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Abstract

We train hierarchical Transformers on the task of synthesizing hardware circuits
directly out of high-level logical specifications in linear-time temporal logic (LTL).
The LTL synthesis problem is a well-known algorithmic challenge with a long
history and an annual competition is organized to track the improvement of algo-
rithms and tooling over time. New approaches using machine learning might open
a lot of possibilities in this area, but suffer from the lack of sufficient amounts of
training data. In this paper, we consider a method to generate large amounts of
additional training data, i.e., pairs of specifications and circuits implementing them.
We ensure that this synthetic data is sufficiently close to human-written specifi-
cations by mining common patterns from the specifications used in the synthesis
competitions. We show that hierarchical Transformers trained on this synthetic
data solve a significant portion of problems from the synthesis competitions, and
even out-of-distribution examples from a recent case study.

1 Introduction
In reactive synthesis, a circuit is automatically constructed from a logical specification given as a
formula in linear-time temporal logic (LTL). LTL is widely used by the verification community and
is the basis for industrial specification languages like the IEEE standard PSL [24]. Efficient synthesis
tools for LTL would simplify the hardware design process: a hardware designer could focus on
specifying what the circuit is supposed to compute, instead of implementing how the computation
is done. LTL synthesis procedures, however, have to invoke involved reasoning engines, which
turn often out to be infeasible when facing real-world problem instances. Much research has been
conducted to push this form of hardware construction process closer to practice (see, for example, the
synthesis of the AMBA protocol [5]). The high computational complexity of the general problem
(2-EXPTIME-complete), however, is so far a barrier that seems insurmountable with classical, e.g.,
automaton-based, approaches. Recent successful applications of machine learning for logical tasks,
such as SAT solving [45, 46], higher-order theorem proving [36, 3], and the LTL trace generation
problem [22] encourage new approaches to the LTL synthesis problem using machine learning.
Similar to the success of machine learning for program synthesis, e.g., [37, 20, 42], machine learning
approaches might open a lot of possibilities in hardware synthesis. For example, secondary design
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(assumptions)
( (¬(i0)))
( ((¬(o2))∨(((¬(i4))∧(¬(i1)))U((¬(i4))∧(i1)))))
→
(guarantees:)

((i0)→( ((¬(i0))∨(o4))))
((i2)→( (o0)))
((i1)→( (o0)))

( ( (o4)))→( (( (i4))∧( (i1))))
((i4)→( (o3)))
( ((¬(o4))∨(¬(o2))))
((o1)→( ((i1)R(((i1)→(o2))∧((¬(i1))→(o0))))))
(( (o3))→(i3))

Figure 1: A specification in our test set, consisting of 2 assumption patterns and 8 guarantee patterns
(left). A circuit, predicted by a hierarchical Transformer, satisfying the specification (right).

goals, which cannot be easily formalized, might be incorporated into the process using natural
language. Applying machine learning to the area of hardware synthesis, however, suffers from a
severe lack of sufficient amounts of training data.

In this paper, we consider a method to generate large amounts of additional training data, i.e., pairs
of specifications and circuits implementing them. We show that hierarchical Transformers [33] can
be trained on the circuit synthesis problem using the generated data and that the models can solve a
significant portion of problems from the annual synthesis competition. In practice, logical hardware
specifications follow specific design patterns [12]. To cope with the data scarcity of this problem, we
propose a method that makes use of specification patterns, from which data for a successful training
can be derived.

For example, a common LTL specification pattern looks as follows: (r→ g). The formula
describes a response property, stating that at every point in time ( ), a request rmust be eventually ( )
followed by a grant g. We obtain these patterns from the annual reactive synthesis competition [25].
We mined 2099 specification patterns from 346 benchmarks, which we split into assumption patterns
and guarantee patterns. Assumption patterns restrict the space of possible inputs (environment
behavior), and guarantee patterns describe how the circuit has to react to the environment. From
these specification patterns, we generate larger specifications by conjoining assumption patterns
to a specification ϕA and by conjoining guarantee patterns to a specification ϕG. The implication
ϕA → ϕG forms the final specification of the circuit. We obtained 200 000 specifications and used
classical synthesis tools [14, 35] to compute circuits satisfying the specifications. Figure 1 shows
an example held-out specification constructed in this fashion and a circuit predicted by one of our
models (details on the data representation can be found in Section 3). When checking, the predicted
circuit indeed satisfies the specification.

