
Monitoring with Verified Guarantees

Johann C. Dauer1[0000−0002−8287−2376], Bernd Finkbeiner2[0000−0002−4280−8441],
and Sebastian Schirmer1[0000−0002−4596−2479]

1 German Aerospace Center (DLR), Braunschweig, Germany
{johann.dauer, sebastian.schirmer}@dlr.de

2 Helmholtz Center for Information Security (CISPA), Saarbrücken, Germany
finkbeiner@cispa.saarland

Abstract. Runtime monitoring is generally considered a light-weight
alternative to formal verification. In safety-critical systems, however, the
monitor itself is a critical component. For example, if the monitor is
responsible for initiating emergency protocols, as proposed in a recent
aviation standard, then the safety of the entire system critically depends
on guarantees of the correctness of the monitor. In this paper, we present
a verification extension to the Lola monitoring language that integrates
the efficient specification of the monitor with Hoare-style annotations
that guarantee the correctness of the monitor specification. We add two
new operators, assume and assert, which specify assumptions of the mon-
itor and expectations on its output, respectively. The validity of the
annotations is established by an integrated SMT solver. We report on
experience in applying the approach to specifications from the avionics
domain, where the annotation with assumptions and assertions has lead
to the discovery of safety-critical errors in the specifications. The errors
range from incorrect default values in offset computations to complex
algorithmic errors that result in unexpected temporal patterns.

Keywords: Formal methods · Cyber-physical systems · Runtime Veri-
fication · Hoare Logic.

1 Introduction

Cyber-physical systems are inherently safety-critical due to their direct inter-
action with the physical environment – failures are unacceptable. A means of
protection against failures is the integration of reliable monitoring capabilities.
A monitor is a system component that has access to a wide range of system in-
formation, e.g., sensor readings and control decisions. When the monitor detects
a failure, i.e., a violation of the behavior stated in its specification, it notifies the
system or activates recoveries to prevent failure propagation.

The task of the monitor is critical to the safety of the system, and its cor-
rectness is therefore of utmost importance. Runtime monitoring approaches like
Lola [5,6] address this by describing the monitor in a formal specification lan-
guage, and then generating a monitor implementation that is provably correct
and has strong runtime guarantees, for example on memory consumption. Formal

2 Dauer et al.

monitoring languages typically feature temporal [18] and sometimes spatial [16]
operators that simplify the specification of complex monitoring behaviors. How-
ever, the specification itself, the central part of runtime monitoring, is still prone
to human errors during specification development. How can we check that the
monitor specification itself is correct?

In this paper, we introduce a verification feature to the Lola framework.
Specifically, we extend the specification language with assumptions and asser-
tions. The framework verifies that the assertions are guaranteed to hold if the
input to the monitor satisfies the assumptions. The prime application area of
Lola is unmanned aviation. Lola is increasingly used for the development and
operation monitoring of unmanned aircraft; for example, the Lola monitor-
ing framework has been integrated into the DLR unmanned aircraft superAR-
TIS3 [1]. The verification extension presented in this paper is motivated by this
work. In practice, system engineers report that support for specification devel-
opment is necessary, e.g., sanity checks and proves of correctness. Additionally,
recent developments in unmanned aviation regulations and standards indicate
a similar necessity. One such development is the upcoming industry standard
ASTM F3269 (Standard Practice for Methods to Safely Bound Flight Behavior
of Unmanned Aircraft Systems Containing Complex Functions). ASTM F3269
introduces a certification strategy based on a Run-Time Assurance (RTA) archi-
tecture that bounds the behavior of a complex function by a safety monitor [15],
similar to the well-known Simplex architecture [21]. This complex function could
be a Deep Neural Network as proposed in [4]. A simplified version of the archi-
tecture4 of ASTM F3269 is shown in Figure 1.

External Data

Safety Monitor

Complex Function

Recovery Control Function(s)

Switch

Fig. 1. Run-Time Assurance architecture proposed by ASTM F3269 to safely bound
a complex function using a safety monitor.

3 https://www.dlr.de/content/en/research-facilities/superartis-en.html
4 In its original version the data is separated into assured and unassured data and

data preparation components are added.

Monitoring with Verified Guarantees 3

At the core of the architecture is a safety monitor that takes the inputs
and outputs of the complex function, and decides whether the complex function
behaves as expected. If not, the monitor switches the control from the complex
function to a matching recovery function. For instance, the flight of an unmanned
aircraft could be separated into different phases: e.g., take-off, cruise flight, and
landing. For each of these phases, a dedicated recovery could be defined, e.g.,
braking during take-off, the activation of a parachute during cruise flight, or
a go-around maneuver during landing. Further, it is crucial that recoveries are
only activated under certain conditions and that only one recovery is activated
at a time. For instance, a parachute activation during a landing approach is
considered safety-critical. The verification extension of Lola introduced in this
paper can be used to guarantee statically that such decisions are avoided within
the monitor specification. Consider the simplified Lola specification

input event_a, event_b, value: Bool, Bool, Float32

assume <a1> !(event_a and event_b)

output braking : Bool := ...computation...

output parachute : Bool := ...computation...

output go_around : Bool := ...computation...

assert <a1> !(braking and parachute)

that declares an assumption on the system input events and asserts that braking
and parachute never evaluates to true simultaneously.

In the following, we first give a brief introduction to the stream-based speci-
fication language Lola, then present the verification approach, and, finally, give
details on the tool implementation and our tool experience with specifications
that were written based on interviews with aviation experts. Our results show
that standard Lola specifications are indeed prone to error, and that these
errors can be caught with the formal verification introduced by our extension.

Related Work
Most work on the verification of monitors focuses on the correct transformation
into a general programming language. For example, Copilot [17] specifications
can be compiled into C code with constant time and memory requirements. Sim-
ilarly, there is a translation validation toolkit for Lola monitors implemented
in Rust [6], which is based on the Viper verification tool. Translation validation
of this type is orthogonal to the verification approach of this paper. Instead of
verifying the correctness of a transformation, our focus is to verify the specifi-
cation itself. Both activities complement each other and facilitate safer future
cyber-physical systems.

Our verification approach is based on classic ideas of inductive program ver-
ification [11,7], and is closely related to the techniques used in static program
verifiers like KeY [2], VeriFast [12], and Dafny [14]. In a verification approach
like Dafny, we are interested in functional properties of procedures, specified as
post-conditions that relate the values upon the termination of the procedure
with those at the time of entry to the procedure, e.g., ensure y = old(y). By
contrast, a stream-based language like Lola allows arbitrary access to past and

4 Dauer et al.

future stream values. This makes it necessary to unfold the Lola specification
in order to properly relate the assumptions and assertions in time.

Most closely related to stream-based monitoring languages are synchronous
programming languages like LUSTRE [10], ESTEREL [3], and SIGNAL [8].
For these languages, the compiler is typically used for verification – a program
representing the negation of desired properties is compiled with the target pro-
gram and a check for emptiness decides whether the properties are satisfied.
Furthermore, a translation from past linear-time temporal logic to ESTEREL
was proposed to simplify the specification of more complex temporal proper-
ties [13]. Other verification techniques also exist like SMT-based k-Induction for
LUSTRE [9] or a term rewriting system on synced effects [22]. A key difference
in our approach is that we do not rely on compilation. Our verification works
on the level of an intermediate representation. Furthermore, synchronous pro-
gramming languages are limited to past references, while the stream unfolding
for the inductive correctness proof of the Lola specification includes both past
and future temporal operators. Similar to k-Induction, our approach is sound
but not complete.

2 Runtime Monitoring with Lola

We now give an overview of the monitoring specification language Lola. The
verification extension is presented in the next section.

Lola is a stream-based language that describes the translation from input
streams to output streams:

input t1 : T1

...

input tm : Tm

output s1 : Tm+1 := e1(t1, . . . , tm, s1, . . . , sn)

...

output sn : Tm+n := en(t1, . . . , tm, s1, . . . , sn)

trigger ϕ message

where input streams carry synchronous arriving data from the system under
scrutiny, output streams represent calculations, and triggers generate notifica-
tion messages at instants where their condition ϕ becomes true. Input streams
t1, . . . , tm and output streams s1, . . . , sn are called independent and dependent
variables, respectively. Each variable is typed: independent variables ti are typed
Ti and dependent variables si are typed Tm+i. Dependent variables are computed
based on stream expressions e1, . . . , en over dependent and independent stream
variables. A stream expression is one of the following:

– an atomic stream expression c of type T if c is a constant of type T ;
– an atomic stream expression s of type T if s is a stream variable of type T ;

Monitoring with Verified Guarantees 5

– a stream expression ite(b, e1, e2) of type T if b is a Boolean stream expression
and e1, e2 are stream expressions of type T . Note that ite abbreviates the
control construct if-then-else;

– a stream expression f(e1, . . . , ek) of type T if f : T1×· · ·×Tk 7→ T is a k-ary
operator and e1, . . . , ek are stream expressions of type T1, . . . , Tk;

– a stream expression o.offset(by : i).defaults(to : d) of type T if o is a stream
variable of type T , i is an Integer, and d is of type T .

