
Property Inference Attacks Against GANs

Junhao Zhou†∗, Yufei Chen†∗, Chao Shen†§, Yang Zhang‡§
†Faculty of Electronic and Information Engineering, Xi’an Jiaotong University

‡CISPA Helmholtz Center for Information Security

Abstract—While machine learning (ML) has made tremen-
dous progress during the past decade, recent research has
shown that ML models are vulnerable to various security and
privacy attacks. So far, most of the attacks in this field focus
on discriminative models, represented by classifiers. Meanwhile,
little attention has been paid to the security and privacy risks
of generative models, such as generative adversarial networks
(GANs). In this paper, we propose the first set of training
dataset property inference attacks against GANs. Concretely,
the adversary aims to infer the macro-level training dataset
property, i.e., the proportion of samples used to train a target
GAN with respect to a certain attribute. A successful property
inference attack can allow the adversary to gain extra knowledge
of the target GAN’s training dataset, thereby directly violating
the intellectual property of the target model owner. Also, it can
be used as a fairness auditor to check whether the target GAN
is trained with a biased dataset. Besides, property inference can
serve as a building block for other advanced attacks, such as
membership inference. We propose a general attack pipeline
that can be tailored to two attack scenarios, including the full
black-box setting and partial black-box setting. For the latter,
we introduce a novel optimization framework to increase the
attack efficacy. Extensive experiments over four representative
GAN models on five property inference tasks show that our
attacks achieve strong performance. In addition, we show that our
attacks can be used to enhance the performance of membership
inference against GANs.1

I. INTRODUCTION

Machine learning (ML) has progressed rapidly during the
past decade, and ML models have been adopted in a wide range
of applications, such as image recognition [23], [33], speech
recognition [19], [28], machine translation [6], etc. Most of the
current ML applications are based on discriminative models,
represented by classifiers. Generative models, on the other
hand, have attracted an increasing amount of attention recently.
The most representative generative model is generative adver-
sarial networks (GANs) [18]. Due to the ability to produce
novel samples from high-dimensional data distributions, GANs
are finding appealing application scenarios, such as image-to-
image translation [38], [64], [68], image inpainting [30], text
generation [4], [61], and sound generation [42], [60].

ML models have been shown to exhibit severe security and
privacy vulnerabilities. Existing attacks including adversarial

∗ Co-first authors.
§ Corresponding authors.
1Our code is available at https://github.com/Zhou-Junhao/PIA GAN.

examples [15], [58], membership inference [55], [56], and
model stealing [48], [49], [59] mainly focus on discriminative
models. Recent research has also demonstrated the security
and privacy risks of generative models. In particular, Hayes
et al. [22] show that an adversary can effectively determine
whether a data sample is used to train a target GAN. Chen et
al. [10] further generalize this attack by proposing a taxonomy
of membership inference scenarios against GANs. While most
of the attacks against generative models focus on membership
inference, other vulnerabilities are left largely unexplored.

A. Our Contributions

Motivation. In this paper, we perform the first property
inference attack against GANs: an adversary aims to infer
whether a target GAN’s underlying training dataset exhibits a
certain general property. Here, the general property is related
to the macro-level information of the target GAN’s training
dataset. More importantly, the property is not related to the
design purpose of the target GAN. For instance, if a GAN
is trained to generate human faces, the property can be the
proportion of white people in its training dataset. A successful
property inference attack against a target GAN can lead to
severe consequences. For instance, learning the property of a
GAN’s training dataset gains an adversary extra information of
the data, which directly violates the intellectual property (IP)
of the model owner, as the dataset is often expensive to collect.
Also, an effective property inference attack can be used as a
fairness auditing tool to make sure a GAN is not trained on
biased data [8]. Moreover, this attack can be further leveraged
as a stepping stone to perform more advanced attacks, such as
membership inference [56].

Attack Methodology. Our attack follows the intuition that
the generated samples of a GAN can reflect its underlying
training dataset’s property. For instance, in Figure 1a, we can
see a WGAN [3] trained with faces of only white females
mainly generates images of white females, while in Figure 1b,
a WGAN trained with images from people with a diverse
demographic background can produce a diverse set of images.

We propose two attack scenarios, i.e., full black-box setting
and partial black-box setting. For the former, we assume the
adversary can just get samples blindly from the target GAN’s
generator. For the latter, the adversary can decide the input of
the target GAN’s generator, i.e., the latent code. Note that for
both attack scenarios, the adversary does not have access to
the target GAN’s parameters, which means we focus on the
most difficult setting for the adversary [56].

Both of our property inference attacks follow a general
pipeline. The adversary first queries the target GAN model
to obtain a set of generated samples. Then she relies on

Network and Distributed Systems Security (NDSS) Symposium 2022
24-28 April 2022, San Diego, CA, USA
ISBN 1-891562-74-6
https://dx.doi.org/10.14722/ndss.2022.23019
www.ndss-symposium.org

https://github.com/Zhou-Junhao/PIA_GAN

(a) All white females

(b) Multiple groups

Fig. 1: Samples generated by WGAN trained on (a) 256 images of white females drawn from CelebA dataset (b) 256 images of
uniformly distributed demographic background (gender and pale skin) from CelebA dataset. We can see that almost all images
in (a) are white females and images in (b) are rather diverse.

a property classifier to label these samples with respect to
the target property. For instance, if the target property is the
gender distribution of the GAN’s training dataset, the property
classifier is a gender classifier for the generated samples. In
the end, she infers the target property by summarizing the
results of the property classifier. For the partial black-box
setting, since the adversary can choose the input, i.e., the latent
code, for the target GAN, we propose a novel optimization
framework which allows us to generate a set of latent codes,
namely optimized latent code set, to reduce the number of
queries to the target model.

Evaluation. Extensive experiments over four GANs on five
different property inference tasks show that our attacks achieve
very effective performance. In the gender prediction task on
CelebA [41], the average absolute difference between the
inferred proportion and the ground truth proportion of males in
the target training dataset is 2.4% in the full black-box setting
and 9.8% in the partial black-box setting. In the age prediction
task (proportion of youth) on AFAD [45], the average absolute
difference is 9.7% and 10.1% in the full and partial black-box
settings respectively. Meanwhile, in the income prediction task
on the US Census dataset [1], the average absolute difference
is 2.9% and 4.5% in the full and partial black-box settings
respectively. We further compare the two methodologies in
detail and conclude that the partial black-box attack behaves
better when using a limited number of generated samples
(around 100 to 125), while the full black-box attack results in
a high accuracy using a large number of random samples. We
also observe that our full black-box attack works well even
without any knowledge of the target training dataset. Also,
our partial black-box attack works robustly with respect to
different optimization starting points as well as the number,
the structure, and the dataset of the shadow models.

Enhancing Membership Inference. We further enhance
the state-of-the-art membership inference attack against

GANs [10] leveraging our proposed property inference attacks.
In detail, we calibrate a sample’s membership prediction result
based on its attributes and the property of the target GAN’s
training dataset obtained by our attack. Experimental result
shows that our enhanced methodology increases the member-
ship inference’s AUC from 0.52 to 0.61 on the CelebA dataset.
This further demonstrates the applicability of our proposed
attacks.

In summary, we make the following contributions in this
paper:

• We propose the first property inference attack against
generative models.

• We specify two attack scenarios and propose corre-
sponding technical solutions relying on advanced ML
techniques.

• We perform extensive experiments and demonstrate
the efficacy of our proposed attacks.

• We show that our property inference attacks can serve
as a building block to enhance other advanced attacks,
in particular, membership inference against GANs.

B. Organization

The rest of the paper is organized as follows. We intro-
duce generative models, property inference attacks, and threat
models used in this paper in Section II. Then, Section III
presents our attack workflow and detailed methodologies. The
experiment setup and evaluation results are shown in Sec-
tion IV. We further show how to leverage our attack to enhance
membership inference in Section V. Section VI discusses the
related work and Section VII concludes this paper.

2

II. PRELIMINARIES

In this section, we first introduce generative models. Then,
we present property inference attacks. The threat models
considered in this paper are discussed in the end.

A. Generative Models

Machine learning models can be categorized into genera-
tive models and discriminative models. Discriminative models
are mainly designed to solve classification problems, such as
image recognition and text sentiment prediction. On the other
hand, generative models aim to learn the underlying training
data distribution and generate new data based on it. There
exist various types of generative models, including Variational
AutoEncoders (VAEs) and Generative Adversarial Networks
(GANs). In this paper, we focus on GANs as they are the
most popular generative models nowadays.

A GAN is assembled with two neural networks, i.e., the
generator and the discriminator. The generator takes random
noise (latent code) as input and generates samples, while the
discriminator performs adversarial training to distinguish the
real and fake (generated) samples. In the training stage, these
two networks are updated in turns: the generator learns to gen-
erate samples as realistic as possible while the discriminator
learns to better separate real and fake samples.

Mathematically, the loss function of a GAN is defined as
the following.

Ex∼Dtrain [logD(x)] + Ez∼Z [log(1− D(G(z)))]

Here, G and D represent the generator and the discriminator,
respectively. z ∼ Z denotes the latent code following a prior,
normally multivariate Gaussian or uniform distribution. The
training dataset of the GAN is represented by Dtrain . As G
is trained to minimize the loss and D aims to maximize the
loss, the optimization for GAN follows a two-player minimax
game.

After being first introduced by Goodfellow et al. [18],
GANs have attracted a lot of attention. Over the years, many
works have been proposed to enhance the original GANs, such
as WGAN [3], DCGAN [51], WGAPNGP [20], TGAN [65],
PGGAN [32], and BigGAN [7]. In this paper, we focus
on WGANGP, PGGAN, DCGAN, and TGAN as they have
achieved strong performance in various settings empirically.
Note that our method is general and can be applied to other
types of GANs as well.

B. Property Inference Attacks

Property inference attacks aim to extract some general
properties of a target ML model’s training dataset, which
the target model owner does not intend to share. Also, these
general properties are not related to the target GAN’s original
design purposes. For instance, if the target model is used to
generate realistic human profile photos, the property can be
the gender distribution of the samples in the training dataset.
A successful property inference attack allows an adversary
to gain insights on the training data of the target model,
which may violate the intellectual property of the model owner
as high-quality data is normally expensive to collect. Also,
property inference can serve as an important building block for

other more advanced attacks, such as membership inference
attacks [10] (see Section V). Moreover, property inference
attacks can serve as a fairness auditor for the target model’s
training dataset, e.g., whether the samples used to train a model
are equally distributed among different genders [8].