To train a machine learning model on the LTL synthesis task, we represent the decomposed speci-
fications and circuits as sequences and use hierarchical Transformers [33]. We show that many of
the model’s predictions that differ from the circuits in our dataset satisfy the specifications when
verifying the predictions1, i.e., the model constructs a different, yet correct solution. When using a
beam search, models achieve an accuracy of up to 79.9% on our synthetic test data and up to 66.8%
on the original formulas from SYNTCOMP. The Transformer can even solve out-of-distribution
formulas, taken from a recent case study [1], i.e., formulas that were not used for the specification
pattern mining. Furthermore, the models can solve generated test instances on which classical LTL
synthesis tools timed out. In practice, it is essential to handle both realizable (i.e., when a hardware
implementation exists) and unrealizable (i.e., when no hardware implementation exists) specifica-
tions. We demonstrate that our approach achieves similar results on both realizable and unrealizable
specifications.

1Note that verifying the solutions, i.e., model-checking, is a by-far easier problem (PSPACE vs 2-EXPTIME)
and can typically be done in a fraction of the time needed to synthesize the circuits classically.
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The remainder of this paper is structured as follows: Related work is presented in Section 2. The
data representation and generation process is described in Section 3. The experimental setup and
the experimental evaluation are presented in Section 4 and Section 5, respectively. We conclude the
paper in Section 6.

2 Related Work

Neural architectures for logical reasoning. Neural architectures for logical and mathematical
reasoning have been studied recently. The closest work is the application of Transformers to the
LTL trace generation problem demonstrating the generalization abilities of Transformers to the
semantics of logics [22]. Despite the substantially greater complexity of the LTL synthesis problem,
we are able to demonstrate the same generalization in this work. In addition, we consider both
realizable and unrealizable specifications while for the LTL trace generation problem the satisfiability
of LTL formulas was assumed. Lample and Charton trained Transformers on symbolic integration
and solving differential equations and were able to outperform commercial systems on a synthetic
dataset [31]. Similar to our findings Lample and Charton observed significant improvements in
the Transformer’s accuracy when using a beam search. Rabe et al. applied Transformers to formal
mathematical statements and demonstrated the Transformer’s reasoning abilities on tasks such as
type inference and completing missing assumptions [41]. In contrast to the supervised setting in
this work, Rabe et al. trained Transformers on an unsupervised skip-tree task that outperforms
skip-sequence tasks for language modeling. For propositional logic Selsam et al. applied graph
neural networks [43, 18] to solve the satisfiability problem [46]. In subsequent work Selsam and
Bjørner applied the same architecture to the unsat-core prediction problem and demonstrated that
their model can be used as a heuristic to speed up SAT solvers [45]. Lederman et al. applied graph
neural networks to quantified Boolean formulas to learn heuristics for QBF solvers through deep
reinforcement learning [32]. Paliwal et al. trained graph neural networks on higher-order logic terms
to predict tactics for higher-order theorem proving [36]. When integrated with the DeepHOL [3]
neural theorem prover the graph neural networks achieved state-of-the-art performance for higher-
order proof search. Similar, Balunović et al. applied graph neural networks to SMT formulas to
predict tactics for SMT solvers [2]. Strategies synthesized from their model demonstrated significant
improvements over hand-crafted strategies from state-of-the-art SMT solvers. Earlier works on
applying learning to mathematics, has focused on ranking premises or clauses Cairns [8], Urban
[48, 49], Urban et al. [50], Meng and Paulson [34], Schulz [44], Kaliszyk and Urban [28].

