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We provide new deterministic algorithms for the edge coloring problem, which is
one of the classic and highly studied distributed local symmetry breaking problems.
As our main result, we show that a (2∆ − 1)-edge coloring can be computed in time
poly log∆+O(log∗ n) in the LOCAL model. This improves a result of Balliu, Kuhn, and
Olivetti [PODC ’20], who gave an algorithm with a quasi-polylogarithmic dependency
on ∆. We further show that in the CONGEST model, an (8 + ε)∆-edge coloring can
be computed in poly log∆ + O(log∗ n) rounds. The best previous O(∆)-edge coloring
algorithm that can be implemented in the CONGEST model is by Barenboim and Elkin
[PODC ’11] and it computes a 2O(1/ε)∆-edge coloring in time O(∆ε + log∗ n) for any
ε ∈ (0, 1].
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1 Introduction

In the most standard setting of distributed graph algorithms, we are given a network that is modeled
as an undirected graph G = (V,E). The nodes V are the active entities of the network and
communication happens by exchanging messages over the edges E in synchronous rounds. The goal
is to solve some graph problem on G. This distributed computation model is known as the LOCAL
model if the communication between neighbors in each round is not restricted and it is known as
the CONGEST model if the messages exchanged neighbors have to consist of at most O(log n) bits
(where n = |V |) [41, 47]. Four graph problems that have received particular attention in this context
are the problems of computing a maximal independent set (MIS) of G, a (∆ + 1)-vertex coloring of
G (where ∆ is the maximum degree of G), a maximal matching of G, and a (2∆− 1)-edge coloring
of G. All four problems have in common that they can be solved by a trivial sequential greedy
algorithm. The four problems can be seen as prototypical examples of distributed symmetry breaking
problems and understanding the distributed complexities of them has been at the very core of the
area of distributed graph algorithms, e.g. [9, 29, 41]. All four problems can be solved by quite simple
and straightforward O(log n)-round randomized distributed algorithms, which have been known for
more than thirty years [1, 37, 41, 42]. In light of those efficient randomized algorithms, a lot of the
work concentrated on developing deterministic distributed algorithms for the four problems. As the
contributions of the present paper are on deterministic algorithms, we also focus on deterministic
algorithms when discussing the prior work in the following.

Deterministic Complexity as a Function of the Network Size. In [2, 45], a tool called
network decomposition was introduced as a generic technique to solve distributed graph problems in
the LOCAL model. This resulted in deterministic 2O(

√
logn)-round algorithms in particular for the

four problems discussed above and it left open the question of whether the problems can also be
solved deterministically in polylogarithmic time and thus similarly fast as with the simple randomized
algorithms of the 1980s. This was first shown for the maximal matching problem in [33, 34], where
the authors gave a deterministic O(log4 n)-time algorithm. The result was later improved to the
current running time of O(log2∆ · log n) in [22]. Much more recently, it was shown that also the
(2∆−1)-edge coloring problem can also be solved in polylogarithmic time deterministically [23, 27, 35]
by reducing the problem to the problem of computing a maximal matching in 3-uniform hypergraphs
and by giving a polylogarithmic-time deterministic distributed algorithm for maximal matching in
hypergraphs of bounded rank. The algorithm of [35] achieves a round complexity of Õ(log2∆ · log n)
and is thus almost as fast as the maximal matching algorithm of [22]. Subsequently, in a breakthrough
result, Rozhoň and Ghaffari [48] gave a polylogarithmic-time algorithm for the network decomposition
problem. The current best version of this algorithm in [26] implies O(log5 n)-time deterministic
distributed algorithms for all four problems discussed above. Finally, in a recent paper [28], a direct
O(log2∆ · log n)-round algorithm for the (∆+1)-vertex coloring (and thus also for the (2∆− 1)-edge
color problem) was presented.

Deterministic Complexity as a Function of the Maximum Degree. The optimal time
complexity of a given graph problem in the LOCAL model can be interpreted as the locality of the
problem in the following sense. If there is an R-round deterministic LOCAL algorithm for solving
a problem in a graph G, then every node of G can compute its output as a function of its R-hop
neighborhood in G and if more than R rounds are needed to solve a problem, then some node must
learn something about the graph that is outside the node’s R-hop neighborhood [41, 47]. The local
neighborhood of a node is in principle independent of the size of the network. It is therefore natural
to ask for the locality of graph problems not just as a function of the network size, but also as a
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function of more local properties. Further, local graph algorithms are particularly interesting in
large networks where the node degrees might be independent or almost independent of the network
size. As a result, there is an extended body or prior work that tries to understand the distributed
complexity of graph problems as a function of the maximum degree ∆ rather than as a function of n.

Note however that the distributed complexity of many problems cannot be completely independent
of n. Linial [41] showed that even in networks of maximum degree ∆ = 2, computing a coloring with
O(1) colors (and by simple reductions computing solutions for all four classic problems discussed
above) requires at least Ω(log∗ n) rounds.1 However, in [41], it is also shown that in O(log∗ n) rounds,
one can compute a vertex coloring with O(∆2) colors for any graph G. Given such a coloring, one can
then iterate through the color classes and obtain simple distributed O(∆2)-round implementations of
the natural sequential greedy algorithms for computing an MIS, a maximal matching, a (∆+1)-vertex
coloring, or a (2∆− 1)-edge coloring. All four problems can therefore be solved in O(∆2 + log∗ n)
rounds in the LOCAL model (and also in the CONGEST model). That is, we can solve the problems
in time O(f(∆) + log∗ n) for some function f . This keeps the dependency on n as small as it can
be. When establishing the local complexity of a distributed graph problem, we are interested in
optimizing the function f and thus the ∆-dependency of this bound.

Starting from the early work on distributed graph algorithms, there is a long line of research
that tries to optimize the ∆-dependency of the four discussed problems [5–8, 10, 11, 24, 31, 39–
41, 43, 44, 51]. As given a C-vertex or a C-edge coloring, all four problems can be solved in C
rounds, the primary focus was on developing efficient coloring algorithms. In a first phase, the
time for computing a (2∆− 1)-edge coloring [44] and for computing a (∆ + 1)-vertex coloring was
improved to O(∆ + log∗ n) [11, 38]. As a result, we therefore also obtain O(∆ + log∗ n)-round
algorithms for MIS and maximal matching. In [3, 4, 15], it was shown that for MIS and maximal
matching, this bound is tight, even on tree networks. More specifically, it was shown that there is
no randomized MIS or maximal matching algorithm with round complexity o

(
∆+ log logn

log log logn

)
and

there is no deterministic such algorithm with round complexity o
(
∆+ logn

log logn

)
. While for MIS and

matching, there is a linear-in-∆ lower bound, for (∆ + 1)-vertex coloring and (2∆− 1)-edge coloring,
there are in fact algorithms with a sublinear-in-∆ complexity. This was first shown by Barenboim in
[6]. The best known algorithm that works for both vertex and edge coloring has a time complexity
of O(

√
∆ log∆ + log∗ n) [10, 24, 43]. For (2∆ − 1)-edge coloring, it has recently been shown that

we can even obtain a dependency on ∆ that is subpolynomial in ∆. First, Kuhn [39] showed that
the problem can be solved in 2O(

√
log∆) + O(log∗ n) rounds and subsequently, Balliu, Kuhn, and

Olivetti [5] showed that the number of rounds can even be reduced to logO(log log∆)∆+ O(log∗ n)
and thus to a quasi-polylogarithmic dependency on ∆. This leaves a natural open question.

Is it possible to solve (2∆− 1)-edge coloring in time polylogarithmic in ∆?

Our Contribution. As our main result, we resolve this above open question and prove the following
theorem.

Theorem 1.1. There is a deterministic poly log∆+O(log∗ n)-round LOCAL algorithm to solve
the (2∆− 1)-edge coloring problem.

In fact, as we will prove Theorem 1.1 also for the more general (degree + 1)-list edge coloring
problem, as long as all the colors come from a domain of size at most poly(∆). In this problem,

1Note that even in bounded-degree graphs, the local neighborhoods are not completely independent of the network
size. In order to equip the network with unique identifiers, the space from which the identifiers are chosen has to grow
as a function of the network size n.
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initially, every edge e is given a list consisting of at least degG(e)+1 different colors, where the degree
degG(e) of e is defined as the number of edges that are adjacent to e. The output must be a proper
edge coloring such that every edge e is colored with some color from its list. In addition, we also
provide a more efficient edge coloring algorithm for the CONGEST model. The best known CONGEST
algorithm for computing a (2∆− 1)-edge coloring (as a function of ∆) has a round complexity of
O(∆+ log∗ n) [10]. In [8], it was further shown that for any ε ∈ (0, 1], a 2O(1/ε) ·∆-edge coloring can
be computed in O(∆ε + log∗ n) rounds in the CONGEST model.2 We improve this by showing that
an O(∆)-edge coloring can be computed in polylogarithmic (in ∆) time.

Theorem 1.2. For any constant ε > 0, there is a deterministic poly log∆ +O(log∗ n)-round
CONGEST algorithm to compute an (8 + ε)-edge coloring.

Further Related Work. There is also substantial work on randomized algorithms for computing
graph colorings [12, 17, 21, 32, 36, 46, 49], MIS [12, 25], and maximal matchings [12]. The best known
randomized complexities are O(log∆+ log5 log n) for MIS [25, 26], O(log∆+ log3 log n) for maximal
matching [12, 22], and O(log3 log n) for (∆+1)-vertex coloring and (2∆−1)-edge coloring [17, 21, 28].
For the edge coloring problem, which is the main focus of the present paper, there have also been
various results on finding edge colorings with less than 2∆ − 1 colors. Note first that it is not
possible to compute such a coloring in time O(f(∆)+ log∗ n). In [18] (based on techniques developed
in [13, 16]), it was shown that for every ∆ > 1, every deterministic algorithm for computing a
(2∆− 2)-edge coloring of ∆-regular trees requires at least Ω(log∆ n) rounds and every randomized
such algorithm requires at least Ω(log∆ log n) rounds. When computing an edge coloring with less
than 2∆− 1 colors, the objective therefore is on the one hand to obtain a coloring that uses not many
more than ∆ colors and on the other hand to achieve a time complexity that gets as close as possible
to the lower bounds of [18]. In recent years, different distributed algorithms that compute edge
colorings with (1+ε)∆ colors (and even with ∆+O(1) colors) have been developed [18, 20, 21, 30, 50].
For example, by using the randomized algorithm of [18] together with derandomization techniques of
[27, 48], one obtains deterministic poly log n-time and randomized poly log log n-time algorithms for
computing edge colorings with ∆ + Õ(

√
∆) colors.

2 Model and Definitions

Basic notions Leg G = (V,E) be a graph. We denote with ∆ the maximum degree of G, and with
∆̄ the maximum degree of the line graph of G, that is, the maximum number of neighboring edges of
an edge. Clearly, ∆̄ ≤ 2∆− 2. We denote with degG(v) the degree of a node v ∈ V , and for an edge
e ∈ E we denote with degG(e) the degree of edge e in the line graph of G, that is, for e = {u, v},
degG(e) = degG(u) + degG(v)− 2. If G is a directed graph, we use degG(v) and degG(e) to denote
the degrees of v and e in the undirected version of G. If the graph is clear from the context, we may
omit it and write deg(v) and deg(e). We assume that log n denotes log2 n.

