
Robust and Scalable Process Isolation against
Spectre in the Cloud

Martin Schwarzl
1
, Pietro Borrello

2
, Andreas Kogler

1
, Kenton Varda

3
, Thomas

Schuster
1
, Michael Schwarz

4
, and Daniel Gruss

1

1
Graz University of Technology, Austria

1
Sapienza University of Rome, Italy

3
Cloudflare Inc.

4
CISPA Helmholtz Center for Information Security, Germany

Abstract. In the quest for efficiency and performance, edge-computing
providers replace process isolation with sandboxes, to support a high
number of tenants per machine. While secure against software vulnera-
bilities, microarchitectural attacks can bypass these sandboxes.
In this paper, we present a Spectre attack leaking secrets from co-located
tenants in edge computing. Our remote Spectre attack, using amplifica-
tion techniques and a remote timing server, leaks 2 bit/min. This moti-
vates our main contribution, DyPrIs, a scalable process-isolation mecha-
nism that only isolates suspicious worker scripts following a lightweight
detection mechanism. In the worst case, DyPrIs boils down to process iso-
lation. Our proof-of-concept implementation augments real-world cloud
infrastructure used in production at large scale, Cloudflare Workers.
With a false-positive rate of only 0.61 %, we demonstrate that DyPrIs
outperforms strict process isolation while statistically maintaining its
security guarantees, fully mitigating cross-tenant Spectre attacks.

1 Introduction

With the recent discovery of transient-execution attacks [7], such as Spectre [34]
or Meltdown [37], attackers even leak data, not only meta-data. As most transient-
execution attacks work across logical CPUs, i.e., hyperthreads, many cloud
providers do not assign logical CPUs to different tenants. With the introduction
of edge computing [9, 2], where resources are dynamically provided on a machine
that is close to the customer, virtualization-based security was replaced by more
efficient solutions. Cloud providers either rely on strict process isolation [2, 42],
i.e., one process per tenant, or language-level isolation [9, 17, 16], i.e., code is
written in a sandboxed language such as JavaScript. While language-level isola-
tion has the least overhead [10], it does not protect against Spectre within the
same process [30, 41, 34, 57], necessitating process or site isolation [48]. To avoid
these costly countermeasures, Cloudflare Workers rely on a modified JavaScript
sandbox [9] that disables all known timers and primitives that can be abused to
build timers [54, 22]. A similar design using language-level isolation WebAssem-
bly is used by Fastly [17]. As Cloudflare is one of the top three edge computing
providers, with millions of requests daily, this raises the following scientific ques-
tion:



2 M. Schwarzl, C. Canella, D. Gruss, M. Schwarz

Security

Performance

Dynam
ic W

orker Isolation

1 script in 1 process (site isolation)

all scripts in 1 process (no mitigation)

Fig. 1: Strict process isolation choses the security and performance trade-off via
the number of scripts inside one process (dashed line). DyPrIs improves this
trade-off while never being worse than strict process isolation.

Can edge computing without strict process isolation, as is already deployed
and widely used today, offer the same security levels with respect to microarchi-
tectural attacks as edge computing with strictly isolated processes?

This paper has an offensive and a defensive contribution: First, we demon-
strate that it is possible to steal secrets on Cloudflare Workers with 2 bit/min
using an amplified Spectre attack [58] relying on an external time server. This
proof-of-concept attack shows that language-level isolation is insufficient.

Second, we propose, DyPrIs (Dynamic Process Isolation), a technique that
relies on a probabilistic Spectre detection and process-isolates suspicious work-
loads. DyPrIs is a middle ground between the two extremes of strict process
isolation and language-level isolation. Hence, DyPrIs keeps the performance ben-
efits of language-level isolation for the majority of benign workloads and provides
the security guarantees of process isolation against malicious workloads. Even if
every workload was classified as Spectre, DyPrIs only boils down to strict pro-
cess isolation with a the small overhead of 2 % for the detection, but on average,
it results in far higher performance (cf. Figure 1).