Recently, Ganju et al. [17] propose the first property
inference attack against discriminative models, in particular
fully connected neural networks. In this setting, the adversary
is assumed to have white-box access to the target model and
uses a meta classifier to predict the property of the correspond-
ing training dataset. The features of the meta classifier are
summarized over the parameters of the model. The authors
propose two approaches for feature summarization, including
neuron sorting and DeepSets. To train the meta classifier, the
adversary needs to establish multiple shadow models. Different
from [17], our attack is set up in more practical cases, where
the victim GAN is completely black-box or only part of the
GAN parameters are accessible.

So far, property inference attacks concentrate on discrim-
inative models in the white-box setting. In this paper, we
propose the first set of property inference attacks against
generative models, represented by GANs. More importantly,
we focus on the black-box setting which is the most difficult
and realistic scenario for the adversary [53], [56].

C. Threat Models

Similar to the setting of discriminative models, the goal
of the adversary here is to infer whether the target model’s
training dataset Dtarget has a certain property P . We first
assume the adversary has an auxiliary dataset Dauxiliary that
comes from the same distribution of Dtarget . The adversary
leverages this auxiliary dataset to build local shadow GANs
and classifiers for her attacks, i.e., Dauxiliary = Dshadow ∪
Dclassifier (see Section III for more details). This is also the
common assumption used in most of the works in machine
learning privacy [17], [53], [55], [56]. We also assume the
adversary only has access to the generator of the target model
as the discriminator is normally disregarded after the training
phase. For simplicity, we use Gtarget to represent the target
model in the rest of the paper.

We consider two scenarios for the adversary including full
black-box setting and partial black-box setting.

Full Black-box Setting. This is the least knowledgeable
setting for the adversary, where she can just get the generated
samples blindly from the target black-box generator Gtarget .
This attack scenario provides a good simulation of the online
closed-source API [10].

Partial Black-box Setting. In this scenario, the adversary also
has no knowledge about the parameters of the target GAN but
can construct the latent code z to generate the corresponding
sample from Gtarget . In this way, she can feed her chosen
latent codes to obtain specific generated samples. Formally,
we use the latent code set {zi}|X|

i=1 to represent her chosen
latent codes in our paper. Moreover, we assume the adversary
knows the architecture of the target GAN, as well as the
training algorithm. Such information can be directly inferred
by performing hyperparameter stealing attacks [46], [62].

3

Target GAN
Gtarget

… … f! !infer

"

Property
Classifier

Latent codes Generated samples
z X

!real

Underlying
property

Property Inference Attack

Fig. 2: Workflow of the general property inference attack
strategy. With the help of a property classifier fP , the adversary
obtains Pinfer to inspect Preal , the target underlying property
in the training dataset of Gtarget .

III. ATTACK METHODOLOGY

In this section, we first introduce our general attack
pipeline. Then, we present the details of our attacks under
two different scenarios.

A. Attack Workflow

Our attacks are designed based on the intuition that the
generated samples of a target GAN can reflect the underlying
training dataset’s property. For instance, if a GAN is mainly
trained with images of white males, we expect the generated
images are more likely to be white males compared to other
demographic backgrounds. Figure 1a shows a WGAN trained
only on images of white female mainly generates samples that
are recognized as white females. Meanwhile, Figure 1b shows
a WGAN trained with samples from a diverse demographic
background generates a diverse set of samples. Therefore, an
adversary can estimate a target GAN’s underlying property
Pinfer by inspecting the corresponding property of its gener-
ated samples (Preal).

Figure 2 depicts the general attack workflow, which can
be roughly categorized into three steps. In the first step,
the adversary queries the target generator Gtarget to produce
synthetic samples X = {G(z1),G(z2), · · · ,G(z|X|)}. Here,
G(zi) represents the ith generated sample from the target GAN
with respect to the corresponding latent code zi. The concrete
methods for generating samples, i.e., choosing latent codes,
for both full and partial black-box settings, are presented later
in Section III-B and Section III-C, respectively.

Next, the adversary constructs a property classifier fP
tailored for classifying the previously generated samples with
respect to the target property she is interested in. For instance,
if the target property is the gender distribution of the samples
(profile images) in the underlying training dataset, the property
classifier then predicts the gender of each sample. The property
classifier here is trained with part of the auxiliary dataset, i.e.,
Dclassifier (as described in Section II) that is disjoint from the
underlying training dataset of target GAN.

In the end, the adversary predicts Pinfer based on the
output of the property classifier. Concretely, she computes a
function ϕ over the prediction of the property classifier, defined
as:

ϕ
(
{fP(Gtarget(zi))}|X|

i=1

)
In this paper, our attack focuses on inferring a general property
as the distribution of a certain attribute, such as the gender
distribution of the samples in the target underlying training
dataset. Therefore, ϕ is realized as a function to summarize
the distribution of the target attribute. However, we emphasize
that our methodology is general and can be applied to infer
other types of property.

B. Full Black-box Adversary

For a full black-box adversary, she can only obtain gener-
ated samples blindly from the target GAN. These acquired
samples X, generated from a random latent code set, are
consumed by fP , and then ϕ to get the attack result Pinfer ,
just as presented in the basic attack strategy.

More formally, the property inference attack through full
black-box GANs can be described as the following, where the
latent codes are just drawn randomly from a prior.

ϕ
(
{fP (Gtarget (z

◦
i))}

|X|
i=1

)
Here, each latent code is denoted by z◦i , as a member of the
latent code set.

C. Partial Black-box Adversary

Different from the full black-box adversary, the partial
black-box adversary can choose the latent code to feed into the
target GAN. Thus, she can construct/craft a specific latent code
set to allow the target GAN to generate corresponding samples
that can help her to achieve an effective property inference.
Crafting a latent code set is a training process. To this end,
the adversary needs to establish a set of shadow models to
simulate GANs trained with datasets of different properties.

The process to construct the latent code set with the help
of shadow models can be divided into three stages. Figure 3
provides a schematic overview of it.

In the first stage, the adversary generates shadow train-
ing datasets for training shadow GANs. More formally, she
samples M shadow training datasets {D1,D2, · · · ,DM} from
Dshadow (obtained from the local auxiliary dataset presented in
Section II) corresponding to M shadow models. Each shadow
dataset Dk is sampled to fulfill a certain property denoted
by Pk, and all the shadow training datasets’ properties are
uniformly distributed.

In the next stage, the adversary trains each local shadow
GAN Gk with the corresponding shadow training dataset Dk.
Note that each Gshadow has the same architecture with the
target GAN Gtarget (see Section II).

Finally, the adversary crafts an optimized latent code set,
denoted by {z∗i }

|X|
i=1, over the M shadow GANs. Mathemati-

cally, the optimization is defined as the following.

argmin
{z∗

i }
|X|
i=1

M∑
k=1

L
(
ϕ
(
{fP(Gk(z

∗
i))}

|X|
i=1

)
,Pk

)

4

Shadow Training Set 1

…

Shadow Training Set 2

Shadow Training Set M

Shadow GAN 1

Shadow GAN 2

Shadow GAN M

…

f!

Shadow GAN "

… Optimized
latent codes

z*

Loss function

Back
Propagate

Draw randomly

Shadow GAN "

!k

Shadow Training Set "

Underlying
property

#

X

ℒ(#, !k)

Fig. 3: Methodology of optimizing input latent codes (z ← z∗) with shadow models.

Here, L represents the adopted loss function, and we utilize
the stochastic gradient descent (SGD) method to minimize the
loss function. At the beginning of the optimization, we need
to set a random starting of the latent code set. Particularly,
we present an experiment about how the optimization starting
point affects the partial black-box attack in Section IV-F.

With the optimized latent code set, the adversary can
infer the target property Pinfer similar to the full black-box
adversary:

ϕ
(
{fP (Gtarget (z

∗
i))}

|X|
i=1

)
Here, each latent code is denoted by z∗i , as a member of the
optimized latent code set.

IV. EVALUATION

In this section, we first describe the datasets used in our
experiments, followed by descriptions of the evaluated GAN
models and detailed experimental setup. We then present the
results of our proposed attacks.

A. Dataset

GANs have been demonstrated to be successfully used
in the image domain [30], [38], [64], and current attacks
against GANs are also demonstrated with computer vision
targets [10]. Therefore, we mainly focus on GANs generating
image outputs in this paper. We also experiment on tabular
data to prove that our attacks are general and can be applied
to other domains.

MNIST. The MNIST database of handwritten digits [2] is a
commonly adopted benchmark repository for computer vision
and machine learning projects. It includes 70,000 handwritten
digits labeled with corresponding digit numbers. In this paper,
we focus on inferring the proportion of 0s and 1s used to train
target GANs. Concretely, we construct a subset MNIST01 with
over 6.9K 0s and 7.8K 1s and evaluate our inference attack on
the proportion of 0s. We also show an extended experiment
in Section IV-J to evaluate our attack facing the property with
multiple classes (digit 0˜9) based on the whole MNIST dataset.

CelebA. CelebA [41] is a benchmark dataset for face-related
problems. This large-scale face attributes dataset contains more

than 200K celebrity images, and each of them has 40 binary
attributes. In this paper, we focus on the gender attribute,
which not only is easy for a property classifier to discriminate
but also has a relatively balanced proportion on females and
males (around 4:6). As a result, we intend to infer the gender
distribution of the samples used to train a target GAN.

AFAD. The Asian Face Age Dataset (AFAD) [45] is a
dataset proposed mainly for age estimation tasks. This dataset
contains over 160K Asian faces, with the corresponding age
and gender attributes. In this paper, we take advantage of
both attributes and focus on inferring the gender distribution
and the age distribution of the images used to train target
GANs. Concretely, we construct two datasets from AFAD,
i.e., AFADgender and AFADage. AFADgender contains the same
number of images (160K) as the normal AFAD. AFADage, on
the other hand, contains over 72K samples where 18 ≤ age ≤
20 and 30 ≤ age ≤ 39 are chosen from AFAD. In this way,
the age distribution is described as the proportion of youth
(18 ≤ age ≤ 20) in the underlying training dataset.

US Census Income. The US Census Income Dataset [1] is
used to learn to predict whether a person earns over $50K a
year. It includes 299,285 instances and each of them has 41
demographic and employment related attributes, such as age,
gender, education, and citizenship. In this paper, we intend to
infer the high-income distribution (the proportion of records
whose income is over $50K) of the samples used to train a
target GAN.

B. Models

We first introduce the four GAN models that we focus on in
this paper, i.e., DCGAN [51], WGANGP [20], PGGAN [32],
and TGAN [65], as they are typical and representative models
used in multiple applications like image generation, image-to-
image translation, and super-resolution. Then, we describe the
property classifier fP which is used in both attack scenarios.

DCGAN. DCGAN bridges the gap between convolutional
networks (CNNs) and unsupervised learning. Thanks to the
combination of CNNs, DCGANs are stable to train in most
settings and are proved to learn good representations of images
for supervised learning and generative modeling. In this paper,

5

TABLE I: The settings for each experiment, describing the dataset, the property classifier task, and the target property.

