrix. MNEMON can achieve 0.908 rel-
ative Frobenius error score which is close to that of the invert
embedding (see Figure 4 in [9]). Note that the invert embed-
ding in [9] is under the white box setting while MNEMON
is under the black box setting. In summary, our performance
results demonstrate that MNEMON can also recover a graph
that is structurally similar to the original graph with respect
to the global graph properties.

Note that the clustering coefficient of a node cv is defined
as cv =

2∗N (v)
deg(v)(deg(v)−1) where N (v) represents the number of

edges between the neighbors of v and deg(v) represents the
degree of v. The average clustering coefficient of the whole
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Figure 5: F1 scores and relative average clustering coefficient error scores of MNEMON given all four datasets and various average
node degrees. We fix the node embedding size to 256. The vertical bar indicates the actual average node degree.

graph cG is defined as cG = 1
n ∑

n
v=1 cv. A smaller k may lead

to the increasing possibility that the number of triangles re-
covered from a graph drops closer to 0. We therefore use dif-
ferent relative errors to objectively evaluate the performance
from multiple perspectives.

Impact of Node Embedding Size. We use two metrics -
F1 score and relative average clustering coefficient error - to
understand the impact of node embedding size MNEMON
across all four datasets. The results are shown in Figure 4. As
we can see in the figure, MNEMON can offer stable graph
recovery performance given different embedding sizes and
all embedding models. We only observe a marginal F1 score
decrease given the Deepwalk node embedding model in Cora
and Citeseer datasets. Overall, our results imply that reduc-
ing the embedding size (a common defense mechanism) may
not work for MNEMON. More details can be found in Sec-
tion 6.

Stability. We run MNEMON 5 times on a given node em-
bedding matrix. Such runtime configuration enables us to
measure how widely all those metric values are dispersed
from the average value (i.e., standard deviation). At the
same, it eliminates the chance of reporting opportunistically
good results. A low standard deviation indicates low volatil-
ity. As we can observe in Table 4, the standard deviation val-
ues are low in all cases. The results show that MNEMON
can recover graphs from node embedding matrices with sta-
tistically stable performance.

Ablation Study. We also carry out an ablation study
to understand the impact of GML on the performance of
MNEMON. To this end, we customize MNEMON and re-
move GML from the optimization. Specifically, we initialize
a graph using Gumbel-Top-k trick and run GAE once. We
use edge metrics in this study and summarize the results in
Table 5. We observe that MNEMON performs better given
all edge metrics. The results exemplify that jointly optimiz-
ing GAE and GML enables us to learn more information
from the node embedding matrix and further reduce noise
from the recovered graph.

Takeaways. We can observe that MNEMON achieves
good performance on all datasets. Such results demonstrate

Table 5: Ablation study on the impact of GML to MNEMON’s
performance. We use Citeseer dataset and fix the node embed-
ding size to 256.

Method Precision Recall F1

kNN 0.338 0.483 0.398
MNEMON w/o GML 0.391 0.511 0.443

MNEMON 0.404 0.557 0.468

that jointly optimizing the learnable distance function and
adaptive graph structure combination is effective for recov-
ering graphs from node embeddings.

5.5 How does k Affect the Attack Perfor-
mance?

Recall that the attackers use the graph sampling algorithms
to estimate the average node degree from the graphs of simi-
lar origins and transfer the estimated node degree from these
graphs to facilitate the attack (see Section 4.2). We show that
the adversary cannot obtain the precise average node degree
in Section 5.2. However, the estimated average node degree
k directly affects the graph size of the recovered graph GR.
More importantly, our attack uses this estimated k to seed
the initial graph using the Gumbel-Top-k trick and iterative
graph structure optimization during the learning process. It
is therefore essential to study the impact of the estimated av-
erage node degree k on the graph recovery performance. To
this end, we run MNEMON 5 times on every k that falls
within at least one standard deviation of the estimated aver-
age node degree in Section 5.2. For instance, the mean and
standard deviation of our estimated average node degree of
the Facebook dataset are 45.7 and 8.4 respectively. In this
case, we run MNEMON 5 times for every value between
38 and 52. We use two metrics - F1 score and relative av-
erage clustering coefficient error - to understand the impact
of k across all four datasets. Due to space limitations, we
only show the attack results when the node embedding size
is fixed to 256. The performance results using 64- and 128-
dimensional node embeddings follow similar patterns and
can be found in Appendix D.
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Figure 6: trade-off between node embedding utility (average
link prediction precision) and MNEMON’s graph recovery per-
formance (F1 score). We use the Cora dataset and GCN as the
node embedding model. The node embedding size is fixed to
256.