For example, consider the Lola specification

input altitude: Float32 // in m

output altitude_bound := altitude > 200.0

trigger altitude_bound "Warning: Decrease altitude!"

that notifies the system if the current altitude is above its operating limits,
i.e., 200.0 meters. Note that stream types are inferred, i.e., altitude bound is
of type Bool.

Lola uses temporal operators that allow output streams to access its and
others previous and future stream values. The stream

output alt_count := if altitude ≤ 200.0 then 0

else alt_count.offset(by: -1).defaults(to: 0) + 1

represents a count of consecutive altitude violations by accessing its own pre-
vious value, i.e., offset(by: x) where a negative and positive integer x repre-
sents past and future stream accesses, respectively. Since temporal accesses are
not always guaranteed to exist, the default operator defines values which are
used instead, i.e., defaults(to: d) where d has to be of the same type as the
used stream. Here, at the first position of alt count the default value zero is
taken. As abbreviations for the temporal operators, alt count[x, d] is used.
Further, s[x..y, d, ◦] for x < y abbreviates s[x,d] ◦ s[x+1,d] ◦ . . . ◦
s[y,d] where ◦ is a binary operator. Using alt count > 10 as a trigger condi-
tion is preferable if only persistent violations should be reported.

In general, Lola is a specification language that allows to specify complex
temporal properties in a precise, concise, and less error-prone way. The focus
is on what properties should be monitored instead of how a monitor should be
executed. Therefore, the Lola monitor synthesis automatically infers and op-
timizes implementation details like evaluation order and memory management.
The evaluation order [6] of Lola streams is automatically derived by analysis
of the dependency graph [5] of the specification. This allows to ignore the order
when taking advantage of the modular structure of Lola output streams, e.g.,:

output alt_avg := alt_count / (position+1)

output alt_count := if altitude ≤ 200.0 then 0

else alt_count.offset(by: -1).defaults(to: 0) + 1

output position := position.offset(by: -1).defaults(to: 0)

where position and alt count are used before their definition. Further, the
dependency graph allows to detect invalid cyclic stream dependencies, e.g.,
output a := a.offset(by: 0).defaults(to: 0).

6 Dauer et al.

3 Assumptions and Assertions

In this section, we present the verification extension for the Lola specification
language. The extension allows the developer to annotate the Lola specification
with assumptions and assertions in order to verify the desired guarantees on
the computed streams. As an example, consider the simplified specification in
Listing 1, which is structured into stream computations in Lines 1 to 23, and
assumptions and assertions from Line 26 onwards.

1input alt : Float32 // Height above ground

2input x, y : Float32, Float32 // Position in local coordinate system

3input speed : Float32 // Velocity of aircraft

4input landing : Bool // Indicates landing mode

5input lg_status : (Float32,Float32,FLoat32) // Status of landing gear

6
7// Complex computations

8output dst_on_runway : Float32 :=
√

x2 + y2

9output geofence_violation : Bool := ...

10output landing_gear_ready : Bool := ...

11
12// Take-off contingency

13output decelerate := alt < 1.0 ∧ speed < 10.0 ∧ dst_on_runway > 20.0

14// In-flight contingency

15output parachute := geofence_violation ∧ alt > 100.0

16// Landing contingency

17output gain_alt := landing ∧ alt ≥ 10.0 ∧ (speed > 10.0 ∨
18!landing_gear_ready[-4..0, true, ∧])
19
20// Notifications to the system

21trigger decelerate "RECOVERY: Stop take-off by decelerating aircraft."

22trigger parachute "RECOVERY: Activate parachute."

23trigger gain_alt "RECOVERY: Gain altitude for next landing attempt."

24
25// By concept of operations: landing is always within geofence.

26assume <a1> ¬(landing ∧ geofence_violation)

27assume <a1> abs(speed) <= 80.0 // Given by data protocol

28
29// Only one contingency is activated at once.

30assert <a1> ¬((decelerate ∧ parachute) ∨ (decelerate ∧ gain_alt)

31∨ (parachute ∧ gain_alt))

32// Parachute SHALL ONLY be activated 100 m above ground.

33assert <a2> parachute → alt > 100.0

Listing 1. A simplified Run-Time Assurance Lola specification with three recovery
functions for three different flight phases. Assumptions and assertions are used to show
that only one recovery function is activated at once.

Monitoring with Verified Guarantees 7

The computation part specifies a safety monitor within a RTA architecture
that triggers recovery functions for three different flight phases. First, the take-
off recovery function is triggered (Line 21) when the targeted take-off speed
was not achieved on a runway up to a predefined point (Line 13). The distance
between the current position and the end of the runway with local coordinates
(0, 0) is computed in Line 8. Second, in-flight a parachute is activated (Line 22)
when virtual barriers for the aircraft, i.e., a geofence, are exceeded (Line 15).
For more details on a Lola geofence specification (Line 9), we refer to [20].
Last, during landing, up to a point of no return (alt < 10.0), a new landing
attempt is initiated (Line 23) if the aircraft’s speed is too fast or its landing gear
is not yet ready. To be more robust, the current and the previous value of the
landing gear ready is taken into account (Lines 17-18).

With the verification extension, the specification assures that recoveries are
not activated simultaneously (Lines 30-31), i.e., for instance there is no possi-
bility that a parachute is activated during a landing approach. The first two
conjunctions in Line 30 evaluate to false because relevant outputs use a disjoint
altitude condition. The last conjunction requires an assumption. In fact, here,
two assumptions are linked by the identifier a1 to the assertion. The assumptions
specify: the known bound of received speed data (Line 27) as well as operational
information (Line 26), e.g., given by the concept of operation a nominal landing
is only foreseen within the predefined operational airspace. Further, a second
assertion is stated in Line 33 that guarantees that the parachute should only be
activated when the aircraft is 100 meters above ground. In this case, the property
can be shown assumption-free. Assertions help engineers to show that certain
properties are true. The given assertions indicate how specification debugging
and management can benefit from the extension – it avoids digging into poten-
tially complex stream computations.

The extension and its verification approach are presented in the following. In
general, the verification extension is used if a Lola specification is annotated in
the following way:

assume 〈α1〉 θ1

...

assume 〈αm〉 θm

assert 〈αm+1〉 ψ1

...

assert 〈αm+n〉 ψn

where α1, . . . , αm+n ∈ Γ are identifiers for θ1, . . . , θm, ψ1, . . . , ψn, which are
Boolean stream expressions with possibly temporal operators. For convenience,
we define functions which return all θ and ψ that are linked to a given α identifier:
assume(α) = {θj | ∀αj ∈ Γ, α = αj} and assert(α) = {ψj | ∀αj ∈ Γ, α = αj}.
The set of assertion ψ1, . . . , ψn is correct for all input streams iff whenever an
assumption is satisfied, its corresponding assertion is satisfied as well.

8 Dauer et al.

The verification of assertions relies on the encoding of the Lola execution in
Satisfiability Modulo Theory (SMT). We define the smt function that encodes
a stream expression next. It can be used to encode independent and dependent
variables as well as expressions of assumptions and assertions.

Definition 1 (SMT-Encoding of Stream Expressions).
Let Φ be a Lola specification over independent stream variables t1, . . . , tm and
dependent stream variables s1, . . . , sn. Further, let the natural number N + 1 be
the length of the input streams, c be an SMT constant symbol, and τ01 , . . . , τ

N
1 , . . . ,

τ0m, . . . , τ
N
m , σ

0
1 , . . . , σ

N
1 , . . . , σ

0
n, . . . , σ

N
n be SMT variables. Then, the function

smt recursively encodes a stream expression e at position j with 0 ≤ j ≤ N in
the following way:

– Base cases:

• smt(c)(j) = c

• smt(ti)(j) = τ ji
• smt(si)(j) = σji

– Recursive cases:

• smt(f(e1, . . . , en))(j) = f(smt(e1)(j), . . . , smt(en)(j))
• smt(ite(eb, e1, e2))(j) = ite(smt(eb)(j), smt(e1)(j), smt(e2)(j))

• smt(e[k, c])(j) =

{
smt(e)(j + k) if 0 ≤ j + k ≤ N,
c otherwise

where ite is an SMT encoding of if-then-else; f is an interpreted function if
f is from a theory supported by the SMT solver and an uninterpreted function
otherwise.

Next, Proposition 1 shows how the correctness of asserted stream properties
can be proven for finite input streams. If the set of assertions is correct, asserted
stream properties are guaranteed to be valid in each step of the monitor execu-
tion. In practice, such specifications are preferable. In the following, let Φ be a
Lola specification with verification annotations. Further, we refer to the set of
input streams and computed output streams as stream execution.

Proposition 1 (Assertion Verification of a Finite Stream Execution).
The set of assertions is correct for a finite stream execution with length N + 1
under given assumptions, if the following formula is valid:∧

i: 0≤i≤N

(∧
α∈Γ

(
∧

θ ∈ assume(α)

smt(θ)(i) ∧
∧

sk∈Φ
σik = smt(ek)(i)→

∧
ψ ∈ assert(α)

smt(ψ)(i)
))

The formula in Proposition 1 unfolds the complete stream execution and in-
formally expresses that an assertion must hold in each stream position whenever
its corresponding assumption and implementation are satisfied.