Task Dataset Property Classifier Target Property GAN structure Size of Dtarget Size of Dk Size of Dclassifier

T1 CelebA Gender Classification Proportion of Males WGANGP 40000 40000 82K
T2 AFADgender Gender Classification Proportion of Males PGGAN 10800 10800 92K
T3 AFADage Age Classification Proportion of Youth PGGAN 10800 10800 92K
T4 MNIST01 Digit classification Proportion of 0s DCGAN 3000 3000 8.8K
T5 Census Income Income classification Proportion of high-income TGAN 4200 4200 290k

the dimension of the latent code is chosen as 100, and the
output size is set as 32×32×1, while our DCGANs are
trained on MNIST. The structure we use in this paper is
shown in Table III, and the detailed hyper-parameters are listed
below. The number of critic iterations per generator iteration
ncritic = 1, the batch size m = 100, and parameters of the
Adam optimizer α = 0.0002, β1 = 0.5, β2 = 0.999.

WGANGP. WGANGP is proposed to improve the training
process of an ordinary Wasserstein GAN. With the help of an
addition called gradient penalty, their proposed method enables
stable training of a wide variety of GAN architectures. In
this paper, we choose the dimension of each latent code as
100, and the pixel size of output images is 64×64×3. The
structure of our WGANGP is shown in Table IV. Moreover,
the hyper-parameters in the training process are configured as
the following: the gradient penalty coefficient λ = 10, the
number of critic iterations per generator iteration ncritic = 3,
the batch size m = 100, and parameters of the Adam optimizer
α = 0.0002, β1 = 0.9, β2 = 0.999.

PGGAN. The key idea of PGGAN is to grow both generator
and discriminator progressively with the resolution becoming
higher. This training method has a better performance in
training high-quality images. In this paper, we set the image
size as 64×64×3, with consideration of the training cost. The
remaining settings are the same as those provided in [32],
including the dimension of input latent code is 512, the usage
of WGANGP loss, and leaky ReLU with leakiness 0.2. The
structure of PGGAN we use is shown in Table V, and the
detailed hyper-parameters are shown as below: the gradient
penalty coefficient λ = 10, the number of critic iterations
per generator iteration ncritic = 1, the batch size m = 36,
and parameters of the Adam optimizer α = 0.001, β1 = 0,
β2 = 0.99.

TGAN. Tabular GAN is designed to generate tabular data
like medical or educational records. With the help of mode-
specific normalization for numerical variables and smoothing
for categorical variables, TGAN can simultaneously generate
discrete and continuous variables. In this paper, we set the
dimension of the latent code to 200 and the size of the synthetic
output to 503 (based on the total size of the one-hot vectors).
All of the settings of the TGAN are the same as those provided
in [65], while the output and hidden state size of LSTM are
100, the size of the hidden vector is 100, the batch size is
200, and the parameters of the Adam optimizer are set as α =
0.001, β1 = 0.5, β2 = 0.99.

Property Classifier. For each inference task, we construct a
property classifier (binary in our case) with the corresponding
generated image size. For the gender classifiers, our neural
networks start with two convolutional layers and follow with

two fully connected layers, both obtaining over 95% testing
accuracy. And the age classifier starts with three convolutional
layers followed with three fully connected layers, getting an
accuracy of around 80%. To discriminate the digit 0 and 1,
our neural network has the same structure as the age classifier,
with a testing accuracy of over 98%. Additionally, we build up
a four-layer fully connected classifier to recognize the high-
income census with over 86% testing accuracy. We also show
extended experiments later in Section IV-H to investigate the
influence of the property classifier on the attack performance,
i.e., the needlessness of the target model’s training dataset and
the irrelevance of architecture of the property classifier. For the
former, we adopt two off-the-shelf gender classifiers (based on
IMDB-WIKI dataset and the Audience dataset) and a locally
trained model (based on EMNIST dataset). For the latter, we
train five well-behaved classifiers with different architectures.

C. Experiment Setup

We evaluate the performance of our property inference
under five different settings, including the proportion of males
on CelebA (T1), the proportion of males on AFAD (T2),
the proportion of youth on AFAD (T3), the proportion of
0s on MNIST (T4), and the proportion of the high-income
on Census Incone dataset (T5). Table I lists them in detail.
For each task, we firstly split the dataset into three disjoint
parts, i.e., a shadow dataset Dshadow to draw Dk, a dataset to
draw Dtarget with the same size as Dshadow , and a classifier
dataset Dclassifier to train fP . We then split Dclassifier with
a proportion of 7:3 to train and test the property classifier.
Note that, all of the samples are drawn randomly but under
a control on the number of images with the target analyzing
attribute. For instance, when we focus on inferring the gender
distribution of the training dataset, we will control the number
of females and males. In this way, these split datasets follow
the same distribution as the original datasets except the target
attribute. Moreover, the concrete size of the disjoint dataset is
also presented in Table I.

With the aim of inferring the distribution of the tar-
get GAN’s underlying training dataset, the property of each
shadow dataset Pk can be simply set as a range of proportions
covering the target property. In our experiments, we assume
that Ptarget ,Pk ∈ {30%, 40%, 50%, 60%, 70%}. In this way,
we draw Dtarget and Dk randomly, while controlling the size
and property of each dataset. Note that, we assume the target
property Ptarget is between 30% and 70%, so we simply set
the property of each shadow dataset within the same range.
Moreover, we also investigate how our partial black-box attack
behaves when the property of shadow models do not cover
their target property, as shown in Figure 10.

For each inference task, our experiment basically goes as
follows. In the training stage, we have trained eight target

6

30 35 40 45 50 55 60 65 70
Ground Truth (%)

30

40

50

60

70

80

In
fe

rr
ed

P
ro

p
or

ti
on

(%
)

Average

Benchmark

Target model

(a) Evaluation on T1

30 35 40 45 50 55 60 65 70
Ground Truth (%)

30

40

50

60

70

80

In
fe

rr
ed

P
ro

p
or

ti
on

(%
)

Average

Benchmark

Target model

(b) Evaluation on T2

30 35 40 45 50 55 60 65 70
Ground Truth (%)

30

40

50

60

70

80

In
fe

rr
ed

P
ro

p
or

ti
on

(%
)

Average

Benchmark

Target model

(c) Evaluation on T3

30 35 40 45 50 55 60 65 70
Ground Truth (%)

30

40

50

60

70

80

In
fe

rr
ed

P
ro

p
or

ti
on

(%
)

Average

Benchmark

Target model

(d) Evaluation on T4

30 35 40 45 50 55 60 65 70
Ground Truth (%)

30

40

50

60

70

80

In
fe

rr
ed

P
ro

p
or

ti
on

(%
)

Average

Benchmark

Target model

(e) Evaluation on T5

Fig. 4: Full black-box attack performance. Each point depicts a target model with corresponding underlying property (Ground
Truth) and inferred property (Inferred Proportion). The average curve gives an average attack result for target models with the
same underlying property. The benchmark line refers to the best attack result, where the inferred proportion is exactly equal to
the ground truth. The inferred result for each target model is obtained using 20K randomly generated samples.

4 16 64 256 1024 4096 16384
Number of Random Samples

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

A
bs

ol
ut

e
D

iff
er

en
ce

(%
)

Proportion 30%

Proportion 40%

Proportion 50%

Proportion 60%

Proportion 70%

(a) Evaluation on T1

4 16 64 256 1024 4096 16384
Number of Random Samples

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

A
bs

ol
ut

e
D

iff
er

en
ce

(%
)

Proportion 30%

Proportion 40%

Proportion 50%

Proportion 60%

Proportion 70%

(b) Evaluation on T2

4 16 64 256 1024 4096 16384
Number of Random Samples

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

A
bs

ol
ut

e
D

iff
er

en
ce

(%
)

Proportion 30%

Proportion 40%

Proportion 50%

Proportion 60%

Proportion 70%

(c) Evaluation on T3

4 16 64 256 1024 4096 16384
Number of Random Samples

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

A
bs

ol
ut

e
D

iff
er

en
ce

(%
)

Proportion 30%

Proportion 40%

Proportion 50%

Proportion 60%

Proportion 70%

(d) Evaluation on T4

4 16 64 256 1024 4096 16384
Number of Random Samples

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

A
bs

ol
ut

e
D

iff
er

en
ce

(%
)

Proportion 30%

Proportion 40%

Proportion 50%

Proportion 60%

Proportion 70%

(e) Evaluation on T5

Fig. 5: Full black-box performance w.r.t. number of random samples, evaluated with the absolute difference between the inferred
property and the underlying property. Each line presents the average behavior of the target models with the same property, and
how the behavior changes using the different number of random samples.

TABLE II: Average FID for GAN models in each task.

WGANGP T1 PGGAN T2 PGGAN T3 DCGAN T4

Target GANs 33.62 28.79 29.48 49.07
Shaodw GANs 35.17 29.28 29.02 51.23

models with each Ptarget , i.e., 40 target models in total, so as to
examine the variation in inference accuracy. In the attack stage,
we build up 20 shadow models for each Pk, using the same
GAN structures and training hyper-parameters with the target
models. Consequently, 100 shadow models are involved in the
evaluation for the partial black-box attack. The corresponding
quantitative evaluation in terms of Fréchet Inception Distance
(FID) metric [27] is shown in Table II to present the quality
of our shadow and target GANs. We can find that our GAN
models are in a reasonable range compared with experiments
(FID ranging from 14.86 to 53.08) in [10]. Note that we will
further discuss the influence of shadow models in Section IV-I
based on different GAN structures and underlying datasets.

D. Attack Evaluation

In this paper, our proposed property inference attack
produces a continuous property value, instead of a discrete
classification label like [17]. Therefore, we evaluate the effects
of the attack based on the absolute difference between the real
property and the inference property.

Formally, as we focus on inferring the proportion of a
certain attribute, the absolute difference of our attack can be
easily calculated as |Pinfer − Preal |, where Pinfer and Preal

range from 0% to 100%, represented by the percentage. As the
definition of the evaluation metric, the attack result is better
when the calculated absolute difference is closer to 0%.

E. Evaluation on Full Black-box Attack

We first start by evaluating the full black-box method,
which is the least knowledgeable setting for the adversary.