Performance. The results are shown in Figure 5. We show
a vertical line in each figure to mark the ground truth value
of the average node degree for each dataset (see Table 2).
In general, we can see that MNEMON can accommodate
the inevitable estimation error. Take the Citeseer dataset and
the node embedding matrix generated by NetSMF for exam-
ple. The ground truth average node degree is 3, and the esti-
mated average node degree is 5. The F1 scores achieved by
MNEMON are respectively 0.592 and 0.605. This means
that, even though our estimated k is almost twice the ground
truth value, MNEMON can still deal with such estimation
error and attain good results (i.e., the F1 score difference is
only 0.013). Similar to the F1 score metric, we can see that
MNEMON can also achieve low relative average clustering
coefficient error. Take the Citeseer dataset and the node em-
bedding matrix generated by NetSMF for instance, the rela-
tive average clustering coefficient errors of MNEMON are
0.432 and 0.332. The difference is approximately 0.100.

Observations. We observe that the node embedding matri-
ces generated by GCN are relatively harder to recover than
those by the other three models. Two factors make the graph
recovery task difficult. First, GCN considers both node fea-
tures and graph structure to generate node embeddings while
the other three models only use graph structures. Second,
we use ReLU as the activation function between layers. This
non-linear, element-wise function outputs the input directly
if it is positive, otherwise, it outputs zero. It is computation-
ally efficient but leads to sparse representation, making the
graph recovery harder.

Takeaways. Our evaluation results show that MNEMON
can accommodate the inevitable estimation error of k. The
root cause of the moderate decrease (increase) of F1 scores
(relative average clustering coefficient error) in Figure 5 is
due to the increasing graph size. However, given the real
world application scenarios outlined in Section 3.2, we show
that the estimated average node degrees can be in the vicin-
ity of the real values as shown in Section 5.2. Combining
with the adaptive learning process outlined in Section 4.4,
MNEMON remains practical to recover graphs in the wild
as exemplified by the results in Figure 5.

6 Defense
In this section, we discuss node embedding perturbation as
a tentative defense mechanism and empirically evaluate its
effectiveness.

Embedding Perturbation. One possible defense of
MNEMON is adding perturbations (i.e., noise) to the orig-
inal node embeddings HO. As such, the data holder only
passes on a noisy but usable version H̃O to the ML pipeline.
Formally, H̃O = HO +∆(µ,b) where ∆ denotes the Laplace
distribution, µ is a location parameter and b > 0 is a scale
parameter. However, adding noise inevitably distorts the in-
formation contained in the node embeddings and can lead to
utility loss. We therefore focus on evaluating the trade-off
between the utility and the defense in this section. Similar
defense mechanisms were also discussed in the previous lit-
erature [26, 81].

Experimental Setup. We use the Cora dataset and the 256
dimensional node embedding matrix generated by GCN for
our evaluation. We fix µ to 0 and choose 10 evenly distributed
values between 0 and 1 for b (i.e., b = {0,0.1, ...,0.9}). We
use average link prediction precision as the utility metric and
F1 score as the attack performance metric.

Results. The results are shown in Figure 6. As we can see
in the figure, adding perturbations could work with notice-
able utility loss. For instance, when b = 0.2, the average link
prediction precision using the perturbated node embedding
matrix drops from 0.881 to 0.761. In turn, we can see that
the MNEMON’s F1 score drops from 0.486 to 0.088. This
result shows that the data holder might choose the noise level
to defend against MNEMON while preserving some utility.
However, it is a delicate process. For instance, if the data
holder chooses b = 0.1, the average link prediction precision
drops from 0.881 to 0.868. In this case, MNEMON’s F1
score drops from 0.486 to 0.401. In short, our results show
that the trade-off is inevitable if using added perturbations to
defend against MNEMON. We plan to explore such research
direction in the future.

Notes. The node embedding size affects the expressive-
ness of the node embeddings. As such, another prospec-
tive defense mechanism is to reduce the dimension of the
node embedding. Its core idea is reducing the knowledge
that the attackers can obtain and consequently lessening the
capability of the graph recovery attack. However, we show
that MNEMON achieves stable graph recovery performance
given different embedding sizes and all embedding models in
Figure 4. Our results indicate that reducing the embedding
size may not work for MNEMON. We plan to expand such
research direction in the future.