List Edge Coloring. Assume that for a graph G = (V,E), we are given a set C = {1, . . . , |C|}
of colors, called the color space, and for each edge e = {u, v}, we are given a list of colors Le ⊆ C.
The list edge coloring asks to assign a color ce ∈ Le to each edge e such that edges incident to the
same node are assigned different colors. In the distributed version of the problem, we assume that
all nodes know C, both nodes of an edge know the list Le and at the end, both nodes need to output

2The authors of [8] do not explicitly show that their algorithm works in the CONGEST model. It is however not
hard to see that it can be adapted to work in the CONGEST model.
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the color of e. The (degree + 1)-list edge coloring problem is a special case where |Le| ≥ degG(e) + 1
for all e ∈ E. The standard K-edge coloring is a special of the list edge coloring problem in which
every edge e is given the set Le = {1, . . . ,K} as its list.

Relaxed List Edge Coloring. In this work, we will make use of a technique that allows us to
decompose a hard list coloring instance into many easier ones. This technique has been already used
in [5, 6, 24, 39]. A list edge coloring instance can be characterized by a parameter S, specifying how
much larger the lists are as compared to the degree of the edges. A list edge coloring instance is said
to have slack at least S if |Le| > S · deg(e), for all e. We define P (∆̄, S, C) to be the family of list
edge coloring instances where the graph has maximum edge degree ∆̄, the slack is at least S, and
the color space has size C. We define T (∆̄, S, C) to be the time required to solve P (∆̄, S, C).

Defective Coloring. A d-defective c-coloring is an assignment of colors from {1, . . . , c} to the
nodes, such that the maximum degree of each graph induced by nodes of the same colors is bounded
by d. The d-defective c-edge coloring of G is a d-defective c-coloring of the line graph of G.

LOCAL and CONGEST Model. We consider two standard models of distributed computing, the
LOCAL and the CONGEST model [41, 47]. In the LOCAL model, the network is modeled as a graph
G = (V,E), where the nodes V represent computational entities and the edges E represent pairwise
communication links. Communication proceeds in synchronous rounds, where in each round, each
node can send (possibly different) messages to its neighbors, receive messages from the neighbors, and
perform some internal computation. We do not restrict the message size or the interal computational
power of the nodes.

At the beginning of the computation, each node knows a unique identifier from {1, . . . ,poly n},
where n = |V | is known to all nodes. Further, each node knows ∆, the maximum degree of G. At
the end of a computation, each node must produce its own part of the solution (e.g., in the case
of the edge coloring problem, each node v must output the colors of all incident edges). The time
complexity of an algorithm is the worst-case of number of rounds required to produce the solution.
We may express this running time as a function of n and ∆. The CONGEST model is similar to the
LOCAL model, with the only difference that each message must have size bounded by O(log n) bits.

3 Road Map and High Level Ideas

In this section, we provide an overview of the main ingredients that we use to solve the edge coloring
problem. While our algorithms do not work exactly as stated here, we still try to highlight the core
ideas that we use. For this overview, we first sketch how to obtain an edge coloring with O(∆) colors.

At a very high level, our algorithm uses a divide-and-conquer idea that has been used in various
previous deterministic distributed coloring algorithms [5, 7, 8, 11, 38, 39]. The algorithm uses a
defective coloring to divide the graph into subgraphs of smaller degree and at the same time the
global space of colors is divided into the same number of parts so that the different low-degree
subgraphs can use disjoint color spaces. The colorings or the different subgraphs are then colored
recursively in parallel. There are different challenges that we face with this high-level approach.
First, when computing a defective coloring with defect d, all previous algorithms use a number of
colors that is at best c ·∆/d for some constant c > 1. Because of this, the ratio between the necessary
number of colors and the maximum degree grows by a factor c for every recursion level. To keep
the total number of colors needed in the end moderately small, this requires to keep the number of
recursion levels small, which in return makes the defective coloring steps more expensive. As the
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main technical contribution of this paper, we obtain a new algorithm for defective edge coloring,
where we can keep the number of colors and the reduction of the degree arbitrarily close to 1.

Concretely, for the special case of 2-colored bipartite graphs, we obtain a defective 2-coloring
algorithm with the guarantee that the defect of every edge e is only (1/2+ ε) · deg(e) for an arbitrary
parameter ε > 0 (as long as the defect of the edge does not fall below some threshold). We can
compute this defective 2-coloring in time poly(log(∆)/ε). By choosing ε ≤ ε′/ log∆ and recursively
applying the defective 2-coloring, we show that we can partition the graph into 2k = ∆/ poly log∆
parts such that the defect of each node v is at most (1 +O(ε′)) · degG(e)/2k. We can thus compute a
(2 + ε′)∆-edge coloring of a given 2-colored bipartite graph in time poly(log(∆)/ε′). We further give
a reduction that allows to use this algorithm to color general graphs with (8 + ε)∆ colors in time
poly log∆ +O(log∗ n).

We next describe the high-level idea of our defective 2-coloring algorithm. Assume that we are
given a bipartite graph G = (U ∪V,E), where the nodes know if they are in U or in V . For simplicity,
assume further that G is ∆-regular. Our goal is to color each edge either red or blue such that every
red edge has at most (1 + ε)∆ adjacent red edges and every blue edge has at most (1 + ε)∆ adjacent
blue edges. To achieve this, we generalize an idea that was presented in [14]. There, the authors show
how to efficiently solve a problem known as locally optimal semi-matching [19] and in particular a
special case of this problem, a so-called stable edge orientation of a graph. Given an edge orientation
of a graph G, for every node v, let xv denote the number of incident edges that are oriented towards
v. An edge orientation is called stable if for every edge e = {u, v}, if e is oriented from u to v, then
xv −xu ≤ 1 (and otherwise xu−xv ≤ 1). Note that such a stable orientation of a ∆-regular bipartite
graph G = (U ∪ V,E) directly gives a perfect defective 2-coloring. Assume that every edge that is
oriented from U to V is colored red and every edge that is oriented from V to U is colored blue. If
an edge {u, v} for u ∈ U and v ∈ V is oriented from u to v and thus colored red, then the number
of adjacent red edges is exactly (xv − 1) + (∆ − xu − 1) = ∆ + (xv − xu) − 2 ≤ ∆ − 1 (by using
that xv − xu ≤ 1). Note that the degree of every edge in a ∆-regular graph is exactly 2(∆− 1). An
analogous argument works for blue edges.

In [14], the authors introduce a tool that they call the token dropping game and which is used
in particular to compute stable edge orientations. The token dropping game works as follows. We
are given a directed graph where each node holds either 0 or 1 tokens. The goal is to move tokens
around and reach a “stable” solution, that is a solution in which tokens cannot move. A token can
move from node u to node v if u has a token, v has no tokens, and the edge (u, v) exists. Every time
a token passes through an edge, the edge is deleted. In [14], it is shown that the token dropping
game can be solved in time O(L ·∆2) if the directed graph of the game has no cycles and the longest
directed path is of length L. It is shown that this algorithm can be used to compute a stable edge
orientation and thus a perfect defective 2-coloring in ∆-regular 2-colored bipartite graphs in O(∆4)
rounds.

We cannot directly apply the algorithm of [14] for several reasons. First, a time complexity of
O(∆4) is way too slow for us as we aim for algorithms that run in time polylogarithmic in ∆. Second,
we need to deal with non-regular graphs. Even if at the beginning the graph is regular, after a
single application of defective 2-coloring, we might end up with two very non-regular graphs.3 In
non-regular graphs, a stable orientation does not lead to a good defective 2-coloring. The second
problem can be solved relatively easily. For each edge e = {u, v}, one can just define a different
threshold ηe such that if e is oriented from u to v, it must hold that xv − xu ≤ ηe + 1 and if e is
oriented from u to v, it must hold that xu−xv ≤ −ηe+1. If the thresholds ηe are chosen in the right
way, we can still get a perfect defective 2-coloring from such an edge orientation and one can also still

3Note that even if the new edge degrees are at most ∆− 1, the node degrees can still take arbitrary values between
0 and ∆.
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use the reduction in [14] to the token dropping game to compute such an edge orientation. Reducing
the time complexity is more challenging. For this, we relax the requirement on the orientation.
For ∆-regular graphs, we now want to require that if an edge {u, v} is oriented from u to v, then
xv − xu ≤ ε∆ and otherwise xu − xv ≤ ε∆. Such an orientation can be computed fast if we have a
fast algorithm to a generalized token dropping game, where each node can have up to O(ε∆) tokens.
For more details of how to define the generalized token dropping game, we refer to Section 4.

As long as the directed graph of the token dropping game has no cycles and only short directed
paths, it is in fact possible to adapt the token dropping algorithm and the analysis of [14] (in a
non-trivial way) to obtain a poly(log(∆)/ε)-round algorithm to compute a defective 2-coloring in
a 2-colored bipartite graph G such that the defect of any edge e of G is at most (1 + ε) degG(e)
and this is sufficient to obtain an (8 + ε)∆-edge coloring algorithm with a time complexity of
poly log∆ + O(log∗ n). In order to obtain a (2∆ − 1)-coloring, there is however still one major
challenge remaining. When recursively using defective colorings, we always have to slightly relax
the coloring problem along the way and end up with more that 2∆− 1 colors. We can use such a
more relaxed edge coloring to compute a (2∆− 1)-edge coloring or even a (degree + 1)-edge coloring
if we solve the more general list edge coloring [6, 24]. In this case, one however also has to use a
generalized version of defective coloring [5, 39] (for a definition of what we need, see Section 5). Even
for this generalized defective 2-coloring variant, one can define appropriate conditions for the required
edge orientation and one can use our generalized token dropping game to compute such an edge
orientation. However, in this case, the resulting token dropping graph can have cycles and therefore,
even the adapted variant of the token dropping algorithm of [14] does not work. In Section 4, we
therefore design a completely new token dropping algorithm, which also works in general directed
graphs (for the relaxed token dropping game that we are using).

The remainder of the paper is organized as follows. In Section 4, we introduce and solve the
generalized token dropping game. In Section 5, we then introduce our generalized defective 2-coloring
problem and we show how to solve it by using our token dropping algorithm of Section 4. Finally,
in Section 6 and Section 7, we prove our main results. We start in Section 6 with the O(∆)-edge
coloring algorithm for the CONGEST model, which is conceptually simpler. Then, in Section 7, we
present our algorithm for solving the (deg(e) + 1)-list edge coloring problem in the LOCAL model.

