
The Landscape of Distributed Complexities on Trees and Beyond

CHRISTOPH GRUNAU∗, ETH Zurich, Switzerland

VÁCLAV ROZHOŇ, ETH Zurich, Switzerland

SEBASTIAN BRANDT, CISPA Helmholtz Center for Information Security, Germany

We study the local complexity landscape of locally checkable labeling (LCL) problems on constant-degree graphs with a focus on

complexities below log
∗ 𝑛. Our contribution is threefold:

(1) Our main contribution is that we complete the classification of the complexity landscape of LCL problems on trees in the

LOCAL model, by proving that every LCL problem with local complexity 𝑜 (log∗ 𝑛) has actually complexity𝑂 (1) . This result
improves upon the previous speedup result from 𝑜 (log log∗ 𝑛) to𝑂 (1) by [Chang, Pettie, FOCS 2017].

(2) In the related LCA andVOLUMEmodels [Alon, Rubinfeld, Vardi, Xie, SODA 2012, Rubinfeld, Tamir, Vardi, Xie, 2011, Rosenbaum,

Suomela, PODC 2020], we prove the same speedup from 𝑜 (log∗ 𝑛) to𝑂 (1) for all bounded degree graphs.

(3) Similarly, we complete the classification of the LOCAL complexity landscape of oriented 𝑑-dimensional grids by proving that

any LCL problem with local complexity 𝑜 (log∗ 𝑛) has actually complexity𝑂 (1) . This improves upon the previous speed-up

from 𝑜 (𝑑
√
log

∗ 𝑛) by Suomela in [Chang, Pettie, FOCS 2017].

Additional Key Words and Phrases: Graph problems, LCL problems, local complexity, volume model

1 INTRODUCTION

One fundamental aspect in the theory of distributed computing is locality: for a given graph problem, how far does

each individual node have to see in order to find its own part of a globally correct solution? The notion of locality is

captured by the local complexity of the LOCALmodel of distributed computing [36]. In recent years, our understanding

of locality has improved dramatically by studying it from a complexity theoretical perspective [7, 17, 19, 21, 41], where

the goal is to characterize the possible local complexities of all problems from a certain problem class. Most of the

past research in this direction has focused on the study of so-called Locally Checkable Labeling problems (LCLs) [41].

Informally speaking, LCLs are graph problems that can be verified locally. That is, if a given output looks correct in the

local neighborhood of each node, then the output is guaranteed to be a globally correct solution. Prominent examples

of LCLs are Maximal Independent Set, Maximal Matching and all kinds of coloring problems. LCLs are only defined for

constant degree graphs.

Interestingly, the study of local complexity has also been shown to be quite relevant for other subfields of computer

science such as local computation algorithms or massively parallel computation [28, 44], and is finding its applications

in subareas of discrete mathematics as well [12, 15, 34].

Below log
∗ 𝑛. A classical result of Linial [36] shows that the deterministic LOCAL complexity of 𝑂 (Δ2)-coloring

a graph with maximum degree Δ is Θ(log∗ 𝑛).1 In particular, this result directly implies that many basic symmetry

breaking problems like (Δ+ 1)-coloring have a deterministic LOCAL complexity of Θ(log∗ 𝑛) on constant degree graphs.

In contrast, there are many basic problems with complexity 𝑂 (1). An example is to “find the maximum degree of a

node in your 2-hop neighborhood”. The common theme for all our contributions is to understand what happens in

∗
The author ordering was randomized using https://www.aeaweb.org/journals/policies/random-author-order/generator. It is requested that citations of

this work list the authors separated by \textcircled{r} instead of commas: Grunau r○ Rozhoň r○ Brandt.

1
The function log

∗ (𝑛) is defined as the number of times one needs to repeatedly apply the log function to 𝑛 until the result becomes at most 1.

1

https://www.aeaweb.org/journals/policies/random-author-order/generator

Christoph Grunau, Václav Rozhoň, and Sebastian Brandt

between the two worlds. By a result of Chang and Pettie [21], whose proof was inspired by ideas introduced by Naor

and Stockmeyer [41], we know that all LCLs with local complexity 𝑜 (log log∗ 𝑛) have, in fact, complexity 𝑂 (1).
Complementing this result, in [10], the authors provided examples of LCLs with complexities between Θ(log log∗ 𝑛)

and Θ(log∗ 𝑛). Roughly speaking, examples of those problems are the following: one is asked to solve a basic Θ(log∗ 𝑛)-
complexity problem on a path. The input graph, however, is not just a path. It is a path 𝑃 plus a shortcutting structure

on top of it that ensures that the 𝑡-hop neighborhood of each node 𝑢 ∈ 𝑃 in the full input graph𝐺 actually contains

the 𝑓 (𝑡)-hop neighborhood of 𝑢 in the subgraph 𝑃 for some function 𝑓 . This results in a problem with complexity

equal to Θ(𝑓 −1 (log∗ 𝑛)). The growth rate of the function 𝑓 can range from linear (if no shortcutting is involved) up to

exponential, since the neighborhood at distance 𝑡 in the full graph 𝐺 can contain up to roughly Δ𝑡 nodes. Hence we

obtain complexities from the range Θ(log log∗ 𝑛) −Θ(log∗ 𝑛). It should be noted that such constructed problems have a

special structure. In fact, one can observe the following two points:

(1) To construct such a problem, the input graph needs to contain shortcuts and, hence, cycles. In Theorem 1.1 we

prove that if the input graph is a tree, there cannot be any such problems. This completes the classification of

LCLs on trees.

(2) Although the necessary radius that a node 𝑢 needs to check to solve the constructed problem can be only

𝑂 (log log∗ 𝑛), the number of nodes that 𝑢 needs to look at to solve the problem is still 𝑂 (log∗ 𝑛). In Theorem 1.3

we prove that in the VOLUME complexity model, where the main measure is the number of nodes 𝑢 needs to

probe, not the radius, there are in fact no complexities between 𝜔 (1) and 𝑜 (log∗ 𝑛).

1.1 Main Contribution: Finishing the Classification of LCLs on Trees

In this section we present a prominent achievement of the theory of LCLs: by a long line of work [8, 10, 13, 19, 21, 23, 25–

27, 29, 36, 40, 41, 43], we now know that there are only four types of LCL problems, as described in Figure 1, bottom

left:

(A) Problems that can be solved in 𝑂 (1) rounds.
(B) Problems with complexity (both randomized and deterministic) in the range Θ(log log∗ 𝑛) − Θ(log∗ 𝑛); these

include basic symmetry breaking problems like (Δ + 1)-coloring and maximal independent set.

(C) Problems with randomized complexity poly log log𝑛 and deterministic complexity poly log𝑛; these problems

can be solved by reformulating them as an instance of the Lovász local lemma (LLL).

(D) Global problems with complexity Ω(log𝑛); their randomized and deterministic complexity is the same up to a

polylogarithmic factor.

One particular focus in the long line of work on complexities of LCLs has been on understanding the complexity

landscape on trees—not only because trees are a natural subclass of general graphs, but also because they turned out

to be important for the development of understanding the complexities on general graphs; in particular many lower

bounds for LCLs are proven on trees, e.g., via the round elimination technique [14]. As a result the complexity landscape

on trees is quite well understood: previous to our work, each LCL on trees was known to have one of the following

complexities (unless stated otherwise, the deterministic and randomized complexities are the same):

(1) 𝑂 (1),
(2) in the range Θ(log log∗ 𝑛) − Θ(log∗ 𝑛),
(3) deterministic complexity Θ(log𝑛) and randomized complexity Θ(log log𝑛),
(4) complexity Θ(log𝑛),

2

The Landscape of Distributed Complexities on Trees and Beyond

(5) complexity Θ(𝑛1/𝑘) for some positive integer 𝑘 .

This follows from a long line of work [8, 13, 18–21, 41]. The only missing piece was to determine for which

complexities in the range Θ(log log∗ 𝑛) − Θ(log∗ 𝑛) there actually exists an LCL with that complexity. We complete the

complexity landscape of LCLs on trees by showing that any LCL with a complexity in this range has actually complexity

Θ(log∗ 𝑛). That is, we prove that any LCL on trees with complexity 𝑜 (log∗ 𝑛) has complexity 𝑂 (1).

Theorem 1.1 (Informal version of Theorem 3.11). Let Δ be any fixed positive integer. Any LCL on trees (with

maximum degree at most Δ) with LOCAL complexity 𝑜 (log∗ 𝑛) has, in fact, LOCAL complexity 𝑂 (1).

Put together with the aforementioned work on the classification of LCLs on trees, we get the following corollary (see

Figure 1, top left, for an illustration).

Corollary 1.2 (Classification of LCLs on trees, see Figure 1). Let Π be an LCL on trees. Then the deterministic/randomized

LOCAL complexity of Π is one of the following:

(1) 𝑂 (1),
(2) Θ(log∗ 𝑛),
(3) Θ(log𝑛) deterministic and Θ(log log𝑛) randomized,

(4) Θ(log𝑛),
(5) Θ(𝑛1/𝑘) for 𝑘 ∈ N.

Moreover, all mentioned complexity classes are non-empty, i.e., for each class (and each 𝑘), there exists some LCL with the

indicated complexity.

An intriguing implication of our work is that the complexity landscape of LCLs on trees is discrete, while the

landscape of LCLs on general (bounded-degree) graphs contains “dense” regions (in classes (B) and (D) [8, 10]). It would

be interesting to see to what extent this is a more general phenomenon beyond LCLs on bounded-degree graphs.

Our method, in a nutshell. Our approach is based on the round elimination technique [14], a highly successful

technique for proving local lower bounds. In essence, round elimination is an explicit process that takes an LCL Π on

trees as input and returns an LCL Π′
with complexity exactly one round less. More precisely:

(1) If there is a 𝑇 -round randomized algorithm A for Π, then there is also a (𝑇 − 1)-round randomized algorithm

A ′
for Π′

such that the (local) failure probability of A ′
is bounded by a reasonable function of the (local) failure

probability of A.

(2) If we have a (𝑇 −1)-round algorithmA ′
for Π′

, we can use it to construct a𝑇 -round algorithmA for the original

problem Π; if A ′
is deterministic, then A is deterministic as well.

So far, in the literature, the standard use case for applying round elimination has been to prove lower bounds for some

concrete, fixed problem such as maximal matching or Lovász local lemma [4, 6, 13, 14]. We provide a novel application

of round elimination by showing that, perhaps surprisingly, it can also be used to prove gap results, which are results

that reason about all LCLs on a given graph class. More precisely, we show that with the tool of round elimination at

hand, there is an elegant way to prove Theorem 1.1, which roughly proceeds as follows.

We start with any problem Π for which there exists a randomized algorithm A that solves Π in 𝑇 (𝑛) = 𝑜 (log∗ 𝑛)
rounds, with probability 1 − 1/poly(𝑛). We fix some sufficiently large number 𝑛0 of nodes, and apply bullet point (1)

𝑇 = 𝑇 (𝑛0) times to get a 0-round algorithm A (𝑇)
for a certain problem Π (𝑇)

. By analyzing the development of the

3

Christoph Grunau, Václav Rozhoň, and Sebastian Brandt

1 log log∗ n log∗ n log log n log n n

1

log log∗ n

log∗ n

log log n

log n

n

deterministic

randomized

n1/k

this work

LOCAL, trees

1 d
√
log∗ n log∗ n d

√
n

1

log∗ n

deterministic

randomized

LOCAL, oriented grids

d
√
log∗ n

d
√
n

this work

1 log log∗ n log∗ n log log n log n n

1

log log∗ n

log∗ n

log log n

log n

n

?

deterministic

randomized

LOCAL, general graphs

1 log log∗ n log∗ n log log n log n n

1

log log∗ n

log∗ n

log log n

log n

n

deterministic

randomized

n1/k

this work

log n/ log log n

VOLUME, general graphs

Fig. 1. The LCL landscape of local complexities on trees (top left), oriented grids (top right), general bounded degree graphs (bottom
left) and the landscape of the volume model (bottom right). Blue circles correspond to possible deterministic and randomized local
complexities, while the red color means that no problems with the given complexity are possible in the area. The arrows point to
our contribution: completion of the classification of LCLs on trees and oriented grids by showing that there are no problems with
complexities between Θ(log∗ 𝑛) and𝑂 (1) . We now also understand the landscape of the VOLUME/ LCA model in the regime of low
complexities. See [46] for a friendly introduction to the topic of LCL landscapes.

4

The Landscape of Distributed Complexities on Trees and Beyond

(local) failure probabilites of the algorithms appearing during the 𝑇 applications of (1), we can show that algorithm

A (𝑇)
still has a large probability of success, and the fact that A (𝑇)

is a 0-round algorithm enables us to infer that Π (𝑇)

is in fact so easy that it can be solved with a deterministic 0-round algorithm. Finally, we apply bullet point (2) 𝑇 times

to obtain a deterministic 𝑇 -round algorithm for the original problem Π. Due to fixing the number of nodes to 𝑛0, the

obtained𝑇 -round algorithm is only guaranteed to produce a correct output on 𝑛0-node trees; however, due to the nature

of 0-round algorithms and the precise definition of the round elimination process (which are both independent of the

number of nodes of the input graph), the obtained algorithm can be shown to also work on trees with an arbitrary

number of nodes, with precisely the same, constant runtime 𝑇 (𝑛0) = 𝑂 (1).
Unfortunately, the known approach for analyzing the change of (local) failure probability in bullet point (1) considers

only the restricted setting of regular graphs and LCLs without inputs
2
(which usually suffices when proving a lower

bound for a concrete LCL). One of our technical contributions is to develop an extension that also works in the general

setting of irregular graphs and LCLs with inputs, which might be of independent interest.

Further related work. Previous to our work, the gap result of Theorem 1.1 was known for a subclass of LCLs, called

homogeneous LCLs [11]. Roughly speaking, problems in this class require the output of a node 𝑢 to be correct only if

the part of the tree around 𝑢 is a perfect Δ-regular tree without any inputs. In contrast, our argument works in full

generality, i.e., the degrees of nodes can differ and there can be inputs in the graph. Also, we believe that our argument

is substantially simpler conceptually.

A recent work [7] gave a complete classification of possible complexities of LCLs on rooted regular trees, showing

that each LCL on such trees has a complexity of 𝑂 (1), Θ(log∗ 𝑛), Θ(log𝑛), or Θ(𝑛1/𝑘) for some positive integer 𝑘

(and all of these complexity classes are nonempty). Moreover, the complexity of each LCL is independent of whether

randomization is allowed and whether the LOCAL or the CONGEST model
3
is considered. We note that their approach

relies heavily on the provided orientation and, to the best of our knowledge, does not generalize to unrooted trees. We

will discuss the decidability results from this work in Section 1.4.

An even more recent work [9] showed that the asymptotic complexity of any LCL problem on trees is the same in

the LOCAL and the CONGEST model. This implies that the complexity landscape of LCLs on trees in CONGEST is

precisely the same as in LOCAL, and in particular extends our gap between 𝜔 (1) and 𝑜 (log∗ 𝑛) to the CONGESTmodel.

The authors also show that their result does not extend to general graphs by explicitly providing an LCL with different

complexities in LOCAL and CONGEST.

1.2 Speedup in the VOLUMEModel

Recently, Rosenbaum and Suomela[42] initiated the study of the complexity landscape of locally checkable problems

in the VOLUME model on general constant degree graphs, as was done before in the LOCAL model. In the VOLUME

model, a node 𝑣 can adaptively probe its local neighborhood in order to determine its local output. In comparison to the

LOCAL model, 𝑣 does not learn its entire local neighborhood. Instead, it can only explore parts of it before computing

its output. The VOLUME model is very similar (and, in the complexity regime we consider, identical, due to the work of

[30]) to the well-studied LCA model [1, 44]. The basic landscape of LCLs in the VOLUME model following from [16, 42]

is summarized in the bottom right part of Figure 1. Note that while their work focuses on giving examples of problems

2
We say that an LCL is an LCL without inputs if the correctness of a solution does not depend on input labels in the graph (such as lists in a list coloring

problem). In the general setting, an LCL allows the correctness to depend on input labels (though we might emphasize this by using the term LCL with
inputs).
3
The CONGEST model differs from the LOCAL model in that it only allows messages of size𝑂 (log𝑛) bits.

5

Christoph Grunau, Václav Rozhoň, and Sebastian Brandt

of high complexities, such as Θ(𝑛1/𝑘) for 𝑘 ∈ N, we settle how the landscape looks for the class of symmetry breaking

problems.

Theorem 1.3 (Informal version of Theorem 4.1). If the deterministic or randomized VOLUME complexity of an

LCL is 𝑜 (log∗ 𝑛), it is, in fact, 𝑂 (1).

We note that together with a result of [16], Theorem 1.3 implies that the only deterministic VOLUME complexities

for LCLs when identifiers can be from an exponential range are Θ(1),Θ(log∗ 𝑛) and Θ(𝑛). We find it interesting that

the VOLUME complexity landscape is in this regard substantially cleaner than the LOCAL complexity landscape that

contains complexities between Θ(log log∗ 𝑛) and Θ(log∗ 𝑛), while one would, a priori, assume that the usage of a

finer measure in the VOLUME model will lead to a subtler and more complicated landscape. The reason is simple and

sketched next.

Our method in a nutshell. We adapt the Ramsey-theoretical argument of [41], which was improved by [21], to the

VOLUME model. We observe that the heart of their argument is essentially a VOLUME model argument that shows

that algorithms with 𝑜 (log∗ 𝑛) VOLUME complexity can be made order-invariant and, hence, they can be sped up to

complexity 𝑂 (1). The VOLUME nature of the argument is exactly the reason why the original argument applied to the

LOCAL model gives only an 𝑜 (log log∗ 𝑛) speedup in general graphs and an 𝑜 (
√
log

∗ 𝑛) speedup in two-dimensional

grids as this is the local complexity that implies 𝑜 (log∗ 𝑛) volume. The main conceptual difference between our proof

and the original approach [21, 41] is that VOLUME model algorithms can perform adaptive probes unlike LOCAL

algorithms.

1.3 Speedup in Oriented Grids

Our third result completes the LOCAL complexity landscape for LCLs on oriented grids by proving that there are no

local complexities between 𝜔 (1) and 𝑜 (log∗ 𝑛).
In an oriented grid, all the edges are oriented in a consistent matter. Moreoever, each edge is labeled with a value from

[𝑑], indicating the dimension the edge corresponds to. Oriented grids may appear as a quite specific setting to consider

from the perspective of distributed computing. However, in related fields where ideas from local algorithms can be

applied, such as the study of factors of iid solutions[32–34, 45] or constructions in descriptive combinatorics including

the famous circle squaring problem [24, 31, 35, 38, 39], oriented grids are often the graph class under consideration.

Theorem 1.4. [Informal version of Theorem 5.1] Let 𝑑 be a fixed positive constant. Any LCL on a 𝑑-dimensional oriented

grid with local complexity 𝑜 (log∗ 𝑛) has, in fact, local complexity 𝑂 (1).

The above theorem together with the work of [17, 19, 21] implies the following characterization of possible local

complexities on oriented grids.

Corollary 1.5. Let 𝑑 be a fixed positive constant. Then the deterministic/randomized complexity of an LCL problem on a

𝑑-dimensional oriented grid is one of the following:

(1) 𝑂 (1),
(2) Θ(log∗ 𝑛),
(3) Θ(𝑑

√
𝑛).

Sometimes one considers the case of unoriented grids, that is, just the underlying graph of an oriented grid, without

any additional labeling (in the study of randomized processes and descriptive combinatorics, the grid is usually oriented).

6

The Landscape of Distributed Complexities on Trees and Beyond

Our result unfortunately does not generalize to this case, as those graphs do not locally induce an implicit order on

vertices. We conjecture, however, that the local complexity landscape remains the same.