7 Related Work
Graph Theory Based Graph Restoration. Graph restora-
tion algorithms in the graph theory realm restore a hidden
graph by repeatedly querying an oracle for certain types of
information about the graph structure [40]. Depending on
the algorithm, different types of information can be revealed
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Table 6: Difference between our attack and the close work.

Method Supervision from
Auxiliary data

Shadow
model

Interaction w/
target model

Attack
setting

Chanpuriya et al. [9] 3 7 N/A whitebox

Link reidentification [14, 26, 71] 3 3 3 blackbox

Zhang et al. [81] 3 3 3 blackbox

MNEMON 7 7 7 model-agnostic

by the oracle, including node betweenness [1], distance or
shortest path between nodes [27], edge counting [5], edge
detection [3], etc. The common goal among these research is
identifying strategies that recover the graph with low worst-
case query complexity. However, those approaches are not
learning-based and require the existence of an oracle know-
ing the structural information of the original graph. They
cannot be adapted to reconstruct graphs from the node em-
beddings.
Graph Completion. Graph completion [11, 21] aims at
inferring the unobserved part of the network (i.e., missing
edges and nodes) given the partially observed network. Link
prediction algorithms (see [15, 46] for an overview) have
been actively investigated and successfully applied to iden-
tify missing edges [67, 79]. Probabilistic and deep learning
models [28, 64] have also been investigated to deduce the
missing nodes. However, these algorithms require the graphs
to be substantially observed and high-quality attribute infor-
mation provided. Our attack assumes neither.
Deep Graph Structure Learning for Robust Representa-
tions. This line of research centers on Graph Structure
Learning (GSL) that jointly learns an optimized graph struc-
ture and corresponding representations [86]. The goal of
GSL is to generate node representations robust to noisy graph
structures. Common assumptions of these methods include
the availability of node features, incomplete graph structure,
and node labels. Different approaches then leverage metric
learning [10], probabilistic modeling [17], direct optimiza-
tion [73], etc. to learn an adjacency matrix as well as the
corresponding node representations. In contrast to GSL, our
attack does not assume the availability of node features and
node labels. Besides the goal difference, our attack is self-
supervised while GSL approaches use node labels to super-
vise the learning process.
Close Work. To our best knowledge, there exist five pieces
of close work to our attack [9, 14, 26, 71, 81]. The closest
work is Chanpuriya et al. [9] presenting two optimization al-
gorithms to recover a graph from its node embeddings gen-
erated by NetMF [55]. Their algorithms assume the knowl-
edge of the NetMF algorithm (i.e., the target model in our
terminology), window size T , the low-ranking approxima-
tion of the finite-T positive pointwise mutual information
(PPMI) matrix, and the exact degree of each node, hence
a specific white-box attack against NetMF only. Another
closely related work is link reidentification attack [14,26,71]
from node-level information. In theory, those attacks can be
used to reconstruct a graph upon querying the target model
n2 times. However, they train a shadow model using auxil-
iary data and their posterior scores obtained from the target
model. Our attack assumes the attackers can not interact with
the target model using auxiliary data, which renders this link

stealing attack infeasible in our setting. In addition to link
re-identification attacks using node-level information, Zhang
et al. [81] also introduce a reconstruction attack to rebuild a
graph from its graph-level embedding within the context of
graph classification. This attack suffers from the same pit-
falls of the link re-identification attacks, and cannot be used
in our setting. In short, our attack is fundamentally different
from the existing work by removing the assumptions of the
availability of supervision information from auxiliary data,
the shadow model, and the interaction with the target model.
We summarize the differences between our attack and the
closely related work in Table 6.

8 Conclusion
In this paper, we presented a model-agnostic attack that uses
the node embedding matrices to recover graphs. Extensive
experiments show that an adversary can recover graphs with
decent accuracy by only gaining access to the node embed-
dings of the original graph. Our results highlight the need
for the data holders to rethink the privacy implications when
integrating node embeddings for downstream analysis, even
when the third party has extremely limited knowledge of the
data.
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A MNEMON Algorithm Details
Walk Through. We summarize the whole learning process
(i.e., Section 4.3 and Section 4.4) in Algorithm 1. Line 1 uses
spikyball graph sampling algorithm to sample from graphs
of similar origins to estimate a rough node degree of a given
node embedding matrix. Line 2 applies Gumbel-Top-k trick
on the fully connected probabilistic graph P to generate the
initial seed graph structure A0. Line 4 - 10 learn a distance
function φ and a corresponding graph structure At in each
iteration (line 5-8). Upon termination of the learning process
after a maximum iteration T , we obtain the recovered graph
structure AT (i.e., GR).