4 The Generalized Token Dropping Game

A key technical tool that we use is a generalization of the token dropping game of [14]. This game is
defined on a directed graph G = (V,E), and it has an integer parameter k ≥ 1. Initially, each node
v ∈ V receives at most k tokens as input. Each edge e ∈ E can be either active or passive. Initially,
all edges are active, and as the game progresses, edges can become passive. In a sequential execution,
the game proceeds in steps, where in each step, on some active edge (u, v) ∈ E on which u has at
least 1 token and v has less than k tokens, one token can be moved from u to v. After moving the
token, the edge (u, v) becomes passive. Passive edges cannot become active again. That is, over each
edge of G, at most one token can be moved, and an edge is passive if and only if a token was moved
over the edge. Let τ(v) be the number of tokens at a node v at a given time. When the game ends,
it must hold that τ(v) ≤ k for every v ∈ V and

∀e = (u, v) ∈ E : e active =⇒ τ(u) ≤ τ(v) + σ(e), (1)

where σ(e) ≥ 0 is a value that specifies how much slack we tolerate on a given edge e. In the original
token dropping game introduced in [14], k = 1 and σ(e) = 0 for all edges. In [14], it was further
assumed that the graph G is organized in layers and that all edges are oriented from higher to
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lower layers (therefore the name token dropping). We here generalize the game by allowing general
diriected graphs, larger values of k, and by tolerating some slack on the active edges.

4.1 Distributed Token Dropping Algorithms

In the distributed version of the (generalized) token dropping game, the goal is to run an execution of
the game, where tokens are moved in parallel, but which is still equivalent to the sequential definition
of the game. That is, over each edge, at most one token can be moved and at all times, and every
node has a set of at most k tokens.

We next describe a distributed algorithm to solve the generalized token dropping game with
σ(e) = ε · degG(e) for some given parameter ε ∈ (0, 1/2], that is, by allowing a slack proportional to
the edge degree. The algorithm has an integer parameter δ > 0, and we will see that δ can be used
to control the trade-off between the round complexity and the slack of the algorithm. The smaller δ
is chosen, the smaller ε can be chosen, however the time of the algorithm depends linearly on 1/δ.

Throughout the algorithm, some tokens are active and some tokens are passive. Initially, all
tokens are active, and once a token becomes passive, it remains passive and cannot be moved anymore.
The algorithm operates in synchronous phases. We use xv(t) and yv(t) to denote the number of active
and passive tokens of node v at time t, i.e., at the end of phase t. The value xv(0) and yv(0) denote
the number of tokens of v at the beginning. At all times t ≥ 0, the algorithm always guarantees that
xv(t) + yv(t) ≤ k for every node v ∈ V . We further have yv(0) = 0 for all v ∈ V . For each node,
we further define an integer parameter αv ≥ 1 that controls how much slack node v is willing to
tolerate on its edges. We will see that if we want to tolerate slack σe on an edge {u, v}, then we in
particular have to choose αu, αv ≤ cσe for a sufficiently small constant c. The value of αv controls
how much slack node v is willing to tolerate on its edges. In the end, the slack on each edge (u, v)
that is still active has to be O(αu + αv). The algorithm is run for ⌊kδ ⌋ − 1 phases. In each phase
t ≥ 1, the algorithm does the following steps.

1. Define A(t) ⊆ V as the set of nodes v ∈ V with xv(t − 1) ≥ αv + δ. We call A(t) the active
nodes in phase t and only nodes in A(t) will be able to move tokens to other nodes in phase t.

2. Each node v ∈ A(t) sets x′v(t) := xv(t − 1) − δ and y′v(t) := yv(t − 1) + δ. All other nodes
v ∈ V \A(t) set x′v(t) := xv(t− 1) and y′v(t) := yv(t− 1).

3. For a node v ∈ V , let S(v) ⊂ A(t) be the set of nodes u ∈ A(t) such that there is an active
edge (u, v) from u to v (S(v) are the nodes that can potentially send a token to v in phase t).

4. If x′v(t) ≤ k − tδ − αv, v sends a token proposal to the min {|S(v)|, k − tδ − x′v(t)} nodes
w ∈ S(v), where priority is given to nodes w ∈ S(v) of smaller degG(w)/αw value.

5. For each node v ∈ V , let pv(t) be the number of token proposals v receives in phase t and
let qv(t) := min {pv(t), x′v(t)}. Node v accepts qv(t) of the proposals and sends a token to the
respective outneighbors. The edges over which a token is sent become passive.

6. For each node v ∈ V , let rv(t) be the number of tokens that v receives in phase t. The number
of active tokens at the end of phase t of each node v is set to xv(t) := x′v(t) + rv(t)− qv(t), i.e.,
xv(t) is x

′
v(t) plus the number of received tokens and minus the number of sent tokens.

We start by proving that the maximum number of active tokens decreases after each phase, and
that the total number of tokens at each node never exceeds k.

Lemma 4.1. For all v ∈ V and for all t ≥ 0, if δ ≤ αv, it holds that xv(t) ≤ max {2αv, k − t · δ}
and yv(t) ≤ k − xv(t).
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Proof. We prove the upper bound on xv(t) by induction on t. For t = 0, we have xv(0) ≤ k and
therefore clearly xv(0) ≤ max {αv, k − 0 · δ}. For the induction step, let us assume that t ≥ 1 and let
us therefore focus on what happens in phase t. Note that in step 4 of phase t the above algorithm,
each node v sends at most k − tδ − x′v(t) proposals and it therefore receives at most that many new
tokens. If x′v(t) ≤ k − tδ, we therefore also have xv(t) ≤ x′v(t) + (k − tδ − x′v(t)) = k − tδ. In this
case, we have proven the required upper bound on xv(t). Let us therefore assume that x′v(t) > k− tδ.
In this case, v does not send any proposals and we therefore know that xv(t) ≤ x′v(t). By the
induction hypothesis, we also know that xv(t− 1) ≤ max {2αv, k − (t− 1) · δ}. Since we know that
x′v(t) ≤ xv(t − 1), then, whenever xv(t − 1) ≤ 2αv, we now also have xv(t) ≤ x′v(t) ≤ 2αv. Let us
therefore further assume that 2αv < xv(t− 1) ≤ k − (t− 1)δ. Because δ ≤ αv, in this case, we have
xv(t−1) > 2αv ≥ αv+ δ and therefore v ∈ A(t). However, we then set x′v(t) := xv(t−1)− δ ≤ k− tδ,
and we therefore also have xv(t) ≤ k − tδ. The proves the upper bound on xv(t).

It remains to show that yv(t) ≤ k − xv(t). We again apply induction on t. Note that we have
yv(0) = 0 and xv(0) ≤ k and therefore the bound certainly holds for t = 0. For every t ≥ 1, we either
have yv(t) = yv(t− 1) and v ̸∈ A(t) or yv(t) = yv(t− 1) + δ and v ∈ A(t). We therefore in particular
always have yv(t) ≤ yv(t−1)+δ and thus yv(t) ≤ tδ. If xv(t) ≤ k− tδ, we thus have xv(t)+yv(t) ≤ k
as required. Let us therefore assume that xv(t) > k − tδ. Above, we showed that if x′v(t) ≤ k − tδ,
it follows that xv(t) ≤ k − tδ. By the contrapositive, if xv(t) > k − tδ, we therefore know that also
x′v(t) > k − tδ and thus that v does not sent any proposals in step 4 of the algorithm. In this case,
we therefore know that xv(t) ≤ x′v(t). If v ̸∈ A(t), we have yv(t) = yv(t− 1) and x′v(t) = xv(t− 1)
and if v ∈ A(t), we have yv(t) = yv(t− 1) + δ and x′v(t) = xv(t− 1)− δ. In both cases, xv(t) ≤ x′v(t)
and the induction hypothesis xv(t− 1) + yv(t− 1) ≤ k directly imply that xv(t) + yv(t) ≤ k.

We now prove that, for each active edge, the number of passive tokens of each endpoint cannot
differ by much.

Lemma 4.2. For every edge e = (u, v) ∈ E, at the end of each phase t ≤ k/δ − 1 in the above
algorithm, e is passive or we have

yu(t)− yv(t) ≤ 2αv +

(
degG(u) · degG(v)

αu · αv
+

degG(u)

αu
+

degG(v)

αv

)
· δ.

Proof. In each phase t, for every node w ∈ V , we have yw(t) = yw(t − 1) + δ if w ∈ A(t) and
yw(t) = yw(t− 1) otherwise. To upper bound yu(t)− yv(t) while e = (u, v) is active, we can therefore
count the number of phases in which u ∈ A(t) and v ̸∈ A(t) and where no token is passed over the
edge. For u to be in A(t), we must have xu(t − 1) ≥ αu + δ and for v to not be in A(t), we must
have xv(t− 1) < αv + δ.

As long as t is not too large, xv(t− 1) < αv + δ implies that v has the capacity to receive tokens
in phase t and it can therefore send proposals to active in-neighbors. To count the number of phases
in which u ∈ A(t) and v ̸∈ A(t), we therefore make a case distinction depending on the value of
t. We first assume that t ≤ (k − 2αv)/δ − 1. We can rewrite this as αv + δ ≤ k − tδ − αv and
because we know that xv(t− 1) ≤ αv + δ, this implies that xv(t− 1) ≤ k− tδ−αv. Because v ̸∈ A(t),
we also know that x′v(t) = xv(t− 1) and therefore x′v(t) ≤ k − tδ − αv. This is the condition that
is needed in step 4 of the above algorithm for v to send token proposals over its incoming active
edges. Whenever v sends a token proposal to an in-neighbor w, either w sends a token to v and
afterwards the edge (w, v) becomes passive, or w sends at least αw tokens to other out-neighbors
and therefore at least αw out-edges of w become passive. To each in-neighbor w ̸= u, v can therefore
send proposals at most ⌈degG(w)/αw⌉ times. Note that in each phase t, v only sends proposals (in
step 4) if x′v(t) ≤ k − tδ − αv and it sends proposals either to all nodes in S(v) (i.e., to all active
neighbors with an active edge to v) or it sends proposals to k− tδ−x′v(t) ≥ αv nodes in S(v). Hence,
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in each phase t in which v sends proposals and in which v does not send a proposal to u although
u ∈ A(t) and (u, v) is still active, there must be at least αv neighbors w ∈ S(v) \ {u} to which v
sends a proposal. Note that for each such neighbor w, we have degG(w)/αw ≤ degG(u)/αu (because
in step 4, proposals are sent to active in-neighbors of smallest degG(w)/αw ratio first). The number
of such phases t for t ≤ (k− 2αv)/δ − 1 in which u ∈ A(t) and v ̸∈ A(t), in which (u, v) is active and
v does not send a proposal to u can therefore be upper bounded by(degG(v)− 1) ·

⌈
degG(u)

αu

⌉
αv

 ≤
(
degG(v)− 1

αv

)
·
(
degG(u)

αu
+ 1

)

≤ degG(u) · degG(v)
αu · αv

+
degG(v)

αv
. (2)

Further, v can send at most ⌊degG(u)/αu⌋ proposals to u without receiving a token from u (and
thus such that (u, v) remains active). The total number of phases t for t ≤ k/δ− 1 in which u ∈ A(t)
and v ̸∈ A(t) and in which (u, v) remains active can consequently be upper bounded by

2αv

δ
+

degG(u) · degG(v)
αu · αv

+
degG(v)

αv
+

degG(u)

αu
.

In each of those phases, yu(t)−yv(t) increases by δ, which directly implies the claim of the lemma.

We are now ready to prove that our algorithm solves the generalized token dropping game. The
following theorem follows almost directly from Lemma 4.1, for space reasons, the proof appears in
Appendix A.

