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Abstract
Usable security and privacy researchers use many study
methodologies, including interviews, surveys, and laboratory
studies. Of those, lab studies allow for particularly flexible
setups, including programming experiments or usability eval-
uations of software. However, lab studies also come with
challenges: Often, it is particularly challenging to recruit
enough skilled participants for in-person studies. Especially
researchers studying security information workers reported
on similar recruitment challenges in the past. Additionally,
situations like the COVID-19 pandemic can make in-person
lab studies even more challenging. Finally, institutions with
limited resources may not be able to conduct lab studies.

Therefore, we present and evaluate a novel virtual study en-
vironment prototype, called OLab, that allows researchers to
conduct lab-like studies remotely using a commodity browser.
Our environment overcomes lab-like study challenges and
supports flexible setups and comprehensive data collection.
In an iterative engineering process, we design and implement
a prototype based on requirements we identified in previous
work and conduct a comprehensive evaluation including a
cognitive walkthrough with usable security experts, a guided
and supervised online study with DevOps, and an unguided
and unsupervised online study with computer science students.
We can confirm that our prototype supports a wide variety of
lab-like study setups and received positive feedback from all
study participants.

1 Introduction

Laboratory studies are common in usable security and privacy
research and find broad application in many experiments with
end-users or expert users. Researchers can flexibly set up very
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specific study environments and collect a wide variety of data,
including video and audio recordings [31, 50, 41], think-aloud
data [2, 16, 5, 37], or user behavior for particular software
and tooling [4, 12, 10, 5]. While laboratory studies support
flexible experimental setups and data collection, they come
with the following challenges:

Participant Recruitment. It is often challenging to recruit
sufficiently skilled participants for in-person lab studies. Due
to the geographic location of a research lab or specific re-
quirements for participants such as age [35], gender [19],
or professional experience [2, 5, 30, 47], a laboratory study
might not be feasible. In all scenarios, conducting expert stud-
ies with security information workers (SIWs) to test security
development and system design [3, 11, 1, 37, 23, 10], system
configuration and administration [16, 46, 45], or test and ana-
lyze those systems’ security [31, 12, 5, 41, 32] is challenging.
Local expert participant pools are usually too small and might
lack diversity, representativeness, or statistical power. These
challenges required researchers to be pragmatic in their study
design, e. g., by recruiting computer science students as stand-
ins for developers for lab studies [2, 24, 25, 16, 12, 46, 32]
or by simplifying programming tasks to a few lines of code
that can be studied online. Hence, researchers have started to
conduct expert studies remotely [43, 38, 27, 5, 50, 37].

Complicated Circumstances. Laboratory studies in-person
are feasible as long as no circumstances prohibit inviting
participants to a research lab. However, events such as the
COVID-19 pandemic make in-person lab studies even more
challenging. Alternatively, researchers conduct studies on-
line [52, 1, 4, 31, 10] dealing with the same restrictions as
described above. Additionally, lab studies require certain re-
sources, including space, personnel to supervise participants,
and equipment, e. g., workstations to conduct studies.

To address the challenges above, we make the following
contributions:

• We use a literature-based requirements engineering
process to identify requirements for typical lab studies
in usable security and privacy research based on previous
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work. Therefore, we analyze 24 publications, including
SIW studies, since they require particularly skilled par-
ticipants who might be geographically widely distributed
and usually hard to recruit.

• We design and implement a virtual study envi-
ronment prototype that we call OnlineLaboratory
(short OLab). OLab supports highly flexible lab-like on-
line studies with extensive data collection. This virtual
study environment allows researchers to recruit partic-
ipants from anywhere and conduct highly customized
studies in a commodity browser. Researchers can freely
choose operating systems and tooling and collect a wide
variety of data from participants, including edited files,
copy and paste events, browser histories, and screen and
audio recordings.

• We evaluate our virtual study environment prototype
in three studies (Section 4) to illustrate its applicability
to security studies with expert users. First, we conduct a
cognitive walkthrough with four usability experts; sec-
ond, a guided study with nine experienced DevOps; and
third, an online programming experiment with 16 com-
puter science students.

• Based on the evaluation results, we iteratively improved
OLab’s usability and user experience.

We use a literature-based requirements engineering process to
design and implement a virtual study environment prototype
that we call OnlineLaboratory (short OLab). OLab supports
highly flexible lab-like online studies with extensive data
collection. This virtual study environment allows researchers
to recruit participants from anywhere and conduct highly
customized studies in a commodity browser. Researchers can
freely choose operating systems and tooling and collect a
wide variety of data from participants, including edited files,
copy and paste events, browser histories, and screen and audio
recordings.

Figure 1 depicts the overall structure of this work. We pro-
vide further information regarding OLab on an accompanying
website.1

While we designed and evaluated our prototype in the light
of usable security experiments with SIWs, we are convinced
that it can be seen as a blueprint for a general-purpose plat-
form to conduct lab-like usable security and privacy user
studies with expert users and end-users, during the COVID-19
pandemic and beyond.

2 Related Work

We discuss related work focusing on security information
workers in three key areas: Laboratory experiments, remote
studies that are not browser-based, and browser-based online
studies. Finally, we aimed to identify the most recent and

1https://publications.teamusec.de/2022-soups-olab/

1. Literature Review (Section 2 & Table 1)
Literature review of 93 publications, considering 24 works with
security-focused developer studies in detail.

2. Tool Design (Section 3 & Figure 2)
Establishing requirements, implementing a OLab prototype with study
workflows, examine advantages and disadvantages of our approach.

3. Evaluation (Section 4)
Iterative approach to test and improve the prototype of OLab based
on three distinct studies.

3.1 Expert Cognitive Walkthrough (Section 4.1)
Expert walkthrough with four user experience experts to ensure
usability from a professional point of view.

3.2 Guided DevOps Study (Section 4.2)
Guided functionality evaluation with nine DevOps to evaluate
functionality and usability from participants’ point of view.

3.3 Comparison Experiment (Section 4.3)
Direct comparison with 16 students to an online programming
experiment based on Python’s PyCryptodome library.

Figure 1: Diagram illustrating literature review, OLab’s de-
sign, and its evaluation.

relevant requirements for OLab based on task-based studies
with SIWs, published at high-quality venues in the recent past
(cf. Table 1). Therefore, we included work from USENIX
SOUPS, ACM CHI, IEEE Security and Privacy, USENIX
Security, NDSS, ACM CCS, and (Euro)USEC. We use them
as a foundation to design, implement, and evaluate our OLab
environment.

