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Abstract. We introduce an intriguing new type of argument systems
with the additional property of being explainable. Intuitively by explain-
able, we mean that given any argument under a statement, and any wit-
ness, we can produce the random coins for which the Prove algorithm
outputs the same bits of the argument.
This work aims at introducing the foundations for the interactive as
well as the non-interactive setting. We show how to build explainable
arguments from witness encryption and indistinguishability obfuscation.
Finally, we show applications of explainable arguments. Notably we con-
struct deniable chosen-ciphertext secure encryption. Previous deniable
encryption scheme achieved only chosen plaintext security.

1 Introduction

Deniability, first introduced by Dolev, Dwork, and Naor [30], is a notion that
received a considerable amount of attention because of its application to au-
thentication protocols. This property allows the user to argue against a third
party that it did not take part in a protocol execution. The usual argument
made by the user to the third party is that the server could simulate a valid
communication transcript without actually interacting with the user.

A variant of deniability was considered in the case of encryption schemes
[15,62,16], where a public Expl algorithm allows anyone to open any ciphertext
to any message without the secret key. Since we can publicly open ciphertexts,
the random coins cannot serve as proof that a particular message is encrypted.

A similar concept was recently introduced to ring signatures [57] and called
unclaimability. The property states that no one can claim to be the signer of a
particular ring signature �. The premise is similar. There exists an Expl algorithm
that allows any of the ring members to generate random coins that can be used
to receive the same �.

Deniability and unclaimability are related notions. In the former, we consider
the server malicious because it tries to gain an undeniable proof of an interac-
tion. In the latter, the malicious party is a di↵erent user that tries to make it
impossible for honest users to explain an interaction/signature. Interestingly, the
deniability and unclaimability definitions studied in the literature only consider
scenarios where the party producing a transcript/signature/ciphertext is honest,
but may eventually become corrupt in the future.
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1.1 Contribution

We introduce a new property for argument systems called explainability. Ex-
plainability informally resembles deniability and unclaimability. We consider in-
teractive and non-interactive variants of such systems. We show that achieving
strong explainability is hard and requires very strong primitives like witness en-
cryption (WE) and indistinguishability obfuscation (iO). Our contribution can
be summarized as follows.

New Definitions. We introduce a new property for argument systems that
we call explainability, i.e., the ability for anyone with a valid witness wit to
compute the random coins coins that “explain” a given argument arg. By “ex-
plain,” we mean that the witness and coins result in the same argument string
arg = Prove(stmt,wit; coins) or the same transcript of an interaction, given the
same instance of the verifier. Thus if one can explain an argument for all wit-
nesses and all coins, then such argument/transcript cannot serve as proof that a
particular witness was used. We accounted for certain subtle di↵erences between
interactive and non-interactive arguments. In both cases, we consider malicious

prover explainability, where a prover tries to create a proof that other provers
cannot explain with a di↵erent but valid witness. In this case, we require the
protocol to be unique, in the sense that it is infeasible for a malicious prover to
produce two di↵erent arguments (or transcripts) that the verifier accepts given
the same statement and random coins. For the interactive case, we also consider
a malicious verifier (similar to deniability) that can abort the protocol execution
or send corrupt messages to make it impossible for provers with a di↵erent wit-
ness to explain the current interaction. Since, in the non-interactive case, there
is no interaction with a verifier, we consider a scenario where the common refer-
ence string (if used) is maliciously generated. We refer to this case as malicious

setup explainability. Additionally, we call a (non-)interactive argument system
fully explainable, when it is explainable even if both the setup/verifier and the
prover are malicious.

Implications. To study the power of explainable arguments we prove several
interesting implications of explainable arguments.

– We show that when an argument system is malicious verifier explainable,
then it is also witness indistinguishable.

– We show that non-interactive malicious prover explainable arguments and
one-way functions imply witness encryption (WE). This result serves us as
evidence that constructing such arguments is di�cult and requires strong
cryptographic primitives.

Constructions of Interactive Explainable Arguments. We introduce new
properties for witness encryption that we call robustness and plaintext awareness.
Informally, robustness ensures that decryption is independent of which witness is
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used. In other words, there do not exist two valid witnesses for which a ciphertext
decrypts to a di↵erent message (or ?). Plaintext awareness ensures that an
encrypter must know the plaintext it encrypted. We then show how to leverage
robust witness encryption to construct interactive explainable arguments. The
resulting protocol is round-optimal, predictable, and can be instantiated to yield
an optimally laconic argument. Given the witness encryption is plaintext aware,
we can show that the protocol is zero-knowledge. Finally, assuming the witness
encryption is extractably secure, we can show that our protocol is a proof of
knowledge.

Constructions of Non-Interactive Explainable Arguments. We show
how to construct malicious setup and malicious prover explainable arguments
from indistinguishability obfuscation. While malicious prover explainable argu-
ments can trivially be build using techniques from Sahai and Waters [62], the
case of malicious setup explainable arguments is more involved and requires us
to use dual-mode witness indistinguishable proofs. Furthermore, we show how
to build fully explainable arguments, additionally assuming NIZK.

Why Study Explainable Arguments? Argument systems are fundamental
primitives in cryptography. While some privacy properties like zero-knowledge
already give a strong form of deniability, our notion of explainability is much
stronger as it considers the extreme case where the provers’ coins are leaked or are
chosen maliciously. For example, using our explainable arguments, we can show
explainable interactive anonymous authentication schemes, where anonymity is
defined similarly as in ring-signature schemes (see Supplementary Material B.1).
Notably, we can construct CCA-1 secure encryption with deniability as defined
by Sahai and Waters [62], from CPA secure deniable encryption and our explain-
able arguments assuming random oracles. Our deniable encryption is a variant
of the Naor-Yung transform [55], but only rely on witness indistinguishability in-
stead of zero-knowledge which allows us to instantiate this transformation using
our explainable arguments.

Malicious Verifier/Setup Explainability. We consider adversaries that are sub-
stantially more powerful than what is usually studied in the literature, e.g., in
deniable authentication schemes or ring-signatures. In particular, in our case, the
user can deny an argument even when the adversary asks to reveal the user’s
random coins used to produce the argument. Immediate real-world examples
of such powerful adversaries are rogue nation-state actors that might have the
right to confiscate a user’s hardware and apply e↵ectual forensics techniques
to obtain the random seeds as evidence material against the user. We believe
that the threat posed by such potent adversaries may prevent the use of e.g.,
ring-signatures by whistleblowers, as the anonymity notions provided might be
insu�cient.

Malicious Prover Explainability. The main application we envision for malicious
prover explainability is internet voting. An essential part of a sound and fair
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voting scheme is to prevent the selling of votes by malicious voters. We note
that the “selling votes” issue isn’t limited to actual bribery but, perhaps more
critically, addresses the issue of forcing eligible voters to vote on a particular
candidate. In this case, an authoritarian forces others to deliver evidence that
they voted on a particular option or participate in a specific digital event. An
authoritarian here may be an abusive family member, corrupt supervisor, or
employer. Our strong unclaimability notion is essential to handle such drastic
cases, mainly because users might be coerced or bribed to use specific coins in
the protocol.

1.2 Related Work

Explainability of the verifier was used by Bitansky and Choudhuri [8] as a step
in proving the existence of deterministic-prover zero-knowledge proofs. In their
definition they used the fact that the choices of a verifier can be “explained” by
outputting random coins that will lead to the same behaviour. This later can
be used to transform the system to be secure even against a malicious verifier.
In contrary, we consider the explainability of the prover. While arguments with
our type of explainability have not been studied before, there exists some related
concepts. Here we give an overview of the related literature.

Deniable Authentication. Dolev, Dwork, and Naor [30] first introduced the con-
cept of deniability. The first formal definition is due to Dwork, Naor, and Sahai
[32]. Deniability was studied in numerous works [54,47,25] in the context of au-
thentication protocols. The concept was later generalized to authenticated key
exchange and was first formally defined by Di Raimondo, and Genaro [26]. Since
then deniable key exchange protocols got much attention from the community
[24,11,48,28,68,67,45,27,65,50,64,66]. In such protocols, deniability is informally
defined as a party’s ability to simulate the transcript of interaction without
actually communicating with another party. Since each party can generate a
transcript itself, the transcript cannot be used as proof to a third party that
the interaction took place. At a high level, deniability is very similar to zero-
knowledge, but it is important to mention that Pass [58] showed some subtle
di↵erences between both notions.

Deniable Encryption. Deniable encryption was first introduced by Canetti,
Dwork, Naor, and Ostrovsky [15]. Here we deal with a “post” compromise situ-
ation, where an honest encrypter may be forced to “open” a ciphertext. In other
words, given a ciphertext, it should be possible to show a message and ran-
domness that result in the given ciphertext. Deniable encryption was intensively
studied [7,56,62,20,21,1,22,41]. Very recently, Canetti, Park, and Poburinnaya
[16] generalize deniable encryption to the case where multiple parties are com-
promised and show constructions also assuming indistinguishability obfuscation.

Ring Signatures. Early forms of deniability were the main motivation for the
work of Rivest, Shamir, and Tauman [60], which introduces the concept of ring
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signatures. This early concept took into account a relaxed form of deniability
where only the secret key of a user may leak. Very recently [57] extended ring sig-
natures with additional deniability properties. For example, they show a signer
deniable ring signature where any signer may generate random coins that, to-
gether with its secret key, will result in the given signature. However, they require
to assume the prover is honest at the moment of signature generation. In our
argument setting, we do not make such assumptions.

We are the first to study arguments with unclaimability and deniability prop-
erties that allow denying executing a protocol even when the prover is forced
to reveal all its random coins or where the prover chooses its coins maliciously.
Previous works mostly address a post-compromise setting, whereas some of our
explainability notions take into account malicious prover. We believe that our
primitives may find applications in protocols as a means of providing consistency
checks or anonymous authentication of the votes. For example, the protocols
from [17,61] rely on a trusted party to verify a voter’s signature. That party
knows the user’s vote. Using our explainable arguments, we can build (see full
paper) a simple anonymous authentication protocol without degrading receipt
freeness of the voting scheme, and in e↵ect, remove the trust assumption in terms
of privacy.

Receipt Freeness and Coertion Resistance in Voting Schemes. Some of our def-
initions and potential application are tightly connected to voting schemes. In
particular, our definition of malicious prover explainability poses the same re-
quirements, at a high level, for an argument system as receipt freeness or coercion
resistance in voting schemes [6,63,46,53]. Since we focus on a single primitive,
our definitions are much simpler in comparison to complex voting systems. For
example, the definition from [17] involves numerous oracles, and defines a set of
parties, and assumes trusted parties. Our definition for malicious prover explain-
ability is simple and says that it is infeasible to produce two di↵erent arguments
under the same statement that verify incorrectly.

Outline of the Paper. In Section 3 we give definitions of explainable argu-
ment systems. In Section 4 we construct non-interactive explainable arguments.
In Section 5 we introduce robust witness encryption, and apply it to build in-
teractive explainable arguments. Finally, in Section 6, we show how to apply
explainable arguments to construct deniable CCA-secure encryption. In the full
paper, we recall all definitions for the primitives in the preliminaries section, show
an explainable anonymous authentication protocol, and all security proofs.