Conjecture 1.6. On unoriented grids, all LCL problems with complexity 𝑜 (log∗ 𝑛) have local complexity 𝑂 (1).

1.4 Decidability

While understanding the complexity landscapes of LCL problems in different models and on different graph classes is

certainly interesting in its own right, it also constitutes the first step towards a more ambitious goal—that of deciding for

a given LCL problem how fast it can be solved, i.e., into which complexity class it falls. Unfortunately, it is known that

this is not possible on general graphs: a result by Naor and Stockmeyer [41] states that it is undecidable whether a given

LCL can be solved in constant time. More specifically, the work of Naor and Stockmeyer implies that, on 𝑑-dimensional

oriented grids, it is undecidable whether a given LCL has complexity 𝑂 (1) or Θ(𝑑
√
𝑛). For the case of toroidal oriented

grids, i.e., grids that wrap around (in the natural sense), it is undecidable whether a given LCL has complexity𝑂 (log∗ 𝑛)
or is a global problem [17].

However, if we restrict attention to trees, no undecidability results are known, i.e., it is entirely possible that one

day a procedure is developed that takes as input an arbitrary LCL and returns its complexity on trees. While it turned

out that decidability questions for LCLs are quite complex already in very simple settings, considerable effort has

gone into making progress towards this exciting goal. On the positive side, it is known that in paths and cycles the

only LOCAL complexities are 𝑂 (1), Θ(log∗ 𝑛), and Θ(𝑛), and it can be decided in polynomial time into which class a

given LCL problem falls, provided that the LCL does not have inputs [17, 21, 22, 41]. When considering general LCLs

(i.e., LCLs with inputs) on paths and cycles, it remains decidable which asymptotic complexity a given LCL has, but

the question becomes PSPACE-hard [2]. The PSPACE-hardness result extends to the case of LCLs without inputs on

bounded-degree trees, which was subsequently improved by Chang [20] who showed that in this setting the question

becomes EXPTIME-hard.

Nevertheless, there are also good news regarding decidability on trees beyond cycles and paths. For instance, the

asymptotic complexity of problems from a natural subclass of LCLs, called binary labeling problems can be decided

efficiently [3]. Moreover, in their work providing the complexity classification of LCLs on regular rooted trees [7],

the authors showed that it is decidable into which of the four complexity classes 𝑂 (1), 𝑂 (log∗ 𝑛), Θ(log𝑛), and 𝑛Θ(1)

a given LCL without inputs falls. The decidability is achieved by defining so-called “certificates” for 𝑂 (log𝑛)-round,
𝑂 (log∗ 𝑛)-round, and constant-round solvability—for each 𝑇 from {𝑂 (log𝑛),𝑂 (log∗ 𝑛),𝑂 (1)}, an LCL problem is 𝑇 -

round solvable if and only if there exists a certificate for𝑇 -round solvability for the given LCL problem, and the existence

of such a certificate is decidable. Unfortunately, the definitions of these certificates rely heavily on the fact that the input

tree is rooted (in particular on the availability of a canonical direction in the tree, which is given by the parent-child

relation); it is entirely unclear how such an approach could be extended to unrooted trees.

On unrooted trees, Chang and Pettie [21] showed that it is decidable whether a given LCL can be solved in logarithmic

time or requires polynomial time, and Chang [20] showed that in the latter case (i.e., if the given LCL has complexity

Θ(𝑛1/𝑘) for some positive integer 𝑘) the exact exponent is decidable. However, decidability on (unrooted) trees below

Θ(log𝑛) is wide open; in fact, even the following simple question is a major open problem in the complexity theory of

LCLs.

Question 1.7. Is it decidable whether a given LCL can be solved in constant time on (bounded-degree) trees?

7

Christoph Grunau, Václav Rozhoň, and Sebastian Brandt

Note that constant-time-solvability of LCLs on trees is semidecidable as for each constant 𝑐 and fixed LCL Π, there are

only constantly many different candidate 𝑐-round LOCAL algorithms for solving Π—the difficult direction is to prove

(or disprove) semidecidability for the impossibility of constant-time-solvability. While our proof of Theorem 1.1 does

not settle Question 1.7, it may be a first step towards a resolution as it reduces the problem to proving (or disproving)

semidecidability of an Ω(log∗ 𝑛)-round lower bound for the given LCL. Note that this avoids consideration of all the

“messy” complexities shown to exist between Θ(log log∗ 𝑛) and Θ(log∗ 𝑛) in general (bounded-degree) graphs (such as

2
Θ(log𝛼 log

∗ 𝑛)
for any positive rational number 𝛼 ≤ 1) [10].

1.5 Organization of the Paper

In Section 2 we formally define the settings that we work with, and prove basic technical results. In Section 3 we prove

the speedup theorem for trees in the LOCAL model, i.e., Theorem 1.1. In Section 4 we prove the speedup theorem in the

VOLUME model, i.e., Theorem 1.3. In Section 5 we prove the speedup theorem for oriented grids in the LOCAL model,

i.e., Theorem 1.4.

2 PRELIMINARIES

We use classical graph-theoretical notation, e.g. we write 𝐺 = (𝑉 , 𝐸) for an unoriented graph. A half-edge is a pair

ℎ = (𝑣, 𝑒), where 𝑣 ∈ 𝑉 , and 𝑒 ∈ 𝐸 is an edge incident to 𝑣 . We denote the set of half-edges of 𝐺 by 𝐻 = 𝐻 (𝐺), i.e.,
𝐻 = {(𝑣, 𝑒) | 𝑣 ∈ 𝑒, 𝑣 ∈ 𝑉 , 𝑒 ∈ 𝐸}. Furthermore, for every vertex 𝑣 ′, we denote the set of half-edges (𝑣, 𝑒) ∈ 𝐻 where

𝑣 = 𝑣 ′ by 𝐻 [𝑣 ′], and for every edge 𝑒 ′, we denote the set of half-edges (𝑣, 𝑒) ∈ 𝐻 where 𝑒 = 𝑒 ′ by 𝐻 [𝑒 ′]. Often we

assume that 𝐺 additionally carries a labeling of vertices or half-edges. We use 𝐵𝐺 (𝑢, 𝑟) to denote the ball of radius 𝑟
around a node 𝑢 in 𝐺 and we call it the 𝑟 -hop neighborhood of 𝑢. When talking about half-edges in 𝐵𝐺 (𝑢, 𝑟), we mean

all half-edges (𝑣, 𝑒) such that 𝑣 ∈ 𝐵𝐺 (𝑢, 𝑟). For example, 𝐵𝐺 (𝑢, 0) contains all half-edges incident to 𝑢.
The reader should keep in mind that our setting is graphs of maximum degree bounded by some constant Δ. This is

sometimes explicitly stated (or it is implied by the constraints) but most of the time it is tacitly assumed. Of special

interest to us will be the class of all trees with maximum degree at most Δ, which we denote by T . Similarly, we denote

the class of all forests with maximum degree at most Δ by F . Moreover, for any positive integer 𝑛, any set 𝑁 of positive

integers, and any G ∈ {F ,T }, we will use G𝑛 , resp. G𝑁 , to denote the class of members of G with 𝑛 nodes, resp. with a

number of nodes that is contained in 𝑁 .

2.1 LOCALModel and LCL Problems

In this section, we define our main model of computation and discuss the problem class considered in this work. Our

main model of computation is the LOCALmodel [37]. Although it is often convenient to think about LOCAL algorithms

as message-passing procedures, it will be simpler to work with the following equivalent definition.

Definition 2.1 (LOCAL model). The input to a problem in the LOCAL model is an 𝑛-node graph 𝐺 , for some positive

integer 𝑛. Each node of the graph is considered as a computational entity and equipped with a globally unique identifier,

i.e., positive integer from a polynomial range (in the case of deterministic algorithms), or with a private random bit

string (in the case of randomized algorithms). Additionally, depending on the problem considered, other inputs might

be stored at the nodes or half-edges. In a 𝑇 -round algorithm each node 𝑣 is aware of the number 𝑛 of nodes of the input

8

The Landscape of Distributed Complexities on Trees and Beyond

graph
4
and of its 𝑇 -hop neighborhood, i.e., of all nodes in distance at most 𝑇 from 𝑣 , all edges that have at least one

endpoint in distance at most 𝑇 − 1 from 𝑣 , and all half-edges whose endpoint is in distance at most 𝑇 from 𝑣 (as well as

all inputs stored therein). Based on this information, 𝑣 has to decide on its output whose specification is given by the

considered problem. In other words, a 𝑇 -round algorithm is simply a function (parameterized by 𝑛) from the the space

of all possible (labeled) 𝑇 -hop neighborhoods of a node to the space of outputs. Which neighborhoods are “possible” is

determined by the considered problem and the considered graph class.

For technical reasons, we will also assume that each graph comes with a port numbering, i.e., each node 𝑣 has deg(𝑣)
ports 1, . . . , deg(𝑣), and each edge incident to 𝑣 is connected to 𝑣 via a unique one of those ports. In other words, the

ports at a node provide a total order on the set of incident edges. It is straightforward to verify that the addition of a

port numbering does not change the computational power of the model (asymptotically) as each node can infer a total

order on the set of incident edges from the unique identifiers of its neighbors (in the deterministic case) or from the

random bits of its neighbors, with arbitrarily large success probability (in the randomized case).

The class of problems considered in this work are LCL problems (or LCLs, for short), which were introduced by

Naor and Stockmeyer [41]. In their seminal paper, Naor and Stockmeyer provided a definition for LCL problems where

input and output labels were assigned to nodes, and remarked that a similar definition can be given for edge-labeling

problems. A modern definition that captures both kinds of LCL problems (and their combinations) assigns labels to

half-edges (instead of vertices or edges). Before we can provide this definition, we need to define some required notions.

A half-edge labeling of a graph𝐺 (with labels from a set Σ) is a function 𝑓 : 𝐻 (𝐺) → Σ. A Σin-Σout-labeled graph is a

triple (𝐺, 𝑓in, 𝑓out) consisting of a graph 𝐺 and two half-edge labelings 𝑓in : 𝐻 (𝐺) → Σin and 𝑓out : 𝐻 (𝐺) → Σout of 𝐺 .

We analogously define a Σin-labeled graph by omitting 𝑓out.

We can now define an LCL problem as follows.

Definition 2.2 (LCL problem). An LCL problem Π is a quadruple (Σin, Σout, 𝑟 ,P) where Σin and Σout are finite sets, 𝑟

is a positive integer, and P is a finite collection of Σin-Σout-labeled graphs. A correct solution for an LCL problem Π

on a Σin-labeled graph (𝐺, 𝑓in) is given by a half-edge labeling 𝑓out : 𝐻 (𝐺) → Σout such that, for every node 𝑣 ∈ 𝑉 (𝐺),
the triple (𝐵𝐺 (𝑣, 𝑟), 𝑓 ′

in
, 𝑓 ′
out

) is isomorphic to a member of P, where 𝑓 ′
in

and 𝑓 ′
out

are the restriction of 𝑓in and 𝑓out,

respectively, to 𝐵𝐺 (𝑣, 𝑟).

Intuitively, the collection P provides the constraints of the problem by specifying how a correct output looks locally,

depending on the respective local input. From the definition of a correct solution for an LCL problem it follows that

members of P that have radius > 𝑟 can be ignored. Also the finiteness of P automatically implies that we are restricting

ourselves to graphs of degree at most Δ for some constant Δ.

The main tool in our proof of Theorem 1.1, the round elimination technique, applies (directly) only to a subclass of

LCL problems: roughly speaking, it is required that the local correctness constraints specified by P can be translated

into node and edge constraints, i.e., correctness constraints that can be verified by looking at the label configurations

on each edge and around each node. The definition of this subclass of LCL problems is given in the following. Note that,

despite the complicated appearance, the definition is actually quite intuitive: essentially, in order to define the LCL

problem, we simply specify a set of label configurations that are allowed on an edge, a set of label configurations that

4
Our results work equally well in the setting where only some upper bound 𝑛′ on 𝑛 is given to the nodes; in that case, as usual, the complexities are

functions of 𝑛′ instead of of 𝑛. We remark that our setting where the nodes are aware of the exact value of 𝑛 is in fact the more difficult one (for our

approach) as evidenced by the issue discussed in Section 3.1.

9

Christoph Grunau, Václav Rozhoň, and Sebastian Brandt

are allowed around a node, and an input-output label relation that specifies for each input label which output label is

allowed at the same half-edge.

Definition 2.3 (Node-edge-checkable LCL problem). A node-edge-checkable LCLΠ is a quintuple (ΣΠ
in
, ΣΠ

out
,NΠ, EΠ, 𝑔Π),

where ΣΠ
in

and ΣΠ
out

are finite sets, EΠ is a collection of cardinality-2 multisets {B1,B2} with B1,B2 ∈ ΣΠ
out

, NΠ =

(N1

Π,N
2

Π, . . .) consists of collections N
𝑖
Π of cardinality-𝑖 multisets {A1, . . . ,A𝑖 } with A1, . . . ,A𝑖 ∈ ΣΠ

out
, and 𝑔Π : ΣΠ

in
→

2
ΣΠ
out is a function that assigns to each label from ΣΠ

in
a subset of the labels of ΣΠ

out
. A correct solution for a node-edge-

checkable LCL Π on a ΣΠ
in
-labeled graph (𝐺, 𝑓in) is given by a half-edge labeling 𝑓out : 𝐻 (𝐺) → ΣΠ

out
such that

(1) for every node 𝑣 ∈ 𝑉 (𝐺), the multiset consisting of the labels assigned by 𝑓out to the half-edges in 𝐻 [𝑣] is
contained in Ndeg(𝑣)

Π ,

(2) for every edge 𝑒 ∈ 𝐸 (𝐺), the multiset consisting of the labels assigned by 𝑓out to the half-edges in 𝐻 [𝑒] is
contained in EΠ , and

(3) for every half-edge ℎ ∈ 𝐻 (𝐺), the label 𝑓out (ℎ) is contained in the label set 𝑔Π (𝑓in (ℎ)).

We call NΠ the node constraint of Π and EΠ the edge constraint of Π. Moreover, we call the elements {A1, . . . ,A𝑖 } of
N𝑖
Π node configurations and the elements {B1,B2} of EΠ edge configurations (of Π). In a LOCAL algorithm solving a

node-edge-checkable problem Π, each node is supposed to output a label for each incident half-edge such that the

induced global half-edge labeling is a correct solution for Π.

Even though the round elimination technique can be applied directly only to node-edge-checkable LCL problems,

the results we obtain apply to all LCL problems. The reason for this is that for each LCL problem Π there exists a

node-edge-checkable LCL problem Π′
such that the time complexities of Π and Π′

differ only by an additive constant,

as we show in Lemma 2.6. This fact suffices to lift our results for node-edge-checkable LCL problems to general LCL

problems: in particular, the existence of an LCL problem with time complexity in 𝜔 (1) and 𝑜 (log∗ 𝑛) would imply the

existence of a node-edge-checkable LCL problem with the same complexity constraints, leading to a contradiction.

Before stating and proving Lemma 2.6, we formally define the local failure probability of an algorithm solving a

node-edge-checkable LCL, and the complexity of an LCL problem.

Definition 2.4 (Local failure probability). Let Π = (ΣΠ
in
, ΣΠ

out
,NΠ, EΠ, 𝑔Π) be some node-edge-checkable LCL problem.

We say that a half-edge labeling 𝑓out : 𝐻 (𝐺) → Σout is incorrect on some edge 𝑒 = {𝑢, 𝑣} of graph (𝐺, 𝑓in) if

(1) {𝑓out ((𝑢, 𝑒)), 𝑓out ((𝑣, 𝑒))} ∉ EΠ , or

(2) 𝑓out ((𝑢, 𝑒)) ∉ 𝑔Π (𝑓in ((𝑢, 𝑒))) or 𝑓out ((𝑣, 𝑒)) ∉ 𝑔R(Π) (𝑓in ((𝑣, 𝑒))).

Similarly, we say that 𝑓out is incorrect at some node 𝑣 if

(1) {𝑓out (ℎ)}ℎ∈𝐻 [𝑣] ∉ Ndeg(𝑣)
Π , or

(2) 𝑓out (ℎ) ∉ 𝑔Π (𝑓in (ℎ)) for some ℎ ∈ 𝐻 [𝑣].

We say that an algorithmA fails on some edge 𝑒 , resp. at some node 𝑣 , if the output produced byA is incorrect on 𝑒 , resp.

at 𝑣 . Furthermore, we say that a (randomized) algorithm A has local failure probability 𝑝 on some graph 𝐺 if 𝑝 is the

smallest (real) number such that, for each edge 𝑒 and node 𝑣 in 𝐺 , the probability that A fails on 𝑒 , resp. at 𝑣 , is upper

bounded by 𝑝 . Moreover, for each 𝑛, the local failure probability of A on some class of 𝑛-node graphs is the maximum

of the local failure probabilities of A on the graphs in the class. (In contrast, the definition of (global) failure probability

is as commonly used, i.e., we say that A has (global) failure probability 𝑝 = 𝑝 (𝑛) if the (worst-case) probability that A
does not produce a correct solution for Π is upper bounded by 𝑝 and 𝑝 is minimal under this constraint.)

10

The Landscape of Distributed Complexities on Trees and Beyond

The LOCAL complexity of a (node-edge-checkable or common) LCL is simply the minimum complexity of an

algorithm A that solves it on all graphs:

Definition 2.5 (Complexity of an LCL problem). The determinstic (round) complexity of an LCL Π is the function

𝑇 : N→ N ∪ {0} satisfying that for each 𝑛 ∈ N, there exists a deterministic algorithm A𝑛 solving Π in 𝑇 (𝑛) rounds
on all 𝑛-node graphs 𝐺 with each half-edge labeled with a label from Σin, but no deterministic algorithm solving Π in

𝑇 (𝑛) − 1 rounds on this class of graphs. The randomized (round) complexity of an LCL Π is defined analogously, where

deterministic algorithms are replaced by randomized algorithms with a (global) failure probability of at most 1/𝑛.

When we talk about the complexity of an LCL on trees, we further restrict the above definition to graphs that are

trees (and similarly for other graph classes).

Now we are ready to state and prove the following lemma, which ensures that we can restrict attention to node-

edge-checkable LCLs.

Lemma 2.6. For any LCL problem Π, there exists a node-edge-checkable LCL problem Π′ such that (in both the randomized

and deterministic LOCAL model) the complexities of Π and Π′ on trees (and on forests) are asymptotically the same.

Proof. Suppose Π = (Σin, Σout, 𝑟 ,P) is an LCL. We create a node-edge-checkable LCL Π′ = (ΣΠ′
in
, ΣΠ

′
out
,NΠ′, EΠ′, 𝑔Π′)

as follows:

• ΣΠ
′

in
= Σin.

• ΣΠ
′

out
contains all possible labelings of 𝑟 -hop neighborhoods of a node, each neighborhood has marked a special

half-edge, each vertex and each edge has an order on incident half-edges and each half-edge is labeled with a

label from Σout, moreover, the labeling by Σout has to be accepted by P.

• NΠ′ contains such sets 𝑆 = {𝜎1, . . . , 𝜎𝑑 } with 𝜎𝑖 ∈ ΣΠ
′

out
such that there exists an 𝑟 -hop neighborhood 𝑁 of a

node 𝑢 of degree 𝑑 together with each node and each edge having an order on incident half edges and such that

half-edges have labels from Σout such that we can assign labels from 𝑆 to half-edges around 𝑢 in such a way that

each 𝜎𝑖 assigned to (𝑢, 𝑒𝑖) describes 𝑁 with the special half-edge of 𝜎𝑖 being 𝑒𝑖 .

