
Translating Asynchronous Games for Distributed
Synthesis
Raven Beutner
Saarland University, Saarbrücken, Germany

Bernd Finkbeiner
Saarland University, Saarbrücken, Germany

Jesko Hecking-Harbusch
Saarland University, Saarbrücken, Germany

Abstract
In distributed synthesis, a set of process implementations is generated, which together, accomplish
an objective against all possible behaviors of the environment. A lot of recent work has focussed on
systems with causal memory, i.e., sets of asynchronous processes that exchange their causal histories
upon synchronization. Decidability results for this problem have been stated either in terms of
control games, which extend Zielonka’s asynchronous automata by partitioning the actions into
controllable and uncontrollable, or in terms of Petri games, which extend Petri nets by partitioning
the tokens into system and environment players. The precise connection between these two models
was so far, however, an open question.

In this paper, we provide the first formal connection between control games and Petri games.
We establish the equivalence of the two game types based on weak bisimulations between their
strategies. For both directions, we show that a game of one type can be translated into an equivalent
game of the other type. We provide exponential upper and lower bounds for the translations. Our
translations allow to transfer and combine decidability results between the two types of games.
Exemplarily, we translate decidability in acyclic communication architectures, originally obtained
for control games, to Petri games, and decidability in single-process systems, originally obtained for
Petri games, to control games.

2012 ACM Subject Classification Theory of computation → Algorithmic game theory

Keywords and phrases synthesis, distributed systems, causal memory, Petri games, control games

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2019.26

Related Version A full version of the paper is available at https://arxiv.org/abs/1907.00829 [3].

Funding Supported by the German Research Foundation (DFG) Grant Petri Games (392735815)
and the Collaborative Research Center “Foundations of Perspicuous Software Systems” (TRR 248,
389792660), and by the European Research Council (ERC) Grant OSARES (683300).

1 Introduction

Synthesis is the task of automatically generating an implementation fulfilling a given objective
or proving that no such implementation can exist. Synthesis can be viewed as a game
between the system and the environment with winning strategies for the system being correct
implementations [4]. We call a class of games decidable if we can determine the existence of
a winning strategy. A distributed system consists of local processes, that possess incomplete
information about the global system state. Distributed synthesis searches for distributed
strategies that govern the local processes such that the system as a whole satisfies an objective,
independently of the inputs that are received from the environment.

© Raven Beutner, Bernd Finkbeiner, and Jesko Hecking-Harbusch;
licensed under Creative Commons License CC-BY

30th International Conference on Concurrency Theory (CONCUR 2019).
Editors: Wan Fokkink and Rob van Glabbeek; Article No. 26; pp. 26:1–26:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.CONCUR.2019.26
https://arxiv.org/abs/1907.00829
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 Translating Asynchronous Games for Distributed Synthesis

After some early results on synchronous distributed systems [24], most work has focussed
on the synthesis of asynchronous distributed systems with causal memory [12, 13, 20, 14,
11, 10]. Causal memory means that two processes share no information while they run
independently; during every synchronization, however, they exchange their complete local
histories. The study of the synthesis problem with causal memory has, so far, been carried
out, independently of each other, in two different models: control games and Petri games.

Control Games and Petri Games. Control games [13] are based on Zielonka’s asynchronous
automata [26], which are compositions of local processes. The actions of the asynchronous
automaton are partitioned as either controllable or uncontrollable. Hence, each process
can have both controllable and uncontrollable behavior. A strategy comprises a family of
one individual controller for each process that can restrict controllable actions based on
the causal past of the process but has to account for all uncontrollable actions. Together,
the local controllers aim to fulfill an objective against all possible unrestricted behavior.
There are non-elementary decidability results for acyclic communication architectures [13, 20].
Decidability has also been obtained for restrictions on the dependencies of actions [12] or on
the synchronization behavior [16, 17] and, recently, for decomposable games [14].

Petri games [11] are based on Petri nets. They partition the places of the underlying Petri
net into system places and environment places and, thereby, group the tokens into system
players and environment players. For tokens in system places, the outgoing transitions can
be restricted by the strategy whereas tokens in environment places cannot be controlled, i.e.,
every possible transition has to be accounted for. Strategies are defined as restrictions of
the global unfolding and aim to fulfill an objective against all possible unrestricted behavior.
Petri games are EXPTIME-complete for a bounded number of system players and one
environment player [11] as well as for one system player and a bounded number of environment
players [10]. Both models are based on causal information: Control games utilize local views
whereas Petri games utilize unfoldings.

Translations. The precise connection between control games and Petri games, and hence,
the question whether results can be transferred between them, was, so far, open. We translate
control games into Petri games, and vice versa. Both game types admit strategies based
on causal information but the formalisms for the possibilities of system and environment
differ. In control games, an action is either controllable or uncontrollable and therefore
can be restricted by either all or none of the involved players. From the same state of
a process, both controllable and uncontrollable behavior is possible. By contrast, Petri
games utilize a partitioning into system and environment places. While this offers more
precise information about which player can control a shared transition, a given place can
no longer comprise both system and environment behavior. The challenge is to resolve the
controllability while preserving the causal information in the game. For both translations,
we adopt the concept of commitment sets: The local players do not enable behavior directly
but move to a state or place that explicitly encodes their decision of what to enable. Using
this explicit representation, we can express the controllability aspects of one game in the
respective other one, i.e., make actions in a control game controllable by only a subset of
players and allow places in Petri games that comprise both environment and system behavior.

Our translations preserve the structure of winning strategies in a weak bisimilar way.
In addition to the upper bounds established by our exponential translations, we provide
matching lower bounds. The translations show that contrasting formalisms can be overcome
whereas our lower bounds highlight an intrinsic difficultly to achieve this. The equivalence

R. Beutner, B. Finkbeiner, and J. Hecking-Harbusch 26:3

rX rY

acc acc

uX uY

uY uX

T :
rX rY

c

acc

N :
c c′

gX gY

uX, u
′
X

uY , u
′
Y

M :
r′
X

r′
Y

c′
acc′

N ′:
r′
X

r′
Y

acc′ acc′

u′
X

u′
Y

u′
Y

u′
X

T ′:

Figure 1 A control game for a manager M of resources X and Y between threads T and T ′

with networks N and N ′ is depicted. Communication occurs by synchronization on shared actions.
Dotted actions are controllable, all others are uncontrollable. Losing states are double circles.

B
U T

Hu HdH

C

D

Lu Ld

u d

iu id

i

su sd

cu cd

(a) Petri game for a police strategy.

B

H H

H H

Lu Ld Lu Ld

U T

Hu HdC

D D

u d

iu id

i i

su sd su sd

cu

Hu

cd

Hd

(b) Unfolding (with grayed parts) and winning strategy (without).

Figure 2 A Petri game, an unfolding, and a winning strategy are given. Gray places belong to
the system whereas white places belong to the environment. Winning places are double circles.

of both models, as witnessed by our results, gives rise to more practical applications by
allowing the transfer of existing decidability results between both models. As an example, we
can transfer decidability of single-process systems for Petri games [10] to control games and
decidability for acyclic communication architectures for control games [13] to Petri games.