Monitoring with Verified Guarantees 9

To avoid the complete unfolding and allow arbitrary stream lengths, an in-
ductive argument is given in Proposition 2 that defines proof obligations for an
annotated Lola specification. Next, we present a template for the stream un-
folding that helps to define the proof obligation at the Beginning (Definition 3),
during Run (Definition 4), and at the End (Definition 5) of a stream execution.

Definition 2 (Template Stream Unfolding).
We define the template formula φt that states proof obligations as:

∧
α∈Γ

(∧
i: c asm

(∧
θ ∈ assume(α)

smt(θ)(i)
)
∧

∧
i: c asserted

(∧
ψ ∈ assert(α)

smt(ψ)(i)
)

∧
∧

i: c streams

(∧
0<k≤n

σk = smt(ek)(i)
)
→

∧
i: c assert

(∧
ψ ∈ assert(α)

smt(ψ)(i)
))

where c asm, c asserted, c streams, and c assert are template parameters for
the unfolding of assumptions, previously proven assertions, output streams, and
assertion, respectively.

The template formula in Definition 2 uses template parameters for the stream
unfolding. For instance, the parameter assignment c asm := 0 ≤ i < 10 adds
assumptions at the first ten positions of the stream execution. Further, the pa-
rameter c asserted allows to incorporate the induction hypothesis.

In the following, we will use the Lola specification

assume<a1> reset[-1, f] ∨ reset[1, f]

input reset : Bool

output o1 := if reset then 0 else o1[-1, 0] + 1

output o2 := o1[-1, 0] + o1 + o1[1, 0]

assert<a1> 0 ≤ o2 and o2 ≤ 3

as a running example for the template stream unfolding. Here, the input reset
represent a reset command for the output stream o1 that counts how long no
reset occurred. Output o1 is used by output o2 which aggregates over the pre-
vious, the current, and the next outcome of o1 . As assertion, we show that o2
is always positive and never larger than three given the assumption that in each
execution step either the previous or the next reset is true. The assumption
ensures that at most two consecutive resets are false. Given the reset sequence
of input values 〈true; false; false〉 that satisfies the assumption, the resulting o1
stream evaluates to 〈0; 1; 2〉. Here, at the second position of the sequence, o2
evaluates to three. To show that the assertion also holds at the first and the last
position of the sequence, out-of-bounds values must be considered.

We show how the template φt can be used at the beginning of a stream
execution. Here, default values due to past stream accesses beyond the beginning
of a stream need to be captured by the obligation to guarantee that the assertions
hold in these cases. The combination of past out-of-bounds and future out-
of-bounds default values must also be covered by the obligations in case the

10 Dauer et al.

stream is stopped early. These scenarios are depicted for the running example in
Figure 2. The figure shows four finite stream executions with different lengths. All
stream positions are colored gray, while only some positions contain a single red
dot. These features indicate the unfolding of stream variables and annotations
using the template φt. A gray-colored position means that the assumptions have
been unfolded and a dotted position means the assertion has been unfolded.
Further, arrows indicate temporal stream accesses where solid lines correspond
to accesses by outputs and dashed lines correspond to accesses by annotations,
i.e., assumptions and assertions. For each stream execution, only the arrows for
a single position are depicted – the arrows for other positions have been omitted
for the sake of clarity. For example, for N = 0, the accesses of output o2 are
both out-of-bounds, i.e., the default value zero is used. While for N = 3, the
accesses at the second position are shown where only the past access of the
assumption leads to an out-of-bounds access. The figure depicts all necessary
stream execution that cover all combinations of past out-of-bounds accesses, i.e.,
with and without future bound violations. The described unfoldings of Figure 2
are formalized as proof obligations in Definition 3.

Definition 3 (Proof Obligations for Past Out-of-bounds Accesses).
Let wp = sup({0} ∪ { |k| | e[k, c] ∈ Φ where k < 0}) be the most negative offset
and wf = sup({0} ∪ { k | e[k, c] ∈ Φ where k > 0}) be the greatest positive
offset. The proof obligations φBegin for past out-of-bounds accesses are defined
as the conjunction of template formulas:∧

N : 0≤N<max(1, 2·(wp+wf))

φt(c asm, c asserted , c streams, c assert)

with template parameters:
• c asm := 0 ≤ i ≤ N ,
• c asserted := false,
• c streams := 0 ≤ i ≤ N ,
• c assert := 0 ≤ i < max(1, min(N + 1, 2 · wp)).

N=0 •

N=1 • •

N=2 • •

N=3 • •

Fig. 2. Four stream executions of different length N + 1 with the respective template
unfolding are depicted. The stream executions consider all cases with past out-of-
bound accesses. A gray-colored box indicates that an assumption has been unfolded at
this position, while a red dotted box indicates that an assertion has been unfolded at
this position. Solid and dashed arrows indicate accesses by streams and annotations,
respectively.

Monitoring with Verified Guarantees 11

Next, the case where no out-of-bounds access occurs is considered. Hence,
the obligations capture the nominal case where no default value is used. Since we
have shown that past out-of-bounds accesses are valid we can use these proven
assertions as assumptions. Figure 3 depicts a stream execution with a single
dotted position, i.e., the position where the assertion must be proven. As can
be seen, all accesses from this position are within bounds. Further, note that
the accesses of the first and the last unfolded assumption, i.e., the first and the
last gray-colored position, are also within bounds. The described unfolding is
formalized as proof obligations in Definition 4.

Definition 4 (Proof Obligations for No Out-of-bounds Accesses).
The proof obligations φRun without out-of-bounds accesses are defined as
φt(c asm, c asserted , c streams, c assert) with template parameters:
• c asm := wp ≤ i ≤ N − wf ,
• c asserted := 2 · wp ≤ i ≤ N − 2 · wf ∧ i 6= 3 · wp,
• c streams := 2 · wp ≤ i ≤ N − 2 · wf ,
• c assert := i = 3 · wp,

where N = 3 · (wp + wf).

Last, we consider the case where only future out-of-bounds accesses occur.
Hence, the respective obligations need to incorporate default values of future
out-of-bounds accesses. As before, we can use the previously proven assertions
as assumptions. Figure 4 depicts a stream execution with two dotted positions,
i.e., positions where the assertion must be proven. The position where arrows
are given represents the case where only the assumption results in a future out-
of-bounds access. The last position of the stream execution represents the case
in which both the assumption and the stream result in future out-of-bounds ac-
cesses. The presented unfolding is formalized as proof obligations in Definition 5.

Definition 5 (Proof Obligations for Future Out-of-bounds Accesses).
The proof obligations φEnd for future out-of-bounds accesses are defined as the
template formula φt(c asm, c asserted , c streams, c assert) with template pa-
rameters:
• c asm := wp ≤ i ≤ N ,
• c asserted := 2 · wp ≤ i < 3 · wp,
• c streams := 2 · wp ≤ i ≤ N ,
• c assert := 3 · wp ≤ i ≤ N

where N = 3 · wp + wf .

So far, we have defined proof obligations for certain positions in the stream
execution with and without out-of-bounds accesses. Together, the proof obliga-
tions constitute an inductive argument for the correctness of the assertions, see
Proposition 2. Here, the base case is given by Definition 3 and induction steps are
given by Definitions 4 and 5. The induction steps use the induction hypothesis,
i.e., valid assertions, due to the template parameter c asserted.

Proposition 2 (Assertion Verification by Lola Unfolding).
The set of assertions is correct if the formula φBegin ∧ φRun ∧ φEnd is valid.

12 Dauer et al.

Proposition 2 proves the soundness of the verification approach. Soundness
refers to the ability of an analyzer to prove the absence of errors — if a Lola
specification is accepted, it is guaranteed that the assertions are not violated. The
converse does not hold, i.e., the presented verification approach is not complete.
Completeness refers to the ability of an analyzer to prove the presence of errors
— if a Lola specification is rejected, the counter-example given should be a
valid stream execution that results in an assertion violation. The following Lola
specification is rejected even though no assertion is violated:

1input a: Int32

2assume <a1> a ≤ 10

3output sum := if sum[-1, 0] ≤ 10 then 0 else sum[-1, 0] + a

4assert < a1 > sum ≤ 100

Here, since the if-condition in Line 3 evaluates to true at the beginning of the
stream execution, sum is a constant stream with value zero. Hence, the assertion
in Line 4 is never violated. The verification approach rejects this specification.
The reason for this is that sum ≤ 100 is added as an asserted condition in φRun .
Therefore, the SMT solver can assign a value between 91 and 100 to the earliest
sum variable of the unfolding, resulting in an assertion violation of the next sum
variable.

N=6 •

Fig. 3. A stream execution of length N+1 with the corresponding template unfolding is
depicted. The stream execution considers the case where no out-of-bound access occurs.
Gray-colored and red dotted positions represent unfolded assumptions and assertions,
respectively. Solid and dashed arrows indicate accesses by streams and annotations,
respectively.