Theorem 4.3. At the end of the above algorithm, for every v ∈ V , let τ(v) be the number of tokens
at node v. If for all v ∈ V , αv ≥ δ, the above algorithm has a time complexity of O(k/δ) and at the
end of the algorithm, for every node v ∈ V , we have τ(v) ≤ k and for every edge (u, v), either (u, v)
is passive or

τ(u)− τ(v) ≤ 2(αu + αv) +

(
degG(u) · degG(v)

αu · αv
+

degG(u)

αu
+

degG(v)

αv

)
· δ.

5 Generalized Defective 2-Edge Coloring

At the core, our edge coloring algorithms are based on the following simple idea. We partition the
space of possible colors into two parts and each edge commits to choosing a color from one of the
two parts. The two parts can then be solved recursively. Because edges that pick colors from disjoint
color spaces cannot conflict with each other, the two parts can be colored recursively in parallel.
The task of splitting the set of edges into two parts can be formulated as a defective edge coloring
problem as follows.

Definition 5.1 (Generalized Defective 2-Edge Coloring). Given values ε ≥ 0 and β ≥ 0, a graph
G = (V,E), and parameters λe ∈ [0, 1] for all edges e ∈ E, a generalized (1 + ε, β)-relaxed defective
2-edge coloring of G is an assignment of colors red and blue to the edges e ∈ E such that for every
edge e ∈ E:

� If e is colored red, the number of neighboring red edges is ≤ (1 + ε) · λe · degG(e) + λeβ.

� If e is colored blue, the number of neighboring blue edges is ≤ (1+ε)·(1−λe)·degG(e)+(1−λe)β.
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We will next show how we can solve a given generalized defective 2-edge coloring instance in
two-colored bipartite graphs by using the token dropping game of Section 4. We next show how to
transform the generalized defective 2-coloring problem to make it more directly amenable to applying
the token dropping game. We first define the notion of generalized balanced edge orientations. For
convenience, we only give a definition for bipartite graphs.

Definition 5.2 (Generalized Balanced Edge Orientation). Assume that we are given values ε ≥ 0
and β ≥ 0, a bipartite graph G = (U ∪̇V,E), parameters ηe ∈ R for all edges e = (u, v) ∈ E, u ∈ U ,
v ∈ V , and an orientation on the edges of G. For each node w ∈ U ∪ V , let xw be the number of
edges of w that are oriented towards w. The orientation is called a generalized (ε, β)-balanced edge
orientation of G if the following holds. For every edge (u, v) ∈ E,

(I) If e is oriented from u to v, then xv − xu ≤ ηe + 1 + ε
2 · degG(e) + β.

(II) If e is oriented from v to u, then xu − xv ≤ −ηe + 1 + ε
2 · degG(e) + β.

The following lemma follows almost directly from the above definitions. The proof appears in
Appendix B.

Lemma 5.3. Assume that we are given a bipartite graph G = (U ∪̇V,E), a parameter ε ≥ 0, and
parameters λe ∈ [0, 1] for all e ∈ E. For every edge e = (u, v), u ∈ U , v ∈ V , we define

ηe := 1− 2λe − (1− λe) · degG(u) + λe · degG(v) + ε ·
(
λe −

1

2

)
· degG(e) + (2λe − 1)β (3)

A generalized (ε, β)-balanced edge orientation of G w.r.t. the edge parameters ηe can be turned into a
solution to the given generalized (1 + ε, 2β)-relaxed defective 2-edge coloring w.r.t. the original edge
parameters λe by coloring edges red that are oriented from U to V and by coloring edges blue that
are oriented from V to U .

We next show how to compute a generalized balanced edge orientation (as given by Definition 5.2)
and thus in combination with Lemma 5.3 a generalized defective 2-edge coloring. Assume that we
have a bipartite 2-colored graph G = (U ∪ V,E) with edge parameters ηe ∈ R. We will compute a
generalized balanced edge orientation with parameter ηe by reducing it to a sequence of instances
of the token dropping game. More concreteley, the algorithm has a parameter ν > 0 and it runs
in a sequence of phases ϕ = 1, 2, 3, . . . , O

( log∆
ν

)
. At the start, all edges of G are unoriented and

in each phase, a subset of the unoriented edges become oriented. We define Fϕ as the set of edges
that get oriented in phase ϕ, and F<ϕ as the set of edges that get oriented before phase ϕ. By
writing degF<ϕ

(v) we refer to the degree of node v in the graph induced by the edges F<ϕ. In each
phase, we use one instance of the token dropping game to make sure that the set of all oriented
edges satisfies inequalities (I) and (II) of Definition 5.2 (for an appropriate value of ε). For an edge
e ∈ E and a phase ϕ ≥ 0, we use d(e, ϕ) to denote the number of unoriented neighboring edges of
e at the end of phase ϕ. For convenience, we also use d(e, 0) = degG(e) to denote the number of
unoriented neighboring edges of e at the start. We further define ∆̄ := 2∆− 2 as an upper bound on
the maximum edge degree in G. We further set the parameter ν such that

0 < ν ≤ 1

8
. (4)

For every node v and every phase ϕ ≥ 1, let xv(ϕ) denote the number of edges that are oriented
towards v at the end of phase ϕ. For convenience, we also define xv(0) = 0 as at the beginning all
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edges are unoriented and therefore no edges are oriented towards v. For each node v, we further
define

d−ϕ (v) := min
e∈F<ϕ:v∈e

degG(e) and αv(ϕ) := max

{
1,

1

4
· ν2

ln ∆̄
· (d−ϕ (v) + 1)

}
. (5)

We assume that the nodes of G know if they are in U or in V (i.e., we assume that the bipartite
graph G is equipped with a 2-vertex coloring). The algorithm in phase ϕ ≥ 1 works as follows:

1. Let Eϕ ⊆ E be the edges e ∈ E that are still unoriented at the beginning of phase ϕ and for
which d(e, ϕ− 1) > (1− ν)ϕ∆̄.

2. For every edge e = (u, v) ∈ Eϕ with u ∈ U and v ∈ V , e sends a proposal to v if xv − xu ≤ ηe
and it sends a proposal to u otherwise.

3. We set kϕ :=
⌈
ν(1− ν)ϕ−1∆̄

⌉
. Every node u ∈ U ∪ V that receives at most kϕ proposals from

its edges in Eϕ accepts all those proposals and every node u ∈ U ∪ V that receives more that
kϕ proposals from its edges in Eϕ accepts an arbitrary subset of kϕ of them.

4. Let Fϕ ⊆ Eϕ be the set of edges for which the proposal gets accepted. The edges e ∈ Fϕ will
be the ones that get newly oriented in phase ϕ. For each edge (u, v) ∈ Fϕ, the edge is oriented
from u to v if (u, v)’s proposal was sent to and accepted by v and the edge is oriented from v
to u otherwise.

5. Let F<ϕ :=
⋃ϕ−1

i=1 Fϕ be the set of edges that get oriented before phase ϕ. We define a subset
F ′
<ϕ ⊆ F<ϕ of those edges as follows. An edge e = (u, v) ∈ F<ϕ (u ∈ U , v ∈ V ) is included in

F ′
<ϕ if either e is oriented from u to v and xv(ϕ− 1)− xu(ϕ− 1) > ηe or if e is oriented from v

to u and xu(ϕ− 1)− xv(ϕ− 1) > −ηe.

6. We now run an instance of the token dropping game on the graph Gϕ = (U ∪ V, F ′
<ϕ) (i.e., on

the subgraph of G induced by the edges in F ′
<ϕ), where each edge in F ′

<ϕ is directed in the
opposite direction of its current orientation. Each node u ∈ U ∪ V uses the parameter αu(ϕ)
as fixed in Equation (5). Further, the initial number of tokens of each node u ∈ U ∪ V is equal
to the number of proposals from its edges in Eϕ, u has accepted in the above step 3. Finally,
the parameter δϕ is set to

δϕ := max

{
1,

⌊
1

16
· ν6

ln3 ∆̄
· (1− ν)ϕ−1∆̄

⌋}
. (6)

7. To conclude phase ϕ, we now update the orientation of the edges in F<ϕ as follows. We switch
the orientation of each edge over which a token is moved in the above token dropping game
instance of step 6. All other edges in F<ϕ keep their orientations.

We first show that the maximum edge degree of the unoriented part of G decreases exponentially
as a function of the number of phases. The proof of Lemma 5.4 is simple and appears in Appendix B.

Lemma 5.4. At the end of phase ϕ ≥ 1 of the above algorithm, we have d(e, ϕ) ≤ (1 − ν)ϕ∆̄ for
every edge e ∈ E \ F≤ϕ, that is, for every edge that is still unoriented after phase ϕ.

To analyze the quality of the produced edge orientation, we define the following quantities for
every edge e ∈ E.

ke :=

⌈
ν

1− ν
· degG(e)

⌉
and ξe :=

5

2
· ν

ln ∆̄
· ke + 28 · ln

2 ∆̄

ν4
. (7)
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Lemma 5.5. After ϕ phases of the above algorithm, for every edge e = (u, v) ∈ E (u ∈ U , v ∈ V ),
it holds that either:

� e is unoriented, or

� e is oriented from u to v and xv(ϕ)− xu(ϕ) ≤ ηe + ke + ϕ · ξe, or

� e is oriented from v to u and xu(ϕ)− xv(ϕ) ≤ −ηe + ke + ϕ · ξe.

Proof. We prove the lemma by induction on the number of phase ϕ. At the beginning, all edges are
unoriented and therefore clearly for ϕ = 0, the claim of the lemma holds. For the induction step,
assume that ϕ ≥ 1. Consider some edge (u, v) ∈ E with u ∈ U and v ∈ V and assume that e is
oriented at the end of phase ϕ (as otherwise, the claim of the lemma clearly holds for e). We first
show that for every node v ∈ U ∪ V , we have

xv(ϕ− 1) ≤ xv(ϕ) ≤ xv(ϕ− 1) + kϕ. (8)

To see why Equation (8) holds, first consider the number of incoming edges at node v in the middle
of phase ϕ, right before the we run the token dropping instance of phase ϕ in step 6 of the above
algorithm. As the orientation of the edges that have been oriented prior to phase ϕ can only be
changed during token dropping game, the number of incoming edges of v at this point is equal to
xv(ϕ − 1) plus the number of newly oriented edges of v that are oriented towards v. Let us use
yv to denote this number of those newly oriented edges towards v. Note that yv is exactly equal
to the number of proposals v accepts in step 3 of the above algorithm. Note also that the initial
number of tokens of node v in the token dropping game of phase ϕ is equal to yv. When running
token dropping, whenever moving a token from a node u to a node u′, an edge that was previously
oriented from u′ to u is reoriented from u to u′. Hence, for every token that node v receives in the
token dropping game, the total number of edges oriented to v increases by 1 and for every token
that v moves to a neighbor, the total number of edges oriented to v decreases by 1. By induction on
the steps of the token dropping game, the total number of incoming edges at node v at the end of
phase ϕ is therefore exactly xv(ϕ− 1) plus the number of tokens at node v at the end of the token
dropping game instance of phase ϕ. Because by definition of the token dropping game, the number
of tokens at each node is always in {0, . . . , kϕ}, Equation (8) follows.

Recall that if an edge e gets oriented in a phase ϕ′, we have degG(e) ≥ d(e, ϕ′ − 1) ≥ (1− ν)ϕ
′
∆̄.

