
Explaining Hyperproperty Violations?

Norine Coenen1, Raimund Dachselt2, Bernd Finkbeiner1, Hadar Frenkel1,
Christopher Hahn1, Tom Horak2, Niklas Metzger1, and Julian Siber1

1 CISPA Helmholtz Center for Information Security
2 Interactive Media Lab, Technische Universität Dresden

Abstract. Hyperproperties relate multiple computation traces to each
other. Model checkers for hyperproperties thus return, in case a system
model violates the specification, a set of traces as a counterexample. Fix-
ing the erroneous relations between traces in the system that led to the
counterexample is a difficult manual effort that highly benefits from addi-
tional explanations. In this paper, we present an explanation method for
counterexamples to hyperproperties described in the specification logic
HyperLTL. We extend Halpern and Pearl’s definition of actual causality
to sets of traces witnessing the violation of a HyperLTL formula, which
allows us to identify the events that caused the violation. We report on
the implementation of our method and show that it significantly im-
proves on previous approaches for analyzing counterexamples returned
by HyperLTL model checkers.

1 Introduction

While model checking algorithms and tools (e.g., [19,18,25,13,54,46]) have, in
the past, focused on trace properties, recent failures in security-critical systems,
such as Heartbleed [27], Meltdown [58], Spectre [51], or Log4j [1], have triggered
the development of model checking algorithms for properties that relate multiple
computation traces to each other, i.e., hyperproperties [22]. Although the coun-
terexample returned by such a model checker for hyperproperties, which takes
the shape of a set of traces, may aid in the debugging process, understanding
and narrowing down which features are actually responsible for the erroneous
relation between the traces in the counterexample requires significantly more
manual effort than for trace properties. In this paper, we develop an explana-
tion technique for these more complex counterexamples that identifies the actual
causes [43,44,45] of hyperproperty violations.

Existing hyperproperty model checking approaches (e.g., [32,34,48]), take a
HyperLTL formula as an input. HyperLTL is a temporal logic extending LTL
with explicit trace quantification [21]. For example, observational determinism,

? This work was funded by DFG grant 389792660 as part of TRR 248 – CPEC,
by the DFG as part of the Germany’s Excellence Strategy EXC 2050/1 - Project
ID 390696704 - Cluster of Excellence “Centre for Tactile Internet” (CeTI) of TU
Dresden, by the European Research Council (ERC) Grant OSARES (No. 683300),
and by the German Israeli Foundation (GIF) Grant No. I-1513-407./2019.

https://perspicuous-computing.science

2 Coenen, Dachselt, Finkbeiner, Frenkel, Hahn, Horak, Metzger, Siber

which requires that all traces π, π′ agree on their observable outputs lo whenever
they agree on their observable inputs li , can be formalized in HyperLTL as

∀π.∀π′. (liπ ↔ liπ′)→ (loπ ↔ loπ′) .

In case a system model violates observational determinism, the model checker
consequently returns a set of two execution traces witnessing the violation.

A first attempt in explaining model checking results of HyperLTL specifi-
cations has been made with HyperVis [47], which visualizes a counterexample
returned by the model checker MCHyper [34] in a browser application. While
the visualizations are already useful to analyze the counterexample at hand, it
fails to identify causes for the violation in several security-critical scenarios. This
is because HyperVis identifies important atomic proposition that appear in the
HyperLTL formula and highlights these in the trace and the formula. For detect-
ing causes, however, this is insufficient: a cause for a violation of observational
determinism, for example, could be a branch on the valuation of a secret input
is, which is not even part of the formula (see Sec. 3 for a running example).

Defining what constitutes an actual cause for an effect (a violation) in a
given scenario is a precious contribution by Halpern and Pearl [43,44,45], who
refined and formalized earlier approaches based on counterfactual reasoning [57]:
Causes are sets of events such that, in the counterfactual world where they do
not appear, the effect does not occur either. One of the main insights of Halpern
and Pearl’s work, however, is that naive counterfactuals are too imprecise. If, for
instance, our actual cause preempted another potential cause, the mere absence
of the actual cause will not be enough to prevent the effect, which will be still
produced by the other cause in the new scenario. Halpern and Pearl’s defini-
tion therefore allows to carefully control for other possible causes through the
notion of contingencies. In the modified definition [43], contingencies allow to
fix certain features of the counterfactual world to be exactly as they are in the
actual world, regardless of the system at hand. Such a contingency effectively
modifies the dynamics of the underlying model, and one insight of our work is
that defining actual causality for reactive systems also needs to modify the sys-
tem under a contingency. Notably, most works regarding trace causality [14,38]
do not consider contingencies but only counterfactuals, and thus are not able to
find true actual causes.

In this paper, we develop the notion of actual causality for effects described by
HyperLTL formulas and use the generated causes as explanations for counterex-
amples returned by a model checker. We show that an implementation of our
algorithm is practically feasible and significantly increases the state-of-the-art in
explaining and analyzing HyperLTL model checking results. More precisely, our
contributions and the outline of the paper are as follows:

– We define actual causality for violations of hyperproperties described by
general HyperLTL formulas (Sec. 4).

– We present an efficient algorithm for computing actual causes for effects
described in the practically relevant ∀∗-fragment of HyperLTL (Sec. 5).

Explaining Hyperproperty Violations 3

– We report on the implementation of our algorithm and compare the gener-
ated explanations with the HyperVis visualisation tool (Sec. 6).

2 Preliminaries

We model a system as a Moore machine [61] T = (S, s0, AP, δ, l) where S is
a finite set of states, s0 ∈ S is the initial state, AP = I ∪· O is the set of
atomic propositions consisting of inputs I and outputs O, δ : S × 2I → S is the
transition function determining the successor state for a given state and input,
and l : S → 2O is the labeling function mapping each state to a set of outputs.
A trace t = t0t1t2 . . . ∈ (2AP)ω of T is an infinite sequence of sets of atomic
propositions with t0 = l(s0) and ti = A∪ l(si), where A ⊆ I and δ(si−1, A) = si
for all i > 0. With traces(T), we denote the set of all traces of T . A trace property
P ⊆ T is a set of traces. A hyperproperty H is a lifting of a trace property, i.e.,
a set of sets of traces. A model satisfies a hyperproperty H if the set of traces
of the model T is an element of the hyperproperty, i.e., traces(T) ∈ H.

2.1 HyperLTL

HyperLTL is a recently introduced logic for expressing temporal hyperproperties,
extending linear-time temporal logic (LTL) [63] with trace quantification:

ϕ ::= ∀π. ϕ | ∃π. ϕ | ψ
ψ ::= aπ | ¬ψ | ψ ∧ ψ | ψ | ψ U ψ .

We also consider the usual derived Boolean (∨, →, ↔) and temporal operators
(ϕRψ ≡ ¬(¬ϕU ¬ψ), ϕ ≡ true U ϕ, ϕ ≡ falseRϕ). The semantics of
HyperLTL formulas is defined with respect to a set of traces Tr and a trace
assignment Π : V → Tr that maps trace variables to traces. To update the trace
assignment so that it maps trace variable π to trace t, we write Π[π 7→ t].

Π, i �Tr aπ iff a ∈ Π(π)[i]
Π, i �Tr ¬ϕ iff Π, i 2Tr ϕ
Π, i �Tr ϕ ∧ ψ iff Π, i �Tr ϕ and Π, i �Tr ψ
Π, i �Tr ϕ iff Π, i+ 1 �Tr ϕ
Π, i �Tr ϕU ψ iff ∃j ≥ i.Π, j �Tr ψ ∧ ∀i ≤ k < j.Π, k �Tr ϕ
Π, i �Tr ∃π. ϕ iff there is some t ∈ Tr such that Π[π 7→ t], i �Tr ϕ
Π, i �Tr ∀π. ϕ iff for all t ∈ Tr it holds that Π[π 7→ t], i �Tr ϕ

We explain counterexamples found by MCHyper [34,24], which is a model
checker for HyperLTL formulas, building on ABC [12]. MCHyper takes as in-
puts a hardware circuit, specified in the Aiger format [8], and a HyperLTL
formula. MCHyper solves the model checking problem by computing the self-
composition [6] of the system. If the system violates the HyperLTL formula,
MCHyper returns a counterexample. This counterexample is a set of traces
through the original system that together violate the HyperLTL formula. De-
pending on the type of violation, this counterexample can then be used to debug
the circuit or refine the specification iteratively.

4 Coenen, Dachselt, Finkbeiner, Frenkel, Hahn, Horak, Metzger, Siber

2.2 Actual Causality

A formal definition of what actually causes an observed effect in a given context
has been proposed by Halpern and Pearl [44]. Here, we outline the version later
modified by Halpern [43]. Causality is defined with respect to a causal model
M = (S,F), given by a signature S and set of structural equations F , which
define the dynamics of the system. A signature S is a tuple (U ,V,R), where U
and V are disjoint sets of variables, termed exogenous and endogenous variables,
respectively; and R defines the range of possible values R(Y) for all variables
Y ∈ U ∪ V. A context ~u is an assignment to the variables in U ∪ V such that
the values of the exogenous variables are determined by factors outside of the
model, while the value of some endogenous variableX is defined by the associated
structural equation fX ∈ F . An effect ϕ in a causal model is a Boolean formula
over assignments to endogenous variables. We say that a context ~u of a modelM
satisfies a partial variable assignment ~X = ~x for ~X ⊆ U ∪ V if the assignments
in ~u and in ~x coincide for every variable X ∈ ~X. The extension for Boolean
formulas over variable assignments is as expected. For a context ~u and a partial
variable assignment ~X = ~x, we denote by (M, ~u)[~X ← ~x] the context ~u′ in which

the values of the variables in ~X are set according to ~x, and all other values are
computed according to the structural equations.

The actual causality framework of Halpern and Pearl aims at defining what
events (given as variable assignments) are the cause for the occurrence if an
effect in a specific given context. We now provide the formal definition.

Definition 1 ([44,43]). A partial variable assignment ~X = ~x is an actual
cause of the effect ϕ in (M, ~u) if the following three conditions hold.

AC1: (M, ~u) � ~X = ~x and (M, ~u) � ϕ, i.e., both cause and effect are true in
the actual world.

AC2: There is a set ~W ⊆ V of endogenous variables and an assignment ~x′ to
the variables in ~X such that if (M, ~u) � ~W = ~w, then (M, ~u)[~X ← ~x′, ~W ←
~w] � ¬ϕ.

AC3: ~X is minimal, i.e. no subset of ~X satisfies AC1 and AC2.

Intuitively, AC2 states that in the counterfactual world obtained by interven-
ing on the cause ~X = ~x in the actual world (that is, setting the variables in ~X to
~x′), the effect does not appear either. However, intervening on the possible cause
might not be enough, for example when that cause preempted another. After in-
tervention, this other cause may produce the effect again, therefore clouding the
effect of the intervention. To address this problem, AC2 allows to reset certain
parts of the counterfactual world back to their values in the actual world through
the notion of contingencies (i.e., the set ~W). For an illustration of Halpern and
Pearl’s actual causality, see Ex. 1 in Sec. 3.

3 Running Example

Consider a security-critical setting with two security levels: a high-security level
h and a low-security level l. Inputs and outputs labeled as high-security, denoted

Explaining Hyperproperty Violations 5

by hi and ho respectively, are confidential and thus only visible to the user itself,
or, e.g., admins. Inputs and outputs labeled as low-security, denoted by li and
lo respectively, are public and are considered to be observable by an attacker.

s0

∅

s1

{ho}

s2

{lo}

s3

{ho, lo}

hi

¬hi hi

>

¬hi

>

Fig. 1: State graph representa-
tion of our example system.