Complexity Analysis. Our graph initialization generates
a fully connected probabilistic graph using Equation 1. The
time and space complexity of graph initialization are both
O(n2). Our graph metric learning learns a global distance
metric, leading to a O(n2) time complexity. The encoder of
the GAE has a O(n2) time and space complexity, while the
inner-product decoder of the GAE has a O(n2) time complex-
ity. Overall, the time and space complexity of MNEMON
are both O(cn2). Besides, Zhang et al. [81] has a time com-
plexity of O(n4) while LinkTeller [71] has a space complex-
ity of O(n3), which inevitably limit their scalability in the
real world.

B Is MNEMON better than base-
lines?

Comparison Study on Other Datasets. We outline the
comparison study results from the Citeseer, Actor and Face-
book datasets in Table 7, Table 8 and Table 9 respectively.
The node embedding size is fixed to 256.
Visual Explanation. We use bitmap images to further ex-
emplify MNEMON’s capability in recovery graphs from the
node embedding matrices. Each adjacency matrix A is rep-
resented as an image where the pixel at a coordinate (i, j)
is blue if Ai j = 1 and white otherwise. In this way, bitmap
images can give an overall impression of the graph topol-
ogy, offering a straightforward qualitative visual assessment
between the original graphs and the recovered graphs. We
visualize the original graph and the recovered graphs by both
baseline methods and MNEMON from the node embed-
dings generated by Node2Vec in Figure 7. As we can see
in Figure 7, the graph structures recovered by direct recov-
ery and invert embedding do not resemble the original graph.
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(a) original (b) direct recovery (c) invert embedding (d) kNN graph (e) MNEMON

Figure 7: Bitmap visualization of the recovered graphs by all baselines and MNEMON. MNEMON, visually, removes fair amount of
false positive edges.

Table 7: Comparison of all baseline methods and MNEMON. We use the Citeseer dataset and the node embedding size is fixed to 256.

Graph
Reocvery
Method

f
Edge Metric Global Metric

Precision Recall F1 JDD Frobenius
Error

Triangle
Error

Clustering Coef.
Error

Direct
Recovery

DW 0.001±0.000 0.002±0.000 0.001±0.000 0.000±0.000 1.647±0.000 6.867±0.000 0.753±0.000
N2V 0.003±0.000 0.006±0.000 0.004±0.000 0.000±0.000 1.645±0.000 7.559±0.000 0.759±0.000

NetSMF 0.013±0.000 0.022±0.000 0.016±0.000 0.311±0.000 1.647±0.000 0.621±0.000 0.228±0.000
GCN 0.001±0.000 0.002±0.000 0.002±0.000 0.000±0.000 1.647±0.000 6.391±0.000 0.653±0.000

Invert
Embedding

DW 0.007±0.005 0.012±0.010 0.009±0.007 0.667±0.092 1.660±0.010 0.866±0.661 0.198±0.008
N2V 0.021±0.008 0.037±0.014 0.027±0.010 0.665±0.030 1.645±0.008 1.869±0.160 0.148±0.005

NetSMF 0.003±0.001 0.005±0.003 0.004±0.002 0.462±0.064 1.676±0.007 0.842±0.789 0.221±0.011
GCN 0.015±0.003 0.026±0.006 0.019±0.004 0.675±0.004 1.657±0.005 0.255±0.158 0.188±0.005

kNN
Graph

DW 0.338±0.000 0.483±0.000 0.398±0.000 0.234±0.000 1.210±0.000 4.528±0.000 0.421±0.000
N2V 0.350±0.000 0.500±0.000 0.412±0.000 0.237±0.000 1.196±0.000 3.399±0.000 0.416±0.000

NetSMF 0.431±0.000 0.616±0.000 0.507±0.000 0.225±0.000 1.094±0.000 3.420±0.000 0.488±0.000
GCN 0.343±0.000 0.490±0.000 0.403±0.000 0.225±0.000 1.204±0.000 3.201±0.000 0.397±0.000