For every e that gets oriented in or before phase ϕ, we therefore have degG(e) ≥ (1− ν)ϕ∆̄. This
means that for every edge e that is oriented by the end of phase ϕ, we in particular have

ke =

⌈
ν

1− ν
· degG(e)

⌉
≥
⌈
ν(1− ν)ϕ−1∆̄

⌉
. (9)

For the induction step of our main induction (on ϕ), we distinguish 4 cases:

Edge e gets newly oriented in phase ϕ: Edge e gets oriented from u to v in phase ϕ if
xv(ϕ−1)−xu(ϕ−1) ≤ ηe and it gets oriented from v to u otherwise (i.e., if xu(ϕ−1)−xv(ϕ−1) < −ηe).
Hence, if e is oriented from u to v, Equation (8) implies that xv(ϕ) − xu(ϕ) ≤ ηe + kϕ and if e is
oriented from v to e, Equation (8) implies that xu(ϕ)− xv(ϕ) ≤ −ηe + kϕ. In both cases, the claim
of the lemma follows together with

kϕ =
⌈
ν · (1− ν)ϕ−1∆̄

⌉ (9)

≤ ke.
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Edge e does not participate in the token dropping game of phase ϕ: For the remaining
cases, we assume that e was first oriented prior to phase ϕ. Since e does not to participate in the
token dropping in phase ϕ, the orientation of e does not change in phase ϕ. For e not to participate
in the token dropping in phase ϕ, we then also must have that either e is oriented from u to v and
xv(ϕ− 1)− xu(ϕ− 1) ≤ ηe or e is oriented from v to u and xu(ϕ− 1)− xv(ϕ− 1) ≤ −ηe. In both
cases, the claim of the lemma follows directly by combining this with Equations (8) and (9).

A token is moved over e in the token dropping game of phase ϕ: If prior to running the
token dropping game of phase ϕ, e is oriented from u to v, then xv(ϕ − 1) − xu(ϕ − 1) > ηe and
otherwise xu(ϕ− 1)− xv(ϕ− 1) > −ηe. Since a token is moved over e in the token dropping game
of phase ϕ, the orientation of e is switched in phase ϕ. Hence, if before running token dropping in
phase ϕ, the edge e is oriented from u to v, at the end of the phase, e is oriented from v to u and

xu(ϕ)− xv(ϕ)
(8),(9)

≤ xu(ϕ− 1)− xv(ϕ− 1)︸ ︷︷ ︸
xv(ϕ−1)−xu(ϕ−1)>ηe

+ke < −ηe + ke.

If before the token dropping instance of phase ϕ, e is oriented from v to u, at the end of the phase,
the edge is oriented from u to v and

xv(ϕ)− xu(ϕ)
(8),(9)

≤ xv(ϕ− 1)− xu(ϕ− 1)︸ ︷︷ ︸
xu(ϕ−1)−xv(ϕ−1)>−ηe

+ke < ηe + ke.

The claim of the lemma therefore also follows in this case.

No token is moved over e in the token dropping game of phase ϕ: The last case to consider
is the case where e participates in the token dropping game, but where no token is moved over the
edge. First assume that e is oriented from u to v, that is, the edge is directed from v to u in the
token dropping game. Let τu and τv denote the number of tokens at node u and v at the end of the
token dropping game instance of phase ϕ. Observe that

αv(ϕ) = max

{
1,

1

4
· ν2

ln ∆̄
· (d−ϕ (v) + 1)

}
≥ max

{
1,

1

4
· ν2

ln ∆̄
· (1− ν)ϕ−1∆̄

}
≥ max

{
1,

⌊
1

16
· ν6

ln3 ∆̄
· (1− ν)ϕ−1∆̄

⌋}
= δϕ,

where the first inequality holds because, for every e that gets oriented before phase ϕ, we have
degG(e) ≥ (1− ν)ϕ−1∆̄. Hence, αv(ϕ) ≥ δϕ, and since no token is moved from v to u in the token
dropping game, Theorem 4.3 implies that

τv − τu ≤ 2(αu(ϕ) + αv(ϕ)) +

(
degF<ϕ

(u) · degF<ϕ
(v)

αu(ϕ) · αv(ϕ)
+

degF<ϕ
(u)

αu(ϕ)
+

degF<ϕ
(v)

αv(ϕ)

)
· δϕ

≤ max

{
4,

ν2

2 ln ∆̄
· (d−ϕ (u) + d−ϕ (v) + 2)

}
+

(
16 ln2 ∆̄

ν4
+

8 ln ∆̄

ν2

)
· δϕ

≤ ν2

ln ∆̄
· degG(e) + 4 +

(
ν2

ln ∆̄
+

ν4

2 ln2 ∆̄

)
· (1− ν)ϕ−1∆̄ +

16 ln2 ∆̄

ν4
+

8 ln ∆̄

ν2

≤ 5ν2

2 ln ∆̄
· degG(e) + 28 · ln

2 ∆̄

ν4
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The second inequality follows from plugging in the definition of αu(ϕ) and αv(ϕ) (Equation (5)) and
the fact that for all nodes v ∈ V , degF<ϕ

(v) ≤ d−ϕ (v) + 1. The third inequality follows from using

that ν2/ ln ∆̄ ≤ 1 and from the definition of δϕ (Equation (6)). In the fourth inequality, we use that
since edge e was first oriented in a phase before ϕ, we must have degG(e) ≥ (1− ν)ϕ−1∆̄ and again
by using that ν2/ ln ∆̄ ≤ 1.

The induction step in the induction over the number of phases and thus the claim of the lemma
now follows directly from the definitions of ke and of ξe (Equation (7)). If the edge e is oriented from
v to u, then the statement holds for the same reasons.

The following theorem can now be proven by Lemma 5.4 and by plugging together Lemma 5.5,
Equation (7), and Theorem 4.3. The proof appears in Appendix B.

Theorem 5.6. Assume that we are given a bipartite graph G = (U ∪̇V,E), a value ε > 0, and edge
parameters ηe ∈ R for all edges e ∈ E. There exists a constant C > 0 such that if ε ≤ 1, there is an

O
( log4 ∆

ε6

)
-round distributed algorithm to compute a generalized (ε, β)-balanced orientation of G w.r.t.

the edge parameters ηe, where β = C · ln3 ∆̄
ε5

.

By combining Theorem 5.6 and Lemma 5.3, we obtain the following.

Corollary 5.7. Let ε ≤ 1. The generalized (1 + ε, β)-relaxed defective 2-edge coloring can be solved

deterministically in the CONGEST model in O
( log4 ∆

ε6

)
rounds, for β = O

( log3 ∆
ε5

)
.

6 O(∆)-Edge Coloring in the CONGEST Model

In this section, we present an algorithm for solving the O(∆)-edge coloring problem in the CONGEST
model. We start by showing how to solve the problem on bipartite 2-colored graphs. We will later
show how to remove this restriction.

Lemma 6.1. The (2 + ε)∆-edge coloring problem can be solved in O
( log11 ∆

ε6

)
deterministic rounds

in the CONGEST model in bipartite 2-colored graphs, for any 1 ≥ ε > 0.

Proof Sketch. The high-level idea of the proof is the following. In Corollary 5.7, we show that a
(1 + ε′, β)-relaxed defective 2-edge coloring can be solved in poly(log(∆)/ε′) time in the CONGEST

model (for β = O
( log3 ∆

ε′5

)
). As long as the maximum edge degree ∆̄ is sufficiently larger than β/ε′,

we can therefore compute a 2-defective edge coloring for which the maximum defect is only by a
(1 + ε′) factor larger than ∆̄/2. Choosing ε′ ≤ c · ε/ log∆ for a sufficiently small constant c and an
integer k ≥ 1, as long as k ≫ β/ε′, we can therefore recursively compute a defective 2k-edge coloring
such that the maximum edge defect is at most (1 + ε/2)∆̄/2k. The required (2 + ε)∆-coloring of the
given bipartite graph is then obtained by using 2k disjoint color ranges for each of the 2k graphs of
maximum degree (1 + ε/2)∆̄/2k that we get from the recursive defective coloring. A full proof of the
claim appears on Appendix C.

In order to solve the problem in general graphs, we make use of the following lemma, that follows
directly from results presented in [11] (a proof is also shown in Appendix C).

Lemma 6.2. The (ε∆+ ⌊∆/2⌋)-defective vertex 4-coloring problem, given an O(∆2)-vertex coloring,
can be solved in O(1/ε2) rounds in the CONGEST model.

We are now ready to present our CONGEST algorithm for O(∆)-edge coloring on general graphs.
Theorem 1.2 follows directly from the following theorem.
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Theorem 6.3. The (8+ ε)∆-edge coloring problem can be solved in O
( log12 ∆

ε6
+ log∗ n

)
deterministic

rounds in the CONGEST model, for any small enough constant ε > 0.

Proof Sketch. We start by computing an initial O(∆2)-vertex coloring, which can be done in O(log∗ n)
rounds. Let ε1 be a parameter that we choose appropriately We apply Lemma 6.2 with parameter ε1
for 4-coloring the nodes of the graph with colors in {1, 2, 3, 4}. Then, let G1 be the graph induced
by edges {u, v} satisfying that the color of u is either 1 or 2, and the color of v is either 3 or 4.
This graph is clearly bipartite, and nodes know their side of the bipartition. Hence, we can apply
Lemma 6.1 to color the edges of this graph by using at most (2 + ε2)∆ colors, for some appropriate
parameter ε2. We then do the same in the bipartite graph induced by the edges that go from colors
{1, 3} to colors {2, 4}. For the edges that are colored so far, we have now used (4 + 2ε2)∆ colors. All
the remaining uncolored edges are now between nodes of the same color and hence the degree of
them is at most (1/2 + ε1)∆ and thus close to ∆/2. To color the rest of the graph, we now recurse.
As the maximum degree (almost) halves in each step, the total number of colors will be (essentially)
twice the number of colors we have used so far and thus (8 + O(ε1))∆. A full proof appears in
Appendix C.

7 (2∆ − 1)-Edge Coloring in the LOCAL Model

In this section, we give an overview of our algorithm that computes a (degree + 1)-list edge coloring
and thus as a special case a (2∆− 1)-edge coloring. For the detailed formal arguments, we refer to
Appendix D.