Classic synthesis tools. The hardware synthesis problem traces back to the definition of the problem
by Alonzo Church in 1957 [11], thus also called Church’s Problem. With theoretical solutions, already
in 1969 by Büchi and Landweber [7], the field has matured today. From a foundational point of
view, advances have been made algorithmically, e.g., with a quasi-polynomial algorithm for parity
games [9], conceptually with distributed [40] and bounded synthesis [16], or expressiveness-wise, e.g.,
GR(1) [39] synthesis, which is an efficient fragment of LTL or synthesis for security properties [17].
From a practical point of view, the field can build on a rich supply of tools (e.g. [6, 15, 35]). The
first synthesis competition (SYNTCOMP) [26] was held in 2014, as part of the annual international
conference on computer-aided verification (CAV).

Property specification patterns. Property specification patterns for temporal logics have already
been identified by Dwyer et al. [12]. They proposed a general hierarchical specification pattern system
containing 55 patterns that are mapped to formal specification languages such as LTL and CTL. More
patterns for temporal logical formulas are identified by Etessami and Holzmann [13], Holeček et al.
[23], Pelánek [38]. Konrad and Cheng [30] identified real-time specification patterns formulated
in different real-time temporal logics and a structured English grammar. Grunske [19] presented a
specification pattern system for probabilistic properties formulated in probabilistic temporal logic
and a structured English grammar.

3 Datasets

In the following, we will first exemplary describe the specification language LTL and the circuit
representation (the interested reader can find the full formalizations in the appendix). We will
then describe our dataset, which is generated from specification patterns from the LTL track of
SYNTCOMP 2020 [26].
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→

r

g

[0,0,0,0,0,0]

[1,0,0,0,0,0]

[1,0,1,0,0,0] [0,1,1,0,0,0]

[1,0,0,1,1,0]

Figure 2: Example tree positional encoding for the LTL request pattern (r→ g).

3.1 LTL and And-Inverter Graphs
LTL can specify that some proposition P must hold at every point in time ( P ) or that P must hold
at some future point of time ( P ). By combining these operators, one can specify that P must occur
infinitely often ( P ). The propositions are usually partitioned into inputs and outputs. In the
following, we provide a small example. For inputs r1, r2 and outputs g1, g2 the LTL formula

¬(g1 ∧ g2)

∧ (r1→ g1)

∧ (r2→ g2)

specifies a simple arbiter using a mutual exclusion property for grant g1 and grant g2 and two response
properties that guarantee that always request r1 is eventually answered by grant g1 and always request
r2 is eventually answered by grant g2. Given an LTL specification ϕ, i.e., an LTL formula ϕ over
atomic propositions AP and a partition of AP in inputs I and outputs O, the LTL synthesis problem
is to determine whether a circuit over inputs I and outputs O exists such that the circuit satisfies
the specification. If no such circuit exists, we call the specification to be unrealizable. Typically,
an LTL specification is decomposed into assumptions, posed on the inputs from the environment,
and guarantees, that determine how to react to the inputs. For training Transformers, we represent
assumptions and guarantees as sequences with a tree positional encoding [47]. The basic idea is, to
encode the path through the syntax tree for each character. Since LTL has only unary and binary
operations, this is encoded by appending either 1, 0, representing the left child or 0, 1, representing
the right child, in front of the encoding. Figure 2 shows an example tree positional encoding for the
response pattern (r→ g).

The AIGER format became an established format for benchmarks, competitions, and tool implemen-
tations in both computer-aided verification and reactive synthesis. The AIGER format represents
sequential circuits as and-inverter graphs in both ASCII and binary format. In this work, we refer to
the original version 20071012 in ASCII format [4]. The first line in an AIGER file in ASCII format
contains the header that is the format identifier string “aag” followed by 5 non-negative integers
indicating the maximum variable index M , the number of inputs I , the number latches L, the number
of outputs O, and the number of AND gates A. The header is followed by I lines defining the
inputs, L lines defining the latches, O lines defining outputs, and A lines defining the AND gates.
An optional symbol table to name inputs, outputs, and latches and a comment section may follow
after the definitions. Inputs, latches, outputs, and AND gates are defined using variables and literals
represented as non-negative integers. The relationship between literals and variables is that we divide
the literal by 2 to obtain the variable and if the literal modulo 2 equals 1 it corresponds to the negated
variable and if the literal modulo 2 equals 0 it corresponds to the unnegated variable. Further literal
0 represents the Boolean constant ⊥ and literal 1 represents the Boolean constant >. Inputs are
defined as unnegated literals. Latches are defined as two literals separated by a space. The first literal
provides the current state of the latch and the second literal the next state of the latch. Outputs are
defined as arbitrary literals. AND gates are defined as three literals separated by a space. The first
literal is the output of the AND gate and the second and third literals are the inputs of the AND gate.
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For our small arbiter example above, we show below a circuit (left) and its AIGER representation
(right), which is actually a prediction of a hierarchical Transformer.