N=4 • •

Fig. 4. A stream execution of length N + 1 with the corresponding template unfolding
is depicted. The stream execution covers all cases where future out-of-accesses occur.
Gray-colored and red dotted positions represent unfolded assumptions and assertions,
respectively. Solid and dashed arrows indicate accesses by streams and annotations,
respectively.

Monitoring with Verified Guarantees 13

4 Application Experience in Avionics

In this section, we present details about the tool implementation and tool expe-
riences on practical avionic specifications.

Tool Implementation and Usage
The tool is based on the open source Lola framework5 written in Rust. Specif-
ically, it uses the Lola frontend to parse a given specification into an interme-
diate representation. Based on this representation, the SMT formulas are cre-
ated and evaluated with the Rust z3 crate6. At its current phase of the crate’s
development, a combined solver is implemented that internally uses either a
non-incremental or an incremental solver. There is no information on the im-
plemented tactics available, but all our requests could be solved within seconds.
For functions that are not natively supported by the Rust Z3 solver, the output
is arbitrarily chosen by the solver with respect to the range of the function. The
tool expects a Lola specification augmented by assumptions and assertions.
The verification is done automatically and produces a counter-example stream
execution, if any exists. The counter-example can then be used by the user to
debug its specifications. Two different kinds of users are targeted. First, users
that write the entire augmented specification. Such a user could be a systems
engineer who is developing a safety monitor and wants to ensure that it contains
critical properties. Second, users that augment an existing specification. Here,
one reason could be that an existing monitor shall be composed with other crit-
ical components and certain behavioral properties are expected. Also, similar
to software testing, the task of writing a specification and their respective as-
sumptions and assertions could be separated between two users to ensure the
independence of both.

Practical Results
To gain practical tool experience, previously written specifications based on in-
terviews with engineers of the German Aerospace Center [19] were extended by
assumptions and assertions. The previous specifications were tested using log-
files and simulations – the authors considered them correct. We report several
specification errors in Table 1 that were detected by the presented verification
extension. In fact, the detected errors would have resulted in undetected fail-
ures. After the errors in the previous specifications were fixed, all assertions
were proven correct. Note that the errors could have been found due to man-
ual reviews. However, such reviews are tedious and error-prone, especially when
temporal behaviors are involved. The detected errors in Table 1 can be grouped
into three classes: Classical Bugs, Operator Errors, and Wrong Interpretations.
Classical bugs are errors that occur when implementing an algorithm. Operator
errors are Lola specific errors, e.g., temporal accesses. Last, wrong interpreta-
tions refer to gaps between the specification and the user’s design intend, e.g.,

5 https://rtlola.org/
6 https://docs.rs/z3/0.9.0/z3/

14 Dauer et al.

Specification #o #a #g Detected errors

gps vel output 14 6 6 –

gps pos output 19 3 10 –

imu output 18 6 6 Wrong default value
Division by zero

nav output 25 3 5 Missing abs()

tagging 6 2 2 –

ctrl output 25 7 8 Wrong threshold comparisons

mm output 1 4 1 2 –

mm output 2 17 6 9 Missing if condition
Wrong default value

contingency output 4 8 1 Observation: both contingencies could
be true in case of voting, i.e., both at 50%

health output 1 5 1 –

Table 1. Detected errors by the verification extension, where #o, #a, and #g rep-
resent the number of outputs, assumptions, and assertions given in the specification,
respectively.

violated assertions due to incomplete specifications. Next, we give one represen-
tative example for each group. We reduced the specification to the representative
fragment.

Example 1 (Classical Bug).
The Lola specification in Listing 2 monitors the fuel level. A monitor shall
notify the operator when one of the three different fuel levels are reached: half
(Line 8), warning (Line 9), and danger (Line 10). The fuel level is computed as a
percentage in Line 7. It uses the fuel level at the beginning of the flight (Line 6)
as a reference for its computation. Given the documentation of the fuel sensor,
it is known that fuel values are within R+ and decreasing. This is formalized
in Line 4 as an assumption. As an invariant, we asserted that the starting fuel
is greater or equal to fuel (Line 15). Further, in Lines 16 to 18, we stated that
once a level is reached it should remain at this level. During our experiment,
the assertion led to a counter-example that pointed to the previously used and
erroneous fuel level computation:

output fuel_level := (start_fuel - fuel) / start_fuel

In short, the output computed the consumed fuel and not the remaining fuel. The
computation could be easily fixed by converting consumed fuel into remaining
fuel, see Line 7. Therefore, Listing 2 satisfies its assertion. Note, that offset
accesses were used to assert the temporal behavior of the fuel level output stream.
Further, trigger once is an abbreviation which states that only the first raising
edge is reported to the user.

Monitoring with Verified Guarantees 15

1// Inputs

2input fuel: Float64

3// Assumptions

4assume<a5> fuel > 0.0 and fuel < fuel[-1, fuel + 0.1]

5// Outputs

6output start_fuel := start_fuel[-1, fuel]

7output fuel_level := 1.0 - (start_fuel - fuel) / start_fuel

8output fuel_half := fuel_level < 0.50

9output fuel_warning := fuel_level < 0.25

10output fuel_danger := fuel_level < 0.10

11trigger_once fuel_half "INFO: Fuel level is half reduced"

12trigger_once fuel_warning "WARNING: Fuel level is below 25%"

13trigger_once fuel_danger "DANGER: Fuel level is below 10%"

14// Assertions

15assert<a5> start_fuel >= fuel

16and (fuel_half[-1, false] -> fuel_half)

17and (fuel_warning[-1, false] -> fuel_warning)

18and (fuel_danger[-1, false] -> fuel_danger)

Listing 2. The fixed version of the Lola ctrl output specification that monitors the
fuel level. Three level of engagement are depicted: half, warning, and danger.

Example 2 (Operator Error).
An important monitoring property is to detect frozen values as these indicate
a deteriorated sensor. Such a specification is depicted in Listing 3. Here, as
an input, the acceleration in x−direction is given. The frozen value check is
computed from Line 6 to Line 10. It compares previous values using Lola’s offset
operator. To check this computation, we added the sanity check that asserts that
no frozen value shall be detected (Line 13) when small changes in the input are
present (Line 4). In the previous version, the frozen values were computed using
the abbreviated offset operator:

output frozen_ax := ax[-5..0, 0.0, =]

This resulted in a counter-example that pointed to wrong default values. Al-
though the abbreviated version is easier to read and reduces the size of the
specification, it is unfortunately not suitable for this kind of property. The tool
detected the unlikely situation that the first value of ax is 0.0 which would
have resulted in evaluating frozen ax to true. Although unlikely, this should be
avoided as contingencies activated in such situations depend on correct results
and otherwise could harm people on the ground. By unfolding the operator and
adding a different default value to one of the past accesses, the error was resolved
(Line 6). Listing 3 shows the fixed version which satisfies its assertion.

16 Dauer et al.

1// Inputs

2input ax: Float32

3// Assumptions

4assume <a1> ax != ax[-1, ax + ε]
5// Outputs

6output frozen_ax := ax[-5, 0.1] = ax[-4, 0.0]

7and ax[-4, 0.0] = ax[-3, 0.0]

8and ax[-3, 0.0] = ax[-2, 0.0]

9and ax[-2, 0.0] = ax[-1, 0.0]

10and ax[-1, 0.0] = ax

11trigger frozen_ax "WARNING: x-acceleration is frozen!"

12// Assertions

13assert <a1> !frozen_ax

Listing 3. The Lola imu output specification that monitors frozen acceleration values.

Example 3 (Wrong Interpretation).
In Listing 4, two visual sensor readings are received (Lines 2-3). Both, readings
argue over the same observations where avgDist represents the average distance
to the measured obstacle, actual is the number of measurements, and static is
the number of unchanged measurements. A simple rating function is introduced
(Lines 5-8) that estimates the corresponding rating – the higher the better. Using
these ratings, the trust in each of the sensors is computed probabilistically (Lines
9-10). When considering the integration of such a monitor as an ASTM switch
condition that decides which sensor value should be forwarded, the specification
should be revised. This is the case because the assertion in Line 14 produces a
counter-example which indicates that both trust triggers (Lines 11-12) can be
activated at the same time. A common solution for this problem is to introduce
a priority between the sensors.

1// Inputs

2input avgDist_laser, actual_laser, static_laser: Float64

3input avgDist_optical, actual_optical, static_optical: Float64

4// Outputs

5output rating_laser :=

60.2 * static_laser + 0.4 * actual_laser + 0.4 * avgDist_laser

7output rating_optical :=

80.2 * static_optical + 0.4 * actual_optical + 0.4 * avgDist_optical

9output trust_laser := rating_laser / (rating_laser + rating_optical)

10output trust_optical := 1.0 - trust_laser

11trigger trust_laser >= 0.5

12trigger trust_optical >= 0.5

13// Assertions

14assert <a1> trust_laser != trust_optical

Listing 4. The Lola contingency output specification that uses an heuristic to decide
which sensor is more trustworthy.