Our system of interest is modeled by the
state graph representation shown in Fig. 1,
which is treated as a black box by an attacker.
The system is run without any low-security
inputs, but branches depending on the given
high-security inputs. If in one of the first two
steps of an execution, a high-security input hi
is encountered, the system outputs only the
high-security variable ho directly afterwards
and in the subsequent steps both outputs, re-
gardless of inputs. If no high-security input is
given in the first step, the low-security output
lo is enabled and after the second step, again
both outputs are enabled, regardless of what
input is fed into the system.

A prominent example hyperproperty is ob-
servational determinism from the introduc-
tion: which states that any sequence of low-
inputs always produces the same low-outputs,
regardless of what the high-security level in-
puts are. ϕ = ∀π.∀π′. (liπ ↔ liπ′) →

(loπ ↔ loπ′). The formula states that all traces π and π′ must agree in the
low-security outputs if they agree in the low-security inputs. Our system at hand
does not satisfy observational determinism, because the low-security outputs in
the first two steps depend on the present high-security inputs. Running MCHy-
per, a model checker for HyperLTL, results in the following counterexample:

t1 = {}{lo}{ho, lo}ω ,

t2 = {hi}{hi , ho}{ho, lo}ω .

With the same low-security input (none) the traces produce different low-security
outputs by visiting either state s1 or s2 on the way to s3.

In this paper, our goal is to explain the violation of a HyperlTL formula
on such a counterexample. Following Halpern and Pearl’s explanation frame-
work [45], an actual cause that is considered to be possibly true or possibly false
constitutes an explanation for the user. We only consider causes over input vari-
ables, which can be true and false in any model. Hence, finding an explanation
amounts to answering which inputs caused the violation on a specific counterex-
ample. Before we answer this question for HyperLTL and the corresponding
counterexamples given by sets of traces (see Sec. 4), we first illustrate Halpern
and Pearl’s actual causality (see Sec. 2.2) with the above running example.

Example 1. Finite executions of a system can be modeled in Halpern and Pearl’s
causal models. We encode the first two execution steps of a single run of the

6 Coenen, Dachselt, Finkbeiner, Frenkel, Hahn, Horak, Metzger, Siber

system. Consider inputs as exogenous variables U = {hi0, hi1} and outputs as
endogenous variables V = {lo1, lo2, ho1, ho2}. We have that R(Y) = {0, 1} for
every Y ∈ U ∪ V. The structural equations encode the transitions: We have (1)
lo1 = ¬hi0, (2) ho1 = hi0, (3) lo2 = ¬hi1 ∨ ¬lo1 and (4) ho2 = lo1 ∨ ho1.
Consider context ~u = {hi0 = 0, hi1 = 1}, effect ϕ ≡ lo1 = 1 ∨ lo2 = 1, and
candidate cause hi0 = 0. Because of Eq. (1), we have that (M, ~u) � hi0 = 0 and
(M, ~u) � lo1 = 1, hence AC1 is satisfied. Regarding AC2, this example allows us
to illustrate the need for contingencies to accurately determine the actual cause:
If we only consider intervening on the candidate cause hi0 = 0, we still have
(M, ~u)[hi0 ← 1] � ϕ, because with lo1 = 0 and Eq. (3) it follows that (M, ~u) �
lo2 = 1. However, in the actual world, the second high input has no influence on
the effect. We can control for this by considering the contingency lo2 = 0, which
is satisfied in the actual world, but not after the intervention on hi0. Because of
this contingency, we then have that (M, ~u)[hi0 ← 0, lo2 ← 0] � ¬ϕ, and hence,
AC3 holds. This means we can infer that the first high input hi0 was the actual
cause for any low output to be enabled in the actual world. Note that, intuitively,
the contingency allows us to ignore some of the structural equations by ignoring
the value they assign to lo2 in this context. Our definitions in Sec. 4 will allow
similar modifications for counterexamples to hyperproperties.

4 Causality for Hyperproperty Violations

Our goal in this section is to formally define actual causality for the violation of
a hyperproperty described by a general HyperLTL formula ϕ. Such a counterex-
ample is given by a trace assignment to the trace variables appearing in ϕ. Note
that, for universal quantifiers, the assignment of a single trace to the bounded
variable suffices to define a counterexample. For existential quantifiers, this is
not the case: to prove that an existential quantifier cannot be instantiated we
need to show that no system trace satisfies the formula in its body, i.e., provide
a proof for the whole system. In this work, we are interested in explaining viola-
tions of hyperproperties, and not proofs of their satisfaction [17]. Hence, we limit
ourselves to instantiations of the outermost universal quantifiers of a HyperLTL
formula, which can be returned by model checkers like MCHyper [34,24].

Definition 2 (Counterexample). Let T be a transition system and denote
Traces(T) := Tr, and let ϕ be a HyperLTL formula of the form ∀π1 . . . ∀πkψ,
where ψ is a HyperLTL formula that does not start with ∀. A counterexample to ϕ
in T is a partial trace assignment Γ : {π1, . . . , πk} → Tr such that Γ, 0 �Tr ¬ψ.

For ease of notation, we sometimes refer to Γ simply as the tuple of its
instantiations Γ = 〈Γ (π1), . . . , Γ (πk)〉. In terms of Halpern and Pearl’s actual
causality as outlined in Sec. 2.2, a counterexample describes the actual world at
hand, which we want to explain. As a next step, we need to define an appropriate
language to reason about possible causes and contingencies in our counterexam-
ple. We will use sets of events, i.e., values of atomic propositions at a specific
position of a specific trace in the counterexample.

Explaining Hyperproperty Violations 7

Definition 3 (Event). An event is a tuple e = 〈la, n, t〉 such that t ∈ (2AP)ω

is a trace of a system T , n ∈ N is a point in time, and la = a or la = ¬a for
an atomic proposition a ∈ AP . We say that a counterexample Γ = 〈t1, . . . tk〉
satisfies a set of events C, and denote Γ � C, if for every event 〈la, n, t〉 ∈ C the
two following conditions hold:

1. t = ti for some i ∈ [1, k]. That is, all events in C reason about traces in Γ
2. la = a iff a ∈ t[n], that is, iff a holds at time step n on t.

We assume that the set AP is a disjoint union of input an output propositions,
that is, AP = I ∪· O. We say that 〈la, n, t〉 is an input event if a ∈ I, and we call
it an output event if a ∈ O. We denote the set of input events by IE and the
set of output events by OE . These events have a direct correspondence with the
variables appearing in Halpern and Pearl’s causal models: we can identify input
events with exogenous variables (because their value is determined by factors
outside of the system) and output events with endogenous variables.

We define a cause as a set of input events, while an effect is a possibly infinite
Boolean formula over OE. Note that, similar to [36], every HyperLTL formula
can be represented as a first order formula over events,.e.g, ∀π∀π′ (aπ ↔ aπ′) =
∀π∀π′

∧
n∈N(〈a, n, π〉 ↔ 〈a, n, π′〉). For some set of events S, let +Skπ = {a ∈

AP | 〈a, k, π〉 ∈ S} denote the set of atomic propositions defined positively by
S on trace π at position k. Dualy, we define −Skπ = {a ∈ AP | 〈¬a, k, π〉 ∈ S}.

In order to define actual causality for hyperproperties we need to formally
define how we obtain the counterfactual executions under some contingency
for the case of events on infinite traces. We define a contingency as a set of
output events. Mapping Halpern and Pearl’s definition to transition systems,
contingencies reset outputs in the counterfactual traces back to their value in the
original counterexample, which amounts to changing the state of the system, and
then following the transition function from the new state. For a given trace of the
counterexample, we describe all possible behaviors under arbitrary contingencies
with the help of a counterfactual automaton. The concrete contingency on a trace
is defined by additional input variables. In the following, let IC = { oC | o ∈ O }
be a set of auxiliary input variables and c : O → IC be a function s.t. c(o) = oC .

Definition 4 (Counterfactual Automaton). Let T = (S, s0,AP , δ, l) be a
system with S = 2O , i.e., every state is uniquely labeled, and there exists a state
for every combination of outputs. Let π = π0 . . . πi(πj . . . πn)ω ∈ traces(T) be a
trace of T in a finite, lasso-shaped representation. The counterfactual automaton
TCπ = (S×{0 . . . n}, (s0, 0), (IC ∪· I)∪· (O∪· {0 . . . n}), δC , lC) is defined as follows:

– δC((s, k), Y) = (s′, k′) where k′ = j if k = n, else k′ = k + 1, and
l(s′) = {o ∈ O | (o ∈ δ(s, Y ∩ I) ∧ c(o) 6∈ Y) ∨ (o ∈ πk′ ∧ c(o) ∈ Y)},

– lC(s, k) = l(s) ∪ {k} .

A counterfactual automaton is effectively a chain of copies of the original
system, of the same length as the counterexample. An execution through the
counterfactual automaton starts in the first copy corresponding to the first po-
sition in the counterexample trace, and then moves through the chain until it

8 Coenen, Dachselt, Finkbeiner, Frenkel, Hahn, Horak, Metzger, Siber

eventually loops back from copy n to copy j. A transition in the counterfactual
automaton can additionally specify setting as a contingency some output vari-
able o if the auxiliary input variable oC is enabled. In this case, the execution
will move to a state in the next automaton of the chain where all the outputs
are as usual, except o, which will have the same value as in the counterexample
π. Note that, under the assumption that all states of the original system are
uniquely labeled and there exists a state for every combination of output vari-
ables, the function δC is uniquely determined. A counterfactual automaton for
our running example is described in App. A.3.

Next, we need to define how we intervene on a set of traces with a candidate
cause given as a set of input events, and a contingency given as a set of out-
put events. We define an intervention function, which transforms a trace of our
original automaton to an input sequence of an counterfactual automaton.

Definition 5 (Intervention). For a cause C ⊆ IE, a contingency W ⊆ OE
and a trace π , we define the function intervene : 2AP × 2IE × 2OE → 2I∪IC as
follows:

intervene(π, C,W)[k] = (π[k] \ +Ckπ) ∪ −Ckπ ∪ {c(o) | o ∈+Wk
π ∪−Wk

π} .

We lift the intervention function to counterexamples given as a tuple Γ =
〈π1, . . . , πk〉 as follows:

intervene(Γ, C,W) = 〈TCπ1
(intervene(π1, C,W)), . . . , TCπk

(intervene(πk, C,W))〉 .

Intuitively, the intervention function flips all the events that appear in the
cause Γ : If some a ∈ I appears positively in the candidate cause C, it will appear
negatively in the resulting input sequence, and vice-versa. For a contingencyW,
the intervention function enables their auxiliary input for the counterfactual
automaton at the appropriate time point irrespective of their value, as the coun-
terfactual automaton will take care of matching the atomic propositions value
to the value in the original counterexample Γ .

4.1 Actual Causality for HyperLTL Violations

We are now ready to formalize what constitutes an actual cause for the violation
of a hyperproperty described by a HyperLTL formula.

Definition 6 (Actual Causality for HyperLTL). Let Γ be a counterexam-
ple to a HyperLTL formula ϕ in a system T . The set C is an actual cause for
the violation of ϕ on Γ if the following conditions hold.

SAT Γ � C.
CF There exist a contingency W and a non empty subset C′ ⊆ C such that:

Γ �W ∧ intervene(Γ, C′,W) �traces(T) ϕ .

MIN C is minimal, i.e., no subset of C satisfies SAT and CF.

