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WITH A WEIERSTRASS MODEL OVER A RING
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Abstract. We survey the known group structures arising from elliptic curves defined by Weierstrass

models over commutative rings with unity and satisfying a technical condition. For every considered

base ring, the groups that may arise depending on the curve coefficients are recalled. When a complete

classification is still out of reach, partial results about the group structure and relevant subgroups are

provided. Several examples of elliptic curves over the inspected rings are presented, and open questions

regarding the structure of their points are highlighted.

1. Introduction

Elliptic curves are ubiquitous objects in several fields such as number theory, arithmetic geometry

and computational algebra (see [72, 4, 41], among others). Their main interest lies in the group

structure of their points, making them the abelian varieties of smallest dimension.

Determining the structure of groups arising from such curves is a long-standing problem in math-

ematics, which still presents many open questions and bustling research lines. This question is in-

timately related to the precise determination of their rational points, as they prescribe the curve

structure in all but small sporadic cases [42]. Thus, it is not surprising that the solution to such a

problem heavily depends on the algebraic structure underlying the curve, as changing the base ring

radically modifies the group of points.

Beyond their theoretical interest, the group structure of elliptic curves is crucial for the concrete

adoption of such objects. In a cryptography purview, elliptic curves over fields have always been

playing a prominent role [31, 35, 51], and they are recently rising further attention for their application

to cryptocurrency design [47, 48]. Nevertheless, these objects have also been inspected and employed
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over different rings. As a few instances, cryptosystems based on elliptic curves defined over Z/NZ
[49], as well as those based on other finite rings [5] have been investigated.

In this work we provide a detailed overview of the structure of groups arising from elliptic curves

over commutative rings with unity, presenting the known classification results and the main open

questions regarding this subject. To ensure a definition of an effective addition law on such objects,

we only require a technical condition on the linear algebra over the base ring. This way we deal with

smooth projective curves admitting a Weierstrass model, whose group operation may be effectively

outlined.

When the base ring is not a field, many unexpected phenomena may be observed, especially in pres-

ence of non-invertible elements or zero-divisors. These cases enrich the panorama of possible groups

arising from these curves, which are expected to aid the research in several areas of algebra. Numerous

examples are provided to highlight the use of the presented results for the group computation.

1.1. Paper organization. The basic definitions and preliminary results are collected in Section 2,

which constitute the minimal requirements for the elliptic curves construction. Afterwards, the groups

arising from elliptic curves over fields are discussed, as follows.

• In Section 3, the unique isomorphism class of complex curves is recalled.

• In Section 4, the two groups that may arise from real curves are described.

• In Section 5, the more varied cases of curves defined over number fields are discussed. A

complete classification is still unknown even for number fields of small degree, such as Q(
√
D)

and Q itself.

• In Section 6, elliptic curves over finite fields are treated, whose complete classification has been

achieved in the 80’s. These results are necessary for explaining the statements of sections 7

and 10.

• In Section 7, the curves defined over the field Qp of p-adic numbers are examined.

• In Section 8, further results about other fields such as function fields Fq(T ) and composite

fields Q(d∞) are recalled.

Subsequently, elliptic curves over more general rings are surveyed, as follows.

• In Section 9, elliptic curves defined over rings of integers of number fields are presented.

• In Section 10, the complete classification of elliptic curves over Z/NZ is presented.

• In Section 11, other rings are considered, such as Fq[x]/(xk) and arbitrary products of suitable

rings.

Finally, in Section 12 the information about the considered groups is systematized, and open problems

are summarized.

1.2. Notation. Given a positive integer m ∈ Z>0, we denote by Cm the cyclic group of order m.

Given a prime power q = pe ∈ Z, we will refer to the finite field of q elements by Fq. When a

primitive element α ∈ Fq needs to be considered, the defining irreducible polynomial f ∈ Fp[x] will be

specified.
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Given an integer N ∈ Z and a prime p, will denote by vp(N) the p-adic valuation of N , namely the

exponent of p appearing in the prime factorization of N . Furthermore, we will denote by Qp the field

of p-adic numbers and by Zp the ring of p-adic integers.

2. Basics

2.1. The base ring. Generalized elliptic curves may be defined over arbitrary base schemes S as

proper smooth curves with geometrically connected genus-1 fibers, with a prescribed zero section.

A theorem of Abel shows that such a definition always leads to a unique structure of commutative

group-scheme over this curve [25, Theorem 2.1.2]. In particular, for every commutative ring R one

can construct elliptic curves over the spectrum of R. However, with the latter definition we are not

guaranteed we can embed the curve in a proper projective plane over S, and the resultant point-

addition law may sometimes be only formal.

As in this work we are mostly interested in objects whose operations may be explicitly exhibited,

we will restrict our attention to elliptic curves defined over commutative rings R with unity, such that

R satisfies a technical condition [40, Section 3], which we now recall.