Coloring 2-Colored Bipartite Graphs. We first again consider the case of computing a somewhat
relaxed coloring of a 2-colored bipartite graph G = (U ∪ V,E). For the high level description here,
assume that G has maximum degree ∆ and that every edge e ∈ E has a list Le of size |Le| ≥ 2 degG(e).
Assume further that Le ⊆ {1, . . . , C}, i.e., all colors come from a global space of C colors. If all nodes
have access to the same colors (as in the algorithm of Section 6), we can use defective 2-colorings to
split the graph into two parts such that the maximum edge degree in each part is approximately
halved compared to the original maximum degree. However, in the case of list coloring, we cannot do
this because in a local distributed way, we cannot split the colors into two parts such that each node
can keep half of its colors. We instead have to adapt a method that was introduced in [39] and also
used in [5]. First, the global space of colors {1, . . . , C} is split into two approximately equal parts.
For this, let us call the colors {1, . . . , ⌊C/2⌋} red and the remaining colors blue. We want to color
the edges red and blue such that afterwards, the red edges e only keep the red colors in their list Le

and the blue edges only keep their blue colors. In this way, the two parts are independent of each
other and can be colored in parallel. Note however that because the lists Le are arbitrary subsets of
{1, . . . , C}, the list Le of an edge e can consist of an arbitrary division into red and blue colors. For
an edge e ∈ E, let λe be the fraction of red colors in its list, i.e., |Le ∩ {1, . . . , ⌊C/2⌋} | = λe|Le|. If
e chooses to be red, its list shrinks by a factor λe and we therefore also want to shrink e’s degree
by at least (approximately) a factor λe and if e chooses to be blue, the e’s degree has to shrink
by at least (approximately) a factor 1− λe. If the degree of e is sufficiently large, we can achieve
this by computing a generalized defective 2-edge coloring as defined in Definition 5.1 and we can
use Corollary 5.7 to compute such a 2-coloring efficiently. The goal therefore is to recursively split
the global color space into two parts and always use Corollary 5.7 to split the edges such that the
degree-to-list size ratio grows by at most a factor 1 + o(1). This essentially works as in Section 6.
There is only one additional small issue that we have to take care of. Since the ratio λe can be an
arbitrary value between 0 and 1, we have no control over the minimum and maximum edge degree
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or list size in the graph. Corollary 5.7 however only gives good guarantees for edges that have a
sufficiently large degree. As soon as an edge e has degree at most some poly log∆, we therefore do
not further split the color space of e recursively. Edge e then waits until all neighboring edges that
are split further have been colored and afterwards, e only has a small uncolored degree and can
therefore be colored greedily by a standard edge coloring algorithm.

Degree+1 List Edge Coloring on General Graphs. Given a (degree +1)-list coloring instance
of an arbitrary graph G, we start by computing a poly(∆)-vertex coloring, which can be done in
O(log∗ n) rounds.

Then, we compute a defective O(1)-vertex coloring of G, where each node has defect at most ∆/c
for a sufficiently large constant c. By using an algorithm from [11], this can be done in O(log∗∆)
time by exploiting the precomputed poly(∆)-vertex coloring.

We then sequentially iterate through all possible pairs of colors (a, b), and we consider the graph
induced by edges with one endpoint of color a and the other endpoint of color b. This graph is clearly
bipartite, but we cannot directly apply the previously described algorithm, because the lists of the
edges may be too small, compared to their degree. In order to apply the algorithm anyways, we use
a method that has already been used in [5, 24, 39] and that allows us to use the previously described
algorithm to partially color the graph.

Like this, we can reduce the uncolored degree of each edge by a constant factor even in a
(degree + 1)-list coloring instance, and repeating O(log∆) times allows to color all the edges and to
fully solve the given (degree + 1)-list coloring problem.
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[32] Magnús M. Halldórsson, Fabian Kuhn, Alexandre Nolin, and Tigran Tonoyan. 2021. Near-
Optimal Distributed Degree+1 Coloring. CoRR abs/2112.00604 (2021).

[33] Michal Hanckowiak, Michal Karonski, and Alessandro Panconesi. 1998. On the Distributed
Complexity of Computing Maximal Matchings. In Proc. 9th ACM-SIAM Symp. on Discrete
Algorithms (SODA). 219–225.

[34] Michal Hanckowiak, Michal Karonski, and Alessandro Panconesi. 1999. A Faster Distributed
Algorithm for Computing Maximal Matchings Deterministically. In Proc. 18th ACM Symp. on
Principles of Distributed Computing (PODC). 219–228.

[35] David G. Harris. 2020. Distributed Local Approximation Algorithms for Maximum Matching
in Graphs and Hypergraphs. SIAM J. Comput. 49, 4 (2020), 711–746. https://doi.org/10.

1137/19M1279241

18

https://doi.org/10.1137/1.9781611973730.26
https://doi.org/10.1109/FOCS.2017.25
https://doi.org/10.1137/1.9781611974331.ch20
https://doi.org/10.1137/1.9781611974331.ch20
https://doi.org/10.1137/1.9781611976465.173
https://doi.org/10.1137/19M1279241
https://doi.org/10.1137/19M1279241


[36] David G. Harris, Johannes Schneider, and Hsin-Hao Su. 2018. Distributed (∆ +1)-Coloring in
Sublogarithmic Rounds. J. ACM 65, 4 (2018), 19:1–19:21.

[37] Amos Israeli and A. Itai. 1986. A fast and simple randomized parallel algorithm for max-
imal matching. Inform. Process. Lett. 22, 2 (1986), 77–80. https://doi.org/10.1016/

0020-0190(86)90144-4

[38] Fabian Kuhn. 2009. Local Weak Coloring Algorithms and Implications on Deterministic
Symmetry Breaking. In Proc. 21st ACM Symp. on Parallelism in Algorithms and Architectures
(SPAA).

[39] Fabian Kuhn. 2020. Faster Deterministic Distributed Coloring Through Recursive List Coloring.
In Proc. 32st ACM-SIAM Symp. on Discrete Algorithms (SODA). 1244–1259.

[40] Fabian Kuhn and Roger Wattenhofer. 2006. On the complexity of distributed graph coloring. In
Proc. 25th ACM Symp. on Principles of Distributed Computing (PODC). 7–15.

[41] Nathan Linial. 1987. Distributive graph algorithms – Global solutions from local data. In
Proc. 28th Symp. on Foundations of Computer Science (FOCS 1987). IEEE, 331–335. https:

//doi.org/10.1109/SFCS.1987.20

[42] Michael Luby. 1986. A Simple Parallel Algorithm for the Maximal Independent Set Problem.
SIAM J. Comput. 15, 4 (1986), 1036–1053. https://doi.org/10.1137/0215074

[43] Yannic Maus and Tigran Tonoyan. 2020. Local Conflict Coloring Revisited: Linial for Lists.
CoRR abs/2007.15251 (2020).

[44] Alessandro Panconesi and Romeo Rizzi. 2001. Some simple distributed algorithms for sparse
networks. Distributed Computing 14, 2 (2001), 97–100.

[45] Alessandro Panconesi and Aravind Srinivasan. 1996. On the Complexity of Distributed Network
Decomposition. Journal of Algorithms 20, 2 (1996), 356–374. https://doi.org/10.1006/

jagm.1996.0017

[46] Alessandro Panconesi and Aravind Srinivasan. 1997. Randomized Distributed Edge Coloring
via an Extension of the Chernoff-Hoeffding Bounds. SIAM J. Comput. 26, 2 (1997), 350–368.
https://doi.org/10.1137/S0097539793250767

[47] David Peleg. 2000. Distributed Computing: A Locality-Sensitive Approach. Society for Industrial
and Applied Mathematics. https://doi.org/10.1137/1.9780898719772
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A Deferred Proofs of Section 4

Proof of Theorem 4.3. The algorithm is run for ⌊k/δ⌋−1 phases, and since each phase can clearly
be implemented in O(1) rounds, the time complexity of the algorithm is therefore O(k/δ). The
algorithm terminates after T = ⌊k/δ⌋ − 1 rounds. The number of tokens τ(v) of a node v at the end
of the algorithm is therefore τ(v) = xv(T ) + yv(T ). By Lemma 4.1, we therefore have τ(v) ≤ k. We
can further upper bound τ(u)− τ(v) by

τ(u)− τ(v) ≤ xu(T ) + yu(T )− yv(T ). (10)

By Lemma 4.1, we have

xu(T ) ≤ max {2αu, k − Tδ}

= max

{
2αu, k −

(⌊
k

δ

⌋
− 1

)
· δ
}

≤ max

{
2αu, k −

(
k

δ
− 2

)
· δ
}

= max {2αu, 2δ}
(αu≥δ)

≤ 2αu.

The bound on τ(u)− τ(v) now therefore directly follows together with Eq. (10) and Lemma 4.2.

B Deferred Proofs of Section 5

Proof of Lemma 5.3. Let de be the defect of edge e, i.e., de denotes the total number of neighboring
edges of e that have the same color as e.

Consider some edge e = (u, v) for u ∈ U and v ∈ V . We first assume that e is oriented from u to
v and thus e is red. The total number of neighboring red edges of e is then equal to the number of
edges e′ ̸= e that are oriented out of u plus the number of edges e′′ ̸= e that are oriented into v, i.e.,

de = degG(u)− xu︸ ︷︷ ︸
# edges oriented out of u

−1 + xv︸︷︷︸
# edges oriented into v

−1

≤ degG(u) + ηe + 1 +
ε

2
· degG(e) + β − 2

(3)
= −2λe + λe degG(u) + λe degG(v) + ελe · degG(e) + (2λe − 1)β + β

= (1 + ε) · λe · degG(e) + 2λeβ.

The first inequality follows because if e is red, we have xv −xu ≤ ηe+1+ ε
2 ·degG(e)+β. If e = (u, v)

is oriented from v to u and thus e is blue, we similarly obtain

de = degG(v)− xv︸ ︷︷ ︸
# edges oriented out of v

−1 + xu︸︷︷︸
# edges oriented into u

−1

≤ degG(v)− ηe + 1 +
ε

2
· degG(e) + β − 2

(3)
= 2λe + (1− λe) degG(u) + (1− λe) degG(v)− ελe · degG(e) + ε · degG(e) + (2− 2λe)β − 2

= (1 + ε) · (1− λe) · degG(e) + 2(1− λe)β.

The first inequality follows because if e is blue, we have xu − xv ≤ −ηe + 1 + ε
2 · degG(e) + β.
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Proof of Lemma 5.4. We prove the statement by induction on ϕ. First of all, note that for every
edge e and every ϕ ≥ 1, we have d(e, ϕ) ≤ d(e, ϕ− 1). For every edge e with d(e, ϕ− 1) ≤ (1− ν)ϕ∆̄,
we therefore clearly also have d(e, ϕ) ≤ (1− ν)ϕ∆̄. It therefore suffices to consider edges e for which
d(e, ϕ− 1) > (1− ν)ϕ and edges e that are not already oriented at the beginning of phase ϕ. Note
that this is exactly the set Eϕ as defined in step 1 of the above algorithm. Every edge e = {u, v} ∈ Eϕ

proposes to one of its two nodes. W.l.o.g., assume that e proposes to v. Either v accepts e’s proposal
and in this case, e is oriented after phase ϕ (and thus, we do not need to show that d(e, ϕ) is bounded).
Otherwise, v accepts kϕ =

⌈
ν(1− ν)ϕ−1∆̄

⌉
other proposals. Node v is therefore incident to kϕ edges

that are unoriented at the beginning of phase ϕ and that become oriented in phase ϕ. The number
of unoriented incident edges of v and thus the number of neighboring unoriented edges of e therefore
decreases by at least kϕ in phase ϕ and thus,

d(e, ϕ) ≤ d(e, ϕ− 1)− kϕ ≤ (1− ν)ϕ−1∆̄− kϕ ≤ (1− ν)ϕ−1∆̄− ν(1− ν)ϕ−1∆̄ = (1− ν)ϕ∆̄.

The first inequality follows from the induction hypothesis or for ϕ = 1 from d(e, 0) ≤ ∆̄.