Explaining Hyperproperty Violations 9

Unlike in Halpern and Pearl’s definition (see Sec. 2.2), the condition SAT
requires Γ to satisfy only the cause, as we already know that the effect ¬ϕ, i.e.,
the violation of the specification, is satisfied by virtue of Γ being a counterex-
ample. CF is the counterfactual condition corresponding to AC2 in Halpern and
Pearl’s definition, and it states that after intervening on the cause, under a cer-
tain contingency, the set of traces satisfies the property. MIN is the minimality
criterion directly corresponding to AC3.

Example 2. Consider our running example from Sec. 3, i.e., the system from
Fig. 1 and the counterexample to observational determinism Γ = 〈t1, t2〉. Let us
consider what it means to intervene on the cause C1 = {〈hi , 0, t2〉}. Note that we
have Γ � C1, hence the condition SAT is satisfied. For CF, let us first consider
an intervention without contingencies. This results in

intervene(Γ, C1, ∅) = 〈t′1, t′2〉 = 〈t1, {}{hi , lo}{ho}{ho, lo}ω〉 .

However, we still have intervene(Γ, C1, ∅) �traces(T) ¬ϕ, because the low outputs
of t′1 and t′2 differ at the third position: lo ∈ t′1[2] and lo 6∈ t′2[2]. This is because
now the second high input takes effect, which was preempted by the first cause
in the actual counterexample. The contingency W2 = {〈lo, 2, t2〉〉} now allows
us to control for this by modyfing the state after taking the second high input as
follows:

intervene(Γ, C2,W2)) = 〈t′′1 , t′′2〉 = 〈t1, {}{hi , lo}{ho, lo}{ho, lo}ω〉 .

Note that t′′2 is not a trace of the model depicted in Fig. 1, because there is no
transition that explains the step from t′′2 [1] to t′′2 [2]. It is, however, a trace of the
counterfactual automaton TCt2 (see App. A.3), which encodes the set of counter-
factual worlds for the trace t2. The fact that we consider executions that are not
part of the original system allows us to infer that only the first high input was
an actual cause in our running example. Disregarding contingencies, we would
need to consider both high inputs as an explanation for the violation of obser-
vational determinism, even though the second high input had no influence. Our
treatment of contingencies corresponds directly to Halpern and Pearl’s causal
models, which allow to ignore certain structural equations as outlined in Ex. 1.

4.2 Finding Actual Causes with Model Checking

In this section, we consider the relationship between finding an actual cause for
the violation of a HyperLTL formula starting with a universal quantifier and
model checking of HyperLTL. We show that the problem of finding an actual
cause can be reduced to a model checking problem where the generated formula
for the model checking problem has one additional quantifier alternation. While
there might be a reduction resulting in a more efficient encoding, our current
result suggests that causality checking is the harder problem. The key idea of
our reduction is to use counterfactual automata (that encode the given coun-
terexample and the possible counterfactual traces) together with the HyperLTL

10 Coenen, Dachselt, Finkbeiner, Frenkel, Hahn, Horak, Metzger, Siber

formula described in the proof to ensure the conditions SAT, CF, and MIN on
the witnesses for the model checking result.

Proposition 1. We can reduce the problem of finding an actual cause for the
violation of a general HyperLTL formula starting with a universal quantifier to
the model checking problem of a HyperLTL formula with one additional quantifier
alternation.

Proof. Let Γ = 〈t1, . . . tk〉 be a counterexample for the formula ∀π1 . . . ∀πk.ϕ
where ϕ is a HyperLTL formula that does not have a universal first quantifier.
We provide the proof for the case of Γ = 〈t1, t2〉 for readability reasons, but
it can be extended to any natural number k. We assume that t1, t2 have some
ω-regular representation, as otherwise the initial problem of computing causality
is not well defined. That is, we denote ti = ui(vi)

ω such that |ui · vi| = ni.

In order to find an actual cause, we need to find a pair of traces t′1, t
′
2 that are

counterfactuals for t1, t2; satisfy the property ϕ; and the changes from t1, t2 to
t′1, t

′
2 are minimal with respect to set containment. Changes in inputs between

ti and t′i in the loop part vi should reoccur in t′i repeatedly. Note that the
differences between the counterexample t1, t2 and the witnesses of the model
checking problem t′1, t

′
2 encode the actual cause, i.e. in case of a difference, the

cause contains the event that is present on the counterexample. To reason about
these changes, we use the counterfactual automaton TCi for each ti. Note that
each TCi constitutes of ni copies, that indicate in which step the automaton is,
with respect to ti and its loop vi. For m > |ui|, we label each state (si,m) in TCi
with the additional label Lsm,i, to indicate that the system is now in the loop
part of ti. In addition, we add the initial state of TCi the label li, and we add
the initial state of the system T the label lor . The formula ψiloop below states

that the trace π begins its run from the initial state of TCi (and thus stays in
this component through the whole run), and that every time π visits a state on
the loop, the same input sequence is observed. This way we enforce the periodic
input behavior of the traces t1, t2 on t′1, t

′
2.

ψiloop(π) := li,π ∧
∧
Lsm,i

∨
A⊆I

(Lsm,i,π → (
∧
a∈A

aπ ∧
∧
a/∈A

¬aπ))

For a subset of locations N ⊆ [1, ni] and a subset of input propositions A ⊆ I
we define ψidiff [N,A](π) that states that π differs from ti in at least all events

〈la,m, ti〉 for a ∈ A,m ∈ N ; and the formula ψieq [N,A](π) that states that for
all events that are not defined by A and N , π is equal to ti.

ψidiff [N,A](π) =
∧

j∈N,a∈A

j(aπ 6↔ ati)

ψieq [N,A](π) =
∧

j /∈N,a∈I

j(aπ ↔ ati) ∧
∧

j∈[1,ni],a/∈A

j(aπ ↔ ati)

Explaining Hyperproperty Violations 11

We now define the formula ψimin that states that the set of inputs (and
locations) on which trace π differs from ti is not contained in the corresponding
set for π′. We only check locations up until the length ni of ti.

ψimin(π, π′) :=
∧

N⊆[i,ni]

∧
A⊆I

((
ψidiff [N,A](π) ∧ ψieq [N,A](π)

)
→ ¬ψieq [N,A](π′)

)
Denote ϕ := Q1τ1 . . . Qnτn. ϕ

′(π1, π2). The formula ψcause described below
states that the two traces π′1 and π′2 are part of the systems TC1 , T

C
2 , and have

the same loop structure as t1 and t2, and satisfy ϕ. That is, these traces can be
obtained by changing the original traces t1, t2 and avoid the violation.

ψcause(π′1, π
′
2) := ϕ′(π′1, π

′
2) ∧

∧
i=1,2

ψiloop(π′i)

Finally, ψactual described below states that the counterfactuals π′1, π
′
2 corre-

spond to a minimal change in the input events with respect to t1, t2. All other
traces that the formula reasons about start at the initial state of the original
system and thus are not affected by the counterfactual changes. We verify ψactual

against the product automaton T × TC1 × TC2 to find these traces π′i ∈ TCi that
witness the presence of a cause, counterfactual and contingency.

ψactual := ∃π′1∃π′2. ∀π′′1π′′2 . Q1τ1 . . . Qnτn. ψcause(π′1, π
′
2) ∧

∧
i=1,2

(li,π′
i
∧ li,π′′

i
)

∧
∧

i∈[1,n]

lor ,τi ∧

ψcause(π′′1 , π
′′
2)→

 ∧
i=1,2

ψimin(π′i, π
′′
i)


Then, if there exists two such traces π′1, π

′
2 in the system T × TC1 × TC2 ,

they correspond to a minimal cause for the violation. Otherwise, there are no
traces of the counterfactual automata that can be obtained from t1, t2 using
counterfactual reasoning and satisfy the formula ϕ. ut

We have shown that we can use model checking HyperLTL to find an actual
cause for the violation of a HyperLTL formula. The resulting model checking
problem has an additional quantifier alternation which suggests that identifying
actual causes is a harder problem. Therefore, we restrict ourselves to finding
actual causes for violations of HyperLTL formulas from the universal fragment.
This keeps the algorithms we present in the next section practical.

5 Computing Causes for Counterexamples

In this section, we describe our algorithm for finding actual causes of hyperprop-
erty violations. Our algorithm is implemented on top of MCHyper [34], a model
checker for hardware circuits and the alternation-free fragment of HyperLTL. In

12 Coenen, Dachselt, Finkbeiner, Frenkel, Hahn, Horak, Metzger, Siber

case of a violation, our analysis enriches the provided counterexample with the
actual cause which can explain the reason for the violaiton to the user.

We first provide an overview of our algorithm and then discuss each step in
detail. First, we compute an over-approximation of the cause using a satisfiability
analysis over the transitions taken in the counterexample. This analysis results
in a set of candidate events C̃. As we show in Prop. 2, every actual cause C for the
violation is a subset of C̃. In addition, in Prop. 3 we show that the set C̃ satisfies
conditions SAT and CF. To ensure MIN, we search for the smallest subset C ⊆
C̃ that satisfies SAT and CF. This set C is then our minimal and therefore
actual cause. To check condition CF, we need to check the counterfactual of
each candidate cause C, and potentially also look for contingencies for C. We
separate our discussion as follows. We first discuss the calculation of the over
approximation C̃ (Sec. 5.1), then we present the ActualCause algorithm that
identifies a minimal subset of C̃ that is an actual cause (Sec. 5.2), and finally we
discuss in detail the calculation of contingencies (Sec. 5.3).

In the following sections, we use a reduction of the universal fragment of
HyperLTL to LTL, and the advantages of the linear translation of LTL to alter-
nating automata, as we now briefly outline.

HyperLTL to LTL. Let ϕ be a ∀n-HyperLTL formula and Γ be the counterexam-
ple. We construct an LTL formula ϕ′ from ϕ as follows [30]: atomic propositions
indexed with different trace variables are treated as different atomic proposi-
tions and trace quantifiers are eliminated. For example ∀π, π′.aπ ∧ aπ′ results
in the LTL formula aπ ∧ aπ′ . As for Γ , we use the same renaming in order to
zip all traces into a single trace, for which we assume the finite representation
t′′ = u′′ · (v′′)ω, which is also the structure of the model checker’s output. The
trace t′′ is a violation of the formula ϕ′, i.e., t′′ satisfies ¬ϕ′. We denote ϕ̄ := ¬ϕ′.
We can then assume, for implementation concerns, that the specification (and
its violation) is an LTL formula, and the counterexample is a single trace. Af-
ter our causal analysis, the translation back to a cause over hyperproperties is
straightforward as we maintain all information about the different traces in the
counterexample.

Finite Trace Model Checking Using Alternating Automata. In verifying condi-
tion CF (that is, in computing counterfactuals and contingencies), we need to
apply finite trace model checking, as we want to check if the modified trace in
hand still violates the specification ϕ, that is, satisfies ϕ̄. To this end, we use
the linear algorithm of [35], that exploits the linear translation of ϕ̄ to an al-
ternating automaton Aϕ̄, and using backwards analysis checks the satisfaction
of the formula. An alternating automaton [67] generalizes non-deterministic and
universal automata, and its transition relation is a Boolean function over the
states. The run of alternating automaton is then a tree run that captures the
conjunctions in the formula. We use the algorithm of [35] as a black box (see
App. A.1 for a formal definition of alternating automata). For the computation
of contingencies we use an additional feature of the algorithm of [35] – the algo-
rithm returns an accepting run tree T of Aϕ̄ on t′′, with annotations of nodes

Explaining Hyperproperty Violations 13

that represent atomic subformulas of ϕ̄ that take part in the satisfaction of ϕ̄.
We use this feature also in Sec. 5.1 when calculating the set of candidate causes.