Definition 2.1 (Primitivity). A finite collection {xi}1≤i≤n ⊆ R is called primitive if the ideal

〈{xi}1≤i≤n〉 it generates in R is equal to R itself.

The following is the condition we will always require on the base rings we consider for defining

elliptic curves, in order to prevent their addition law from having exceptional points.

Condition 2.2 (Suitable rings [40]). Let R be a commutative ring with unity. For every rectangular

matrix M over R, if the elements of M are primitive and every (2 × 2)-minor of M vanishes, then

there exists an R-linear combination of the rows that is primitive.

The above condition is trivially satisfied for every field: in this case, a tuple is primitive if and only

if it contains a non-zero element, so an R-linear combination that evinces a primitive vector simply

consists of selecting any row of M containing a non-zero element.

More generally, we also know that Condition 2.2 is satisfied whenever the ring R has finitely many

maximal ideals [40, Section 3], thus in particular it holds for every finite ring. Moreover, we also know

that when R is Dedekind, Condition 2.2 is equivalent to having a trivial class group. The above fact

rules out a few interesting rings over which one might envision to construct elliptic curves, such as

that of the following example.

Example 2.3. Let K = Q(
√
−5) and let R = OQ(

√
−5) be its ring of integers, namely R = Z[

√
−5].

We shall prove that such R does not satisfy Condition 2.2. Let us consider the matrix

M =

(
2 1−

√
−5

1 +
√
−5 3

)
.

This matrix has primitive entries and its unique (2×2)-minor vanishes. However, for every r1, r2 ∈ R
the ideal

Ir1,r2 = 〈2r1 + (1 +
√

5)r2, (1−
√

5)r1 + 3r2〉 ⊆ R
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is always proper, as one can verify explicitly by showing the following implication:

〈2, 1 +
√

5〉 ⊆ Ir1,r2 =⇒ 〈2, 1 +
√

5〉 = Ir1,r2 .

Hence, there may be no primitive R-linear combinations among the rows of M .

2.2. The projective plane. To discuss the group structure of smooth, plane and projective curves,

we first need to recall some facts about the projective plane over a given ring.

Given a positive integer n ∈ Z≥1, it is easy to see that the group R∗ of invertible elements of R acts

on the primitive (n+ 1)-tuples of R via the component-wise multiplication

(2.1) u · (x0, . . . , xn) = (ux0, . . . , uxn).

Definition 2.4 (Projective n-space). The projective n-space over R, denoted by Pn(R), is defined

as the set of orbits of primitive tuples of Rn+1 under the action (2.1). Whenever n = 2, it is called

projective plane. Finally, we will denote by (x0 : · · · : xn) ∈ Pn(R) the orbit of (x0, . . . , xn) ∈ Rn+1.

Definition 2.5 (Affine and at infinity points). A point (x0 : · · · : xn) ∈ Pn(R) is called affine if

xn ∈ R∗, while it is said to lie at infinity otherwise. When n = 2, the point at infinity O = (0 : 1 : 0)

is simply called zero.

When R is a field, the projective plane simply amounts to non-zero triples modulo non-zero multi-

ples, i.e. its affine points are {(x0 : x1 : 1)}x0,x1∈R, while those at infinity are either {(x0 : 1 : 0)}x0∈R
or (1 : 0 : 0). However, when the underlying ring has zero-divisors or non-invertible elements, it may

have extremely different shapes, as in the following example.

Example 2.6. Let N ∈ Z and consider R = Z/NZ.

When |N | > 1 this ring is finite, hence it underlies Condition 2.2. Its invertible elements are

integers coprime to N , and the primitive elements of Rn are the n-tuples of elements (x0, . . . , xn) such

that gcd(x0, . . . , xn, N) = 1. It may also be proved [8, Section 10.3.2] that the size of this projective

space is

|Pn(Z/NZ)| = Nn
∏
p|N

(
1 +

1

p
+ · · ·+ 1

pn

)
.

Over such rings, the affine points may always be presented as {(x0 : · · · : xn−1 : 1)}xi∈R, but there are

points at infinity with non-zero last coordinate, whenever N is composite.

Let us now consider N = 0, i.e. R = Z. Since it is a Dedekind principal ideal domain, then

Condition 2.2 still holds. Its units are only ±1, then its affine part is {(x0 : · · · : xn)}xi∈Z,xn>0, while

the points at infinity are those having the last entry equal to 0.

The remaining cases N = ±1 are trivial, since R would be the zero-ring so Pn(R) = {(0 : · · · : 0)}.

2.3. Elliptic curves. In this work, we are interested in dealing with smooth plane projective curves

defined by a Weierstrass equation, which over fields are proved to precisely correspond to smooth

curves of genus one with a specified base point [62, Section III.3].
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Definition 2.7 (Elliptic curve over R). Let R be a ring satisfying Condition 2.2 and a1, . . . , a6 ∈ R.