Our detection uses hardware performance counters (HPC) for mispredicted
and retired branches. We show that HPC usage, as suggested in prior work [32,
46, 70, 43] has too much overhead for efficiency-driven edge systems. However,
we demonstrate that even with a limited set of performance counters, we detect
running Spectre attacks with a small performance overhead of 2 %.

We evaluated DyPrIs in a production environment in the cloud. Our result
is a false-positive rate of 0.61 %, while detecting all attack attempts with all
state-of-the-art techniques. DyPrIs blocks our attack without interrupting any
of our own or other workloads.

Contributions. The main contributions of this work are:

1. We demonstrate a remote Spectre attack on the restricted Cloudflare Work-
ers, showing that current mitigations are insufficient.

2. We propose a novel, low-overhead probabilistic detection for Spectre attacks.
3. We introduce DyPrIs, a technique with, on average, lower overhead than

state-of-the-art strict process isolation.



Robust and Scalable Process Isolation against Spectre in the Cloud 3

2 Background and Related Work

In modern processors, instructions are divided into multiple micro-operations
(µOPs) that are executed out of order. To improve the performance of branch
instructions, CPUs leverage speculative execution. For example, the branch pre-
diction unit (BPU) tries to predict whether a branch is taken or not using differ-
ent data structures, e.g., the Pattern History Table (PHT) [34]. If the prediction
was correct, the results of the execution are retired. Otherwise, the speculatively
executed instructions are discarded, and the correct code path is executed. Mis-
takenly executed instructions are called transient instructions [37, 7]. They still
have an effect on the microarchitecture, e.g., measurable timing differences in
the cache that can be extracted with cache attacks [37, 7, 34]. Cache attacks are
even possible in JavaScript [44].

Spectre attacks [34] exploit speculative execution. Spectre-PHT [7] (also
known as Spectre V1) exploits the Pattern History Table, which predicts the
outcome of a conditional branch [34]. A typical Spectre-PHT gadget is a bounds
check, e.g., if (x < array1 size) y = array2[array1[x] * 4096];. The at-
tacker controls the index x, which is bounds-checked. By mistraining the branch
prediction with in-bounds values, speculation follows the in-bounds path with
out-of-bounds values, allowing out-of-bounds reads. Spectre variants exploit dif-
ferent prediction mechanisms, e.g., the Branch Target Buffer, memory disam-
biguation, or the Return-Stack Buffer [34, 29, 35, 38] and have been demonstrated
over the network [55] and in JavaScript [34, 41, 57].

Many cache side-channel defenses have been proposed, e.g., focusing on de-
tection using HPCs [32, 46, 70, 8, 28, 66, 67, 71]. To detect Spectre-type attacks,
static code analysis and patching, taint tracking, symbolic execution, and detec-
tion via HPCs were proposed [13, 27, 65, 25, 43, 26, 40]. However, these proposals
focus on attack detection but do not propose and evaluate mechanisms to re-
spond to detected attacks. Detection methods suffer from false positives but
terminating a detected attack is not acceptable for Cloudflare Workers.

Cloudflare Workers is an edge computing service to intercept web requests
and modify their content using JavaScript, handling millions of HTTP requests
per second across tens of thousands of web sites. Cloudflare Workers support
multiple thousand workers from up to 2000 tenants running inside the same
process. Each worker is single-threaded and stateless. This design leads to a
high-performant solution based on language-level isolation. To impede microar-
chitectural attacks, Cloudflare Workers restricts the available JavaScript timing
functions to only update after a request is performed. Additionally, JavaScript
worker threads are disabled to prevent counting threads [54, 22, 34].

3 Remote Spectre Attacks on Cloudflare Workers

In this section, we show that the single-address-space design of Cloudflare Work-
ers enables remote Spectre attacks. First, we define the Spectre building blocks
and overview how a remote adversary can mount a Spectre attack. Since there



4 M. Schwarzl, C. Canella, D. Gruss, M. Schwarz

Attack Worker Victim WorkerTiming Server

Transient access

Report start
and end

Worker process - Same virtual address space

if(x < len) {
b = bit arr[x] <<< b idx

v = oracle[(b & 1) * 4096]

}

Fig. 2: Overview of the Cloudflare Workers remote Spectre attack.

is no local timing primitive, a common requirement for microarchitectural at-
tacks [18, 53], we have to resort to a remote timing primitive. Our proof-of-
concept implementation running on Cloudflare Workers leaks 2 bit/min, even if
address space layout randomization (ASLR) is active.