aag 3 2 1 2 0 header
2 r1
4 r2
6 7 latch
6 g1
7 g2

The triangles represent inputs and outputs, the rectangles represent variables, the diamond-shaped
variables represent latches and the black dots represent inverter (NOT gates). The circuit implementa-
tion ignores the inputs I0 and I1, which represent both requests r1 and r2 (except for unnecessarily
assigning them to variables 2 and 4). The circuit implementation satisfies the specification by
alternating indefinitely between both outputs O0 and O1, which represent both grants g1 and g2,
independently of the given inputs. This is, in fact, the smallest solution satisfying the simple arbiter
specification above. The hierarchical Transformer also predicts correct circuit implementations for
more involved specifications where the circuit has to react to inputs (see, for example, Section 5 for
an arbiter that prioritizes a certain request).

3.2 Data Generation
From the LTL track of SYNTCOMP 2020 [26] we collected 346 benchmarks in Temporal Logic
Synthesis Format (TLSF) [27]. Using SyFCo [27] we translated the TLSF specifications to the BoSy
input format [14]. The BoSy input format is a JSON-based format representing specifications as a
list of assumptions and a list of guarantees where assumptions and guarantees can be arbitrary LTL
formulas. The LTL specification results from the implication of the conjunction of assumptions to
the conjunction of guarantees. An example of the format for a prioritized arbiter specification is
shown in Listing 1 in the appendix. From the 346 benchmarks in BoSy input format we collected
assumptions and guarantees and filtered LTL formulas with more than five inputs and more than five
outputs, which is a restriction that is comparable with most SYNTCOMP specs: 242 of 346 have ≤ 5
inputs and 274 have≤ 5 outputs. Further, we filtered out specifications with an abstract syntax tree of
size greater than 25 resulting in 157 instantiated assumption patterns and 1942 instantiated guarantee
patterns. In a final step, we renamed inputs and outputs with a uniform random choice from input
atomic propositions i0, i1, i2, i3, i4 and a uniform random choice from output atomic propositions
o0, o1, o2, o3, o4, respectively. The table below, shows three random examples of assumption patterns
and three random examples of guarantee patterns.

assumption patterns guarantee patterns
(i0 ∧ (¬o0 ∧¬o1)→ i0) (o2 U i3) ∨ o2
i0 (i0→ (o3 ∨ i3 ∨ (o3 ∨ i3 ∨ (o3 ∨ i3))))

(¬i0 ∨ o3 ∨ o2 ∨ o1 ∨ o0 ∨ i0) (¬o2 ∨¬o4)

Given the set of specification patterns, we generate a dataset for supervised learning, i.e., pairs of
specifications and systems, by combining randomly instantiated specification patterns. Specifically,
we alternate between sampling guarantees until the specification becomes unrealizable and sampling
assumptions until the specification becomes realizable where the number of trials to find a suitable
assumption is limited to 5. Further, we implemented stopping criteria that limit the maximal number
of guarantees to 10, the maximal number of assumptions to 3, and the runtime for the synthesis
tool to 120 seconds. If the resulting specification is unrealizable we also consider its realizable
predecessor for our dataset. Apart from that intermediate specifications are discarded. To synthesize
specifications, we use the LTL synthesis tool Strix [35]. Systems are represented in the AIGER format.
For unrealizable specifications we provide an AIGER circuit representing the winning strategy for the
environment, i.e., a counter strategy showing that the specification is unrealizable. When synthesizing
specifications, we provide all five inputs i0, i1, i2, i3, i4 and all five outputs o0, o1, o2, o3, o4 to the
tool such that all AIGER circuits in our datasets have the same five inputs and the same five outputs.
Based on the AIGER format, we apply two additional filters when generating data: 1) we filter
AIGER circuits exceeding a maximum variable index of 50, 2) we filter AIGER circuits with k AND
gates if the number of circuits in the dataset with k AND gates exceeds 20% of the dataset size. This
filtering especially reduces the number of circuits that have a low amount of AND gates.
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Figure 3: A hierarchical Transformer [33] first encodes assumption and guarantee patterns in isolation,
before encoding them globally.