• EΠ′ is defined analogously to NΠ′ , but we require an existence of a neighborhood of an edge 𝑒 that is consistent

from the perspective of labels from ΣΠ
′

out
assigned to (𝑢, 𝑒) and (𝑣, 𝑒).

• 𝑔Π′ maps each label 𝜏 ∈ Σin to the set of labels 𝜎 ∈ ΣΠ
′

out
such that the special half-edge of 𝜎 is labeled by 𝜏 .

Suppose we have a valid solution of Π. Then, in 𝑟 rounds each half-edge can decide on its Π′
-label by encoding its

𝑟 -hop neighborhood, including port numbers of each vertex and each edge that give ordering on its half-edges, into a

label from ΣΠ
′

out
. The constraints NΠ′, EΠ′, 𝑔Π′ will be satisfied.

On the other hand, suppose we have a valid solution for Π′
. In 0-rounds, each half-edge (𝑣, 𝑒) can label itself with the

label on the special half-edge in its Π′
-label 𝑓 ′

out
((𝑣, 𝑒)). We claim that the Π-labeling we get this way around a half-edge

(𝑢, 𝑒) is isomorphic to the Σin-labeling described by the label 𝑓out ((𝑣, 𝑒)), hence the new labeling is a solution to Π′
. To

see this, consider running a BFS from (𝑣, 𝑒). The node constraints NΠ′ and the edge constraints EΠ′ are ensuring that

the labels from ΣΠ
′

out
of visited half-edges are describing compatible neighborhoods, while the function 𝑔 ensures that

the description of Σin labels in the 𝑟 -hop neighborhood of 𝑢 by the labels from ΣΠ
′

out
agrees with the actual Σin labeling

of the 𝑟 -hop neighborhood of 𝑢. As the label 𝑓 ′
out

((𝑣, 𝑒)) needs to be accepted by P, we get that P accepts the 𝑟 -hop

neighborhood of 𝑢, as needed. □

It is crucial that the way in which we define the node-edge-checkable LCL problem Π′
in Lemma 2.6 guarantees

that the considered (input-labeled) graph class remains the same as for Π (and does not turn into a graph class with a

11

Christoph Grunau, Václav Rozhoň, and Sebastian Brandt

promise on the distribution of the input labels, which would be the result of the straightforward approach of defining

Π′
by encoding the input labels contained in a constant-sized ball in Π in a single input label in Π′

, and doing the same

for output labels). If this property was not guaranteed, it would be completely unclear (and perhaps impossible) how to

extend the round elimination framework of [14] to our setting with input labels.

2.2 Order-Invariant Algorithms

In this section, we formally define the notion of an order-invariant algorithm and introduce further computational

models of interest. We also show that oftentimes order-invariant algorithms can be sped up to improve the round/probe

complexity, both in the LOCAL and the VOLUME model.

Definition 2.7 (Order-invariant LOCAL algorithm [41]). A deterministic 𝑇 (𝑛)-round LOCAL algorithm A is called

order-invariant if the following holds: Consider two assignments of distinct identifiers to nodes in 𝐵𝐺 (𝑣,𝑇 (𝑛)) denoted
by 𝜇 and 𝜇 ′. Assume that for all 𝑢,𝑤 ∈ 𝐵𝐺 (𝑣,𝑇 (𝑛)) it holds that 𝜇 (𝑢) > 𝜇 (𝑤) if and only if 𝜇 ′(𝑢) > 𝜇 ′(𝑤). Then, the
output of A on the set of half-edges 𝐻 [𝑣] will be the same in both cases.

Next, we define the notions necessary for Section 4. We start by defining the VOLUME model [42]. We define the

VOLUME model in a more mathematically rigorous way compared to [42], as this will help us later with the proofs.

Before defining the VOLUME model, we start with one more definition.

Definition 2.8. For an arbitrary 𝑆 ⊆ N, we define

𝑇𝑢𝑝𝑙𝑒𝑠𝑆 = {(𝑖𝑑, 𝑑𝑒𝑔, 𝑖𝑛) : 𝑖𝑑 ∈ 𝑆, 𝑑𝑒𝑔 ∈ [Δ], 𝑖𝑛 : [𝑑𝑒𝑔] ↦→ Σ𝑖𝑛}

and for 𝑖 ∈ N, we define

𝑇𝑢𝑝𝑙𝑒𝑠𝑖,𝑆 = {(𝑡1, 𝑡2, . . . , 𝑡𝑖) : for every 𝑗 ∈ [𝑖], 𝑡 𝑗 ∈ 𝑇𝑢𝑝𝑙𝑒𝑆 }.

For a given 𝑖 ∈ N and ℓ ∈ [2], let 𝑡 (ℓ) = ((𝑖𝑑ℓ
1
, 𝑑𝑒𝑔1, 𝑖𝑛1), (𝑖𝑑ℓ

2
, 𝑑𝑒𝑔2, 𝑖𝑛2), . . . , (𝑖𝑑ℓ𝑖 , 𝑑𝑒𝑔𝑖 , 𝑖𝑛𝑖)) ∈ 𝑇𝑢𝑝𝑙𝑒𝑠𝑖,N be arbitrary.

We say that the tuples 𝑡 (1) and 𝑡 (2) are almost identical if for every 𝑗1, 𝑗2 ∈ [𝑖], 𝑖𝑑1
𝑗1
< 𝑖𝑑2

𝑗2
implies 𝑖𝑑2

𝑗1
< 𝑖𝑑2

𝑗2
, 𝑖𝑑1

𝑗1
> 𝑖𝑑1

𝑗2

implies 𝑖𝑑2
𝑗1
> 𝑖𝑑2

𝑗2
and 𝑖𝑑1

𝑗1
= 𝑖𝑑1

𝑗2
implies 𝑖𝑑2

𝑗1
= 𝑖𝑑2

𝑗2
.

A tuple in𝑇𝑢𝑝𝑙𝑒𝑠𝑆 can encode the local information of a node 𝑣 , including its ID, its degree and the input assigned to

each of its incident half-edges, i.e., 𝑖𝑛(𝑘) is the input assigned to the 𝑘-th half edge. We denote with 𝑡𝑣 the tuple that

encodes the local information of 𝑣 . A tuple in 𝑇𝑢𝑝𝑙𝑒𝑠𝑖,𝑆 can be used to encode all the information (modulo the number

of nodes of the input graph) that a node knows about the input graph after having performed 𝑖 − 1 probes. The notion

of almost identical tuples will be helpful for defining the notion of order-invariance for the VOLUME model.

Definition 2.9 (VOLUME model). Let Π = (Σ𝑖𝑛, Σ𝑜𝑢𝑡 , 𝑟 ,P) be an LCL problem. A deterministic VOLUME model

algorithm A for Π with a probe complexity of 𝑇 (𝑛) can be seen as a set of computable functions 𝑓𝑛,𝑖 for every

𝑛 ∈ N and 𝑖 ∈ [𝑇 (𝑛) + 1] with 𝑓𝑛,𝑖 : 𝑇𝑢𝑝𝑙𝑒𝑠𝑖,N ↦→ [𝑖] × [Δ] for 𝑖 ∈ [𝑇 (𝑛)] encoding the 𝑖-th adaptive probe and

𝑓𝑛,𝑇 (𝑛)+1 : 𝑇𝑢𝑝𝑙𝑒𝑠𝑇 (𝑛)+1,N ↦→ Σ
[Δ]
𝑜𝑢𝑡 , where Σ

[Δ]
𝑜𝑢𝑡 refers to the set of functions mapping each value in [Δ] to a value in

Σ𝑜𝑢𝑡 , encoding the output that A assigns to the incident half edges of the queried node. Next, we have to define what it

means for A to be a valid algorithm. To that end, let (𝐺, 𝑓𝑖𝑛) be an arbitrary Σ𝑖𝑛-labeled graph on 𝑛 nodes with each

node in𝐺 being equipped with an identifier and a port assignment (To simplify the technical definition, we assume that

𝐺 does not contain any isolated node).

12

The Landscape of Distributed Complexities on Trees and Beyond

The algorithm A defines a half-edge labeling 𝑓𝑜𝑢𝑡,A,(𝐺,𝑓𝑖𝑛) : 𝐻 (𝐺) ↦→ Σ𝑜𝑢𝑡 as follows: Let (𝑣, 𝑒) ∈ 𝐻 (𝐺) be an

arbitrary half-edge of 𝐺 . We define 𝑡 (0) = (𝑡𝑣) and for 𝑖 ∈ {1, 2, . . . ,𝑇 (𝑛)}, we obtain 𝑡 (𝑖) from 𝑡 (𝑖−1) = (𝑡𝑣0 , 𝑡𝑣1 , . . . , 𝑡𝑣𝑖)
as follows. Let (𝑗, 𝑝) = 𝑓𝑛,𝑖 (𝑡 (𝑖−1)) and 𝑣𝑖+1 the node in𝐺 such that {𝑣 𝑗 , 𝑣𝑖+1} is the 𝑝-th edge incident to 𝑣 𝑗 (we assume

that the degree of 𝑣 𝑗 is at least 𝑝). Then, 𝑡
(𝑖) = (𝑡𝑣0 , 𝑡𝑣1 , . . . , 𝑡𝑣𝑖+1). Finally, 𝑓𝑛,𝑇 (𝑛)+1 (𝑡𝑣0 , 𝑡𝑣1 , . . . , 𝑡𝑣𝑇 (𝑛)) defines a function𝑔

mapping each value in [Δ] to a value in Σ𝑜𝑢𝑡 . Let 𝑒 be the 𝑝-th edge incident to 𝑣 . We define 𝑓𝑜𝑢𝑡,A,(𝐺,𝑓𝑖𝑛) ((𝑣, 𝑒)) = 𝑔(𝑝).
We say thatA solves Π if 𝑓𝑜𝑢𝑡,A,(𝐺,𝑓𝑖𝑛) is a valid output labeling for every Σ𝑖𝑛-labeled graph (𝐺, 𝑓𝑖𝑛) with each node

in 𝐺 having a unique ID from a polynomial range, is equipped with a port labeling, and 𝐺 does not contain an isolated

node.

The notion of an order-invariant algorithm naturally extends to algorithms in the VOLUME model.

Definition 2.10. (Order-invariant VOLUME algorithm) We say that A is order invariant if for every 𝑛 ∈ N and

𝑖 ∈ [𝑇 (𝑛) + 1], 𝑓𝑛,𝑖 (𝑡) = 𝑓𝑛,𝑖 (𝑡 ′) for every 𝑡, 𝑡 ′ ∈ 𝑇𝑢𝑝𝑙𝑒𝑠𝑖,𝑆 with 𝑡 and 𝑡 ′ being almost identical.

We will use the following basic speed-up result for order-invariant algorithms in both the LOCAL and the VOLUME

model.

Theorem 2.11 (Speed-up of order-invariant algorithms (cf. [19])). LetA be an order-invariant algorithm solving

a problem Π in 𝑓 (𝑛) = 𝑜 (log𝑛) rounds of the LOCAL model or with 𝑓 (𝑛) = 𝑜 (𝑛) probes of the VOLUME model. Then,

there is an order-invariant algorithm solving Π in 𝑂 (1) rounds of the LOCAL model or, equivalently, 𝑂 (1) probes in the

VOLUME model.

Proof. The result for the LOCAL model is proven in [19]. The proof for the VOLUME model follows in the exact

same manner. We provide it here for completeness. Let 𝑛0 be a fixed constant such that Δ𝑟+1 · (𝑇 (𝑛0) + 1) ≤ 𝑛0/Δ. We

now define a VOLUME algorithm A ′
with probe complexity 𝑇 ′(𝑛) = min(𝑛,𝑇 (𝑛0)) = 𝑂 (1) as follows. For 𝑛 ∈ N and

𝑖 ∈ [𝑇 ′(𝑛) + 1], we define 𝑓 A′
𝑛,𝑖

= 𝑓 A
min(𝑛,𝑛0),𝑖 . It remains to show that A ′

indeed solves Π. For the sake of contradiction,

assume that this is not the case. This implies the existence of a Σ𝑖𝑛-labeled graph (𝐺, 𝑓𝑖𝑛) on 𝑛 ≥ 𝑛0 nodes (with IDs

from a polynomial range, port assignments, and no isolated nodes) such that A ′
"fails" on (𝐺, 𝑓𝑖𝑛). Put differently,

there exists a node 𝑣 such that A ′
produces a mistake in the 𝑟 -hop neighborhood of 𝑣 . The 𝑟 -hop neighborhood of

𝑣 consists of at most Δ𝑟+1 vertices. To answer a given query, A ′
"sees" at most 𝑇 (𝑛0) + 1 nodes. Hence, to compute

the output of all the nodes in the 𝑟 -hop neighborhood of 𝑣 , A ′
"sees" at most Δ𝑟+1 (𝑇 (𝑛0) + 1) ≤ 𝑛0

Δ many nodes. We

denote the set consisting of those nodes as 𝑉 𝑣𝑖𝑠𝑖𝑏𝑙𝑒 . Now, let (𝐺 ′, 𝑓 ′
𝑖𝑛
) be a Σ𝑖𝑛-labeled graph on 𝑛′ nodes (with IDs

from a polynomial range, port assignments, and no isolated nodes) such that every 𝑢 ∈ 𝑉 𝑣𝑖𝑠𝑖𝑏𝑙𝑒 is also contained in

𝐺 ′
, with its degree being the same in both graphs, as well as the input assigned to each of its incident half edges. The

assigned ID can be different, however, the relative orders of the IDs assigned to nodes in 𝑉 𝑣𝑖𝑠𝑖𝑏𝑙𝑒 in 𝐺 and 𝐺 ′
are the

same. As Δ𝑟+1 (𝑇 (𝑛0) + 1) ≤ 𝑛0
Δ , such a (𝐺 ′, 𝑓 ′

𝑖𝑛
) exists. As A is order invariant, so is A ′

. Moreover, 𝑓 A
′

𝑛,𝑖
= 𝑓 A

′
𝑛′,𝑖 for any

𝑖 . Hence, it follows that A ′
assigns the same output to all the half-edges in the 𝑟 -hop neighborhood of 𝑣 in 𝐺 and 𝐺 ′

.

Therefore, A ′
also fails on the graph𝐺 ′

. From the way we defined A ′
, this directly implies that A also fails on 𝐺 , a

contradiction with the assumption that A is a correct algorithm. This finishes the proof. □

LCA model. We now briefly discuss the related LCA model. A deterministic local computation algorithm (LCA) is

similar to a deterministic VOLUME algorithm, with two small differences. First, an LCA can perform so-called far

probes and second, it can assume that each node in the 𝑛-node input graph has a unique ID in the set {1, 2, . . . , 𝑛}.
However, far probes are not of any help in the complexity regime we consider.

13

Christoph Grunau, Václav Rozhoň, and Sebastian Brandt

Theorem 2.12 (cf. [30], Theorem 1). Any LCL problem that can be solved by an LCAwith probe complexity 𝑡 (𝑛) can also
be solved by an LCAwith probe complexity𝑂 (𝑡 (𝑛log(𝑛))) that does not perform any far probes, provided 𝑡 (𝑛) = 𝑜 (

√
𝑙𝑜𝑔(𝑛)).

In particular, an LCA with probe complexity 𝑜 (log∗ 𝑛) implies an LCA for the same problem that does not perform

any far probes and has a probe complexity of 𝑜 (log∗ 𝑛). Hence, we can focus on showing that any LCA that does

not perform any far probes with a probe complexity of 𝑜 (log∗ 𝑛) implies an LCA for the same problem with a probe

complexity of 𝑂 (1). However, an LCA that does not perform any far probes is the same as a VOLUME algorithm, with

the only difference being that the LCA algorithm only has to produce a valid output if each node in the 𝑛-node input

graph has a unique ID from the set {1, 2, . . . , 𝑛}. However, one can show with a very simple argument that a VOLUME

algorithm (LCA without far probes) with probe complexity 𝑇 (𝑛) = 𝑜 (log∗ 𝑛) that assumes unique IDs from the set

{1, 2, . . . , 𝑛} implies a volume algorithm with probe complexity 𝑇 ′(𝑛) = 𝑇 (𝑛𝑘) = 𝑜 (log∗ 𝑛) that only assumes IDs from

the set {1, 2, . . . , 𝑛𝑘 } for an arbitrary constant 𝑘 . Hence, from the discussion above, a speed-up result from 𝑜 (log∗ 𝑛) to
𝑂 (1) in the VOLUME model directly implies the same speed-up in the LCA model.

3 THE LOCALMODEL GAP ON TREES

In this section we prove the 𝜔 (1) − 𝑜 (log∗ 𝑛) gap for LCLs on trees in the LOCAL model. We do so by proving

Theorem 3.11 (which is the slightly more formal version of Theorem 1.1) by explicitly designing, for any given (node-

edge-checkable) LCL problem Π with complexity 𝑜 (log∗ 𝑛), a constant-round algorithm. As explained in Section 1.1, a

very rough outline of our approach is to generate from Π a sequence of node-edge-checkable LCL problems of decreasing

randomized local complexities (where we allow the local failure probability to grow along the problems in the sequence),

find a problem in the sequence that can be solved in 0 rounds with a reasonably low local failure probability, show

that there exists a 0-round deterministic algorithm for that problem, and turn this algorithm into a constant-round

algorithm for Π by going back up the sequence of problems and arguing that the deterministic complexities increase

slowly along the sequence in this direction. While the round elimination framework [4, 14] provides a blueprint how to

generate a suitable sequence, it unfortunately only does so for LCLs on regular trees without inputs. We provide an

extension of the framework that also works for LCLs on irregular trees (or forests) with inputs.

We will start in Section 3.1 by extending the definition of the round elimination problem sequence to the setting with

inputs (and taking care of a technical issue). In Section 3.2, we will carefully bound the evolution of failure probabilities

along a sequence of algorithms with decreasing runtimes that solve the problems in the defined problem sequence.

Section 3.3 takes care of the reverse step, i.e., showing that the deterministic complexities of the problems in the problem

sequence do not increase fast when traversed towards Π. Finally, in Section 3.4, we will put everything together and

prove Theorem 3.11.

3.1 The Problem Sequence

Similarly to the approach in [14], we define, for any node-edge-checkable LCL problem Π, two node-edge-checkable

problems R(Π) and R(Π). The problems in the aforementioned sequence are then obtained by iteratively applying

R(R(·)), starting with Π.

Definition 3.1 (R(Π)). Let Π = (ΣΠ
in
, ΣΠ

out
,NΠ, EΠ, 𝑔Π) be a node-edge-checkable LCL problem. We define a new

node-edge-checkable LCL problem R(Π) = (ΣR(Π)
in

, Σ
R(Π)
out

,NR(Π) , ER(Π) , 𝑔R(Π)) by specifying the five components.

We start by setting Σ
R(Π)
in

:= ΣΠ
in
and Σ

R(Π)
out

:= 2
ΣΠ
out , i.e., the input label set of R(Π) is simply the input label set of

Π, and the output label set of R(Π) is the power set of the output label set of Π. Next, we define 𝑔R(Π) by setting

14

The Landscape of Distributed Complexities on Trees and Beyond

𝑔R(Π) (ℓ) := 2
𝑔Π (ℓ)

for any label ℓ ∈ ΣΠ
in
, i.e., intuitively speaking, in problem R(Π) an input label ℓ on some half-edge

requires that the output label on the same half-edge is a subset of the set of output labels that were allowed in Π on a

half-edge with input label ℓ .