Monitoring with Verified Guarantees 17

The examples show how the presented Lola verification extension can be
used to find errors in specifications. We also noticed that the annotations can
serve as documentation. System assumptions are often implicitly known dur-
ing development and are finally documented in natural language in separate
files. Having these assumptions explicitly stated within the monitor specifica-
tion potentially reduces future mistakes when reusing the specification, e.g.,
when composing with other monitor specifications. Listing 5 depicts such an
example specification. Here, the monitor interfaces are clearly defined by the
domain of input a (Line 5) and output o (Line 13). Also, reset is assumed to be
valid at least once per second (Line 5). Further, no deeper understanding of the
internal computations (Lines 7-10) is required in order to safely compose this
specification with others.

1// Inputs with frequency 5Hz

2input a: Float64

3input reset: Bool

4// Assumptions

5assume <a1> 0.0 ≤ a ≤ 1.0 and reset[-4..0, false, ∨]
6// Outputs

7output o_1 := ...

8...

9output o_n := ...

10output o := o_1 + ... + o_n

11trigger o ≥ 0.5 "Warning: Output o exceeds threshold!"

12// Assertions

13assert <a1> 0.0 ≤ o ≤ 1.0

Listing 5. Lola specification annotations describe interface properties.

5 Conclusion

As both the relevance and the complexity of cyber-physical systems continues
to grow, runtime monitoring is an essential ingredient of safety-critical systems.
When monitors are derived from specifications it is crucial that the specifications
are correct. In this paper, we have presented a verification approach for the
stream-based monitoring language Lola. With this approach, the developer can
formally prove guarantees on the streams computed by the monitor, and hence
ensure that the monitor does not cause dangerous situations. The verification
extension is motivated by upcoming aviation regulations and standards as well
as by practical feedback of engineers.

The extension has been applied to previously written Lola specifications
that were obtained based on interviews with aviation experts. In this process,
we discovered and fixed several serious specification errors.

In the future, we plan to develop automatic invariant generation for Lola
specifications. Another interesting direction for future work is to exploit the
results of the analysis for the optimization of the specification and the result-
ing monitoring code. Finally, we plan to extend the verification approach to
RTLola, the real-time extension of Lola.

18 Dauer et al.

Acknowledgement

This work was partially supported by the German Research Foundation (DFG)
as part of the Collaborative Research Center Foundations of Perspicuous Soft-
ware Systems (TRR 248, 389792660), by the European Research Council (ERC)
Grant OSARES (No. 683300), and by the Aviation Research Programm LuFo of
the German Federal Ministry for Economic Afairs and Energy as part of “Volo-
copter Sicherheits-Technologie zur robusten eVTOL Flugzustandsabsicherung
durch formales Monitoring”(No. 20Q1963C).

References

1. Baumeister, J., Finkbeiner, B., Schirmer, S., Schwenger, M., Torens, C.: RTLola
cleared for take-off: Monitoring autonomous aircraft. In: Lahiri, S.K., Wang, C.
(eds.) Computer Aided Verification. pp. 28–39. Springer International Publishing,
Cham (2020)

2. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented
Software. The KeY Approach, LNCS 4334, vol. 4334. Springer-Verlag (2007).
https://doi.org/10.1007/978-3-540-69061-0

3. Berry, G.: The Foundations of Esterel, p. 425–454. MIT Press, Cambridge, MA,
USA (2000)

4. Cluzeau, J.M., Henriquel, X., van Dijk, L., Gronskiy, A.: Concepts of design assur-
ance for neural networks (CoDANN). Tech. rep., EASA European Union Aviation
Safety Agency (Mar 2020)

5. D’Angelo, B., Sankaranarayanan, S., Sanchez, C., Robinson, W., Finkbeiner, B.,
Sipma, H.B., Mehrotra, S., Manna, Z.: Lola: Runtime monitoring of synchronous
systems. In: 12th International Symposium on Temporal Representation and Rea-
soning (TIME’05). pp. 166–174 (2005). https://doi.org/10.1109/TIME.2005.26

6. Finkbeiner, B., Oswald, S., Passing, N., Schwenger, M.: Verified rust monitors for
lola specifications. In: Deshmukh, J., Ničković, D. (eds.) Runtime Verification. pp.
431–450. Springer International Publishing, Cham (2020)

7. Floyd, R.W.: Assigning Meanings to Programs, pp. 65–81. Springer Netherlands,
Dordrecht (1993), https://doi.org/10.1007/978-94-011-1793-7 4

8. Gautier, T., Le Guernic, P., Besnard, L.: Signal: A declarative language for syn-
chronous programming of real-time systems. In: Kahn, G. (ed.) Functional Pro-
gramming Languages and Computer Architecture. pp. 257–277. Springer Berlin
Heidelberg, Berlin, Heidelberg (1987)

9. Hagen, G., Tinelli, C.: Scaling up the formal verification of lustre programs with
smt-based techniques. In: 2008 Formal Methods in Computer-Aided Design. pp. 1–
9 (2008). https://doi.org/10.1109/FMCAD.2008.ECP.19

10. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous data flow
programming language lustre. Proceedings of the IEEE 79(9), 1305–1320 (1991).
https://doi.org/10.1109/5.97300

11. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (Oct 1969). https://doi.org/10.1145/363235.363259, https://doi.
org/10.1145/363235.363259

12. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
Verifast: A powerful, sound, predictable, fast verifier for C and java. In: Bobaru,

https://doi.org/10.1007/978-3-540-69061-0
https://doi.org/10.1109/TIME.2005.26
https://doi.org/10.1007/978-94-011-1793-7_4
https://doi.org/10.1109/FMCAD.2008.ECP.19
https://doi.org/10.1109/5.97300
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259

Monitoring with Verified Guarantees 19

M.G., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NASA Formal Methods
- Third International Symposium, NFM 2011, Pasadena, CA, USA, April 18-
20, 2011. Proceedings. Lecture Notes in Computer Science, vol. 6617, pp. 41–55.
Springer (2011). https://doi.org/10.1007/978-3-642-20398-5 4, https://doi.org/10.
1007/978-3-642-20398-5 4

13. Jagadeesan, L.J., Puchol, C., Von Olnhausen, J.E.: Safety property verification
of esterel programs and applications to telecommunications software. In: Wolper,
P. (ed.) Computer Aided Verification. pp. 127–140. Springer Berlin Heidelberg,
Berlin, Heidelberg (1995)

14. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness. In:
Clarke, E.M., Voronkov, A. (eds.) Logic for Programming, Artificial Intelligence,
and Reasoning. pp. 348–370. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

15. Nagarajan, P., Kannan, S.K., Torens, C., Vukas, M.E., Wilber, G.F.: ASTM
F3269 - An Industry Standard on Run Time Assurance for Aircraft Sys-
tems. https://doi.org/10.2514/6.2021-0525, https://arc.aiaa.org/doi/abs/10.2514/
6.2021-0525

16. Nenzi, L., Bortolussi, L., Ciancia, V., Loreti, M., Massink, M.: Qualitative and
quantitative monitoring of spatio-temporal properties. In: Bartocci, E., Majumdar,
R. (eds.) Runtime Verification. pp. 21–37. Springer International Publishing, Cham
(2015)

17. Pike, L., Goodloe, A., Morisset, R., Niller, S.: Copilot: A hard real-time runtime
monitor. In: Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace,
G., Roşu, G., Sokolsky, O., Tillmann, N. (eds.) Runtime Verification. pp. 345–359.
Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

18. Reinbacher, T., Rozier, K.Y., Schumann, J.: Temporal-logic based runtime ob-
server pairs for system health management of real-time systems. In: Ábrahám, E.,
Havelund, K. (eds.) Tools and Algorithms for the Construction and Analysis of
Systems. pp. 357–372. Springer Berlin Heidelberg, Berlin, Heidelberg (2014)

19. Schirmer, S.: Runtime Monitoring with Lola. Master’s thesis, Saarland University
(Dec 2016)

20. Schirmer, S., Torens, C., Adolf, F.: Formal Monitoring of Risk-based
Geofences. https://doi.org/10.2514/6.2018-1986, https://arc.aiaa.org/doi/abs/10.
2514/6.2018-1986

21. Seto, D., Krogh, B., Sha, L., Chutinan, A.: The simplex architecture for safe
online control system upgrades. In: Proceedings of the 1998 American Control
Conference. ACC (IEEE Cat. No.98CH36207). vol. 6, pp. 3504–3508 vol.6 (1998).
https://doi.org/10.1109/ACC.1998.703255

22. Song, Y., Chin, W.N.: A synchronous effects logic for temporal verification of pure
esterel. In: Henglein, F., Shoham, S., Vizel, Y. (eds.) Verification, Model Checking,
and Abstract Interpretation. pp. 417–440. Springer International Publishing, Cham
(2021)

https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.2514/6.2021-0525
https://arc.aiaa.org/doi/abs/10.2514/6.2021-0525
https://arc.aiaa.org/doi/abs/10.2514/6.2021-0525
https://doi.org/10.2514/6.2018-1986
https://arc.aiaa.org/doi/abs/10.2514/6.2018-1986
https://arc.aiaa.org/doi/abs/10.2514/6.2018-1986
https://doi.org/10.1109/ACC.1998.703255