3.1 Threat Model & Attack Overview

In our threat model, the attacker can run Cloudflare Workers executing JavaScript
code but no native code. Furthermore, the attacker controls a remote server to
record high-resolution timestamps, e.g., using rdtsc,and a low-latency network
connection. We also assume a powerful attacker with a worker co-located with
the victim worker, e.g., by spawning multiple Cloudflare Workers and detecting
co-location. An attacker spawning its instances close in time to the victim’s one
can maximize the probability of co-location [49]. Cloudflare Workers architec-
ture aims to serve the same application from every location. A high number of
tenants per machine is possible. Physical co-location of the attacker server is
not required. However, this leads to the strongest possible attacker. We assume
no exploitable software bugs, e.g., memory safety violations, in the JavaScript
engine and no sandbox escapes. Thus, architectural exploits to leak data from
other tenants or processes are not possible.

The typical requirements for state-of-the-art Spectre attacks on the timer and
memory are listed in Table 1, showing the differences to our attack. Figure 2
provides an overview of our attack. In the Cloudflare Workers setup, each worker
runs in the same process, and thus, shares the virtual address space. The attacker
runs a malicious JavaScript file containing a self-crafted Spectre-PHT gadget
that performs a Spectre attack on its own process. As the victim and attacker
share the same process, the attacker can leak sensitive data from a victim worker,
without having an existing Spectre gadget in the victim.

Spectre attacks in JavaScript rely on speculative out-of-bounds accesses of
objects. Assuming the attacker can either trigger a victim worker’s secret al-
location, delay it, or just manages to execute before the victim, we can use
heap-grooming techniques [21] to bring the process memory into a predictable
state before both the leaking object and the victim data are allocated. Alter-
natively, the attacker worker can predict the offset between the leaking object
and the victim worker’s data, target a certain range of the virtual memory, e.g.,
regions where V8 places similar objects [61], or break ASLR using speculative
probing [19]. Hence, ASLR does not mitigate the attack. Furthermore, Agar-



Robust and Scalable Process Isolation against Spectre in the Cloud 5

Table 1: Requirements and leakage rate of Spectre attacks.
Spectre attack (variant) Gadget Native HR Timer Memory Leakage Rate Error Channel

Kocher et al. [34] (PHT) Yes Yes Yes (ns) 2.40 MB 4420.46 B/s ± 6.75 % 0.07 % Cache-L3
Canella et al. [7] (PHT) Yes Yes Yes (ns) 3.54 MB 3.13 B/s ± 113.79 % 0.00 % Cache-L3
Safeside [20] (PHT) Yes Yes Yes (ns) 7.00 MB 4384.03 B/s ± 7.75 % 0.00 % Cache-L3
Canella et al. [7] (BTB) Yes Yes Yes (ns) 6.91 MB 0.71 B/s ± 2.43 % 0.00 % Cache-L3
SafeSide [20] (BTB) Yes Yes Yes (ns) 7.01 MB 269.53 B/s ± 0.85 % 0.00 % Cache-L3
Canella et al. [7] (STL) Yes Yes Yes (ns) 3.54 MB 14.37 B/s ± 211.95 % 0.00 % Cache-L3
Safeside [20] (STL) Yes Yes Yes (ns) 7.00 MB 272.46 B/s ± 0.22 % 0.00 % Cache-L3
Canella et al. [7] (RSB) Yes Yes Yes (ns) 20.08 MB 30.67 B/s ± 195.59 % 0.00 % Cache-L3
Safeside [20] (RSB) Yes Yes Yes (ns) 7.00 MB 116.70 B/s ± 0.58 % 0.00 % Cache-L3
Google [57] (PHT) No No Yes (µs) 15.00 MB 335.02 B/s ± 23.50 % 0.26 % Cache-L1
Google [57] (PHT) No No Yes (ms) 15.00 MB 9.46 B/s ± 31.40 % 2.71 % Cache-L1
Agarwal et al. [1] (PHT) No No Yes (µs) N/A 533.00 B/s ± N/A 0.32 % Cache-L3
Schwarz et al. [55] (PHT) Yes Yes No N/A 7.50 B/h ± N/A 0.58 % AVX unit
Our work (PHT) No No No 27.54 MB 15.00 B/h ± 2.67 % 0.00 % Cache-L3