2 Examples

We illustrate the models with two examples. The examples demonstrate the use of control
games and Petri games and their differences, which our translations overcome. Both examples
highlight decidable classes [10, 13], that are transferable through the results of the paper.

As a control game, consider the example of a manager for resources in Fig. 1. The control
game consists of five players: A manager M and two pairs of thread and network connection
(T , N and T ′, N ′). Both pairs of thread and network connection are identical but act on
disjoint actions (primed and not). There are two resources X and Y that are managed by M .
Each thread (T , T ′) can request access to one of them (rX , rY) and afterwards wait for the
acknowledgement from its network connection (acc). After the acknowledgement, the thread
can use one of the resources (uX , uY). Each network connection (N , N ′) synchronizes with
its thread on the actions for requests and synchronizes with the manager for communication
(c). Afterwards, each network connection sends the acknowledgement to its thread. The
manager is the only process that comprises controllable actions. Upon communication with
one of the two network connections, the manager can grant access to the resources X or Y
using the controllable actions gX or gY . The enabled resource can afterwards be accessed
and used (uX , uY). A losing state can be reached for either thread if an unwanted resource
is enabled, i.e., after the acknowledgement, the requested and granted resource do not match.

CONCUR 2019

26:4 Translating Asynchronous Games for Distributed Synthesis

This control game can be won by the system. After every communication with a network
connection, the manager enables the resource that the respective thread requested. A winning
controller relies on the information transfer associated with every synchronization. The
request of the process is transferred to the manager upon communication with the network
connection. Then, the correct resource can be enabled. This control game falls into a
decidable class by our translation to Petri games as it is a single-process system with bad
places [10]. Note that the control game has a cyclic communication architecture.

As a Petri game, consider the example of a burglary in Fig. 2a. A crime boss in
environment place B decides to either burgle up- or downtown by firing transition u or d.
Depending on the choice, an undercover agent in system place U or a thug in environment
place T is instructed by transition iu or id and commits the burglary, i.e., moves to place Hu

or Hd. This returns the crime boss to her hideout H where she gets caught and interrogated
(i) by a cop in system place C. Afterwards, the cop can send (su, sd) the flipped crime boss
up- or downtown to place Lu or Ld in order to intercept the burglary (cu, cd).

Causal past is key for the existence of winning strategies. Only upon synchronization
players exchange all information about their past. After the crime boss instructs for a
location to burgle, only she and the respective burglar know about the decision. The cop
learns about the location of the burglary after catching the crime boss. A winning strategy
for the cop catches and interrogates the crime boss and then uses the obtained information
to send the flipped crime boss to the correct location. For this Petri game, our translation
results in a control game with acyclic communication architecture [13]. Note that the Petri
game has two system and two environment players.

3 Background

We recall asynchronous automata [26], control games [13], Petri nets [25], and Petri games [11].

3.1 Zielonka’s Asynchronous Automata
An asynchronous automaton [26] is a family of finite automata, called processes, synchronizing
on shared actions. Our definitions follow [13]. The finite set of processes of an asynchronous
automaton is defined as P. A distributed alphabet (Σ, dom) consists of a finite set of actions Σ
and a domain function dom : Σ→ 2P\{∅}. For an action a ∈ Σ, dom(a) are all processes that
have to synchronize on a. For a process p ∈ P, Σp = {a ∈ Σ | p ∈ dom(a)} denotes all actions
p is involved in. A (deterministic) asynchronous automaton A = ({Sp}p∈P, sin, {δa}a∈Σ)
is defined by a finite set of local states Sp for every process p ∈ P, the initial state sin ∈∏
p∈P Sp, and a partial function δa :

∏
p∈dom(a) Sp

.−→
∏
p∈dom(a) Sp. We call an element

{sp}p∈P ∈
∏
p∈P Sp a global state. For a set of processes R ⊆ P, we abbreviate sR = {sp}p∈R

as the restriction of the global state to R. We denote that a local state s′ ∈ Sp is part of
a global state sR by s′ ∈ sR. For a local state s′, we define the set of outgoing actions by
act(s′) = {a ∈ Σ | ∃sdom(a) ∈ domain(δa) : s′ ∈ sdom(a)}. We can view an asynchronous
automaton as a sequential automaton with state space

∏
p∈P Sp and transitions s a−→ s′ if

(sdom(a), s
′
dom(a)) ∈ δa and sP\dom(a) = s′P\dom(a). By Plays(A) ∈ Σ∗∪Σω, we denote the set

of finite and infinite sequences in this global automaton. For a finite u ∈ Plays(A), state(u)
denotes the global state after playing u and statep(u) the local state of process p.

The domain function dom induces an independence relation I: Two actions a, b ∈ Σ are
independent, denoted by (a, b) ∈ I, if they involve different processes, i.e., dom(a)∩dom(b) =
∅. Adjoint independent actions of sequences of actions can be swapped. This leads to an
equivalence relation ∼I between sequences, where u ∼I w if u and w are identical up to

R. Beutner, B. Finkbeiner, and J. Hecking-Harbusch 26:5

multiple swaps of consecutive independent actions. The equivalence classes of ∼I are called
traces and denoted by [u]I for a sequence u. Given the definition of asynchronous automata,
it is natural to abstract from concrete sequences and consider Plays(A) as a set of traces.

In our translation, an alternative characterization of a subset of asynchronous automata
turns out to be practical: We describe every process p by a finite local automaton �p =
(Qp, s0,p, ϑp) acting on actions from Σp. Here, Qp is a finite set of states, s0,p the initial state
and ϑp ⊆ Qp × Σp ×Qp a deterministic transition relation. For a family of local processes
{�p}p∈P, we define the parallel composition

⊗
p∈P �p as an asynchronous automaton with

(1) ∀p ∈ P : Sp = Qp, (2) sin = {s0,p}p∈P, and (3) δa
(
{sp}p∈dom(a)

)
: If for all p ∈ dom(a),

there exists a state s′p ∈ Sp with (sp, a, s′p) ∈ ϑp then define δa({sp}p∈dom(a)) = {s′p}p∈dom(a),
otherwise it is undefined. Figure 1 is an example of such a parallel composition. Note that
not every asynchronous automaton can be described as a composition of local automata.

3.2 Control Games
A control game [13] C = (A,Σsys,Σenv, {Sp}p∈P) consists of an asynchronous automaton A
as a game arena, a distribution of actions into controllable actions Σsys and uncontrollable
actions Σenv, and special states {Sp}p∈P for a winning objective. We define the set of plays in
the game as Plays(C) = Plays(A). Intuitively, a strategy for C can restrict controllable actions
but cannot prohibit uncontrollable actions. Given a play u, a process p only observes parts
of it. The local p-view, denoted by viewp(u), is the shortest trace [v]I such that u ∼I v w
for some w not containing any actions from Σp. The p-view describes the causal past of
process p and contains all actions the process is involved in and all actions it learns about
via communication. We define the set of p-views as Playsp(C) = {viewp(u) | u ∈ Plays(C)}.