Proof of Theorem 5.6. By Lemma 5.4, after ϕ phases, the maximum edge degree of the subgraph
induced by the unoriented edges is at most (1 − ν)ϕ∆̄. This in particular implies that after ϕ
phases, every node v ∈ V has at most 1 + (1 − ν)ϕ∆̄ incident unoriented edges. After ϕ̂ =
ln(∆̄)/ ln(1/(1− ν))−O(1) = O(log(∆)/ν) phases, each node therefore has at most O(1) incident
unoriented edges. At this point, we can stop the above algorithm and just orient the remaining
unoriented edges arbitrarily. This only affects the number of incoming edges at each node by an
additive constant. Let us consider the state after ϕ̂ phases. Consider some edge e = (u, v) and
assume first that e is oriented from u to v after phase ϕ̂. By Lemma 5.5, we then have

xv(ϕ̂)− xu(ϕ̂) ≤ ηe + ke + ϕ̂ · ξe

≤ ηe + ke +
ln ∆̄

ln
(

1
1−ν

) · (5

2
· ν

ln ∆̄
· ke + 28 · ln

2 ∆̄

ν4

)
≤ ηe +

7

2
·
(

ν

1− ν
· degG(e) + 1

)
+ 28 · ln

3 ∆̄

ν5

≤ ηe + 4ν · degG(e) +
7

2
+ 28 · ln

3 ∆̄

ν5
.

The second inequality follows from (7) and the third inequality follows from (7) and the fact that for
ν ∈ (0, 1], ν ≤ ln

(
1

1−ν

)
. The last inequality follows because ν ≤ 1/8 (cf. Equation (4)). By setting

ε = 8ν, we therefore get xv(ϕ̂)− xu(ϕ̂) ≤ ηe +
ε
2 · degG(e) +C · ln3 ∆̄

ε5
for some constant C > 0. In the

same way, if e is oriented from v to u, we obtain that xu(ϕ̂)− xv(ϕ̂) ≤ −ηe +
ε
2 · degG(e) + C · ln3 ∆̄

ε5

for some constant C > 0.
It remains to bound the round complexity of the algorithm. By Theorem 4.3, the time required

for phase ϕ is

O

(
kϕ
δϕ

)
= O

(
ν(1− ν)ϕ−1∆̄

ν6

ln3 ∆̄
· (1− ν)ϕ−1∆̄

)
= O

(
log3∆

ε5

)
.

The claimed time complexity now follows because the number of phases is O
( log ∆̄

ν

)
= O

( log∆
ε

)
.

C Deferred Proofs of Section 6

Proof of Lemma 6.1. We describe a procedure that, given a graph G of maximum degree ∆ and
maximum edge degree ∆̄, is able to split it into two disjoint subgraphs, each of maximum edge
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degree ∆̄ · (1 +χ)/2+ β, for some parameter χ satisfying c · ε/ log∆ ≤ χ ≤ 1/2 (for some constant c)

that we will fix later, and β = O
( log3 ∆

χ5

)
. Note that the assumption on χ implies that β = O

( log8 ∆
c5ε5

)
.

We will then apply this procedure recursively in both subgraphs for many times, in order to obtain
many subgraphs of small maximum edge degree. We will then color the edges of each subgraph
independently in parallel, and the final color of an edge e in G will be given by its color in the
subgraph G′ containing e, combined with the index of G′.

The procedure works as follows. For each edge e, we fix λe = 1/2 and we apply Corollary 5.7
with parameter χ. We obtain a defective 2-edge coloring of G, satisfying that, for each edge e,
degG′(e) ≤ degG(e) · (1 + χ)/2 + β, where G′ is the graph induced by edges with the same color of
e. Hence, we decomposed our graph G into two edge-disjoint subgraphs G1 and G2, both having
maximum edge degree at most ∆̄ · (1 + χ)/2 + β.

By applying this procedure recursively k times, we get 2k edge-disjoint subgraphs, each of
maximum edge degree

d ≤ ∆̄ ·
(
1 + χ

2

)k

+ β
k−1∑
i=0

(
1 + χ

2

)i

≤ ∆̄ ·
(
1 + χ

2

)k

+
2β

1− χ
≤ ∆̄ ·

(
1 + χ

2

)k

+ 4β.

Each subgraph can then be edge-colored with d+ 1 colors. We can characterize each edge by
a tuple (vec, col), where vec is a vector in {0, 1}k identifying, for each step of the recursion, which
color the edge obtained, and col is the color in {0, . . . , d} obtained in the last step. Note that if two
edges are neighbors in G, they must have different tuples, because either they ended up in different
subgraphs, or they obtained different colors in the last coloring step. Hence, each tuple can be seen
as a color from a palette of size

p = (1 + d) · 2k ≤ ∆̄(1 + χ)k + 2k(1 + 4β) ≤ ∆̄(1 + χ)k + 2k · 5β.

By fixing k = ⌊ln(1 + ε/4)/χ⌋, we obtain

∆̄(1 + χ)k ≤ ∆̄(1 + χ)
ln(1+ε/4)

χ ≤ ∆̄eln(1+ε/4) = ∆̄(1 + ε/4),

and

2k · 5β ≤ (1 + ε/4)
ln 2
χ · 5β ≤ (1 + ε/4)

ln 2
χ · c′ log

8∆

c5ε5

for some constant c′. We now fix χ to be

χ =
log(1 + ε/4) ln 2

log
( ε∆̄/4

c′ log8(∆)/(c5ε5)

) .
Note that, by taking a small enough constant c, we still satisfy χ ≥ c · ε/ log∆ as required. Also,
notice that 1/χ = O(1ε log∆). We obtain

2k · 5β ≤ ε∆̄/4

c′ log8(∆)/(c5ε5)
· c′ log8(∆)/(c5ε5) = ε∆̄/4.

Hence, p ≤ ∆̄(1+ε/2). Since ∆̄ ≤ 2∆−2, we obtain a coloring that uses at most 2∆(1+ε/2) = (2+ε)∆
colors, as required.

The total running time is bounded by the number of recursion steps k, multiplied by the time
required to solve the generalized defective 2-edge coloring problem with parameter χ, plus the time
required to compute the (d+ 1)-coloring in the last step. Note that

2k ≥ 1

2
· (1 + ε/4)

ln 2
χ =

ε∆̄/4

2c′ log8(∆)/(c5ε5)
,
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and hence d is upper bounded by

d ≤ ∆̄(1 + χ)k/2k + 4β ≤ ∆̄(1 + ε/4)

ε∆̄/4
2c′ log8(∆)/(c5ε5) + 4β = O

(
log8∆

ε6
+ β

)
.

In the CONGEST model, we can compute a (d+ 1)-edge coloring in O(d) rounds [10] (note that a
log∗ n dependency is not necessary in our case, since, in [10], it is only spent to compute an initial
O(d2)-edge coloring, which can be done in O(1) rounds if we are given a 2-vertex coloring). Hence,

the last phase costs O
( log8 ∆

ε6
+ β

)
rounds.

Summarizing, each coloring phase costs O
( log4 ∆

χ6

)
rounds, and we perform k = O

(
ε
χ

)
phases.

Since 1/χ = O
(
1
ε log∆

)
, then this part costs O

( log4 ∆
χ6 · ε

χ

)
= O

( log4 ∆
χ7 · ε

)
= O

( log11 ∆
ε6

)
rounds. The

coloring of the last phase costs O
( log8 ∆

ε6
+ β

)
= O

( log8 ∆
ε6

+ log3 ∆
χ5

)
= O

( log8 ∆
ε6

+ log8 ∆
ε5

)
= O

( log8 ∆
ε6

)
rounds. Hence, in total, we spend O

( log11 ∆
ε6

+ log8 ∆
ε6

)
= O

( log11 ∆
ε6

)
rounds, proving the theorem.

Proof of Theorem 6.3. We start by computing an initial O(∆2)-vertex coloring, which can be
done in O(log∗ n) rounds. Let ε1 be a parameter to be fixed later. We apply Lemma 6.2 with
parameter ε1 for 4-coloring the nodes of the graph with colors in {1, 2, 3, 4}. Then, let G1 be the
graph induced by edges {u, v} satisfying that the color of u is either 1 or 2, and the color of v is
either 3 or 4. This graph is clearly bipartite, and nodes know their side of the bipartition. Hence, we
can apply Lemma 6.1 to color the edges of this graph by using at most (2 + ε2)∆ colors, for some
parameter ε2 to be fixed later.

We then consider the graph G2 induced by uncolored edges {u, v} satisfying that the color of u is
either 1 or 3, and the color of v is either 2 or 4. Again, we can apply Lemma 6.1 to color the edges
of this graph by using at most (2 + ε2)∆ colors. We obtain a partial coloring of the edges of G with
(4 + 2ε2)∆ colors, where all bichromatic edges are colored.

We apply the same procedure recursively on the graph induced by uncolored edges, for other k
times (k + 1 times in total, indexed by i ∈ {0, . . . , k}). At the end, we color the remaining uncolored
edges. Note that, by Lemma 6.2, the degree of the graph induced by uncolored edges decreases at
least by a factor (1/2+ ε1) at each step, and hence the maximum degree of the graph before step i is
bounded by di = ∆(1/2 + ε1)

i. The maximum degree induced by uncolored edges after step k is
dk+1, and hence it can be edge colored with 2dk+1 − 1 colors. Hence, the total number of colors used
by the algorithm is

c = 2dk+1 − 1 +

k∑
i=0

(4 + 2ε2)di

< 2∆(1/2 + ε1)
k+1 +∆(4 + 2ε2)

k∑
i=0

(1/2 + ε1)
i

= ∆

(
2(1/2 + ε1)

k+1 +
4 + 2ε2
1/2− ε1

(1− (1/2 + ε1)
k+1)

)
= ∆

(
4 + 2ε2
1/2− ε1

− (
4 + 2ε2
1/2− ε1

− 2)(1/2 + ε1)
k+1

)
≤ ∆

(
4 + 2ε2
1/2− ε1

− 6

2k+1

)
= ∆(8 +O(ε1 + ε2)).
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If we fix k = ⌊log∆⌋ − 1 and ε1 = 1/(2k), then the final graph has maximum degree

dk+1 = ∆(1/2 + ε1)
k+1 ≤ (1 + 1/ log∆)log∆ = O(1),

and thus can be edge colored with the required amount of colors, 2dk+1 − 1, in O(log∗ n) rounds.
The total running time is henceO(Tinitial+k·(Tdefective+Tbipartite)+Tfinal), where Tinitial = O(log∗ n)

is the time required to compute an initial O(∆2)-vertex coloring, k + 1 is the number of recursive

steps, Tdefective = O(1/ε21) is the time required to apply Lemma 6.2, Tbipartite = O
( log11 ∆

ε62

)
is the

time required to apply Lemma 6.1, and Tfinal = O(log∗ n) is the time required to color the resulting
constant degree graph in the last step.

By fixing ε2 = ε, we hence obtain a ∆(8 + O(ε + 1/ log∆)) = ∆(8 + O(ε)) edge coloring in

O
(
log∗ n+ log∆ ·

(
log2∆+ log11 ∆

ε6

)
+ log∗ n

)
= O

( log12 ∆
ε6

+ log∗ n
)
rounds.