We define the edge constraint ER(Π) ofR(Π) as the set of all cardinality-2 multisets {B1,B2} such that B1,B2 ∈ Σ
R(Π)
out

and, for all b1 ∈ B1, b2 ∈ B2, we have {b1, b2} ∈ EΠ . Finally, we define the node constraint NR(Π) of R(Π) as follows.
For each integer 𝑖 ≥ 1, define N𝑖

R(Π) as the set of all cardinality-𝑖 multisets {A1, . . . ,A𝑖 } such that A1, . . . ,A𝑖 ∈ Σ
R(Π)
out

and there exists some selection (a1, . . . , a𝑖) of labels from A1 × · · · × A𝑖 such that {a1, . . . , a𝑖 } ∈ N𝑖
Π .

Note that our definition of R(Π) differs slightly from the usual definition of R(Π) as given in, e.g., [6] (beyond the

obvious differences due to the fact that we consider LCL problems with input labels): our definition does not remove

so-called “non-maximal” configurations. Removing such configurations can be beneficial when trying to determine

the complexity of specific problems, but is not required (or helpful) in our setting, where we want to argue about the

complexity of many problems at once.

Definition 3.2 (R(Π)). The problem R(Π) differs from R(Π) only in the node and edge constraints; for the remaining

three parameters we set Σ
R(Π)
in

:= Σ
R(Π)
in

, Σ
R(Π)
out

:= Σ
R(Π)
out

, and 𝑔R(Π) := 𝑔R(Π) .

We define the node constraint NR(Π) of R(Π) as follows. For each integer 𝑖 ≥ 1, define N𝑖

R(Π)
as the set of all

cardinality-𝑖 multisets {A1, . . . ,A𝑖 } such that A1, . . . ,A𝑖 ∈ Σ
R(Π)
out

and, for all (a1, . . . , a𝑖) ∈ A1 × · · · × A𝑖 , we have

{a1, . . . , a𝑖 } ∈ N𝑖
Π . Moreover, we define the edge constraint ER(Π) of R(Π) as the set of all cardinality-2 multisets

{B1,B2} such that B1,B2 ∈ Σ
R(Π)
out

and there exists some selection (b1, b2) of labels from B1×B2 such that {b1, b2} ∈ EΠ .

Note that, although the function R(·) can take any arbitrary node-edge-checkable LCL problem as argument, we

will use as arguments only problems that are of the form R(Π) for some node-edge-checkable LCL problem Π.

Recall that T , resp. F , denotes the class of all trees, resp. forests, of maximum degree at most Δ. Before turning to the

analysis of the evolution of the aforementioned local failure probabilities, there is a technical issue we have to discuss.

A crucial argument in said analysis is, roughly speaking, that if you consider some (sufficiently small) neighborhood of

a node (or edge), and a set of extensions of this neighborhood via different edges leaving the neighborhood
5
, then there

must also be a graph in the considered graph class that (simultaneously) contains all extensions of the set (together with

the neighborhood). Here the term “considered graph class” describes the input graph class restricted to the members

that are consistent with the knowledge of the nodes about the number 𝑛 of nodes, i.e., in particular if all nodes are aware

of the exact value of 𝑛 (as they are in our definition of the LOCALmodel), then the considered graph class contains only

𝑛-node graphs. Now, if the input graph class is T , it follows that the aforementioned crucial argument does not hold in

general: if all extensions in the considered set “conclude” the tree (i.e., do not have leaving edges except those connecting

them to the considered initial neighborhood) and the combined number of nodes in the initial neighborhood and the

considered extensions does not happen to be precisely 𝑛, then there is no 𝑛-node tree that contains the neighborhood

together with all considered extensions.

We solve this issue by proving our main theorem first for the class F of forests (which do not have the aforementioned

issue as the number of nodes
6
in some maximal connected component is not known to the nodes) in Theorem 3.10 and

5
An extension via some leaving edge is simply a possibility of how the graph could continue for the next hop beyond the respectively chosen leaving

edge that is consistent with (some graph in) the considered graph class.

6
We remark that the issue does not occur in the variant of the LOCAL model in which nodes are only aware of some upper bound on the number of

nodes, but we believe that it is important to ensure that the correctness of (our) results does not depend on such minor details in the model specification.

15

Christoph Grunau, Václav Rozhoň, and Sebastian Brandt

then lifting it to T in Theorem 3.11 by showing that, for node-edge-checkable LCL problems, a complexity of 𝑜 (log∗ 𝑛)
on trees implies a complexity of 𝑜 (log∗ 𝑛) on forests. Lemma 3.3 provides this relation between trees and forests; in

Sections 3.2 and 3.3 we will then exclusively work with forests. Note that the complexity of any LCL problem Π on F is

trivially at least as large as its complexity on T as T is a subclass of F .

Lemma 3.3. Let Π be some node-edge-checkable LCL problem that has deterministic, resp. randomized, complexity

𝑜 (log∗ 𝑛) on T . Then the deterministic, resp. randomized, complexity of Π on F is in 𝑜 (log∗ 𝑛).

Proof. Let A be a (deterministic or randomized) algorithm solving Π on T in𝑇 (𝑛) ∈ 𝑜 (log∗ 𝑛) rounds (and observe
that the existence ofA (even if it is randomized) implies that a correct global solution exists). We design a new algorithm

A ′
solving Π on F in 𝑜 (log∗ 𝑛) rounds. Algorithm A ′

proceeds as follows on any 𝑛-node input forest 𝐺 ′ ∈ F , where,

for any node 𝑢, we denote the (maximal) connected component containing 𝑢 by 𝐶𝑢 and the number of nodes in 𝐶𝑢 by

|𝐶𝑢 |.
First, each node collects its (2𝑇 (𝑛2) + 2)-hop neighborhood in 𝐺 ′

. Then, based on the collected information, each

node 𝑢 determines whether there exists a node 𝑣 in 𝐶𝑢 such that the (𝑇 (𝑛2) + 1)-hop neighborhood of 𝑣 contains all of

𝐶𝑢 .

If such a node 𝑣 exists, then each node in 𝐶𝑢 is aware of the whole component 𝐶𝑢 and can simply choose the same

solution for Π on 𝐶𝑢 (by mapping component 𝐶𝑢 (including unique identifiers or random bits) in some arbitrary, but

fixed, deterministic fashion to some correct solution), and then output the part of the solution it is responsible for.

Note that this requires all nodes in 𝐶𝑢 to be distinguishable from each other (so that each node knows which part of

the solution on 𝐶𝑢 it is responsible for); for deterministic algorithms this is guaranteed by the unique identifiers, for

randomized algorithms it is guaranteed with probability at least 1− 1/𝑛2 by having each node interpret its first ⌈4 log𝑛⌉
random bits as an identifier (which guarantees uniqueness of the created identifiers with probability at least 1 − 1/𝑛2).

If no such node 𝑣 exists, then 𝑢 simply executes A with input parameter
7 𝑛2 (and each node in 𝐶𝑢 will do likewise).

In this case, due to the fact that no (𝑇 (𝑛2) + 1)-hop node neighborhood fully contains 𝐶𝑢 , it holds for each node 𝑣 in 𝐶𝑢

that the (𝑇 (𝑛2) + 1)-hop neighborhood of 𝑣 in𝐺 ′
is isomorphic to the (𝑇 (𝑛2) + 1)-hop neighborhood of some node𝑤 in

some 𝑛2-node tree 𝐺 ∈ T . Hence, if A ′
fails on some node 𝑣 in 𝐶𝑢 or on some edge incident to 𝑣 , then A fails on some

node𝑤 in some 𝑛2-node tree, or on some edge incident to𝑤 . Since the failure probability of A on 𝑛2-node trees is at

most 1/𝑛2, it holds for any node𝑤 in any 𝑛2-node tree that the probability that A fails on𝑤 or an edge incident to𝑤 is

at most 1/𝑛2. It follows for each node 𝑣 in 𝐶𝑢 that the probability that A ′
fails on 𝑣 or an edge incident to 𝑣 is at most

1/𝑛2.
Now, a union bound over all components 𝐶𝑢 of the first kind (“such a node 𝑣 exists”) and all nodes in components

𝐶𝑢 of the second kind (“no such node 𝑣 exists”) yields that A ′
fails with probability at most 1/𝑛. Note that if A is

deterministic, then all of the above failure probabilities are 0, and A ′
is deterministic as well.

For the runtime ofA ′
, observe that in either of the two considered cases, the initial collection of 𝑢’s (2𝑇 (𝑛2) + 2)-hop

neighborhood suffices to compute 𝑢’s output in A ′
. Since 𝑇 (𝑛) ∈ 𝑜 (log∗ 𝑛) implies 2𝑇 (𝑛2) + 2 ∈ 𝑜 (log∗ 𝑛), it follows

that the runtime of A ′
, and therefore also the complexity of Π on F , is in 𝑜 (log∗ 𝑛). □

7
Recall that each node receives as input a parameter representing the number of nodes. Note that nothing prevents us from executing an algorithm using

an input parameter that does not represent the correct number of nodes.

16

The Landscape of Distributed Complexities on Trees and Beyond

3.2 From Harder to Easier Problems

Recall that, for any set 𝑁 of positive integers, F𝑁 denotes the class of forests with a number of nodes that is contained

in 𝑁 . The goal of this section is to prove the following theorem.

Theorem 3.4. Let Π be a node-edge-checkable LCL problem andA a randomized algorithm solving Π on F with runtime

𝑇 (𝑛) and local failure probability at most 𝑝 ≤ 1.8 Let 𝑁 be the set of all positive integers 𝑛 satisfying 𝑇 (𝑛) + 2 ≤ logΔ 𝑛.

Then, there exists a randomized algorithm A ′ solving R(R(Π)) on F𝑁 with runtime max{0,𝑇 (𝑛) − 1} and local failure
probability at most 𝑆𝑝1/(3Δ+3) , where

𝑆 = (10Δ(|ΣΠ
in
| +max{|ΣΠ

out
|, |ΣR(Π)

out
|}))4Δ

𝑇 (𝑛)+1
.

In other words, we want to show, roughly speaking, that we can solve R(R(Π)) at least one round faster than Π if

we allow the indicated increase in the local failure probability of the randomized algorithm solving the problem.

For the proof of Theorem 3.4, we will make use of an approach that is an extension of the approach known for the

setting of LCLs on regular trees without inputs (see, e.g., [4–6]). More specifically, we will explicitly define an algorithm

A ′
(depending on A) that satisfies the properties stated in Theorem 3.4. While in the regular setting without inputs,

the possibilities how the input graph could continue beyond the view of a node 𝑣 differ only in the random bits of the

nodes beyond 𝑣 ’s view, the irregularity and inputs in our setting require us to first perform a simulation step in the

definition of A ′
that simulates all possible topologies and inputs that a node could encounter (not too far) beyond its

view before considering the randomness contained in each such extension defined by the combination of topology and

inputs. As we show, the resulting more complex definition of A ′
still allows us to give an upper bound on the increase

of the local failure probability from A to A ′
that suffices for our purposes.

It should be noted that, due to the fact that we consider a large class of LCL problems at once (and not a single

fixed LCL problem, in which case certain simplification techniques might be applicable), the increase in the number of

output labels from Π to R(R(Π)) is doubly exponential. Since the bound on the local failure probability of A ′
depends

(superlinearly) on the number of output labels of Π, and, ultimately, we want to apply Theorem 3.4 iteratively (starting

with Π), we cannot apply Theorem 3.4 more than Θ(log∗ 𝑛) times before the local failure probability grows too large.

This provides a (different) explanation why we cannot extend the 𝜔 (1) − 𝑜 (log∗ 𝑛) gap further with our approach

(which also follows from the fact that there are problems with complexity Θ(log∗ 𝑛)).
Note that we will define A ′

for all forests from F , but will prove the guarantee on the local failure probability of A ′

only for the forests in F𝑁 . Also recall that, for any node 𝑢 in a graph𝐺 , we denote the 𝑟 -hop neighborhood of 𝑢 in𝐺 by

𝐵𝐺 (𝑢, 𝑟). By abuse of notation, we will use 𝐵𝐺 (𝑢, 𝑟) both for all the information contained in the 𝑟 -hop neighborhood

of 𝑢 (i.e., the topology, inputs, and random bits) and for the respective subgraph of 𝐺 (including input information, but

no random bits).

DerivingA ′. LetA be a randomized algorithm for some node-edge-checkable LCL problem Π with runtime𝑇 = 𝑇 (𝑛).
If 𝑇 = 0, we can simply let A ′

simulate A, and then, for each half-edge ℎ, transform the intermediate output ℓ ∈ ΣΠ
out

returned by A on ℎ into the final output {{ℓ}} ∈ Σ
R(R (Π))
out

on ℎ. By construction, A ′
fails on some edge, resp. node, if

and only if A fails on the same edge, resp. node; since 𝑝 ≤ 𝑆𝑝1/(3Δ+3) for the 𝑆 specified in Theorem 3.4, it follows that

A ′
satisfies the properties required in Theorem 3.4. Hence, we will assume in the following that 𝑇 ≥ 1.

8
Note that (bounds on) local failure probabilities such as 𝑝 also (possibly) depend on the number 𝑛 of nodes; however, for better readability we will omit

this dependency.

17

Christoph Grunau, Václav Rozhoň, and Sebastian Brandt

In order to deriveA ′
fromA, we first derive an “intermediate” algorithmA

1/2 for R(Π) fromA, and then we derive

A ′
from A

1/2. As we will show later, A
1/2 solves R(Π) (on F𝑁) with a moderately increased local failure probability

(and, intuitively speaking, very slightly reduced runtime) compared to A; a similar moderate increase in local failure

probability (and slight decrease in runtime) is incurred when going from A
1/2 to A ′

.

Deviating from the usual convention that nodes are the entities performing the computation, we will assume for

A
1/2 that the edges of the input forest perform the computation. This is not in contradiction with the definition of the

LOCAL model as A
1/2 is only a construct defined for the design of A ′

; the actual computation in A ′
is performed by

the nodes. Algorithm A
1/2 proceeds as follows.

Each edge 𝑒 = {𝑢, 𝑣} in the input forest 𝐺 ∈ F first collects all information (i.e., the topology, inputs, and random

bits) contained in the union 𝐵𝐺 (𝑒,𝑇 − 1/2) := 𝐵𝐺 (𝑢,𝑇 − 1) ∪ 𝐵𝐺 (𝑣,𝑇 − 1) of the (𝑇 − 1)-hop neighborhoods of 𝑢 and 𝑣 .

Then, 𝑒 determines the output label ℓ ′ it outputs on half-edge (𝑢, 𝑒) as follows, depending on some parameter 0 < 𝐾 ≤ 1

that we will choose later. Label ℓ ′ is simply the set of all labels ℓ such that there exists an input forest𝐺 ′ ∈ F (including

input labels) and an edge 𝑒 ′ in 𝐺 ′
such that 𝐵𝐺′ (𝑒 ′,𝑇 − 1/2) � 𝐵𝐺 (𝑒,𝑇 − 1/2) and the probability that the node 𝑢 ′

corresponding to 𝑢 in the isomorphism outputs ℓ on (𝑢 ′, 𝑒 ′) according toA is at least 𝐾 , conditioned on the assumption

that the random bits in 𝐵𝐺′ (𝑒 ′,𝑇 − 1/2) are the same as in 𝐵𝐺 (𝑒,𝑇 − 1/2). Here, the isomorphism is w.r.t. the topology

and the input labels. In other words, in A
1/2, edge 𝑒 outputs on (𝑢, 𝑒) the set of all labels ℓ for which the probability

that, in A, node 𝑢 outputs ℓ on (𝑢, 𝑒), conditioned on the random bits that 𝑒 has collected, is at least 𝐾 for at least one

possible extension of (the topology and input labels of) the graph beyond the (𝑇 − 1/2)-hop view of 𝑒 . Edge 𝑒 computes

the output label on half-edge (𝑣, 𝑒) analogously. This concludes the description of A
1/2; in the following we derive A ′

from A
1/2 in a fashion dual to how we derived A

1/2 from A.

In A ′
, each node 𝑢 first collects all information contained in 𝐵𝐺 (𝑢,𝑇 − 1). Then, for each incident edge 𝑒 , node 𝑢

determines the output label ℓ ′′ it outputs on half-edge (𝑢, 𝑒) as follows, depending on some parameter 0 < 𝐿 ≤ 1 that

we will choose later. Label ℓ ′′ is simply the set of all labels ℓ ′ such that there exists an input forest 𝐺 ′′ ∈ F and a

node 𝑢 ′′ in 𝐺 ′′
such that 𝐵𝐺′′ (𝑢 ′′,𝑇 − 1) � 𝐵𝐺 (𝑢,𝑇 − 1) and the probability that the edge 𝑒 ′′ corresponding to 𝑒 in the

isomorphism outputs ℓ ′ on (𝑢 ′′, 𝑒 ′′) according to A
1/2 is at least 𝐿, conditioned on the assumption that the random bits

in 𝐵𝐺′′ (𝑢 ′′,𝑇 − 1) are the same as in 𝐵𝐺 (𝑢,𝑇 − 1). In other words, in A ′
, node 𝑢 outputs on (𝑢, 𝑒) the set of all labels ℓ ′

for which the probability that, in A
1/2, edge 𝑒 outputs ℓ

′
on (𝑢, 𝑒), conditioned on the random bits that 𝑢 has collected,

is at least 𝐿 for at least one possible extension of (the topology and input labels of) the graph beyond the (𝑇 − 1)-hop
view of 𝑢. This concludes the description of A ′

.

In the following, for all forests in F𝑁 , we bound the local failure probability of A
1/2, depending on (the bound on)

the local failure probability of A. We start by proving two helper lemmas. For any edge 𝑒 , resp. node 𝑢, let 𝑝∗𝑒 , resp.

𝑝∗𝑢 , denote the probability that A
1/2 fails at edge 𝑒 , resp. node 𝑢. Moreover, for graphs 𝐺 , 𝐺 ′

, let 𝑓in, resp. 𝑓
′
in
, be the

functions that, for each half-edge in 𝐺 , resp. 𝐺 ′
, return the input label of the half-edge. Finally, we will use A(ℎ) and

A
1/2 (ℎ) to denote the labels that A and A

1/2, respectively, output on some half-edge ℎ.

Lemma 3.5. Let 𝑒 = {𝑢, 𝑣} be an arbitrary edge in an arbitrary forest 𝐺 ∈ F𝑁 . It holds that 𝑝∗𝑒 ≤ 𝑝𝑠/(𝐾2), where
𝑠 = (3|ΣΠ

in
|)2Δ𝑇+1

.

Proof. Consider an arbitrary assignment of random bits in 𝐵𝐺 (𝑒,𝑇 − 1/2) for which A
1/2 fails on 𝑒 , i.e., for which

(1) the cardinality-2 multiset of labels that A
1/2 outputs on (𝑢, 𝑒) and (𝑣, 𝑒) is not contained in ER(Π) ,

i.e., {A
1/2 ((𝑢, 𝑒)),A1/2 ((𝑣, 𝑒))} ∉ ER(Π) , or

(2) we have A
1/2 ((𝑢, 𝑒)) ∉ 𝑔R(Π) (𝑓 ′in ((𝑢, 𝑒))) or A1/2 ((𝑣, 𝑒)) ∉ 𝑔R(Π) (𝑓 ′in ((𝑣, 𝑒))).