MNEMON

DW 0.403±0.002 0.555±0.005 0.467±0.003 0.617±0.011 1.125±0.003 1.877±0.075 0.341±0.009
N2V 0.445±0.001 0.575±0.002 0.502±0.001 0.506±0.007 1.069±0.002 1.734±0.039 0.357±0.005

NetSMF 0.530±0.002 0.672±0.001 0.592±0.001 0.461±0.005 0.961±0.002 2.001±0.056 0.432±0.003
GCN 0.414±0.003 0.529±0.002 0.465±0.001 0.527±0.011 1.105±0.004 1.467±0.057 0.330±0.004

At the same time, kNN graph can recover some graph topol-
ogy. However, because kNN is not learning-based and uses a
predefined distance function, we can see in Figure 7 that the
recovered graph by kNN is noisy. Thanks to the learnable
distance function and adaptive graph structure combination
(see Section 4), MNEMON can reduce a reasonable amount
of false edges and recover a better graph topology, conse-
quently leading to better performance as shown in Table 3.

C How Effective is MNEMON?
Additional Experimental Results. We list additional ex-
perimental results using all four datasets in Table 10 and Ta-

ble 11.

D How does k Affect the Attack Per-
formance

Additional Experimental Results. We list additional ex-
perimental results using all four datasets in Figure 8 and Fig-
ure 9.
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Table 8: Comparison of all baseline methods and MNEMON. We use the Actor dataset and the node embedding size is fixed to 256.

Graph
Reocvery
Method

f
Edge Metric Global Metric

Precision Recall F1 JDD Frobenius
Error

Triangle
Error

Clustering Coef.
Error

Direct
Recovery

DW 0.001±0.000 0.002±0.000 0.001±0.000 0.000±0.000 1.647±0.000 6.867±0.000 0.753±0.000
N2V 0.003±0.000 0.006±0.000 0.004±0.000 0.000±0.000 1.645±0.000 7.559±0.000 0.759±0.000

NetSMF 0.013±0.000 0.022±0.000 0.016±0.000 0.311±0.000 1.647±0.000 0.621±0.000 0.228±0.000
GCN 0.001±0.000 0.002±0.000 0.002±0.000 0.000±0.000 1.647±0.000 6.391±0.000 0.653±0.000

Invert
Embedding

DW 0.007±0.005 0.012±0.010 0.009±0.007 0.667±0.092 1.660±0.010 0.866±0.661 0.198±0.008
N2V 0.021±0.008 0.037±0.014 0.027±0.010 0.665±0.030 1.645±0.008 1.869±0.160 0.148±0.005

NetSMF 0.003±0.001 0.005±0.003 0.004±0.002 0.462±0.064 1.676±0.007 0.842±0.789 0.221±0.011
GCN 0.015±0.003 0.026±0.006 0.019±0.004 0.675±0.004 1.657±0.005 0.255±0.158 0.188±0.005

kNN
Graph

DW 0.562±0.000 0.400±0.000 0.468±0.000 0.263±0.000 0.955±0.000 0.308±0.000 0.246±0.000
N2V 0.343±0.000 0.244±0.000 0.285±0.000 0.366±0.000 1.106±0.000 0.566±0.000 0.211±0.000

NetSMF 0.453±0.000 0.322±0.000 0.376±0.000 0.325±0.000 1.033±0.000 0.905±0.000 0.310±0.000
GCN 0.304±0.000 0.217±0.000 0.253±0.000 0.349±0.000 1.131±0.000 0.629±0.000 0.202±0.000

MNEMON

DW 0.687±0.001 0.435±0.002 0.533±0.002 0.417±0.001 0.874±0.001 0.203±0.009 0.229±0.002
N2V 0.465±0.001 0.313±0.000 0.374±0.000 0.473±0.003 1.023±0.001 0.179±0.007 0.176±0.001

NetSMF 0.562±0.002 0.366±0.001 0.443±0.001 0.457±0.003 0.959±0.001 0.147±0.013 0.285±0.002
GCN 0.373±0.001 0.263±0.000 0.308±0.001 0.505±0.003 1.086±0.001 0.280±0.008 0.153±0.002

Table 9: Comparison of all baseline methods and MNEMON. We use the Facebook dataset and the node embedding size is fixed to
256.