Proof of Lemma 6.2. We start by computing a p-defective O((∆/p)2)-vertex coloring, for p = ε∆,
which can be done in O(1) rounds given an O(∆2)-coloring [11]. Then, we apply the procedure
Refine of [11], to obtain an (ε∆+ ⌊∆/2⌋)-defective 4-coloring in O(1/ε2) rounds.

D (2∆ − 1)-Edge Coloring in the LOCAL Model: Formal Details

In this section, we present an algorithm for solving the (2∆− 1)-edge coloring problem in the LOCAL
model. We first prove that, if the degrees of the edges are not too small, then we can use Corollary 5.7
to split our graph G into two edge disjoint subgraphs G1 and G2, such that the slack does not
decrease by much. More precisely, we start by proving the following lemma.

Lemma D.1. Let G = (V,E) be a bipartite 2-colored graph of maximum degree at most ∆. Let
ε > 0 be a parameter. Assume that each edge has a list Le ⊆ {C1, . . . , C2} assigned to it satisfying
|Le| > S · d(e), where d(e) ≥ deg(e), for some slack parameter S ≥ 1. Also, assume d(e) ≥ β/ε,

where β = c log
3 ∆
ε5

for some constant c > 0. Let C1 = {C1, . . . , ⌊(C1 + C2)/2⌋} and C2 = {⌊(C1 +
C2)/2⌋+ 1, . . . , C2}, and let L1

e = Le ∩ C1, L2
e = Le ∩ C2. Then, it is possible to split G into two

edge-disjoint subgraphs G1 and G2, such that, for each edge e ∈ Gi, |Li
e| > S degGi

(e)/(1 + ε)2, in

O
( log4 ∆

ε6

)
rounds.

Proof. Let λe = |L1
e|/|Le|. We apply Corollary 5.7. Let G1 and G2 be the graphs induced by edges

of the first color, and second color, respectively. We obtain that, for each edge e in G1, the degree is

degG1
(e) ≤ (1 + ε) · λe · degG(e) + λeβ

≤ (1 + ε) · λe · d(e) + λe · ε · d(e)
= (1 + 2ε) · λe · d(e)
≤ (1 + ε)2 · λe · d(e)

= (1 + ε)2 · |L
1
e|

|Le|
· d(e)

< (1 + ε)2 · L
1
e

S
.

That is, |L1
e| > degG1

(e) · S/(1 + ε)2, hence, in other words, the new slack is at least S/(1 + ε)2.
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Similarly, for each edge e in G2, the degree is

degG2
(e) ≤ (1 + ε) · (1− λe) · degG(e) + (1− λe)β

≤ (1 + ε) · (1− λe) · d(e) + (1− λe) · ε · d(e)
= (1 + 2ε) · (1− λe) · d(e)
≤ (1 + ε)2 · (1− λe) · d(e)

= (1 + ε)2 · |L
2
e|

|Le|
· d(e)

< (1 + ε)2 · L
2
e

S
.

Hence, also in this case, the new slack is still at least S/(1 + ε)2.

We now prove that, if we have large enough slack, and we are in a bipartite 2-colored graphs,
then we can solve the list-edge coloring problem.

Lemma D.2. The problem P (∆̄, S, C) can be solved in O(log7C · log4∆) rounds, if nodes are
provided with a 2-vertex coloring, and S ≥ e2.

Proof. In the following, we fix β = c log
3 ∆
ε5

to be an upper bound of the parameter β of Corollary 5.7.
Our algorithm works as follows.

1. Let G1 = {G} and CG = {0, . . . , C − 1}. At the beginning, by assumption, all edges have a
palette of colors Le ⊆ CG satisfying |Le| > S deg(e). All edges are active.

2. For i = 1, . . . , k, perform the following, in parallel, in each graph Gi ∈ Gi:

(a) Let di(e) be the number of active neighboring edges of e in Gi. Edges satisfying di(e) < β/ε
become passive. Let degi(e) ≤ d(e) be the number of active neighboring edges of e after
this operation.

(b) Apply Lemma D.1. The two resulting subgraphs are part of Gi+1.

3. Color each graph Gk+1 ∈ Gk+1 in parallel.

4. For i = k, . . . , 1, perform the following, in parallel, in each graph Gi ∈ Gi:

(a) Color the edges of Gi that became passive during phase i.

We now prove the correctness of the algorithm, and a bound on its running time.

All edges are properly colored. Each edge either remains active until the end, and it is colored
in Item 3, or it became passive in some phase i ∈ {1, . . . , k}, and in this case it is colored in Item 4.
Each time we split a graph into two edge-disjoint subgraphs, we also split the color space into two
disjoint subspaces, and hence coloring different subgraphs cannot create conflicts.

Active edges have large slack. We prove by induction that, at the beginning of phase i of
Item 2, the slack of active edges is at least S/(1 + ε)2i−2. The claim trivially holds for i = 1, that
is, at the beginning. Assume that the claim holds in phase i, we prove that the claim holds for
i+ 1. Since all edges satisfying di(e) < β/ε become passive, then all edges that participate in the
application of Lemma D.1 satisfy di(e) ≥ β/ε, as required. Also, note that the graph induced by
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active edges satisfies deg(e) ≤ di(e) for all edges e, as required. Hence, Lemma D.1 guarantees that
the graph Gi is split into two edge-disjoint subgraphs satisfying that, for each edge e, the new slack
of e in its assigned subgraph is at least S′/(1 + ε)2, where S′ = S/(1 + ε)2i−2 is the original slack by
the inductive hypothesis. Hence, the new slack is at least S/(1 + ε)2i.

We can color the edges that at the end are still active. We fix k = ⌊logC⌋ and ε = 1/ logC.
The slack of the edges that at the end are still active, that is, the edges that we color in Item 3, is at
least (

1

1 + ε

)2k

S ≥

(
1

1 + 1
logC

)2 logC

S ≥ S/e2 ≥ 1.

Hence, each edge satisfies that its list is strictly larger than its degree.

We can color passive edges. We now show that, in phase i of Item 4, in each Gi, it holds that
passive edges e have slack ≥ 1, even if the colors used by edges that became passive in larger phases
are removed from Le. In fact, let e be an edge that became passive exactly during phase i. Its slack
was at least S/(1 + ε)2i−2 ≥ S/(1 + ε)2k ≥ 1. Each neighboring edge of e in Gi that got colored
either in Item 3 or in Item 4 in some phase j > i, removes at most one color from the list of available
colors of e, but also decreases by 1 the degree of e in the graph induced by passive edge of Gi, and
hence the slack is still at least 1.

The final graphs have constant maximum degree. Consider an arbitrary graph Gk+1 ∈ Gk+1.
Since the slack is ≥ 1, the maximum degree is upper bounded by the maximum list size of each edge,
which in turn is upper bounded by the largest color space. At each step, by Lemma D.1, if we start
with a color space of size p, we obtain a new color space of size at most ⌈p/2⌉. Let C ′ be the smallest
power of 2 that is larger than C. Then,

degGk+1(e) ≤
C ′

2k
≤ 2C

2k
≤ 4.

Hence, the obtained maximum degree is constant, and since the slack is at least 1, that is, each edge
satisfies |Le| > deg(e), and since the graph is 2-vertex colored, then we can assign to each edge of Gi

a color from its list in constant time, such that neighboring edges have different colors.

The graphs induced by passive edges have small maximum degree. If in Item 2 an edge
becomes passive, then its degree in Gi is strictly less than β/ε, and hence also the maximum degree
in the graph induced by passive edges of Gi is bounded by β/ε. Hence, in Item 4, we color, in parallel,
graphs of maximum degree at most β/ε, and this can be done in O(β/ε).

A bound on the running time. We now provide an upper bound on the running time of our

algorithm. In Item 2 we perform k = O(logC) phases, and each phase costs O
( log4 ∆

ε6

)
rounds, for

ε = 1/ logC. Then, in Item 3, we color graphs of constant maximum degree, which costs O(1) rounds.
Finally, in Item 4, we perform k = O(logC) phases, and each phase costs O(β/ε) rounds. In total,

we spend O
(
logC · log4 ∆

ε6
+ logC · β

ε

)
= O log7C · log4∆) rounds.

We also make use of the following lemma, that has been already used in previous works related to
edge coloring. Essentially, this lemma allows us to increase the slack, from 1 to an arbitrary constant.
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Lemma D.3 (Lemma 4.2 of [5], rephrased). For any S > 1, and any k, given an instance of
P (∆̄, 1, C), it is possible to spend O(S2 log k) · T (∆̄, S, C) + O(log k log∗X) rounds, and partially
solve it such that the graph induced by uncolored edges has edge degree at most ∆̄/k, if an initial
edge coloring with X colors is given.

We are now ready to prove our main result. Theorem 1.1 directly follows from the following
theorem.

Theorem D.4. The (deg(e)+1)-list edge coloring problem can be solved in O(log7C · log5∆+log∗ n)
deterministic rounds in the LOCAL model, where C is the size of the color space.

Proof. At the beginning, given a graph G, we spend O(log∗ n) rounds to compute an O(∆2)-vertex
coloring. Then, we recursively do the following.

We compute a ∆
2 -defective vertex c-coloring, where c = O(1), which can be done in O(1)

rounds given an O(∆2) coloring [11]. Let GB be the graph induced by bichromatic edges of G,
and GM the graph induced by monochromatic edges of G. We partially color the edges of GB,
as follows. We go through each possible pair of colors (a, b), we consider the bipartite 2-colored
graph Ga,b induced by the uncolored edges that are incident to nodes of different colors, one
of color a and the other of color b, and we apply Lemma D.3 combined with Lemma D.2 with
parameters S = e2, C = ∆̄ + 1, k = 16c, and for each edge we define its list of available colors as
Le \ {c′e | e′ ∈ EG ∧ e ∩ e′ ̸= ∅ ∧ e′ is colored with color c′e}. We obtain that the graph induced by
uncolored edges of Ga,b has edge degree at most (2∆− 2)/k ≤ ∆/(8c), and hence also the maximum
vertex degree is bounded by ∆/(8c) + 1 ≤ ∆/(4c).

Consider now an arbitrary node of color ĉ of GB. It is part of at most c graphs Gĉ,·, and in
each of them the graph induded by uncolored edges has maximum degree ∆/(4c). Hence, the graph
induced by uncolored edges of GB has degree at most ∆/4.

Hence, we obtain that some edges remain uncolored because they are part of GM, which has
degree at most ∆/2, and some edges remain uncolored because the coloring in GB is partial, and
there the maximum degree in the graph induced by uncolored edges is at most ∆/4. Hence, in G,
the graph induced by uncolored edges has maximum degree at most 3∆/4. Note that we preserve
the invariant that the slack is at least 1, since for every edge it holds that, if a neighbor gets colored,
then its degree decreases by 1, and the size of the list of available colors decreases by at most 1.

After O(log∆) steps of recursion, the obtained graph has constant maximum degree, and hence
we can solve the remaining instance in O(log∗ n) rounds.

Since k = O(1), by Lemma D.3 and Lemma D.2, each step costs O(log7C · log4∆) rounds, and
hence we spend O(log7C · log5∆+ log∗ n) time in total.
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