20 Dauer et al.

A Lola Specifications – Experience Report

A.1 Specification : gps vel output

1input sol age: Float32
2input hor spd: Float32
3input trk gnd: Float32
4input vert spd: Float32
5input time s: UInt64
6input time us: UInt64
7// Assumptions
8assume <a1> time − time.offset(by: −1).defaults(to: time − 0.1) > 0.0
9and time − time.offset(by: −1).defaults(to: time − 0.1) <= 0.1
10and trace pos >= 0
11
12assume <a2> time − time.offset(by: −1).defaults(to: time − 0.1) > 0.0
13and time − time.offset(by: −1).defaults(to: time − 0.1) <= 0.1
14and trace pos >= 0
15// Frequency computations
16output time := cast(time s) + cast(time us) / 1000000.0
17output start time := if time.offset(by: −1).defaults(to: −1.0) = −1.0 then time

else start time.offset(by: −1).defaults(to: −1.0)
18output flight time := time − start time
19output trace pos @ sol age or hor spd or trk gnd or vert spd or time s or

time us := trace pos.offset(by: −1).defaults(to: −1) + 1
20output frequency :=
211.0 / (time − time.offset(by: −1).defaults(to: time − 0.0001))
22output freq sum :=
23freq sum.offset(by: −1).defaults(to: 0.0) + frequency
24output freq avg := freq sum / cast(trace pos+1)
25output freq max := if frequency > freq max.offset(by: −1).defaults(to:

frequency) then frequency else freq max.offset(by: −1).defaults(to: frequency)
26output freq min := if frequency < freq min.offset(by: −1).defaults(to: frequency)

then frequency else freq min.offset(by: −1).defaults(to: frequency)
27// Speed computations
28output hor spd max := if hor spd > hor spd max.offset(by: −1).defaults(to: 0.0)

then hor spd else hor spd max.offset(by: −1).defaults(to: 0.0)
29output vert spd max := if vert spd > vert spd max.offset(by: −1).defaults(to:

0.0) then vert spd else vert spd max.offset(by: −1).defaults(to: 0.0)
30// Solution age and track over ground (motion direction wrt. north)
31trigger sol age <= 0.5 ”Sol age should remain zero!”
32output trk gnd in bound := if trk gnd >= 0.0 and trk gnd <= 360.0 then

trk gnd in bound.offset(by: −1).defaults(to: true) else false
33output trk gnd max := if trk gnd > trk gnd min.offset(by: −1).defaults(to: 0.0)

then trk gnd else trk gnd min.offset(by: −1).defaults(to: 0.0)
34output trk gnd min := if trk gnd < trk gnd max.offset(by: −1).defaults(to: 0.0)

then trk gnd else trk gnd max.offset(by: −1).defaults(to: 0.0)
35// Assertions
36assert <a1> time.offset(by: −1).defaults(to: −1.0) < time
37and start time == start time.offset(by: −1).defaults(to: start time)

Monitoring with Verified Guarantees 21

38and flight time >= flight time.offset(by: −1).defaults(to: 0.0)
39assert <a2> frequency >= 10.0
40and freq sum >= freq sum.offset(by: −1).defaults(to: 0.0) + 10.0
41assert <a3> trk gnd in bound.offset(by: −1).defaults(to: true)
42or !trk gnd in bound

A.2 Specification : gps pos output

1import math
2input lat: Float32
3input lon: Float32
4input hgt: Float32
5input nObjs: UInt64
6input nGPSL1: UInt64
7input time s: UInt64
8input time us: UInt64
9// Assumptions
10assume <a1> time − time.offset(by: −1).defaults(to: time − 0.1) > 0.0
11and time − time.offset(by: −1).defaults(to: time − 0.1) <= 0.1
12and trace pos >= 0
13// Frequency computations
14output time: Float32 := cast(time s) + cast(time us) / 1000000.0
15output start time := if time.offset(by: −1).defaults(to: −1.0) == −1.0 then time

else start time.offset(by: −1).defaults(to: −1.0)
16output flight time := time − start time
17output trace pos @ lat or lon or hgt or nObjs or nGPSL1 or time s or time us

:= trace pos.offset(by: −1).defaults(to: −1) + 1
18output frequency := 1.0 / (time − time.offset(by: −1).defaults(to: time −

0.0001))
19output freq sum := freq sum.offset(by: −1).defaults(to: 0.0) + frequency
20output freq avg := freq sum / cast(trace pos+1)
21output freq max := if frequency > freq max.offset(by: −1).defaults(to: 0.0) then

frequency else freq max.offset(by: −1).defaults(to: 0.0)
22output freq min := if frequency < freq min.offset(by: −1).defaults(to: 0.0) then

frequency else freq min.offset(by: −1).defaults(to: 0.0)
23// Statistics
24output lat max := if lat > lat max.offset(by: −1).defaults(to: lat) then lat else

lat max.offset(by: −1).defaults(to: lat)
25output lat min := if lat < lat min.offset(by: −1).defaults(to: lat) then lat else

lat min.offset(by: −1).defaults(to: lat)
26output lon max := if lon > lon max.offset(by: −1).defaults(to: lon) then lon else

lon max.offset(by: −1).defaults(to: lon)
27output lon min := if lon < lon min.offset(by: −1).defaults(to: lon) then lon else

lon min.offset(by: −1).defaults(to: lon)
28output lat in bound := max(abs(lat max), abs(lat min)) <= 90.0
29output lon in bound := max(abs(lon max), abs(lon min)) <= 180.0
30trigger !lat in bound ”Irregular latitude value!”
31trigger !lon in bound ”Irregular longitude value!”
32output begin := false

22 Dauer et al.

33output start height := if begin.offset(by: −1).defaults(to: true) then hgt else
start height.offset(by: −1).defaults(to: 0.0)

34output hgt inc max := max(hgt inc max.offset(by: −1).defaults(to: 0.0), hgt −
start height)

35output hgt dec max := min(hgt dec max.offset(by: −1).defaults(to: 0.0) , hgt −
start height)

36trigger hgt inc max > 100.0 ”Never increase height by more than 100m!”
37trigger hgt dec max < −100.0 ”Never decrease height by more than 100m”
38// Assertions
39assert <a1> time.offset(by: −1).defaults(to: −1.0) < time
40and start time == start time.offset(by: −1).defaults(to: start time)
41and flight time >= flight time.offset(by: −1).defaults(to: 0.0)
42assert <a2> hgt inc max >= 0.0 and hgt dec max <= 0.0
43and hgt inc max >= hgt inc max.offset(by: −1).defaults(to: 0.0)
44and hgt dec max <= hgt inc max.offset(by: −1).defaults(to: 0.0)
45and start height = start height.offset(by: −1).defaults(to: start height)
46and (lat in bound.offset(by: −1).defaults(to: true) or !lat in bound)
47and (lon in bound.offset(by: −1).defaults(to: true) or !lon in bound)

A.3 Specification : imu output

1import math
2input ax: Float32
3input ay: Float32
4input az: Float32
5input time s: UInt64
6input time us: UInt64
7input counter: Int64
8// Assumptions
9assume <a1> time − time.offset(by: −1).defaults(to: time − 0.1) > 0.0
10and time − time.offset(by: −1).defaults(to: time − 0.1) <= 0.1
11and trace pos >= 0
12assume <a2> ax != ax.offset(by: −1).defaults(to: ax + 0.1)
13and ay != ay.offset(by: −1).defaults(to: ay + 0.1)
14and az != az.offset(by: −1).defaults(to: az + 0.1)
15// Frequency computations
16output time := cast(time s) + cast(time us) / 1000000.0
17output start time := if time.offset(by: −1).defaults(to: −1.0) == −1.0 then time

else start time.offset(by: −1).defaults(to: −1.0)
18output flight time := time − start time
19output trace pos @ ax or ay or az or time s or time us or counter :=

trace pos.offset(by: −1).defaults(to: −1) + 1
20output frequency := 1.0 / (time − time.offset(by: −1).defaults(to: time −

0.0001))
21output freq sum := freq sum.offset(by: −1).defaults(to: 0.0) + frequency
22output freq avg := freq sum / cast(trace pos+1)
23// Statistics
24output deviation := abs(frequency − 100.0)
25output exceeds worst := deviation > worst dev.offset(by: −1).defaults(to: 0.0)

Monitoring with Verified Guarantees 23

26output worst dev pos := if exceeds worst then trace pos else
worst dev pos.offset(by: −1).defaults(to: 0)

27output worst dev := if exceeds worst then deviation else worst dev.offset(by:
−1).defaults(to: 0.0)