5.1 Computing the Set of Candidate Causes

The events that might been a part of a the cause to the violation are in-fact
all events that appear on the counterexample, or, equivalently, all events that
appear in u′′ and v′′. Note that due to the finite representation, this is a finite
set of events. Yet, not all events in this set can cause the violation. In order to
remove events that could not have be a part of the cause, we perform an analysis
of the transitions of the system taken during the execution of t′′. With this
analysis we detect which events appearing in the trace locally cause the respective
transitions, and thus might be part of the global cause. Events that did not
trigger a transition in this specific trace cannot be a part of the cause. Note that
causing a transition and being an actual cause are two different notions - actual
causality is defined over the behaviour of the system, not on individual traces.
We denote the over-approximation of the cause as C̃. Formally, we represent
each transition as a Boolean function over inputs and states. Let δn denote the
formula representing the transition of the system taken when reading t′′[n], and
let ca,n,i be a Boolean variable that corresponds to the event 〈ati , n, t′′〉.3 Denote
ψtn =

∧
ati∈t′′[n] ca,n,i ∧

∧
ati /∈t′′[n] ¬ca,n,i, that is, ψtn expresses the exact set of

events in t′′[n]. In order to find events that might trigger the transition δn, we
check for the unsatisfiable core of ψn = (¬δn)∧ψtn. Intuitively, the unsatisfiable
core of ψn is the set of events that force the system to take this specific transition.
For every ca,n,i (or ¬ca,n,i) in the unsatisfiable core that is also a part of ψtn,

we add 〈a, n, ti〉 (or 〈¬a, n, ti〉) to C̃.
We use unsatisfiable cores in order to find input events that are necessary in

order to take a transition. However, this might not be enough. There are cases
in which inputs that appear in formula ϕ̄ are not detected using this method,
as they are not essential in order to take a transition; however, they might be
considered a part of the actual cause, as negating them can avoid the violation.
Therefore, as a second step, we apply the algorithm of [35] on the annotated
automaton Aϕ̄ in order to find the specific events that effect the satisfaction of

ϕ̄, and we add these events to C̃. Then, the unsatisfiable core approach provides
us with inputs that affect the computation and might cause the violation even
though they do not appear on the formula itself; while the alternating automaton
allows us to find inputs that are not essential for the computation, but might
still be a part of the cause as they appear on the formula.

Proposition 2. The set C̃ is indeed an over approximation of the cause for the
violation. That is, every actual cause C for the violation is a subset of C̃.

Proof (sketch). Let e = 〈la, n, t〉 be an event such that e is not in the unsatisfiable
core of ψn and does not directly affect the satisfaction of ϕ̄ according to the

3 That is, ¬ca,n,i corresponds to the event 〈¬ati , n, t′′〉. Recall that the atomic propo-
sitions on the zipped trace t′′ are annotated with the original trace ti from Γ .

14 Coenen, Dachselt, Finkbeiner, Frenkel, Hahn, Horak, Metzger, Siber

Algorithm 1: ActualCause(ϕ, Γ, C̃)
Input: Hyperproperty ϕ, counterexample Γ violating ϕ, and a set of

candidate causes C̃ for which conditions SAT and CF hold.
Output: A set of input events C which is an actual cause for the violation.

1 for i ∈ [1, . . . , |C̃| − 1] do

2 for C ⊂ C̃ with |C| = i do

3 let Γ f = intervene(Γ, C, ∅);
4 if Γ f � ϕ then
5 return C;
6 else

7 W̃ = ComputeContingency(ϕ, C, Γ);

8 if W̃ 6= ∅ then
9 return C;

10 return C̃;

alternating automata analysis. That is, the transition corresponds to ψtn is taken
regardless of e, and thus all future events on t remain the same regardless of the
valuation of e. In addition, the valuation of the formula ϕ̄ is the same regardless
of e, since: (1) e does not directly affect the satisfaction of ϕ̄; (2) e does not affect
future events on t (and obviously it does not affect past events). Therefore, every
set C′ such that e ∈ C′ is not minimal, and does not form a cause. Since the above
is true for all events e 6∈ C, it holds that C ⊆ C̃ for every actual cause C. ut

Proposition 3. The set C̃ satisfies conditions SAT and CF.

Proof. The condition SAT is satisfied as we add to C̃ only events that indeed
occur on the counterexample trace. For CF, consider that C̃ is a super-set of the
actual cause C, so the same contingency and counterfactual of C will also apply
for C̃. This is since in order to compute counterfactual we are allowed to flip any
subset of the events in C, and any such subset is also a subset of C̃. In addition, in
computing contingencies, we are allowed to flip any subset of outputs as long as
they agree with the counterexample trace, which is independent in C̃ and C. ut

5.2 Checking Actual Causality

Due to Prop. 2 we know that in order to find an actual cause, we only need to
consider subsets of C̃ as candidate causes. In addition, since C̃ satisfies condition
SAT, so do all of its subsets. We thus only need to check conditions CF and
MIN for subsets of C̃. Our actual causality computation, presented in Alg. 1 is
as follows. We start with the set C̃, that satisfies SAT and CF. We then check
if there exists a more minimal cause that satisfies CF. This is done by iterating
over all subsets C′ of C̃, ordered by size and starting with the smallest ones, and
checking if the counterfactual for the C′ manages to avoid the violation; and
if not, if there exists a contingency for this C′. If the answer to one of these
questions is yes, then C′ is a minimal cause that satisfies SAT, CF, and MIN,
and thus we return C′ as our actual cause. We now elaborate on CF and MIN.

Explaining Hyperproperty Violations 15

Algorithm 2: ComputeContingency(ϕ, Γ, C)
Input: Hyperproperty ϕ, a counterexample Γ and a potential cause C.
Output: a set of output events W which is a contingency for ϕ, Γ and C, or ∅

if no contingency found.
1 let t′′ be the zipped trace of Γ ,ϕ′ be the LTL formula obtained from ϕ, and

ϕ̄ = ¬ϕ′;
2 let Aϕ̄ be the alternating automaton for ϕ̄;

3 let N be the sets of events derived from the annotated run tree of Aϕ̄ on tf ;

4 let tf be the counterfactual trace obtained from t′′ by flipping all events in C;
5 let O′ := {〈lat , n, t

′′〉 ∈ OE | at ∈ t′′[n]↔ at /∈ tf [n]};
6 for every subset W ′ ⊆ (N ∩O′), and then for every other subset W ′ ⊆ O′ do
7 tm := intervene(t′′, C,W ′);
8 if tm � ϕ′ then
9 return W ′;

10 return ∅;

CF. As we have mentioned above, checking condition CF is done in two stages –
checking for counterfactuals and computing contingencies. We first show that we
do not need to consider all possible counterfactuals, but only one counterfactual
for each candidate cause.

Proposition 4. Let C̃ be a candidate cause. Then, in order to check if C̃ is an
actual cause it is enough to test the one counterfactual where all the events in C̃
are flipped.

Proof. Assume that there is a strict subset C of C̃ such that we only need to flip
the valuations of events in C in order to find a counterfactual or contingency,
thus C satisfies CF. Since C is a more minimal cause than C̃, we will find it during
the minimality check. ut

We assume that CF holds for the input set C̃ and check if it holds for any
smaller subset C ⊂ C̃. CF holds for C if (1) flipping all events in C is enough to
avoid the violation of ϕ or if (2) there exists a non-empty set of contingencies
for C that ensures that ϕ is not violated. The computation of contingencies is
described in Alg. 2.

Verifying condition CF involves model checking traces against an LTL for-
mula, as we check if the property ϕ is still violated on the counterfactual trace
with the empty contingency (line 3), and on the counterfactual traces resulting
from the different contingency sets we consider in Alg. 2 (line 7). In both scenar-
ios, we apply finite trace model checking, as described at the beginning of Sec. 5
(as we assume a finite, lasso-shaped representation of our traces).

MIN. To check if C̃ is minimal, we need to check if there exists a subset of C̃
that satisfies CF. We check CF for all subsets, starting with the smallest one,
and report the first subset that satisfies CF as our actual cause. (Note that we
already established that C̃ and all of its subsets satisfy SAT.)

16 Coenen, Dachselt, Finkbeiner, Frenkel, Hahn, Horak, Metzger, Siber

5.3 Computing Contingencies

Recall that the role of contingencies is to eliminate the effect of other possible
causes from the counterfactual world, in case these causes did not affect the
violation in the actual world. More formally, in computing contingencies we look
for a setW of output events such that changing these outputs from their value in
the counterfactual to their value in the counterexample t′′ results in avoiding the
violation. Note that the inputs remain as they are in the counterfactual. We note
that the problem of finding contingencies is hard, and in general is equivalent
to the problem of model checking. This is since we need to consider all traces
that are the result of changing some subset of events (output + time step) from
the counterfactual back to the counterexample, and to check if there exists a
trace in this set that avoids the violation. Unfortunately, we are unable to avoid
an exponential complexity in the size of the original system, in the worst case.
However, our experiments show that in practice, most cases do not require the
use of contingencies.

Our algorithm for computing contingencies (Alg. 2) works as follows. Let
tf be the counterfactual trace. As a first step, we use the annotated run tree
T of the alternating automaton Aϕ̄ on tf to detect output events that appear
in ϕ̄ and take part in satisfying ϕ̄. Subsets of these output events are our first
candidates for contingencies as they directly related to the violation (Alg. 2
lines 3-9). If we were not able to find a contingency, we continue to checking all
possible subsets of outputs events that differ from the original counterexample
trace. We test the different outputs by feeding the Counterfactual automaton
of Def. 4 with additional inputs from the set IC . The resulted trace is then
our candidate contingency, which we try to verify against ϕ. Note that we can
bound the number of different input sequences by the size of the product of
the Counterfactual automaton and the automaton for ϕ̄, and thus the process
terminates.

Theorem 1 (Correctness). Our algorithm is sound and complete. That is, let
Γ be a counterexample with a finite representation to a ∀n-HyperLTL formula
ψ. Then, our algorithm returns an actual cause for the violation, if such exists.

Proof. Soundness. Since we verify each candidate set of inputs according to
the conditions SAT, CF and MIN, it holds that every output of our algorithm
is indeed an actual cause. Completeness. If there exists a cause, then due to
Prop. 2, it is a subset of the finite set C̃. Since in the worst case we test every
subset of C̃, if there exists a cause we will eventually find it. ut

6 Implementation and Experiments

We implemented Alg. 1 and evaluated it on publicly available example instances
of HyperVis [47], for which their state graphs were available. In the following, we
provide implementation details, report on the running time and show the useful-
ness of the implementation by comparing to the highlighting output of HyperVis.

Explaining Hyperproperty Violations 17

Table 1: Experimental results of our implementation. Times are given in ms.

Instance |Γ | |ϕ| time(C̃) C̃ #(C) time(∀C)

Running example 10 9 19 ¬hi0t1
, hi0t2

2 55
Security in & out 35 19 292 hi2t1

,¬hi0t1
,¬hi3t1

,¬hi1t1
8 798

hi2t2
, hi0t2

, hi1t2
, hi3t2

Drone example 1 24 19 33 bound2t1
,¬bound1t1

, up1t1
,¬up2t1

5 367
bound2t2

,¬bound1t2
,¬up1t2

Drone example 2 36 36 31 bound1t1
,¬bound1t2

, up1t2
3 256

Asymmetric arbiter ’19 28 35 53 see Appendix A.4 10 490
Asymmetric arbiter 72 35 70 see Appendix A.4 24 1480

Our implementation is written in Python and uses py-aiger [59] and spot [26].
We compute the candidate cause according to Sec. 5.1 with py-sat [49], using
Glucose 4 [3,65], building on Minisat [65]. We ran experiments on a MacBook
Pro with a 3, 3 GHz Dual-Core Intel Core i7 processor and 16 GB RAM4.