18

The Landscape of Distributed Complexities on Trees and Beyond

First, consider the case that Condition 1 is satisfied. Then, by the definition ofR(Π), there are two labels ℓ𝑢 ∈ A
1/2 ((𝑢, 𝑒)),

ℓ𝑣 ∈ A
1/2 ((𝑣, 𝑒)) such that {ℓ𝑢 , ℓ𝑣} ∉ EΠ . Moreover, by the definition of A

1/2, there is a forest 𝐺
′ ∈ F𝑁 containing

9

𝐵𝐺 (𝑒,𝑇 − 1/2) such that |𝑉 (𝐺 ′) | = |𝑉 (𝐺) | and, conditioned on the already fixed random bits in 𝐵𝐺′ (𝑒,𝑇 − 1/2) =

𝐵𝐺 (𝑒,𝑇 − 1/2), the probability that A, when executed on 𝐺 ′
, returns ℓ𝑢 on (𝑢, 𝑒) and ℓ𝑣 on (𝑣, 𝑒) is at least 𝐾2

. Note

that we use here that the input graph is a forest: in order to be able to simply multiply the two probabilities of ℓ𝑢 being

returned on (𝑢, 𝑒) and ℓ𝑣 being returned on (𝑣, 𝑒) (which are both lower bounded by 𝐾), we require that those two

probabilities are independent (which is guaranteed if the input graph is a forest, as then 𝐵𝐺′ (𝑢,𝑇) \ 𝐵𝐺′ (𝑒,𝑇 − 1/2)
and 𝐵𝐺′ (𝑣,𝑇) \ 𝐵𝐺′ (𝑒,𝑇 − 1/2) are disjoint). Note further that we use that 𝐺 ∈ F𝑁 (which implies that the number of

nodes in 𝐵𝐺 (𝑒,𝑇 − 1/2) is sufficiently small compared to |𝑉 (𝐺) |) to guarantee the property |𝑉 (𝐺 ′) | = |𝑉 (𝐺) |, and that

this property is needed because the lemma statement relating the probabilities 𝑝∗𝑒 and 𝑝 (which technically speaking

are functions of the number 𝑛 of nodes) is supposed to hold for any fixed 𝑛. Finally, note that this is a place where it

is crucial that we consider forests, not trees, as on trees is might be the case that no graph 𝐺 ′
as described exists: if

the two extensions beyond 𝐵𝐺 (𝑒,𝑇 − 1/2) that are responsible for the containment of ℓ𝑢 in A
1/2 ((𝑢, 𝑒)) and of ℓ𝑣 in

A
1/2 ((𝑣, 𝑒)) both have no edges leaving the respective extension except those connecting them to 𝐵𝐺 (𝑒,𝑇 − 1/2), and

the total number of nodes in the union of 𝐵𝐺 (𝑒,𝑇 − 1/2) and those two extensions does not happen to be precisely 𝑛,

then those two extensions cannot appear simultaneously if we assume the input graph to be an 𝑛-node tree.

Now consider the case that Condition 2 is satisfied. Then, by the definition of R(Π), there is some label ℓ𝑢 ∈
A

1/2 ((𝑢, 𝑒)) satisfying ℓ𝑢 ∉ 𝑔Π (𝑓 ′
in
((𝑢, 𝑒))) or some label ℓ𝑣 ∈ A

1/2 ((𝑣, 𝑒)) satisfying ℓ𝑣 ∉ 𝑔Π (𝑓 ′
in
((𝑣, 𝑒))). With an

analogous argumentation to the one used in the previous case, we obtain that there is a forest 𝐺 ′ ∈ F𝑁 containing

𝐵𝐺 (𝑒,𝑇 − 1/2) such that |𝑉 (𝐺 ′) | = |𝑉 (𝐺) | and the probability that A, when executed on 𝐺 ′
, fails on 𝑒 is at least 𝐾 .

Since 0 < 𝐾 ≤ 1, we can conclude that in either case the probability (conditioned on the already fixed random bits in

𝐵𝐺′ (𝑒,𝑇 − 1/2)) that, in 𝐺 ′
, A fails on 𝑒 is at least 𝐾2

. Observe that the output of A on the two half-edges belonging

to 𝑒 depends only on 𝐵𝐺′ (𝑒,𝑇 + 1/2) = 𝐵𝐺′ (𝑢,𝑇) ∪ 𝐵𝐺′ (𝑢,𝑇). Given the fixed topology and input in 𝐵𝐺′ (𝑒,𝑇 − 1/2),
there are at most 𝑠 := (3|ΣΠ

in
|)2Δ𝑇+1

different possibilities for the topology and input in 𝐵𝐺′ (𝑒,𝑇 + 1/2): there are at
most 2Δ𝑇 nodes in 𝐵𝐺′ (𝑒,𝑇 + 1/2) \ 𝐵𝐺′ (𝑒,𝑇 − 1/2), and for each of the Δ possible ports of such a node, there are

at most 3 possibilities regarding topology (being connected to a node in 𝐵𝐺′ (𝑒,𝑇 − 1/2), being connected to a node

outside of 𝐵𝐺′ (𝑒,𝑇 + 1/2), or non-existing due to the degree of the node being too small) and at most |ΣΠ
in
| possibilities

regarding the input label on the half-edge corresponding to that port. Let B denote the set of different balls of the form

𝐵𝐺′ (𝑒,𝑇 + 1/2) (for some 𝐺 ′
) that contain 𝐵𝐺 (𝑒,𝑇 − 1/2). As shown above, |B| ≤ 𝑠 .

Now, forget the fixing of the random bits in 𝐵𝐺 (𝑒,𝑇 − 1/2). By the above discussion, it follows that there is some ball

𝐵 ∈ B (and therefore also some forest 𝐺 ′
) containing 𝐵𝐺 (𝑒,𝑇 − 1/2) such that the probability that A, when executed

on 𝐵 (or 𝐺 ′
), fails on 𝑒 is at least (𝑝∗𝑒/𝑠) · 𝐾2

. Since this probability is upper bounded by 𝑝 , we obtain 𝑝∗𝑒 ≤ 𝑝𝑠/(𝐾2), as
desired. □

Lemma 3.6. Let 𝑢 be an arbitrary node in an arbitrary forest 𝐺 ∈ F𝑁 . It holds that 𝑝∗𝑢 ≤ 𝑝 + |ΣΠ
out

|Δ𝐾 + 𝑝𝑠Δ
𝐾

, where

𝑠 = (3|ΣΠ
in
|)2Δ𝑇+1

.

Proof. Let 𝑒1, . . . , 𝑒deg(𝑢) denote the edges incident to 𝑢. Moreover, let 𝑝
(1)
𝑢 denote the probability that

{A
1/2 ((𝑢, 𝑒𝑖))}1≤𝑖≤deg(𝑢) ∉ Ndeg(𝑢)

R (Π) and 𝑝
(2)
𝑢 the probability that there exists some 1 ≤ 𝑖 ≤ deg(𝑢) satisfying

9
For better readability, we refrain from using the mathematically precise term “isomorphism” in the following, and instead identify isomorphic objects

with each other, e.g., we consider 𝐵𝐺 (𝑒,𝑇 − 1/2) to be a subgraph of𝐺′
if it is isomorphic to some subgraph of𝐺′

.

19

Christoph Grunau, Václav Rozhoň, and Sebastian Brandt

A
1/2 ((𝑢, 𝑒𝑖))} ∉ 𝑔R(Π) (𝑓in ((𝑢, 𝑒𝑖))). Since those two conditions together cover all cases in which A

1/2 fails at 𝑢, we

have 𝑝∗𝑢 ≤ 𝑝
(1)
𝑢 + 𝑝 (2)𝑢 . We start by bounding 𝑝

(1)
𝑢 .

Observe that correctness at 𝑢, for both A and A
1/2, depends only on 𝐵𝐺 (𝑢,𝑇). Given the topology and input in

𝐵𝐺 (𝑢,𝑇) (which is already fixed since we are considering some fixed graph𝐺), we call, for each label ℓ ∈ ΣΠ
out

and each

1 ≤ 𝑖 ≤ deg(𝑢), an assigment of random bits in 𝐵𝐺 (𝑢,𝑇) bad for the pair (ℓ, 𝑖) if A((𝑢, 𝑒𝑖)) = ℓ and ℓ ∉ A
1/2 ((𝑢, 𝑒𝑖))

(under this assignment). Observe that the definition of A
1/2 ensures, for each fixed assignment of random bits in

𝐵𝐺 (𝑒𝑖 ,𝑇 − 1/2), that if ℓ ∉ A
1/2 ((𝑢, 𝑒𝑖)) under this assignment

10
, then the probability that A((𝑢, 𝑒𝑖)) = ℓ (conditioned

on the fixed assignment in 𝐵𝐺 (𝑒𝑖 ,𝑇 − 1/2)) is smaller than 𝐾 . Hence, (prior to fixing any random bits) for each pair

(ℓ, 𝑖) ∈ ΣΠ
out

× {1, . . . , deg(𝑢)}, the probability that an assignment of random bits in 𝐵𝐺 (𝑢,𝑇) is bad for (ℓ, 𝑖) is smaller

than 𝐾 . It follows by a union bound that the probability that an assignment of random bits is bad for some pair

(ℓ, 𝑖) ∈ ΣΠ
out

× {1, . . . , deg(𝑢)} is upper bounded by |ΣΠ
out

| · Δ · 𝐾 .
Now, consider an arbitrary assignment of random bits in 𝐵𝐺 (𝑢,𝑇) such that {A

1/2 ((𝑢, 𝑒𝑖))}1≤𝑖≤deg(𝑢) ∉ Ndeg(𝑢)
R (Π)

under this assignment. We argue that then A fails at 𝑢 or there is some pair (ℓ, 𝑖) ∈ ΣΠ
out

× {1, . . . , deg(𝑢)} such that the

assignment is bad for (ℓ, 𝑖): indeed, if there is no such pair and A does not fail at 𝑢, then, for each 1 ≤ 𝑖 ≤ deg(𝑢), we
have A((𝑢, 𝑒𝑖)) ∈ A

1/2 ((𝑢, 𝑒𝑖)), which (combined again with the correctness of A at 𝑢) would imply, by the definition

of Ndeg(𝑢)
R (Π) , that {A

1/2 ((𝑢, 𝑒𝑖))}1≤𝑖≤deg(𝑢) ∈ Ndeg(𝑢)
R (Π) , contradicting the stated property of the considered assignment.

We conclude that 𝑝
(1)
𝑢 ≤ 𝑝 + |ΣΠ

out
| · Δ · 𝐾 .

Next, we bound 𝑝
(2)
𝑢 . By a union bound, it follows from the definition of 𝑝

(2)
𝑢 that there is some 1 ≤ 𝑖 ≤ deg(𝑢) such

that the probability that A
1/2 ((𝑢, 𝑒𝑖)) ∉ 𝑔R(Π) (𝑓in ((𝑢, 𝑒𝑖))) is at least 𝑝

(2)
𝑢 /deg(𝑢) ≥ 𝑝

(2)
𝑢 /Δ.

Consider an arbitrary assignment of random bits in 𝐵𝐺 (𝑒𝑖 ,𝑇−1/2) such thatA1/2 ((𝑢, 𝑒𝑖)) ∉ 𝑔R(Π) (𝑓in ((𝑢, 𝑒𝑖))). Then,
by the definition ofR(Π), there is some label ℓ ∈ A

1/2 ((𝑢, 𝑒𝑖)) satisfying ℓ ∉ 𝑔Π (𝑓in ((𝑢, 𝑒𝑖))). Moreover, by the definition

of A
1/2, there is some ball 𝐵𝐺′ (𝑢,𝑇) (in some forest 𝐺 ′ ∈ F𝑁 satisfying |𝑉 (𝐺 ′) | = |𝑉 (𝐺) |) containing 𝐵𝐺 (𝑒𝑖 ,𝑇 − 1/2)

such that, conditioned on the already fixed random bits in 𝐵𝐺′ (𝑒𝑖 ,𝑇 − 1/2) = 𝐵𝐺 (𝑒𝑖 ,𝑇 − 1/2), the probability that A,

when executed on 𝐵𝐺′ (𝑢,𝑇) (or𝐺 ′
), returns ℓ on (𝑢, 𝑒𝑖) is at least 𝐾 . Note that since ℓ ∉ 𝑔Π (𝑓in ((𝑢, 𝑒𝑖))), returning ℓ on

(𝑢, 𝑒𝑖) implies that A fails at 𝑢.

As already established in the proof of Lemma 3.5, there are at most 𝑠 := (3|ΣΠ
in
|)2Δ𝑇+1

different possibilities for the

topology and input of a ball 𝐵𝐺′ (𝑒𝑖 ,𝑇 + 1/2) containing 𝐵𝐺 (𝑒𝑖 ,𝑇 − 1/2), which implies the same bound on the number

of different balls 𝐵𝐺′ (𝑢,𝑇) containing 𝐵𝐺 (𝑒𝑖 ,𝑇 − 1/2). Analogously to before (and forgetting the fixing of the random

bits in 𝐵𝐺 (𝑒𝑖 ,𝑇 − 1/2)), we obtain that there is some ball 𝐵𝐺′ (𝑢,𝑇) (in some forest 𝐺 ′
satisfying |𝑉 (𝐺 ′) | = |𝑉 (𝐺) |)

containing 𝐵𝐺 (𝑒𝑖 ,𝑇 − 1/2) such that the probability that A, when executed on 𝐵𝐺′ (𝑢,𝑇) (or 𝐺 ′
), fails at 𝑢 is at least

((𝑝 (2)𝑢 /Δ)/𝑠) · 𝐾 . Since this probability is upper bounded by 𝑝 , we obtain 𝑝
(2)
𝑢 ≤ 𝑝𝑠Δ/𝐾 , which implies

𝑝∗𝑢 ≤ 𝑝 + |ΣΠ
out

|Δ𝐾 + 𝑝𝑠Δ
𝐾

, (3.1)

as desired. □

By using Lemmas 3.5 and 3.6 and choosing 𝐾 suitably, we now give an upper bound on the local failure probability

of A
1/2 on F𝑁 .

Lemma 3.7. Algorithm A
1/2 has local failure probability at most 2Δ(𝑠 + |ΣΠ

out
|)𝑝1/3 on F𝑁 , where 𝑠 = (3|ΣΠ

in
|)2Δ𝑇+1

.

10
Note that A

1/2 ((𝑢, 𝑒𝑖)) is uniquely determined after fixing the random bits in 𝐵𝐺 (𝑒𝑖 ,𝑇 − 1/2) .

20

The Landscape of Distributed Complexities on Trees and Beyond

Proof. Choose the parameter in the definition of A
1/2 as 𝐾 := 𝑝1/3. Then, by Lemma 3.6, for each node 𝑢 in the

input forest 𝐺 , we obtain

𝑝∗𝑢 ≤ 𝑝 + |ΣΠ
out

|Δ𝑝1/3 + 𝑠Δ𝑝2/3 ≤ 2Δ(𝑠 + |ΣΠ
out

|)𝑝1/3 ,

and, by Lemma 3.5, for each edge 𝑒 in 𝐺 , we obtain

𝑝∗𝑒 ≤ 𝑠𝑝1/3 ≤ 2Δ(𝑠 + |ΣΠ
out

|)𝑝1/3 .

The lemma statement follows by the definition of local failure probability. □

Next, we prove an analogous statement to Lemma 3.7 relating the local failure probabilities of A
1/2 and A ′

. For any

edge 𝑒 , resp. node 𝑢, let 𝑝 ′𝑒 , resp. 𝑝
′
𝑢 , denote the probability that A ′

fails at edge 𝑒 , resp. node 𝑢.

Lemma 3.8. If A
1/2 has local failure probability at most 𝑝∗ ≤ 1 on F𝑁 , then A ′ has local failure probability at most

3(𝑠 + |ΣR(Π)
out

|) (𝑝∗)1/(Δ+1) on F𝑁 , where 𝑠 = (3|ΣΠ
in
|)2Δ𝑇+1

.

Proof. We start by obtaining analogous statements to Lemmas 3.5 and 3.6. By simply exchanging the roles of nodes

and edges
11

and reducing the radii of the considered balls by 1/2 (as well as using parameter 𝐿 instead of 𝐾 , and using

Σ
R(Π)
out

instead of ΣΠ
out

), we directly obtain analogous proofs resulting in the following two statements, (assuming the

stated upper bound 𝑝∗ on the local failure probability of A
1/2):

(1) For any node 𝑢 in the input forest 𝐺 , we have 𝑝 ′𝑢 ≤ 𝑝∗𝑠/(𝐿Δ).
(2) For any edge 𝑒 in 𝐺 , we have 𝑝 ′𝑒 ≤ 𝑝∗ + |ΣR(Π)

out
| · 2𝐿 + 𝑝∗ · 2𝑠/𝐿.

Note that, compared to Lemmas 3.5 and 3.6, each 2 has been replaced by Δ and vice versa, simply because the roles of

edges (that end in 2 nodes) and nodes (that “end” in at most Δ edges) are reversed in the analogous proofs. Also observe

that, technically, the expression for 𝑠 that we obtain in the new proofs is (3|ΣΠ
in
|)Δ ·Δ(𝑇−1)+1

; however, since this is upper

bounded by the original expression for 𝑠 , the obtained statements also hold for the original 𝑠 = (3|ΣΠ
in
|)2Δ𝑇+1

(which we

will continue to use).

Now, analogously to the choice of 𝐾 = 𝑝1/(2+1) in the proof of Lemma 3.7, set 𝐿 := (𝑝∗)1/(Δ+1) . We obtain, for each

edge 𝑒 in 𝐺 ,

𝑝 ′𝑒 ≤ 𝑝∗ + |ΣR(Π)
out

| · 2(𝑝∗)1/(Δ+1) + 2𝑠 (𝑝∗)Δ/(Δ+1) ≤ 3(𝑠 + |ΣR(Π)
out

|) (𝑝∗)1/(Δ+1) ,

and, for each node 𝑢 in 𝐺 ,

𝑝 ′𝑢 ≤ 𝑠 (𝑝∗)1/(Δ+1) ≤ 3(𝑠 + |ΣR(Π)
out

|) (𝑝∗)1/(Δ+1) .

Again, the lemma statement follows by the definition of local failure probability. □

Combining Lemmas 3.7 and 3.8, we are finally ready to prove Theorem 3.4.

Proof of Theorem 3.4. Let 𝑆 be as specified in the theorem, and let A ′
be as derived before. As already argued

during the definition of A ′
, if the runtime𝑇 = 𝑇 (𝑛) of A is 0, then A ′

satisfies the stated properties regarding runtime

and local failure probability. Hence, assume in the following that 𝑇 ≥ 1.

From the definition of A ′
, it follows directly that the runtime of A ′

is 𝑇 − 1. It remains to show that A ′
has

local failure probability at most 𝑆𝑝1/(3Δ+3) on F𝑁 . We start by showing that A ′
has local failure probability at most

11
Note that, as usual for round elimination, all proofs also directly extend to hypergraphs. Hence, exchanging the roles of nodes and edges is very natural:

a node 𝑣 of degree deg(𝑣) simply becomes a hyperedge containing deg(𝑣) endpoints, while an edge becomes a node of degree 2.

21

Christoph Grunau, Václav Rozhoň, and Sebastian Brandt

𝑆 ′𝑝1/(3Δ+3) on F𝑁 , where

𝑆 ′ := 3 · ((3|ΣΠ
in
|)2Δ

𝑇+1
+ |ΣR(Π)

out
|) · (2Δ((3|ΣΠ

in
|)2Δ

𝑇+1
+ |ΣΠ

out
|))1/(Δ+1) .

Indeed, if 𝑝 satisfies 2Δ((3|ΣΠ
in
|)2Δ𝑇+1 + |ΣΠ

out
|)𝑝1/3 ≤ 1, then this is a direct consequence of Lemmas 3.7 and 3.8. If 𝑝

does not satisfy the given condition, then the straightforward combination of Lemmas 3.7 and 3.8 does not work, as

the condition 𝑝∗ ≤ 1 in Lemma 3.8 is not satisfied. However, in this case, i.e., if 2Δ((3|ΣΠ
in
|)2Δ𝑇+1 + |ΣΠ

out
|)𝑝1/3 > 1, we

obtain 𝑆 ′𝑝1/(3Δ+3) > 1, which trivially implies that A ′
has local failure probability at most 𝑆 ′𝑝1/(3Δ+3) .