Figure 4 shows the experimental results of our proposed
full black-box attack against all target models. The inferred
property of each target model is represented as a single
point, which depicts the black-box attack result based on
20K random generated samples against the corresponding
underlying property (i.e., the ground truth). We also plot the
average inference result for target models sharing the same
property, as well as an ideal benchmark line for comparison, on
which the inferred property is exactly equal to the underlying
property. Overall, our results indicate the effectiveness of the
full black-box attack, as we can clearly observe that the
average inference curve corresponds closely to the benchmark
line. For instance, in Figure 4a focusing on target models with
30% males in the training dataset, our attack is well-behaved
as the inferred proportion for each target model is very close
to 30%. Moreover, we can see that in the tasks T1 and T4,
our attack achieves quite a good attack performance, and the
variances of inference results on target models are smaller than

7

30 35 40 45 50 55 60 65 70
Ground Truth (%)

30

40

50

60

70

80

In
fe

rr
ed

P
ro

p
or

ti
on

(%
)

Average

Benchmark

Target model

(a) Evaluation on T1

30 35 40 45 50 55 60 65 70
Ground Truth (%)

30

40

50

60

70

80

In
fe

rr
ed

P
ro

p
or

ti
on

(%
)

Average

Benchmark

Target model

(b) Evaluation on T2

30 35 40 45 50 55 60 65 70
Ground Truth (%)

30

40

50

60

70

80

In
fe

rr
ed

P
ro

p
or

ti
on

(%
)

Average

Benchmark

Target model

(c) Evaluation on T3

30 35 40 45 50 55 60 65 70
Ground Truth (%)

30

40

50

60

70

80

In
fe

rr
ed

P
ro

p
or

ti
on

(%
)

Average

Benchmark

Target model

(d) Evaluation on T4

30 35 40 45 50 55 60 65 70
Ground Truth (%)

30

40

50

60

70

80

In
fe

rr
ed

P
ro

p
or

ti
on

(%
)

Average

Benchmark

Target model

(e) Evaluation on T5

Fig. 6: Partial black-box attack performance. Each point depicts a target model with corresponding underlying property (Ground
Truth) and inferred property (Inferred Proportion) based on an optimized latent code set. The average curve gives an average
result for target models with the same underlying property. The benchmark line refers to the best attack result.

25 50 75 100 125 150 175 200
Number of Optimized Samples

0

5

10

15

20

25

30

35

A
bs

ol
ut

e
D

iff
er

en
ce

(%
)

Average

(a) Evaluation on T1

25 50 75 100 125 150 175 200
Number of Optimized Samples

0

5

10

15

20

25

30

35

A
bs

ol
ut

e
D

iff
er

en
ce

(%
)

Average

(b) Evaluation on T2

25 50 75 100 125 150 175 200
Number of Optimized Samples

0

5

10

15

20

25

30

35

A
bs

ol
ut

e
D

iff
er

en
ce

(%
)

Average

(c) Evaluation on T3

25 50 75 100 125 150 175 200
Number of Optimized Samples

0

5

10

15

20

25

30

35

A
bs

ol
ut

e
D

iff
er

en
ce

(%
)

Average

(d) Evaluation on T4

25 50 75 100 125 150 175 200
Number of Optimized Samples

0

5

10

15

20

25

30

35

A
bs

ol
ut

e
D

iff
er

en
ce

(%
)

Average

(e) Evaluation on T5

Fig. 7: Partial black-box performance w.r.t. number of optimized samples. For each target model, we generate different numbers
of optimized samples based on latent code sets and then obtain the inference results using these optimized samples. The red
curve represents the average attack performance against all target models based on different numbers of optimized samples. We
also provide box plots of our results for statistical analysis.

the other two. Meanwhile, the result in the task T3 is not so
good, as the youth is hard to discriminate when using a local
property classifier whose testing accuracy is only around 80%.
How the fP affects our attack behavior will be further explored
in Section IV-H.

Number of Random Samples. Next, we evaluate our full
black-box attack performance against an ablation study, i.e.,
the influence of the number of random generated samples.
We repeat our aforementioned full black-box evaluation with
various random sample amounts to achieve the attack: 2i(i =
2, 3, · · · , 16). After obtaining inferred proportions for all the
target models, we average the inference results from the same
underlying proportion and number of samples respectively
for further analysis. Figure 5 plots the average full black-
box attack performance against different numbers of random
samples. We can see the absolute difference of the inference
result is obvious when using a relatively small amount of
generated samples (less than 128). And then the inference
results become more accurate and stable with the increasing
number of random generated samples. For instance, the green
line in Figure 5b depicts the average attack performance
against target models with half male and half female training
data, where the absolute difference is decreasing from 17.8%
to 3.7% as the amount of samples grows to 1024, indicating the
inference result is getting closer to the ground truth. Moreover,
focusing on T1 and T2, we can find the inference results on
models with 70% males in the underlying training dataset are
always worse than the others. A possible explanation is that fP

has relatively higher accuracy on the female class. In that case,
more males are misclassified as females when the proportion
of males increases.

F. Evaluation on Partial Black-box Attack

We then evaluate the partial black-box method, which
relies on locally-trained shadow models. Figure 6 shows the
partial black-box attack results against all target models. The
inferred property of each target model is represented as a single
point, which depicts the partial black-box attack result against
the corresponding underlying property, using 100 optimized
samples generated from an optimized latent code set. Similar
to Figure 4, we further plot a benchmark line as a reference
to the best attack result, as well as an average line for target
models with the same underlying property. As we can see,
the average inference curve lies close to the benchmark line,
proving the effectiveness of our partial black-box attack. For
instance, we get an average inferred proportion of 48.4% for
the target models with half males and half females in the
underlying training dataset as shown in Figure 6b (the ground
truth is 50% males). Note that we use only 100 generated
samples to achieve our partial black-box attack in Figure 6,
it is reasonable that the inference result of each target GAN
has a relatively large deviation. Similar to our results and
analysis for the full black-box attack (Section IV-E), our partial
black-box attack produces good results when aiming to infer
the underlying distribution in tasks T1, T2, T4 and T5, while
T3 is the most difficult one to achieve an accurate inference.

8

25 50 75 100
Number of shadow models

0

5

10

15

20

25

30

35
A

bs
ol

ut
e

D
iff

er
en

ce
(%

)
Average

(a) Evaluation on T1

25 50 75 100
Number of shadow models

0

5

10

15

20

25

30

35

A
bs

ol
ut

e
D

iff
er

en
ce

(%
)

Average

(b) Evaluation on T2

25 50 75 100
Number of shadow models

0

5

10

15

20

25

30

35

A
bs

ol
ut

e
D

iff
er

en
ce

(%
)

Average

(c) Evaluation on T3

25 50 75 100
Number of shadow models

0

5

10

15

20

25

30

35

A
bs

ol
ut

e
D

iff
er

en
ce

(%
)

Average

(d) Evaluation on T4

Fig. 8: Partial black-box performance w.r.t. number of shadow models. For each target model, we generate 100 samples from
the latent code sets optimized based on different numbers of shadow models and then obtain the inference results using these
optimized samples. The red curve shows the average performance of all target models through latent code sets optimized by
different numbers of shadow models. We also provide box plots of our results for statistical analysis.

Moreover, we can find some obvious gaps between the bench-
mark line and the average curve, such as Preal = 40% in
T1 and Preal = 70% in T3. They are possibly caused by a
significant dissimilarity between the shadow datasets and the
target datasets. In that case, the optimization phase within the
partial black-box pipeline fails to construct an effective latent
code set for the target models.

Number of Optimized Samples. In Section IV-E, our one
key finding is that the full-black box attack performance is
influenced by the number of random samples. Here we also
investigate how the number of optimized samples impacts the
accuracy of our partial black-box attack, note that the adversary
uses an optimized latent code set with the corresponding size to
generate these optimized samples. Figure 7 presents the attack
performance on each task while using different numbers of
optimized samples, in other words, using latent code sets with
different sizes. Fixing the number of optimized samples, we
can obtain the inference results for all 40 target models. And
for each number, we take advantage of box plots to perform all
the attack results against the target models. Besides, we also
plot a red curve that highlights the average performance against
the target models. In general, we can see the partial black-
box attack gets more precise when increasing the number of
optimized samples. For instance, in Figure 7 when the number
of optimized samples grows from 25 to 100, the average
absolute difference of all target models changes from 12.5%
to 9.8% in T1, 8.7% to 7.2% in T2, 14.9% to 10.1% in T3,
7.7% to 4.9% in T4 and 9.8% to 4.5% in T5. However, a larger
number of optimized samples also tend to cause more serious
instability (e.g., the variance of inference results), scaled here
by the difference between the lower and upper quartile in the
box plot. As shown in Figure 7a, when choosing the number
of optimized samples as 200 in T1, the average performance
increases to 12.6%, and the attack stability increases to around
15%. In our remaining experiments, after trading off the attack
accuracy and the optimization time cost, we set the number of
optimized samples as 100, i.e., the size of the optimized latent
code set is equal to 100.

Number of Shadow Models. Figure 8 shows the partial
black-box attack performance on all target models against
the number of local shadow models used to optimize the

30 35 40 45 50 55 60 65 70
Ground Truth (%)

30

35

40

45

50

55

60

65

In
fe

rr
ed

P
ro

p
or

ti
on

(%
)

Latent Code Set 1

Latent Code Set 2

Latent Code Set 3

Latent Code Set 4

Latent Code Set 5

Fig. 9: Partial black-box performance w.r.t. optimization start-
ing point. Each line plots an average performance of the target
models in T2 with the same underlying property, based on 5
latent code sets optimized from different starting points.

latent code set. We leverage box plots to present the attack
performance for all models’ inference results, based on latent
code sets optimized with different numbers of shadow models.
Moreover, we also plot a curve to present the average inference
result against the number of shadow models. As we can
see, the average inference behavior changes slightly when
using different numbers of shadow models. For example, when
increasing the number of shadow models from 50 to 100 in
Figure 8c, the average absolute difference of all target models
changes slightly from 10.2% to 10.8% in T3. Even though the
median and average attack accuracies are slightly higher when
optimizing latent code set based on only 25 shadow models for
most tasks, the variance of attack results is quite large, even
more than 10% in T3 (scaled by the difference between the
lower and upper quartile in a box plot). It means the property
inference attack suffers from severer instability when there
are only a few shadow models. Finally, considering both the
accuracy and stability of the attack performance, we set the
number of shadow models as 100 in our other experiments.
Moreover, our results indicate that our proposed partial black-
box attack is able to achieve high inference accuracy with just
a limited amount of shadow models, suggesting it is a practical
and realistic threat in the real world.