Gadget: Spectre gadget must be in victim; Native: native code execution; HR Timer: High-resolution timer

wal [1] demonstrated that it is possible to leak over the full address space using
a JavaScript Spectre attack in the V8 engine.

For our attack, we rely on a Spectre-PHT [34] gadget, as this is the simplest
gadget to introduce in JIT-compiled code. Moreover, Spectre-BTB [34] can be
prevented by the JIT compiler [59]. In contrast to the original Spectre attack [34],
we do not encode the data bytewise but bitwise. The advantage of such a binary
Spectre gadget is that it is easier to distinguish two states compared to 256 states
using a side channel [4, 55]. While such a gadget might not be commonly found
in real applications, it is easy to introduce.

As there are no high-resolution timers to distinguish microarchitectural states
directly, we have to amplify the timing difference between a cache hit and a miss,
i.e., between a leaked ‘0’ and ‘1’ bit. We combine the amplification techniques
by McIlroy et al. [41] with the remote measurement methods by Schwarz et al.
[55]. With this semi-remote Spectre attack, we show that it is indeed feasible to
leak data from co-located Cloudflare Workers in such a restricted setting. Our
Spectre attack is the only one not requiring native code execution, a local timer,
or an existing gadget. Moreover, microcode cannot prevent it (cf. Table 1).

3.2 Building Blocks

As our attack uses the cache as the covert-channel part of the Spectre attack, we
require building blocks for measuring the timing of cache accesses in JavaScript.
While this can be done using a high-resolution timer in some browsers [34], the
required primitives are not available on Cloudflare Workers. Hence, in addition
to a different timing primitive with a lower resolution, we have to amplify the
signal such that we can reliably distinguish ‘0’ and ‘1’ bits.
Remote Timer On Cloudflare Workers, there are no local timers or known
primitives to build timers [54]. We verified that, indeed, no technique from
Schwarz et al. [54] resulted in a timer with a resolution higher than 100 ms. Thus,
there is no possibility to accurately measure the time directly in JavaScript, and,
therefore, it is not possible to perform a local Spectre attack [34].



6 M. Schwarzl, C. Canella, D. Gruss, M. Schwarz

if (secret_bit) { read A; } else { read B; } //transiently leak bit

read A; //perform architectural access

Listing 1.1: Amplified Spectre-PHT gadget [41].

In this setup, the attacker sends a network request to a remote server to
start a timing measurement. The remote server stores a local high-resolution
timestamp, e.g., using rdtsc, associated with the request. To stop the timing
measurement and receive the time delta, the attacker sends another request to
the remote server, which sends back the time difference from the current to the
stored timestamp. Hence, the attacker has a high-resolution time difference that
is only impacted by the network latency between the attacker’s worker and the
remote server. We evaluated this timing primitive on Cloudflare Workers. For
the best case, i.e., same physical machine, we achieve a resolution of 0.47 ns on
a 2.1GHz CPU, with a jitter of 1.67 %. With a resolution of 0.47 ns, we can
distinguish a cache hit from a miss for the cache covert channel. However, this
case is unlikely in reality, as the latency is typically in the microsecond range [63].
Amplification In our attack scenario, the attacker has no high-resolution timer
but full control over the Spectre gadget. Hence, to mount a successful attack with
the remote timer, we have to rely on amplification techniques that amplify the
latency between a cache hit and miss [41]. One such technique is to transiently
access multiple cache lines for a single bit instead of a single cache line and probe
over these to increase the latency between a cache hit and a miss. However, this
technique is quite memory-consuming and limited by the number of cache lines.