To avoid confusion with Petri games, we refer to strategies for control games as controllers.
A controller for C is a family of local controllers for all processes % = {fp}p∈P. A local
controller for a process p is a function fp : Playsp(C)→ Σsys ∩Σp. Plays(C, %) denotes the set
of plays respecting %. It is defined as the smallest set containing the empty play ε and such
that for every u ∈ Plays(C, %): (1) if a ∈ Σenv and ua ∈ Plays(C) then ua ∈ Plays(C, %) and
(2) if a ∈ Σsys, ua ∈ Plays(C), and ∀p ∈ dom(a) : a ∈ fp(viewp(u)) then ua ∈ Plays(C, %).
Environment actions are always possible whereas system actions are only possible if allowed
by the local controllers of all participating processes. Local controllers base their decisions
on their local view and thereby act only on their causal past.

We define the (possibly empty) set of final plays PlaysF (C, %) as all finite plays u ∈
Plays(C, %) such that there is no a with u a ∈ Plays(C, %). We consider either reachability
or safety objectives for the system. Therefore, {Sp}p∈P describes sets of winning (Wp) or
losing (Bp) states. A controller % is reachability-winning if it only admits finite plays and
on each final play all processes terminate in a winning state. For safety objectives, we need
to ensure progress. A controller % is deadlock-avoiding if PlaysF (C, %) ⊆ PlaysF (C,>) for
the controller > allowing all actions, i.e., the controller only terminates if the asynchronous
automaton does. A controller % is safety-winning if it is deadlock-avoiding and no play in
Plays(C, %) visits any local, losing state from

⋃
p∈P Bp.

3.3 Petri Nets
A Petri net [25, 22] N = (P, T ,F , In) consists of disjoint sets of places P and transitions T ,
the flow relation F as multiset over (P ×T)∪ (T ×P), and the initial marking In as multiset
over P. We call elements in P ∪ T nodes and N finite if the set of nodes is finite. For
node x, the precondition (written pre(x)) is the multiset defined by pre(x)(y) = F(y, x) and

CONCUR 2019

26:6 Translating Asynchronous Games for Distributed Synthesis

postcondition (written post (x)) the multiset defined by post (x)(y) = F(x, y). For multiple
nets N σ,N 1, · · · , we refer to the components by PNσ and write preNσ (x) unless clear from
the context. Configurations of Petri nets are represented by multisets over places, called
markings. In is the initial marking. For a transition t, pre(t) is the multiset of places from
which tokens are consumed. A transition t is enabled in marking M if pre(t) ⊆M , i.e., every
place in M contains at least as many tokens as required by t. If no transition is enabled from
markingM then we callM final. An enabled transition t can fire from a markingM resulting
in the successor marking M ′ = M − pre(t) + post (t) (denoted M [t 〉 M ′). For markings M
and M ′, we write M [t0,...,tn−1 〉 M ′ if there exist markings M = M0, . . . ,Mn = M ′ s.t.
Mi [ti 〉 Mi+1 for all 0 ≤ i ≤ n − 1. The set of reachable markings of N is defined as
R(N) = {M | ∃n ∈ N, t0, . . . , tn−1 ∈ T : In [t0,...,tn−1 〉 M}. A net N ′ is a subnet of N
(written N ′ v N) if P ′ ⊆ P, T ′ ⊆ T , In′ ⊆ In, and F ′ = F � (P ′ × T ′) ∪ (T ′ × P ′). A
Petri net is 1-bounded if every reachable marking contains at most one token per place. It is
concurrency-preserving if |pre(t)| = |post (t)| for all transitions t.

For nodes x and y, we write xl y if x ∈ pre(y), i.e., there is an arc from x to y. With ≤,
we denote the reflexive, transitive closure of l. The causal past of x is past(x) = {y | y ≤ x}.
x and y are causally related if x ≤ y ∨ y ≤ x. They are in conflict (written x] y) if there
exists a place q ∈ P \{x, y} and two distinct transitions t1, t2 ∈ post (q) s.t. t1 ≤ x and t2 ≤ y.
Node x is in self-conflict if x] x. We call x and y concurrent if they are neither causally
related nor in conflict. An occurrence net is a Petri net N , where the pre- and postcondition
of all transitions are sets, the initial marking coincides with places without ingoing transitions
(∀q ∈ P : q ∈ In ⇔ |pre(q)| = 0), all other places have exactly one ingoing transition
(∀q ∈ P \ In : |pre(q)| = 1), ≤ is well-founded (no infinite path following the inverse flow
relation exists), and no transition is in self-conflict. An initial homomorphism from N to N ′ is
a function λ : P∪T → P ′∪T ′ that respects node types (λ(P) ⊆ P ′∧λ(T) ⊆ T ′), is structure-
preserving on transitions (∀t ∈ T : λ[preN (t)] = preN ′(λ(t)) ∧ λ[postN (t)] = postN ′(λ(t))),
and agrees on the initial markings (λ[In] = In′).

A branching process [5, 18, 6] describes parts of the behavior of a Petri net. Formally, an
(initial) branching process of a Petri net N is a pair ι = (N ι, λι) where N ι is an occurrence
net and λι : Pι ∪ T ι → P ∪ T is an initial homomorphism from N ι to N that is injective
on transitions with the same precondition (∀t, t′ ∈ T ι : (preN ι(t) = preN ι(t′) ∧ λι(t) =
λι(t′))⇒ t = t′). A branching process describes subsets of possible behaviors of a Petri net.
Whenever a place or transition can be reached on two distinct paths it is split up. λ can be
thought of as label of the copies into nodes of N . The injectivity condition avoids additional
unnecessary splits: Each transition must either be labelled differently or occur from different
preconditions. The unfolding U of N is the maximal branching process: Whenever there is
a set of pairwise concurrent places C s.t. λ[C] = preN (t) for some transition t then there
exists t′ with λ(t′) = t and preNU(t′) = C. It represents ever possible behavior of N .

3.4 Petri Games
A Petri game [11] is a tuple G = (PS ,PE , T ,F , In,Sp). The system places PS and environment
places PE partition the places of the underlying, finite netN = (P, T ,F , In) with P = PS]PE .
We extend notation from the underlying net to G by, e.g., defining preG(·) = preN (·) and
PG = PN . The game progresses by firing transitions in the underlying net. Intuitively, a
strategy can control the behavior of tokens on system places by deciding which transitions
to allow. Tokens on environment places belong to the environment and cannot be restricted
by strategies. Sp ⊆ P denotes special places used to pose a winning objective. For graphical
representation, we depict a Petri game as the underlying net and color system places gray,
environment places white, and special places as double circles (cf. Fig. 2).