2 Preliminaries

Notation We denote execution of an algorithm Alg on input x as a  Alg(x)
were the output is assigned to a. Unless said otherwise, we will assume that algo-
rithms are probabilistic and choose some random coins internally. In some cases,
however, we will write Alg(.; r) to denote that Alg proceeds deterministically on
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input a seed r 2 {0, 1}s for some integer s. We denote an execution of a protocol
between parties V and P , by hProve(.) ⌦ Verify(.)! xi = trans, where x is the
output of Verify after completion of the protocol, and trans is the transcript of
the protocol. A transcript trans contains all messages send between Prove and
Verify and the input of Verify. We write View(Prove(.) ⌦ Verify(.)) to denote the
view of Verify. The view contains the transcript, all input to Verify including its
random coins and its internal state. W say that a function negl : N 7! R+ is
negligible if for every constant c > 0 there exists a integer Nc 2 N such that for
all � > Nc we have negl(�) < ��c.

Standard Definitions We use a number of standard cryptographic tools through-
out the paper, including: pseudorandom generators and Goldreich-Levin hard-
core bits [39], existential unforgeable and unique signature schemes [42,37], zero-
knowledge (ZK) and witness-indistinguishable (WI) argument systems, non-
interactive ZK arguments from non-falsifiable assumptions [35], dual-mode witness-
indistinguishable proofs [43], CCA1 secure and publicly deniable encryption [62],
witness encryption [36] and extractable witness encryption [40], indistinguisha-
bility obfuscation [3], and punctured pseudorandom functions [13,14,49].

3 Explainable Arguments

In this section, we introduce the security notions for explainable arguments.

3.1 Interactive Explainable Arguments

In an interactive argument system, the prover uses a witness wit for statement
stmt to convince the verifier that the statement is true. The communication
between the prover and the verifier creates a transcript trans that contains all
the exchanged messages. An interactive explainable argument system allows a
prover with a di↵erent witness wit

⇤ to generate random coins coins for which
Prove(stmt,wit⇤; coins) interacting with the same instance of the verifier (i.e.,
the verifier uses the same random coins) creates the same transcript trans. In
other words, this means that any prover with a valid witness can provide random
coins that would explain the interaction in trans. More formally.

Definition 1 (Interactive Explainable Arguments). An interactive argu-

ment system ⇧R = (Prove,Verify) for language LR is an interactive explainable

argument system if there exists an additional Expl algorithm:

– Expl(stmt,wit, trans): takes as input a statement stmt, any valid witness wit

(i.e. R(stmt,wit) = 1) and transcript trans, and outputs coins 2 CoinProve

(i.e. coins that are in the space of the randomness used in Prove),

which satisfies the correctness definition below.
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Definition 2 (Correctness). For all security parameter �, for all statements

stmt 2 LR, for all wit,wit⇤ such that R(stmt,wit) = R(stmt,wit⇤) = 1, we have

hVerify(stmt) ⌦ Prove(stmt,wit)i =
hVerify0(stmt; trans) ⌦ Prove(stmt,wit⇤; coinsE)i = trans,

where coinsE  Expl(stmt,wit⇤, trans) and coinsE 2 CoinProve and Verify
0
sends

its messages as in trans as long as Prove answers as is trans. If the output of

Prove do not match trans, then Verify
0
aborts and outputs ?.

Remark 1. Note that a naive way to implement the Expl algorithm would be
to set coinsE and make the Prove algorithm to “replay” the messages. How-
ever, this is obviously a scheme that would not be desirable, since an adversary
could easily distinguish such coins from honest ones. Therefore we require that
coinsE 2 CoinProve to ensure that coinsE can be given as input to an honest
Prove algorithm.

The above definition constitutes a correctness definition for explainable ar-
guments and assumes that all parties are honest. Informally, we require that
given a witness and a transcript of an interaction between a verifier and a prover
(with a possibly di↵erent witness), Expl generates coins such that a honest prover
returns the same messages given that the verifier send its messages as in trans.

Below we describe explainability of a malicious verifier. Roughly speaking,
this property says that a transcript produced during an execution with a mali-
cious verifier, and a honest prover P , should be explainable. The goal of a verifier,
is to send such messages to the prover P , that P sends such responses that no
other prover (with a di↵erent witness) would send. If the adversary succeeds
then the transcript (possibly with P ’s random coins) can be used as a proof to
a third party, that P indeed took part in the communication. Remind that P
may be forced to reveal its random coins after completing the protocol.

Definition 3 (Malicious Verifier Explainability). For a security parameter

�, we define the advantage Adv
MVExpl

A
(�) of an adversary A = (A1,A2,A3) as

1� Pr[hA3(stmt; coinsA) ⌦ Prove(stmt,wit⇤; coinsP )i = trans], where

(stmt,wit,wit⇤, st) A1(�),

trans = hcoinsA  A2(stmt; st) ⌦ Prove(stmt,wit)i,
coinsP  Expl(stmt,wit⇤, trans),

wit 6= wit
⇤, R(stmt,wit) = R(stmt,wit⇤) = 1,

where the probability is taken over the random coins of Prove. Furthermore, A3

sends the same messages to Prove as in trans as long as the responses from the

prover are as in trans.

We say that an interactive argument system is malicious verifier explainable
if for all adversaries A = (A1,A2,A3) such that A1,A2,A3 are PPT algorithms
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there exists a negligible function negl(.) such that Adv
MVExpl

A
(�)  negl(�). We

say that the argument system is malicious verifier statistically explainable if the

above holds for an unbounded adversary A.

Let us now consider a scenario where proving ownership of an argument is
beneficial to the prover, but at the same time, the system requires the proof to be
explainable. A malicious prover tries to prove the statement in a way that makes
it impossible for others to “claim” the generated proof. For this property, it is
easy to imagine a malicious prover that sends such messages to the verifier, that
the verifier accepts, and no other honest prover would ever send such messages.
In practice, we may imagine that an adversary runs a di↵erent implementation
of the prover, for which the distribution of the sent messages deviate from the
distribution of the original implementation. Later to “claim” the transcript that
adversary may prove that the transcript is indeed the result of the di↵erent
algorithm, not the honest one. Note that such a “claim” is sound if an honest
prover would never produce such messages. To prevent such attacks, we require
that there is only one (computationally feasible to find) valid way a prover can
respond to the messages from an honest verifier.

Definition 4 (Uniqueness/Malicious Prover Explainability). We define

the advantage Adv
MPExpl

A
(�) of an adversary A = (A1,A2,A3) as

1� Pr


h1 = Verify(stmt; coinsV ) ⌦ A2(st1)! st2i
6= h1 = Verify(stmt; coinsV ) ⌦ A3(st2)i

�
,

where st1, stmt A1(�) and the probability is taken over the coins coinsV .

We say that an interactive argument system is malicious prover explainable
if for all PPT adversaries A there exists a negligible function negl(.) such that

Adv
MPExpl

A
(�)  negl(�). We say that the system is malicious prover statistically

explainable if the above holds for an unbounded A.

Theorem 1. If (Prove,Verify,Expl) is a malicious verifier (statistical) explain-

able argument system then it is also (statistical) witness indistinguishable.

Definition 5. We say that an interactive argument system is fully explainable

if it is malicious prover explainable and malicious verifier explainable.

3.2 Non-Interactive Explainable Arguments

Here we present definitions for non-interactive explainable arguments. Similar
to the interactive case, we begin by defining what it means that a system is
explainable.

Definition 6 (Non-Interactive Explainable Arguments). A non-interactive

argument system ⇧R = (Setup,Prove,Verify) for language LR is a non-interactive

explainable argument system if there exists an additional Expl algorithm:
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– Expl(crs, stmt,wit, arg): takes as input a statement stmt, any valid witness

wit and an argument arg, and outputs random coins coins

which satisfies the correctness definition below.

Definition 7 (Correctness). For all security parameter �, for all statements

stmt 2 LR, for all wit,wit⇤ such that R(stmt,wit) = R(stmt,wit⇤) = 1, for all

random coins coinsP 2 CoinProve, we have

Prove(crs, stmt,wit; coinsP ) = Prove(crs, stmt,wit⇤; coinsE)

where coinsE  Expl(crs, stmt,wit⇤, arg), coinsE 2 CoinProve and crs Setup(�).

Now we define malicious setup explainability. Note that a malicious verifier
cannot influence the explainability of an argument because there is no interaction
with the prover. Hence, the malicious verifier from the interactive setting is
replaced with an untrusted setup. An adversary might generate parameters that
result in the Expl algorithm to output coins yielding a di↵erent argument or
even failing on certain witnesses. In some sense, we can think of the adversary
as wanting to subvert the common reference string against deniability of certain
“targeted” witnesses.

Definition 8 (Malicious Setup Explainability). We define the advantage

Adv
MSExpl

A
(�) of an adversary A by the following probability

1� Pr

2

6666664
arg⇤ = arg :

(stmt,wit,wit⇤, crs) A(�)
wit 6= wit

⇤

R(stmt,wit) = R(stmt,wit⇤) = 1
arg Prove(crs, stmt,wit);

coinsP  Expl(crs, stmt,wit⇤, arg);
arg⇤  Prove(crs, stmt,wit⇤; coinsP )

3

7777775
,

where the probability is taken over the random coins of the prover Prove. We say

that a non-interactive argument is malicious setup explainable if for all PPT

adversaries A there exists a negligible function negl(.) such that Adv
MSExpl

A
(�) 

negl(�). We say the that a non-interactive argument is malicious setup statis-
tically explainable if the above holds for an unbounded adversary A. Moreover,

we say that a non-interactive argument is perfectly malicious setup explainable

if Adv
MSExpl

A
(�) = 0.

Theorem 2. If there exists a malicious setup explainable non-interactive argu-

ment, then there exists a two-move witness-indistinguishable argument, where

the verifier’s message is reusable. In other words, given a malicious setup ex-

plainable non-interactive argument, we can build a private-coin ZAP.

Malicious prover explainability is defined similarly as in the case of inter-
active arguments. For the non-interactive setting, it is simpler to formalize the
definition, as we simply require the adversary to return two arguments that
verify correctly, but their canonical representation is di↵erent.
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Definition 9 (Uniqueness/Malicious Prover Explainability). We define

the advantage of an adversary A against malicious prover explainability of ExArg

as Adv
MPExpl

A
(�) = Pr[arg1 6= arg2] where crs Setup(�) and (stmt, arg1, arg2) 

A(�) are such that Verify(crs, stmt, arg1) = Verify(crs, stmt, arg2), and the prob-

ability is over the random coins of Setup. We say that a non-interactive argu-

ment is malicious prover explainable if for all PPT adversaries A there exists a

negligible function negl(.) such that Adv
MPExpl

A
(�)  negl(�). We say that a non-

interactive argument is malicious prover statistically explainable if the above

holds for an unbounded adversary A. Moreover, we say that an argument system

is a perfectly malicious prover explainable if Adv
MPExpl

A
(�) = 0.