The data generation method allows to generate a large number of specifications from a comparatively
small set of specification patterns; especially the generation of specifications that include meaningful
assumptions and are realized by complex implementations. Following the described method, we
constructed a dataset containing 250 000 unique samples split into 200 000 training samples, 25 000
validation samples, and 25 000 test samples. We included the unrealizable specifications met through
the first stopping criteria such that half of the dataset consists of unrealizable specifications. Figure 1
shows an example of a realizable specification in the test data.

4 Experimental Setup
Based on the code base of DeepLTL [21] (MIT license), we implemented a hierarchical Trans-
former [33] and augment it with a tree-positional encoding [47].2 In contrast to a baseline Transformer,
the encoder has two types of layers, local and global layers.

aag 11 5 1 5 5
2
4
6
8
10
12 1
1
0
14
16
22
14 12 10
16 13 10
18 4 2
20 19 11
22 21 13
i0 i0
i1 i1
i2 i2
i3 i3
i4 i4
l0 l0
o0 o0
o1 o1
o2 o2
o3 o3
o4 o4

Figure 4: AIGER representa-
tion of the circuit in Figure 1.

The local layers encode individual assumptions and guarantees, and
only the global layers can combine the representations of tokens
across all assumptions and all guarantees. With this hierarchical
encoding, we gain approximately 10% of accuracy across all models
compared to using a standard Transformer (see Figure 6). Figure 3
sketches the use of local and global layers in the encoder for our
setting.

We trained hierarchical Transformers with model dimension 256.
The dimension of the feed-forward networks was set to 1024. The
encoder employs 4 local layers followed by 4 global layers, and the
decoder employs 8 (unmodified) layers. All our attention layers use
4 attention heads. We trained with a batch size of 256 for 30 000
steps and saved the model with the best accuracy per sequence on
the validation data. We trained on an NVIDIA DGX A100 system
for around 10 hours.

4.1 Training Details
The Transformer architecture is a sequence-to-sequence model
trained to predict a sequence of output tokens provided a sequence
of input tokens. Similarly, we provide multiple sequences of input
tokens to an hierarchical Transformer. Assumptions and guarantees
are LTL formulas and can thus be directly represented as sequences
of tokens with each atomic proposition, Boolean operator, temporal
operator, and Boolean constant being a separate token. We omit

2The code, our data sets, and data generators are part of the Python library ML2 (https://github.com/
reactive-systems/ml2).
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Figure 5: Accuracy with respect to the size of the synthesized circuits measured by the number of
AND gates for test set (top, left), SYNTCOMP (top, right), timeouts (bottom, left), and smart home
benchmarks (bottom, right). Number of AND gates are binned into intervals of size 5.

parentheses because we add a tree-positional encoding [47] that identifies each token with its position
in the abstract syntax tree of the LTL formula (see Figure 2). To distinguish assumptions from
guarantees in the global step we prepend assumptions with a special assumption token. Circuits
are in AIGER format that we represent as a sequence of tokens by representing each integer with
a corresponding token and replacing each newline character with a special new line token. Since
all circuits in our dataset have the same inputs and outputs we can omit the header and the symbol
table when tokenizing an AIGER circuit. Additionally, we include a special realizability token at the
beginning of the sequence indicating whether a specification is realizable.

We trained all models using the Adam optimizer [29] with β1 = 0.9, β2 = 0.98 and ε = 10−9. The
optimizer was used with a learning rate schedule proposed by Vaswani et al. [51] that increases
the learning rate linear for a given number of warmup steps followed by a decreasing learning rate
proportionally to the inverse square root of the step number. In our experiments, we used 4000
warmup steps as proposed by Vaswani et al. [51].