R. Beutner, B. Finkbeiner, and J. Hecking-Harbusch 26:7

A strategy for G is an initial branching process σ = (N σ, λσ) satisfying justified refusal:
If there is a set of pairwise concurrent places C in N σ and a transition t ∈ T G with
λ[C] = preG(t) then there either is a transition t′ with λ(t′) = t and C = preNσ (t′) or there
is a system place q ∈ C ∩λ−1[PS] with t 6∈ λ[postNσ (q)]. Since a branching process describes
subsets of the behavior of a Petri net, a strategy is a restriction of possible moves in the
game. Justified refusal enforces that only system places can prohibit transitions based on
their causal past. From every situation in the game, a transition possible in the underlying
net is either allowed, i.e., in the strategy, or there is a system place that never allows it. In
particular, transitions involving only environment places are always possible. A strategy σ is
reachability-winning for a set of winning places Sp =W if N σ is a finite net and in each final,
reachable marking every token is on a winning place. A strategy is deadlock-avoiding if for
every final, reachable marking M in the strategy, λ[M] is final as well, i.e., the strategy is
only allowed to terminate if the underlying Petri net does so. A strategy σ is safety-winning
for bad places Sp = B if it is deadlock-avoiding and no reachable marking contains a bad
place. For both objectives, we can require σ to be deterministic: For every reachable marking
M and system place q ∈M there is at most one transition from postNσ (q) enabled in M . In
Fig. 2b, the unfolding of Fig. 2a is depicted labeled by λ. Excluding the grayed parts, this is
a winning strategy for the system.

For safety as winning objective, unbounded Petri games are undecidable in general [11]
whereas bounded ones with either one system player [10] or one environment player [11]
are EXPTIME-complete. Bounded synthesis is a semi-decision procedure to find winning
strategies [7, 8, 15]. Both approaches are implemented in the tool Adam [9, 8].

4 Game Equivalence

A minimum requirement for translations between games is to be winning-equivalent. The
system has a winning strategy in one game if and only if it has a winning strategy in the
translated other one. One trivial translation fulfilling this is to solve the game and to
return a minimal winning-equivalent game. Such a translation is not desirable, especially
since decidability in both control games and Petri games is still an open question [19, 11].
Instead, our translations preserve the underlying structure of the games. We propose strategy-
equivalence as an adequate equivalence notion. Our notion is based on weak bisimulation
which is popular and powerful to relate concurrent systems represented as Petri nets [2, 1, 23].

For our purpose, a bisimulation between the underlying Petri net and the asynchronous
automaton is not sufficient. Instead, we want to express that any strategy can be matched by
a strategy that allows equivalent (bisimilar) behavior, i.e., allows identical actions/transitions.
In both models, strategies are defined based on the causal past of the players. A Petri game
G utilizes unfoldings whereas a control game C utilizes local views. We consider a strategy
and a controller equivalent if there is a weak bisimulation between the branching process of
the strategy and the plays that are compatible with the controller. We base our definition
on a set of shared actions and transitions between the Petri game and the control game. We
refer to them as observable. All non-shared transitions and actions are considered internal
(τ). If we, e.g., translate a Petri game to a control game we aim for a control game that
contains all transitions as observable actions but might add internal ones.

I Definition 1. A strategy σ for G and controller % for C are bisimilar if there exists a
relation ≈B⊆ R(N σ)× Plays(A, %) s.t. Inσ ≈B ε and all following conditions hold:

If M ≈B u and M [a 〉 M ′ there exists u′ ∈ Plays(A, %) with u′ = uτ∗aτ∗ and M ′ ≈B u′

If M ≈B u and M [τ 〉 M ′ there exists u′ ∈ Plays(A, %) with u′ = uτ∗ and M ′ ≈B u′

If M ≈B u and u′ = u a there exists M ′ ∈ R(N σ) with M [τ∗aτ∗ 〉 M ′ and M ′ ≈B u′

If M ≈B u and u′ = u τ there exists M ′ ∈ R(N σ) with M [τ∗ 〉 M ′ and M ′ ≈B u′

CONCUR 2019

26:8 Translating Asynchronous Games for Distributed Synthesis

A Petri game G and a control game C are called strategy-equivalent if for every winning
strategy σ for G there exists a bisimilar winning controller %σ for C and for every winning
controller % for C there exists a bisimilar winning strategy σ% for G.

5 Translating Petri Games to Control Games

We give our translation from Petri games to control games and prove that it yields strategy-
equivalent (and therefore winning-equivalent) games. Moreover, we provide an exponential
lower bound, showing that our translation is asymptomatically optimal when requiring
strategy-equivalence. We present the translation for reachability objectives. Due to space
restrictions, all proofs and further details can be found in the full version of the paper [3].

5.1 Construction
We describe the construction of our translation for a restrictive class of Petri games called
sliceable. In Sec. 5.3, the construction is generalized to concurrency-preserving Petri games.

Slices. A Petri game describes the global behavior of the players. By contrast, a control
game is defined in terms of local processes. Similarly, a Petri game strategy is a global
branching process opposed to a family of local controllers for control games. The first
difference our translation needs to overcome is to distribute a Petri game into parts describing
the local behavior of players. Therefore, we dismantle the Petri game into slices for each
token.

I Definition 2. A slice of a Petri net N is a Petri net ς = (Pς , T ς ,F ς , Inς) s.t., (1) ς v N ,
(2) |Inς | = 1, (3) ∀t ∈ T ς : |preς(t)| = |postς(t)| = 1, (4) ∀q ∈ Pς : postN (q) ⊆ T ς

A slice is a subnet of N (1) that describes the course of exactly one token (2, 3) and
includes every possible move of this token (4). A slice characterizes the exact behavior of
a single token in the global net N . For a family of slices {ς}ς∈S, the parallel composition
‖ς∈S ς is the Petri net with places

⊎
ς∈S Pς , transitions

⋃
ς∈S T ς , flow relation

⊎
ς∈S F ς ,

and initial marking
⊎
ς∈S Inς . All unions, except for the union of transitions, are disjoint.

Transitions can be shared between multiple slices, creating synchronization. A Petri net N
is sliceable if there is a family of slices {ς}ς∈S s.t. N = ‖ς∈S ς and

⊎
ς∈S Pς is a partition

of PN , i.e., N can be described by the local movements of tokens. Sliceable Petri nets are
concurrency-preserving and 1-bounded. We extend slices to Petri games in the natural way
by distinguishing system, environment, and special places. Figure 4 depicts a Petri game
(a) and a possible distribution into slices (b). Note that even concurrency-preserving and
1-bounded Petri games must not be sliceable and that a distribution in slices is not unique.

Commitment Sets. In control games, actions are either controllable or uncontrollable
whereas, in Petri games, players are distributed between the system and the environment. In
our construction, we represent transitions as actions and need to guarantee that only certain
players can control them. In control games, this cannot be expressed directly. We overcome
this difference by using commitment sets. Each process that should be able to control an
action chooses a commitment set, i.e., moves to a state that explicitly encodes its decision.

We fix a sliceable game G = (PS ,PE , T ,F , In,W) and a distribution in slices {ς}ς∈S. We
begin by defining a control game CG . Afterwards, we describe a possible modification ĈG ,
that enforces determinism. The construction is depicted in Fig. 3.