For full explainability, we combine both malicious prover and malicious ver-
ifier explainability.

Definition 10 (Full Explainability). We define the advantage of an adver-

sary A against full explainability of ExArg by the following probability

Adv
FExpl

A
(�) = Pr[arg1 6= arg2]

where (stmt, crs, arg1, arg2) A(�) is such that Verify(crs, stmt, arg1) = Verify(crs,
stmt, arg2). We say that a non-interactive argument is full explainable if for all

PPT adversaries A, there exists a negligible function negl(.) such that Adv
FExpl

A
(�) 

negl(�). We say that the non-interactive argument is full statistically explain-
able if the above holds for an unbound adversary A. Moreover, we say that an

argument system is perfectly full explainable if Adv
FExpl

A
(�) = 0.

Theorem 3. If ExArg is a fully explainable argument, then ExArg is a malicious

setup and malicious prover explainable argument.

Theorem 4. Given that one-way functions and malicious prover selectively sound

non-interactive (resp. two-move) arguments for NP exist, then there exists a wit-

ness encryption scheme for NP.

4 Non-Interactive Explainable Arguments

In this section, we show that it is possible to construct malicious setup ex-
plainable non-interactive argument systems from falsifiable assumptions. We also
show a fully explainable argument assuming non-interactive zero-knowledge. As
both schemes are nearly identical and di↵er only in several lines, we will denote
the lines or specific algorithms with � for the malicious setup explainable argu-
ment, and with †, we denote the code specific for the fully explainable argument.

Scheme 1. (Non-interactive Explainable Argument) Let r = � for the
malicious setup explainable argument, and r = † for the fully explainable argu-
ment. Let DMWI be a dual-mode proof, NIWI be a non-interactive witness indis-
tinguishable proof, Com be an equivocal commitment scheme, Sig be a unique
signature scheme, and PRF be a punctured pseudorandom function. We con-
struct the non-interactive argument system ExArg

r = (Setup,Prove,Verify) as
follows.
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Circuit for ProgProve1� and ProgProve1†

Hardwired: pp, crsDMWI,K

Input: (stmt,wit)
1
�: if DMWI.Verify(crsDMWI, stmt,wit) = 0

1
†: if R(stmt,wit) = 0

2 : return ?.
3 : else

4 : sks  PRF.Eval(K, stmt)

5 : arg Sig.Sign(sks, stmt)

6 : return arg

Circuit for ProgVerify

Hardwired: K

Input: (stmt)
1 : sks  PRF.Eval(K, stmt)

2 : vks  Sig.Setup(sks)

3 : return vks

Fig. 1. Circuits for ProgProve1�, ProgProve
1
† and ProgVerify. Note that ProgProve di↵er

only in line 1.

Setup(�,LR):
1. Choose K  PRF.Setup(�) and crsDMWI  DMWI.Setup(�, modeSound;

coinsS), where coinsS are random coins.
2. OProve  Obf(�,ProgProve1

r
[pp, crsDMWI,K]; coinsP ), where ProgProve

1
r

is given by Figure 1 and coinsP are random coins.
3�. Define statement stmt

�

Setup
as

⇢
9i2[2],K,coinsPOProve  Obf(�,ProgProvei

�
[pp, crsDMWI,K]; coinsP ) _

9mode,coinsScrsDMWI  DMWI.Setup(�,mode; coinsS) ^mode = modeWI

�
.

3†. Define statement stmt
†

Setup
as

{9K,coinsPOProve  Obf(�,ProgProve1
†
[pp, crsDMWI,K]; coinsP )}.

4. Set witSetup = (1,K, coinsP ).
5�. ⇡  NIWI.Prove(stmt

�

Setup
,witSetup).

5†. ⇡  NIZK.Prove(stmt
†

Setup
,witSetup).

6. ComputeOVerify  Obf(�,ProgVerify[K]) and output crs = (OProve, OVerify,
pp, etd, crsDMWI,⇡).

Prove(crs, stmt,wit; r):

1�. Set stmt
�

Setup
as in the setup algorithm.

1†. Set stmt
†

Setup
as in the setup algorithm.

2�. If NIWI.Verify(stmt
�

Setup
,⇡) = 0 return ?.

2†. If NIZK.Verify(stmt
†

Setup
,⇡) = 0 return ?.

3�. Run wit
0  DMWI.Prove(crsDMWI, stmt,wit; r) and arg OProve(stmt,wit0).

3†. Run arg OProve(stmt,wit).
4. Run vks  OVerify(stmt).
5. If Sig.Verify(vks, arg, stmt) 6= 1 return ?.
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6. Otherwise, return arg.
Verify(crs, stmt, arg):

1. Run vks  OVerify(stmt).
2. Output Sig.Verify(vks, sig,msg)

Expl(crs, stmt,wit, arg):
1. Output 0.

Circuit for ProgProve2� and ProgProve2†

Hardwired: crsDMWI, pp

Kstmt⇤ = PRF.Puncture(K, stmt⇤)

Input: (stmt,wit, r)
1
�: if DMWI.Verify(crsDMWI, stmt,wit) = 0

1
†: if R(stmt,wit) = 0

2 : return ?.
3 : else

4 : sks  PRF.Eval(Kstmt⇤ , stmt)

5 : arg Sig.Sign(sks, stmt)

6 : return arg

Circuit for ProgVerify⇤

Hardwired: stmt⇤, vk⇤s ,

Kstmt⇤ = PRF.Puncture(K, stmt⇤)

Input: (stmt)
1 : if stmt = stmt⇤

2 : return vk⇤s

3 : else

4 : sks  PRF.Eval(Kstmt⇤ , stmt)

5 : vks  Sig.Setup(sks)

6 : return vks

Fig. 2. Circuits for ProgProve2�, ProgProve
2
† and ProgVerify⇤ used in the soundness proof

of the non-interactive argument.

Theorem 5. Let ExArg
�
be the system given by Scheme 1. The system ExArg

�

is computationally sound (in the selective setting) assuming indistinguishability

obfuscation of Obf, pseudorandomness in punctured points of PRF, mode indis-

tinguishability of the DMWI scheme, and unforgeability of the signature scheme.

Theorem 6. Given that the signature scheme Sig is unique, NIWI is perfectly

sound, DMWI is a dual-mode proof, and all primitives are perfectly correct, the

argument system ExArg
�
is malicious setup explainable.

Theorem 7. Let ExArg
†
be the system given by Scheme 1. The system ExArg

†
is

computationally sound (in the selective setting), assuming indistinguishability ob-

fuscation of Obf, pseudorandomness in punctured points of PRF, zero-knowledge

of the NIZK scheme and unforgeability of the signature scheme.

Theorem 8. Given that the signature scheme Sig is unique, NIZK is sound, and

all primitives are perfectly correct, argument system ExArg
†
is fully explainable.

Corollary 1. The scheme is witness indistinguishable against a malicious setup.

Proof. Witness indistinguishability follows from explainability of the argument
system and Theorem 2.

Theorem 9. Let ExArg
r

be the system given by Scheme 1 for r = � or r = †.
ExArg

r
is zero-knowledge in the common reference string model.
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5 Robust-Witness Encryption and Interactive
Explainable Arguments

We introduce robust witness encryption and show a generic transformation from
any standard witness encryption scheme to a robust witness encryption scheme.

Definition 11 (Robust Witness Encryption). We call a witness encryption

scheme WE = (Enc,Dec) a robust witness encryption scheme if it is correct,

secure and robust as defined below:

Robustness: A witness encryption scheme (Enc,Dec) is robust if for all PPT

adversaries A there exists a negligible function negl(.) such that

Pr

2

664m0 6= m1 :

R(stmt,wit0) = R(stmt,wit1) = 1 ^
(stmt, ct,wit0,wit1) A(�);
m0  Dec(stmt,wit0, ct)
m1  Dec(stmt,wit1, ct)

3

775  negl(�),

We call the scheme perfectly robust if the above probability is always zero.

Below we define plaintext awareness [5], but tailored to the case of witness
encryption.

Definition 12 (Plaintext Aware Witness Encryption). Let WE = (Enc,
Dec) be a witness encryption scheme. We extend the scheme with an algorithm

Verify that on input a ciphertext ct and a statement stmt outputs a bit indicating

whether the ciphertext is in the ciphertext space or not. Additionally we define

an algorithm Setup that on input the security parameter � outputs a common

reference string crs, and an algorithm Setup
⇤
that additionally outputs ⌧ . We say

that the witness encryption scheme for a language L 2 NP is plaintext aware if

for all PPT adversaries A, there exists a negligible function negl(.) such that

|Pr[A(crs) = 1 : crs Setup(�)]

�Pr[A(crs) = 0 : (crs, ⌧) Setup
⇤(�)]|  negl(�),

and there exists a PPT extractor Ext such that

Pr

2

4msg Ext(stmt, ct, ⌧):
(crs, ⌧) Setup

⇤(�);
(ct, stmt) A(crs);
Verify(stmt, ct) = 1

3

5  1� negl(�)

where for all witnesses wit such that R(stmt,wit) = 1 we have msg = Dec(ct,wit),
and the probability is taken over the random coins of Setup and Setup

⇤
.

Scheme 2. (Generic Transformation) Let WE = (Enc,Dec) be a witness
encryption scheme and NIZK = (NIZK.Prove,NIZK.Verify) be a proof system. We
construct a robust witness encryption scheme WErob as follows.
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Encrob(�, stmt,msg):

1. Compute ctmsg  WE.Enc(�, stmt,msg)
2. Let stmtNIZK be defined as

{9msg ctmsg  WE.Enc(�, stmt,msg)}
3. Compute ⇡  NIZK.Prove(stmtNIZK,wit) using witness wit = (msg)
4. Return ct = (ctmsg,⇡).

Decrob(stmt,wit, ct):

1. Set the statement stmtNIZK as
{9msg ctmsg  WE.Enc(�, stmt,msg)}

2. If NIZK.Verify(stmtNIZK,⇡) = 0, then return ?. Otherwise return
WE.Dec(stmt,wit, ctmsg)

Theorem 10 (Security and Extractability). Scheme 2 is a (extractably)

secure witness encryption if WE is a (extractably) secure witness encryption,

and NIZK is zero-knowledge (in the common reference string or RO model).

Theorem 11 (Robustness and Plaintext Awareness). Scheme 2 is robust

if the witness encryption scheme WE is perfectly correct, and the NIZK proof

system is perfectly sound (in the common reference string or RO model). If the

NIZK proof system is a proof of knowledge (in the common string or RO model),

then Scheme 2 is plaintext aware.

5.1 Fully Explainable Arguments from Robust Witness Encryption

In this subsection, we will tackle the problem of constructing fully explainable
arguments. The system is described in more detail by scheme 3.

Scheme 3. (Interactive Explainable Argument) The argument system
consists of Prove, Verify and Expl, where the protocol between Prove and Verify

is specified as follows. Prove takes as input a statement stmt and a witness
wit, and Verify takes as input stmt. First Verify chooses r $ {0, 1}�, computes
ct  Encrob(�, stmt, r) and sends ct to Prove. Then Prove computes arg  
Decrob(stmt,wit, ct) and sends arg to Verify. Finally, Verify returns i↵ arg = r.
The explain algorithm Expl is as follows.