4.2 Performance Measures

There are infinitely many circuits satisfying a realizable LTL specification. To evaluate the perfor-
mance of the trained models we thus distinguish between the syntactic accuracy and the semantic
accuracy: For a dataset of specifications and systems, the syntactic accuracy measures the percentage
of the Transformer’s predictions that match the circuit in the dataset. Potentially, a prediction that does
not match the system still satisfies the specification. We thus also measure the semantic accuracy, i.e.,
the percentage of the Transformer’s predictions that satisfy the specification. Note that, when using a
beam search algorithm only one of the predictions needs to match the system in the dataset or satisfy
the specification, respectively. To model check predictions we use the nuXmv model checker [10].
When training Transformers on the (easier) LTL trace generation problem [22], a significant differ-
ence between syntactic and semantic accuracy was observed. It appears that the Transformers rather
generalize to the semantics of the logic than the particularities of the data generator. As we will see
in the next section, our results are consistent with this observation even for the “harder” problem of
predicting circuits.
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Figure 6: Accuracy per sequence over the training course shown for the training split (red) and
validation split (light red) when training the hierarchical Transformer and for the training split (green)
and the validation split (light green) when training the standard Transformer.

5 Experiments

In this section, we report on a variety of experiments that analyze the performance of hierarchical
Transformers on the circuit synthesis task and their generalization behavior. In the following, we
will first analyze the overall performance of the models and see that they often construct different
solutions, yet correct ones, than the classical tool we generated the training data with. For this, we
consider four different test sets and group results on the size of the predicted circuits. Secondly, we
compare the training with our data mining method against the ground truth, i.e., against a training of
a hierarchical Transformer on the raw SYNTCOMP benchmarks. Thirdly, we compare the models
performance on realizable and unrealizable specifications, where for the latter the model is supposed
to construct a circuit representing a counter strategy. Lastly, we will take a deeper look into one of
the specifications, which, compared to the example in Section 3 is an arbiter that prioritizes a certain
request.

Overall results. We tested our models on four different datasets. A Testset consisting of held-
out instances generated by our data mining method, the SYNTCOMP set, consisting of the synthesis
competition benchmarks, a set Timeouts that consists of generated specifications on which Strix,
the classical synthesis tool that we used for generating the circuits, timed out (< 120s), and an
out-of-distribution (OOD) benchmark set Smart Home consisting of specifications for smart homes.
We consistently observed in all experiments that the beam search significantly increases the accuracy.
When analyzing the results we found that the beam search often yields several correct circuits. For a
beam size of 16 and the Testset, on average 4.6 of the 16 AIGER circuits satisfy the specification.

In our Testset (see Table 1), we observe in many cases that the circuit prediction of our model is
different from the circuit the tool would synthesize. Since it has already shown that this gap between
syntactic and semantic accuracy exists for such tasks [22], we concentrate on the semantic accuracy,
i.e., the total accuracy. When analyzing the size of those circuits, we found both smaller and larger

Dataset Beam Size 1 Beam Size 4 Beam Size 8 Beam Size 16

Testset 53.6(31.1)± 2.4 70.4(39.0)± 2.3 75.8(41.9)± 2.1 79.9(44.5)± 2.0
SYNTCOMP 51.9± 2.2 60.0± 1.5 63.6± 1.9 66.8± 1.2

Timeouts 11.7± 1.1 21.1± 0.9 25.9± 1.0 30.1± 1.2
Smart Home 22.9± 3.6 31.4± 7.1 44.8± 6.5 40.0± 6.5

Table 1: Accuracy reported on test data, SYNTCOMP benchmarks, timeouts, and smart home
benchmarks for different beam sizes averaged over 5 trainings including standard deviation. For the
test data we show the syntactic accuracy in parenthesis.
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(assumptions)
( ( ¬(rm)))
→
(guarantees:)
( ((¬(gm))∨(¬(g0))))
( ((r0)→( (g0))))
( ((rm)→( ((¬(g0))U(gm)))))

aag 7 5 1 5 1
2
4
6
8
10
12 4
14
0
13
14
0
14 12 5

Figure 7: The specification (left), the predicted AIGER circuit (middle) and the visualization of the
circuit (right) for a prioritizing arbiter.

circuits, with no significant decrease or increase in average circuit size. In total, the model was able
to solve 79.9% of the held-out generated test instances with a beam size of 16.