R. Beutner, B. Finkbeiner, and J. Hecking-Harbusch 26:9

Define P = S and the distributed alphabet as (Σ, dom) with:

Σ = T ∪ {τ(q,A) | q ∈ PS ∧ A ⊆ postG(q)}

∪ { E(q,A)
[t1,t2] | q ∈ PS ∧ A ⊆ postG(q) ∧ t1, t2 ∈ A ∧ t1 6= t2}

and dom : Σ→ 2P \ {∅}:

dom(t) = {ς ∈ S | t ∈ T ς} for t ∈ T
dom(τ(q,A)) = {ς} where ς ∈ S is the unique slice s.t. q ∈ Pς

dom(E(q,A)
[t1,t2]) = {ς ∈ S | t1 ∈ T ς ∨ t2 ∈ T ς}

For each slice ς = (Pς , T ς ,F ς , Inς) ∈ S, we define a local process �ς = (Qς , q0,ς , ϑς) with
ϑς ⊆ Qς × Σς ×Qς as:

Qς = Pς ∪ {(q,A) | q ∈ Pς ∩ PS ∧ A ⊆ postς(q)} ∪ {⊥ς}
q0,ς is the unique state s.t. Inς = {q0,ς}

and ϑς is given by:

q
τ(q,A)7−−−−→ (q,A)

q ∈ PS ∧
A ⊆ postς(q)

(1) q
t7−−−→ q′

q ∈ PE ∧ t ∈ T ∧
q ∈ preς(t) ∧ q′ ∈ postς(t)

(2) (q,A) t7−−−→ q′

q ∈ PS ∧ t ∈ A ∧
q ∈ preς(t) ∧ q′ ∈ postς(t)

(3)

(q,A)
E(q,A)

[t1,t2]7−−−−→ ⊥ς(4)
q

E(q′,A′)
[t1,t2]7−−−−→ ⊥ς

q′ 6∈ Qς ∧ q ∈ PE ∧
(t1 ∈ T ς ⇒ t1 ∈ postς(q)) ∧
(t2 ∈ T ς ⇒ t2 ∈ postς(q))

(5) (q,A)
E(q′,A′)

[t1,t2]7−−−−→ ⊥ς
q′ 6∈ Qς ∧

(t1 ∈ T ς ⇒ t1 ∈ A) ∧
(t2 ∈ T ς ⇒ t2 ∈ A)

(6)

Define AG =
⊗

ς∈S
�ς and the control game as CG = (AG ,Σsys,Σenv, {Wς}ς∈S) where

Σsys = {τ(q,A) | q ∈ PS ∧ A ⊆ postG(q)}

Σenv = T ∪ { E(q,A)
[t1,t2] | q ∈ PS ∧ A ⊆ postG(q) ∧ t1, t2 ∈ A ∧ t1 6= t2}

Wς = (W ∩ Pς) ∪ {(q,A) | q ∈ (W ∩Pς) ∧ A ⊆ postG(q)}

Figure 3 The construction of the translated control game for a Petri game G =
(PS ,PE , T ,F , In,W), distributed in slices {ς}ς∈S, is depicted. Excluding the red parts, this is
the definition of CG . Including the red parts, this is the definition of ĈG .

We transform every slice ς into a process that is described by a local automaton �ς .
Hence, we use the terms slice and process interchangeably. Every place in ς becomes a local
state in �ς . The process starts in the state that corresponds to the initial place of the slice.
For every system place q, we furthermore add the aforementioned commitment sets. These
are states (q, A) representing every possible commitment, i.e., every A ⊆ postG(q).

Every transition t is added as an uncontrollable action. Action t involves all processes
with slices synchronizing on t. To choose a commitment set, we furthermore add controllable
actions (τ -actions) that are local to each process. We assume that each process chooses at
most one commitment set. The transition relation ϑς is given by three rules: From every
system place q ∈ PS , a process can choose a commitment set using the corresponding τ -action
(1). From an environment place q ∈ PE , t can fire if q is in the precondition of t (q ∈ preς(t)).
The process is then moved to the state q′ that corresponds to the place that is reached when

CONCUR 2019

26:10 Translating Asynchronous Games for Distributed Synthesis

A

B

C

D

e1 e2 ia

b

(a)

A

B

e1 e2 a

b

C

D

ia

b

(b)

A

⊥ς1

e1 e2a

b

E

C(C, ∅) (C, {i})

D

(D, {b})

(D, ∅)

(D, {a})

⊥ς2

τ(C,∅) τ(C,{i}

iτ(D,{a,b})

τ(D,{b})

τ(D,∅)

τ(D,{a})

a

b
b

a

E

(D, {a, b})

B

(c)

Figure 4 A sliceable Petri game G (a), a possible (in this case unique) distribution in slices (ς1, ς2)
(b), and the asynchronous automaton CG obtained by our translation (c). ĈG comprises additional
⊥-states and one E(D,{a,b})

[a,b] -action (named E) depicted in red.

firing t in the slice (q′ ∈ postς(t)) (2). A process on an environment place can hence never
restrict any actions; as in Petri games. For a system place, the rule is almost identical but
only admits t if a commitment set has been chosen, that contains t (3). Therefore, a process
on a system place can control actions by choosing commitment sets; as in Petri games. States
corresponding to winning places become winning states.

An example translation is depicted in Fig. 4. The Petri game (a) comprise two players
starting in A and C. They can move to B and D using e1, e2, or i and afterwards synchronize
on a or b. The Petri game can be distributed into slices (b). In the control game from our
construction (c), the slice containing only environment places results in the local process
on the left. For the system places in the other slice, commitment sets are added as states
{C} × 2{i} and {D} × 2{a,b}. The process can choose them using controllable τ -actions
and the actions a, b, and i can only occur if included in the current set. The construction
guarantees that only the second process can control transitions a and b, as in the Petri game.

Non-Determinism. In deterministic strategies, every system place allows transitions s.t.
in every situation, there is at most one of them enabled. In CG , the controller can choose
arbitrary commitment sets and, thus, a winning controller can result in a non-deterministic
strategy for G. To ensure deterministic strategies, we want to penalize situations where a
commitment set in CG is chosen s.t. two or more distinct actions from this set can be taken.

To achieve this, we define the modified game ĈG . We equip each process with a ⊥-state
from which no winning configurations are reachable. Uncontrollable E-actions move processes
to ⊥-states and thereby cause the system to lose. The situation to be covered comprises a
process that has chosen a commitment set, i.e., is in a state (q, A), and two distinct actions t1
and t2 in A. For every such combination, we add a E(q,A)

[t1,t2]-action that involves all processes
participating in t1 or t2 and can be taken exactly if (q, A) is a current state and both t1 and
t2 could occur from the current global state. The three rules in ϑ add the E(q,A)

[t1,t2]-action to
each process. It fires if one process is in state (q, A) (4) and all other involved processes are
in states such that both t1, t2 ∈ A are possible (4, 5). To ensure that t1 and t2 can both
be taken, we distinguish between system and environment places: Every process ς on an
environment place needs to be in the right state, i.e., if ς is involved in ti (ti ∈ T ς), then ti
is in the postcondition of its current place for i = 1, 2 (5). If on a system place, ti must not
only be in the postcondition but also in the currently chosen commitment set (6).

R. Beutner, B. Finkbeiner, and J. Hecking-Harbusch 26:11

Size. In both CG and ĈG , the size of the alphabet and number of local states is exponential
in the number of transitions and linear in the number of places. For CG , the blow-up in the
alphabet can be kept polynomial by using a tree construction to choose commitment sets.
For a bound on the number of outgoing transitions, both CG and ĈG are of polynomial size.