Expl(stmt,wit, trans): On input the statement stmt, the witness wit and a tran-
script trans, output ?.

Theorem 12 (Soundness). Scheme 3 is an argument system for NP language

L assuming the witness encryption scheme WE for L is secure. Furthermore,

if the underlying witness encryption scheme WE scheme is extractable, then

Scheme 3 is an argument of knowledge.

Theorem 13 (Zero-Knowledge). Scheme 3 is zero-knowledge given the un-

derlying witness encryption scheme WE is plaintext aware.
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Theorem 14 (Explainability). Scheme 3 is fully explainable assuming the

used witness encryption scheme is robust (or plaintext aware) and correct.

Remark 2. Scheme 3 is predictable in the sense that the verifier can “predict”
the value of the prover’s arguments/proof [33]. Furthermore, the protocol is
optimally laconic [12], as the verifier can encrypt single bits.

Theorem 15. Let WE be a (non-robust) perfectly correct witness encryption

scheme for NP. Let ⇧ be an interactive public-coin zero-knowledge proof pro-

tocol for NP. Then there exists a malicious verifier explainable (and witness-

indistinguishable) argument for NP.

6 Applications

In this section, we show how to apply explainable arguments. We focus on con-
structing a CCA1 secure publicly deniable encryption scheme using as a building
block malicious verifier explainable arguments. Our transformation is based on
the one from Naor and Yung [55] but we replace the NIZK proof system with
a NIWI. In the full version we show how to build a deniable anonymous cre-
dential scheme from malicious prover explainable arguments. Here we note that
the anonymous credential system is a straightforward application of malicious
prover explainable arguments and standard signature schemes.

The main idea behind the Naor and Yung construction is to use two CPA
secure ciphertexts ct1, ct2 and a NIZK that both contain the same plaintext. The
soundness property ensures that a decryption oracle can use either of the secret
keys (since the decrypted message would be the same) and zero-knowledge allows
the security reduction to change the challenged ciphertext, i.e. change the two
CPA ciphertexts. We note that in our approach we replace NIZK with NIWI,
that to the best of our knowledge has not been do before.

Scheme 4. (Generic Transformation from CPA to CCA) Let E =
(KeyGencpa,Enccpa,Deccpa) be a CPA secure encryption scheme, (NIWI.Setup,
NIWI.Prove,NIWI.Verify) be a non-interactive witness-indistinguishable proof sys-
tem. Additionally we define the following statement stmtcpa be defined as

{(9msg ct1  Enccpa(pk1,msg) ^ ct2  Enccpa(pk2,msg)) _
(9↵,�HG(ct1, ct2) = (g↵, g� , g↵·�))},

where HG is defined as above.

KeyGencca1(�):

1. generate CPA secure encryption key pairs (pk1, sk1) KeyGencpa(�) and
(pk2, sk2) KeyGencpa(�),

2. generate a common reference string crs NIWI.Setup(�),
3. set pkcca1 = (pk1, pk2, crs) and skcca1 = sk1.
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Enccca1(pkcca1,msg):

1. compute ciphertexts ct1  Enccpa(pk1,msg) and ct2  Enccpa(pk2,msg),
2. compute NIWI proof ⇧  NIWI.Prove(crs, stmtcpa, (msg),
3. return ciphertext ct = (ct1, ct2,⇧).

Deccca1(skcca1, ct):

1. return ? if NIWI.Verify(crs, stmtcpa,⇧) = 0,
2. return msg Deccpa(sk1, ct1).

Theorem 16. Scheme 4 is an encryption scheme secure against non-adaptive

chosen ciphertext attacks (CCA1) in the random oracle model assuming the en-

cryption scheme E is an encryption scheme secure against chosen plaintext at-

tacks and NIWI is a sound and witness indistinguishable proof system.

Theorem 17. Scheme 4 is an publicly deniable encryption scheme secure against

non-adaptive chosen ciphertext attacks (CCA1) in the random oracle model as-

suming the encryption scheme E is an publicly deniable encryption scheme secure

against chosen plaintext attacks and NIWI is a malicious setup explainable argu-

ment system.

7 Conclusions
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Supplementary Material

A Preliminaries

Pseudorandom Generators We recall the definitions of pseudorandom gen-
erators.

Definition 13. A pseudorandom generator consists of two algorithms SeedGen,

PRG with the following syntax.

SeedGen(�): On input a security parameter � outputs a seed s.

PRG(s, i): On input a seed s and an index i 2 N, outputs r.

We define the following property.

Pseudorandomness: We define the advantage of an adversary A against pseu-

dorandomness of a PRG as follows.

Adv
PRG

A
(�, n) = |Pr[1 A(�, [PRG(s, i), i)]ni=1); s SeedGen(�)]

�Pr[1 A(�, [ri, i]
n
i=1); [ri $U ]ni=1]|,

where U denotes the uniform distribution. We say that a PRG is pseudoran-

dom if for all all PPT adversaries A there exists a negligible function negl(.)
such that Adv

PRG

A
(�)  negl(�).

Signature Schemes We will recall the standard definition of signature schemes,
with a slight twist that the key generation algorithm takes as input a secret key
and outputs a verification key. For notational convenience, in our constructions,
we will sample secret keys from a secret key space, and compute the verification
keys based on those secret keys. We will denote the secret key space {0, 1}p
where p = poly(�), where � is the security parameter.

Definition 14. A signature scheme Sig consists of PPT algorithms (KeyGen,
Sign,Verify) with the following syntax.

KeyGen(sk): This deterministic algorithm takes as input a secret key sk and

outputs a verification key vk.

Sign(sk,m): This algorithm takes as input a signing key sk and a message m and

outputs a signature sig.

Verify(vk,m, sig): This deterministic algorithm takes as input a verification key

vk, a message m, and a signature sig and outputs either 0 or 1.

We define the following properties of a signature scheme.

Correctness: It holds for every security parameter � 2 N, all sk 2 {0, 1}p, and
every message m 2 {0, 1}n, where p = poly(�) and n = poly(�), that given
vk KeyGen(sk), sig Sign(sk,m) it holds that Verify(vk,m, sig) = 1.
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Existential Unforgeability under Chosen Message Attacks: Let � 2 N
be a security parameter. We define the advantage of an adversary A against

unforgeability under chosen message attack as follows:

Adv
EUF-CMA

A
(�) = Pr

2

4Verify(vk,m⇤, sig⇤) = 1 :
sk $ {0, 1}p;

vk Setup(sk);
(sig⇤,m⇤) ASign(sk,·)

3

5

where m
⇤
was not queried to the Sign(sk, ·) oracle, and the probability is taken

over the random coins of Setup and the random coins of A. We say that a

signature scheme is unforgeable if for all PPT adversaries A, there exists a

negligible function negl(�) such that Adv
EUF-CMA

A
(�)  negl(�).

Uniqueness: We say that a signature scheme is unique if given a verifica-

tion key vk for all msg, if sig0 and sig1 are such that Verify(vk, sig0,msg) =
Verify(vk, sig1,msg) = 1, then sig0 = sig1.

Unique signatures [42] in the standard model can be constructed from the
strong RSA assumption [37,19,52] and bilinear maps [51,29].

Argument Systems

Definition 15. We define an NP-relation to be a polynomial-time binary func-

tion R, which takes as input a statement stmt and witness wit. Let LR = {stmt :
9wit R(stmt,wit) = 1} denote the language defined by R.

Definition 16. An interactive argument ⇧R = (Prove,Verify) for an NP-relation

R(stmt,wit) is consists of interactive PPT algorithms, a prover Prove and a veri-

fier Verify. The prover is given a statement stmt and a witness wit s.t R(stmt,wit) =
1 and the verifier is given the statement stmt. where b 2 {0, 1} is the output of

the verifier Verify after the protocol completes.

Perfect Completeness: We say that an interactive argument system ⇧R =
(Prove,Verify) for a NP-relation R is perfectly complete if for all security

parameters � 2 N we have

Pr[Prove(stmt,wit) ⌦ Verify(stmt) = 1 : R(stmt,wit) = 1] = 1.

Soundness: Let R be a NP-relation defining by the language LR = {stmt : 9wit
R(stmt,wit) = 1}. We say that a argument is sound if for all PPT adver-

saries A there exists a negligible function negl(�) such that

Adv
Sound

A
(�) = Pr[A ⌦ ⇧R.Verify(stmt) = 1 : stmt 62 LR]  negl(�),

where the probability is taken of the random coins of Verify.

Argument of Knowledge: Let R be a NP-relation defining by the language

LR = {stmt : 9witR(stmt,wit) = 1}. We say that a argument is an argu-

ment of knowledge if for all PPT adversaries A, all statements stmt and all

su�ciently large � 2 N, there exists a PPT algorithm Ext such that if

A ⌦ ⇧R.Verify(stmt) = 1
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then

Pr[wit⇤  Ext
O]  1� negl(�)

where R(stmt,wit⇤) = 1 and the oracle O is a communication interface with

A.

Witness Indistinguishability: We say that the protocol for language L 2 NP

is witness indistinguishable if all PPT adversaries A, there exists a negligible

function negl(�) such that

Adv
WI

A
(�) = Pr

2

664

b̂ = b :
(stmt

⇤,wit0,wit1) A(�,L)
b $ {0, 1}

b̂ AProve(stmt
⇤,witb)(stmt

⇤,wit0,wit1)

3

775  negl(�)

where R(stmt
⇤,wit0) = R(stmt

⇤,wit1) = 1 and the probability is taken over

the random coins of Prove, and random choice of b. Note that it is enough to

consider one interaction between the adversary and the prover. Full security

then follows from hybrid arguments. We call the proof system statistically

witness indistinguishable if the above holds for all adversaries.

Zero-Knowledge: We denote the view of a verifier Verify interacting with a

prover Prove as View(Verify(stmt) ⌦ Prove), where stmt is a statement. The

view includes the verifiers’ input stmt, coin tosses, and all incoming mes-

sages. We say that a proof protocol is zero-knowledge if there exists a PPT

simulator Simul that for every malicious PPT verifier Verify and every PPT

distinguisher Disti

|Pr[Disti(View(Verify(stmt) ⌦ Prove(stmt,wit)))]�
Pr[Disti(View(Verify(stmt) ⌦ Simul))]|  negl(�).

Definition 17. A interactive argument protocol is called public coin [2] if the

verifier sends all his internal coin tosses to the prover
4
.

Definition 18 (Non-Interactive Argument System). Let R be an NP-

relation and LR be the language defined by R. A non-interactive argument for

LR consists of algorithms (Setup,Prove,Verify) with the following syntax.

Setup(�): Takes as input a security parameter �, and outputs a common refer-

ence string crs.

Prove(crs, stmt,wit): Takes as input a common reference string crs, a statement

stmt and a witness wit, and outputs either an argument arg or ?.
Verify(crs, stmt, arg): Takes as input the common reference string crs, a state-

ment stmt, an argument arg, and outputs either 0 or 1.

We define the following properties.