Lab Studies. Conventional lab studies often focus on partic-
ipants performing a task on-site, either with a researcher or
while being observed.

Acar et al. investigated in a lab study with 54 Android de-
velopers, how different information sources affect code secu-
rity when solving security and privacy-related programming
tasks [2]. Krombholz et al. conducted a lab study with 28 par-
ticipants that had to securely configure TLS on a web server to
explore and identify usability challenges in that process [16].
Follow-up work by Tiefenau et al. applied the original study
methodology to Let’s Encrypt and Certbot, finding better
usability leading to a higher number of secure TLS deploy-
ments [46]. Naiakshina et al. performed a qualitative usability
study with 20 computer science students to understand bet-
ter how developers handle secure password storage [24]. In
2018, Naiakshina et al. replicated a study examining ecolog-
ical validity by priming participants using the deception of
a real-world task; they concluded that it has a significant im-
pact, resulting in more secure solutions [25]. Hänsch et al.
examined the understanding of obfuscated source code in re-
verse engineering process in a lab study with 66 students [12].
Nosco et al. proposed a new search strategy for finding bugs
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and software vulnerabilities. They grouped 12 participants
into small teams within a ten-day lab experiment and had to
discover vulnerabilities in several services [30]. Smith et al.
conducted both a heuristic walkthrough and a lab study eval-
uating the usability of four security-focused static analysis
tools, finding several usability issues. In the lab study, 12 de-
velopers had to fix warnings reported by those tools [41]. A
similar study by Tupsamudre et al. identified several usabil-
ity problems in two open-source Static Application Security
Testing (SAST) tools; in a lab study, eight developers had to
solve a password storage task in a web application while using
the tools [47]. Plöger et al. conducted a lab study evaluating
the usability of the Clang Static Analyzer and libFuzzer with
32 local CS Students and Capture-the-flag players, finding
that libFuzzer performs a lot worse on usability compared
to Clang Static Analyzer [32]. All in all, this research has in
common the limitation of a local sample, often using students
as stand-ins for developers or administrators.

Remote Studies. Besides conventional lab studies, some
study setups work remotely over the internet, using online
calls or self-reporting so participants can solve the tasks in
any location using their own computers.

For example, Ruef et al. presented a novel cybersecurity
contest that included breaking code and encouraging devel-
opers to build secure applications [38]. The authors hosted
the contest and evaluated the solutions via an automated sys-
tem regarding security. Based on the contests, Votipka et al.
conducted an in-depth qualitative analysis to understand com-
mon security mistakes made by developers [49]. Nguyen et
al. demonstrated in a remote experiment with 39 Android
developers and students that IDE security plugins can be
an effective measure helping developers with writing secure
code [27]. Aksu et al. evaluated the open-source vulnerabil-
ity scanner OpenVAS concerning its usability by employing
heuristic walkthroughs and an experiment with 10 security
experts at a single cybersecurity company. The participants
had to solve six different tasks, ranging from scanning a sys-
tem to choosing remediation actions [5]. In 2021, Roth et al.
investigated the misconceptions web developers have with
Content Security Policies (CSP) through a qualitative Zoom
interview study with 12 participants [37].

Multiple papers replicated and extended studies by Na-
iakshina et al. [24, 25]: In 2019, Naiakshina et al. showed
that online freelancers behave similarly as students [23]; in
2020, Danilova et al. replicated the original lab study with
freelancers and the deception of a real-world project which
had a negligible effect [7]; also in 2020, Naiakshina et al.
demonstrated that professional developers perform better than
students and freelancers [22]. Another study of Votipka et
al. conducted semi-structured observational interviews with
16 reverse engineers to understand the reverse engineering
process and to improve interactions with reverse engineer-
ing tools [50]. Several of these studies involved downloading

code and uploading solutions, with no possibility of observing
intermediate attempts or behavior.

Browser-Based Studies. A specific type of remote studies
utilizes browser-based environments that participants can ac-
cess via a web browser developed explicitly for the respective
study. These are more closely related to OLab.

For example, Yakdan et al. conducted an online experi-
ment to evaluate the usability of different decompilers for
reverse engineering with nine professional malware analysts
and 21 students [52]. Oliveira et al. conducted an experiment
with 109 developers who had to solve six programming puz-
zles in Java, which include so-called API blind spots [31].
The results underline the importance of well-designed APIs,
as (security) blind spots reduced the number of functional and
secure solutions.

Acar et al. evaluated the usability of different cryptogra-
phy Python APIs with 256 GitHub developers, who had to
solve basic cryptography tasks with the APIs in a web-based
study environment [1]. Based on this setup, Gorski et al. con-
ducted another experiment with 53 developers, examining the
effect of integrated security advice and warning messages
on code security [10]. Furthermore, Fischer et al. evaluated
the effect of Google search ranking results on code security
and functionality with 410 GitHub developers using the same
setup [9]. In another paper, Acar et al. conducted an online
experiment with four different security-critical programming
tasks (e. g., encryption, password storage) with 307 develop-
ers from a GitHub convenience sample to assess the validity
of experiments with GitHub users [4]. Based on this study
and the previously mentioned one by Acar et al. [1], Stran-
sky et al. presented a browser-based virtual laboratory called
Developer Observatory and experiences from using it for de-
veloper studies [43]. The main idea of Developer Observatory
is similar to this paper’s approach, but limited to languages
supported by Jupyter Notebook kernels [15]. OLab follows
a more holistic approach, combining multiple different steps
(e. g., introduction, consent form, tasks, surveys, information
pages) in a single integrated workflow.

To summarize, these publications made significant con-
tributions to our research community, thus underlining the
importance of controlled experiments in which software de-
velopers, operators, and others solve tasks. Therefore, we
derive and evaluate requirements for a remote study platform
to facilitate research with such methods.

3 OLab Design and Implementation

In this section, we describe the requirements we identified
in previous work, illustrate constructed study workflows for
OLab both from a researcher’s and participant’s point of view,
and discuss key features of OLab.



Table 1: Overview over our categorization of related work in the field of developer security.
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[38] 2016 156 3x2w C
[2] 2016 54 01:00 J

[52] 2016 30 01:00 C
[1] 2017 256 01:00 PY

[24] 2017 20 08:00 J
[27] 2017 39 01:00 J
[4] 2017 307 01:00 PY

[16] 2017 35 02:00
[25] 2018 40 08:00 J
[31] 2018 109 >00:20 J
[12] 2018 66 00:47 J
[10] 2018 53 ? PY
[46] 2019 31 05:00
[5] 2019 10 ?