Optimization Starting Point. Since we utilize the stochastic

9

10 14 18 22 26 30
Partial Black-Box Inference Result (Males%)

0

2

4

6

8

10

N
um

b
er

of
T

ar
ge

t
M

od
el

s

Fig. 10: Partial black-box performance w.r.t. out-of-range tar-
get property. Each bar represents the number of target models
with relative partial black-box attack results. All 21 target
GANs have 20% males and 80% females in the underlying
dataset and follow the same setting as T4. The underlying
property of the shadow models ranges from 30% to 70%.

gradient descent (SGD) method to optimize a latent code set to
implement our partial black-box attack, the optimized results
may be affected by the optimization initialization, i.e., the
optimization starting point. Figure 9 shows the performance of
our partial black-box attack on T2 with five different random
starting points. Similar to Figure 4 and Figure 6, we exhibit the
average performance for all target models. As we can see, the
five curves depicting the average inference results are close
to each other. For instance, in Figure 9 considering target
models with 70% males in the underlying training dataset, the
average inference results range from 63.2% to 65.2% using
five latent code sets based on different optimization starting
points. It suggests that the optimization starting point would
not obviously affect our partial black-box attack performance.

Target Property Out of Range. In the above experiment,
we simply set the range of the property of the shadow models
to cover the underlying property of the target models. When
facing an unknown distribution, the adversary can also expand
the covering property range of the shadow models to 0% to
100%. In this part, we examine our attack behavior when the
target property is out of the range of the shadow models.
Figure 10 shows the partial black-box attack result of target
GANs with 20% males in the underlying dataset based on
shadow models with 30% to 70% males. As we can see in
Figure 10, there are 38% (8/21) target GANs whose partial
black-box inference error is lower than 2%. It indicates that our
partial black-box attack still works when the target property is
out of the range of the property of the shadow models.

Compared with the full black-box scenario, our proposed
attack methodology on the partial black-box scenario shows
more stable performance, as it is loosely related to the choice
of several attack hyper-parameters, e.g., the optimization ini-
tialization and the number of shadow models.

G. Comparison Between Two Attacks

In this paper, we develop two property inference strategies
against GANs on two practical attack scenarios: the full
black-box setting and the partial black-box setting. The key
difference relies on whether the adversary is able to craft
latent codes to control the target model’s output. In the former
case, we choose a more general and straightforward way by

25 50 75 100 125 150 175 200
Number of Samples

0.3

0.4

0.5

0.6

0.7

0.8

R
at

io
of

O
pt

im
iz

ed
B

et
te

r
th

an
R

an
do

m Task 1

Task 2

Task 3

Task 4

Fig. 11: Ratio of optimized samples behaving better than
random ones. For each task, we obtain 80 random inference
results and one optimized inference result based on a limited
number of generated samples for each target GAN. Then
we compare them to get the frequency of optimized samples
behaving better than random ones and finally obtain the ratio
considering all target models. In this way, we show the ratio
of partial black-box attack (optimized) behaving better than
the full black-box attack (random) against different numbers
of samples.

directly sending random generated latent codes to get random
samples. As it does not require any internal information of
the target model (e.g., parameters, structures), this full black-
box methodology is also applicable for the partial black-box
adversary. In the latter case, we propose to leverage auxiliary
knowledge of the target model to help search for optimized
latent codes via SGD, and then send them to the target model.
Our aforementioned experimental results show that the partial
black-box adversary can achieve an accurate inference with a
limited amount of latent codes. In this subsection, we present
a more comprehensive comparison between the two attacks
based on their attack stability and accuracy. As we can see
in Figure 5, our full black-box attack can achieve a quite
good attack performance based on over 256 random generated
samples, so our comparison below will focus on using a
relatively small amount of samples.

We first give a comparison based on the attack stability
for the proposed two methodologies. Based on the observa-
tion in Figure 5, we can find that the number of samples
strongly affects the full black-box attack performance and
the inference results are extremely unstable when using less
than 256 samples. On the other hand, the partial black-box
attack methodology is not affected too much by the number
of optimized samples, as the red curves in Figure 7 are
much smoother than curves in Figure 5. For instance, the
average absolute difference of our partial black-box attack
result decreases from 8.2% to 3.6% in T4 when the number of
optimized generated samples increases from 25 to 200. In this
way, the partial black-box methodology produces a relatively
stable performance when using a limited amount of samples
(less than around 128 to 256).

We follow with a comparison of the attack accuracy for
the proposed two methodologies, based on the experiment
established below. For each target model and specific size of
the latent code set, we perform the partial black-box attack
once using the corresponding number of optimized samples.
In the meanwhile, because the full black-box attack presents

10

30 35 40 45 50 55 60 65 70
Ground Truth (%)

30

40

50

60

70

80

In
fe

rr
ed

P
ro

p
or

ti
on

(%
)

Average

Benchmark

Target model

(a) Evaluation on T1 with
IMDB-WIKI classifier

30 35 40 45 50 55 60 65 70
Ground Truth (%)

30

40

50

60

70

80

In
fe

rr
ed

P
ro

p
or

ti
on

(%
)

Average

Benchmark

Dataset property

Target model

(b) Evaluation on T2 with
IMDB-WIKI classifier

30 35 40 45 50 55 60 65 70
Ground Truth (%)

30

40

50

60

70

In
fe

rr
ed

P
ro

p
or

ti
on

(%
)

Average

Benchmark

Target model

(c) Evaluation on T1 with
Audience classifier

30 35 40 45 50 55 60 65 70
Ground Truth (%)

30

40

50

60

70

In
fe

rr
ed

P
ro

p
or

ti
on

(%
)

Average

Benchmark

Target model

(d) Evaluation on T2 with
Audience classifier

30 35 40 45 50 55 60 65 70
Ground Truth (%)

30

40

50

60

70

In
fe

rr
ed

P
ro

p
or

ti
on

(%
)

Average

Benchmark

Target model

(e) Evaluation on T4 with
EMNIST classifier

Fig. 12: Full black-box performance w.r.t. unknown training distribution. We adopt two off-the-shelf classifiers (based on IMDB-
WIKI and Audience dataset) and a locally trained model (based on EMNIST dataset) to achieve our attacks. Each point depicts
the full black-box attack performance with corresponding underlying property and inferred property. The blue curve plots the
average performance of the target models with the same underlying property. The orange line marks the ideal attack result. The
green line shows the dataset property reported by directly running the off-the-shelf classifier on the underlying training dataset.

a relatively unstable behavior, especially when the number of
random samples is small, we repeat our full black-box attack
80 times to reduce observation randomness. Then we compare
each full black-box result with the corresponding partial black-
box result. Finally, for each tested number of samples, we
respectively calculate the ratio of comparisons in which the
optimized samples produce a more accurate inference with full
consideration of all target models.

The statistical result is plotted in Figure 11. It shows that
the partial black-box attack method is more likely to provide
more accurate inferences than the full black-box attack when
using a small number of samples (less than around 150). For
tasks except T1, we can find that inferences with optimized
samples are better than those with random samples in most
cases (i.e., the ratio is exceeding 0.5). Another observation is
that, as the number of samples increases, more full black-box
inferences outperform the partial black-box attack results.

Overall, we give a conclusion for these two methodologies.

Partial Black-box Methodology. Our partial black-box attack
achieves a better inference performance in both accuracy and
stability with a limited number of optimized samples (around
150). Note that obtaining a large number of samples from the
target GAN can be possibly detected as an abnormal event, our
partial black-box attack is supposed to be a more stealthy one.
Moreover, the partial black-box attack helps to reduce query
charges when the adversary needs to pay for the generated
samples.

Full Black-box Methodology. When the adversary is allowed
to obtain a large number of samples, our full black-box
methodology provides a more convenient way to achieve her
attack, as it avoids the consumption to optimize the latent code
set. Besides, we believe that our full black-box methodology
has also presented realistic threats against generative models,
as it provides a more generic and easy solution without any
extra knowledge of the target model.

H. Evaluation on Property Classifier

Both of our full and partial black-box attack pipelines
include a property classifier fP , which directly impacts the

final inference result. In this subsection, we study how the
property classifier influences the property inference attack with
respect to two factors: the training dataset distribution and the
structure of the property classifier.

Training Dataset from a Different Distribution. We firstly
consider a strict situation that the adversary has no knowledge
of the target model’s training dataset distribution. In that case,
we investigate how the full black-box attack behaves when the
property classifier is trained on a different dataset. In our exper-
iment, we adopt three property classifiers, i.e., an off-the-shelf
CNN model2 trained on the IMDB-WIKI dataset [52], an off-
the-shelf CNN model3 trained on the Audience dataset [35],
and a model locally trained with the EMNIST dataset [14]. As
the former two off-the-shelf models are gender classifications,
we directly adopt them to achieve the full black-box attack
on T1 and T2. Figure 12c and Figure 12d shows that the
property classifier based on Audience dataset has a good attack
performance on both tasks. But as shown in Figure 12b,
the IMDB-WIKI classifier results in a significant inference
accuracy decline in T2. This phenomenon is possibly due to
the relatively poor performance of the IMDB-WIKI classifier
on the AFAD dataset. In order to verify our guess, we run the
off-the-shelf property classifier directly on the target model’s
underlying training dataset and then calculate the dataset prop-
erty. The green curve in Figure 12b depicts the result. We can
clearly see that the average attack results correspond closely
to the dataset property recognized by the property classifier.
For instance, when the proportion of male training samples is
30%, the property classifier reports a male proportion of 56%,
which is close to the average inferred proportion of 59%. This
phenomenon reveals that the property classifier plays a pivotal
role in the inference attack. Moreover, we also train a local
classifier with the EMNIST dataset [14] to achieve the full
black-box attack on T4. The EMNIST dataset is a variant of
the full NIST dataset and shares the same image structure and
parameters as the original MNIST dataset, but it is completely
disjoint with the MNIST dataset. Figure 12e shows that the
EMNIST classifier can still help us to accomplish a relatively
accurate property inference attack. Our result shows that it is

2https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/
3https://github.com/dpressel/rude-carnie

11

https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/
https://github.com/dpressel/rude-carnie

30 35 40 45 50 55 60 65 70
Ground Truth (%)

30

35

40

45

50

55

60

65

In
fe

rr
ed

P
ro

p
or

ti
on

(%
)

c2f2

c2f3

c1f2

c3f2

Fig. 13: Full black-box performance w.r.t. property classifier
architecture. Each line gives an average performance of target
models with the same underlying property. “c3f2” means the
classifier architecture begins with 3 convolution layers and
follows with 2 fully connected layers.

30 35 40 45 50 55 60 65 70
Ground Truth (%)

30

40

50

60

70

80

In
fe

rr
ed

P
ro

p
or

ti
on

(%
)

Average

Benchmark

Target model

(a) Evaluate on T1

30 35 40 45 50 55 60 65 70
Ground Truth (%)

30

40

50

60

70

80

In
fe

rr
ed

P
ro

p
or

ti
on

(%
)

Average

Benchmark

Dataset property

Target model

(b) Evaluate on T2

Fig. 14: Partial black-box performance w.r.t. unknown training
distribution and structure of target GAN. For T1, we optimize
the latent code set based on PGGAN with IMDB-WIKI
dataset. For T2, we optimize the latent code set based on
WGANGP with CelebA dataset. For both tasks, we adopt
a downloaded CNN model based on IMDB-WIKI dataset
as our property classifier. The blue curve plots the average
performance of the target models with the same underlying
property. The orange line marks the best attack result. The
green line shows the training dataset property directly reported
by the off-the-shelf classifier.

possible to achieve an accurate property inference attack even
without the knowledge of the training dataset distribution, as
long as the adversary owns a property classifier that has good
enough accuracy on the target problem.