4 Public coin protocols are also called Arthur-Merlin protocols.
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Perfect Completeness: It holds for all security parameters � 2 N, all state-
ments stmt 2 LR and all witnesses wit that if R(stmt,wit) = 1, crs  
Setup(�), and arg Prove(crs, stmt,wit), then Verify(crs, stmt, arg) = 1.

Computational Soundness: We define the advantage Adv
Sound

A
(�) of an ad-

versary A as follows.

Pr

2

4Verify(crs, stmt, arg) = 1 :
crs Setup(�);

(arg, stmt) AVerify(crs,·,·)(crs);
stmt /2 LR

3

5

where the probability is taken over the random coins of Verify.

We say that an argument is sound if for all PPT adversaries A there exists

a negligible function negl(�) such that Adv
Sound

A
(�)  negl(�).

Perfect Soundness: For all adversaries A we have

Pr


Verify(crs, stmt, arg) = 1 :

(arg, crs, stmt) A(LR);
stmt /2 LR

�
= 0

We will call a perfectly sound system a proof system.

Argument of Knowledge: Let R be a NP-relation defining by the language

LR = {stmt : 9witR(stmt,wit) = 1}. Let Setup⇤ be an algorithm that is as

Setup but outputs additionally a trapdoor ⌧ . We say that an argument is an

argument of knowledge if for all PPT adversaries A we have

|Pr[A(crs) = 1 : crs Setup(�)]�
Pr[A(crs) = 0 : (crs, ⌧) Setup(�)]|  negl(�)

and there exists a PPT algorithm Ext and a negligible function negl(.) such

that if

(crs, ⌧) Setup
⇤(�), and (arg, stmt) A(crs),

then

Pr[wit⇤  Ext(crs, ⌧, arg, stmt)]  1� negl(�)

where R(stmt,wit⇤) = 1.

Remark 3 (Selective Soundness). One can also refer to a selective secure vari-
ant of the soundness definition, where the adversary defines the statement stmt

before obtaining the common reference string.

Computational Witness-Indistinguishability: Let � be a security param-

eter. We define the advantage of A against witness indistinguishability as

follows:

Adv
WI

A
(�) =

���Pr

2

6666664
b = b̂ :

crs Setup(�);
(stmt,wit0,wit1) A(crs);

R(stmt,wit0) = R(stmt,wit1) = 1;
b $ {0, 1};

arg⇤  Prove(crs, stmt,witb);
b̂ A(arg⇤)

3

7777775
� 1

2

���,



Explainable Arguments 25

where the probability is taken over the random coins of Prove. We say that

the argument system is witness indistinguishable if for all PPT adversaries

A there exists a negligible function negl(�) such that Adv
WI

A
(�)  negl(�).

Perfect Witness-Indistinguishability: We say that a argument system for

language LR is perfectly witness indistinguishable if all adversaries A the

following is 0:

���Pr

2

66664
b = b̂ :

(crs, stmt,wit0,wit1) A(�);
R(stmt,wit0) = R(stmt,wit1) = 1;

b $ {0, 1};
arg⇤  Prove(crs, stmt,witb);

b̂ A(arg⇤)

3

77775
� 1

2

���,

Zero-Knowledge: Let � be a security parameter. We define the advantage of

A against zero-knowledge as follows:

Adv
ZK

A
(�) =

���Pr

2

664A(arg⇤) = 1 :

crs Setup(�);
(stmt,wit) A(crs);
R(stmt,wit) = 1;

arg⇤  Prove(crs, stmt,witb)

3

775�

Pr

2

664A(arg⇤) = 1 :

(crs, td) Simul1(�);
(stmt,wit) A(crs);
R(stmt,wit) = 1;

arg⇤  Simul2(crs, stmt, td)

3

775
���,

where the probability is taken over random coins of Prove. We say that the

argument system is zero-knowledge if for all PPT adversaries A there exists

a negligible function negl(�) such that Adv
ZK

A
(�)  negl(�).

Remark 4 (Non-interactive zero-knowledge). We will refer to non-interactive zero-
knowledge arguments as NIZK. Zero-knowledge proofs can be constructed from
bilinear maps [44], the learning with errors assumption [59], obfuscation [62]
and (doubly-enhanced) trapdoor permutations[10,23,34,38]. We will also refer
to NIZK without a common reference string, however such can only constructed
under non-falsifiable assumptions [35].

Definition 19 (Non-Interactive Witness Indistinguishable Proofs). We

call that a non-interactive argument system is a NIWI if it is perfectly sound and

computationally witness indistinguishable.

Remark 5. Note that since NIWI are perfectly sound, these proofs systems do
not require a setup and a common reference string. Thus we will omit to execute
the setup and including the crs in the argument in our protocol specifications.

Definition 20 (Dual-Mode Witness Indistinguishable Proofs). To define

a dual-mode witness indistinguishable proofs DMWI, we will redefine the setup

algorithm as follows.
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Setup(�,mode): Takes as input a security parameter �, and and a mode mode 2
{modeSound,modeWI}, and outputs a common reference string crs.

We require that for mode = modeSound the system satisfies perfect soundness

and for mode = modeWI the system satisfies perfect witness indistinguishability.

Furthermore, we define the following property.

Mode Indistinguishability: For all � we define the advantage of A against

mode indistinguishability as follows: Adv
modeIND

A
(�) =

���Pr

2

4mode = mode
⇤ :

mode $ {modeSound,modeWI};
(crs) Setup(�,mode);

mode
⇤  A(�, crs)

3

5� 1

2

���,

where the probability is taken over the random choice of mode and the ran-

dom coins of Setup. We say that the proof system is mode indistinguishable if

for all PPT adversaries A there exists a negligible function negl(�) such that

Adv
modeIND

A
(�)  negl(�).

Definition 21. We call an argument system private-coin ZAP if witness indis-

tinguishability holds against a malicious setup. That is in the definition of witness

indistinguishability, the adversary runs as follows (crs, stmt,wit0,wit1) A(�).

Non-interactive witness-indistinguishable proofs can be constructed from NIZK
proofs and derandomization assumptions [31,4], from bilinear pairings [43] and
indistinguishablity obfuscation [9].

(Publicly Deniable) Public Key Encryption We recall the standard defi-
nition of public key encryption.

Definition 22. A public key encryption scheme E consists of algorithms (KeyGen,
Enc,Dec) with the following syntax.

KeyGen(�) : On input a security parameter �, outputs keypair (sk, pk).
Enc(pk,m) : On input a public key pk and message m, outputs ciphertext ct.

Dec(sk, ct) : On input a secret key sk and ciphertext ct, outputs a message m or

? if decryption fails.

We define the following properties.

Correctness: We say that a encryption scheme E = (KeyGen,Enc,Dec) is

correct if for all all security parameters � 2 N, all key pairs (sk, pk)  
KeyGen(�)

Pr[Dec(sk,Enc(pk,m)) 6= m] = 0,

where the probability is taken over the random coins of the Enc algorithm,

as well as the random choice of m.
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Chosen Plaintext Attack Security (IND-CPA): We define the advantage

of an adversary A against IND-CPA as follows.

Adv
cpa

A
(�) =

���Pr

2

66664
b̂ = b :

(sk, pk) KeyGen(�);
(m0,m1) A(pk);

b $ {0, 1};
ct Enc(pk,mb);

b̂ A(ct)

3

77775
� 1

2

���,

where the probability is taken over the random coins of Enc and random

choice of b. We say that a public key encryption is CPA secure if for all PPT

adversaries A there exists a negligible function negl(�) such that Adv
cpa

A
(�) 

negl(�).
Non-Adaptive Chosen Ciphertext Attack Security (IND-CCA1): We de-

fine the advantage of an adversary A against the IND-CCA1 as

Adv
cca1

A
(�) =

���Pr

2

66664
b̂ = b :

(sk, pk) KeyGen(�);
(m0,m1) ADec(sk,·)(pk);

b $ {0, 1};
ct Enc(pk,mb);

b̂ A(ct)

3

77775
� 1

2

���,

where the probability is taken over the random coins of Enc and random

choice of b. We say that a public key encryption is CCA1 secure if for all PPT

adversaries A there exists a negligible function negl(�) such that Adv
cca1

A
(�) 

negl(�).
Deniability (Indistinguishability of Explanation [62]): Encryption scheme

E is a publicly deniable encryption if there exists an additional algorithm

Expl(pk, ct,m; r) that outputs a string e and the indistinguishability of ex-

planation defined below holds. We define the advantage of an adversary A
against deniablility as follows:

Adv
IND�EX

A
(�) =

���Pr

2

6666664

b̂ = b :

(sk, pk) KeyGen(�);
(m) A(pk);

ct Enc(pk,m;u0);
u1  Expl(pk, ct,m; r);

b $ {0, 1};
b̂ A(ct, ub)

3

7777775
� 1

2

���,

where the probability is taken over the random coins of Enc, and random

choice of b, u0, r. We say that a public key encryption is deniable if for

all PPT adversaries A there exists a negligible function negl(�) such that

Adv
IND�EX

A
(�)  negl(�).

Witness Encryption We recall the standard definition of witness encryption
introduced by Garg et al. [36].
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Definition 23. A witness encryption scheme WE consists of algorithms (Enc,
Dec) with the following syntax.

Enc(�, stmt,m) : On input a security parameter �, a statement stmt and message

m, outputs ciphertext ct.

Dec(stmt,wit, ct) : On input a statement stmt, witness wit and ciphertext ct,

outputs a message m or ? if decryption fails.

We define the following properties.

Correctness: We say that a witness encryption scheme WE = (Enc,Dec) for

language L is correct if for all security parameters � 2 N, statements stmt 2
L, witnesses wit, s.t. R(stmt,wit) = 1 and messages m,

Pr[Dec(stmt,wit,Enc(�, stmt,m)) 6= m] ⇡ 0,

where the probability is taken over the random coins of the Enc algorithm,

and the random choice of m. We say that the witness encryption scheme is

perfectly correct if the above probability is zero.

Security: We define the advantage of A against the security of the witness

encryption scheme as Adv
WE

A
(�) =

���Pr

2

664 stmt 62 L ^ b̂ = b :

(stmt,m0,m1) A(�,L);
b $ {0, 1};

ct Enc(�, stmt,mb);
b̂ A(ct)

3

775�
1

2

���,

where the probability is taken over the random coins of Enc and random

choice of b. We say that a witness encryption is secure if for all PPT ad-

versaries A there exists a negligible function negl(�) such that Adv
WE

A
(�) 

negl(�).
Extractable Security: We say that a witness encryption for language L de-

fined by a NP-relation R is extractably secure if for all PPT adversaries A,

there exists a PPT extractor Ext and polynomials p and q, such that for all

auxiliary inputs aux and for all stmt 2 {0, 1}⇤, the following holds:

Pr


m R {0, 1},

: A(stmt, ct, aux) = m
ct Enc(�, stmt,m)

�
� 1/2 + 1/q(|stmt|)

=) Pr[Ext(stmt, aux) = wit : (stmt,wit) 2 R] � 1/p(|x|)

Indistinguishability Obfuscation We recall the definition of indistinguisha-
bility obfuscation first introduced by Barak et al. [3].