Experimental results. The results of our experimental valuation can be found in
Tab. 1. We report on the size of the analyzed counterexample |Γ |, the size of the
violated formula |ϕ|, how long it took to compute the first, over-approximated
cause (see time(C̃)) and state the approximation C̃ itself, the number of computed
minimal causes #(C) and the time it took to compute all of them (see time(∀C)).
The Running Example is described in Sec. 3, the instance Security in & out

refers to a system which leaks high security input by not satisfying a noninter-
ference property, the Drone examples consider a leader-follower drone scenario,
and the Asymmetric Arbiter instances refer to arbiter implementations that do
not satisfy a symmetry constraint. Specifications can be found in App. A.5.

Our first observation is that the cause candidate C̃ can be efficiently com-
puted thanks to the iterative computation of unsatisfiable cores (Sec. 5.1). The
cause candidate provides a tight over-approximation of possible minimal causes.
As expected, the runtime for finding minimal causes increases for larger coun-
terexamples. However, as our experiments show, the overhead is manageable,
because we optimize the search for all minimal causes by only considering every
subset in C̃ instead of naively going over every combination of input events (see
Prop. 2). Compared to the computationally heavy task of model checking to get
a counterexample, our approach incurs little additional cost, which matches our
theoretical results (see Prop. 1).

During our experiments, we have found that computing the candidate C̃
first has, additionally to providing a powerful heuristic, another benefit: Even
when the computation of minimal causes becomes increasingly expensive, C̃ can
serve as an intermediate result for the user. By filtering for important inputs,
such as high security inputs, C̃ already gives great insight to why the property
was violated. In the asymmetric arbiter instance, for example, the input events

4 After double-blind reviewing, code and results will be available online.

18 Coenen, Dachselt, Finkbeiner, Frenkel, Hahn, Horak, Metzger, Siber

〈¬tb secret , 3, t0〉 and 〈tb secret , 3, t1〉 of C̃, which cause the violation, immedi-
ately catch the eye (c.f App. A.4).

Comparison to HyperVis. HyperVis [47] is a tool for visualizing counterexam-
ples returned from the HyperLTL model checker MCHyper [34]. It highlights the
events in the trace that it considers responsible for the violation based on the
formula and the set of traces, without considering the system model. However,
violations of many relevant security policies such as observational determinism
are not caused by events whose atomic propositions appear in the formula, as
can be seen in our running example (see Sec. 3 and Ex. 2). When running the
highlight function of HyperVis for the counterexample traces t1, t2 on Running

example, the output events 〈lo, 1, t1〉 and 〈¬lo, 1, t2〉 will be highlighted, neglect-
ing the decisive high security input hi. Using our method additionally reveals
the input events 〈¬hi, 0, t1〉 and 〈hi, 0, t2〉, i.e., an actual cause (see Tab. 1). This
pattern can be observed throughout all considered instances in our experiments.
For instance in the Asymmetric arbiter instance mentioned above, the input
events causing the violation do also not occur in the formula (see App. A.5) and
thus HyperVis does not highlight this important cause for the violation.

7 Related Work

With the introduction of HyperLTL and HyperCTL∗ [21], temporal hyper-
properties have been studied extensively: satisfiability [28,37,60], model check-
ing [34,48,33], program repair [11], monitoring [31,10,66,2], synthesis [29], and ex-
pressiveness studies [23,52,36]. Causal analysis of hyperproperties has been stud-
ied theoretically based on counterfactual builders [39] instead of actual causality,
as in our work. Explanation methods [4] exist for trace properties [68,5,38,40,41],
integrated in several model checkers [20,15,16]. Minimization [53] has been stud-
ied, as well as analyzing several system traces together [42,64,9]. There exists
work in explaining counterexamples for function block diagrams [50,62]. MOD-
CHK uses a causality analysis [7] returning an over-approximation, while we
provide minimal causes. Lastly, there are approaches which define actual causes
for the violation of a trace property using Event Order Logic [14,55,56].

8 Conclusion

We present an explanation method for counterexamples to hyperproperties de-
scribed by HyperLTL formulas. We lift Halpern and Pearl’s definition of actual
causality to effects described by hyperproperties and counterexamples given as
sets of traces. Like the definition that inspired us, we allow modifications of
the system dynamics in the counterfactual world through contingencies, and de-
fine these possible counterfactual behaviors in an automata-theoretic approach.
The evaluation of our prototype implementation shows that our method is prac-
tically applicable and significantly improves the state-of-the-art in explaining
counterexamples returned by a HyperLTL model checker.

Explaining Hyperproperty Violations 19

References

1. Apache log4j security vulnerabilities, https://logging.apache.org/log4j/2.x/
security.html

2. Agrawal, S., Bonakdarpour, B.: Runtime verification of k-safety hyperproperties
in hyperltl. In: IEEE 29th Computer Security Foundations Symposium, CSF
2016, Lisbon, Portugal, June 27 - July 1, 2016. pp. 239–252. IEEE Computer
Society (2016). https://doi.org/10.1109/CSF.2016.24, https://doi.org/10.1109/
CSF.2016.24

3. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers.
In: Boutilier, C. (ed.) IJCAI 2009, Proceedings of the 21st International Joint
Conference on Artificial Intelligence, Pasadena, California, USA, July 11-17, 2009.
pp. 399–404 (2009), http://ijcai.org/Proceedings/09/Papers/074.pdf

4. Baier, C., Dubslaff, C., Funke, F., Jantsch, S., Majumdar, R., Piribauer, J., Ziemek,
R.: From Verification to Causality-Based Explications. In: Bansal, N., Merelli,
E., Worrell, J. (eds.) 48th International Colloquium on Automata, Languages,
and Programming (ICALP 2021). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 198, pp. 1:1–1:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl, Germany (2021). https://doi.org/10.4230/LIPIcs.ICALP.2021.1, https:
//drops.dagstuhl.de/opus/volltexte/2021/14070

5. Ball, T., Naik, M., Rajamani, S.K.: From symptom to cause: localizing errors
in counterexample traces. In: Aiken, A., Morrisett, G. (eds.) Conference Record
of POPL 2003: The 30th SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, New Orleans, Louisisana, USA, January 15-17, 2003. pp.
97–105. ACM (2003). https://doi.org/10.1145/604131.604140, https://doi.org/
10.1145/604131.604140

6. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by
self-composition. Math. Struct. Comput. Sci. 21(6), 1207–1252 (2011).
https://doi.org/10.1017/S0960129511000193, https://doi.org/10.1017/

S0960129511000193

7. Beer, I., Ben-David, S., Chockler, H., Orni, A., Trefler, R.J.: Explaining coun-
terexamples using causality. In: Bouajjani, A., Maler, O. (eds.) Computer Aided
Verification, 21st International Conference, CAV 2009, Grenoble, France, June 26
- July 2, 2009. Proceedings. Lecture Notes in Computer Science, vol. 5643, pp.
94–108. Springer (2009). https://doi.org/10.1007/978-3-642-02658-4 11, https:

//doi.org/10.1007/978-3-642-02658-4_11

8. Biere, A.: The AIGER And-Inverter Graph (AIG) format version 20071012. Tech.
Rep. Report 07/1, Institute for Formal Models and Verification, Johannes Kepler
University, Altenbergerstr. 69, 4040 Linz, Austria (2007)

9. Bochot, T., Virelizier, P., Waeselynck, H., Wiels, V.: Paths to property
violation: A structural approach for analyzing counter-examples. In: 12th
IEEE High Assurance Systems Engineering Symposium, HASE 2010, San
Jose, CA, USA, November 3-4, 2010. pp. 74–83. IEEE Computer Society
(2010). https://doi.org/10.1109/HASE.2010.15, https://doi.org/10.1109/HASE.
2010.15

10. Bonakdarpour, B., Finkbeiner, B.: The complexity of monitoring hyper-
properties. In: 31st IEEE Computer Security Foundations Symposium, CSF
2018, Oxford, United Kingdom, July 9-12, 2018. pp. 162–174 (2018).
https://doi.org/10.1109/CSF.2018.00019, https://doi.org/10.1109/CSF.2018.

00019

https://logging.apache.org/log4j/2.x/security.html
https://logging.apache.org/log4j/2.x/security.html
https://doi.org/10.1109/CSF.2016.24
https://doi.org/10.1109/CSF.2016.24
https://doi.org/10.1109/CSF.2016.24
http://ijcai.org/Proceedings/09/Papers/074.pdf
https://doi.org/10.4230/LIPIcs.ICALP.2021.1
https://drops.dagstuhl.de/opus/volltexte/2021/14070
https://drops.dagstuhl.de/opus/volltexte/2021/14070
https://doi.org/10.1145/604131.604140
https://doi.org/10.1145/604131.604140
https://doi.org/10.1145/604131.604140
https://doi.org/10.1017/S0960129511000193
https://doi.org/10.1017/S0960129511000193
https://doi.org/10.1017/S0960129511000193
https://doi.org/10.1007/978-3-642-02658-4_11
https://doi.org/10.1007/978-3-642-02658-4_11
https://doi.org/10.1007/978-3-642-02658-4_11
https://doi.org/10.1109/HASE.2010.15
https://doi.org/10.1109/HASE.2010.15
https://doi.org/10.1109/HASE.2010.15
https://doi.org/10.1109/CSF.2018.00019
https://doi.org/10.1109/CSF.2018.00019
https://doi.org/10.1109/CSF.2018.00019

20 Coenen, Dachselt, Finkbeiner, Frenkel, Hahn, Horak, Metzger, Siber

11. Bonakdarpour, B., Finkbeiner, B.: Program repair for hyperproperties.
In: Automated Technology for Verification and Analysis - 17th Interna-
tional Symposium, ATVA 2019, Taipei, Taiwan, October 28-31, 2019, Pro-
ceedings. Lecture Notes in Computer Science, vol. 11781, pp. 423–441.
Springer (2019). https://doi.org/10.1007/978-3-030-31784-3 25, https://doi.

org/10.1007/978-3-030-31784-3_25

12. Brayton, R., Mishchenko, A.: Abc: An academic industrial-strength verification
tool. In: Touili, T., Cook, B., Jackson, P. (eds.) Computer Aided Verification. pp.
24–40. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

13. Brayton, R.K., Mishchenko, A.: ABC: an academic industrial-strength verification
tool. In: Touili, T., Cook, B., Jackson, P.B. (eds.) Computer Aided Verification,
22nd International Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010. Pro-
ceedings. Lecture Notes in Computer Science, vol. 6174, pp. 24–40. Springer (2010),
https://doi.org/10.1007/978-3-642-14295-6_5

14. Caltais, G., Guetlein, S.L., Leue, S.: Causality for general ltl-definable prop-
erties. In: Finkbeiner, B., Kleinberg, S. (eds.) Proceedings 3rd Workshop on
formal reasoning about Causation, Responsibility, and Explanations in Science
and Technology, CREST@ETAPS 2018, Thessaloniki, Greece, 21st April 2018.
EPTCS, vol. 286, pp. 1–15 (2018). https://doi.org/10.4204/EPTCS.286.1, https:
//doi.org/10.4204/EPTCS.286.1

15. Chaki, S., Clarke, E.M., Groce, A., Jha, S., Veith, H.: Modular verification of
software components in C. IEEE Trans. Software Eng. 30(6), 388–402 (2004).
https://doi.org/10.1109/TSE.2004.22, https://doi.org/10.1109/TSE.2004.22

16. Chaki, S., Groce, A., Strichman, O.: Explaining abstract counterexamples.
In: Taylor, R.N., Dwyer, M.B. (eds.) Proceedings of the 12th ACM SIG-
SOFT International Symposium on Foundations of Software Engineering, 2004,
Newport Beach, CA, USA, October 31 - November 6, 2004. pp. 73–82.
ACM (2004). https://doi.org/10.1145/1029894.1029908, https://doi.org/10.