Now, the theorem statement follows from the fact that 𝑆 ′ ≤ 𝑆 , which in turn follows from

𝑆 ′ = 3 · ((3|ΣΠ
in
|)2Δ

𝑇+1
+ |ΣR(Π)

out
|) · (2Δ((3|ΣΠ

in
|)2Δ

𝑇+1
+ |ΣΠ

out
|))1/(Δ+1)

≤ (9(|ΣΠ
in
| + |ΣR(Π)

out
|))2Δ

𝑇+1
· (6Δ(|ΣΠ

in
| + |ΣΠ

out
|))2Δ

𝑇+1

≤ (10Δ(|ΣΠ
in
| +max{|ΣΠ

out
|, |ΣR(Π)

out
|}))2Δ

𝑇+1
· (10Δ(|ΣΠ

in
| +max{|ΣΠ

out
|, |ΣR(Π)

out
|}))2Δ

𝑇+1

= (10Δ(|ΣΠ
in
| +max{|ΣΠ

out
|, |ΣR(Π)

out
|}))4Δ

𝑇+1

= 𝑆 .

□

3.3 From Easier to Harder Problems

In this section, we prove the following lemma, which, in a sense, provides a counterpart to Theorem 3.4: it states that

the time needed to solve some problem Π is not much larger than the time needed to solve R(R(Π)). It is a simple

extension of one direction of [14, Theorem 4.1] to the case of graphs with inputs. We note that the lemma also holds for

randomized algorithms (with essentially the same proof), but we will only need the deterministic version.

Lemma 3.9. Let Π be a node-edge-checkable LCL problem and let A be a deterministic algorithm solving R(R(Π)) in
𝑇 (𝑛) rounds, for some function𝑇 (on some arbitrary class of graphs). Then there exists a deterministic algorithmA ′ solving

Π in 𝑇 (𝑛) + 1 rounds.

Proof. We will define A ′
as follows, depending on A.

12

For each half-edge ℎ, let A(ℎ) denote the output label that A outputs at ℎ. In A ′
, each node 𝑣 starts by computing

A(ℎ) for each half-edge ℎ = (𝑤, 𝑒) such that𝑤 is a neighbor of or identical to 𝑣 and 𝑒 is an edge incident to 𝑣 . As, in

A, each neighbor of 𝑣 computes its output in 𝑇 (𝑛) rounds, 𝑣 can compute all mentioned A(ℎ) in 𝑇 (𝑛) + 1 rounds, by

simulating A. Node 𝑣 will decide on its output solely based on the information collected so far, which implies that the

runtime of A ′
is 𝑇 (𝑛) + 1.

For choosing its output, 𝑣 proceeds in two steps (computed without gathering any further information). In the

first step, for each incident edge 𝑒 = {𝑣,𝑤}, node 𝑣 chooses, in some deterministic fashion, a label 𝐿(𝑣,𝑒) ∈ A((𝑣, 𝑒))
and a label 𝐿(𝑤,𝑒) ∈ A((𝑤, 𝑒)) such that {𝐿(𝑣,𝑒) , 𝐿(𝑤,𝑒) } ∈ ER(Π) . Such a pair of labels exists, by the definition of

ER(R (Π)) (and the fact that A correctly solves R(R(Π))). Moreover, the definition of Ndeg(𝑣)
R (R (Π))

implies that the

multiset {𝐿(𝑣,𝑒′) }𝑒′∋𝑣 is contained in Ndeg(𝑣)
R (Π) , and the definition of 𝑔R(R (Π)) implies that 𝐿(𝑣,𝑒) ∈ 𝑔R(Π) (𝑖 (𝑣,𝑒)) and

𝐿(𝑤,𝑒) ∈ 𝑔R(Π) (𝑖 (𝑤,𝑒)) where 𝑖 (𝑣,𝑒) , 𝑖 (𝑤,𝑒) ∈ ΣΠ
in
denote the input labels assigned to (𝑣, 𝑒) and (𝑤, 𝑒), respectively. Note

also that since the labels 𝐿(𝑣,𝑒) and 𝐿(𝑤,𝑒) are chosen in a deterministic fashion, depending only on A((𝑣, 𝑒)) and
12
Note that the A and A′

considered here are not the same as the ones considered in Section 3.2.

22

The Landscape of Distributed Complexities on Trees and Beyond

A((𝑤, 𝑒)), node 𝑣 and node𝑤 will compute the same label 𝐿(𝑣,𝑒) and the same label 𝐿(𝑤,𝑒) . We conclude that labeling

each half-edge ℎ with label 𝐿ℎ yields a correct solution for R(Π).
In the second step, 𝑣 computes the final output for each half-edge incident to 𝑣 , in a fashion analogous to the first

step. More precisely, for each incident edge 𝑒 , node 𝑣 chooses a final output label ℓ(𝑣,𝑒) ∈ 𝐿(𝑣,𝑒) such that the multiset

{ℓ(𝑣,𝑒′) }𝑒′∋𝑣 is contained in Ndeg(𝑣)
Π . Such labels ℓ(𝑣,𝑒) exist, by the definition of Ndeg(𝑣)

R (Π) (and the fact that the labeling

assigning 𝐿ℎ to each half-edge ℎ correctly solves R(Π)). Moreover, the definition of ER(Π) implies that, for any edge

𝑒 = {𝑣,𝑤}, the multiset {ℓ(𝑣,𝑒) , ℓ(𝑤,𝑒) } is contained in EΠ , and the definition of 𝑔R(Π) implies that, for any half-edge

(𝑣, 𝑒), we have ℓ(𝑣,𝑒) ∈ 𝑔Π (𝑖 (𝑣,𝑒)).
We conclude that labeling each half-edge ℎ with label ℓℎ yields a correct solution for Π. It follows that A ′

solves Π

in 𝑇 (𝑛) + 1 rounds, as desired. □

3.4 Proving the Gap

In this section, we will finally prove our main result that on forests or trees, any LCL problem with complexity 𝑜 (log∗ 𝑛)
can be solved in constant time. We will first take care of the case of forests.

Theorem 3.10. Let Π be an arbitrary LCL problem that has (deterministic or randomized) complexity 𝑜 (log∗ 𝑛) on F .

Then Π can be solved in constant time on F (both deterministically and randomized).

Proof. Observe that, by Lemma 2.6, it suffices to prove the theorem for node-edge-checkable LCL problems. Hence,

assume in the following that Π is node-edge-checkable (and has deterministic or randomized complexity 𝑜 (log∗ 𝑛) on
F).

Observe further that if each node independently chooses an identifier (of length 𝑂 (log𝑛) bits) uniformly at random

from a set of size 𝑛3, then the probability that there are two nodes that choose the same identifier is at most 1/𝑛, by a

union bound over all pairs of nodes. Hence, a deterministic algorithm solving Π in 𝑜 (log∗ 𝑛) rounds can be transformed

into a randomized algorithm with the same runtime and a failure probability of at most 1/𝑛 by having each node create

its own identifier from its random bits before executing the deterministic algorithm. Thus, we can assume that the

𝑜 (log∗ 𝑛)-round algorithm for Π guaranteed in the theorem is randomized and fails with probability at most 1/𝑛. Let A
denote this algorithm, and observe that the bound of 1/𝑛 on the failure probability of A implies that also the local

failure probability of A is bounded by 1/𝑛.
Let𝑇 (𝑛) denote the runtime ofA on the class of 𝑛-node forests from F . Let 𝑛0 be a sufficiently large positive integer;

in particular, we require that

𝑇 (𝑛0) + 2 ≤ logΔ 𝑛0, (3.2)

2𝑇 (𝑛0) + 5 ≤ log
∗ 𝑛0, (3.3)

and (
(𝑆∗)2 · (log𝑛0)2Δ

) (3Δ+3)𝑇 (𝑛
0
)

< 𝑛0 (3.4)

where 𝑆∗ := (10Δ(|ΣΠ
in
| + log𝑛0))4Δ

𝑇 (𝑛
0
)+1

. Since𝑇 (𝑛) ∈ 𝑜 (log∗ 𝑛) (and Δ and ΣΠ
in
are fixed constants), such an 𝑛0 exists.

Moreover, for simplicity, define 𝑓 (·) := R(R(·)), and recall that F𝑛0 denotes the class of all forests from F with 𝑛0

nodes. Repeatedly applying 𝑓 (·), starting with Π, yields a sequence of problems Π, 𝑓 (Π), 𝑓 2 (Π), Our first goal is
to show that there is a 0-round algorithm solving 𝑓 𝑇 (𝑛0) (Π) on F𝑛0 with small local failure probability, by applying

Theorem 3.4 repeatedly.

23

Christoph Grunau, Václav Rozhoň, and Sebastian Brandt

Recall that for any integer 𝑖 ≥ 0, we have Σ
R(𝑓 𝑖 (Π))
out

= 2
Σ
𝑓 𝑖 (Π)
out and Σ

R(R (𝑓 𝑖 (Π)))
out

= 2
Σ
R(𝑓 𝑖 (Π))
out , by definition. This

implies that for any 0 ≤ 𝑖 ≤ 𝑇 (𝑛0), we have

max{|Σ𝑓
𝑖 (Π)

out
|, |ΣR(𝑓 𝑖 (Π))

out
|} ≤ 2

2
. .
.2
ΣΠ
out

where the power tower is of height 2𝑇 (𝑛0) + 3. By (3.3), we obtain that

max{|Σ𝑓
𝑖 (Π)

out
|, |ΣR(𝑓 𝑖 (Π))

out
|} ≤ log𝑛0 for all 0 ≤ 𝑖 ≤ 𝑇 (𝑛0) . (3.5)

Recall that 𝑆∗ = (10Δ(|ΣΠ
in
| + log𝑛0))4Δ

𝑇 (𝑛
0
)+1

and note that Σ
𝑓 𝑇 (𝑛

0
) (Π)

in
= Σ

𝑓 𝑇 (𝑛
0
)−1 (Π)

in
= . . . = ΣΠ

in
. By the above

discussion, we conclude that when applying Theorem 3.4 to problem 𝑓 𝑖 (Π) for some 0 ≤ 𝑖 ≤ 𝑇 (𝑛0), then the parameter

𝑆 in the obtained upper bound 𝑆𝑝1/(3Δ+3) (in Theorem 3.4) is upper bounded by 𝑆∗. Hence, by applying Theorem 3.4

𝑇 (𝑛0) times, each time using the upper bound 𝑆∗𝑝1/(3Δ+3) (instead of 𝑆𝑝1/(3Δ+3) with the respective 𝑆 from Theorem 3.4),

we obtain that there exists a randomized algorithmA∗
solving 𝑓 𝑇 (𝑛0) (Π) on F𝑛0 in 0 rounds with local failure probability

𝑝∗ at most

𝑆∗ · (𝑆∗)1/(3Δ+3) · (𝑆∗)1/(3Δ+3)
2

· . . . · (𝑆∗)1/(3Δ+3)
𝑇 (𝑛

0
)−1

· 1/(𝑛0)1/(3Δ+3)
𝑇 (𝑛

0
)

= (𝑆∗)
∑𝑇 (𝑛

0
)−1

𝑖=0
(1/(3Δ+3)𝑖) · 1/(𝑛0)1/(3Δ+3)

𝑇 (𝑛
0
)

≤ (𝑆∗)2 · 1/(𝑛0)1/(3Δ+3)
𝑇 (𝑛

0
)

< 1/(log𝑛0)2Δ

≤ 1/
(
Σ
𝑓 𝑇 (𝑛

0
) (Π)

out

)
2Δ

,

where the second-to-last inequality follows from (3.4), and the last inequality from (3.5). Note that (3.2) guarantees the

applicability of Theorem 3.4 to the graph class F𝑛0 for our purposes. Moreover, we can assume that A∗
outputs only

labels from Σ
𝑓 𝑇 (𝑛

0
) (Π)

out
(even if it fails), as otherwise we can turn A∗

into such an algorithm (with the same runtime

and a smaller or equally small local failure probability) by simply replacing each label that A∗
outputs at some node

and is not contained in Σ
𝑓 𝑇 (𝑛

0
) (Π)

out
by some arbitrary label from Σ

𝑓 𝑇 (𝑛
0
) (Π)

out
.

Our next step is to show that the obtained bound on the local failure probability 𝑝∗ of A∗
implies that there exists a

deterministic algorithm solving 𝑓 𝑇 (𝑛0) (Π) on F𝑛0 in 0 rounds. To this end, let I be the set of all tuples 𝐼 = (𝑖1, . . . , 𝑖𝑘)
consisting of 𝑘 ∈ {1, . . . ,Δ} labels from ΣΠ

in
, and O the set of all tuples 𝑂 = (𝑜1, . . . , 𝑜𝑘) consisting of 𝑘 ∈ {1, . . . ,Δ}

labels from Σ
𝑓 𝑇 (𝑛

0
) (Π)

out
. We say that 𝐼 = (𝑖1, . . . , 𝑖𝑘), resp. 𝑂 = (𝑜1, . . . , 𝑜𝑘), is the input tuple, resp. output tuple, of some

node 𝑣 if deg(𝑣) = 𝑘 and, for each 1 ≤ 𝑗 ≤ 𝑘 , we have that 𝑖 𝑗 is the input label assigned to, resp. the output label

returned by A∗
at, the half-edge incident to 𝑣 corresponding to port 𝑗 at 𝑣 .

Since the runtime of A∗
is 0 rounds, any node 𝑣 chooses its output tuple solely based on its random bit string and

its input tuple. We now define a function A
det

: I → O (that will constitute the desired deterministic algorithm) as

follows. Consider an arbitrary tuple 𝐼 = (𝑖1, . . . , 𝑖𝑘) ∈ I and let 𝑣 be a node with input label 𝐼 . Since A∗
outputs only

labels from Σ
𝑓 𝑇 (𝑛

0
) (Π)

out
and 𝑘 ≤ Δ, there are at most

(
Σ
𝑓 𝑇 (𝑛

0
) (Π)

out

)Δ
different possibilities for the output tuple of 𝑣 . Hence,

there exists a tuple 𝑂 ∈ O that 𝑣 outputs with probability at least 1/
(
Σ
𝑓 𝑇 (𝑛

0
) (Π)

out

)Δ
(when executing A∗

). Fix such an 𝑂

arbitrarily, and set A
det

(𝐼) = 𝑂 . This concludes the description of A
det

. Note that the definition of A
det

is independent

24

The Landscape of Distributed Complexities on Trees and Beyond

of the choice of 𝑣 (under the given restrictions) as the only relevant parameters are the input tuple at 𝑣 (which is fixed)

and the random bit string at 𝑣 (which comes from the same distribution for each node).

We claim that for any two (not necessarily distinct) configurations 𝐼 , 𝐼 ′ ∈ I, and any two (not necessarily distinct)

labels 𝑜 ∈ A
det

(𝐼) and 𝑜 ′ ∈ A
det

(𝐼 ′), we have {𝑜, 𝑜 ′} ∈ E𝑓 𝑇 (𝑛
0
) (Π) . For a contradiction, assume that there are two

configurations 𝐼 = (𝑖1, . . . , 𝑖𝑘), 𝐼 ′ = (𝑖 ′
1
, . . . , 𝑖 ′

𝑘′
) from I and two labels 𝑜 ∈ A

det
(𝐼) and 𝑜 ′ ∈ A

det
(𝐼 ′) satisfying

{𝑜, 𝑜 ′} ∉ E𝑓 𝑇 (𝑛
0
) (Π) . Let 𝑂 = (𝑜1, . . . , 𝑜𝑘) and 𝑂 ′ = (𝑜 ′

1
, . . . , 𝑜 ′

𝑘′
) be the tuples that 𝐼 and 𝐼 ′, respectively, are mapped

to by A
det

, i.e., A𝑑𝑒𝑡 (𝐼) = 𝑂 and A
det

(𝐼 ′) = 𝑂 ′
. Let 𝑗 ∈ {1, . . . , 𝑘} and 𝑗 ′ ∈ {1, . . . , 𝑘 ′} be two ports/indices such that

𝑜 𝑗 = 𝑜 and 𝑜
′
𝑗 ′ = 𝑜

′
. Consider a forest (with 𝑛0 nodes) containing two adjacent nodes 𝑣, 𝑣 ′ such that 𝐼 is the input tuple

of 𝑣 , 𝐼 ′ is the input tuple of 𝑣 ′, and the edge 𝑒 := {𝑣, 𝑣 ′} corresponds to port 𝑗 at 𝑣 and to port 𝑗 ′ at 𝑣 ′. By the definition

of A
det

, we know that, when executing A∗
, the probability that 𝑣 outputs 𝑜 on half-edge (𝑣, 𝑒) and the probability that

𝑣 ′ outputs 𝑜 ′ on half-edge (𝑣 ′, 𝑒) are each at least 1/
(
Σ
𝑓 𝑇 (𝑛

0
) (Π)

out

)Δ
. Since these two events are independent (as one

depends on the random bit string of 𝑣 and the other on the random bit string of 𝑣 ′), it follows that the probability that

the output on edge 𝑒 is {𝑜, 𝑜 ′} is at least 1/
(
Σ
𝑓 𝑇 (𝑛

0
) (Π)

out

)
2Δ

. Now, {𝑜, 𝑜 ′} ∉ E𝑓 𝑇 (𝑛
0
) (Π) yields a contradiction to the fact

the local failure probability of A∗
is strictly smaller than 1/

(
Σ
𝑓 𝑇 (𝑛

0
) (Π)

out

)
2Δ

, proving the claim.

Observe that for any configuration 𝐼 = (𝑖1, . . . , 𝑖𝑘) from I, we also have that

(1) A
det

(𝐼) (or, more precisely, the unordered underlying multiset) is contained in N𝑘

𝑓 𝑇 (𝑛
0
) (Π) , and

(2) for each port 1 ≤ 𝑗 ≤ 𝑘 , the entry from A
det

(𝐼) corresponding to port 𝑗 is contained in 𝑔𝑓 𝑇 (𝑛
0
) (Π) (𝑖 𝑗),

as otherwise for each node 𝑣 with input tuple 𝐼 , algorithm A∗
would fail at 𝑣 with probability at least 1/

(
Σ
𝑓 𝑇 (𝑛

0
) (Π)

out

)Δ
,

yielding again a contradiction to the aforementioned upper bound on the local failure probability of A∗
. By the above

discussion, we conclude that the output returned by A
det

is correct at each node and each edge, and therefore A
det

constitutes a deterministic 0-round algorithm solving 𝑓 𝑇 (𝑛0) (Π) on F𝑛0 .
By definition, algorithm A

det
is simply a function from I to O. Hence, while technically A

det
has been defined only

for forests from F𝑛0 , we can execute A
det

also on forests with an arbitrary number of nodes and it will still yield a

correct output. We conclude that A
det

constitutes a deterministic 0-round algorithm solving 𝑓 𝑇 (𝑛0) (Π) on F .

Now, we can simply apply Lemma 3.9𝑇 (𝑛0) times, starting with 𝑓 𝑇 (𝑛0) (Π), and obtain that there exists a deterministic

algorithm solving Π on F in 𝑇 (𝑛0) rounds (which implies the existence of a randomized algorithm solving Π on F in

𝑇 (𝑛0) rounds, using the same argument as in the beginning of the proof). As 𝑛0 is a fixed positive integer (depending

only on Δ and Π), it follows that Π can be solved in constant time on F (both deterministically and randomized). □

Now, by combining Theorem 3.10 with Lemma 3.3 and Lemma 2.6 (which guarantees that Lemma 3.3, which is stated

for node-edge-checkable LCL problems, can be applied), we obtain our main result as a corollary.

Theorem 3.11 (Formal version of Theorem 1.1). Let Π be an arbitrary LCL problem that has (deterministic or

randomized) complexity𝑜 (log∗ 𝑛) onT . ThenΠ can be solved in constant time onT (both deterministically and randomized).