Definition 24. An indistinguishability obfuscation algorithm for the class of

circuits {C�} is a PPT algorithm Obf with the following syntax.

Obf(�, C): Takes as input a security parameter � and circuit C, and outputs an

obfuscated program O.
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Furthermore, we define the following properties.

Correctness: For all security parameters � 2 N, for all C 2 C�, and for all

inputs x, there exists a negligible function negl(.) such that

Pr[O(x) = C(x) : O  Obf(�, C)] = 1� negl(�)

Indistinguishability: We say that an obfuscation scheme is indistinguishable

if all PPT adversaries A, there exists a negligible function negl(�) such that

Adv
iO

A
(�) = Pr

2

4 b = b̂ :
(C0, C1) A(�);

b $ {0, 1};
O  Obf(�, Cb); b̂ A(O)

3

5  negl(�)

where for all inputs x, C0(x) = C1(x) and the probability is taken over the

random coins of Obf.

Punctured Pseudorandom Functions Finally, we will need to rely on punc-
turable pseudorandom functions [13,14,49].

Definition 25. A puncturable PRF consists of algorithms PRF = (Setup,Eval,
Puncture) with the following syntax.

Setup(�): Takes as input a security parameter � and outputs a key K. The

algorithm also sets the parameters n = poly(�) and d = poly(�).
Puncture(K,x): Takes as input a key K and a string x 2 {0, 1}n, and outputs a

punctured key Kx.

Eval(K,x): On input a key K and a string x 2 {0, 1}n, outputs y 2 {0, 1}d.

We define the following properties.

Functionality preserved under puncturing: For every PPT adversary A
such that A outputs x⇤ 2 {0, 1}n, for all x 2 {0, 1}n, where x 6= x⇤

, we have

that

Pr[Eval(K,x) = Eval(Kx⇤ , x)) : K  Setup(�),Kx⇤  Puncture(K,x⇤)] = 1

Pseudorandom at punctured points: We define the advantage of an adver-

sary A against pseudorandomness at punctured points as follows.

Adv
PRand

A
(�) = Pr

2

664 b = b̂ :

x⇤  A(�);K  Setup(�),
Kx⇤  Puncture(K,x⇤)

r0  Eval(K,x⇤); r1 $ {0, 1}n
b $ {0, 1}; b̂ A(�,Kx⇤ , rb)

3

775 ,

where the probability is taken over random coins of Setup and random choice

of r1.We say that a punctured function is pseudorandom at punctured points

if for every PPT adversary A there exists a negligible function negl(�) such
that Adv

PRand

A
(�)  negl(�).
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B Full Proofs

Theorem 1. If (Prove,Verify,Expl) is a malicious verifier (statistical) explain-

able argument system then it is also (statistical) witness indistinguishable.

Proof. An adversary A against witness indistinguishability is given oracle ac-
cess to a prover that uses the witness witb, where A’s goal is to output b. The
idea behind the proof is for each oracle query of A to first run the prover
according to the protocol to get a transcript trans, then rewind the adver-
sary, compute coinsR  Expl(stmt,witb̂, trans) for some random bit b̂ and run
Prove(stmt,witb̂; coinsR) in interaction with the adversary. Note that due to ma-
licious verifier explainability A will only notice this change with negligible prob-
ability (in such a case we could use A to break this property). What is more
important, the adversary’s oracle queries now only consists of interactions with
a prover that uses witb̂ instead of witb. Thus, the only way for A to win the WI
experiment is by guessing the bit b.

Theorem 2. If there exists a malicious setup explainable non-interactive argu-

ment, then there exists a two-move witness-indistinguishable argument, where

the verifier’s message is reusable. In other words, given a malicious setup ex-

plainable non-interactive argument, we can build a private-coin ZAP.

Proof. Let ExArgL = (Setup,Prove,Verify) be an malicious setup explainable
non-interactive argument for L. The ZAP verifier runs the setup algorithm crs 
Setup(�) and sends the common reference string crs to the prover. When a prover
is given a statement stmt and witness wit, runs arg Prove(crs, stmt,wit), sends
arg to the ZAP verifier which accepts the argument if Verify(crs, stmt, arg) = 1.

Soundness immediately follows from the soundness of the non-interactive
argument. To show witness-indistinguishability, let stmt be the statement and
wit0,wit1 the witnesses chosen by the adversary A. The challenger responds
with arg  Prove(crs, stmt,witb) for some bit b. Note that the argument for all
witnesses in L can be explained as coins0  Expl(crs,wit0, arg) and coins1  
Expl(crs,wit1, arg), such that

arg = Prove(crs, stmt,wit0; coins0)

= Prove(crs, stmt,wit1; coins1).

Thus any adversary that has non-negligible advantage against witness indistin-
guishability.

To show the implication to witness encryption, let us recall a generalized
version of the Goldreich-Levin theorem [39], from [18].

Lemma 1 (Generalized Goldreich-Levin Theorem). If for any A and any

(↵,�) 2 {0, 1}k⇥{0, 1}` such that p(↵) = Pr[A(↵, r) = h�, ri : r $ {0, 1}`], then
then there exists a PPT inverter A0

and a non-zero polynomial q(.) such that

Pr[A0A(↵,.)(1`,↵) = �] � q(p(↵)� 1/2).



Explainable Arguments 31

Theorem 3. If ExArg is a fully explainable argument, then ExArg is a malicious

setup and malicious prover explainable argument.

Proof. The proof follows immediately from the definitions.

Theorem 4. Given that one-way functions and malicious prover selectively sound

non-interactive (resp. two-move) arguments for NP exist, then there exists a wit-

ness encryption scheme for NP.

In the proof below we use terminology from non-interactive arguments but
we can rewrite the same proof for the case of two-move arguments, where we use
the verifier’s first message instead of the CRS and the provers response as the
argument.

Proof. First note, that from malicious prover explainability of the argument, we
have that for all coins coinsA and arg  Prove(crs, stmt,wit; coinsA) an honest
prover can output coins coinsP , which explains an argument. Assuming mali-
cious prover explainability/uniqueness, Expl must return the same coins as the
adversary, and the prove algorithm must return the same argument under the
same coins but with a di↵erent witness. In other words for all coinsA it must be
that coinsP = coinsA. Therefore, we have that the distribution of arguments for
a given statement is determined only by the random coins. Thus if we set the
coins, then there exists only one argument for a statement.

Having established that, we construct a witness encryption scheme as follows.
Let stmt be the statement refined by a relation R for the witness encryption,
and PRG be a pseudorandom number generator. The encrypter generates a ran-
dom seed z  SeedGen(�) and computes y  PRG(z, 0). Then, the encrypter
constructs a statement stmt

0 = {9wit R(stmt,wit) = 1 _ y = PRG(wit)}, for a
given y. Finally, to encrypt a message msg 2 {0, 1}, the encrypter first gen-
erates the common reference string crs. If the arguments system is selectively
secure, the encrypter generates the crs for stmt

0. Then the encrypter computes
arg Prove(crs, stmt

0, z; coins), and computes c = msg�H(arg, r), where H is a
Goldreich-Levin hardcore bit and r is uniformly random. The ciphertext is ct =
(crs, c, coins, y, r). A decrypter with a witness wit

⇤ such that R(stmt,wit⇤) = 1,
computes arg⇤  Prove(crs, stmt

0,wit⇤; coins) and msg
⇤  c�H(arg⇤, r).

For correctness, note that from malicious prover explainability we are guar-
anteed that arg⇤ = arg, hence msg

⇤ = msg.
To argue the security of the witness encryption, we use the distinguisher D

against the encryption scheme to construct an adversary against the selective
soundness of the argument system. First, we show how to use D to build a
predictor A0 for the generalized Goldreich-Levin theorem. Let D distinguish
the message bit msg, with non-negligible probability for stmt 62 L. We set
↵ = (crs, coins, y) and � = arg from the generalized Goldreich-Levin theorem
1. So we have that D on input crs, y, r and some random coins can distinguish
H(arg, r) from random with non-negligible probability. By lemma 1 we can con-
struct A0 who on input ↵ outputs � = arg with non-negligible probability. More-
over, we have that arg = Prove(crs, stmt

0, z; coins) because otherwise, as argued
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earlier, the argument system wouldn’t be malicious prover explainable. Now, we
will choose y uniformly at random. If an adversary A0 notices this change with
non-negligible probability, then we can use A0 as a distinguisher for the pseu-
dorandomness property of the PRG. Finally, we have that with overwhelming
probability stmt is not in the language, and arg is a counterexample for selective
soundness of the argument system.

Theorem 5. Let ExArg
�
be the system given by Scheme 1. The system ExArg

�

is computationally sound (in the selective setting) assuming indistinguishability

obfuscation of Obf, pseudorandomness in punctured points of PRF, mode indis-

tinguishability of the DMWI scheme, and unforgeability of the signature scheme.

Proof. We will prove the soundness of the non-interactive arguments system by
changing the obfuscated programs according to the hybrid experiments below.
Then we argue that any adversary that produces an argument for a statement
stmt

⇤ can be used to break EUF-CMA of the underlying signature scheme. For
clarity, we will give detailed proofs of indistinguishability between the hybrid
experiments at the end of the proof.

H0: This is the original scheme.
H1: We change the parameters crsDMWI to crsDMWI  DMWI.Setup(�, modeWI;

coinsS).

Claim (Informal). Indistinguishability betweenH0 andH1 follows from mode
indistinguishability of DMWI.

H2: We change the witness witSetup to (modeWI).

Claim (Informal). Indistinguishability between H1 and H2 follows from wit-
ness indistinguishability of the NIWI scheme.

H3: We use ProgProve
2
r

instead of ProgProve1
r
.

Claim (Informal). Indistinguishability between H2 and H3 follows from in-
distinguishability of Obf.

H4: We use ProgVerify
⇤ instead of ProgVerify.

Claim (Informal). Indistinguishability between H3 and H4 follows from in-
distinguishability of Obf.

H5: We switch the witness witSetup to (2,K, coinsP ).

Claim (Informal). Indistinguishability between H4 and H5 follows from wit-
ness indistinguishability of the NIWI scheme.

H6: We change the parameters crsDMWI to binding mode, i.e. we reverse the
changes made in H2.

Claim (Informal). Indistinguishability betweenH5 andH6 follows from mode
indistinguishability of DMWI.
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H7: We choose the key sk
⇤

s at random.

Claim (Informal). Indistinguishability betweenH6 andH7 follows from pseu-
dorandomness at punctured points.

Finally, we set vk⇤s from the EUF-CMA challenger. Now, assume an adversary
outputs an argument arg⇤ for stmt

⇤ which verifies correctly. Let us remind that
the program ProgVerify

⇤ outputs vk⇤s. Given that the argument verifies correctly
we have that Sig.Verify(vk⇤s, arg

⇤, stmt
⇤) = 1. We return (arg⇤, stmt

⇤) as a forge
in the existential unforgeability under chosen message attack experiment.

Claim. If there exists an adversary A, which distinguishes between the hybrids
H0 and H1, then there exists a reduction S which breaks mode indistinguisha-
bility of the DMWI scheme.