Graph
Reocvery
Method

f
Edge Metric Global Metric

Precision Recall F1 JDD Frobenius
Error

Triangle
Error

Clustering Coef.
Error

Direct
Recovery

DW 0.001±0.000 0.002±0.000 0.001±0.000 0.000±0.000 1.647±0.000 6.867±0.000 0.753±0.000
N2V 0.003±0.000 0.006±0.000 0.004±0.000 0.000±0.000 1.645±0.000 7.559±0.000 0.759±0.000

NetSMF 0.013±0.000 0.022±0.000 0.016±0.000 0.311±0.000 1.647±0.000 0.621±0.000 0.228±0.000
GCN 0.001±0.000 0.002±0.000 0.002±0.000 0.000±0.000 1.647±0.000 6.391±0.000 0.653±0.000

Invert
Embedding

DW 0.007±0.005 0.012±0.010 0.009±0.007 0.667±0.092 1.660±0.010 0.866±0.661 0.198±0.008
N2V 0.021±0.008 0.037±0.014 0.027±0.010 0.665±0.030 1.645±0.008 1.869±0.160 0.148±0.005

NetSMF 0.003±0.001 0.005±0.003 0.004±0.002 0.462±0.064 1.676±0.007 0.842±0.789 0.221±0.011
GCN 0.015±0.003 0.026±0.006 0.019±0.004 0.675±0.004 1.657±0.005 0.255±0.158 0.188±0.005

kNN
Graph

DW 0.429±0.000 0.442±0.000 0.436±0.000 0.189±0.000 1.070±0.000 0.281±0.000 0.071±0.000
N2V 0.460±0.000 0.474±0.000 0.467±0.000 0.172±0.000 1.040±0.000 0.046±0.000 0.040±0.000

NetSMF 0.444±0.000 0.457±0.000 0.450±0.000 0.291±0.000 1.056±0.000 0.006±0.000 0.040±0.000
GCN 0.322±0.000 0.331±0.000 0.327±0.000 0.183±0.000 1.169±0.000 0.072±0.000 0.087±0.000

MNEMON

DW 0.441±0.001 0.471±0.001 0.456±0.001 0.519±0.006 1.061±0.001 0.494±0.002 0.077±0.001
N2V 0.468±0.000 0.487±0.001 0.477±0.001 0.444±0.002 1.033±0.001 0.545±0.001 0.090±0.001

NetSMF 0.454±0.001 0.502±0.002 0.476±0.001 0.457±0.002 1.050±0.001 0.424±0.007 0.081±0.001
GCN 0.342±0.001 0.364±0.001 0.352±0.001 0.371±0.004 1.157±0.001 0.452±0.002 0.056±0.001

Table 10: The performance results of MNEMON using all four datasets. We fix the node embedding size to 128. We show the relative
improvement scores in edge metrics to demonstrate to what extent MNEMON can relatively improve from kNN graph. We add a
positive sign (+) next to the relative improvement score to highlight the improvement. We also show the relative error reduction scores
in global metrics to demonstrate to what extent MNEMON can relatively reduce errors incurred by kNN graph. We add a negative
sign (-) next to the relative error reduction score to highlight the difference.

Dataset f
Edge Metrics Global Metrics (Relative Error)

Precision Recall F1 Deg.
Dist.

Frobenius
Error

Triangle
Error

Clus. Coef.
Error

Cora

DW 0.570±0.001 (+0.224) 0.633±0.005 (+0.109) 0.600±0.003 (+0.170) 0.786±0.012 (+1.311) 0.919±0.002 (-0.122) 0.987±0.039 (-1.376) 0.232±0.004 (-0.055)
N2V 0.504±0.002 (+0.276) 0.554±0.003 (+0.145) 0.528±0.002 (+0.214) 0.726±0.010 (+1.205) 0.995±0.002 (-0.126) 0.997±0.035 (-1.140) 0.223±0.004 (-0.050)

NetSMF 0.516±0.003 (+0.225) 0.579±0.003 (+0.121) 0.545±0.003 (+0.175) 0.716±0.006 (+1.188) 0.982±0.004 (-0.111) 1.453±0.033 (-1.139) 0.297±0.004 (-0.047)
GCN 0.456±0.002 (+0.231) 0.499±0.003 (+0.101) 0.476±0.001 (+0.170) 0.763±0.007 (+1.305) 1.048±0.003 (-0.101) 0.806±0.039 (-1.235) 0.213±0.004 (-0.049)