4 THE VOLUME MODEL GAP

In this section, we show that a deterministic or randomized VOLUME algorithm (LCA) with a probe complexity of

𝑜 (log∗ 𝑛) implies a deterministic VOLUME algorithm (LCA) with a probe complexity of𝑂 (1). We first show the speed-up

only for deterministic VOLUME algorithms and later discuss how to extend the result to the full generality.

25

Christoph Grunau, Václav Rozhoň, and Sebastian Brandt

Theorem 4.1. There does not exist an LCL with a deterministic VOLUME complexity between 𝜔 (1) and 𝑜 (log∗ 𝑛).

Proof. Consider some LCL Π = (Σin, Σout, 𝑟 ,P). Let A be a VOLUME model algorithm with a probe complexity of

𝑇 (𝑛) = 𝑜 (log∗ 𝑛) that solves Π. We show that this implies the existence of a VOLUME model algorithm that solves Π

and has a probe complexity of 𝑂 (1). To do so, we first show that we can turn A into an order-invariant algorithm with

the same probe complexity. Once we have shown this, Theorem 2.11, which shows a speed-up result for order-invariant

algorithms, implies that there also exists a VOLUME model algorithm for Π with a probe complexity of𝑂 (1), as needed.
We start by proving the lemma below, which, informally speaking, states that there exists a sufficiently large set

𝑆𝑛 ⊆ [𝑛] such that A is order-invariant as long as the IDs it "encounters" are from the set 𝑆𝑛 . The proof adapts a

Ramsey-theoretic argument first introduced in [41] and further refined in [19] in the context of the LOCAL model to

the VOLUME model.

Lemma 4.2. There exists a 𝑛0 ∈ N such that the following holds for every 𝑛 ≥ 𝑛0. There exists a set 𝑆𝑛 ⊆ [𝑛] of size
(𝑇 (𝑛) + 1) · Δ𝑟+1 such that for every 𝑖 ∈ [𝑇 (𝑛) + 1] and 𝑡, 𝑡 ′ ∈ 𝑇𝑢𝑝𝑙𝑒𝑠𝑖,𝑆𝑛 it holds that 𝑓𝑛,𝑖 (𝑡) = 𝑓𝑛,𝑖 (𝑡 ′) if 𝑡 and 𝑡 ′ are
almost identical.

Proof. Consider an 𝑛 ∈ N. We denote with 𝐻 a complete (𝑇 (𝑛) + 1)-uniform hypergraph on 𝑛 nodes. Each node in

𝐻 corresponds to a (unique) ID in the set {1, 2, . . . , 𝑛}. For each hyperedge 𝑋 ⊆ {1, 2, . . . , 𝑛} we define a function 𝑓𝑋 .
The input to 𝑓𝑋 is a tuple 𝑡 = (𝑡1, . . . , 𝑡𝑇 (𝑛)+1) ∈ 𝑇𝑢𝑝𝑙𝑒𝑠𝑇 (𝑛)+1, [𝑇 (𝑛)+1] . For 𝑗 ∈ [𝑇 (𝑛) + 1], let 𝑡 𝑗 = (𝑖𝑑 𝑗 , 𝑑𝑒𝑔 𝑗 , 𝑖𝑛 𝑗).

We define a new tuple 𝑡𝑋
𝑗
= (𝑖𝑑𝑋

𝑗
, 𝑑𝑒𝑔 𝑗 , 𝑖𝑛 𝑗), where 𝑖𝑑𝑋𝑗 is the 𝑖𝑑 𝑗 -th smallest element in 𝑋 . We now define

𝑓𝑋 (𝑡) = (𝑓𝑛,1 (𝑡𝑋1), 𝑓𝑛,2 (𝑡𝑋1 , 𝑡
𝑋
2
), . . . , 𝑓𝑛,𝑇 (𝑛)+1 (𝑡𝑋1 , 𝑡

𝑋
2
, . . . , 𝑡𝑋

𝑇 (𝑛)+1)).

We now prove two things. First, we show that for 𝑛 being sufficiently large, there exists a set 𝑆
𝑏𝑖𝑔
𝑛 ⊆ [𝑛] of size

(𝑇 (𝑛) + 1) · Δ𝑟+1 +𝑇 (𝑛) + 1 such that for any two hyperedges 𝑋,𝑌 ⊆ 𝑆𝑏𝑖𝑔𝑛 , 𝑓𝑋 = 𝑓𝑌 . This will follow by Ramsey Theory

and an upper bound on the number of possible different functions 𝑓𝑋 . Second, let 𝑆𝑛 be the set one obtains from 𝑆
𝑏𝑖𝑔
𝑛 by

discarding the 𝑇 (𝑛) + 1 largest elements of 𝑆
𝑏𝑖𝑔
𝑛 . We show that 𝑆𝑛 satisfies the conditions of Lemma 4.2.

For the Ramsey-theoretic argument, we start by upper bounding the total number of possible functions. Note

that |𝑇𝑢𝑝𝑙𝑒𝑠 [𝑇 (𝑛)+1] | ≤ (𝑇 (𝑛) + 1) · Δ · |Σ𝑖𝑛 |Δ and therefore the possible number of inputs to the function 𝑓 𝑋 is

|𝑇𝑢𝑝𝑙𝑒𝑠𝑇 (𝑛)+1, [𝑇 (𝑛)+1] | ≤
(
(𝑇 (𝑛) + 1) · Δ · |Σ𝑖𝑛 |Δ

)𝑇 (𝑛)+1
= 𝑇 (𝑛)𝑂 (𝑇 (𝑛))

. Note that the output of 𝑓𝑋 is contained in the

set

(>𝑇 (𝑛)
𝑖=1

([𝑖] × [Δ])
)
× (Σ𝑜𝑢𝑡) [Δ] and therefore there are at most (𝑇 (𝑛) · Δ)𝑇 (𝑛) · |Σ𝑜𝑢𝑡 |Δ = 𝑇 (𝑛)𝑂 (𝑇 (𝑛))

possible

outputs. Hence, there exist at most

(
𝑇 (𝑛)𝑂 (𝑇 (𝑛))

)𝑇 (𝑛)𝑂 (𝑇 (𝑛))

different possible functions. Let 𝑅(𝑝,𝑚, 𝑐) denote the

smallest number such that any 𝑝-uniform complete hypergraph on 𝑅(𝑝,𝑚, 𝑐) nodes with each hyperedge being assigned

one of 𝑐 colors contains a monochromatic clique of size𝑚. It holds that log
∗ (𝑅(𝑝,𝑚, 𝑐)) = 𝑝 + log

∗𝑚 + log
∗ 𝑐 +𝑂 (1)

[21].

Setting 𝑝 = 𝑇 (𝑛) + 1, 𝑚 = (𝑇 (𝑛) + 1) · Δ𝑟+1 + 𝑇 (𝑛) + 1 and 𝑐 =

(
𝑇 (𝑛)𝑂 (𝑇 (𝑛))

)𝑇 (𝑛)𝑂 (𝑇 (𝑛))

, we can conclude

that 𝐻 contains a set 𝑆
𝑏𝑖𝑔
𝑛 ⊆ [𝑛] of size 𝑚 such that for any two hyperedges 𝑋,𝑌 ⊆ 𝑆

𝑏𝑖𝑔
𝑛 , 𝑓𝑋 = 𝑓𝑌 as long as

log
∗ (𝑛) ≥ 𝑇 (𝑛)+1+ log∗𝑚+ log∗ 𝑐+𝑂 (1), which is the case for sufficiently large 𝑛 as𝑇 (𝑛) = 𝑜 (log∗ 𝑛), log∗𝑚 = 𝑜 (𝑇 (𝑛))

and log
∗ 𝑐 = 𝑜 (𝑇 (𝑛)).

Now, let 𝑆𝑛 be the set one obtains form 𝑆
𝑏𝑖𝑔
𝑛 by discarding the 𝑇 (𝑛) + 1 largest elements from 𝑆

𝑏𝑖𝑔
𝑛 . Let 𝑖 ∈ [𝑇 (𝑛) + 1]

and 𝑡 (ℓ) = ((𝑖𝑑ℓ
1
, 𝑑𝑒𝑔1, 𝑖𝑛1), (𝑖𝑑ℓ

2
, 𝑑𝑒𝑔2, 𝑖𝑛2), . . . , (𝑖𝑑ℓ𝑖 , 𝑑𝑒𝑔𝑖 , 𝑖𝑛𝑖)) ∈ 𝑇𝑢𝑝𝑙𝑒𝑠𝑖,𝑆𝑛 for ℓ ∈ [2] such that 𝑡 (1) and 𝑡 (2) are almost

26

The Landscape of Distributed Complexities on Trees and Beyond

identical. It remains to show that 𝑓𝑛,𝑖 (𝑡 (1)) = 𝑓𝑛,𝑖 (𝑡 (2)). For ℓ ∈ [2], let 𝑋 ℓ ⊆ 𝑆𝑏𝑖𝑔𝑛 such that {𝑖𝑑ℓ
1
, 𝑖𝑑ℓ

2
, . . . , 𝑖𝑑ℓ

𝑖
} contains

the |{𝑖𝑑ℓ
1
, 𝑖𝑑ℓ

2
, . . . , 𝑖𝑑ℓ

𝑖
}|-th lowest elements of 𝑋 ℓ . Now, let 𝑡 = (𝑡1, 𝑡2, . . . , 𝑡𝑇 (𝑛)+1) ∈ 𝑆𝑇 (𝑛)+1, [𝑇 (𝑛)+1] such that for every

𝑗 ∈ [𝑖], 𝑡𝑋 ℓ

𝑗
= (𝑖𝑑ℓ

𝑗
, 𝑑𝑒𝑔 𝑗 , 𝑖𝑛 𝑗) . Note that it follows from the way we defined 𝑋 1

and 𝑋 2
and the fact that 𝑡 (1) and 𝑡 (2)

are almost identical that such a tuple 𝑡 exists. As 𝑋 ℓ ⊆ 𝑆𝑏𝑖𝑔𝑛 , we have 𝑓𝑋 1 (𝑡) = 𝑓𝑋 2 (𝑡). In particular, this implies that

𝑓𝑛,𝑖 (𝑡 (1)) = 𝑓𝑛,𝑖 (𝑡𝑋
1

1
, 𝑡𝑋

1

2
, . . . , 𝑡𝑋

1

𝑖) = 𝑓𝑛,𝑖 (𝑡𝑋
2

1
, 𝑡𝑋

2

2
, . . . , 𝑡𝑋

2

𝑖) = 𝑓𝑛,𝑖 (𝑡 (2)),

which finishes the proof.

□

We now construct an order-invariant algorithm A ′
with probe complexity 𝑇 ′(𝑛) = max(𝑂 (1),𝑇 (𝑛)) = 𝑜 (log∗ 𝑛).

Note that it is easy to make A ′
order-invariant for every input graph having fewer than 𝑛0 nodes. For 𝑛 ≥ 𝑛0, we have

𝑇 ′(𝑛) = 𝑇 (𝑛) and for every 𝑖 ∈ {1, 2, . . . ,𝑇 ′(𝑛)} and tuple 𝑡 = ((𝑖𝑑1, 𝑑𝑒𝑔1, 𝑖𝑛1), (𝑖𝑑2, 𝑑𝑒𝑔2, 𝑖𝑛2), . . . , (𝑖𝑑𝑖 , 𝑑𝑒𝑔𝑖 , 𝑖𝑛𝑖)) ∈
𝑇𝑢𝑝𝑙𝑒𝑠𝑖,N, we define

𝑓 A
′

𝑛,𝑖 (𝑡) = 𝑓
A
𝑛,𝑖 (𝑡

′ = (𝑖𝑑 ′
1
, 𝑑𝑒𝑔1, 𝑖𝑛1), (𝑖𝑑 ′2, 𝑑𝑒𝑔2, 𝑖𝑛2), . . . , (𝑖𝑑

′
𝑖 , 𝑑𝑒𝑔𝑖 , 𝑖𝑛𝑖))

where 𝑖𝑑 ′
1
, . . . , 𝑖𝑑 ′

𝑖
is chosen in such a way that {𝑖𝑑 ′

1
, . . . , 𝑖𝑑 ′

𝑖
} contains the |{𝑖𝑑 ′

1
, . . . , 𝑖𝑑 ′

𝑖
}|-th smallest elements of 𝑆𝑛

and 𝑡 and 𝑡 ′ are almost identical. It is easy to verify that A ′
is indeed order-invariant.

It remains to show that A ′
indeed solves Π. For the sake of contradiction, assume that this is not the case. This

implies the existence of a Σ𝑖𝑛-labeled graph (𝐺, 𝑓𝑖𝑛) on 𝑛 nodes (with each node having a unique ID from a polynomial

range, a port assignment, and𝐺 does not have any isolated nodes) such that A ′
"fails" on (𝐺, 𝑓𝑖𝑛). Put differently, there

exists a node 𝑣 such that A ′
produces a mistake in the 𝑟 -hop neighborhood of 𝑣 . The 𝑟 -hop neighborhood of 𝑣 consists

of at most Δ𝑟+1 vertices. To answer a given query,A ′
"sees" at most𝑇 (𝑛) + 1 nodes. Hence, to compute the output of all

the half-edges in the 𝑟 -hop neighborhood of 𝑣 , A ′
"sees" at most Δ𝑟+1 (𝑇 (𝑛) + 1) ≤ |𝑆𝑛 | many nodes. We denote this set

of nodes by𝑉 𝑣𝑖𝑠𝑖𝑏𝑙𝑒 . Even if the IDs of nodes outside of𝑉 𝑣𝑖𝑠𝑖𝑏𝑙𝑒 are changed, A ′
still fails around 𝑣 . Moreover, as A ′

is

order-invariant, changing the IDs of the nodes in𝑉 𝑣𝑖𝑠𝑖𝑏𝑙𝑒 in a manner that preserves the relative order does not change

the fact that A ′
fails around 𝑣 . Hence, we can find a new assignment of IDs such that each node in 𝑉 𝑣𝑖𝑠𝑖𝑏𝑙𝑒 is assigned

an ID from the set 𝑆𝑛 such that A ′
still fails around 𝑣 . However, from the way we defined A ′

and the property that 𝑆𝑛

satisfies, it follows that A ′
and A produce the same output in the 𝑟 -hop neighborhood around 𝑣 . This contradicts the

fact that A is a correct algorithm.

□

We already argued in the preliminaries that Theorem 4.1 also implies that there does not exist an LCL with a

deterministic LCA complexity between 𝜔 (1) and 𝑜 (log∗ 𝑛).
As noted in [42], the derandomization result by [19] can be used to show that randomness does not help (up to an

additive constant in the round/probe complexity) in the LOCAL and VOLUME model for complexities in 𝑂 (log∗ 𝑛),
and the same is true for the LCA model.

Hence, we obtain the following more general theorem.

Theorem 4.3. There does not exist an LCL with a randomized/deterministic LCA/VOLUME complexity between 𝜔 (1)
and 𝑜 (log∗ 𝑛).

27

Christoph Grunau, Václav Rozhoň, and Sebastian Brandt

5 SPEEDUP IN GRIDS

In this section we prove that on 𝑑-dimensional oriented grids, any 𝑜 (log∗ 𝑛)-round LOCAL algorithm for an LCL

problem Π (with input labels) can be turned into a LOCAL algorithm for Π with a round complexity of 𝑂 (1). An
oriented 𝑑-dimensional grid is a grid where each edge is labeled with a label from [𝑑] that says which dimension this

edge corresponds to. Moreover, all edges corresponding to the same dimension are consistently oriented. The grid is

assumed to be toroidal, that is, without boundaries. We believe, but do not prove, that the same result can be shown

also for non-toroidal grids, that is, grids with boundaries. From now on fix a dimension 𝑑 .

Theorem 5.1. There is no LCL problem Π with a randomized/deterministic LOCAL complexity between 𝜔 (1) and
𝑜 (log∗ 𝑛) in 𝑑-dimensional oriented grids for 𝑑 = 𝑂 (1).

The proof of the speedup is a relatively simple extension of an argument of Suomela in the paper of Chang and Pettie

[19]. There, the argument is proven for LCLs without inputs on unoriented grids. It shows that every 𝑜 (log∗ 𝑛)-round
algorithm can be even sped up to a 0-round algorithm. This is not the case anymore with inputs, which makes the

proof slightly more involved.

The high-level idea of the proof is the following. First, we observe that a LOCAL algorithm on oriented grids implies

a PROD-LOCAL algorithm with the same asymptotic complexity. A PROD-LOCAL algorithm is defined as follows.

Definition 5.2 (PROD-LOCAL model). An algorithm in the PROD-LOCAL model is defined as an algorithm in the

LOCAL model, but it expects that each node 𝑢 ∈ 𝑉 (𝐺) for 𝐺 an oriented grid gets an ordered sequence of 𝑑 identifiers

𝑖𝑑1 (𝑢), . . . , 𝑖𝑑𝑑 (𝑢) ∈ [𝑛𝑂 (1)], one for each dimension of the input grid𝐺 . We require that the 𝑖-th identifier 𝑖𝑑𝑖 (𝑢), 𝑖𝑑𝑖 (𝑣)
of two nodes 𝑢, 𝑣 is the same if and only if the two nodes have the same 𝑖-th coordinate in 𝐺 .

An order-invariant PROD-LOCAL model is defined as follows. We say that two identifier assignments are order-

indistinguishable in some neighborhood around a node 𝑢 if for any two nodes 𝑣,𝑤 in that neighborhood of 𝑢 and any

𝑖, 𝑗 ∈ [𝑑], the 𝑖-th identifier of one node is either smaller than the 𝑗-th identifier of the other node in both ID assignments

or larger in both ID assignments. Then, an order-invariant 𝑡 (𝑛)-round PROD-LOCAL algorithm outputs the same value

at the half edges of a node in case two ID assignments are order-indistinguishable in its 𝑡 (𝑛)-hop neighborhood.

We have the following fact:

Proposition 5.3. If an LCL Π allows has local deterministic/randomized complexity 𝑡 (𝑛) in the LOCAL model, it has

complexity 𝑡 (𝑛) in the PROD-LOCAL model.

Proof. By result of [19], a 𝑡 (𝑛) round randomized algorithm in the local model implies a 𝑡 (2𝑂 (𝑛2)) round deterministic

algorithm. This implies that we can turn an𝑂 (log∗ 𝑛)-rounds randomized algorithm into𝑂 (log∗ 𝑛)-rounds deterministic

one.

Each of the 𝑑 identifiers of a node are bounded by 𝑛𝑐 for some fixed constant 𝑐 in the PROD-LOCALmodel. Assigning

each node the identifier 𝐼 =
∑𝑑
𝑖=1 𝐼𝑖 · 𝑛𝑐 (𝑖−1) , where (𝐼𝑖) is its 𝑖-th identifier results in globally unique identifiers from

a polynomial range. This allows simulation of the deterministic LOCAL algorithm in the PROD-LOCAL model as

needed. □

Next, we argue that an𝑜 (log∗ 𝑛)-round PROD-LOCAL algorithm can be turned into an order-invariant PROD-LOCAL

algorithm. To show the existence of such an order-invariant algorithm, we use a Ramsey theory based argument very

similar to the one in Section 4 and [19].

28

The Landscape of Distributed Complexities on Trees and Beyond

Proposition 5.4. If there is a 𝑡 (𝑛) = 𝑜 (log∗ 𝑛) round PROD-LOCAL algorithm for an LCL Π, then there is also an

order-invariant PROD-LOCAL algorithm with the same round complexity.