Proof. Both hybrids di↵er only in how the reference string crsDMWI is computed.
The reduction S will obtain the crsDMWI from the mode indistinguishability chal-
lenger. If crsDMWI is a hiding string, then the simulation by S is as in H1, and
otherwise, if the string is binding, then as in H0. Thus, if A’s advantage is
non-negligible, so is the reduction advantage.

Claim. If there exists an adversary A, which distinguishes between the hybrids
H1 and H2, then there exists a reduction S which breaks witness indistinguisha-
bility of NIWI.

Proof. Both hybrids di↵er only in which witness the setup algorithm is using.
The reduction S, will then set the witness wit0 as in H1 and wit1 as in H2, sent
both witnesses to the witness indistinguishability challenger, and obtain a proof
⇡. S will use ⇡ in the crs.

If A has any noticeable advantage in distinguishing between H1 and H2, then
S has a non-negligible advantage in distinguishing the witness used to compute
⇡.

Claim. If there exists an adversary A, which distinguishes between the hybrids
H2 and H3, then there exists a reduction S which breaks indistinguishability
obfuscation.

Proof. The di↵erence is that the PRF key is punctured on stmt
⇤, but the PRF

evaluation PRF.Eval(K, stmt
⇤) will never be called, thus the input-output be-

havior of both programs will be the same. The reduction S will set the program
to be obfuscated to ProgProve

1
r

for H0, and for H1 it sets the program to be
obfuscated to ProgProve

2
r

. Now any adversary A that can distinguish between
the hybrids leads to S successfully answering the indistinguishability challenge.

Claim. If there exists an adversary A, which distinguishes between the hybrids
H3 and H4, then there exists a reduction S which breaks indistinguishability
obfuscation.
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Proof. The di↵erence here is that for stmt
⇤ the signature verification key vk

⇤

s

is pre-computed and hardwired into the program. As earlier, the input-output
behavior of both programs is the same. Thus, we can construct a reduction S,
which queries the indistinguishability challenger on both programs, and forwards
the challenge to the adversary in the soundness experiment.

Claim. If there exists an adversary A, which distinguishes between the hybrids
H4 and H5, then there exists a reduction S which breaks witness indistinguisha-
bility of the NIWI scheme.

Proof. The proof follows the reasoning as in the proof of for H2. The hybrids
H4 and H5 di↵er only in which witness the setup algorithm is using.

Claim. If there exists an adversary A, which distinguishes between the hybrids
H5 and H6, then there exists a reduction S which breaks mode indistinguisha-
bility of the DMWI scheme.

Proof. The reasoning is analogical to the reasoning of the proof for H1 The
di↵erence is that we switch crsDMWI from a hiding string back to a binding
string.

Claim. If there exists an adversary A, which distinguishes between the hybrids
H6 and H7, then there exists a reduction S which breaks pseudorandomness at
punctured points of the PRF. What follows is that the corresponding verification
key vk

⇤

s is chosen uniformly at random from the key space.

Proof. We will construct a reduction S, which gives stmt
⇤ to the challenger in

the punctured points experiment for the punctured PRF. The challenger returns
Kstmt⇤ and the challenge r. Now, S sets sk⇤ = r, generates vks based on sk

⇤ and
proceeds by constructing the proving and verification programs as in H6. Now,
if the challenge r given to S is PRF.Eval(Kstmt⇤ , stmt) then S simulates H6 and
otherwise if r is random then H7. Thus, if A has a non-negligible advantage to
distinguish between H6 and H7, then S has the same advantage in the punctured
points experiment.

Theorem 6. Given that the signature scheme Sig is unique, NIWI is perfectly

sound, DMWI is a dual-mode proof, and all primitives are perfectly correct, the

argument system ExArg
�
is malicious setup explainable.

Proof. Note that a verification key vks can be computed using the program
OVerify from only the statement stmt. Let arg be the argument input to the Expl

algorithm and assume Verify(crs, stmt, arg) = 1. From the verification algorithm,
we have that vks is a unique signature scheme, and arg is a valid signature on
stmt with respect to vks. There exists only one signature arg for stmt, which
verifies with the verification key vks. Thus the bits of arg depend only on the
statement signed, as otherwise, it would contradict uniqueness of the signature
scheme.

Now we have to argue that for every wit
⇤, where R(stmt,wit⇤) = 1, the Prove

algorithm will return arg. From perfect soundness of the NIWI we have that there
are three cases:
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– The programOProve is ProgProve
1[pp, crsDMWI,K] for someK. In other words,

OProve is a correct obfuscation of ProgProve1, the signature arg is determined
only by the message stmt and the secret key sk. The secret key is, in turn,
determined by the statement and key K.

– The program OProve is ProgProve
2. The argument is analogical to the previ-

ous, as the only di↵erence is that the key K is punctured on stmt
⇤.

– The common reference string crsDMWI is hiding. In this case, from perfect
hiding we have that for all wit⇤ and ⇡  DMWI.Prove(crsDMWI, stmt,wit⇤),
the program OProve must have the same output. Thus either OProve returns a
correct arg, or an incorrect one for all wit⇤. In case the program OProve would
abort or return an incorrect argument, it would have abort on arg as well.

Theorem 7. Let ExArg
†
be the system given by Scheme 1. The system ExArg

†
is

computationally sound (in the selective setting), assuming indistinguishability ob-

fuscation of Obf, pseudorandomness in punctured points of PRF, zero-knowledge

of the NIZK scheme and unforgeability of the signature scheme.

Proof (Sketch). The proof follows the proof of Theorem 5 with the exception
that instead of hybrids H1, H2, H5 and H6, in H1 we run the simulator of the
NIZK scheme. To preserve the numbering of hybrids, we set H2 to be equal to
H1, H5 to be equal to H4, and H6 to be equal to H5.

Theorem 8. Given that the signature scheme Sig is unique, NIZK is sound, and

all primitives are perfectly correct, the argument system ExArg
†
is fully explain-

able.

Proof. The proof follows mostly the reasoning of the proof of Theorem 6. Here,
however, we need to consider only the case where OProve is correct. Similarly, as
above, if the program OVerify is correct, the verification key vks is determined by
the statement. Let arg such that Verify(crs, stmt, arg) = 1 be the argument and
coinsA be the coins returned by the adversary. From the verification we know
that Sig.Verify(vks, arg, stmt) = 1. From the uniqueness of the signature scheme,
we know that there exists only one arg that verifies with stmt under vks.

The Expl algorithm given a witness wit
⇤ will return � = 0. Now we have to

argue that Prove(crs, stmt,wit⇤; �) will output arg. From perfect soundness of
the NIZK we have that the obfuscated program OProve is correctly implementing
ProgProve

1[pp, crsDMWI,K] for some K. In this case, OProve is a correct obfusca-
tion of ProgProve1[pp, crsDMWI,K], thus the program must return a signature on
stmt that verifies with vks, as otherwise arg would not be a correct argument as
well.

Theorem 9. Let ExArg
r

be the system given by Scheme 1 for r = � or r = †.
ExArg

r
is zero-knowledge in the common reference string model.

Proof. To show the zero-knowledge property, we need to build a simulator S,
that outputs a common reference string crs and then on input a statement stmt

outputs arg such that Verify(crs, stmt, arg) = 1. The simulator S will gener-
ate the crs as specified by the ExArg

r scheme, but keeps the secret key of the
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PRF in his memory. Then given a statement stmt it S generates the secret key
sk PRF.Eval(K, stmt). Finally, S signs stmt using sk and outputs the signature
together with the message.

Theorem 10 (Security and Extractability). Scheme 2 is a (extractably)

secure witness encryption if WE is a (extractably) secure witness encryption

scheme, and NIZK is zero-knowledge (in the common reference string or RO

model).

Proof (Sketch). The proof is pretty straightforward, as the NIZK can be simu-
lated. The rest of the proof follows from security or extractable security of the
WE scheme.

Theorem 11 (Robustness and Plaintext Awareness). Scheme 2 is robust

if the witness encryption scheme WE is perfectly correct, and the NIZK proof

system is perfectly sound (in the common reference string or RO model). If the

NIZK proof system is a proof of knowledge (in the common reference string or

RO model), then Scheme 2 is plaintext aware.

Proof (Sketch). Let us first address robustness. Note that the ciphertext ctmsg

is generated honestly because of the perfect soundness of the NIZK. Therefore,
by perfect correctness of witness encryption, it follows that there cannot exist
an adversary that will output two valid witnesses for stmt for which ctmsg will
decrypt to di↵erent messages.

For plaintext awareness, note that we can run the extractor to obtain the
message msg from NIZK proof, and from perfect correctness of the underlying
WE scheme we have that for all valid witnesses wit, the decryption function will
return the message msg.

Theorem 12 (Soundness). Scheme 3 is an argument system for NP language

L assuming the witness encryption scheme WE for L is secure. Furthermore,

if the underlying witness encryption scheme WE scheme is extractable, then

Scheme 3 is an argument of knowledge.

Proof. If the witness encryption scheme WE is extractable, then knowledge
soundness directly follows from from the extractability of WE. Thus we will
put our focus on the case where WE is only secure.

Without loss of generality, let us assume that we have a statement stmt 62 L.
We will show that for any PPT adversary A the probability that an honest
execution of the Verify algorithm interacting with A outputs 1 is negligible. To
do this, we will use two hybrids.

H0: This is the real soundness experiment.
H1: We replace ct with a ciphertext encrypting the message 0.

Claim. Hybrids H0 and H1 are computationally indistinguishable assuming the
security of the witness encryption scheme. More specifically, there exists a re-
duction R1 such that

Adv
WE

R1
(�) = |Pr[H1(A) = 1]� Pr[H0(A) = 1]|.
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Proof (Sketch). Since stmt is false, any adversary A that is able to distinguish
between those hybrids can be used to construct a reduction R1 that breaks
security of the witness encryption scheme.

Claim. For hybrid H1 we have Pr[H1(A) = 1] = 1
2� .

Proof. It is easy to see that since the ciphertext ct send to the prover is indepen-
dent of the challenge r, it follows that the prover has only a chance to guess the
correct argument arg. However, since the challenge space is of size 2�, it follows
that A advantage in breaking soundness in hybrid H1 is 1

2� , which is negligible
in the security parameter.

We conclude that Pr[H0(A) = 1] = Adv
WE

R1
(�) + 1

2� .

Theorem 13 (Zero-Knowledge). Scheme 3 is zero-knowledge given the un-

derlying witness encryption scheme WE is plaintext aware.

Proof (Sketch). The proof follows immediately from plaintext awareness of the
WE scheme. The simulator runs the extractor of the plaintext aware WE scheme
and responds with the extracted message.

Theorem 14 (Explainability). Scheme 3 is fully explainable assuming the

used witness encryption scheme is robust (or plaintext aware) and correct.

Proof (Sketch). It is easy to see that the scheme 3 is malicious prover explainable.
This follows from the fact that there are no random coins used on the side of
the prover and the verifier is honest, so malicious prover explainability follows
from the correctness of the witness encryption.