A way to arbitrarily amplify the latency between cache hits and misses is to
either access a memory location which encodes a ‘0’ or ‘1’ bit transiently and
then accesses the memory location for a ‘1’ again architecturally [58]. Listing 1.1
illustrates an arbitrary amplification [58] gadget. If the Spectre gadget is optimal
in terms of mistraining, we have twice as many cache misses for a ‘0’ bit as for
a ‘1’ bit. With a loop over the gadget, we can create arbitrarily large timing
differences between hits and misses. We evaluate the amplification idea on an
Intel Xeon Silver 4208, running Ubuntu 20.04 (kernel 5.4.0) in native code. We
increase the number of amplification iterations and run each iteration 1000 times
to get stable results. This leads to a linear growth with the increase of the number
of loop iterations (amplification factor). Depending on how much runtime is given
to the worker, it is possible to arbitrarily increase the delay. Hence, we can also
see that there are no strict requirements for the resolution of the remote timer.
For lower resolutions, we can increase the amplification, resulting in a reduced
leakage rate, no prevention of the attack, as also shown in related work [57].
Eviction To repeat our amplification and reset the cache state, cache eviction
is required. One way to evict certain addresses from the cache is by building
eviction sets [44, 23, 64]. While a targeted eviction set leads to a fast eviction,
building the eviction set is costly. Even with a local timer, the currently fastest
approach takes more than 100 ms [64]. In our remote scenario, this would require
a lot of network requests to find the eviction set for our encoding oracle, as
building the eviction set requires constant timing measurements. Furthermore,



Robust and Scalable Process Isolation against Spectre in the Cloud 7

eviction sets cannot be reused due to address-space-layout randomization on each
run. Instead of using eviction sets, we iterate over a large eviction array (multiple
MB, depending on the cache size) in cache-line steps (64 byte) and access the
values. If enough addresses are accessed, the cached value is evicted [23, 34].

We evaluate the eviction directly on the V8 engine used in Cloudflare Workers
on an Intel Xeon Silver 4208, running Ubuntu 20.04 (kernel 5.4.0). We access
a certain index v of a large array to cache it, iterate over the eviction set, and
verify if v is still cached. We observe that an eviction array of 2 MB always evicts
v on our Intel Xeon Silver 4208 (n = 1000).

Note that address randomization can be deterministically circumvented us-
ing engineering. Göktas et al. [19] introduced the concept of a speculative prob-
ing primitive that leverages Spectre to break classical and fine-grained ASLR.
Gras et al. [22], Schwarz et al. [51], and Lipp et al. [36] demonstrated that
microarchitectural attacks in JavaScript can break memory randomization.

3.3 Attack on Cloudflare Workers

Using the building blocks, we mount an attack on Cloudflare Workers to extract
secret bits from a worker at a known location to estimate the best possible attack.
For that, we send an initial request with a sequence number to a timing server.
The timing server stores a local, high-resolution timestamp on this request. We
perform a Spectre attack on a target address and send another request to the
server. The timing server computes the delta between the current and the stored
timestamp to distinguish between a cache hit or miss. As the attacker controls
both the attacking worker and the timing server, there is no need to send the
leaked information back to the worker.

There are different challenges when creating a JavaScript Spectre PoC, as
the V8 JIT compiler optimizes code based on assumptions. If such assumptions
are invalidated, the function is de-optimized. We thus avoid triggering any de-
optimization points in our generated code, as that ruins the training achieved.
Therefore, we place the out-of-bound access behind a mispredicted guard branch,
preventing the JIT compiler from de-optimizing the code when detecting out-
of-bound accesses. Moreover, during the garbage collection phase, objects move
between different heap spaces of the same worker to reduce the memory footprint.
By forcing garbage collection phases, we stabilize an object’s location.
Evaluation. To develop and evaluate a proof-of-concept attack, we obtained a
local developer copy of Cloudflare Workers to not interfere with any worker of
other customers. We ensured that the configuration on our local system is iden-
tical to the configuration running on the cloud. As Cloudflare Workers mostly
use server CPUs, we also focus our attack on an Intel server CPU, specifically
an Intel Xeon Silver 4208, running Ubuntu 20.04 (kernel 5.4.0).