If the projective set

{(X : Y : Z) ∈ P2(R) | Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3}

defines a smooth curve, then it is called elliptic curve and it will be denoted by Ea1,...,a6(R). If also

a1 = a2 = a3 = 0,

we will simply denote it by Ea4,a6(R). Whenever the coefficients {ai}i are understood or irrelevant,

we shorten the notation as E(R).

It is well-known that the smoothness of such a curve depends on the invertibility of its discriminant

∆a1,...,a6 [62, Section III.1]. When 6 ∈ R∗, every elliptic curves may be written in the form EA,B(R)

for some A,B ∈ R satisfying

∆A,B = −16(4A3 + 27B2) ∈ R∗.

An interested reader may find the remaining cases in [62, Appendix A].

We highlight that the considered assumptions on the base ring are necessary conditions for defining

elliptic curves with efficient addition laws, but they are not sufficient to ensure the existence of such

objects.

Example 2.8. Let us consider R = Z. Although it respects the conditions we posed on the underlying

ring, no elliptic curves may be defined over such a ring. In fact, should such a curve exists, its

Weierstrass equation would also define an elliptic curve over Q with good reduction at every prime.

This is known to be not possible [67], as it may also be verified explicitly [55].

Actually, we also know that no abelian varieties may exist over Z, as it was proved independently

by Fontaine [17] and Abrashkin [1].

2.4. The group structure. Elliptic curves constitute the genus-1 abelian varieties, those with di-

mension 1. In fact, it is known that when they are defined over a field an addition law may be defined

on them [62, Section III.2], making O the identity element and imposing that whenever P1, P2, P3 are

aligned points on such a curve, then P1 +P2 +P3 = O. This operation may be explicitly described in

terms of the coordinates of the given points on an open covering of the considered curve [3, 37, 38].

This addition law may also be extended to rings underlying Condition 2.2 as follows. Given two

points P1 = (X1 : Y1 : Z1) and P2 = (X2 : Y2 : Z2) of E(R), we define

V1 = (X
(1)
3 , Y

(1)
3 , Z

(1)
3 ) and V2 = (X

(2)
3 , Y

(2)
3 , Z

(2)
3 ),

where the above quantities are the polynomial relations in the entries of P1 and P2 defined in [3,

Section 4], modulo the following corrections [2] to two minor typos:

• in X
(2)
3 , write a3a4(−2X1Z2 −X2Z1)X2Z1 in place of a3a4(X1Z2 − 2X2Z1)X2Z1,

• in Y
(2)

3 , use−(3a2a6−a2
4)(−2X1Z2−X2Z1)X2Z1 instead of−(3a2a6−a2

4)(X1Z2+X2Z1)(X1Z2−
X2Z1).
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The point P1 +P2 = (X3 : Y3 : Z3) is defined as any primitive R-combination (X3, Y3, Z3) of V1 and

V2. In [40, Section 3] an algorithmic approach for computing this primitive vector is presented, and

this operation is proved to provide E(R) with an abelian group structure. Finally, we remark that if

E(R) has no points of order 2, then we simply have P1 + P2 = (X
(2)
3 : Y

(2)
3 : Z

(2)
3 ).

Example 2.9. Let us consider E = E0,1(Z/35Z) and P = (20 : 21 : 15) ∈ E. To perform P +O, we

compute

(X
(1)
3 , Y

(1)
3 , Z

(1)
3 ) = (20, 0, 5), (X

(2)
3 , Y

(2)
3 , Z

(2)
3 ) = (0, 21, 0).

We notice that none of the above triples is primitive, so they do not define points in P2(Z/35Z).

However, for every α ∈ Z such that 5 - α, their combination(
X

(1)
3 , Y

(1)
3 , Z

(1)
3

)
+ α ·

(
X

(2)
3 , Y

(2)
3 , Z

(2)
3

)
= (20, 21α, 15)

is primitive, and all these points correspond to P = P +O in P2(Z/35Z), since

(20, 21α, 15) = (15 + 21α) · (20, 21, 15),

and 15 + 21α ∈ (Z/35Z)∗.

3. Elliptic curves defined over C

When an elliptic curve is defined over the complex field, its group structure is independent of the

coefficients of its defining Weierstrass equation.

Given a lattice Λ ⊂ C, the Weierstrass ℘-function relative to Λ is defined by

℘
Λ : C→ C ∪ {±∞}, z 7→ 1

z2
+

∑
w∈Λ\{0}

(
1

(z − w)2
− 1

w2

)
.

For every lattice Λ, the function ℘
Λ is an even elliptic function, which converges absolutely and

uniformly on every compact subset of C \ Λ [62, Theorem VI.3.1].

The well-known uniformization theorem identifies elliptic curves with complex tori, showing that

for every elliptic curve E(C) = E/C there exists a lattice Λ ⊂ C such that the map

φΛ : C/Λ→ E(C), z →
(℘

Λ(z) : ℘′Λ(z) : 1
)

is a complex analytic isomorphism of Lie groups [62, Section VI.5]. Thus, the group structure of

elliptic curves over C is always

E(C) ' R/Z× R/Z.