5.2 Correctness
We show that our translation yields strategy-equivalent games by outlining the translation
of winning strategies and controllers between G and CG . Both game types rely on causal
information, i.e., a strategy/controller bases its decisions on every action/transition it took
part in as well as all information it received upon communication. In G, the information is
carried by individual tokens. In our translation, we transform each slice for a token into a
process that is involved in exactly the transitions that the slice it is build from takes part in,
i.e., we preserve the communication architecture. At every point, all processes in CG possess
the same information as their counterpart slices. Using the commitment set, our translation
ensures that only processes on a state based on a system place can control any behavior.
Therefore, a process and its counterpart slice have the same possibilities for control.

Translating a Strategy for G to a Controller for CG. Given a winning strategy σ, we
construct a controller %σ. The only states from which a process p can control any behavior
(in terms of controllable actions) are of the form q ∈ PS . σ decides for every system place
which transitions to enable. Due to our construction, p can copy the decision of σ by
choosing an appropriate commitment set. Therefore, %σ allows the same behavior as σ. If σ
is deterministic then the commitments sets are chosen such that no E-actions are possible.

Translating a Controller for CG to a Strategy for G. Given a winning controller %, we
incrementally construct a strategy σ%. Every system place q in the partially constructed
strategy can control which transitions are enabled. The place q belongs to some process.
If on a state corresponding to a system place, this process can control all actions using
its commitment sets. q enables exactly the transitions that the process has chosen as
a commitment set. An environment place cannot control any behavior and neither can
the process it belongs to. Hence, % and σ% allow the same actions and transitions. A
winning controller for ĈG additionally avoids any uncontrollable E-actions and results in a
deterministic strategy.

We obtain that G and CG are strategy-equivalent and that G and ĈG are strategy-equivalent
if we require deterministic strategies for Petri games.

5.3 Generalization to Concurrency-Preserving Games
Our translation builds processes from a slice distribution of the Petri game. This limits the
translation to sliceable games. The notion of slices is too strict: Our translation only requires
to distribute the global behavior of the Petri game into local behavior, a partitioning of the
places is not necessarily needed. We introduce the new concept of singular nets (SN). Similar
to a slice, an SN describes the course of one token. Instead of being a subnet, it is equipped
with a labeling function assigning to each node in the singular net a node in the original net.
This labeling allows us to split up places and transitions by equally labelled copies enabling
us to distribute every concurrency-preserving Petri net and game into singular nets. We can
build our previous translation with an SN-distribution instead of a slice-distribution.

CONCUR 2019

26:12 Translating Asynchronous Games for Distributed Synthesis

Define GC = (PS ,PE , T ,F , In,B) where
PS =

⋃
p∈P

Sp, PE = { (s,A) | s ∈
⋃
p∈P

Sp, A ⊆ act(s) ∩ Σsys} ∪ {⊥pDL | p ∈ P}

T = { (a,B, {As}s∈B) | a ∈ Σenv , B ∈ domain(δa), As ⊆ act(s) ∩ Σsys} ∪ (1)

{ (a,B, {As}s∈B) | a ∈ Σsys, B ∈ domain(δa), As ⊆ act(s) ∩ Σsys, a ∈ As} ∪ (2)

{ τ(s,A) | s ∈
⋃
p∈P

Sp, A ⊆ act(s) ∩ Σsys} ∪ {tMDL |M ∈ DDL} (3), (7)
F = {

(
(s,A) , (a,B, {As}s∈B)

)
| s ∈ B, As = A} ∪ (4)

{
(

(a,B, {As}s∈B) , s′) | s′ ∈ δa(B)} ∪ (5)

{
(
s, τ(s,A)

)
} ∪ {

(
τ(s,A), (s,A)

)
} ∪ (6)

{
(
q, tMDL

)
| q ∈M} ∪ {

(
tMDL,⊥pDL

)
| p ∈ P} (8)

In = sA
in and B =

⋃
p∈P
Bp ∪

⋃
p∈P
⊥pDL

Figure 5 We give the construction of the translated Petri game GC for a control game C =
(A,Σsys,Σenv, {Bp}p∈P) where A = ({Sp}p∈P, s

A
in, {δa}a∈Σ). The initial state sA

in is viewed as a set.
The gray parts penalize the artificial deadlocks, i.e., all markings in DDL.

I Theorem 3. For every concurrency-preserving Petri game G, there exist control games CG
and ĈG with an equal number of players such that (1) G and CG are strategy-equivalent and
(2) G and ĈG are strategy-equivalent if we require deterministic Petri game strategies.

5.4 Lower Bound
We can show that there is a family of Petri games such that every strategy-equivalent control
game must have exponentially many local states. In a control game, either all or none of the
players can restrict an action. By contrast, Petri games offer a finer granularity of control
by allowing only some players to restrict a transition. The insight for the lower bound is to
create a situation where a transition is shared between players but can only be controlled by
one of them. Using careful reasoning, we can show that in any strategy-equivalent control
game there must be actions that can only be controlled by a single process, resulting in
exponentially many local states. Our translation shows that the difference between both
formalism can be overcome but our lower bound shows an intrinsic difficulty to achieve this.

I Theorem 4. There is a family of Petri games such that every strategy-equivalent control
game (with an equal number of players) must have at least Ω(dn) local states for d > 1.

6 Translating Control Games to Petri Games

We give our translation from control games to Petri games, prove that it yields strategy-
equivalent games, and give an exponential lower bound. We present our translation for safety
objectives. All proofs and further details can be found in the full version of this paper [3].

6.1 Construction
We fix a control game C = (A,Σsys,Σenv, {Bp}p∈P) with safety objective. The translation
to GC is depicted in Fig. 5. We represent each local state s as a system place. We add
environment places (s,A), which encode every possible commitment set of actions that can be
allowed by a controller (A ⊆ act(s) ∩ Σsys). From each system place, the player can move to

R. Beutner, B. Finkbeiner, and J. Hecking-Harbusch 26:13

AC

BD

E

F

b

ac

d

c

d

(a)

A
(A, ∅)

(A, {a})

C

B

(B, ∅)

(C, {c})

(C, ∅)

D

(b, 〈A〉, {∅}})

(b, 〈A〉, {{a}})

(a, 〈A〉, {{a}})

E

(E, ∅)

(E, {c})

F

(c, 〈C,E〉, {{c}, {c}})

(d, 〈B,E〉, {∅, {c}})

(d, 〈B,E〉, {∅, ∅})

(b)

Figure 6 Control game C (a) and translated Petri game GC (b) are given. Commitment sets
without outgoing transitions are omitted. The set of artificial deadlocks DDL comprises every final
marking that contains at least one blue place. The resulting tMDL-transitions are omitted.

places for the commitment sets using a τ(s,A)-transition (3, 6). Each action a in C can occur
from different configurations of the processes in dom(a), i.e., all states in domain(δa), whereas
in Petri games transitions fire from fixed preconditions. We want to represent a as a transition
that fires from places representing commitment sets that correspond to configurations from
which a can occur in C. We hence duplicate a into multiple transitions to account for every
configuration in domain(δa) and for every combination of commitment sets. Transitions
have the form (a,B, {As}s∈B) where a is the action in the control game, B ∈ domain(δa)
is the configuration from which a can fire, and {As}s∈B are the involved commitment sets.
If action a is uncontrollable the corresponding transitions are added independently of the
commitment sets (1). If a is controllable a transition is only added if a is in the commitment
sets of all involved players, i.e., a ∈ As for every s ∈ B (2). If (a,B, {As}s∈B) is added it
fires from precisely the precondition that is encoded in it, i.e., the places (s,A) where s ∈ B
and As = A, and moves every token to the system place that corresponds to the resulting
local state when firing a in C (4, 5). A strategy can restrict controllable actions by moving
to an appropriate commitment set but cannot forbid uncontrollable ones, since they can
occur from every combination of commitment sets. If a system player decides to refuse any
commitment set it could prohibit transitions that correspond to uncontrollable actions. In
Sec. 6.3, we show how to force the system to always choose a commitment set.