[23] 2019 43 06:30 J
[50] 2020 16 01:10
[7] 2020 43 72:00 J

[22] 2020 36 08:00 J
[30] 2020 20 80:00 C,PY
[41] 2020 12 01:00 J,C,P
[47] 2020 8 00:30
[32] 2021 38 20:00
[37] 2021 12 01:33 J,PY,P
[9] 2021 410 ? -

1 J=Java; PY=Python; C=C/C++; P=PHP

3.1 Identifying Requirements

To identify requirements for the OLab environment, we con-
sidered all identified previous work (cf. Section 2). We started
with high-level categories (cf. Table 1), collecting prevalent
study environments, tools, and approaches. Six researchers
created, merged and revised categories jointly and then de-
cided on definitions based on these categories, resulting in our
final codebook. Two or more researchers used “iterative cate-
gorization” [26] and re-coded all publications using the final
codebook, resolving any emerging conflicts immediately, so
we refrain from reporting the inter-rater reliability (IRR) [20].

Diverse Study Setups. We identified three different types
of tasks for SIWs. 13 studies (54.1%) included security de-
velopment tasks, referring to the implementation or use of
security relevant source code (e. g., studies investigating the
use of cryptography libraries). This type of study was most
common in our dataset. Less common were 9 security analy-
ses (37.5%), which included tasks such as reverse engineering
binaries or finding vulnerabilities in code. In these studies,
researchers provided participants with example binaries and
tools. Additionally, 2 papers (8.3%) included security config-
uration studies. They provided participants with a setup that
they should configure to be secure, e. g., a server stack. To
move such lab studies to an online environment, OLab needs

to be capable of handling diverse study setups. These setups
include providing and editing source code, configuration files,
network connections, and running arbitrary applications.

High Accessibility for Participants. The top 5 studies with
most participants (between 156 and 410) all were either
remote- or browser-based. Browser-based studies rely on on-
line mass recruitment, using platforms like Amazon MTurk
or emails to reach developers globally. 10 studies (41.6%),
of that 7 Lab Studies (70%of Lab studies) relied on univer-
sity students for their sampling, only two of which recruited
additional non-student participants to improve their sample
diversity and size. To address the limitations of Lab study
recruitment and allow for more diverse sampling procedures,
OLab should obtain the ease of browser-based studies. It
needs to be easy to access using a commodity browser. Fur-
thermore, it should scale to many concurrent participants.

Data Collection. In previous work, researchers collected a
wide variety of data from participants, including source code
(used by 16, 66.6%) and browser profiles (7 studies, 29.2%).
They also tracked copy & paste events (6 studies, 25.0%) and
more fine-grained browser or IDE behavior (1 study, 4.2%).
Furthermore, they recorded screen and audio (3, 12.5% and 4,
16.7%, respectively). Hence, OLab needs to be able to collect
all of the above information.
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Figure 2: Overview of a typical setup with OLab. Walkthroughs labeled for researchers (A–F) and participants (1–6). See
Section 3.2 for an in-depth label description.

3.2 Study Workflow

This section describes the interaction process between OLab,
researchers, and study participants. Figure 2 illustrates an
example study setup both from a researcher’s (A–F) and par-
ticipant’s (1–6) perspective.

Participant Perspective. Steps 1–6 in Figure 2 illustrate the
participants’ perspective.

(1) Receive Invite: Invitees can participate in a study re-
motely by accessing a (unique) invite URL with a
HTML5-capable commodity browser on a desktop or
laptop computer, using a sufficiently stable internet con-
nection (validated for 8.0 Mbit/s downlink and 0.8 Mbit/s
uplink).

(2) Landing Page & Consent Form: After clicking the
invite URL, OLab forwards invitees to a landing page
showing study information and a consent form (cf. Fig-
ure 7a).

(3) Briefing: After giving consent, OLab presents partici-
pants a full study description, including an introduction
to the study environment (cf. Figure 7b).

(4) Solving Tasks: Participants are encouraged to work on
tasks in full-screen mode, look up the study and task
descriptions with a mouse click, skip a current task, or
finish the entire study. OLab aims to provide a working
experience as close to a regular desktop environment as
possible (cf. Figure 7c).

(5) Survey Questionnaires: At any point in a study, OLab
allows researchers to forward participants to external
websites, including surveys (e. g., using Qualtrics).

(6) Debriefing & Exit: After solving all tasks, OLab allows
researchers to forward participants to an exit survey and
a debriefing website.

Overall, we designed and implemented OLab to be unobtru-
sive, engaging, and fail-safe for participants.

Researcher Perspective. Steps A–F in Figure 2 illustrate the
researcher’s perspective.

(A) Setup Study Environment: During the study setup,
researchers can freely choose operating systems, appli-
cations, tools, file access, and connection control.

(B) Setup Tasks & Conditions: OLab supports within-
subjects, between-subjects, and mixed studies. Tasks
and conditions can be randomized or arranged using
the Latin squares method [42].

(C) Scaling: OLab is based on a highly scalable Kubernetes
cluster [17] and allows researchers to run studies in dif-
ferent geographical regions with many concurrent partic-
ipants to optimize connection speeds and scale available
environments.

(D) Generate Invites: OLab supports individual invite to-
kens for participants, forgoing the need to save partici-
pants’ personally identifiable information (PII). Invite
tokens can be used to track participants across other
services (e. g., Amazon’s MTurk).

(E) Study Progress: Researchers can track the study
progress and modify and manage scaling options using
a dashboard.

(F) Data Access: After study completion, researchers can
gather the collected data (e. g., specific study metrics,
metadata, and questionnaire answers) with a mouse
click.

3.3 Key Features
Below, we illustrate key features, and discuss their advantages
and limitations.

Common Task Support. OLab supports the automation of
common tasks. These include collecting informed consent
before starting a study and integration with external tools
that provide surveys during and after the tasks. The tool auto-
matically stores collected data on a per task and participant
base.



Scalability. The OLab prototype allows scaling resources up
and down to adapt to the number of concurrent participants.
Furthermore, the prototype allocates resources dynamically
for all participants. This scaling is possible as OLab relies
on a Kubernetes cluster [17] to spin up, secure, scale, and
orchestrate study environments. For more technical details,
we refer to Appendix A.