28output ax max := max(abs(ax),ax max.offset(by:−1).defaults(to:0.0))
29output ay max := max(abs(ay),ay max.offset(by:−1).defaults(to:0.0))
30output az max := max(abs(az),az max.offset(by:−1).defaults(to:0.0))
31trigger ax > 15.0 or ay > 15.0 or az > 15.0
32output frozen ax := ax.offset(by:−1).defaults(to:0.0) = ax
33and ax.offset(by:−2).defaults(to:0.0)=ax.offset(by:−1).defaults(to:0.0)
34and ax.offset(by:−3).defaults(to:0.0)=ax.offset(by:−2).defaults(to:0.0)
35and ax.offset(by:−4).defaults(to:0.0)=ax.offset(by:−3).defaults(to:0.0)
36and ax.offset(by:−5).defaults(to:0.1)=ax.offset(by:−4).defaults(to:0.0)
37output frozen ay := ay.offset(by:−1).defaults(to:0.0) = ay
38and ay.offset(by:−2).defaults(to:0.0)=ay.offset(by:−1).defaults(to:0.0)
39and ay.offset(by:−3).defaults(to:0.0)=ay.offset(by:−2).defaults(to:0.0)
40and ay.offset(by:−4).defaults(to:0.0)=ay.offset(by:−3).defaults(to:0.0)
41and ay.offset(by:−5).defaults(to:0.1)=ay.offset(by:−4).defaults(to:0.0)
42output frozen az := az.offset(by:−1).defaults(to:0.0) = az
43and az.offset(by:−2).defaults(to:0.0)=az.offset(by:−1).defaults(to:0.0)
44and az.offset(by:−3).defaults(to:0.0)=az.offset(by:−2).defaults(to:0.0)
45and az.offset(by:−4).defaults(to:0.0)=az.offset(by:−3).defaults(to:0.0)
46and az.offset(by:−5).defaults(to:0.1)=az.offset(by:−4).defaults(to:0.0)
47trigger frozen ax or frozen ay or frozen az
48output check counter := if trace pos = 0 then false else (counter !=

(counter.offset(by: −1).defaults(to: −1) + 1) % 100)
49trigger check counter ”A counter value was ignored.”
50// Assertions
51assert <a1> time.offset(by: −1).defaults(to: −1.0) < time
52and start time == start time.offset(by: −1).defaults(to: start time)
53and flight time >= flight time.offset(by: −1).defaults(to: 0.0)
54assert <a2> !frozen ax and !frozen ay and !frozen az

A.4 Specification : nav output

1import math
2input lat: Float32
3input lon: Float32
4input ug: Float32
5input vg: Float32
6input wg: Float32
7input time s: UInt64
8input time us: UInt64
9// Assertion
10assume <a1> trace pos >= 0
11and time − time.offset(by: −1).defaults(to: time − 0.1) <= 0.1
12and time − time.offset(by: −1).defaults(to: time − 0.1) > 0.0
13// Frequency Computation
14output time := cast(time s) + cast(time us) / 1000000.0

24 Dauer et al.

15output start time := if time.offset(by: −1).defaults(to: −1.0) == −1.0 then time
else start time.offset(by: −1).defaults(to: −1.0)

16output flight time := time − start time
17output trace pos @lat or lon or ug or vg or wg or time s or time us :=

trace pos.offset(by: −1).defaults(to: −1) + 1
18output frequency := 1.0 / (time − time.offset(by: −1).defaults(to: time −

0.0001))
19output freq sum := freq sum.offset(by: −1).defaults(to: 0.0) + frequency
20output freq avg := freq sum / cast(trace pos+1)
21output freq max := if frequency > freq max.offset(by: −1).defaults(to:

frequency) then frequency else freq max.offset(by: −1).defaults(to: frequency)
22output freq min := if frequency < freq min.offset(by: −1).defaults(to: frequency)

then frequency else freq min.offset(by: −1).defaults(to: frequency)
23// Statistics
24output velocity := sqrt(ug*ug + vg*vg + wg*wg)
25output lon1 rad := lon.offset(by: −1).defaults(to: 0.0) * 3.1415926535 / 180.0
26output lon2 rad := lon * 3.1415926535 / 180.0
27output lat1 rad := lat.offset(by: −1).defaults(to: 0.0) * 3.1415926535 / 180.0
28output lat2 rad := lat * 3.1415926535 / 180.0
29output dlon := lon2 rad − lon1 rad
30output dlat := lat2 rad − lat1 rad
31output a := (sin(dlat/2.0))*(sin(dlat/2.0)) + cos(lat1 rad) * cos(lat2 rad) *

(sin(dlon/2.0))*(sin(dlon/2.0))
32output x atan2 := sqrt(a)
33output y atan2 := sqrt(1.0−a)
34output c := 2.0 * if x atan2 > 0.0 then arctan(y atan2/x atan2)
35else if x atan2 < 0.0 and y atan2 >= 0.0
36then arctan(y atan2/x atan2) + 3.1415926535
37else if x atan2 < 0.0 and y atan2 < 0.0
38then arctan(y atan2/x atan2) − 3.1415926535
39else if x atan2 = 0.0 and y atan2 > 0.0 then 3.1415926535 / 2.0
40else if x atan2 = 0.0 and y atan2 < 0.0 then −3.1415926535 / 2.0
41else 0.0
42output gps distance := 6373000.0 * c
43output passed time := time − time.offset(by: −1).defaults(to: 0.0)
44output distance max := velocity * passed time
45output dif distance := abs(gps distance − distance max)
46output detected jump :=if trace pos=0 then false else dif distance>1
47trigger detected jump ”Jump!”
48// Assertions
49assert <a1> time.offset(by: −1).defaults(to: −1.0) < time
50and start time == start time.offset(by: −1).defaults(to: start time)
51and flight time >= flight time.offset(by: −1).defaults(to: 0.0)
52assert <a2> (!detected jump or gps distance > distance max)
53or (!detected jump or distance max > gps distance)

A.5 Specification : tagging

1import math
2input time s: UInt64

Monitoring with Verified Guarantees 25

3input time us: UInt64
4input vel: Float64
5// Assumptions
6assume<a1> (time s = time s.offset(by: −1).defaults(to: 0)
7and time us > time us.offset(by: −1).defaults(to: 0))
8and (time s > time s.offset(by: −1).defaults(to: 0)
9or time us > time us.offset(by: −1).defaults(to: 0))
10// Exemplary State Statistics
11output time := cast(time s) + cast(time us) / 1000000.0
12output correct vel := abs(vel) < 0.3
13output cur state := if correct vel then
14if cur state.offset(by: −1).defaults(to: 0) = 0 then 1 else 2 else 0
15output start interval := cur state = 2
16output interval start := if start interval then interval start.offset(by:

−1).defaults(to: 0.0) else time
17trigger start interval ”Interval started!”
18output end interval := cur state.offset(by: −1).defaults(to: 0) > 0 and

!correct vel and time since start > 5.0
19trigger end interval ”Interval ended!”
20output time since start := time − interval start.offset(by: −1).defaults(to: 0.0)
21// Assertions
22assert <a1> !(start interval and end interval)
23and time since start > 0.0

A.6 Specification : ctrl output

1import math
2input time s: UInt64
3input time us: UInt64
4input vel x: Float64
5input vel y: Float64
6input vel z: Float64
7input fuel: Float64
8input power: Float64
9input vel r x: Float64
10input vel r y: Float64
11input vel r z: Float64
12// Assumptions
13assume <a1> trace pos >= 0
14and time − time.offset(by: −1).defaults(to: time − 0.1) <= 0.1
15and time − time.offset(by: −1).defaults(to: time − 0.1) > 0.0
16assume<a2> power > 0.0
17and power <= power.offset(by: −1).defaults(to: power)
18and fuel > 0.0 and fuel < fuel.offset(by: −1).defaults(to: fuel + 0.1)
19and (time s = time s.offset(by: −1).defaults(to: 0)
20and time us > time us.offset(by: −1).defaults(to: 0))
21and (time s > time s.offset(by: −1).defaults(to: 0)
22or time us > time us.offset(by: −1).defaults(to: 0))
23// Frequency computations
24output time := cast(time s) + cast(time us) / 1000000.0

26 Dauer et al.

25output start time := if time.offset(by: −1).defaults(to: −1.0) == −1.0 then time
else start time.offset(by: −1).defaults(to: −1.0)

26output flight time := time − start time
27output trace pos @ time s or time us or vel x or vel y or vel z or fuel or power

or vel r x or vel r y or vel r z := trace pos.offset(by:−1).defaults(to:−1) + 1
28output frequency := 1.0 / (time − time.offset(by: −1).defaults(to: time −