1145/1029894.1029908

17. Chockler, H., Halpern, J.Y., Kupferman, O.: What causes a system to sat-
isfy a specification? ACM Trans. Comput. Log. 9(3), 20:1–20:26 (2008).
https://doi.org/10.1145/1352582.1352588, https://doi.org/10.1145/1352582.

1352588

18. Clarke, E.M., Biere, A., Raimi, R., Zhu, Y.: Bounded model check-
ing using satisfiability solving. Formal Methods Syst. Des. 19(1), 7–34
(2001). https://doi.org/10.1023/A:1011276507260, https://doi.org/10.1023/A:
1011276507260

19. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skele-
tons using branching-time temporal logic. In: Kozen, D. (ed.) Logics of
Programs, Workshop, Yorktown Heights, New York, USA, May 1981. Lec-
ture Notes in Computer Science, vol. 131, pp. 52–71. Springer (1981).
https://doi.org/10.1007/BFb0025774, https://doi.org/10.1007/BFb0025774

20. Clarke, E.M., Kroening, D., Lerda, F.: A tool for checking ANSI-C pro-
grams. In: Jensen, K., Podelski, A. (eds.) Tools and Algorithms for the Con-
struction and Analysis of Systems, 10th International Conference, TACAS
2004, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2004, Barcelona, Spain, March 29 - April 2,
2004, Proceedings. Lecture Notes in Computer Science, vol. 2988, pp. 168–
176. Springer (2004). https://doi.org/10.1007/978-3-540-24730-2 15, https://

doi.org/10.1007/978-3-540-24730-2_15

https://doi.org/10.1007/978-3-030-31784-3_25
https://doi.org/10.1007/978-3-030-31784-3_25
https://doi.org/10.1007/978-3-030-31784-3_25
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.4204/EPTCS.286.1
https://doi.org/10.4204/EPTCS.286.1
https://doi.org/10.4204/EPTCS.286.1
https://doi.org/10.1109/TSE.2004.22
https://doi.org/10.1109/TSE.2004.22
https://doi.org/10.1145/1029894.1029908
https://doi.org/10.1145/1029894.1029908
https://doi.org/10.1145/1029894.1029908
https://doi.org/10.1145/1352582.1352588
https://doi.org/10.1145/1352582.1352588
https://doi.org/10.1145/1352582.1352588
https://doi.org/10.1023/A:1011276507260
https://doi.org/10.1023/A:1011276507260
https://doi.org/10.1023/A:1011276507260
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-24730-2_15

Explaining Hyperproperty Violations 21

21. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez,
C.: Temporal logics for hyperproperties. In: Abadi, M., Kremer, S. (eds.) Principles
of Security and Trust - Third International Conference, POST 2014, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS
2014, Grenoble, France, April 5-13, 2014, Proceedings. Lecture Notes in Computer
Science, vol. 8414, pp. 265–284. Springer (2014). https://doi.org/10.1007/978-3-
642-54792-8 15, https://doi.org/10.1007/978-3-642-54792-8_15

22. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157–
1210 (2010). https://doi.org/10.3233/JCS-2009-0393, https://doi.org/10.3233/
JCS-2009-0393

23. Coenen, N., Finkbeiner, B., Hahn, C., Hofmann, J.: The hierarchy of hyper-
logics. In: 34th Annual ACM/IEEE Symposium on Logic in Computer Sci-
ence, LICS 2019, Vancouver, BC, Canada, June 24-27, 2019. pp. 1–13. IEEE
(2019). https://doi.org/10.1109/LICS.2019.8785713, https://doi.org/10.1109/

LICS.2019.8785713

24. Coenen, N., Finkbeiner, B., Sánchez, C., Tentrup, L.: Verifying hyperliveness. In:
Dillig, I., Tasiran, S. (eds.) Computer Aided Verification - 31st International Con-
ference, CAV 2019, New York City, NY, USA, July 15-18, 2019, Proceedings,
Part I. Lecture Notes in Computer Science, vol. 11561, pp. 121–139. Springer
(2019). https://doi.org/10.1007/978-3-030-25540-4 7, https://doi.org/10.1007/
978-3-030-25540-4_7

25. Dehnert, C., Junges, S., Katoen, J., Volk, M.: A storm is coming: A modern proba-
bilistic model checker. In: Majumdar, R., Kuncak, V. (eds.) Computer Aided Ver-
ification - 29th International Conference, CAV 2017, Heidelberg, Germany, July
24-28, 2017, Proceedings, Part II. Lecture Notes in Computer Science, vol. 10427,
pp. 592–600. Springer (2017), https://doi.org/10.1007/978-3-319-63390-9_31

26. Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, E., Xu, L.:
Spot 2.0 - A framework for LTL and \omega -automata manipulation. In: Artho,
C., Legay, A., Peled, D. (eds.) Automated Technology for Verification and Analysis
- 14th International Symposium, ATVA 2016, Chiba, Japan, October 17-20, 2016,
Proceedings. Lecture Notes in Computer Science, vol. 9938, pp. 122–129 (2016),
https://doi.org/10.1007/978-3-319-46520-3_8

27. Durumeric, Z., Li, F., Kasten, J., Amann, J., Beekman, J., Payer, M., Weaver, N.,
Adrian, D., Paxson, V., Bailey, M., et al.: The matter of heartbleed. In: Proceedings
of the 2014 conference on internet measurement conference. pp. 475–488 (2014)

28. Finkbeiner, B., Hahn, C.: Deciding hyperproperties. In: 27th International Con-
ference on Concurrency Theory, CONCUR 2016, August 23-26, 2016, Québec
City, Canada. LIPIcs, vol. 59, pp. 13:1–13:14. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2016). https://doi.org/10.4230/LIPIcs.CONCUR.2016.13, https:
//doi.org/10.4230/LIPIcs.CONCUR.2016.13

29. Finkbeiner, B., Hahn, C., Lukert, P., Stenger, M., Tentrup, L.: Syn-
thesis from hyperproperties. Acta Informatica 57(1-2), 137–163 (2020).
https://doi.org/10.1007/s00236-019-00358-2, https://doi.org/10.1007/

s00236-019-00358-2

30. Finkbeiner, B., Hahn, C., Stenger, M., Tentrup, L.: RVHyper: A runtime ver-
ification tool for temporal hyperproperties. In: Proceedings of TACAS. LNCS,
vol. 10806, pp. 194–200. Springer (2018). https://doi.org/10.1007/978-3-319-89963-
3 11

31. Finkbeiner, B., Hahn, C., Stenger, M., Tentrup, L.: Monitoring hy-
perproperties. Formal Methods Syst. Des. 54(3), 336–363 (2019).

https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.3233/JCS-2009-0393
https://doi.org/10.3233/JCS-2009-0393
https://doi.org/10.3233/JCS-2009-0393
https://doi.org/10.1109/LICS.2019.8785713
https://doi.org/10.1109/LICS.2019.8785713
https://doi.org/10.1109/LICS.2019.8785713
https://doi.org/10.1007/978-3-030-25540-4_7
https://doi.org/10.1007/978-3-030-25540-4_7
https://doi.org/10.1007/978-3-030-25540-4_7
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.4230/LIPIcs.CONCUR.2016.13
https://doi.org/10.4230/LIPIcs.CONCUR.2016.13
https://doi.org/10.4230/LIPIcs.CONCUR.2016.13
https://doi.org/10.1007/s00236-019-00358-2
https://doi.org/10.1007/s00236-019-00358-2
https://doi.org/10.1007/s00236-019-00358-2
https://doi.org/10.1007/978-3-319-89963-3_11
https://doi.org/10.1007/978-3-319-89963-3_11

22 Coenen, Dachselt, Finkbeiner, Frenkel, Hahn, Horak, Metzger, Siber

https://doi.org/10.1007/s10703-019-00334-z, https://doi.org/10.1007/

s10703-019-00334-z

32. Finkbeiner, B., Hahn, C., Torfah, H.: Model checking quantitative hyperproperties.
In: Computer Aided Verification - 30th International Conference, CAV 2018, Held
as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17,
2018, Proceedings, Part I. Lecture Notes in Computer Science, vol. 10981, pp. 144–
163. Springer (2018). https://doi.org/10.1007/978-3-319-96145-3 8, https://doi.
org/10.1007/978-3-319-96145-3_8

33. Finkbeiner, B., Müller, C., Seidl, H., Zalinescu, E.: Verifying security poli-
cies in multi-agent workflows with loops. In: Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security, CCS
2017, Dallas, TX, USA, October 30 - November 03, 2017. pp. 633–645.
ACM (2017). https://doi.org/10.1145/3133956.3134080, https://doi.org/10.

1145/3133956.3134080

34. Finkbeiner, B., Rabe, M.N., Sánchez, C.: Algorithms for model checking hyperltl
and hyperctl ˆ*. In: Kroening, D., Pasareanu, C.S. (eds.) Computer Aided Verifi-
cation - 27th International Conference, CAV 2015, San Francisco, CA, USA, July
18-24, 2015, Proceedings, Part I. Lecture Notes in Computer Science, vol. 9206,
pp. 30–48. Springer (2015). https://doi.org/10.1007/978-3-319-21690-4 3, https:
//doi.org/10.1007/978-3-319-21690-4_3

35. Finkbeiner, B., Sipma, H.: Checking finite traces using alternat-
ing automata. Formal Methods Syst. Des. 24(2), 101–127 (2004).
https://doi.org/10.1023/B:FORM.0000017718.28096.48, https://doi.org/

10.1023/B:FORM.0000017718.28096.48

36. Finkbeiner, B., Zimmermann, M.: The first-order logic of hyperproper-
ties. In: 34th Symposium on Theoretical Aspects of Computer Science,
STACS 2017, March 8-11, 2017, Hannover, Germany. LIPIcs, vol. 66, pp.
30:1–30:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017).
https://doi.org/10.4230/LIPIcs.STACS.2017.30, https://doi.org/10.4230/

LIPIcs.STACS.2017.30

37. Fortin, M., Kuijer, L.B., Totzke, P., Zimmermann, M.: Hyperltl satisfiability is σ1
1-

complete, hyperctl* satisfiability is σ2
1-complete. CoRR abs/2105.04176 (2021),

https://arxiv.org/abs/2105.04176

38. Gößler, G., Métayer, D.L.: A general trace-based framework of logical causality.
In: Fiadeiro, J.L., Liu, Z., Xue, J. (eds.) Formal Aspects of Component Software
- 10th International Symposium, FACS 2013, Nanchang, China, October 27-29,
2013, Revised Selected Papers. Lecture Notes in Computer Science, vol. 8348, pp.
157–173. Springer (2013). https://doi.org/10.1007/978-3-319-07602-7 11, https:

//doi.org/10.1007/978-3-319-07602-7_11

39. Gössler, G., Stefani, J.: Causality analysis and fault ascription in
component-based systems. Theor. Comput. Sci. 837, 158–180 (2020).
https://doi.org/10.1016/j.tcs.2020.06.010, https://doi.org/10.1016/j.tcs.