Supported Study Types and Tasks. OLab can cover nu-
merous study types and tasks. To refer back to the related
work evaluation in Table 1, we commonly identified devel-
oper studies utilizing programming tools like IDEs and git
(8, 33.3%) which OLab supports. Secure configurations al-
low for apps requiring restricted or encrypted network access
(e. g., git or web servers). Support for volumes by Kubernetes
allows for persistent storage across tasks, and GPU support is
available [18].

Operating System and Tool Support. Six studies (25.0%)
from related work relied on Linux, and one on Windows.
Therefore, we decided to support Linux containers mainly.2

This setup enables customized virtual environments focusing
on the applications relevant to a specific study. In addition,
the containers can provide environments for all existing pro-
gramming languages (e. g., Python, Java, and C/C++). OLab
supports full desktop environments with pre-installed applica-
tions and configuration files for more complex studies.

Data Collection. OLab allows collecting a large variety of
different data including source code, configuration files, or
other files. Additionally, OLab observes user interactions by
recording copy-and-paste events, mouse clicks, or keyboard
strokes. These observations can be further complemented with
screen recordings. If required, system events can be captured,
e. g., kernel events and logs. Researchers can freely configure
all of the above data types.

Internet Connectivity. Unsupervised participants using the
internet on containers can theoretically access any resources
reachable by the parent network, e. g. the university, or cloud
infrastructure (depending on the hosting setup). Researchers
can address this by using firewalls or proxies provided by
Kubernetes for network access. These can be configured as
part of the study environment. By default, OLab allows full
access to the internet except to other study containers.

Access Control. Since internet connection and other security
risks exist with the kinds of setup we provide, we describe
measures that we took to allow researchers of OLab to iden-
tify individuals misbehaving in the infrastructure: By default,
OLab generates secure random tokens. These tokens serve as
personalized tickets for participants, which researchers can
link to participant profiles (e. g., MTurk profiles). OLab as-
signs containers to these tokens, tracks timings and container
addresses, and participant-specific data, which can serve as a

2For additional OS support, a Windows Docker image (requiring Win-
dows Server with an appropriate license) is available [8].

chain of accountability. Hence, researchers can trace potential
abuse back to individual participants.

Participants’ User Experience. Overall, OLab aims to pro-
vide good usability for participants. First, the effort to partici-
pate in a study is low, as participants only need a commodity
web browser. Second, OLab allows easy navigation through
study parts by offering progress indicators (cf. Fig. 7b) and
“Start” and “Continue” buttons. Third, participants can access
study and task descriptions at any point. Finally, participants
that re-access a study after interruption are by default redi-
rected to their current step instead of having to restart or
navigate themselves.

Lab Study Support. In addition to using OLab for online
studies, researchers can use it in traditional in-person labora-
tory settings. In that case, the experiment computer can access
the OLab frontend, so that OLab provides the automatic study
setup and data collection.

4 Evaluation

Overall, we followed an iterative usability evaluation and engi-
neering approach [29]. We focused on participants we could
easily approach (e. g., researchers, local CS students) and
stopped recruiting once an evaluation step detected no further
usability problems. We conducted studies with smaller but
increasing sample sizes, instead of one large-scale usability
study, following best practices for usability engineering [48].
We think our approach is suitable to provide good usability
for OLab.

We conducted three studies, including (1) a cognitive walk-
through with experienced usable security researchers, (2) an
evaluation from the participant’s perspective, and (3) a com-
parison to an alternative online study setup. The first study,
a cognitive walkthrough with experienced usable security re-
searchers, focused on gaining first insights into participant
usability (Section 4.1). The second study focused on a quali-
tative usability evaluation from the participants’ perspective
(Section 4.2). Finally, the third study compared OLab to an
online task-download study (Section 4.3). While the first two
studies are formative, guided studies to collect feedback for an
iterative improvement of the OLab, the third was summative
and inspired by a study setup from previous work [1]. This
study setup allowed us to construct a well-evaluated version of
the participant view. We also chose this setup to evaluate two
different sets of expert populations: developers and DevOps.
Furthermore, the two setups demonstrate the flexibility of
OLab regarding different study types and tasks (e. g., pro-
gramming and system configuration), different requirements
for data collection, and a diverse participant pool.

Below, we summarize the ethical aspects of all three studies
and provide an overview of our goals for each study, recruit-
ment, participants’ demographics, and limitations. Finally, we



describe the three studies and their results in detail in the
following subsections.

Ethics. Our institution did not require formal Institutional
Review Board (IRB) approval for the types of studies we
conducted in this work. However, compliance with standard
IRB requirements is a focus of OLab. Participants agreed to a
consent form modeled after IRB-approved consent forms in
previous work [51].

We handled the collected data in our studies under strict
German data and privacy protection laws and the European
Union General Data Protection Regulation (GDPR). Further-
more, to prevent exposure of any data to third parties, the
OLab infrastructure runs entirely self-hosted.

Evaluation Goals. During the studies, we aimed for the fol-
lowing evaluation goals:

1. EG1: Usability. How well does the OLab follow com-
mon usability guidelines?

2. EG2: Perception. How do participants perceive studies
using the OLab prototype?

3. EG3: Limitations. What problems can occur during the
study? What requirements do all participants need to
fulfill to use our OLab?

4. EG4: Comparison. How do studies with OLab compare
to other conventional online study approaches?

For EG1, we consider usability goals and rules to be gener-
ally unknown to participants. Therefore, we decided to eval-
uate EG1 by conducting expert walkthroughs (Section 4.1).
EG2 and EG3 are the focus of a guided DevOps study (Sec-
tion 4.2). This study measures physical requirements like
hardware and Internet bandwidth, but also collects feedback
on the perception of participants regarding the study and un-
covers misconceptions. In the third study, we focus on the
comparison to other study types as detailed in EG4 (Sec-
tion 4.3). This unsupervised study identified a few more tech-
nical limitations and usability challenges that did not come
up in the previous supervised studies.

Recruitment and Demographics. Below, we describe all
three studies’ recruiting process and participant demographics.
Table 2 provides an overview of the collected demographics.
For most demographic questions, we allowed multiple an-
swers (cf. replication package in Section 5).

For the cognitive walkthroughs, we recruited four experi-
enced usable security researchers (Section 4.1). The experts
were not involved in the development or previous test phases
of OLab. All participants have a Master’s degree or Ph.D. in
computer science. The average experience in usability and
conducting studies was 3.88 years (median = 3.5). We con-
sider them all experienced usability security researchers, as
they actively research and conduct studies in usable security
and privacy.