We create a Spectre-PHT PoC that leaks bits from a victim ArrayBuffer

by transiently reading out-of-bounds. We describe the technical implementation
details for optimal leakage in the extended version [56] (Appendix B).

We call the function performing a Spectre attack 10 000 times and repeat
the experiment 1000 times, observing a success rate of 54.31 % (n = 1000, σ =



8 M. Schwarzl, C. Canella, D. Gruss, M. Schwarz

10
0

10
1

10
2

10
3

10
4

0.6

0.8

1

Number of requests

S
u
cc

es
s

ra
te

A1000

A100

A10

A5

(a) Success over the number of requests
per number of amplification factor.

10
0

10
1

10
2

10
3

10
4

0.6

0.8

1

Amplification factor

S
u
cc

es
s

ra
te

R1

R10

R100

R1000

R10000

(b) Success of different amplification fac-
tors for different number of requests.

23.16 %). We assume that the attacker is capable of creating a stable exploit with
100 % success rate. From now on, we evaluate our metrics with a 100 % success
rate to estimate the best possible attack, where the attacker knows where the
secret array is located.

We evaluate a set of different amplification factors (number of loop iterations)
in native code between 1 and 1000 , and sample each loop length 100 000. We im-
plement the box test [14] to determine the number of required requests [63, 6, 14].
Figure 3a illustrates the number of requests required to achieve a certain success
rate for different amplification factors. The higher the amplification factor is, the
fewer requests are required to achieve high success rates. As Figure 3b illustrates,
with small amplification factors but enough requests, we can also achieve a high
success rate of more than 95 %. We refer to the work of Van Goethem et al. [63]
and Schwarz et al. [55] for the required requests in a network with multiple hops.

We evaluate our attack locally, i.e., with a timing server on the same ma-
chine. We first evaluate an optimal attack in native code. Ideally, an attacker
chooses the number with the highest success rate and the lowest number of
requests required, minimizing the execution time. We choose a random 16-bit
secret. As amplification factor, we choose 100 000 loop iterations and perform
just one request. With this setup, leaking one bit takes on average 2.5 s (n = 100,
σx̄ = 0.05 %). We repeat the experiment 100 times and observe a leakage rate of
23 bit/s (n = 100, σx̄ = 2.8 %). Using an outlier filter, this error can be reduced
towards 0. As these values are from a native-code attack, we consider these
numbers as the maximum achievable leakage rate for JavaScript. A JavaScript
attacker is more restricted in terms of evicting certain addresses from the cache
and thus requires additional time for the eviction. Furthermore, the code is JIT-
compiled, requiring a warmup to stabilize the JIT-compiled code. We evaluate
the amplification in JavaScript in the V8 engine with an amplification factor of
250 000, a native timestamp counter to measure the response times, and a ran-
dom 16 bit secret. One script execution takes about 30 s, which is the maximum
execution time for Cloudflare Workers [12]. All evaluated numbers are shown in
Table 2 in the extended version [56] (Appendix A). With a success rate of 100 %
we determine an optimal leakage rate of 2 bit/min leading to a leakage rate of
120 bit/h.



Robust and Scalable Process Isolation against Spectre in the Cloud 9

Attack Worker Victim Worker

Detector

Transient
access

Isolate

Virtual address space P2 Virtual address space P1

Observe
Performance

Counter

if(x < len) {
b = arr[x] <<< b idx

v = oracle[(b & 1) * 4096]

}

Fig. 4: DyPrIs isolating a malicious worker based on performance counters.