2020.06.010

40. Groce, A., Chaki, S., Kroening, D., Strichman, O.: Error explanation
with distance metrics. Int. J. Softw. Tools Technol. Transf. 8(3), 229–247
(2006). https://doi.org/10.1007/s10009-005-0202-0, https://doi.org/10.1007/

s10009-005-0202-0

41. Groce, A., Kroening, D., Lerda, F.: Understanding counterexamples with ex-
plain. In: Alur, R., Peled, D.A. (eds.) Computer Aided Verification, 16th
International Conference, CAV 2004, Boston, MA, USA, July 13-17, 2004,

https://doi.org/10.1007/s10703-019-00334-z
https://doi.org/10.1007/s10703-019-00334-z
https://doi.org/10.1007/s10703-019-00334-z
https://doi.org/10.1007/978-3-319-96145-3_8
https://doi.org/10.1007/978-3-319-96145-3_8
https://doi.org/10.1007/978-3-319-96145-3_8
https://doi.org/10.1145/3133956.3134080
https://doi.org/10.1145/3133956.3134080
https://doi.org/10.1145/3133956.3134080
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1023/B:FORM.0000017718.28096.48
https://doi.org/10.1023/B:FORM.0000017718.28096.48
https://doi.org/10.1023/B:FORM.0000017718.28096.48
https://doi.org/10.4230/LIPIcs.STACS.2017.30
https://doi.org/10.4230/LIPIcs.STACS.2017.30
https://doi.org/10.4230/LIPIcs.STACS.2017.30
https://arxiv.org/abs/2105.04176
https://doi.org/10.1007/978-3-319-07602-7_11
https://doi.org/10.1007/978-3-319-07602-7_11
https://doi.org/10.1007/978-3-319-07602-7_11
https://doi.org/10.1016/j.tcs.2020.06.010
https://doi.org/10.1016/j.tcs.2020.06.010
https://doi.org/10.1016/j.tcs.2020.06.010
https://doi.org/10.1007/s10009-005-0202-0
https://doi.org/10.1007/s10009-005-0202-0
https://doi.org/10.1007/s10009-005-0202-0

Explaining Hyperproperty Violations 23

Proceedings. Lecture Notes in Computer Science, vol. 3114, pp. 453–456.
Springer (2004). https://doi.org/10.1007/978-3-540-27813-9 35, https://doi.

org/10.1007/978-3-540-27813-9_35

42. Groce, A., Visser, W.: What went wrong: Explaining counterexamples. In: Ball, T.,
Rajamani, S.K. (eds.) Model Checking Software, 10th International SPIN Work-
shop. Portland, OR, USA, May 9-10, 2003, Proceedings. Lecture Notes in Com-
puter Science, vol. 2648, pp. 121–135. Springer (2003). https://doi.org/10.1007/3-
540-44829-2 8, https://doi.org/10.1007/3-540-44829-2_8

43. Halpern, J.Y.: A modification of the halpern-pearl definition of causality. In: Yang,
Q., Wooldridge, M.J. (eds.) Proceedings of the Twenty-Fourth International Joint
Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-
31, 2015. pp. 3022–3033. AAAI Press (2015), http://ijcai.org/Abstract/15/427

44. Halpern, J.Y., Pearl, J.: Causes and explanations: A structural-model approach.
part i: Causes. The British Journal for the Philosophy of Science 56(4), 843–887
(2005), http://www.jstor.org/stable/3541870

45. Halpern, J.Y., Pearl, J.: Causes and explanations: A structural-model approach.
part ii: Explanations. The British Journal for the Philosophy of Science 56(4),
889–911 (2005), http://www.jstor.org/stable/3541871

46. Holzmann, G.J.: The model checker SPIN. IEEE Trans. Software Eng. 23(5),
279–295 (1997). https://doi.org/10.1109/32.588521, https://doi.org/10.1109/

32.588521

47. Horak, T., Coenen, N., Metzger, N., Hahn, C., Flemisch, T., Méndez, J., Dimov,
D., Finkbeiner, B., Dachselt, R.: Visual analysis of hyperproperties for under-
standing model checking results. IEEE Trans. Vis. Comput. Graph. 28(1), 357–
367 (2022). https://doi.org/10.1109/TVCG.2021.3114866, https://doi.org/10.

1109/TVCG.2021.3114866

48. Hsu, T., Sánchez, C., Bonakdarpour, B.: Bounded model checking for hyperproper-
ties. In: Tools and Algorithms for the Construction and Analysis of Systems - 27th
International Conference, TACAS 2021, Held as Part of the European Joint Confer-
ences on Theory and Practice of Software, ETAPS 2021, Luxembourg City, Luxem-
bourg, March 27 - April 1, 2021, Proceedings, Part I. Lecture Notes in Computer
Science, vol. 12651, pp. 94–112. Springer (2021). https://doi.org/10.1007/978-3-
030-72016-2 6, https://doi.org/10.1007/978-3-030-72016-2_6

49. Ignatiev, A., Morgado, A., Marques-Silva, J.: PySAT: A Python toolkit for pro-
totyping with SAT oracles. In: SAT. pp. 428–437 (2018), https://doi.org/10.
1007/978-3-319-94144-8_26

50. Jee, E., Jeon, S., Cha, S.D., Koh, K.Y., Yoo, J., Park, G., Seong, P.: Fbdverifier:
Interactive and visual analysis of counterexample in formal verification of function
block diagram. J. Res. Pract. Inf. Technol. 42(3), 171–188 (2010), http://ws.acs.
org.au/jrpit/JRPIT42.3.171.pdf

51. Kocher, P., Horn, J., Fogh, A., , Genkin, D., Gruss, D., Haas, W., Hamburg, M.,
Lipp, M., Mangard, S., Prescher, T., Schwarz, M., Yarom, Y.: Spectre attacks: Ex-
ploiting speculative execution. In: 40th IEEE Symposium on Security and Privacy
(S&P’19) (2019)

52. Krebs, A., Meier, A., Virtema, J., Zimmermann, M.: Team semantics for the spec-
ification and verification of hyperproperties. In: 43rd International Symposium
on Mathematical Foundations of Computer Science, MFCS 2018, August 27-31,
2018, Liverpool, UK. LIPIcs, vol. 117, pp. 10:1–10:16. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2018). https://doi.org/10.4230/LIPIcs.MFCS.2018.10,
https://doi.org/10.4230/LIPIcs.MFCS.2018.10

https://doi.org/10.1007/978-3-540-27813-9_35
https://doi.org/10.1007/978-3-540-27813-9_35
https://doi.org/10.1007/978-3-540-27813-9_35
https://doi.org/10.1007/3-540-44829-2_8
https://doi.org/10.1007/3-540-44829-2_8
https://doi.org/10.1007/3-540-44829-2_8
http://ijcai.org/Abstract/15/427
http://www.jstor.org/stable/3541870
http://www.jstor.org/stable/3541871
https://doi.org/10.1109/32.588521
https://doi.org/10.1109/32.588521
https://doi.org/10.1109/32.588521
https://doi.org/10.1109/TVCG.2021.3114866
https://doi.org/10.1109/TVCG.2021.3114866
https://doi.org/10.1109/TVCG.2021.3114866
https://doi.org/10.1007/978-3-030-72016-2_6
https://doi.org/10.1007/978-3-030-72016-2_6
https://doi.org/10.1007/978-3-030-72016-2_6
https://doi.org/10.1007/978-3-319-94144-8_26
https://doi.org/10.1007/978-3-319-94144-8_26
http://ws.acs.org.au/jrpit/JRPIT42.3.171.pdf
http://ws.acs.org.au/jrpit/JRPIT42.3.171.pdf
https://doi.org/10.4230/LIPIcs.MFCS.2018.10
https://doi.org/10.4230/LIPIcs.MFCS.2018.10

24 Coenen, Dachselt, Finkbeiner, Frenkel, Hahn, Horak, Metzger, Siber

53. Lahtinen, J., Launiainen, T., Heljanko, K., Ropponen, J.: Model checking method-
ology for large systems, faults and asynchronous behaviour: SARANA 2011 work
report. No. 12 in VTT Technology, VTT Technical Research Centre of Finland,
Finland (2012)

54. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Int. J. Softw.
Tools Technol. Transf. 1(1-2), 134–152 (1997), https://doi.org/10.1007/

s100090050010
55. Leitner-Fischer, F., Leue, S.: Causality checking for complex system models. In:

Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) Verification, Model Checking,
and Abstract Interpretation, 14th International Conference, VMCAI 2013, Rome,
Italy, January 20-22, 2013. Proceedings. Lecture Notes in Computer Science,
vol. 7737, pp. 248–267. Springer (2013). https://doi.org/10.1007/978-3-642-35873-
9 16, https://doi.org/10.1007/978-3-642-35873-9_16

56. Leitner-Fischer, F., Leue, S.: Probabilistic fault tree synthesis using causal-
ity computation. Int. J. Crit. Comput. Based Syst. 4(2), 119–143 (2013).
https://doi.org/10.1504/IJCCBS.2013.056492, https://doi.org/10.1504/

IJCCBS.2013.056492
57. Lewis, D.: Causation. Journal of Philosophy 70(17), 556–567 (1973).

https://doi.org/10.2307/2025310
58. Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Fogh, A., Horn, J.,

Mangard, S., Kocher, P., Genkin, D., Yarom, Y., Hamburg, M.: Meltdown: Reading
kernel memory from user space. In: 27th USENIX Security Symposium (USENIX
Security 18) (2018)

59. M., V.C., Rabe, M.: py-aiger (version 6) [computer software]. https://github.

com/mvcisback/py-aiger
60. Mascle, C., Zimmermann, M.: The keys to decidable hyperltl satisfiability: Small

models or very simple formulas. In: 28th EACSL Annual Conference on Com-
puter Science Logic, CSL 2020, January 13-16, 2020, Barcelona, Spain. LIPIcs,
vol. 152, pp. 29:1–29:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2020). https://doi.org/10.4230/LIPIcs.CSL.2020.29, https://doi.org/10.4230/
LIPIcs.CSL.2020.29

61. Moore, E.F., et al.: Gedanken-experiments on sequential machines. Automata stud-
ies 34, 129–153 (1956)

62. Pakonen, A., Buzhinsky, I., Vyatkin, V.: Counterexample visualization and expla-
nation for function block diagrams. In: 16th IEEE International Conference on
Industrial Informatics, INDIN 2018, Porto, Portugal, July 18-20, 2018. pp. 747–
753. IEEE (2018). https://doi.org/10.1109/INDIN.2018.8472025, https://doi.

org/10.1109/INDIN.2018.8472025
63. Pnueli, A.: The temporal logic of programs. In: 18th Annual Sympo-

sium on Foundations of Computer Science, Providence, Rhode Island, USA,
31 October - 1 November 1977. pp. 46–57. IEEE Computer Society
(1977). https://doi.org/10.1109/SFCS.1977.32, https://doi.org/10.1109/SFCS.
1977.32