For the second study (Section 4.2), we recruited nine expe-
rienced DevOps. We chose three recruitment channels: stu-

Table 2: Demographics for valid participants from all three
studies. Omitting “Don’t know”/“Don’t want to answer” an-
swers.
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Participants
Started 4 9 23
Finished 4 9 19
Valid (n =) 4 9 16

Gender
Male 50.0% 100.0% 93.8%
Female 50.0% 0.0% 6.2%
Not M/F (Free Text) 0.0% 0.0% 0.0%

Education
Secondary 0.0% 33.3% 62.5%
Bachelor’s 0.0% 33.3% 37.5%
Master’s or higher 100.0% 33.3% 0.0%

Age (in years)
Median 27.5 29.0 22.0
Mean (µ) 27.75 29.88 22.06
Std. dev. (σ) 2.5 6.33 1.57

Relevant Experience (in years)†

Median 3.5 - 1.5
Mean (µ) 3.88 - 2.27
Std. dev. (σ) 2.32 - 2.05

† Conducting studies and Python programming respectively.

dents from our university that worked in small- and medium-
sized enterprises (2 participants), an online forum for DevOps
(1 participant), and posts on four Subreddits related to De-
vOps (6 participants). Three DevOps had secondary educa-
tion, three had a Bachelor’s degree, and three had a Master’s
degree or a Ph.D.

For the third study (Section 4.3), we recruited a sample
of 23 computer science students from our university. The
study took two hours, and we compensated participants with
AC100. Four participants dropped out during the experiment,
and 19 participants completed the study. We excluded another
three participants due to longer breaks. Hence, 16 valid partic-
ipants completed the study overall. Most of them were male
(93.8%; 15). The majority studied for a Bachelor’s degree
(62.5%; 10), while the remaining strived for a Master’s degree
(37.5%; 6). The average Python programming experience was
2.27 years (median = 1.5).

Limitations. Our studies share limitations common among
qualitative and task-based studies, like an opt-in bias concern-
ing participants’ voluntary participation. We recruited people
in a snowball sampling from our network for the cognitive
walkthroughs. While we believe these are appropriate pro-
fessionals, they may be biased towards our team and tool.
We, therefore, refrain from evaluating and including their
usability ratings beyond the walkthroughs themselves and
exclude them from further conclusions for EG1, the usability
of our tool. We recruited students to perform tasks that might
not represent real-world developers in the comparison study.
However, students were used in previous studies and found



to be acceptable proxies for professional software develop-
ers [4, 39, 44] for the type of study tasks we performed [1].
We explicitly pointed participants to the fact that we aimed to
collect self-reported usability assessments for the infrastruc-
ture and not single components of the studies (e. g., the IDE
we provided). While this worked smoothly for the supervised
cognitive walkthroughs to help participants, we could not
intervene in the comparison study. Some participants might
have misunderstood our framing or explanations, as is natural
in meta-evaluation studies. We evaluated descriptions in our
pilot run with students to minimize this risk.

4.1 Cognitive Walkthrough

After developing and piloting the OLab environment, we eval-
uated the usability from four usability experts’ points of view
via cognitive walkthroughs.

Methodology. We conducted four cognitive walkthroughs
in July 2020 during the COVID-19 pandemic using an on-
line meeting software with screen and audio sharing. Two
researchers accompanied and recorded each walkthrough
with the participants’ consent for later transcription. The ex-
perts provided usability feedback using different operating
systems (macOS, Windows, and Linux) and web browsers
(Chrome/Chromium and Firefox). Before the cognitive walk-
throughs, we asked the participants to watch an animated
video that explained and reminded them about Nielsen’s ten
usability heuristics [28]. We also told the participants to write
down bullet points for each heuristic to remember them during
the walkthrough.

We asked the experts to perform a study in the role of
participants, except they did not have to solve the provided
programming tasks. Instead, the experts should focus on the
usability of the OLab prototype. To guide the walkthrough,
we identified ten typical workflows for participants within the
study environment. The experts had to pass each workflow
step to finish the walkthrough successfully. During the walk-
through, we collected usability feedback based on Nielsen’s
heuristics and further feedback on the user interface (UI)
and experience (UX). After completing the walkthrough, we
discussed the comments and feedback and implemented the
required changes before the following walkthrough.

Results. Table 3 provides detailed background information
of the recruited experts, including both their study background
and experience within their research field. The experts were
generally optimistic about OLab’s usability. Each expert com-
pleted all walkthrough steps without any significant issues.
As Brooklyn summarized it:3 “Everything was running fine,
without any problems. [. . .] I didn’t have any lag, it was like I
was on my own system. [. . .] I didn’t even notice that I was
not working on my own computer.” (Brooklyn).

3We translated all quotes in this paper from German to English.

Most expert feedback was on UI and UX. For example,
we received feedback to name the buttons and links clearer
and more consistent. Brooklyn mentioned that clicks within
a popup should not close it and that all UI elements should
receive mouseover tooltips or have their text improved to en-
hance clarity for participants during a study. As a result, we
also added a help button to the sidebar (cf. Figure 7). Further
on, Charlie suggested better framing of the study process by
initially displaying the number of tasks that participants are
going to do and generally improving the wording for indicat-
ing the study progress. Moreover, Dakota suggested adding
functionality for participants to review content from previous
pages, e. g., the consent form or introduction videos, and the
addition of an information graphic introducing participants to
the study scenario.

The remaining feedback focused on the survey’s content
or structure. Here, some clarifications targeted the consent
form (Brooklyn). We implemented a redesign for questions
in Qualtrics, so they match the overall layout and design of
OLab (Ash). Dakota further mentioned that the consent form
should be simplified to reduce cognitive load on participants
and to include missing information regarding speed tests we
are running in the background. Charlie also noted that OLab
should show the consent form as the first item within the study
environment.

4.2 Guided DevOps Study
In the second study, we evaluated the usability and participant
interaction of OLab in a study with nine DevOps from small
and medium-sized enterprises (SMEs). The study structure
derived from a different project with DevOps from a local
meetup. We then conducted the study within OLab with an
additional focus on the usability of OLab. We observed the
participants in a think-aloud study. These requirements are
ideal for a functionality test since we could ask about the
participants’ perception of specific OLab prototype features
during the study and observe and assist with issues that oc-
curred to improve the prototype iteratively. Therefore, we
designated this study as “guided”.