From perfect soundness of NIZK we have that there exists a message msg

such that ct = WE.Enc(�, stmt,msg). Furthermore, from perfect correctness, of
the WE scheme we have that ct decrypts to msg for all valid witnesses. If the
witness encryption scheme is plaintext aware and perfectly correct, then the
reduction runs the extractor to obtain the plaintext arg. Furthermore, if for any
wit or wit⇤, the decryption result would di↵er msg then the fact would contradict
perfect correctness of the witness encryption.

Theorem 15. Let WE be a (non-robust) perfectly correct witness encryption

scheme for NP. Let ⇧ be an interactive public-coin zero-knowledge proof pro-

tocol for NP. Then there exists a malicious verifier explainable (and witness-

indistinguishable) argument for NP.

Proof (Sketch). The idea for the protocol is as earlier, but we need to show
consistency of the ciphertext. The idea is to run the public-coin zero-knowledge
protocol, where the prover acts as the verifier, and the verifier proofs correct-
ness of the witness encryption ct. From soundness of the proof protocol we have
consistency of the WE scheme just as in case of robust encryption. Malicious ver-
ifier explainability holds because all prover coins are included in the transcript.
Therefore, to explain a an argument it is su�cient to return the messages from
the given transcript.
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Note that the construction given in the proof of Theorem 15 is not malicious
prover explainable, because, the prover can choose some random coins.

Theorem 16. Scheme 4 is an encryption scheme secure against non-adaptive

chosen ciphertext attacks (CCA1) in the random oracle model assuming the en-

cryption scheme E is an encryption scheme secure against chosen plaintext at-

tacks and NIWI is a sound and witness indistinguishable proof system.

Proof. We will prove this theorem using a series of hybrid arguments. Let ct⇤ =
(ct⇤1, ct

⇤
2,⇧

⇤) denote the challenged ciphertext for messages msg
⇤
0,msg

⇤
1. We as-

sume the adversary will make at most qh random oracle queries.

H0: This is the original CCA1 experiment where the challenger encrypts mes-
sage msg

⇤
0 (bit b = 0).

H1: We program the random oracleHG to output (g↵, g� , g↵·�) on input (ct⇤1, ct
⇤
2)

and retain (↵,�). Additionally, we ensure that for all other random oracle
queries the output is a non-DDH tuple, i.e. for the i-th query we choose
(ai, bi, ci) at random and output (gai , gbi , gci) and abort in the unlikely event
of ai · bi = ci.

H2: We replace the way the proof ⇧⇤ is computed. Instead using witness (msg)
we use the trapdoor witness (↵,�) from hybrid H1.

H3: We change the ciphertext ct⇤2 is generated and use ct2  Enccpa(pk2, r) for
some random r.

Claim. H1 aborts with probability at most (qh � 1)/p which is a negligible
factor if the G order p is exponential in the security parameter.

Proof (Sketch). This follows from simple calculations.

Claim. Hybrids H1 and H2 are computationally indistinguishable assuming
witness indistinguishability of NIWI. More specifically, there exists a reduc-
tion R1 such that

Adv
WI

R1
(�) = |Pr[H2(A) = 1]� Pr[H1(A) = 1]|.

Proof (Sketch). Any adversary A that is able to distinguish between those
hybrids can be used to construct a reduction R1 that breaks witness indis-
tinguishability.

Claim. Hybrids H2 and H3 are computationally indistinguishable assuming
CPA security of E . More specifically, there exists a reduction R2 such that

Adv
cpa

R2
(�) = |Pr[H3(A) = 1]� Pr[H2(A) = 1]|.
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Proof (Sketch). Any adversary A that is able to distinguish between those
hybrids can be used to construct a reduction R2 that distinguishes plaintexts
in the CPA experiment. It is worth noting that in the simulation of the CCA1
experiment we use the secret key sk1 to answer decryption queries. Therefore
the public key pk2 can be set as the public key given by the challenger in the
CPA experiment and we can use the challenged ciphertext from the CPA
experiment to compute ct

⇤
2.

Claim. The advantage of an adversary A in breaking CCA1 security in hy-
brid 3 is at most 2 times the advantage in breaking CPA security of E and
breaking the soundness property of NIWI. More formally, there exists a re-
duction R3 such that:

Adv
cca1

A
(�)  2 · (Advcpa

R3
(�) + Adv

Sound

R3
(�))

Proof. The idea is as follows. With probability 1/2 the reduction R3 will
work as in hybrid 3 but will abort in case A proves a false statement. To this
end for every decryption query ct = (ct1, ct2,⇧) the reduction will decrypt
ct1, ct2 and compare the plaintexts. In case they do not match A was able
to break the soundness property of NIWI which can be used by R3.
In the other case we do not abort and allow for false statements. However,
when this happens we just assume that the reduction will not be able to
break the CPA security of E and with probability 1/2 R3 will still be able to
useA to break soundness of NIWI as described above. This simple trick allows
us to replace the secret key we use inside the decryption oracle from sk1 to
sk2. This way R3 can set pk1 to a public key received from the challenger in
a CPA experiment. What is more, since in the previous hybrid we replaced
ct2 with a ciphertext of a random message then if A is able to distinguish
messages in the CCA1 experiment thenR3 can useA to distinguish messages
for a CPA experiment.

Theorem 17. Scheme 4 is an publicly deniable encryption scheme secure against

non-adaptive chosen ciphertext attacks (CCA1) in the random oracle model as-

suming the encryption scheme E is an publicly deniable encryption scheme secure

against chosen plaintext attacks and NIWI is a malicious setup explainable argu-

ment system.

Proof (Sketch). Both ciphertexts are created using publicly deniable encryption,
so they can be easily explained. The problem in scheme 4 is the proof ⇧. How-
ever, if we use a malicious setup explainable argument system then we can easily
explain also ⇧.

B.1 Explainable Anonymous Authentication

In this section we show a simple interactive authentication scheme that is anony-
mous in a similar manner to ring signatures. We build the scheme from a stan-
dard signature scheme and a explainable zero-knowledge argument of knowl-
edge. We focus on the interactive scheme since we can instantiate the argument
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with our scheme given in Section 5. We note that we may similarly construct
a non-interactive ring-signature, but we would need to have a non-interactive
zero-knowledge argument of knowledge.

Definition 26. We define an anonymous interactive authentication scheme to

consist of algorithms KeyGen,Prove,Verify. The KeyGen algorithm takes as input

a secret key sk 2 {0, 1}p and outputs a pair (sk, pk), where p = poly(�) and �
is the security parameter. Then prove algorithm take as input sk and a set of

public keys R, and a message msg. The verifier takes as input the set public keys

R, and engages into a interactive protocol with the prover. Finally, the verifier

returns a bit.

Correctness: We say that an interactive authentication scheme is perfectly

correct if for any security parameter � 2 N, any set R = [pki]
n
i=1 where

n = poly(�), ski 2 {0, 1}p, p = poly(�), (pki) KeyGen(ski), for all i 2 [n],
all messages msg in the message space and any j 2 [n] we have

Pr[hProve(R, sk,msg) ⌦ Verify(R,msg)i = 1] = 1.

Unforgeability: We say that an interactive authentication scheme is unforge-

able if for all PPT adversaries A = (A0, A1), there exists a negligible function

negl(.) such that

Pr


A1(st) ⌦ Verify(R,msg) = 1:

(R,msg, st) AO
0 ([pki]

n
i=1);

R \ C = ;; (R,msg) 62 ⌃

�
 negl(�),

where n = poly(�) and for all i 2 [n] ski 2 {0, 1}p, p = poly(�), (pki)  
Setup(ski), and O is an oracle that is defined as follows: On input (corrupt, i),
O outputs ski and stores pki in the set C. On input (interact, i,msg, R), O
acts as a interface to the ith prover on input msg and a set R and stores

(R,msg) in the set ⌃. The probability is taken over the random choice of

[ski]ni=1 and random coins of Verify.

Anonymity: We say that an interactive authentication scheme is anonymous

if for all PPT adversaries A = (A0, A1) we have

Pr

2

4
(R, i0, i1,msg, st) A0([(pki, ski)]

n
i=1);

b̂ = b : i0, i1 2 R; b R {0, 1};
b̂ A1(st) ⌦ Prove(skb, R,msg)

3

5  negl(�),

where n = poly(�), and for all i 2 [n] ski 2 {0, 1}p, p = poly(�), and

(pki) KeyGen(ski). The probability is taken over the random coins of Prove

and choice of b.
Explainability: Since the anonymous authentication scheme is an interactive

protocol with a prover and verifier we can use any of the definitions of ex-

plainability for interactive arguments given in Section 3.

Definition 27 (A Simple Anonymous Authentication Scheme). Let Sig =
(KeyGen, Sign,Verify) be a signature scheme, and let ⇧R = (Prove,Verify) be a
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argument system. We construct a anonymous authentication scheme as follows.

The KeyGen algorithm generates a public and secret key for the signature scheme.

Denote as pk, sk the public/secret key of the prover. The prover on input a set

R, first check whether its public key is in R, and if so, the prover computes

sig  Sign(sk,msg||R). Finally, the prover and verifer run a interactive argu-

ment for the statement stmt:

{9pk,sk,sigpk 2 R and sig Sign(sk,msg)}

The verifier accepts if the argument verifier accepts.

Theorem 18 (Unforgeability). Let Sig be a unforgeable signature scheme and

⇧ be a zero-knowledge argument of knowledge. Then the scheme from Defini-

tion 27 is unforgeable.

Proof (Sketch). Let sk, pk be a secret and public key from the unforgeability
experiment of the signature scheme. We choose j 2 [n] uniformly at random,
and set pkj = pk. All other secret keys are generated by the reduction. Given
a corruption query for i, the reduction responds with ski given that i 6= j. If
the adversary asks to corrupt j, the reduction aborts, what may happen with
probability 1/n. On input a interaction query, the reduction runs the simulator of
the zero-knowledge argument. Finally, suppose the adversary runs a interaction
for the set R⇤ and message msg

⇤ such that R⇤[C = ; and (R⇤,msg
⇤) 62 ⌃. Then

the reduction runs the extractor of the argument system and obtains pk0, sk0, sig0

such that pk0 2 R and sig
0  Sign(sk0,msg

0). With probability 1/n we have that
pk0 = pk, in which case we return msg

⇤ and sig as a forge in the unforgeability
experiment of the signature scheme.

Theorem 19. Let Sig be a signature scheme and ⇧ be a zero-knowledge argu-

ment system. Then the scheme from Definition 27 is anonymous.

Proof (Sketch). The proof trivially follows from the zero-knowledge property of
the argument system.

Theorem 20 (Explanability). Let Sig be a signature scheme. If ⇧ is mali-

cious verifier explainable, then the scheme from Definition 27 is malicious ver-

ifier explainable. If ⇧ is malicious prover explainable, then the scheme from

Definition 27 is malicious prover explainable. If ⇧ is fully explainable, then the

scheme from Definition 27 is fully explainable.

Proof (Sketch). The proof is a straightforward consequence of the fact the the
entire protocol transcript consists only of the messages of the argument system.
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