The above isomorphism implies that the torsion subgroup of E(C) is isomorphic to

E(C)tors ' Q/Z×Q/Z,

and in particular the m-torsion points will be

E(C)[m] ' Cm × Cm.

We also recall that the above results over C may be extended to every field of characteristic 0 by

means of the Lefschetz Principle [62, Section VI.6].
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Example 3.1. Let R = Q be the algebraic closure of the rationals, namely the field obtained from

Q by adding the roots of any non-zero polynomial in Z[x]. Under the canonical embedding Q ↪→ C
every elliptic curve E(Q) is mapped into E(C). Since Q is algebraically closed, then the two torsion

subgroups coincide, namely

E(Q)tors ' Q/Z×Q/Z.

As an instance, let ρ = e
2πi
3 be a primitive 3-root of unity and consider the elliptic curve E0,− 1

4
(Q),

which lies inside the image of φZ+ρZ. One can explicitly verify that its 3-torsion subgroup is

E0,− 1
4
(Q)[3] =

〈(
0 :

i

2
: 1

)〉
⊕

〈(
ρ :

√
3

2
: 1

)〉
' C3 × C3.

4. Elliptic curves defined over R

When the underlying ring is the field of reals R, the group structure of E(R) only depends on its

discriminant ∆E , in fact we have [61, Corollary V.2.3.1]

E(R) '

R/Z if ∆E < 0,

R/Z× C2 if ∆E > 0.

This distinction reflects the topology of the curve: expressing EA,B(R) via its Weierstrass minimal

model, when ∆A,B < 0 this curve has only one connected component, which is symmetric with respect

to the affine x-axis given by {(x : 0 : 1)}x∈R. Hence, it may have only one intersection with that

line, which implies that the points of order 2 are {O, (r : 0 : 1)}, where r ∈ R is the unique real

solution of the equation x3 + Ax+ B = 0. On the other side, when ∆A,B > 0 there are r1, r2, r3 ∈ R
such that x3 + Ax + B = (x − r1)(x − r2)(x − r3), hence the points of order 2 in EA,B(R) are

{O, (r1 : 0 : 1), (r2 : 0 : 1), (r3 : 0 : 1)}, which may occur because EA,B(R) has two connected

components.

Example 4.1. Let us consider the elliptic curve E0,− 1
4
(R) with the same Weierstrass coefficients as

that of Example 3.1, but defined over the real numbers. Since ∆0,− 1
4

= 27 < 0, this curve has one

connected component which lies in the affine semiplane x ≥ − 1
3√4

. Its points of order 3 form a subgroup

of C3 × C3, but since R is not algebraically closed it may be trivial. Indeed, it has no affine points of

order 3, as its 3-torsion points are those computed in Example 3.1, which have complex entries.

On the other side, the curve E− 1
4
,0(R) has discriminant ∆− 1

4
,0 = 1 > 0, it has three 2-torsion points

and two connected components, lying respectively in the affine regions −1
2 ≤ x ≤ 0 and x ≥ 1

2 . Thus,

its group of points is R/Z× C2, with the C2 part generated by (−1
2 : 0 : 1).

5. Elliptic curves defined over number fields

5.1. Elliptic curves over Q. When the curve is defined over the rationals, Mordell proved that its

group of points is finitely generated [52], namely

E(Q) ' E(Q)tors × Zr,
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where r is the rank of E and E(Q)tors is its (finite) torsion subgroup. The latter is completely

understood, as there are 15 possibilities by means of a theorem of Mazur [44, 45]:

E(Q)tors '

Cn 1 ≤ n ≤ 10, or n = 12,

C2 × C2n 1 ≤ n ≤ 4.

These torsion points may be effectively computed, since the Nagell-Lutz theorem [43] shows that

when (X : Y : 1) ∈ E(Q)tors, then

x, y ∈ Z and y = 0 or y2 | ∆E ,

where ∆E is the discriminant of the curve.

Instead, the possible ranks r are far from being understood: while it is often conjectured that such

rank is unbounded, the largest known computable rank is 20 [15], even though an instance of elliptic

curve with rank at least 28 [14] has been presented. Under the GRH, the latter rank was proved to

be precisely 28 [29].

Example 5.1. Let us consider the elliptic curve E7,0(Q). By means of Nagell-Lutz theorem, for

computing its torsion part we only need to test the points (X : Y : 1) ∈ P2(Q) with

Y = 0 or Y 2 | ∆7,0 = −2673.

Let us assume Y 6= 0 (then also X 6= 0). From the affine Weierstrass equation Y 2 = X(X2 + 7) we

see that Y is even but neither X nor Y can be a power of 2. Moreover, X and X2 + 7 have different

parity but they multiply to a divisor of ∆7,0, and X2 + 7 cannot be a power of 7. This implies that

X = 7b for some 0 ≤ b ≤ 3, but none of those cases lead a rational solution for Y . Hence, we conclude

E7,0(Q)tors = {(0 : 0 : 1),O}.