Scenario & Task. In a hypothetical scenario, we asked par-
ticipants to imagine they were leading a DevOps team in
a company that experienced a customer data leak recently.
We required them to investigate how the leaks happened and
who was responsible for them. We asked participants to ex-
press their thoughts in a think-aloud setup during the study.
Think-aloud included talking about their experiences in sim-
ilar scenarios, questions they would ask colleagues in the
imaginary company, tools they would typically use, their ex-
perience with the tools we provided, and their suspicions on
what caused the data leaks. After identifying the leaks and
their root causes, we asked the participants how they would
resolve the found issues in their company. We also asked for
general feedback regarding OLab.



Table 3: Detailed overview of experts, their background, experience of conducting studies, and their main operating system.

Alias† OS Study Background Study Experience

Ash Linux Online developer studies with a focus on programming tasks. 4 years
Brooklyn Linux End-user studies with a focus on crowd-worker platforms. 3 years
Charlie macOS Both developer and end-user studies, with a focus on lab experiments and surveys. 7 years
Dakota Windows Developer studies with a focus on qualitative interviews. 1.5 years

† Gender-neutral aliases assigned alphabetical to all experts.
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Figure 3: Overview over the guided usability study’s setup.

Figure 3 provides an overview of the task creation process.
Since we aimed to test the participants’ abilities to manage
security incidences in a company setting, we provided a vir-
tual server backend within OLab. We set up two containers,
a database, and a file server. We then simulated a company-
internal attacker with access to the server that used social
engineering to leak company-internal information. The result-
ing logs and system states were then backed up and included
in a Docker image that provided a visual interface and tools
to inspect the backups.

We added a hint regarding emails from the attacker to the
admin using the second container, pointing towards the inter-
nal attackers, as an experiment condition. Hence, participants
might have an easier time identifying the exact circumstances
of the attack in this condition. OLab automatically assigned
the condition to half of all participants. Within the study,
conditions and the task order were randomized.

Two authors supervised the participants virtually during the
study, took notes, and answered scenario-specific questions
that participants asked. Participants were asked to screen-
share the tab containing OLab, which we recorded to comple-
ment our notes (cf. replication package, Section 5).

Coding and Evaluation. Using the recorded videos and
notes, two authors coded participants’ free-text responses
in an “iterative categorization” [26] approach. The authors
focused on the advantages and disadvantages the participants
reported while interacting with OLab and their general survey
sentiment. We focused on these general categories because
a notable amount of feedback came up while participants
were working on the tasks, not as a result of individual ques-
tions in the post-survey. After assigning initial codes to all
feedback, both authors reviewed the resulting coding and re-
solved conflicts in a consensus discussion or introduced new
codes. When new codes emerged, the already coded videos
were revisited and re-coded. Since both researchers coded all

participant responses with immediate conflict resolution, we
refrain from reporting the inter-rater reliability (IRR) [20].

Results. In general, OLab was well-received by all nine par-
ticipants, while only some minor problems occurred that were
related to OLab. Seven participants (P1, P3, P5–9) explicitly
mentioned that they were impressed by OLab and its work-
flow. From our observations, the prototype was very fluid for
all participants. Four of them (P1, P5, P8, P9) mentioned low
latency, e. g., “It worked flawlessly. I was very surprised that
this works so well in the browser.” (P5). Only P7 reported
minor latency issues due to a low-quality mobile 4G/LTE
connection. Other positive aspects mentioned by the partic-
ipants were full functionality despite the use of ad-blockers
(P5), the internet access with the possibility to install arbitrary
additional software (P5), and that it works with non-German
keyboard layouts (P7). Additionally, participants liked the
visual appearance. To cite P1: “The tools we are working with
are modern, fast, looking good, I like that very much.” (P1).

The most common limitation, mentioned by seven partici-
pants (P2, P3, P5–P9), were differences between the study’s
infrastructure and the users’ typical environment. For exam-
ple, as the environment in OLab cannot be customized for
every user, the participants might miss any custom programs
they like to use. As P6 put it: “So I have some standard suite of
programs that I have installed [. . .]. Well, you cannot take that
for given. That would be [. . .] nice-to-have and not absolutely
necessary.” (P6).

Besides that, two participants encountered technical limita-
tions. P2 tried to change the keyboard layout, but this is tech-
nically impossible during the study, and can only be changed
when initializing the VNC connection. In addition, P2 and P3
noted the unavailability of chroot; this is disabled by default
for security reasons. However, in researcher-supervised stud-
ies this could be enabled. Two participants (P1, P4) reported
problems that were not related to OLab.

We queried participants on how they would solve the tasks
in their everyday setup, i. e., not in a study within OLab. P2,
P3, P4, and P8 reported differences that were not related to
OLab. P5 explicitly mentioned that he would do the tasks
as done in the study. The other four participants (P1, P6, P7,
P9) highlighted that they would incorporate some form of
social interaction during the tasks in a real-world scenario,
e. g., contacting and talking to colleagues. We consider this to



be out of scope for OLab, as it is impossible to simulate this
social interaction in a software tool.

We asked all participants for additional features they would
appreciate. They mentioned missing tools that we could set up
in future DevOps studies. P3, however, proposed that OLab
should show the correct solution for self-evaluation after com-
pleting a task. We consider implementing this as an optional
feature for future studies. The qualitative coding results can
be found in the appendix (cf. Table 5).

4.3 Comparison Experiment
In this comparison experiment, we compare a study setup
using OLab with a more conventional browser study regard-
ing feasibility and usability. We based this experiment on the
browser-based study setup of Acar et al., which consists of a
developer study with two programming tasks that test crypto-
graphic APIs and their documentation for usability [1]. This
setup provides a good fit for a virtual study environment and
a suitable starting point for a first unsupervised study with the
OLab prototype.
Study Setup. We started with a Ubuntu 20.04 Docker con-
tainer similar to the previous study setup. In that container,
we installed Python including PyCryptodome [34] and the
IDE PyCharm [33]. In PyCharm, we set up a Python project
consisting of dependencies, a virtual environment, and a skele-
ton containing pre-written function names and comments
with precise task descriptions. The original study relied on a
browser-based approach using Jupyter Notebooks [14], likely
due to the limitation that a fully virtualized setup containing
an IDE was not available.