Proof. The algorithm A of local complexity 𝑡 (𝑛) can be seen as a function that maps (2𝑡 (𝑛) + 1) × (2𝑡 (𝑛) + 1) sized
grids with edges consistently oriented and labeled with numbers from [𝑑]. Moreover, each vertex has a 𝑑-tuple of its

identifiers and each half-edge a label from Σ𝑖𝑛 . The function A maps this input to an output label for each half-edge

incident to a given node. Let 𝑅(𝑝,𝑚, 𝑐) be defined as in the previous section and let 𝐻 be a hypergraph on 𝑛𝑂 (1)
nodes,

each representing an identifier.

(1) Assume we have a 𝑡 (𝑛)-hop neighborhood already labeled without assigned identifiers and we want to assign

the identifiers. There are at most 𝑝 = 𝑑 · (2𝑡 (𝑛) + 1) numbers to assign.

(2) Assume we have a 𝑡 (𝑛) + 𝑟 -hop neighborhood already labeled without assigned identifiers and we want to assign

the identifiers. There are at most𝑚 = 𝑑 · (2(𝑡 (𝑛) + 𝑟) + 1) numbers to assign. Here, 𝑟 is the local checkability

radius of the problem.

(3) The number 𝑧 is defined to be the number of possible input neighborhoods not labeled with identifiers. We have

𝑧 ≤ |Σ𝑖𝑛 |2𝑑 (2𝑡 (𝑛)+1)
𝑑
. Note that the extra 2𝑑-factor in the exponent comes from the fact that we label half-edges.

(4) Finally, 𝑐 is the number of colors such that each color encodes a distinct function which takes as input one of

the 𝑧 possible neighborhoods labeled with Σ𝑖𝑛 inputs. Moreover, for each such neighborhood we fix a given

permutation on 𝑝 elements 𝜋 . The function outputs a tuple of 𝑑 output labels from Σ𝑜𝑢𝑡 , one entry corresponding

to each half-edge incident to a vertex. Hence, for the number of such colors 𝑐 we have 𝑐 = |Σ𝑜𝑢𝑡 |𝑑𝑝!𝑧 .

We color each 𝑝-edge 𝑇 of 𝐻 by the following color out of 𝑐 colors: we consider all of the 𝑧 possible ways of labeling

the 𝑡 (𝑛)-hop neighborhood with labels from Σ𝑖𝑛 and all 𝑝! ways of how one can assign a set of 𝑝 different identifiers of𝑇

to that neighborhood (we think of𝑇 as a sorted list on which we apply 𝜋 and then in this order we fill in identifiers to the

𝑡 (𝑛)-hop neighborhood). For each such input (out of 𝑝! ·𝑧 possible) we now applyA to that neighborhood and record the

output from Σ𝑑𝑜𝑢𝑡 . This gives one of 𝑐 possible colors. We now use the bound log
∗ 𝑅(𝑝,𝑚, 𝑐) = 𝑝 + log∗𝑚 + log∗ 𝑐 +𝑂 (1)

as in the previous section. Hence, as we assume 𝑡 (𝑛) = 𝑜 (log∗ 𝑛), this implies |𝑉 (𝐻) | ≥ 𝑅(𝑝,𝑚, 𝑐), and therefore there

exists a set 𝑆 ⊆ 𝑉 (𝐻) of𝑚 distinct IDs such that all 𝑝-sized subsets 𝑇 ⊆ 𝑆 have the same color.

We now define the new algorithm A ′
as follows. Let 𝑁 be a neighborhood from the order-invariant PROD-LOCAL

model; take an arbitrary 𝑝-sized subset 𝑇 ⊆ 𝑆 and label 𝑁 with identifiers from 𝑇 by the permutation 𝜋 given by the

order on 𝑁 that we got. Then, apply A on this input.

First, this algorithm is well defined as it does not matter which 𝑇 we pick, the algorithm always answers the same

because every 𝑇 ⊆ 𝑆 is colored by the same color. Second, the algorithm is correct, since for any (𝑡 (𝑛) + 𝑟)-hop
neighborhood that has at most𝑚 vertices we can choose some way of assigning identifiers from 𝑆 (𝑆 = 𝑚) to that

neighbourhood and A ′
answers the same as what A would answer with this assignment of identifiers for all nodes

within the local checkability radius. □

Once we have the order-invariant algorithm with a round complexity of 𝑜 (log∗ 𝑛), an easy adaptation of the proof

for Theorem 2.11 implies that we can turn it into an order-invariant PROD-LOCAL algorithm with a round complexity

of 𝑂 (1). However, because of the oriented-grid, we get a local order on the vertices for free, so we can turn the

order-invariant PROD-LOCAL algorithm into an (order-invariant) LOCAL algorithm, thus finishing the proof.

Proposition 5.5. If an LCL Π has complexity 𝑜 (𝑛1/𝑑) in the order-invariant PROD-LOCAL model, it has determinis-

tic/randomized/deterministic order-invariant local complexity 𝑂 (1) in the LOCAL model.
29

Christoph Grunau, Václav Rozhoň, and Sebastian Brandt

Proof. This is an argument very similar to [21]. Let A be the algorithm in the PROD-LOCAL model. We choose 𝑛0

large enough and run A “fooled” into thinking that the size of the grid is 𝑛0. As the order on the identifiers, choose the

order where two identifiers 𝑖𝑑𝑖 (𝑢), 𝑖𝑑 𝑗 (𝑣) have 𝑖𝑑𝑖 (𝑢) < 𝑖𝑑 𝑗 (𝑣) if and only if either 𝑖 < 𝑗 or 𝑖 = 𝑗 and 𝑣 is further than 𝑢

in the 𝑖-th coordinate (the notion of “further than” is given by the orientation of the grid). A standard argument as

in [21] shows that if 𝑛0 is chosen large enough, the “fooled” algorithm needs to be correct, as otherwise A would be

incorrect when being run on grids of size 𝑛0. □

Theorem 5.1 follows by application of Propositions 5.3 to 5.5.

ACKNOWLEDGEMENTS

We would like to thank Yi-Jun Chang, Jan Grebík, and Dennis Olivetti for helpful comments and discussions.

REFERENCES
[1] Noga Alon, Ronitt Rubinfeld, Shai Vardi, and Ning Xie. Space-efficient local computation algorithms. In Proceedings of the twenty-third annual

ACM-SIAM symposium on Discrete Algorithms, pages 1132–1139. SIAM, 2012.

[2] Alkida Balliu, Sebastian Brandt, Yi-Jun Chang, Dennis Olivetti, Mikaël Rabie, and Jukka Suomela. The distributed complexity of locally checkable

problems on paths is decidable. In Peter Robinson and Faith Ellen, editors, Proceedings of the 2019 ACM Symposium on Principles of Distributed
Computing, PODC 2019, Toronto, ON, Canada, July 29 - August 2, 2019, pages 262–271. ACM, 2019. doi:10.1145/3293611.3331606.

[3] Alkida Balliu, Sebastian Brandt, Yuval Efron, Juho Hirvonen, Yannic Maus, Dennis Olivetti, and Jukka Suomela. Classification of distributed binary

labeling problems. In 34th International Symposium on Distributed Computing, DISC 2020, October 12-16, 2020, Virtual Conference, pages 17:1–17:17,
2020. arXiv:1911.13294, doi:10.4230/LIPIcs.DISC.2020.17.

[4] Alkida Balliu, Sebastian Brandt, Juho Hirvonen, Dennis Olivetti, Mikaël Rabie, and Jukka Suomela. Lower bounds for maximal matchings and

maximal independent sets. In Proc. Foundations of Computer Science (FOCS), 2019.
[5] Alkida Balliu, Sebastian Brandt, Fabian Kuhn, and Dennis Olivetti. Distributed Δ-coloring plays hide-and-seek. CoRR, abs/2110.00643, 2021. URL:

https://arxiv.org/abs/2110.00643, arXiv:2110.00643.

[6] Alkida Balliu, Sebastian Brandt, and Dennis Olivetti. Distributed lower bounds for ruling sets. In 61st IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 365–376, 2020. arXiv:2004.08282, doi:10.1109/FOCS46700.2020.
00042.

[7] Alkida Balliu, Sebastian Brandt, Dennis Olivetti, Jan Studený, Jukka Suomela, and Aleksandr Tereshchenko. Locally checkable problems in rooted

trees. In Avery Miller, Keren Censor-Hillel, and Janne H. Korhonen, editors, PODC ’21: ACM Symposium on Principles of Distributed Computing,
Virtual Event, Italy, July 26-30, 2021, pages 263–272. ACM, 2021. doi:10.1145/3465084.3467934.

[8] Alkida Balliu, Sebastian Brandt, Dennis Olivetti, and Jukka Suomela. Almost global problems in the local model. Distributed Computing, pages 1–23,
2020.

[9] Alkida Balliu, Keren Censor-Hillel, Yannic Maus, Dennis Olivetti, and Jukka Suomela. Locally checkable labelings with small messages. In Seth

Gilbert, editor, 35th International Symposium on Distributed Computing, DISC 2021, October 4-8, 2021, Freiburg, Germany (Virtual Conference), volume

209 of LIPIcs, pages 8:1–8:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.DISC.2021.8.

[10] Alkida Balliu, Juho Hirvonen, Janne H Korhonen, Tuomo Lempiäinen, Dennis Olivetti, and Jukka Suomela. New classes of distributed time

complexity. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, pages 1307–1318, 2018.
[11] Alkida Balliu, Juho Hirvonen, Dennis Olivetti, and Jukka Suomela. Hardness of minimal symmetry breaking in distributed computing. In Proceedings

of the 2019 ACM Symposium on Principles of Distributed Computing, pages 369–378, 2019.
[12] Anton Bernshteyn. Distributed algorithms, the Lovász local lemma, and descriptive combinatorics. arXiv preprint arXiv:2004.04905, 2020.
[13] S. Brandt, O. Fischer, J. Hirvonen, B. Keller, T. Lempiäinen, J. Rybicki, J. Suomela, and J. Uitto. A lower bound for the distributed Lovász local lemma.

In Proc. 48th ACM Symp. on Theory of Computing (STOC), pages 479–488, 2016.
[14] Sebastian Brandt. An automatic speedup theorem for distributed problems. In Proceedings of the 2019 ACM Symposium on Principles of Distributed

Computing, PODC 2019, Toronto, ON, Canada, July 29 - August 2, 2019, pages 379–388, 2019. doi:10.1145/3293611.3331611.
[15] Sebastian Brandt, Yi-Jun Chang, Jan Grebík, Christoph Grunau, Václav Rozhon, and Zoltán Vidnyánszky. Local problems on trees from the

perspectives of distributed algorithms, finitary factors, and descriptive combinatorics. In Mark Braverman, editor, 13th Innovations in Theoretical
Computer Science Conference, ITCS 2022, January 31 - February 3, 2022, Berkeley, CA, USA, volume 215 of LIPIcs, pages 29:1–29:26. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.ITCS.2022.29.

[16] Sebastian Brandt, Christoph Grunau, and Václav Rozhon. The randomized local computation complexity of the Lovász local lemma. In Avery Miller,

Keren Censor-Hillel, and Janne H. Korhonen, editors, PODC ’21: ACM Symposium on Principles of Distributed Computing, Virtual Event, Italy, July
26-30, 2021, pages 307–317. ACM, 2021. doi:10.1145/3465084.3467931.

30

https://doi.org/10.1145/3293611.3331606
http://arxiv.org/abs/1911.13294
https://doi.org/10.4230/LIPIcs.DISC.2020.17
https://arxiv.org/abs/2110.00643
http://arxiv.org/abs/2110.00643
http://arxiv.org/abs/2004.08282
https://doi.org/10.1109/FOCS46700.2020.00042
https://doi.org/10.1109/FOCS46700.2020.00042
https://doi.org/10.1145/3465084.3467934
https://doi.org/10.4230/LIPIcs.DISC.2021.8
https://doi.org/10.1145/3293611.3331611
https://doi.org/10.4230/LIPIcs.ITCS.2022.29
https://doi.org/10.1145/3465084.3467931

The Landscape of Distributed Complexities on Trees and Beyond

[17] Sebastian Brandt, Juho Hirvonen, Janne H. Korhonen, Tuomo Lempiäinen, Patric R. J. Östergård, Christopher Purcell, Joel Rybicki, Jukka Suomela, and

PrzemyslawUznanski. LCL problems on grids. In EladMichael Schiller and Alexander A. Schwarzmann, editors, Proceedings of the ACM Symposium on
Principles of Distributed Computing, PODC 2017, Washington, DC, USA, July 25-27, 2017, pages 101–110. ACM, 2017. doi:10.1145/3087801.3087833.

[18] Y.-J. Chang, Q. He, W. Li, S. Pettie, and J. Uitto. The complexity of distributed edge coloring with small palettes. In Proc. 29th ACM-SIAM Symp. on
Discrete Algorithms, pages 2633–2652, 2018.

[19] Y.-J. Chang, T. Kopelowitz, and S. Pettie. An exponential separation between randomized and deterministic complexity in the LOCAL model. In

Proc. 57th IEEE Symp. on Foundations of Computer Science (FOCS), 2016.
[20] Yi-Jun Chang. The Complexity Landscape of Distributed Locally Checkable Problems on Trees. In Hagit Attiya, editor, 34th International Symposium on

Distributed Computing (DISC 2020), volume 179 of Leibniz International Proceedings in Informatics (LIPIcs), pages 18:1–18:17, Dagstuhl, Germany, 2020.

Schloss Dagstuhl–Leibniz-Zentrum für Informatik. URL: https://drops.dagstuhl.de/opus/volltexte/2020/13096, doi:10.4230/LIPIcs.DISC.2020.18.

[21] Yi-Jun Chang and Seth Pettie. A time hierarchy theorem for the LOCAL model. In Proc. 58th IEEE Symp. on Foundations of Computer Science (FOCS),
pages 156–167, 2017.

[22] Yi-Jun Chang, Jan Studený, and Jukka Suomela. Distributed graph problems through an automata-theoretic lens. In Tomasz Jurdzinski and Stefan

Schmid, editors, Structural Information and Communication Complexity - 28th International Colloquium, SIROCCO 2021, Wrocław, Poland, June 28 -
July 1, 2021, Proceedings, volume 12810 of Lecture Notes in Computer Science, pages 31–49. Springer, 2021. doi:10.1007/978-3-030-79527-6_3.

[23] Richard Cole and Uzi Vishkin. Deterministic coin tossing with applications to optimal parallel list ranking. Information and Control, 70(1):32–53,
1986.

[24] Clinton T. Conley, Jan Grebík, and Oleg Pikhurko. Divisibility of spheres with measurable pieces, 2020. arXiv:2012.07567.

[25] Manuela Fischer, Mohsen Ghaffari, and Fabian Kuhn. Deterministic distributed edge-coloring via hypergraph maximal matching. In Proc. 58th IEEE
Symp. on Foundations of Computer Science (FOCS), 2017.

[26] Mohsen Ghaffari, Christoph Grunau, and Václav Rozhon. Improved deterministic network decomposition. In Dániel Marx, editor, Proceedings
of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 2904–2923. SIAM, 2021.

doi:10.1137/1.9781611976465.173.

[27] Mohsen Ghaffari, David Harris, and Fabian Kuhn. On derandomizing local distributed algorithms. In Proc. Foundations of Computer Science (FOCS),
pages 662–673, 2018.

[28] Mohsen Ghaffari, Fabian Kuhn, and Jara Uitto. Conditional hardness results for massively parallel computation from distributed lower bounds. In

Proc. Foundations of Computer Science (FOCS), 2019.
[29] Mohsen Ghaffari and Hsin-Hao Su. Distributed degree splitting, edge coloring, and orientations. In Proceedings of the Twenty-Eighth Annual

ACM-SIAM Symposium on Discrete Algorithms, pages 2505–2523. Society for Industrial and Applied Mathematics, 2017.

[30] Mika Göös, Juho Hirvonen, Reut Levi, Moti Medina, and Jukka Suomela. Non-local probes do not help with many graph problems. In Cyril Gavoille

and David Ilcinkas, editors, Distributed Computing, pages 201–214, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

[31] Lukasz Grabowski, András Máthé, and Oleg Pikhurko. Measurable circle squaring. Ann. of Math., 185(2):671–710, 2017.
[32] Jan Grebík and Václav Rozhoň. Of toasts and tails, 2021. arXiv:2103.08394.

[33] Alexander Holroyd, Thomas Liggett, et al. Symmetric 1-dependent colorings of the integers. Electronic Communications in Probability, 20, 2015.
[34] Alexander E. Holroyd, Oded Schramm, and David B. Wilson. Finitary coloring. Ann. Probab., 45(5):2867–2898, 09 2017. doi:10.1214/16-AOP1127.
[35] Miklós Laczkovich. Equidecomposability and discrepancy; a solution of Tarski’s circle-squaring problem. J. Reine Angew. Math., 404:77–117, 1990.
[36] Nathan Linial. Distributive graph algorithms – global solutions from local data. In Proc. 28th IEEE Symp. on Foundations of Computer Science (FOCS),

pages 331–335, 1987.

[37] Nati Linial. Locality in distributed graph algorithms. SIAM Journal on Computing, 21(1):193–201, 1992.
[38] Andrew S. Marks and Spencer T. Unger. Borel circle squaring. Ann. of Math., 186(2):581–605, 2017.
[39] András Máthé, Jonathan A. Noel, and Oleg Pikhurko. Circle squaring with Jordan measurable pieces. work in progress.
[40] Moni Naor. A lower bound on probabilistic algorithms for distributive ring coloring. SIAM Journal on Discrete Mathematics, 4(3):409–412, 1991.
[41] Moni Naor and Larry Stockmeyer. What can be computed locally? SIAM Journal on Computing, 24(6):1259–1277, 1995.
[42] Will Rosenbaum and Jukka Suomela. Seeing far vs. seeing wide: Volume complexity of local graph problems. In Proceedings of the 39th Symposium

on Principles of Distributed Computing, PODC ’20, page 89–98, New York, NY, USA, 2020. Association for Computing Machinery. doi:10.1145/

3382734.3405721.

[43] Václav Rozhoň and Mohsen Ghaffari. Polylogarithmic-time deterministic network decomposition and distributed derandomization. In Proc. Sympo-
sium on Theory of Computation (STOC), 2020.

[44] Ronitt Rubinfeld, Gil Tamir, Shai Vardi, and Ning Xie. Fast local computation algorithms. arXiv preprint arXiv:1104.1377, 2011.
[45] Yinon Spinka. Finitely dependent processes are finitary. Ann. Probab., 48(4):2088–2117, 2020.
[46] Jukka Suomela. Landscape of locality. https://jukkasuomela.fi/landscape-of-locality/, 2020.

31

https://doi.org/10.1145/3087801.3087833
https://drops.dagstuhl.de/opus/volltexte/2020/13096
https://doi.org/10.4230/LIPIcs.DISC.2020.18
https://doi.org/10.1007/978-3-030-79527-6_3
http://arxiv.org/abs/2012.07567
https://doi.org/10.1137/1.9781611976465.173
http://arxiv.org/abs/2103.08394
https://doi.org/10.1214/16-AOP1127
https://doi.org/10.1145/3382734.3405721
https://doi.org/10.1145/3382734.3405721
https://jukkasuomela.fi/landscape-of-locality/

	Abstract
	1 Introduction
	1.1 Main Contribution: Finishing the Classification of LCLs on Trees
	1.2 Speedup in the VOLUME Model
	1.3 Speedup in Oriented Grids
	1.4 Decidability
	1.5 Organization of the Paper

	2 Preliminaries
	2.1 LOCAL Model and LCL Problems
	2.2 Order-Invariant Algorithms

	3 The LOCAL Model Gap on Trees
	3.1 The Problem Sequence
	3.2 From Harder to Easier Problems
	3.3 From Easier to Harder Problems
	3.4 Proving the Gap

	4 The VOLUME Model Gap
	5 Speedup in Grids
	References