While the training data is based on specification patterns extracted from SYNTCOMP benchmarks it
is unlikely that our data generation process reassembles SYNTCOMP benchmarks. This allows to
evaluate the model on them. After filtering out benchmarks with more than 5 inputs/outputs, more
than 12 properties, and properties of size greater than 25, the model achieved an accuracy of 66.8%
for the resulting 145 benchmarks using a beam size of 16.

For a timed out specification it is not known whether it is realizable or unrealizable. The model
achieves an accuracy of 30.1% for beam size 16 demonstrates that our approach can yield performance
gains in practice. To highlight the capabilities of our model we display in Figure 9 in the appendix
the largest circuit that is predicted for a timed out specification and satisfies the specification.

We constructed the Smart Home set, with the same restriction as for SYNTCOMP, from a recently
published benchmark set for synthesizing smart home applications [1]. The hierarchical Transformer
is able to solve 44.8% of the provided instances. When compared to the full benchmark (i.e., without
the size restrictions), the model solved 11.1% of the formulas. Note that this benchmark set was not
used to mine specifications from and the benchmarks include instances with larger assumptions and
guarantees than seen during training.

We also analyzed the performance of the model depending on the size of the predicted circuit. Results
are shown in Figure 5. As expected, for larger circuit implementations, the model accuracy drops.
The size distribution of the training data resembles the size distribution of the test set (top left in
Figure 5 and Figure 8). Meaning that the model has seen a significantly lower percentage of large
circuits during training. Future experiments have to determine how large the training data and the
hierarchical Transformers could be scaled, before the training process breaks down.

Training on raw SYNTCOMP benchmarks. We did a baseline experiment by training with
various batch sizes on the raw SYNTCOMP benchmark. This training (not surprisingly) fails whereas
our data generation method enables a stable training.

Unrealizabile Specifications. The training data contains both realizable and unrealizable specifi-
cations. In Table 3 we analyze the accuracy for realizable and unrealizable specifications separately
on our test data. While the syntactic accuracy is higher for realizable specifications, in terms of the

Beam Size 1 Beam Size 4 Beam Size 8 Beam Size 16

Realizable 50.8 (39.0) 64.3 (48.0) 67.5 (50.0) 70.7 (52.6)
Unrealizable 55.4 (23.0) 74.6 (31.9) 81.0 (35.2) 86.7 (39.0)

Table 2: Accuracy on Testset reported separately for realizable and unrealizable specifications. For
different beam sizes we report the semantic accuracy and the syntactic accuracy in parenthesis.
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semantic accuracy the model solves unrealizable specifications more accurately. Further, we found
for a beam size of 1 that the Transformer predicts the correct realizability token for 91.4% of the
specifications from the test data.

Prioritizing arbiter. Building on the example of Section 3, we show that the model can handle
more interesting, real-world specifications. Figure 7 shows the specification, AIGER file and the
circuit visualization of an arbiter that prioritizes one of the requests whenever access is requested by
both processes at the same time; meaning that the implementation can no longer ignore the input as
for the example in Section 3.