64. Schuppan, V., Biere, A.: Shortest counterexamples for symbolic model check-
ing of LTL with past. In: Halbwachs, N., Zuck, L.D. (eds.) Tools and Algo-
rithms for the Construction and Analysis of Systems, 11th International Con-
ference, TACAS 2005, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2005, Edinburgh, UK, April 4-8,
2005, Proceedings. Lecture Notes in Computer Science, vol. 3440, pp. 493–
509. Springer (2005). https://doi.org/10.1007/978-3-540-31980-1 32, https://

doi.org/10.1007/978-3-540-31980-1_32

https://doi.org/10.1007/s100090050010
https://doi.org/10.1007/s100090050010
https://doi.org/10.1007/978-3-642-35873-9_16
https://doi.org/10.1007/978-3-642-35873-9_16
https://doi.org/10.1007/978-3-642-35873-9_16
https://doi.org/10.1504/IJCCBS.2013.056492
https://doi.org/10.1504/IJCCBS.2013.056492
https://doi.org/10.1504/IJCCBS.2013.056492
https://doi.org/10.2307/2025310
https://github.com/mvcisback/py-aiger
https://github.com/mvcisback/py-aiger
https://doi.org/10.4230/LIPIcs.CSL.2020.29
https://doi.org/10.4230/LIPIcs.CSL.2020.29
https://doi.org/10.4230/LIPIcs.CSL.2020.29
https://doi.org/10.1109/INDIN.2018.8472025
https://doi.org/10.1109/INDIN.2018.8472025
https://doi.org/10.1109/INDIN.2018.8472025
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1007/978-3-540-31980-1_32
https://doi.org/10.1007/978-3-540-31980-1_32
https://doi.org/10.1007/978-3-540-31980-1_32

Explaining Hyperproperty Violations 25

65. Sörensson, N.: Minisat 2.2 and minisat++ 1.1. A short description in SAT Race
2010 (2010)

66. Stucki, S., Sánchez, C., Schneider, G., Bonakdarpour, B.: Gray-box mon-
itoring of hyperproperties. In: Formal Methods - The Next 30 Years -
Third World Congress, FM 2019, Porto, Portugal, October 7-11, 2019, Pro-
ceedings. Lecture Notes in Computer Science, vol. 11800, pp. 406–424.
Springer (2019). https://doi.org/10.1007/978-3-030-30942-8 25, https://doi.

org/10.1007/978-3-030-30942-8_25

67. Vardi, M.Y.: Alternating automata: Unifying truth and validity checking for tem-
poral logics. In: McCune, W. (ed.) Automated Deduction - CADE-14, 14th In-
ternational Conference on Automated Deduction, Townsville, North Queensland,
Australia, July 13-17, 1997, Proceedings. Lecture Notes in Computer Science,
vol. 1249, pp. 191–206. Springer (1997). https://doi.org/10.1007/3-540-63104-6 19,
https://doi.org/10.1007/3-540-63104-6_19

68. Wang, C., Yang, Z., Ivancic, F., Gupta, A.: Whodunit? causal analysis for coun-
terexamples. In: Graf, S., Zhang, W. (eds.) Automated Technology for Verifica-
tion and Analysis, 4th International Symposium, ATVA 2006, Beijing, China,
October 23-26, 2006. Lecture Notes in Computer Science, vol. 4218, pp. 82–95.
Springer (2006). https://doi.org/10.1007/11901914 9, https://doi.org/10.1007/
11901914_9

A Appendix

A.1 Alternating Automata

Alternating automata [67] are automata over infinite words that generalize non-
deterministic and universal automata. An alternating automaton A is defined
by the following grammar

εA | 〈ν,A, f〉 | A ∧ A | A ∨ A

where εA is the empty automaton; A∧A and A∨A are a disjunction and con-
junction of two automata, respectively; and n = 〈ν,A, f〉 is a node, such that
ν is a state formula that labels n, A is the next state (automaton), and f indi-
cates whether n is accepting or rejecting (acc/rec). Since runs of an alternating
automaton are defined using conjunctions, they form a run tree (see [67] for a
formal definition), where disjunctions express non-determinism. The set of words
accepted (using Büchi acceptance condition) by an alternating automaton are
those who have a run such that all of its branches in the tree visit infinitely often
in an accepting state. The language L(A) of an automaton A is the set of words
accepted by A.

The set of nodes of an alternating automaton A is denoted by N (A), where
N (εA) = ∅, N (〈ν,A, f〉) = N (A), and N (A∧A′) = N (A∨A′) = N (A)∪N (A′).
For an LTL formula ϕ there is a linear translation to an alternating automaton
Aϕ, s.t. L(Aϕ) is the set of traces that satisfy ϕ [67]. In this construction, N (A)
is the set of subformulas of ϕ and their negations, A is ϕ, and all formulas of
the form ¬(ϕ1 U ϕ2) are accepting.

https://doi.org/10.1007/978-3-030-30942-8_25
https://doi.org/10.1007/978-3-030-30942-8_25
https://doi.org/10.1007/978-3-030-30942-8_25
https://doi.org/10.1007/3-540-63104-6_19
https://doi.org/10.1007/3-540-63104-6_19
https://doi.org/10.1007/11901914_9
https://doi.org/10.1007/11901914_9
https://doi.org/10.1007/11901914_9

26 Coenen, Dachselt, Finkbeiner, Frenkel, Hahn, Horak, Metzger, Siber

A.2 LTL to Alternating Automata

For LTL formulas ϕ and ϕ′ and a ∈ AP

A(a) = 〈a, εA, acc〉
A(¬a) = 〈¬a, εA, acc〉

A(ϕ ∧ ϕ′) = A(ϕ) ∧ A(ϕ′)

A(ϕ ∨ ϕ′) = A(ϕ) ∨ A(ϕ′)

A(ϕ) = 〈true,A(ϕ), rej 〉
A(ϕ) = 〈true,A(ϕ), acc〉 ∧ A(ϕ)

A(ϕ) = 〈true,A(ϕ), rej 〉 ∧ A(ϕ)

A(ϕU ϕ′) = A(ϕ′) ∨ (〈true,A(ϕU ϕ′), rej 〉 ∧ A(ϕ))

A(ϕRϕ′) = (A(ϕ) ∧ A(ϕ′)) ∨ (〈true,A(ϕRϕ′), acc〉 ∧ A(ϕ′))

A.3 Counterfactual Automaton for Running Example

The counterfactual automaton TCt2 for system T (see Fig. 1) and the trace t2 =
{hi}{hi , ho}{ho, lo}ω from the running example (see Sec. 3) is illustrated in
Fig. 2. For readability we only pictured the reachable fragment of the automaton,
the states (s1, 0), (s2, 0) and (s3, 0) are missing. Note that following t2 can be
done in TCt2 without the contingency variables, e.g., loC . If we diverge from the
input sequence of t2, however, such as when taking an edge labeled with ¬hi in
the first step, then we can use the contingency variables to set the corresponding
value as in t2. For instance, the edge labeled with ¬hi∧ loC∧¬hoC goes to (s0, 1)
because we remove lo from the outputs of the successor state. We then proceed as
in the state with the corresponding label, i.e., s0. Automata copies in the chain
that correspond to the prefix of the trace cannot be visited twice, for instance in
TCt2 we are forced to loop in the third copy and can visit the first two only once.

A.4 Cause Candidates for Asymmetric Arbiter

In the following, we provide the cause candidates C̃, which are given as an in-
termediate output of our implementation for both asymmetric arbiter instances.
Especially in the Asymmetric arbiter instance, that tb secret does not hold
on timestep 3 on trace t1, but does hold on timestep 3 on trace t2 immediately
catches the eye. The events are given as a tuple of the valuation of an input and
its timestep, sorted by their trace belonging.
C̃ for Asymmetric arbiter:

T1 : [(! req 1 , 6) , (! req 0 , 1) , (req 1 , 0) , (req 0 , 0) ,
(req 0 , 5) , (req 1 , 4) , (! req 1 , 2) , (! req 0 , 2) ,
(! t b s e c r e t , 3) , (req 0 , 3) , (req 1 ’ , 3)]

T2 : [(! req 0 , 4) , (! req 0 , 1) , (req 1 , 0) , (req 0 , 0) ,
(! req 0 , 6) , (! req 1 , 6) , (req 0 , 5) , (req 1 , 5) ,
(req 0 , 3) , (t b s e c r e t , 3) , (req 1 , 3) , (! req 1 , 2) ,
(! req 0 , 2)]

Explaining Hyperproperty Violations 27

s0, 0
∅

s0, 1
∅

s1.1
{ho}

s2.1
{lo}

s3, 1
{ho, lo}

s0, 2
∅

s1.2
{ho}

s2.2
{lo}

s3, 2
{ho, lo}

hi

¬hi ∧ loC ∧ ¬hoC ¬hi ∧ hoC

¬hi ∧ ¬loC ∧ ¬hoC

>
>

hi ∧ ¬loC ¬hi ∨ loC

>
>

¬hi ∨ loChi ∧ ¬loC

hoC ∧ loC

¬hi ∧ ¬hoC ∧ ¬loC

hi ∧ ¬hoC ∧ ¬loC

hoC ∧ loC

¬hi ∧ ¬hoC ∧ ¬loC

hi ∧ ¬hoC ∧ ¬loC

Fig. 2: The counterfactual automaton TCt2 described in App. A.3.

28 Coenen, Dachselt, Finkbeiner, Frenkel, Hahn, Horak, Metzger, Siber

C̃ for Asymmetric arbiter ’19:

T1 : [(! req0 , 1) , (req0 , 0) , (req1 , 0) , (! req0 , 2) ,
(! req1 , 2)]

T2 : [(! req0 ’ , 1) , (req0 , 0) , (req1 , 0) , (! req0 , 2) ,
(! req1 , 2)]

A.5 Specifications for Experimental Results

We used the following HyperLTL specifications given in MCHyper syntax on the
respective benchmarks.
Running Example:

F o r a l l (F o r a l l (G (Eq (AP \” l o \” 0) (AP \” l o \” 1))))

Security in & out:

F o r a l l (F o r a l l (Imp l i e s (G (Eq (AP \” l i \” 0) (AP \” l i \”
1))) (G (Eq (AP \” l o \” 0) (AP \” l o \” 1)))))

Drone example 1:

F o r a l l (F o r a l l (X (G (Imp l i e s (Eq (AP \”bound\” 0) (AP
\”bound\” 1)) (X (Eq (AP \” emergency\” 0) (AP
\” emergency\” 1)))))))

Drone example 2:

F o r a l l (F o r a l l (Or (G (Eq (AP \” i n c r e a s e \” 0) (AP
\” i n c r e a s e \” 1))) (Unt i l (Eq (AP \” i n c r e a s e \” 0) (AP
\” i n c r e a s e \” 1)) (And (Eq (AP \” i n c r e a s e \” 0) (AP
\” i n c r e a s e \” 1)) (Neq (AP \”up\” 0) (AP \”up\” 1))))))

Asymmetric arbiter ’19:

F o r a l l (F o r a l l (Imp l i e s (G (And (Eq (AP \” req0 \” 0) (AP
\” req1 \” 1)) (Eq (AP \” req1 \” 0) (AP \” req0 \” 1))))
(G (And (Eq (AP \” grant0 \” 0) (AP \” grant1 \” 1)) (Eq
(AP \” grant1 \” 0) (AP \” grant0 \” 1))))))

Asymmetric arbiter:

F o r a l l (F o r a l l (Imp l i e s (G (And (Eq (AP \” req 0 \” 0) (AP
\” req 0 \” 1)) (Eq (AP \” req 1 \” 0) (AP \” req 1 \”
1)))) (G (And (Eq (AP \” grant 0 \” 0) (AP \” grant 0 \”
1)) (Eq (AP \” grant 1 \” 0) (AP \” grant 1 \” 1))))))

	Explaining Hyperproperty Violations