Citeseer

DW 0.488±0.001 (+0.204) 0.639±0.003 (+0.104) 0.553±0.001 (+0.159) 0.576±0.006 (+1.482) 1.016±0.000 (-0.112) 1.772±0.058 (-2.132) 0.362±0.006 (-0.071)
N2V 0.453±0.001 (+0.270) 0.583±0.003 (+0.141) 0.510±0.002 (+0.214) 0.500±0.004 (+1.155) 1.058±0.001 (-0.129) 1.715±0.021 (-1.581) 0.353±0.003 (-0.057)

NetSMF 0.458±0.001 (+0.197) 0.599±0.003 (+0.095) 0.519±0.001 (+0.154) 0.455±0.006 (+1.014) 1.053±0.002 (-0.102) 2.319±0.064 (-1.266) 0.429±0.003 (-0.055)
GCN 0.404±0.003 (+0.201) 0.519±0.001 (+0.079) 0.454±0.002 (+0.146) 0.518±0.005 (+1.270) 1.117±0.004 (-0.095) 1.404±0.025 (-1.641) 0.316±0.005 (-0.061)

Actor

DW 0.678±0.002 (+0.225) 0.424±0.001 (+0.078) 0.521±0.002 (+0.133) 0.400±0.002 (+0.564) 0.882±0.001 (-0.079) 0.219±0.009 (-0.032) 0.223±0.002 (-0.016)
N2V 0.461±0.001 (+0.348) 0.307±0.001 (+0.264) 0.369±0.001 (+0.298) 0.473±0.003 (+0.296) 1.026±0.001 (-0.081) 0.209±0.006 (-0.330) 0.168±0.002 (-0.037)

NetSMF 0.498±0.002 (+0.221) 0.330±0.002 (+0.135) 0.397±0.002 (+0.172) 0.472±0.003 (+0.409) 1.001±0.001 (-0.062) 0.148±0.013 (-0.828) 0.270±0.002 (-0.033)
GCN 0.374±0.002 (+0.220) 0.263±0.001 (+0.206) 0.309±0.001 (+0.212) 0.512±0.002 (+0.481) 1.085±0.001 (-0.044) 0.303±0.007 (-0.263) 0.150±0.001 (-0.043)

Facebook

DW 0.448±0.001 (+0.025) 0.472±0.002 (+0.049) 0.460±0.001 (+0.038) 0.509±0.004 (+1.649) 1.053±0.001 (-0.010) 0.500±0.003 (+0.337) 0.069±0.001 (-0.003)
N2V 0.450±0.001 (+0.018) 0.467±0.001 (+0.025) 0.458±0.001 (+0.023) 0.421±0.003 (+1.407) 1.050±0.001 (-0.008) 0.535±0.002 (+0.506) 0.074±0.001 (+0.031)

NetSMF 0.435±0.001 (+0.026) 0.474±0.002 (+0.087) 0.454±0.001 (+0.055) 0.415±0.004 (+0.579) 1.069±0.000 (-0.007) 0.417±0.004 (+0.407) 0.047±0.001 (-0.002)
GCN 0.341±0.001 (+0.062) 0.364±0.002 (+0.100) 0.352±0.001 (+0.080) 0.370±0.004 (+0.851) 1.157±0.001 (-0.013) 0.450±0.004 (+0.377) 0.059±0.000 (-0.026)
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Table 11: The performance results of MNEMON using all four datasets. We fix the node embedding size to 64. We show the relative
improvement scores in edge metrics to demonstrate to what extent MNEMON can relatively improve from kNN graph. We add a
positive sign (+) next to the relative improvement score to highlight the improvement. We also show the relative error reduction scores
in global metrics to demonstrate to what extent MNEMON can relatively reduce errors incurred by kNN graph. We add a negative
sign (-) next to the relative error reduction score to highlight the difference.

Dataset f
Edge Metrics Global Metrics (Relative Error)

Precision Recall F1 Deg.
Dist.