We decided to have each participant perform one task in a
more conventional download setting for the comparison. We
provided a website with the same structure, text, and study
flow as in OLab. However, instead of redirecting to the virtual-
ized environment, we provided them with a page to download
the PyCharm project and upload their solution after complet-
ing the task on their computer.

We piloted the study internally and with students recruited
in a snowball sample to evaluate task description clarity.

To ensure fair compensation and comparable internal valid-
ity, we instructed all participants to stop after at most 60 min-
utes per task and use PyCharm as a common development
environment for the download condition. In the OLab proto-
type, we built the same setup based on an Ubuntu container
image. It includes PyCharm with dependencies set up and the
Python file containing the task opened in the IDE. Addition-
ally, Chromium starts with the crypto API’s documentation
opened in a new tab. OLab collected the browser history and
source code of the PyCharm project for our evaluation. An
overview of the study setup can be found in Figure 4.
Task Setup. In our scenario, the developers had to implement
(1) secure communication using an asymmetric encryption
scheme of their choice and (2) encrypted storage using a
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Figure 4: Overview over the comparison study’s setup.

symmetric scheme. We required participants to implement
this using the PyCryptodome library, which is a fork of the
original PyCrypto library used by Acar et al. [3]. To combat
the effects of learnability, we randomized which task our
participants performed in which environment (download and
OLab). We also randomized the order of study environments,
i. e., half of the participants had to complete the download
task first and use the OLab prototype second, with the other
half completing those vice versa.

After each task, participants filled a short survey regarding
feedback about the study environment and the cryptographic
task. As mentioned in the limitations, we tried to differentiate
between the environment and the task through diagrams and
descriptions. The survey collected the System Usability Scale
(SUS) score by Brooke [6] and the Net Promoter Score (NPS),
a more industrially used usability score for product recom-
mendation rates by Reichheld [36]. We decided to collect a
self-assessment on security and functionality in line with the
original study, but exclude other factors to prevent participant
exhaustion.

Evaluation. To rate results for their security and functional-
ity, we used an open-coding approach with two researchers to
review the source code that participants submitted in OLab
and the download environment. First, two authors executed
the code to determine functionality. Then they rated all sub-
missions for security, grading factors like usage of weak algo-
rithms and insecure password generation. Finally, the coders
discussed individual ratings and resolved conflicts to arrive at
a complete security rating.

Since this study was unsupervised, we could not collect
the degree of qualitative feedback obtained in the previous
two studies. To alleviate that, we contacted participants indi-
vidually after the study and asked a few follow-up questions
regarding the issues and differences. For these responses,
we used an “iterative categorization” [26] approach; two re-
searchers classified the types of issues, advantages, and disad-
vantages participants reported on. As both researchers coded
all source code and all participant responses and immediately
resolved conflicts, we refrain from reporting the inter-rater
reliability (IRR) [20].

Task Results. Overall, 24 out of 32 solutions were functional
and secure according to our coding. Out of those, 9 of 16 so-
lutions were secure when worked on in OLab, while 15 out
of 16 were securely provided via our download environment.



We noticed that this difference comes from the second task
(symmetric cryptography). The timings indicate that partici-
pants spend 60 minutes on that task using OLab. We asked the
participants why they did not complete the second task. The
participants who responded found it more complicated than
the first task and noted that the clearly shown “skip”-button
provided in OLab’s interface (cf. Figure 7c) in combination
with the reminder to only spend 60 minutes on this task lead
to submitting earlier when using OLab. These factors were
not as present in the download condition, since there was no
“skip”-button. Furthermore, participants might not see the time
limit when using the website because they opened the docu-
mentation in a new tab on the same window. These responses
indicated that the second task was infeasible within the pro-
vided time for students having no experience in cryptography.
We think the qualitative results produced by this task are still
valuable for the evaluation, as they indicate higher compli-
ance with the study protocol of this unsupervised study when
participants used the OLab. Studies within OLab need to set
fair requirements and cannot rely on participants ignoring
time constraints or the study conditions.

We also asked which editor participants used in both con-
ditions in the survey, which revealed another compliance dif-
ference. All participants used PyCharm within OLab – likely
because it was already set up and automatically started. How-
ever, 5 used other editors (4 VSCode, 1 VIM) in the download
condition. We explicitly instructed participants to use Py-
Charm with our PyCharm project. Therefore, this difference
represents a threat to internal validity not present in OLab.
While this demonstrates the more challenging enforcement of
requirements in download studies, researchers may offer mul-
tiple editors in OLab to accommodate for preferred software.
However, this would increase the required time for study setup
and piloting.

Usability Rating. We asked participants to rate each envi-
ronment using the SUS score and the NPS. Regarding the
SUS score, we had participants rate the environment after
completing each task. The environment using OLab received
an average SUS score of 80.0, which corresponds to a Grade
A– according to Sauro and Lewis [40], with the download en-
vironment receiving a SUS score of 78.125, classified as B+.
While the ratings are limited to the explanatory power of the
study, they indicate at least comparable usability of OLab and
the download environment. The NPS for OLab did not result
in more promoters, but is equal to the download environment.
We include an overview of both scores in Table 4.

This is further reflected in the participants’ preference for
the environments. 9 preferred OLab while 7 preferred the
download environment. As reasons for preferring the down-
load study, three participants mentioned bandwidth limitations
that lead to unresponsive or unstable experiences with OLab.
While we found that OLab runs fine with typical desktop
bandwidths (starting at around 0.5 Mbit/s), we assume higher

Table 4: SUS and NPS scores for both OLab and the download
condition.

Score OLab Download Condition

SUS Score (mean) 80.0 (A-) 78.125 (B+)
NPS Promotors 10 10
NPS Passivers 3 3
NPS Detraktors 3 3

round-trip times (RTTs)/pings cause a noticeably slower ex-
perience compared to a native interface.

The participants provided different reasons for preferring
the download environment. To quote a participant: “I can
use my own IDE, which is adapted to my requirements. Also,
I can open the documentation on a second screen, making
research and reading easier.” (P2). This preference is in line
with the finding that 5 participants used a different IDE than
specified for solving the task. Multiscreen support is currently
impossible with OLab due to being limited to a single browser
window. However, these advantages also affect the internal
validity of the study results in the download study. Further-
more, they are only present for studies where the task can be
downloaded to a participant’s machine, not in lab studies or
studies using server environments like our previous setup.