In safety games, every winning strategy must avoid deadlocks. By introducing explicit
commitment sets, we add artificial deadlocks, i.e., configurations that are deadlocked in GC
but where the corresponding state in C could still act. This permits trivial strategies that,
e.g., always choose the empty commitment set. We define DDL as the set of all reachable
markings that are final in GC but where the corresponding global state in C can still perform
an action, i.e., all artificial deadlocks. Similar to the E-actions, we introduce tMDL-transitions
that fire from every marking M in DDL and move every token to a losing place ⊥DL (7, 8).
The mechanism to detect artificial deadlocks is depicted as the gray parts in Fig. 5.

Figure 6 depicts an example translation. The system cannot win this game: The
uncontrollable action b can always happen, independent of the commitment set for place A.
If one of the two tokens refuses c (moves to a blue place) a (losing) transition tDL can fire.

6.2 Correctness
We show strategy-equivalence of C and GC by translating strategies (that always commit)
and controllers between both of them. We observe that each token moves on the local states
of one process and takes part in precisely the actions of the process. At every point, a
token hence possesses the same local information as the process. A token can restrict the
controllable actions using the commitment sets but cannot restrict the uncontrollable ones.
The token therefore has the same possibilities as the process counterpart.

CONCUR 2019

26:14 Translating Asynchronous Games for Distributed Synthesis

Translating Controllers to Strategies. Given a winning controller %, we incrementally build
a (possibly infinite) winning, deterministic strategy σ%. Every system place q in a partially
constructed strategy can choose one of the commitment sets. q copies % by committing to
exactly the actions that the process it belongs to has allowed. The commitment sets can only
restrict controllable actions, as the process can. Hence, σ% allows the same behavior as %.

Translating Strategies to Controllers. Given a winning, deterministic strategy σ, we
construct a winning controller %σ. A process p that resides on a local state s can decide which
of the controllable actions should be allowed. Every token in σ can decide for a commitment
set and therefore implicitly chooses which controllable actions should be enabled. p allows
exactly the actions that σ chooses as a commitment set. Both can only restrict controllable
actions and, by copying, %σ achieves the same behavior as σ.

I Theorem 5. C and GC are strategy-equivalent.

6.3 Enforcing Commitment
Our construction assumes wining strategies to always choose a commitment set. We can
modify GC such that every non-committing strategy cannot win. The insight is to use the
deadlock-avoidance of winning strategies. Deadlocks define a global situation of the game.
To enforce commitment, we require local deadlock-avoidance in the sense that every token
has to choose a commitment set. This is not prevented by global deadlock-avoidance, where,
e.g., a single player being able to play locally enables every other player to refuse to commit
without being deadlocked. We reduce local to global deadlocks by adding transitions to
challenge the players to have reached a local deadlock. Using challenge transitions, every
player currently residing on a place that corresponds to a chosen commitment set moves to a
terminating place. Every player that has chosen commitment sets can terminate, resulting in
the players that are locally deadlocked to cause a global deadlock. Although the challenge
is always possible, the scheduler decides the point of challenge. The game with the added
challenger has a winning strategy iff GC has a winning strategy that always commits.

6.4 Lower Bounds
We can provide a family of control games where every strategy-equivalent Petri game must
be of exponential size. In control games, both controllable and uncontrollable actions can
occur from the same state. In Petri games, a given place can either restrict all transitions
(system place) or none. A control game where both actions types are possible already results
in Petri games of exponential size. We assume the absence of infinite τ -sequences.

I Theorem 6. There is a family of control games such that every strategy-equivalent Petri
game (with an equal number of players) must have at least Ω(dn) places for d > 1.

7 New Decidable Classes

We exemplarily show one transferrable class of decidability for both control games and Petri
games to highlight the applicability of our translations.

New Decidable Control Games. A process in a control game is an environment process if
all its action are uncontrollable. A system process is one that is not an environment process.
We can modify our second translation by not adding system places if there are no outgoing
controllable actions. Therefore, environment processes do not add system places to the Petri
game and we can use the results from [10].

R. Beutner, B. Finkbeiner, and J. Hecking-Harbusch 26:15

I Corollary 7. Control games with safety objectives and one system process are decidable.

New Decidable Petri Games. Given a Petri game G and a distribution into slices (or SNs)
{ς}ς∈S, we analyze the communication structure between the slices by building the undirected
graph (V,E) where V = S and E = {(ς1, ς2) | T ς1 ∩ T ς2 6= ∅}. (V,E) is isomorphic to the
communication architecture of the constructed asynchronous automaton CG (as introduced in
[13]). We define Gã as every Petri game that has a distribution {ς}ς∈S where (V,E) is acyclic.
We can show that such distributions are hard to find. From [13], we obtain decidability.

I Lemma 8. Deciding whether a Petri net has an acyclic slice-distribution is NP-complete.

I Corollary 9. Petri games in Gã with reachability objectives are decidable.

8 Conclusion

We have provided the first formal connection between control games and Petri games by
showing that both are equivalent. This indicates that synthesis models for asynchronous
systems with causal memory are stable under the concrete formalisms of system and environ-
ment responsibilities for the two most common models. Conversely, our lower bounds show
an intrinsic difference between control games and Petri games. By our translations, existing
and future decidability results can be combined and transferred between both game types.
Our translations could be adapted to other winning objectives. An interesting direction for
future work is to investigate how action-based control games [21] relate to Petri games and
to study unified models that combine features from control games and Petri games.

References
1 Cyril Autant and Philippe Schnoebelen. Place Bisimulations in Petri Nets. In Proceedings of

Application and Theory of Petri Nets, pages 45–61, 1992. doi:10.1007/3-540-55676-1_3.
2 Eike Best, Raymond R. Devillers, Astrid Kiehn, and Lucia Pomello. Concurrent Bisimulations

in Petri Nets. Acta Inf., 28(3):231–264, 1991. doi:10.1007/BF01178506.
3 Raven Beutner, Bernd Finkbeiner, and Jesko Hecking-Harbusch. Translating Asynchronous

Games for Distributed Synthesis (Full Version). arXiv preprint, 2019. arXiv:1907.00829.
4 J. Richard Buchi and Lawrence H. Landweber. Solving sequential conditions by finite state

strategies. Transactions of the American Mathematical Society, 138:295–311, 1969.
5 Joost Engelfriet. Branching Processes of Petri Nets. Acta Inf., 28(6):575–591, 1991. doi:

10.1007/BF01463946.
6 Javier Esparza and Keijo Heljanko. Unfoldings – A Partial-Order Approach to Model Checking.