We also know that these are all the rational points of E7,0(Q), as this example is a special case of [62,

Proposition X.6.2]: given an odd prime p ∈ Z such that p ≡ 7, 11 mod 16, we always have

Ep,0(Q) ' C2.

5.2. Higher-degree number fields. Even less is known when the underlying field is a number field

F of degree greater than 1. In its generalization of Mordell’s theorem, Weil proved that the group of

points is still finitely generated [71], i.e.

E(F ) ' E(F )tors × Zr.

In the quadratic case, there are only 26 possible different torsion groups [26, 24], namely

E(Q(
√
D))tors '



Cn 1 ≤ n ≤ 16, or n = 18,

C2 × C2n 1 ≤ n ≤ 6,

C3 × C3n 1 ≤ n ≤ 2,

C4 × C4.
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For a general number field K of degree d, a complete classification is still an open problem, but

much is known when d is small [64]. Among others, we recall for d = 3 the classification of torsion

subgroups arising from elliptic curves over cyclic cubic fields [12] or from rational curves that have been

base extended to cubic fields [53]. For higher degree extensions, we know the possible torsion orders

for 4 ≤ d ≤ 7 [11]. Moreover, the groups occurring infinitely often are known for d ≤ 6 [33, 34, 13].

In the general case, the size of these groups may be bounded by the Merel’s positive solution to the

torsion conjecture for elliptic curves [50], which shows that for every number field K of degree d there

exists a constant B(d) ∈ Z such that

|E(K)tors| ≤ B(d).

A generalization of the theorem of Nagell-Lutz may be applied to detect certain torsion points [62,

Therem VIII.7.1].

6. Elliptic curves over Fq

Let q = pe ∈ Z be a prime power. It is well-known [69, Theorem 4.1 and Corollary 3.11] that the

group of points of an elliptic curve over such field may have rank at most 2, as there are positive

integers n, k ∈ Z≥1 such that n|(q − 1) and

E(Fq) ' Cn × Cnk.

The groups arising this way depend on the trace of the considered curve, namely the trace of the

Frobenius endomorphism of E, which is

t = q + 1− |EA,B(Fq)|.

An elliptic curve of trace 1 is called anomalous, since it is isomorphic to its base field.

The possible values of t are known to be constrained by the Hasse bound [62, Theorem V.1.1]:

−2
√
q ≤ t ≤ 2

√
q.

Not every integer t in the above interval occurs as the trace of an elliptic curve over Fq. In fact,

Waterhouse proved [70, Theorem 4.1] that t is the trace of such a curve if and only if one of the

following conditions holds:

(1) (t, p) = 1,

(2) t = ±2
√
q and e is even,

(3) t = ±√q, p 6= 1 mod 3 and e is even,

(4) t = ±√pq, p ∈ {2, 3} and e is odd,

(5) t = 0 and either e is odd or p 6≡ 1 mod 4.

In particular, this implies that the Hasse interval over prime fields is full. From the above result,

a complete characterization of the possible groups of points for elliptic curves over finite fields has

seen the light, independently discovered by Ruck [57] and Voloch [68]. They proved that the following

is a complete list of the group structures of the elliptic curves of trace t defined over Fq, where the

enumeration corresponds to the above cases.
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(1) Let
∏
l l
el be the prime factorization of the curve order. There are integers 0 ≤ al ≤ min{vl(q−

1), b el2 c} such that its group of points is isomorphic to

Cpep ×
∏
l 6=p

(Clal × Clel−al ) .

(2) C√q±1 × C√q±1.

(3) Cyclic.

(4) Cyclic.

(5) The group is C2 × C q+1
2

or cyclic if q ≡ 3 mod 4,

cyclic if q 6≡ 3 mod 4.

Although the groups arising from curves over finite fields have been completely classified, the fre-

quency with which they occur is still a field of open research [16].

Example 6.1. Let us consider F25 = F5[x]/(x2 + 4x + 2) = F5(α), over which an elliptic curve

EA,B(F25) of size 20 (equiv. of trace t = 6) is defined. Since gcd(t, p) = 1 we are in case (i) of the

above result: from 20 = 225 we get e2 = 2, e5 = 1, hence 0 ≤ a2 ≤ 1, i.e. the possible groups arising

from curves of trace t over F25 are precisely

EA,B(F25) '

C20 for a2 = 0,

C2 × C10 for a2 = 1.

One can verify that the first case is achieved for

E3,α(F25) = 〈(α : α8 : 1)〉 ' C20,

while the second case holds for

E2,0(F25) = 〈(0 : 0 : 1)〉 ⊕ 〈(α : α : 1)〉 ' C2 × C10.

7. Elliptic curves over finite extensions of Qp

Let R = Qp be the field of p-adic numbers and K be a finite extension of degree d = [K : Qp]. Let

OK be the local ring of integers of K, whose maximal ideal is m, and let κ = OK/m be its residue

field.