0.0001)) // major improvement
29output freq sum := freq sum.offset(by: −1).defaults(to: 0.0) + frequency
30output freq avg := freq sum / cast(trace pos+1)
31output freq max := if frequency > freq max.offset(by: −1).defaults(to:

frequency) then frequency else freq max.offset(by: −1).defaults(to: frequency)
32output freq min := if frequency < freq min.offset(by: −1).defaults(to: frequency)

then frequency else freq min.offset(by: −1).defaults(to: frequency)
33// Exemplary phase detection
34output velocity := sqrt(vel x*vel x + vel y*vel y + vel z*vel z)
35output velocity max := if reset max.offset(by: −1).defaults(to: false) then

velocity else max(velocity, velocity max.offset(by: −1).defaults(to: 0.0))
36output velocity min := if reset max.offset(by: −1).defaults(to: false) then

velocity else min(velocity, velocity min.offset(by: −1).defaults(to: 0.0))
37output dif max := abs(velocity max − velocity min)
38output reset max := dif max > 1.0
39output reset time := if reset max or trace pos = 0 then time else

reset time.offset(by: −1).defaults(to: 0.0)
40output unchanged := if reset max.offset(by: −1).defaults(to: false) then 0 else

unchanged.offset(by: −1).defaults(to: 0) + 1
41trigger unchanged = 150 ”Phase detected!”
42// Statistics
43output vel dev := abs(vel r x−vel x) + abs(vel r y−vel y) + abs(vel r z−vel z)
44output dev sum := vel dev + dev sum.offset(by: −1).defaults(to: 0.0)
45output vel av := dev sum / cast((trace pos+1)*3)
46output worst dev pos := if worst dev.offset(by: −1).defaults(to: vel dev − 1.0)

< vel dev then trace pos else worst dev pos.offset(by: −1).defaults(to: 0)
47output worst dev := if worst dev.offset(by: −1).defaults(to: vel dev − 1.0) <

vel dev then vel dev else worst dev.offset(by: −1).defaults(to: 0.0)
48output start fuel := start fuel.offset(by: −1).defaults(to: fuel)
49output fuel level := 1 − (start fuel − fuel) / start fuel
50output fuel half := fuel level < 0.50
51output fuel warning := fuel level < 0.25
52output fuel danger := fuel level < 0.10
53output start power := start power.offset(by: −1).defaults(to: power)
54output power p consumed := ((start power − power) / (start power))
55trigger once fuel half ”INFO: Fuel level is half reduced”
56trigger once fuel warning ”WARNING: Fuel level is below 25%”
57trigger once fuel danger ”DANGER: Fuel level is below 10%”
58trigger once power p consumed > 0.50 ”Power below half capacity”
59trigger once power p consumed > 0.75 ”Power below quarter capacity”
60trigger once power p consumed > 0.90 ”Urgent: Recharge Power!”
61// Assertions
62assert <a1> time.offset(by: −1).defaults(to: −1.0) < time
63and start time == start time.offset(by: −1).defaults(to: start time)

Monitoring with Verified Guarantees 27

64and flight time >= flight time.offset(by: −1).defaults(to: 0.0)
65assert<a2> reset time >= 0.0
66and start fuel >= fuel and start power >= power
67and (!fuel half.offset(by: −1).defaults(to: false) or fuel half)
68and (!fuel warning.offset(by: −1).defaults(to: false)or fuel warning)
69and (!fuel danger.offset(by: −1).defaults(to: false) or fuel danger)
70and power p consumed >= power p consumed.offset(by: −1).defaults(to:

power p consumed)

A.7 Specification : mm output 1

1import math
2input stateID SC: UInt64
3// Assumptions
4assume<a1> trace pos >= 0
5// Exemplary state transition analysis
6output trace pos @ stateID SC := trace pos.offset(by: −1).defaults(to: −1) + 1
7output change state := if trace pos = 0 then false
8else stateID SC != stateID SC.offset(by: −1).defaults(to: 0)
9output transitions := if stateID SC.offset(by:−1).defaults(to: 0) = 0 then

stateID SC == 1
10else if stateID SC.offset(by: −1).defaults(to: 0) == 1 then stateID SC == 1 or

stateID SC == 2
11else if stateID SC.offset(by: −1).defaults(to: 0) == 2 then stateID SC == 1 or

stateID SC == 3
12else if stateID SC.offset(by: −1).defaults(to: 0) == 3 then stateID SC == 3
13else false
14output invalid transitions := change state and !transitions
15trigger invalid transitions ”Invalid state transition”
16// Assertions
17assert <a1> invalid transitions or
18!(stateID SC.offset(by: −1).defaults(to: 0) != 0 and stateID SC = 0)
19assert <a2> (stateID SC == 1 or stateID SC == 2 or stateID SC == 3)
20or !(stateID SC.offset(by: −2).defaults(to: 0) = 1
21and transitions.offset(by: −1).defaults(to: false) and transitions)

A.8 Specification : mm output 2

1import math
2input time s: UInt64
3input time us: UInt64
4input stateID SC: Int64
5input OnGround: UInt64
6// Assumptions
7assume <a1> trace pos >= 0
8and time − time.offset(by: −1).defaults(to: time − 0.1) <= 0.1
9and time − time.offset(by: −1).defaults(to: time − 0.1) > 0.0
10assume <a2> (time s = time s.offset(by: −1).defaults(to: 0)
11and time us > time us.offset(by: −1).defaults(to: 0))
12and (time s > time s.offset(by: −1).defaults(to: 0)

28 Dauer et al.

13or time us > time us.offset(by: −1).defaults(to: 0))
14// Frequency computations
15output time := cast(time s) + cast(time us) / 1000000.0
16output start time := if time.offset(by: −1).defaults(to: −1.0) == −1.0 then time

else start time.offset(by: −1).defaults(to: −1.0)
17output flight time := time − start time
18output trace pos @ time s or time us or stateID SC or OnGround :=

trace pos.offset(by: −1).defaults(to: −1) + 1
19output frequency := 1.0 / (time − time.offset(by: −1).defaults(to: time −

0.0001))
20output freq sum := freq sum.offset(by: −1).defaults(to: 0.0) + frequency
21output freq avg := freq sum / cast(trace pos+1)
22// Phase Statistics
23output change state := if trace pos = 0 then false
24else stateID SC != stateID SC.offset(by: −1).defaults(to: 0)
25trigger change state
26output entrance time := if change state then time
27else entrance time.offset(by: −1).defaults(to: time)
28output hover end := change state and stateID SC.offset(by: −1).defaults(to:

−1) = 4
29output hover cur time := if hover end then
30time − entrance time.offset(by: −1).defaults(to: 0.0)else 0.0
31output hover sum time := hover sum time.offset(by: −1).defaults(to: 0.0) +

hover cur time
32output hover num times := hover num times.offset(by: −1).defaults(to: 0) + if

hover end then 1 else 0
33output hover max time := max (hover max time.offset(by: −1).defaults(to:

0.0), hover cur time)
34output hover avg time := if hover num times != 0 then hover sum time /

cast(hover num times) else 0.0
35output landing info := if change state and stateID SC = 5 then 0.0 else time −

entrance time.offset(by: −1).defaults(to: time)
36output landing error := stateID SC = 5 and OnGround != 1 and landing info >

20.0
37// Assertions
38assert <a1> time.offset(by: −1).defaults(to: −1.0) < time
39and start time == start time.offset(by: −1).defaults(to: start time)
40and flight time >= flight time.offset(by: −1).defaults(to: 0.0)
41assert <a2> time >= entrance time and start time <= entrance time
42and hover cur time >= 0.0 and hover max time <= flight time
43assert <a3> !(landing error and hover end)
44and (!landing error or landing info > 0.0)

A.9 Specification : contingency output

1input avgDist laser: Float64
2input actual laser: Float64
3input static laser: Float64
4input avgDist optical:Float64
5input actual optical: Float64

Monitoring with Verified Guarantees 29

6input static optical: Float64
7// Assumptions
8assume <a1> avgDist laser >= 0.0 and actual laser >= 0.0
9and static laser >= 0.0 and avgDist optical >= 0.0
10and actual optical >= 0.0 and static optical >= 0.0
11and (avgDist laser + actual laser + static laser > 0.0)
12and (avgDist optical + actual optical + static optical > 0.0)
13// Trust computations
14output rating laser := 0.2 * static laser + 0.4 * actual laser
15+ 0.4 * avgDist laser
16output rating optical := 0.2 * static optical + 0.4 * actual optical + 0.4 *

avgDist optical
17output trust laser := rating laser / (rating laser + rating optical)
18output trust optical := 1.0 − trust laser
19trigger trust laser >= 0.5 ”Trust in laser”
20trigger trust optical > 0.5 ”Trust in optical sensor”
21// Assertions
22assert <a1> trust laser 6= trust optical

A.10 Specification : health output

1import math
2// average distance to the measured ostacle (range of sight) using laser
3input avgDist laser: Float64
4// average distance to the measured ostacle (range of sight) using camera
5input avgDist optical: Float64
6input vel: Float64
7// Assumption
8assume <a1> avgDist laser <= 100.0 and avgDist laser >= 0.0 // both in m
9and avgDist optical <= 50.0 and avgDist optical >= 0.0 // both in m
10and abs(vel) < 5.5 // in m/s
11// Line of sight
12output avgDst dif := min(avgDist laser, avgDist optical) − abs(vel)
13trigger avgDst dif < 5.0 ”WARNING: Dynamic Velocity Limit reached”
14trigger avgDst dif < 2.0 ”ERROR: Abort mission.”
15// Assertions
16assert <a1> avgDst dif < 54.5 and avgDst dif > −5.5

	Monitoring with Verified Guarantees