When participants stated to prefer OLab over the down-
load study, all 9 participants mentioned the much lower setup
efforts as the main reason. A participant stated:

“On my desktop PC, I had problems importing
crypto. Therefore, I had to switch to my laptop,
on which working was much harder. This resulted
in a lot of time spent on a problem that I didn’t
have in the virtual desktop environment. In this en-
vironment, everything was prepared and I could
immediately start working. There was also less dis-
traction by open tabs or pop-up messages.” — P3

The virtualized environment within OLab can lower entry bar-
riers for participants and reduce the time participants spend
on tasks while still providing them with a fully-featured de-
velopment environment that reflects their actual environment,
even if customization might be missing.

To compare the timings for both studies, we asked partic-
ipants about the perceived time spent on preparation, from
0 (very low) to 6 (very high). We found that people rated
OLab 0.31 on average, indicating a lower setup time com-
pared to the download environment that participants rated
2.13 on average. This confirms the suspected advantage in
participants’ preparation time for studies using OLab.

5 Discussion

Below, we discuss our results in the context of the evaluation
goals we presented in Section 4 and discuss how the study



results address them. We also elaborate on future directions
for virtual study environments we derive from our results and
how we plan to implement them.

EG1: Usability. After implementing the feedback we col-
lected during the cognitive walkthrough, we could improve
the usability of the OLab environment.

We found the OLab prototype to be easy to use for all par-
ticipants (cf. the SUS scores in Section 4.3), with a low entry
barrier, and safe to use in all scenarios we provided since it
automatically stored participant results without storing results
manually. The lower preparation time through pre-setup de-
pendencies that participants reported in our comparison study
demonstrated how this approach could be more efficient than
conventional approaches. In our comparison study, partici-
pants were willing to spend more time with the tasks in their
own environment, leading to more complete solutions. We
believe this can be addressed through smaller tasks or more
straightforward instructions.

In summary, we think that our approach can indeed ful-
fill the high accessibility requirements that we identified in
Section 3.1.

EG2: Perception. Even when encountering minor latency
issues or unknown setups in our study environments, par-
ticipants remarked on the smooth study procedure possible
through OLab. Participants also mentioned the low entry bar-
rier through the provided tooling and setup as an advantage.
In addition, the setup allowed us to test an unconventional
setup in the form of servers that participants had to analyze
for security issues. In supervised studies structured like inter-
views or remote think-alouds like our second study, we can
even allow participants to use root access on the machines
and install their own applications to complement the setups
we provide them.

EG3: Limitations. We also encountered a few limitations,
mostly related to security. One of these is the ability to use
features like chroot, KVM, and systemctl that require priv-
ilege escalation beyond what is considered safe in a container.
These can be ignored to some extent in supervised studies,
where a researcher can ensure that participants do not abuse
permissions on the container and therefore can declare the
containers to be privileged. However, this poses a security
risk for the entire infrastructure, including other participants
and the host systems, when done without supervision.

Finally, latency is a significant limitation of the environ-
ment, and participants with a high connection latency reported
difficulties using the OLab environment.

EG4: Comparison. From our previous findings, we con-
clude that in comparison to more conventional setups, the
OLab environment provides the option to enforce higher inter-
nal validity at the cost of customization for participants. In our
comparison study, we also found that the time spent on our
OLab was lower on average. We assume that when providing
participants the time to customize their setup in the OLab, this

advantage will vanish. In general, providing participants with
a fully working setup in our OLab environment will always
be faster than download tasks or tasks requiring setup time
beyond reading the task description. We hope to capitalize
on this advantage to conduct new types of studies that were
previously hard or even infeasible to conduct online.
Replication. To allow for better replication of our work, we
make the following items available as part of a replication
package [13]: We provide the study protocols for the cognitive
walkthrough, the guided and the comparison study including
the study scenarios, the tasks descriptions, between-task sur-
veys, and end surveys.4

Future Work. In future work, we plan to improve the us-
ability of the researcher’s web interface to illustrate the cur-
rent state of a study, and to manage participants and study
instances.

We plan to evaluate OLab in multiple large-scale studies,
test more edge cases, and improve flexibility. Furthermore,
support for complex features like interaction between partic-
ipants or with researchers can expand the scope of possible
studies for OLab.

6 Conclusion

In conclusion, we identified common requirements for lab-like
studies with SIWs. We designed, implemented and evaluated
the OLab environment as a novel approach to conduct lab-like
studies online, and found that:

1. OLab can provide high usability for participants in on-
line studies while enabling complex study setups such as
programming and server administration studies, as eval-
uated through our expert walkthrough (cf. Section 4.1)
and through the SUS scores (cf. Sections 4.2 & 4.3).

2. OLab handles typical research tasks like data and con-
sent form collection and study parameters like task or-
der, conditions, and the inclusion of external question-
naires, offering a flexible setup for complex studies to
researchers (cf. Section 3.3)

3. OLab provides higher internal validity than approaches
that involve external working environments, both regard-
ing task compliance and regarding tools and environmen-
tal variables used (cf. Section 4.3).

Based on our results, we consider OLab to be a highly
functional prototype that we plan to expand on for future
real-world studies. Although it is not yet fit for a general
release, we formally invite interested researchers to contact
us regarding the collaboration and extension of OLab.

4The replication package is also available via this paper’s accompanying
website: https://publications.teamusec.de/2022-soups-olab/.

https://publications.teamusec.de/2022-soups-olab/
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A Technical Details of OLab

OLab’s Kubernetes cluster runs entirely self-hosted on the
researchers’ servers. This setup provides maximum security
and data protection for participant data – without any third
party involved. For a technical overview, see Figure 8.

Depending on the number of participants, OLab supports
other deployment options. For minimal setups or testing pur-
poses, minikube [21] requires only a single machine. In stud-
ies that exceed the researchers’ server resources, it is possible
to host and operate OLab within a Kubernetes cloud environ-
ment, e. g., Amazon Web Services (AWS).



Figure 5: Comparison study (Section 4.3) setup for the condition that uses OLab.

Table 5: Qualitative coding of study results for the guided DevOps study (cf. Section 4.2).
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Figure 6: Comparison study (Section 4.3) setup for the down-
load condition.

(a) Landing page with required consent form and further study infor-
mation.

(b) In-between task progression status page, including survey steps.

(c) Virtual study environment running Chromium & PyCharm. The
right sidebar includes task descriptions and control buttons.

Figure 7: Screenshots of the OLab prototype, during a generic
programming study.
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