Springer, 2008. doi:10.1007/978-3-540-77426-6.
7 Bernd Finkbeiner. Bounded Synthesis for Petri Games. In Proceedings of Correct System

Design - Symposium in Honor of Ernst-Rüdiger Olderog on the Occasion of His 60th Birthday,
pages 223–237, 2015. doi:10.1007/978-3-319-23506-6_15.

8 Bernd Finkbeiner, Manuel Gieseking, Jesko Hecking-Harbusch, and Ernst-Rüdiger Olderog.
Symbolic vs. Bounded Synthesis for Petri Games. In Proceedings of SYNT@CAV, pages 23–43,
2017. doi:10.4204/EPTCS.260.5.

9 Bernd Finkbeiner, Manuel Gieseking, and Ernst-Rüdiger Olderog. Adam: Causality-Based
Synthesis of Distributed Systems. In Proceedings of CAV, pages 433–439, 2015. doi:10.1007/
978-3-319-21690-4_25.

10 Bernd Finkbeiner and Paul Gölz. Synthesis in Distributed Environments. In Proceedings of
FSTTCS, pages 28:1–28:14, 2017. doi:10.4230/LIPIcs.FSTTCS.2017.28.

11 Bernd Finkbeiner and Ernst-Rüdiger Olderog. Petri games: Synthesis of distributed systems
with causal memory. Inf. Comput., 253:181–203, 2017. doi:10.1016/j.ic.2016.07.006.

CONCUR 2019

https://doi.org/10.1007/3-540-55676-1_3
https://doi.org/10.1007/BF01178506
http://arxiv.org/abs/1907.00829
https://doi.org/10.1007/BF01463946
https://doi.org/10.1007/BF01463946
https://doi.org/10.1007/978-3-540-77426-6
https://doi.org/10.1007/978-3-319-23506-6_15
https://doi.org/10.4204/EPTCS.260.5
https://doi.org/10.1007/978-3-319-21690-4_25
https://doi.org/10.1007/978-3-319-21690-4_25
https://doi.org/10.4230/LIPIcs.FSTTCS.2017.28
https://doi.org/10.1016/j.ic.2016.07.006

26:16 Translating Asynchronous Games for Distributed Synthesis

12 Paul Gastin, Benjamin Lerman, and Marc Zeitoun. Distributed Games with Causal Memory
Are Decidable for Series-Parallel Systems. In Proceedings of FSTTCS, pages 275–286, 2004.
doi:10.1007/978-3-540-30538-5_23.

13 Blaise Genest, Hugo Gimbert, Anca Muscholl, and Igor Walukiewicz. Asynchronous Games
over Tree Architectures. In Proceedings of ICALP, pages 275–286, 2013. doi:10.1007/
978-3-642-39212-2_26.

14 Hugo Gimbert. On the Control of Asynchronous Automata. In Proceedings of FSTTCS, pages
30:1–30:15, 2017. doi:10.4230/LIPIcs.FSTTCS.2017.30.

15 Jesko Hecking-Harbusch and Niklas O. Metzger. Efficient Trace Encodings of Bounded
Synthesis for Asynchronous Distributed Systems. In Proceedings of ATVA, 2019.

16 P. Madhusudan and P. S. Thiagarajan. A Decidable Class of Asynchronous Distributed
Controllers. In Proceedings of CONCUR, pages 145–160, 2002. doi:10.1007/3-540-45694-5_
11.

17 P. Madhusudan, P. S. Thiagarajan, and Shaofa Yang. The MSO Theory of Connectedly
Communicating Processes. In Proceedings of FSTTCS, pages 201–212, 2005. doi:10.1007/
11590156_16.

18 José Meseguer, Ugo Montanari, and Vladimiro Sassone. Process versus Unfolding Semantics
for Place/Transition Petri Nets. Theor. Comput. Sci., 153(1&2):171–210, 1996. doi:10.1016/
0304-3975(95)00121-2.

19 Anca Muscholl. Automated Synthesis of Distributed Controllers. In Proceedings of ICALP,
pages 11–27, 2015. doi:10.1007/978-3-662-47666-6_2.

20 Anca Muscholl and Igor Walukiewicz. Distributed Synthesis for Acyclic Architectures. In
Proceedings of FSTTCS, pages 639–651, 2014. doi:10.4230/LIPIcs.FSTTCS.2014.639.

21 Anca Muscholl, Igor Walukiewicz, and Marc Zeitoun. A look at the control of asynchronous
automata. Perspectives in Concurrency Theory, pages 356–371, 2009.

22 Mogens Nielsen, Gordon D. Plotkin, and Glynn Winskel. Petri Nets, Event Structures and
Domains, Part I. Theor. Comput. Sci., 13:85–108, 1981. doi:10.1016/0304-3975(81)90112-2.

23 Ernst-Rüdiger Olderog. Nets, terms and formulas: three views of concurrent processes and
their relationship, volume 23. Cambridge University Press, 2005.

24 Amir Pnueli and Roni Rosner. Distributed Reactive Systems Are Hard to Synthesize. In 31st
Annual Symposium on Foundations of Computer Science, 1990, Volume II, pages 746–757,
1990. doi:10.1109/FSCS.1990.89597.

25 Wolfgang Reisig. Petri Nets: An Introduction. Springer, 1985. doi:10.1007/
978-3-642-69968-9.

26 Wieslaw Zielonka. Notes on Finite Asynchronous Automata. ITA, 21(2):99–135, 1987.
doi:10.1051/ita/1987210200991.

https://doi.org/10.1007/978-3-540-30538-5_23
https://doi.org/10.1007/978-3-642-39212-2_26
https://doi.org/10.1007/978-3-642-39212-2_26
https://doi.org/10.4230/LIPIcs.FSTTCS.2017.30
https://doi.org/10.1007/3-540-45694-5_11
https://doi.org/10.1007/3-540-45694-5_11
https://doi.org/10.1007/11590156_16
https://doi.org/10.1007/11590156_16
https://doi.org/10.1016/0304-3975(95)00121-2
https://doi.org/10.1016/0304-3975(95)00121-2
https://doi.org/10.1007/978-3-662-47666-6_2
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.639
https://doi.org/10.1016/0304-3975(81)90112-2
https://doi.org/10.1109/FSCS.1990.89597
https://doi.org/10.1007/978-3-642-69968-9
https://doi.org/10.1007/978-3-642-69968-9
https://doi.org/10.1051/ita/1987210200991

	Introduction
	Examples
	Background
	Zielonka's Asynchronous Automata
	Control Games
	Petri Nets
	Petri Games

	Game Equivalence
	Translating Petri Games to Control Games
	Construction
	Correctness
	Generalization to Concurrency-Preserving Games
	Lower Bound

	Translating Control Games to Petri Games
	Construction
	Correctness
	Enforcing Commitment
	Lower Bounds

	New Decidable Classes
	Conclusion