6 Conclusion
We proposed a method to address the lack of data for training a neural network on the task of
synthesizing circuits out of LTL specifications. We mine specification patterns from the annual
reactive synthesis competition (SYNTCOMP) and generate new formulas by combining multiple
specification patterns. We showed that this dataset can be used to successfully train hierarchical
Transformers on the LTL synthesis problem for specifications composed of specification patterns.
We also showed that the models generalize to unseen specifications, including specifications that
are both realizable and unrealizable and specifications that cannot be solved by a classical synthesis
tool within a time limit of 120 seconds. Furthermore, we performed an out-of-distribution test on a
recently added benchmark set on synthesis problems for smart homes. Experimental results suggest
that the Transformer can be especially useful for predicting unrealizability.
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Appendix

For a given set of atomic propositions AP , the syntax of LTL formulas over AP is defined as:

ϕ,ψ ::= > |a | ¬ϕ | ϕ ∧ ψ | ϕ | ϕU ψ ,

where > is the Boolean constant, a ∈ AP , ¬ and ∧ are the Boolean connectives and and U
are temporal operators. We refer to as the next operator and to U as the until operator. Other
Boolean connectives can be derived. Further, we can derive temporal modalities such as eventually
ϕ := >U ϕ and globally ϕ := ¬ ¬ϕ. For a given set of atomic propositions AP , the

semantics of an LTL formula over AP is defined with respect to the set of infinity words over the
alphabet 2AP denoted by

(
2AP

)ω
. The semantics of an LTL formula ϕ is defined as the language

Words(ϕ) = {σ ∈
(
2AP

)ω | σ |= ϕ} where |= is the smallest relation satisfying the following
properties:

σ |= >
σ |= a iff a ∈ A0

σ |= ¬ϕ iff σ 6|= ϕ

σ |= ϕ ∧ ψ iff σ |= ϕ and σ |= ψ

σ |= ϕ iff σ[1 . . .] |= ϕ

σ |= ϕU ψ iff ∃j ≥ 0. σ[j . . .] |= ψ and ∀0 ≤ i < j. σ[i . . .] |= ϕ

where σ = A0A1 . . . ∈ (2AP )ω and σ[i . . .] = AiAi+1 . . . denotes the suffix of σ starting at i.

Listing 1: Specification of a prioritized arbiter in BoSy input format that is part of the 2020 SYNT-
COMP benchmarks [26].
{

" s e m a n t i c s " : " mealy " ,
" i n p u t s " : [

" r_m " ,
" r_0 "

] ,
" o u t p u t s " : [

"g_m " ,
" g_0 "

] ,
" a s s u m p t i o n s " : [

" (G ( F ( ! ( r_m ) ) ) ) "
] ,
" g u a r a n t e e s " : [

" ( t r u e ) " ,
" (G ( ( ! ( g_m ) ) | | ( ! ( g_0 ) ) ) ) " ,
" (G ( ( r_0 ) −> ( F ( g_0 ) ) ) ) " ,
" (G ( ( r_m ) −> (X ( ( ! ( g_0 ) ) U ( g_m ) ) ) ) ) "

]
}
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Figure 8: Distribution of maximal variable index, number of latches, and number of AND gates in
the dataset.

dm dff nloc nglob ndec nheads Beam Size 1 Beam Size 16

256 1024 4 4 8 4 51.6 (28.9) 81.3 (39.8)
128 512 50.7 (28.4) 76.6 (40.6)
128 512 2 2 4 50.3 (28.0) 76.6 (42.7)
256 256 54.5 (30.6) 81.5 (43.8)
256 512 53.4 (30.9) 78.6 (44.5)
512 512 23.3 (4.9) 57.4 (26.5)

2 2 4 52.8 (30.9) 79.0 (43.1)
2 2 50.6 (27.9) 77.1 (40.5)
2 6 49.9 (25.4) 79.1 (41.2)
3 3 6 50.5 (28.9) 76.8 (40.0)

4 53.8 (30.4) 78.0 (42.0)
5 5 10 15.8 (4.6) 45.9 (18.4)
6 2 46.2 (27.3) 74.1 (41.0)

8 55.3 (31.5) 78.9 (45.0)
16 53.6 (30.3) 78.0 (44.5)

Table 3: Hyper-parameter search for parameters embedding dimension dm, feed-forward network
dimension dff , number of local encoder layers nloc, number of global encoder layers nglob, number
of decoder layers ndec, and number of attention heads nheads. Empty cells have the same value as
the base model (first row). For each choice we report the accuracy on Testset for beam size 1 and
beam size 16 with syntactic accuracy in parenthesis.
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Figure 9: The largest circuit that satisfies a specification on which the classical tool times out.
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