Classifier Architecture. We secondly examine the attack
behavior based on property classifiers with different archi-
tectures. In this paper, our property classifier in T1 is a
convolutional neural network with two convolutional layers
and two fully connected layers (shortened as c2f2 in this
paper). Additionally, we adopt three other structures which
have different numbers of convolution layers or fully connected
layers (i.e., c2f3, c1f2, and c3f2). As shown in Figure 13, the
average full black-box attack results in T1 are very close to
each other when using property classifiers with different struc-
tures. For instance, the average inference results range from
26% to 31% when the underlying training dataset contains
30% males. As a result, our attack methodologies are only

0 1 2 3 4 5 6 7 8 9
Digit number

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

P
ro

p
or

ti
on

(%
)

Training Dataset Distribution

Inferred Distribution

Fig. 15: Full black-box performance w.r.t. multi-class property.
The blue bar shows the distribution of each digit in the training
dataset, while the orange one depicts the inferred distribution
based on our full black-box attack.

sightly influenced by the classifier architecture.

I. Evaluation on Shadow Models with Less Hyper-parameters

As we assume that the partial black-box adversary can train
shadow models with the same structure and training hyper-
parameters on the auxiliary dataset of the target GAN. In this
subsection, we investigate the behavior of our partial black-
box attack based on shadow models with different structure
and training dataset.

As we still control the input latent code of the target GAN
in the partial black-box methodology, we only set the size of
the latent code layer in shadow models the same as the target
model. For T1, we use the PGGAN trained on the IMDB-WIKI
dataset as shadow models, while the target model is WGANGP
based on the CelebA dataset. Figure 14a shows the partial
black-box attack result is close to the benchmark line. As a
result, the latent code set optimized with shadow models still
works well in spite of that the adversary has no knowledge of
the main structure and dataset of the target model. For T2, we
use the WGANGP trained on the CelebA dataset as shadow
models. As shown in Figure 14b, there is a certain deviation
between the partial black-box attack result and the benchmark
line. But the inference result corresponds closely to the dataset
property recognized by the off-the-shelf property classifier.
Moreover, the similarity between Figure 14 and Figure 12
proves the effectiveness of our partial black-box methodology
without knowledge of the structure and underlying dataset of
the target model. And this phenomenon further certifies the
needless similarity of the generated samples in shadow and
target GANs to achieve our partial black-box methodology.

J. Evaluation on Multi-class Property

As the five tasks shown above all focus on inferring the
distribution of attributes with binary classes, we present here
an extra experiment to evaluate the performance of our attack
on the property with multiple classes, i.e., the distribution
of 10 digits in the training dataset. Facing a target DCGAN
trained on MNIST with a specific distribution (including
digits from 0 to 9), Figure 15 shows how our full black-
box attack behaves when inferring this multi-class property.
We can clearly observe that the inferred distribution follows a
close trend with the underlying property. Moreover, the cosine
similarity is over 0.99 when considering these two distributions
as vectors. As a result, our attack gives a good performance

12

0 1 2 3 4 5 6 7 8 9
Digit number

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

P
ro

p
or

ti
on

(%
)

Training Dataset Distribution

Inferred Distribution

Fake Distribution

Fig. 16: Mitigation performance. The blue bar shows the
original distribution of each digit in the training dataset, while
the orange one depicts the inferred distribution based on our
full black-box attack. The green bar shows the fake distribution
after rebalancing dataset.

on inferring property with not only binary classes, but also
multiple classes.

K. Discussion on Mitigation

Local Property Classifier. One way to mitigate our attack
is by introducing a local property classifier to pre-test the
property of generated samples. In this way, even though the
real generated samples expose the underlying property of the
training dataset, we can provide a subset of the generated
samples to hide this distribution with the help of the local
property classifier.

Rebalancing the Training Dataset. Another solution would
be simply rebalancing the training dataset with respect to the
target property by adding extra new samples to the training
dataset. Figure 16 shows the full black-box attack performance
after filling the training dataset to form a fake distribution.
We can find that the inferred property is closer to the fake
distribution than the real one, and the cosine similarity reduces
from 0.99 to 0.88. This method is useful in most scenarios, but
can possibly jeopardize the performance of the target GAN.

V. ENHANCING MEMBERSHIP INFERENCE ATTACK

So far, we have demonstrated the effectiveness of our
property inference attacks against GANs. Next, we investigate
whether our property inference attacks can be used as a
building block to launch other attacks. In particular, we focus
on membership inference, one of the most well-established
privacy attacks against GANs [10], [22].

Methodology. In general, the membership inference attack
intends to infer whether a target sample belongs to the under-
lying training dataset of a target GAN. State-of-the-art attacks
in this field proposed by Chen et al. [10] follow three steps:

• Use a distance metric L(·, ·) to evaluate the recon-
struction error of the target sample x against the
target GAN (Gv). In different scenarios, they deliver
different methodologies to obtain the most similar
generated sample R(x|Gv).

• Build a shadow GAN (Gr) to repeat the first step
and get a reference reconstruction error. In this way,

the calibrated reconstruction error Lcal(·, ·) can be
calculated as:

Lcal(x,R(x|Gv)) = L(x,R(x|Gv))− L(x,R(x|Gr))
(1)

• Infer whether the target sample is in the training
dataset based on a threshold. Formally, the attack flow
works as

A(x) = 1[Lcal(x,R(x|Gv)) < ϵ] (2)

i.e., when the calibrated reconstruction error is smaller
than a threshold, it belongs to the training dataset.

Our enhancement follows the intuition that a sample has
a larger possibility to be a member when it shares the same
property with the majority of samples in the target GAN’s
training dataset. For instance, if the target GAN’s training
dataset contains more males than females (obtained by our
property inference attacks), then a target male sample is more
likely to be a member than a female sample.

Based on this, we add an extra item on the threshold of
Equation 2 to enhance membership inference. Formally, the
new membership inference attack is modified as the following.

A(x) = 1[Lcal(x,R(x|Gv)) < ϵ+ λp
1

N

N∑
i

f(Pi)] (3)

where λp controls the magnitude of our enhancement, N refers
to the number of considered attributes of the query sample, Pi

is the proportion of the ith attribute in the training dataset, and
f(Pi) = 2×Pi − 1. The term λp

1
N

∑N
i f(Pi) in Equation 3

helps to calibrate a target sample’s membership probability
with respect to the target model’s training dataset’s property.
When the target sample shares the same attribute as a higher
proportion of the underlying training dataset (Pi > 50%),
the new threshold rises and leads to a better membership
probability.

Evaluation. We evaluate the performance of the enhanced
membership inference attack with the help of the additional
knowledge of the gender distribution of samples in the training
dataset, which is obtained by our property inference attack. We
set up the target GANs using 2,048 CelebA samples with a
control of its underlying property (the proportion of males) and
the structure is the same as T1 discussed in IV-B. We adopt the
same full black-box membership inference attack methodology
as Chen et al. [10]. We set λp = 2 and each evaluation dataset
has 2,048 members and 6,144 non-members (8,192 in total).

As shown in Figure 17, with the knowledge of the training
dataset’s underlying property, i.e., 30% male samples, our
enhanced membership inference’s AUC (area under the ROC
curve) increases from 0.52 to 0.61. Furthermore, when the dis-
tribution of gender is more polarized, the enhancement is more
pronounced. As a result, the extra item added to the threshold
in Equation 3 indeed calibrates the membership probability
effectively, which further demonstrates the applicability of our
property inference attacks.

Impact of Inferred Properties. As our property inference can
not deliver the exact proportion of the considered attribute in
the target training dataset, we further evaluate our enhancement

13

30 40 60 70
Proportion of Males (%)

0.45

0.50

0.55

0.60

0.65

0.70

M
em

b
er

sh
ip

In
fe

re
nc

e
A

tt
ac

k
A

U
C Original AUC

Promoted AUC

Fig. 17: Enhanced membership inference attack performance.

20 25 30 35 40 45 50
Inferred Proportion (%)

0.52

0.54

0.56

0.58

0.60

M
em

b
er

sh
ip

In
fe

re
nc

e
A

U
C

Target model with 30% males

Membership inference baseline

Fig. 18: Enhanced membership inference attack performance
w.r.t inferred property with deviations.

algorithm based on inferred proportions with deviations. As
we can see in Figure 18, our enhancement still works on
a target GAN with 30% males when the utilized inference
property is less than 50%. Moreover, the enhanced membership
inference’s AUC changes slightly when our property inference
attack delivers a proportion less than the underlying property,
but the AUC decreases significantly to the baseline when
the inferred proportion comes closer to 50%. This further
illustrates the applicability of our membership inference attack
enhancement algorithm based on the property inference attack.

VI. RELATED WORK

Membership Inference Attacks. Membership inference at-
tack tries to infer whether a sample belongs to a specific
dataset. Previous studies have demonstrated successful attacks
against various targets, such as biomedical data [5], [21], [29]
and location data [50].

Shokri et al. [56] introduce the first membership inference
attack against machine learning models. The key idea is to
leverage a set of shadow models to mimic the target model’s
behavior, and then train an attack model to discriminate
member from non-member samples on model outputs. Salem
et al. [55] show that the membership inference attack can attain
high accuracy even relaxing the three assumptions in [56]. In
recent years, membership inference attacks have been investi-
gated on various other scenarios, e.g., white-box models [34],
[44], federated learning [43], generative models [10], [22],
machine unlearning [11], graph neural networks [25], [47],
recommender systems [67], self-supervised models [26], [37],
label-only cases [13], [36], etc.

Despite current research efforts on the membership infer-
ence threat for generative models, a wide range of privacy
issues of generative models still remain largely unexplored. To
fill this gap, we present the first study to specify the property
inference attack against GANs. Our results show that even with
limited knowledge and access to the target, it is still possible
to infer sensitive properties of the training dataset accurately.

Property Inference Attacks. Property inference attacks aim
to infer properties of the target model or the training dataset
which are unintended to share by the producer. In fact, sensitive
properties cover a wide range of information, which would
violate intellectual property if exposed. They can be model-
related, such as the model structure and activation functions;
as well as data-related, such as where the data are produced
or the distribution of the training data. And our work lies in
the data-related property inference attacks against GANs.