For every local field we classically define a reduction morphism ∼ : OK → κ [62, Section VII.2],

which may be extended to the curve map

∼ : Eai(K)→ Eãi(κ), (X : Y : Z) 7→ (X̃ : Ỹ : Z̃).

The group structure of Eai(K) depends on the landing curve Eãi(κ), which needs not to be elliptic:

• if Eãi(κ) is smooth, the reduction is called good (or stable),

• if Eãi(κ) has a node, the reduction is called multiplicative (or semistable),

• if Eãi(κ) has a cusp, the reduction is called additive (or unstable).
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The case of multiplicative reduction is referred to as split reduction when the slope of the tangent

lines at the node belongs to κ.

The set Ens ⊆ Eãi(κ) of nonsingular points of the reduced curve still forms a group [62, Proposition

III.2.5]. Let E0(K) ⊆ E(K) be the set of points reducing to points in Ens. The complete classification

of special fibers of a Néron model [61, Section IV.8] shows that

E(K)/E0(K) '

Cvp(∆) if E has split multiplicative reduction,

Cn or C2 × C2 1 ≤ n ≤ 4, otherwise.

Thus, the groups of points arising over K depend on those of E0(K).

The kernel E1(K) ⊆ E0(K) of the reduction map is known to be isomorphic to the formal group

associated to E [62, Proposition VII.2.2], and

0→ E1(K)→ E0(K)
∼−→ Ens → 0,

is a short exact sequence of groups [62, Proposition VII.2.1].

If the reduction is good, then we have E(K) = E0(K) and E(κ) = Ens, thus recovering the group

structure of E(K) amounts to investigating when the above sequence splits. In particular, for K = Qp

we have E1(Qp) ' Zp, hence when the above sequence admits a section we get

Eai(Qp) ' Zp × Eãi(Fp).

The additive reductions have been studied in [32]: if K/Qp is unramified, then we have the Zp-
modules isomorphism

E0(K) '


(Zp)d × (Cp)

b, 0 ≤ b ≤ 2, if p = 2,

(Zp)d × (Cp)
b, 0 ≤ b ≤ 1, if p ∈ {3, 5, 7},

(Zp)d otherwise.

while if the ramification index e is such that 1 < e < p−1
6 , then we have

E0(K) ' (Zp)d.

As a corollary, we obtain the structure of E0(Qp) with additive reduction in terms of its Weierstrass

coefficients a1, . . . , a6:

E0(Qp) ' Zp or Zp × Cp,

where the latter occurs precisely if one of the following conditions holds:

• p = 2, and a1 + a3 ≡ 2 mod 4,

• p = 3, and a2 ≡ 6 mod 9,

• p = 5, and a4 ≡ 10 mod 25,

• p = 7, and a6 ≡ 14 mod 49.

Example 7.1. Let E = E−2,0(Q3). Since this curve has good reduction then

0→ Z3 → E
∼−→ E−2,0(F3)→ 0,
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is a short exact sequence of groups. It is easy to verify that

E−2,0(F3) = 〈(1 : 2 : 1)〉 ' C4,

and this point may be lifted to a point of E which has still order 4, since 1 is a root of the 4-division

polynomial ψ4 [62, Exercise 3.7], namely the polynomial whose roots are the abscissas of the 4-torsion

points of the curve, but 1 is not a root of its derivative ψ′4. Thus, we conclude that E ' Z3 × C4.

8. Elliptic curves over other fields

Elliptic curves defined over other base fields F have been investigated by several authors, who

usually aim at detecting the possible structures arising from their torsion subgroups.

Instances of finitely generated groups of points arise when F = Fq(T ) is the function field of a finite

field [36]. In such cases, the torsion groups that can appear, and appear infinitely often, have been

characterized [46].

On the other side, let F = Q(d∞) be the compositum of all the number fields of degree d. Although

we know that over such a field elliptic curves are not finitely generated, the torsion subgroups are

finite and completely classified in cases d = 2 [18, 19, 39] and d = 3 [10], as follows.

E
(
Q(2∞)

)
tors
'



Cn n ∈ {1, 3, 5, 7, 9, 15},

C2 × C2n n ∈ {1, 2, 3, 4, 5, 6, 8},

C4 × C4n n ∈ {1, 2, 3, 4},

Cn × Cn n ∈ {3, 6, 8}.

E
(
Q(3∞)

)
tors
'



C2 × C2n n ∈ {1, 2, 4, 5, 7, 8, 13},

C4 × C4n n ∈ {1, 2, 4, 7},

C6 × C6n n ∈ {1, 2, 3, 5, 7},

Cn × Cn n ∈ {8, 12, 14, 18}.