Frobenius
Error

Triangle
Error

Clus. Coef.
Error

Cora

DW 0.596±0.003 (+0.231) 0.636±0.003 (+0.073) 0.615±0.001 (+0.155) 0.729±0.015 (+1.195) 0.892±0.002 (-0.128) 0.918±0.044 (-1.137) 0.248±0.003 (-0.046)
N2V 0.467±0.002 (+0.270) 0.524±0.002 (+0.162) 0.494±0.002 (+0.220) 0.730±0.007 (+1.231) 1.036±0.002 (-0.115) 1.046±0.017 (-1.156) 0.218±0.004 (-0.048)

NetSMF 0.441±0.003 (+0.166) 0.532±0.002 (+0.149) 0.482±0.001 (+0.159) 0.727±0.009 (+1.237) 1.069±0.004 (-0.071) 2.193±0.169 (-0.512) 0.295±0.004 (-0.045)
GCN 0.426±0.003 (+0.217) 0.470±0.002 (+0.097) 0.447±0.003 (+0.161) 0.777±0.007 (+1.306) 1.079±0.004 (-0.091) 0.684±0.032 (-1.235) 0.174±0.004 (-0.054)

Citeseer

DW 0.541±0.002 (+0.221) 0.681±0.003 (+0.074) 0.603±0.002 (+0.155) 0.516±0.002 (+1.295) 0.947±0.003 (-0.131) 1.669±0.036 (-1.618) 0.388±0.004 (-0.065)
N2V 0.423±0.004 (+0.275) 0.557±0.004 (+0.172) 0.481±0.004 (+0.231) 0.479±0.004 (+1.028) 1.096±0.005 (-0.121) 1.763±0.038 (-1.469) 0.335±0.004 (-0.055)

NetSMF 0.362±0.004 (+0.049) 0.567±0.003 (+0.153) 0.442±0.004 (+0.091) 0.462±0.004 (+1.000) 1.197±0.007 (-0.005) 7.019±0.920 (+3.300) 0.438±0.004 (-0.039)
GCN 0.389±0.003 (+0.196) 0.501±0.002 (+0.077) 0.438±0.002 (+0.143) 0.524±0.010 (+1.297) 1.134±0.004 (-0.091) 1.435±0.030 (-1.586) 0.314±0.002 (-0.054)

Actor

DW 0.660±0.002 (+0.224) 0.414±0.001 (+0.080) 0.508±0.001 (+0.135) 0.401±0.002 (+0.520) 0.894±0.001 (-0.078) 0.212±0.003 (-0.019) 0.224±0.003 (-0.013)
N2V 0.447±0.001 (+0.330) 0.298±0.001 (+0.246) 0.357±0.001 (+0.279) 0.468±0.001 (+0.283) 1.035±0.001 (-0.076) 0.231±0.010 (-0.252) 0.159±0.002 (-0.034)

NetSMF 0.402±0.002 (+0.186) 0.274±0.001 (+0.135) 0.326±0.001 (+0.155) 0.480±0.005 (+0.370) 1.065±0.001 (-0.044) 0.238±0.089 (-0.566) 0.228±0.002 (-0.031)
GCN 0.338±0.001 (+0.211) 0.239±0.001 (+0.209) 0.280±0.001 (+0.209) 0.523±0.003 (+0.460) 1.109±0.001 (-0.038) 0.325±0.008 (-0.192) 0.135±0.002 (-0.045)

Facebook

DW 0.445±0.001 (+0.025) 0.468±0.001 (+0.047) 0.456±0.001 (+0.037) 0.473±0.004 (+1.688) 1.056±0.001 (-0.010) 0.498±0.002 (+0.435) 0.062±0.001 (-0.007)
N2V 0.418±0.001 (+0.022) 0.436±0.001 (+0.033) 0.427±0.001 (+0.028) 0.385±0.003 (+1.253) 1.082±0.001 (-0.007) 0.495±0.001 (+0.422) 0.044±0.001 (-0.016)

NetSMF 0.427±0.001 (+0.082) 0.522±0.002 (+0.283) 0.470±0.001 (+0.172) 0.394±0.002 (+0.958) 1.085±0.001 (-0.018) 0.038±0.022 (+0.014) 0.052±0.000 (-0.029)
GCN 0.342±0.001 (+0.062) 0.371±0.002 (+0.122) 0.356±0.001 (+0.093) 0.372±0.003 (+0.876) 1.159±0.001 (-0.010) 0.432±0.003 (+0.350) 0.059±0.001 (-0.025)
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Figure 8: F1 scores and relative average clustering coefficient error scores of MNEMON given all four datasets. We fix the node
embedding size to 128. The estimated average node degree of Cora, Citeseer and Actor datasets is 5. The estimated average node
degree of Facebook is 46.
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Figure 9: F1 scores and relative average clustering coefficient error scores of MNEMON given all four datasets. We fix the node
embedding size to 64. The estimated average node degree of Cora, Citeseer and Actor datasets is 5. The estimated average node degree
of Facebook is 46.
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