Ganju et al. [17] propose the first property inference
attack against discriminative models, which focuses on fully
connected neural networks (FCNN), while ours focuses on
GANs. As FCNN and GANs have different types of inputs
and outputs, the information that our attack exploits is different
from [17]. As a result, our attack relies on an optimized latent
code to the target model in the partial black-box case, while
[17] uses the weights of FCNN as its property classifier’s input
(since it is a white-box attack). Moreover, [17] works on the
white-box scenario and only treats the inference attack as a
binary prediction task, which cannot return a precise prediction
of the target property. Different from Ganju et al. [17], our
attacks aim to predict the target property in a far more
precise fashion, by modeling the attack task as a regression
problem. Furthermore, our proposed attacks work well on
two more realistic scenarios: the full black-box and partial
black-box setting. Moreover, Carlini et al. [9] demonstrate the
secret leakage problem caused by unintended memorization of
sequential generative models. It focuses on recovering specific
sensitive training records from sequential models, while our
work targets at inferring the global data privacy of the training
dataset against another important kind of generative model–
GANs.

Besides the above, there also exists a wide range of study
on the security and privacy risks of ML model, such as model
stealing [31], [48], [59], [66], model inversion [16], backdoor
attack [12], [39], [54], [63] and other attacks under specific
background [24], [40], [43], [53], [57].

VII. CONCLUSION

In this paper, we perform the first property inference attack
against GANs, the goal of which is to infer the macro-level
information of a target GAN’s underlying training dataset.
We propose a general attack pipeline for two different attack
scenarios, following the intuition that the generated samples
can reflect the distribution of its underlying training dataset.
In the full black-box setting, we rely on random generated
samples and a property classifier to realize our attack. In the
partial black-box setting, we introduce a novel optimization
framework to reduce the number of queries with the help
of shadow models. Comprehensive experiments show the ef-
fectiveness of both the attack methodologies in a variety of
setups including five property inference tasks, four datasets,

14

and four victim GAN models. We also compare our two
methodologies to verify the advantage of the partial black-
box attack when using a limited number of samples based
on two factors, i.e., stability and accuracy. We additionally
show the effectiveness of our full black-box attack without any
knowledge of the target model. Moreover, we present how to
leverage our property inference attack to enhance membership
inference attacks, which demonstrates the applicability of the
proposed property inference method.

ACKNOWLEDGEMENT

We thank all the anonymous reviewers for their insightful
suggestions and comments to improve the paper. This work
is supported by National Key Research and Development
Program of China (2020AAA0107702, 2020YFB1406900),
National Natural Science Foundation of China (U21B2018,
61822309, 61773310, U1736205), Shaanxi Province Key
Industry Innovation Program (2021ZDLGY01-02), and the
Helmholtz Association within the project “Trustworthy Fed-
erated Data Analytics” (TFDA) (funding number ZT-I-OO1
4).

REFERENCES

[1] https://archive.ics.uci.edu/ml/datasets/Census-Income(KDD). 2, 5
[2] http://yann.lecun.com/exdb/mnist/. 5
[3] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein Generative Ad-

versarial Networks,” in International Conference on Machine Learning
(ICML). PMLR, 2017, pp. 214–223. 1, 3

[4] S. Arora, R. Ge, Y. Liang, T. Ma, and Y. Zhang, “Generalization and
Equilibrium in Generative Adversarial Nets (GANs),” in International
Conference on Machine Learning (ICML). PMLR, 2017, pp. 224–232.
1

[5] M. Backes, P. Berrang, M. Humbert, and P. Manoharan, “Membership
Privacy in MicroRNA-based Studies,” in ACM SIGSAC Conference on
Computer and Communications Security (CCS). ACM, 2016, pp. 319–
330. 14

[6] D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by
Jointly Learning to Align and Translate,” in International Conference
on Learning Representations (ICLR), 2015. 1

[7] A. Brock, J. Donahue, and K. Simonyan, “Large Scale GAN Training
for High Fidelity Natural Image Synthesis,” in International Conference
on Learning Representations (ICLR), 2019. 3

[8] J. Buolamwini and T. Gebru, “Gender Shades: Intersectional Accuracy
Disparities in Commercial Gender Classification,” in Conference on
Fairness, Accountability, and Transparency (FAT*). PMLR, 2018, pp.
77–91. 1, 3

[9] N. Carlini, C. Liu, Ú. Erlingsson, J. Kos, and D. Song, “The Secret
Sharer: Evaluating and Testing Unintended Memorization in Neu-
ral Networks,” in USENIX Security Symposium (USENIX Security).
USENIX, 2019, pp. 267–284. 14

[10] D. Chen, N. Yu, Y. Zhang, and M. Fritz, “GAN-Leaks: A Taxonomy
of Membership Inference Attacks against Generative Models,” in ACM
SIGSAC Conference on Computer and Communications Security (CCS).
ACM, 2020, pp. 343–362. 1, 2, 3, 5, 7, 13, 14

[11] M. Chen, Z. Zhang, T. Wang, M. Backes, M. Humbert, and Y. Zhang,
“When Machine Unlearning Jeopardizes Privacy,” in ACM SIGSAC
Conference on Computer and Communications Security (CCS). ACM,
2021. 14

[12] X. Chen, A. Salem, M. Backes, S. Ma, Q. Shen, Z. Wu, and Y. Zhang,
“BadNL: Backdoor Attacks Against NLP Models with Semantic-
preserving Improvements,” in Annual Computer Security Applications
Conference (ACSAC). ACSAC, 2021. 14

[13] C. A. C. Choo, F. Tramèr, N. Carlini, and N. Papernot, “Label-
Only Membership Inference Attacks,” in International Conference on
Machine Learning (ICML). PMLR, 2021, pp. 1964–1974. 14

[14] G. Cohen, S. Afshar, J. Tapson, and A. van Schaik, “EMNIST: an
extension of MNIST to handwritten letters,” CoRR abs/1702.05373,
2017. 11

[15] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao,
A. Prakash, T. Kohno, and D. Song, “Robust Physical-World Attacks on
Deep Learning Visual Classification,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE, 2018, pp. 1625–1634.
1

[16] M. Fredrikson, S. Jha, and T. Ristenpart, “Model Inversion Attacks that
Exploit Confidence Information and Basic Countermeasures,” in ACM
SIGSAC Conference on Computer and Communications Security (CCS).
ACM, 2015, pp. 1322–1333. 14

[17] K. Ganju, Q. Wang, W. Yang, C. A. Gunter, and N. Borisov, “Property
Inference Attacks on Fully Connected Neural Networks using Per-
mutation Invariant Representations,” in ACM SIGSAC Conference on
Computer and Communications Security (CCS). ACM, 2018, pp. 619–
633. 3, 7, 14

[18] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative Adversarial Nets,” in
Annual Conference on Neural Information Processing Systems (NIPS).
NIPS, 2014, pp. 2672–2680. 1, 3

[19] A. Graves, A. rahman Mohamed, and G. E. Hinton, “Speech Recog-
nition with Deep Recurrent Neural Networks,” in IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2013, pp. 6645–6649. 1

[20] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville,
“Improved Training of Wasserstein GANs,” in Annual Conference on
Neural Information Processing Systems (NIPS). NIPS, 2017, pp. 5767–
5777. 3, 5

[21] I. Hagestedt, Y. Zhang, M. Humbert, P. Berrang, H. Tang, X. Wang, and
M. Backes, “MBeacon: Privacy-Preserving Beacons for DNA Methy-
lation Data,” in Network and Distributed System Security Symposium
(NDSS). Internet Society, 2019. 14

[22] J. Hayes, L. Melis, G. Danezis, and E. D. Cristofaro, “LOGAN:
Evaluating Privacy Leakage of Generative Models Using Generative
Adversarial Networks,” Symposium on Privacy Enhancing Technologies
Symposium, 2019. 1, 13, 14

[23] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE, 2016, pp. 770–778. 1

[24] X. He, J. Jia, M. Backes, N. Z. Gong, and Y. Zhang, “Stealing
Links from Graph Neural Networks,” in USENIX Security Symposium
(USENIX Security). USENIX, 2021, pp. 2669–2686. 14

[25] X. He, R. Wen, Y. Wu, M. Backes, Y. Shen, and Y. Zhang, “Node-Level
Membership Inference Attacks Against Graph Neural Networks,” CoRR
abs/2102.05429, 2021. 14

[26] X. He and Y. Zhang, “Quantifying and Mitigating Privacy Risks of
Contrastive Learning,” in ACM SIGSAC Conference on Computer and
Communications Security (CCS). ACM, 2021. 14

[27] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter,
“GANs Trained by a Two Time-Scale Update Rule Converge to a
Local Nash Equilibrium,” in Annual Conference on Neural Information
Processing Systems (NIPS). NIPS, 2017, pp. 6626–6637. 7

[28] G. Hinton, L. Deng, D. Yu, G. Dahl, A. rahman Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. Sainath, and B. Kingsbury,
“Deep Neural Networks for Acoustic Modeling in Speech Recognition:
The Shared Views of Four Research Groups,” IEEE Signal Processing
Magazine, 2012. 1

[29] N. Homer, S. Szelinger, M. Redman, D. Duggan, W. Tembe,
J. Muehling, J. V. Pearson, D. A. Stephan, S. F. Nelson, and D. W. Craig,
“Resolving Individuals Contributing Trace Amounts of DNA to Highly
Complex Mixtures Using High-Density SNP Genotyping Microarrays,”
PLOS Genetics, 2008. 14

[30] S. Iizuka, E. Simo-Serra, and H. Ishikawa, “Globally and Locally
Consistent Image Completion,” ACM Transactions on Graphics, 2017.
1, 5

[31] M. Jagielski, N. Carlini, D. Berthelot, A. Kurakin, and N. Papernot,
“High Accuracy and High Fidelity Extraction of Neural Networks,” in
USENIX Security Symposium (USENIX Security). USENIX, 2020, pp.
1345–1362. 14

15

https://archive.ics.uci.edu/ml/datasets/Census-Income (KDD)
http://yann.lecun.com/exdb/mnist/

[32] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive Growing of
GANs for Improved Quality, Stability, and Variation,” in International
Conference on Learning Representations (ICLR), 2018. 3, 5, 6

[33] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification
with Deep Convolutional Neural Networks,” in Annual Conference on
Neural Information Processing Systems (NIPS). NIPS, 2012, pp. 1106–
1114. 1

[34] K. Leino and M. Fredrikson, “Stolen Memories: Leveraging Model
Memorization for Calibrated White-Box Membership Inference,” in
USENIX Security Symposium (USENIX Security). USENIX, 2020,
pp. 1605–1622. 14

[35] G. Levi and T. Hassner, “Age and Gender Classification using Convolu-
tional Neural Networks,” in IEEE Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW). IEEE, 2015, pp. 34–42. 11