Another relevant instance of infinite algebraic extension of the rationals is its maximal abelian

extension F = Qab = Q({ζn}n∈Z>0), where ζn denotes a primitive n-th root of unity. We know that

elliptic curves defined over large fields of zero-characteristic have an infinite rank, and this was proved

true for Qab under certain hypotheses [30]. However, abelian varieties over Qab have been proved to

always have finite torsion subgroups [56]. In fact, for elliptic curves we have a complete classification

of such groups [6], as follows.
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E
(
Qab
)

tors
'



Cn n ∈ {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 25, 27, 37, 43, 67, 163},

C2 × C2n 1 ≤ n ≤ 9,

C3 × C3n n ∈ {1, 3},

C4 × C4n n ∈ {1, 2, 3, 4},

Cn × Cn n ∈ {5, 6, 8}.

9. Elliptic curves over rings of integers

In this section we consider the rings of integer R of number fields F with trivial class groups, as

those are the only rings of integers satisfying Condition 2.2 [40, Section 3].

As already discussed in Example 2.8, such curves may be smooth only if there are elliptic curves

over F with everywhere good reduction, whose detection is a problem that has attracted considerable

attention and that carries its own interest [7]. In the same example, we recalled that this may never

occur for F = Q, thus we will consider number fields of degree at least 2.

It is crucial to observe that no elliptic curves with short Weierstrass form may have everywhere

good reduction, since 2|∆A,B for every choice of A,B ∈ F . Thus, general addition laws [3] need to be

used.

9.1. Quadratic fields. Let us here assume that F = Q(
√
d). It is known that there are only 9

imaginary quadratic fields with trivial class group [54, Section I.6]. In all such cases, we know that

there are no elliptic curves with everywhere good reduction [63], thus there are no elliptic curves as

of Definition 2.7 over their rings of integers.

The case of real quadratic fields is more varied. There are many (conjectured: infinitely many [54,

Section I.6]) such fields for positive values of d, such as 2, 3, 5, 6, 7, 11, 13, 14, 17, 19, 21, 22, 23, 29, . . .

(see OEIS: A003172). Over such fields, many of them (e.g. d ∈ {2, 3, 5, 11, 13, 17, 19, 21, 23, . . . }) do

not admit elliptic curves with everywhere good reduction [60, Theorem 4]. In the remaining cases,

there are instances where the existence of such curves is still open (e.g. d ∈ {51, 62, 67, . . . }), while

there are cases where we know that such curves exist, namely d ∈ {6, 7, 14, 22, 29, . . . }. Several

authors have investigated algorithmic ways of producing such curves [9, 27]. For certain small values

of d, elliptic curves with everywhere good reduction are completely determined and their structures

have been classified [20, 21, 22, 23, 28]. Nevertheless, we do not have a complete characterization of

the possible curves with everywhere good reduction arising from the remaining cases yet.

Moreover, no dedicated investigation had been conducted on the group structures of elliptic curves

over the ring of integers of such admissible number fields. In fact, given number field F with ring of

integers R, and an elliptic curve Ea1,...,a6(F ) with everywhere good reduction, we know that Ea1,...,a6(R)

is a subgroup of Ea1,...,a6(F ), but it might be proper, as in the following example.

Example 9.1. Let F = Q(
√

22) and let R be its ring of integers, namely R = Z[
√

22]. Over

this field, there are (up to isomorphism) two elliptic curves with everywhere good reduction [curves
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2.2.88.1-1.1-a1 and 2.2.88.1-1.1-a2 of LMFDB database], and their groups of points are both

isomorphic to C2. Let us consider the first one, the curve E defined by the equation

Y 2Z +
√

22XY Z + (
√

22 + 1)Y Z2 = X3 +X2Z + (−18
√

22− 79)XZ2 + (38
√

22 + 185)Z3,

whose group is cyclic, as

E(F ) = 〈(4
√

22 + 10 : −7
√

22− 46 : 4)〉 ' C2.

We computationally verify that this curve has indeed everywhere good reduction, since its discriminant

∆E = 6519870
√

22 + 30580901 satisfies

(30580901− 6519870
√

22)∆E = 305809012 − 22 · 65198702 = 1.

Thus, the same Weierstrass coefficients define an elliptic curve over the ring of integers R = Z[
√

22]

of F . However, it is easy to see that

〈4
√

22 + 10,−7
√

22− 46, 4〉R = 〈2,
√

22〉 ( R.

Thus, the torsion generator over F is not a point inside P2(R), so we conclude

E√22,1,
√

22+1,−18
√

22−79,38
√

22+185(R) = 〈O〉 ' C1.

9.2. Higher degree number fields. If the quadratic case still presents several challenges to be

tackled, even less is known for higher degree number fields. Among them, many have class number

one, but curves with everywhere good reduction over them are far from being understood.

In [65] special families of cubic number fields admitting elliptic curves with everywhere good reduc-

tion have been characterized, while the same problem over number fields of a given degree has been

considered in [66].

The case of cyclotomic fields has also been investigated [59], but we miss complete classification

results over such fields as well.

Given that, not much is known in general on the groups arising from these rings, and their classifi-

cation remains an open and intriguing problem.