[36] Z. Li and Y. Zhang, “Membership Leakage in Label-Only Exposures,”
in ACM SIGSAC Conference on Computer and Communications Secu-
rity (CCS). ACM, 2021. 14

[37] H. Liu, J. Jia, W. Qu, and N. Z. Gong, “EncoderMI: Membership
Inference against Pre-trained Encoders in Contrastive Learning,” in
ACM SIGSAC Conference on Computer and Communications Security
(CCS). ACM, 2021. 14

[38] M.-Y. Liu, T. Breuel, and J. Kautz, “Unsupervised Image-to-Image
Translation Networks,” in Annual Conference on Neural Information
Processing Systems (NIPS). NIPS, 2017, pp. 700–708. 1, 5

[39] Y. Liu, S. Ma, Y. Aafer, W.-C. Lee, J. Zhai, W. Wang, and X. Zhang,
“Trojaning Attack on Neural Networks,” in Network and Distributed
System Security Symposium (NDSS). Internet Society, 2018. 14

[40] Y. Liu, R. Wen, X. He, A. Salem, Z. Zhang, M. Backes, E. D. Cristofaro,
M. Fritz, and Y. Zhang, “ML-Doctor: Holistic Risk Assessment of
Inference Attacks Against Machine Learning Models,” in USENIX
Security Symposium (USENIX Security). USENIX, 2022. 14

[41] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep Learning Face Attributes
in the Wild,” in IEEE International Conference on Computer Vision
(ICCV). IEEE, 2015, pp. 3730–3738. 2, 5

[42] S. Mehri, K. Kumar, I. Gulrajani, R. Kumar, S. Jain, J. Sotelo, A. C.
Courville, and Y. Bengio, “SampleRNN: An Unconditional End-to-
End Neural Audio Generation Model,” in International Conference on
Learning Representations (ICLR), 2017. 1

[43] L. Melis, C. Song, E. D. Cristofaro, and V. Shmatikov, “Exploiting
Unintended Feature Leakage in Collaborative Learning,” in IEEE Sym-
posium on Security and Privacy (S&P). IEEE, 2019, pp. 497–512.
14

[44] M. Nasr, R. Shokri, and A. Houmansadr, “Comprehensive Privacy Anal-
ysis of Deep Learning: Passive and Active White-box Inference Attacks
against Centralized and Federated Learning,” in IEEE Symposium on
Security and Privacy (S&P). IEEE, 2019, pp. 1021–1035. 14

[45] Z. Niu, M. Zhou, L. Wang, X. Gao, and G. Hua, “Ordinal Regression
with Multiple Output CNN for Age Estimation,” in IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). IEEE, 2016,
pp. 4920–4928. 2, 5

[46] S. J. Oh, M. Augustin, B. Schiele, and M. Fritz, “Towards Reverse-
Engineering Black-Box Neural Networks,” in International Conference
on Learning Representations (ICLR), 2018. 3

[47] I. E. Olatunji, W. Nejdl, and M. Khosla, “Membership Inference Attack
on Graph Neural Networks,” CoRR abs/2101.06570, 2021. 14

[48] T. Orekondy, B. Schiele, and M. Fritz, “Knockoff Nets: Stealing
Functionality of Black-Box Models,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE, 2019, pp. 4954–4963.
1, 14

[49] N. Papernot, P. D. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical Black-Box Attacks Against Machine Learning,”
in ACM Asia Conference on Computer and Communications Security
(ASIACCS). ACM, 2017, pp. 506–519. 1

[50] A. Pyrgelis, C. Troncoso, and E. D. Cristofaro, “Knock Knock, Who’s
There? Membership Inference on Aggregate Location Data,” in Network

and Distributed System Security Symposium (NDSS). Internet Society,
2018. 14

[51] A. Radford, L. Metz, and S. Chintala, “Unsupervised Representation
Learning with Deep Convolutional Generative Adversarial Networks,”
CoRR abs/1511.06434, 2015. 3, 5

[52] R. Rothe, R. Timofte, and L. V. Gool, “Deep Expectation of Real
and Apparent Age from a Single Image Without Facial Landmarks,”
International Journal of Computer Vision, 2018. 11

[53] A. Salem, A. Bhattacharya, M. Backes, M. Fritz, and Y. Zhang,
“Updates-Leak: Data Set Inference and Reconstruction Attacks in
Online Learning,” in USENIX Security Symposium (USENIX Security).
USENIX, 2020, pp. 1291–1308. 3, 14

[54] A. Salem, R. Wen, M. Backes, S. Ma, and Y. Zhang, “Dy-
namic Backdoor Attacks Against Machine Learning Models,” CoRR
abs/2003.03675, 2020. 14

[55] A. Salem, Y. Zhang, M. Humbert, P. Berrang, M. Fritz, and M. Backes,
“ML-Leaks: Model and Data Independent Membership Inference At-
tacks and Defenses on Machine Learning Models,” in Network and
Distributed System Security Symposium (NDSS). Internet Society,
2019. 1, 3, 14

[56] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership Infer-
ence Attacks Against Machine Learning Models,” in IEEE Symposium
on Security and Privacy (S&P). IEEE, 2017, pp. 3–18. 1, 3, 14

[57] C. Song and V. Shmatikov, “Auditing Data Provenance in Text-
Generation Models,” in ACM Conference on Knowledge Discovery and
Data Mining (KDD). ACM, 2019, pp. 196–206. 14

[58] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Good-
fellow, and R. Fergus, “Intriguing Properties of Neural Networks,” in
International Conference on Learning Representations (ICLR), 2014. 1

[59] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing
Machine Learning Models via Prediction APIs,” in USENIX Security
Symposium (USENIX Security). USENIX, 2016, pp. 601–618. 1, 14

[60] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,
A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “WaveNet:
A Generative Model for Raw Audio,” CoRR abs/1609.03499, 2016. 1

[61] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and Tell: A
Neural Image Caption Generator,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE, 2015, pp. 3156–3164.
1

[62] B. Wang and N. Z. Gong, “Stealing Hyperparameters in Machine
Learning,” in IEEE Symposium on Security and Privacy (S&P). IEEE,
2018, pp. 36–52. 3

[63] B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and B. Y.
Zhao, “Neural Cleanse: Identifying and Mitigating Backdoor Attacks in
Neural Networks,” in IEEE Symposium on Security and Privacy (S&P).
IEEE, 2019, pp. 707–723. 14

[64] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and B. Catanzaro,
“High-Resolution Image Synthesis and Semantic Manipulation With
Conditional GANs,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE, 2018, pp. 8798–8807. 1, 5

[65] L. Xu and K. Veeramachaneni, “Synthesizing Tabular Data using
Generative Adversarial Networks,” CoRR abs/1811.11264, 2018. 3, 5,
6

[66] H. Yu, K. Yang, T. Zhang, Y.-Y. Tsai, T.-Y. Ho, and Y. Jin, “CloudLeak:
Large-Scale Deep Learning Models Stealing Through Adversarial
Examples,” in Network and Distributed System Security Symposium
(NDSS). Internet Society, 2020. 14

[67] M. Zhang, Z. Ren, Z. Wang, P. Ren, Z. Chen, P. Hu, and Y. Zhang,
“Membership Inference Attacks Against Recommender Systems,” in
ACM SIGSAC Conference on Computer and Communications Security
(CCS). ACM, 2021. 14

[68] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired Image-to-
Image Translation Using Cycle-Consistent Adversarial Networks,” in
IEEE International Conference on Computer Vision (ICCV). IEEE,
2017, pp. 2242–2251. 1

16

APPENDIX A
GAN MODELS

TABLE III: The structure of DCGAN in our paper.

Generator Shape Discriminator Shape

Latent codes (100) Input image (32,32,1)
Reshape (1,1,100) Conv 4×4 (16,16,128)
Conv 4×4 (4,4,512) LReL (0.2) (16,16,128)
LReL (0.2) (4,4,512) Conv 4×4 (8,8,256)
Conv 4×4 (8,8,256) LReL (0.2) (8,8,256)
LReL (0.2) (8,8,256) Conv 4×4 (4,4,512)
Conv 4×4 (16,16,128) LReL (0.2) (4,4,512)
LReL (0.2) (16,16,128) Conv 4×4 (1,1,1)
Conv 4×4 (32,32,1) Reshape (1)
Tanh (32,32,1) Sigmoid (1)

TABLE IV: The structure of WGANGP in our paper.

Generator Shape Discriminator Shape

Latent codes (100) Input image (64,64,3)
FC (4*4*512) Conv 5×5 (32,32,64)
Reshape (4,4,512) LReL (0.2) (32,32,64)
Conv 5×5 (8,8,256) Conv 5×5 (16,16,128)
LReL (0.2) (8,8,256) LReL (0.2) (16,16,128)
Conv 5×5 (16,16,128) Conv 5×5 (8,8,256)
LReL (0.2) (16,16,128) LReL (0.2) (8,8,256)
Conv 5×5 (32,32,64) Conv 5×5 (4,4,512)
LReL (0.2) (32,32,64) LReL (0.2) (4,4,512)
Conv 5×5 (64,64,3) Reshape (4*4*512)
ReL (64,64,3) FC (1)

TABLE V: The structure of PGGAN in our paper.

Generator Shape Act. Discriminator Shape Act.

Latent codes (512) - Input image (64,64,3) -
FC (4*4*512) LReL Conv 1×1 (64,64,256) LReL
Reshape (4,4,512) - Conv 3×3 (64,64,256) LReL
Conv 3×3 (4,4,512) LReL Conv 3×3 (64,64,512) LReL
Upsample (8,8,512) - Downsample (32,32,512) -
Conv 3×3 (8,8,512) LReL Conv 3×3 (32,32,512) LReL
Conv 3×3 (8,8,512) LReL Conv 3×3 (32,32,512) LReL
Upsample (16,16,512) - Downsample (16,16,512) -
Conv 3×3 (16,16,512) LReL Conv 3×3 (16,16,512) LReL
Conv 3×3 (16,16,512) LReL Conv 3×3 (16,16,512) LReL
Upsample (32,32,512) - Downsample (8,8,512) -
Conv 3×3 (32,32,512) LReL Conv 3×3 (8,8,512) LReL
Conv 3×3 (32,32,512) LReL Conv 3×3 (8,8,512) LReL
Upsample (32,32,512) - Downsample (4,4,512) -
Conv 3×3 (64,64,256) LReL Minibatch stddev (4,4,513) -
Conv 3×3 (64,64,256) LReL Conv 3×3 (4,4,512) LReL
Conv 1×1 (64,64,3) linear Reshape (4*4*512) -

FC (512) LReL
FC (1) linear

17