10. Elliptic curves over Z/NZ

Given a positive integer N ∈ Z>0, the groups arising from elliptic curved defined over Z/NZ have

been investigated in [40]. In particular, when N = pe is a power of a prime the group order is

pe−1|EA,B(Fp)|, while composite N ’s may be addressed via the Chinese Reminder Theorem.

In the unpublished paper [58] the exact determination of the group structure is exhibited. To be

more precise, the group of points of an elliptic curve EA,B(Z/peZ) depends on whether the projected

curve over Fp is anomalous, namely

EA,B(Z/peZ) '

EA,B(Fp)× Cpe−1 if |EA,B(Fp)| 6= p,

Cpe or Cp × Cpe−1 if |EA,B(Fp)| = p.
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By applying the Chinese Reminder Theorem to the curves defined over coprime components of N , we

obtain every possible group arising from elliptic curves over Z/NZ [58, Theorem 20]:

EA,B(Z/NZ) '
∏
p|N

|EA,B(Fp)|6=p

(
EA,B(Fp)× Cpvp(N)−1

)
×

∏
p|N

|E(Fp)|=p

Gp,

where every Gp may be either Cpvp(N) or Cp × Cpvp(N)−1 .

The rank of elliptic curves over such rings may be arbitrarily high, but it has been sharply bounded

in terms of the considered N [58, Proposition 23].

Example 10.1. We consider the curve E = E63707931,239467091(Z/659902243Z). One may straightfor-

wardly check that every point of E has order 13, since we have

E ' (C13)8.

In fact, this group has the largest rank among those of the above type [58, Example 25], since every

13-group arising from an elliptic curve over Z/NZ has rank not greater than 8.

11. Other rings

Other finite rings have been considered for constructing elliptic curves. Given a prime power

q = pe ∈ Z and an elliptic curve E over Rk = Fq[x]/(xk) ' Fq(ε), we know that the infinity part

of E(R) is a p-group [40, Section 4]. There have been some attempts to classify the group of such

curves: in [5] it is claimed that elliptic curves with a short Weierstrass model with a non-anomalous

projection may be decomposed as

EA0+A1ε,B0+B1ε(Rn) ' EA0,B0(Fq)× Fk−1
q .

However, this result appears to hold only for certain rings Rn. In fact, in general there may be points

at infinity of order strictly greater than p, as portrayed by the following example.

Example 11.1. Let R = F7[x]/(x8) ' F7(ε), and let us consider the elliptic curve E = E6,2(R). We

also consider its point at infinity

P = (ε : 1 : ε3 + 6ε7).

One can verify that

7P = (6ε : 1 : 0), 49P = O,

thus P is a point of E of order 49, showing that the characteristic of a ring needs not to be the order

of the infinity part of an elliptic curve constructed over that ring.

Finally, we point out that given a finite set of elliptic curves {E
a
(j)
i

(Rj)}1≤j≤n, we can construct an

elliptic curve over the ring
∏n
j=1Rj with componentwise operation, whose group of points is simply

EA1,...,A6

 n∏
j=1

Rj

 ' n∏
j=1

E
a
(j)
1 ,...,a

(j)
6

(Rj),
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where Ai =
(
a

(1)
i , a

(2)
i , . . . , a

(n)
i

)
for i ∈ {1, 2, 3, 4, 6}.

This way, a large assortment of groups may be achieved, by simply combining those discussed in

the present work.

12. Final comments and open problems

We have surveyed the group structure arising from elliptic curves defined by a Weierstrass equation

over rings satisfying Condition 2.2. Although for such abelian varieties a group law may be explicitly

defined in terms of the coordinates of their projective points, the determination of their group structure

is often challenging and still presents many unknown facets. The following is a summary of the main

rings considered in this work, with the corresponding groups classification.

Base ring Paper section Group structure

C 3 R/Z× R/Z
R 4 R/Z or R/Z× C2

Q, Q(
√
D) 5 torsion classified, rank open

Number fields of degree > 2 5 open

Fq 6 all classified: cyclic or rank 2

Qq 7 open, depending on the reduction

Fq(T ) 8 torsion classified, rank open

Q(d∞) 8 torsion classified for d ∈ {2, 3}, rank ∞
Qab 8 torsion classified, rank open

Rings of integer of number fields 9 open

Z/NZ 10 all classified

Fq[x]/(xk) 11 open for large values of k

Figure 1. Group structures of elliptic curves defined over the given ring.

From the present work it is evident that much more research has been conducted for curves defined

over fields, as they are the structures over which their group law has first been discovered. However,

many more rings might be considered to perform similar constructions, and their groups of points

may conceivably constitute a fertile field of both abstract objects and tools for concrete applications.

As an instance, cryptographic protocols may be designed and proved secure over elliptic curves, when

relations inside their groups of points cannot be explicitly reduced to efficient finite arithmetic. The

construction of such curves is often linked to other thought-provoking problems, as is the case for the

classification of curves with everywhere good reduction in order to define elliptic curves over rings of

integers.
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