4 DyPrIs

In this section, we present an approach to dynamically isolate malicious Cloud-
flare Workers to benefit both from the security of process isolation and the
performance of language-level isolation. The basic idea is to use HPCs to de-
tect potential Spectre attacks and isolate suspicious Cloudflare Workers using
process isolation (Figure 4). While a detection mechanism typically suffers from
false positives, DyPrIs can cope even with high false-positive rates. In the worst
case, a Spectre attack is detected for every worker, leading to the worst-case sce-
nario of one worker per process, i.e., strict process isolation, as currently used in
browsers plus the 2 % detection overhead. As workers are stateless, they can also
be suspended or migrated at any time. Thus, even if many worker are considered
malicious, the resources of Cloudflare are not exhausted. Every false-positive rate
below 100 % performs better than strict process isolation.

We discuss how to reliably detect Spectre attacks using performance coun-
ters (cf. Section 4.1). We integrate our approach into Cloudflare Workers and
measure the performance overhead of reading performance counters on a real-
world cloud system (cf. Section 4.2). We show that there is a small performance
overhead of 2 % for reading performance counters.

4.1 Detecting Spectre Attacks

In this section, we discuss the detection of Spectre attacks using HPCs. While the
common use of HPCs is finding bottlenecks, researchers used HPCs for detect-
ing malware, rootkits, CFI violations, ROP, Rowhammer, or cache-side channel
attacks [68, 69, 39, 73, 28, 5, 24, 8].

Detecting Attacks using Normalized Performance Counters Our
second approach tries to detect Spectre attacks using normalized perfor-
mance counters. At first we collect data from different performance coun-
ters. We collect the following hardware events (PERF COUNT HW *): CACHE iTLB,
BRANCH MISSES, BRANCH INSTRUCTIONS, CACHE REFERENCES, CACHE MISSES,
CACHE L1D/READ MISSES and CACHE L1D/READ ACCESSES. We normalize the val-
ues using iTLB performance counters (iTLB accesses) which was also used by



10 M. Schwarzl, C. Canella, D. Gruss, M. Schwarz

Gruss et al. [24] to detect Rowhammer and cache attacks. Similarly to Row-
hammer and cache attacks, the main attack code for Spectre has a small code
footprint with a high activity in the branch-prediction unit.

The iTLB counter normalizes the branch-prediction events with respect to
the code size by dividing the performance counter value by the number of iTLB
accesses. We integrate the monitor into Cloudflare Workers, to read the per-
formance counters before and after each script execution. The averaged per-
execution numbers are updated in a 1-second interval (Note that a single script
runs up to 30 s [12]). While reducing the interval does not directly impact the
performance of a worker, it potentially leads to more false positives as outliers
are not filtered. We collect data from the benign workload and compare it to a
worker executing a Spectre attack. Based on the performance numbers, we find
a threshold to distinguish between an attack and normal workload. We evaluate
this approach in Section 5.1.

4.2 Process Isolation

For DyPrIs, we fundamentally rely on process isolation. A well-known imple-
mentation of process isolation is site isolation, where every page in a browser
runs in its own process to prevent memory safety violations as well as Spectre
attacks [48]. However, in contrast to full site isolation, we only isolate poten-
tially malicious Cloudflare Workers if the Spectre detection mechanism flags
them. Hence, DyPrIs only falls back to full site isolation in the worst case, while
reducing the overhead caused by process isolation in the average case.

Related work proposes efficient in-process isolation mechanisms using Intel
Memory Protection Keys (MPK) [62, 45, 50]. However, Intel MPK is only avail-
able on selected CPUs since Skylake-SP, limited to 16 protection keys and thus
not practical for Cloudflare Workers [62], running multiple thousand workers
per process. Furthermore, the threat model of these approaches does not include
side-channel or transient-execution attacks. For DyPrIs, we modify the Cloud-
flare Workers software to isolate a potentially malicious worker, i.e., a worker
that was flagged by the performance-counter-based detection, into a separate
process. We implement process isolation in Cloudflare Workers from scratch (cf.
Figure 5). For that, we start process sandboxes by forking from a zygote process,
and talk to the new process over an RPC protocol [3, 11]. All communication
between the main process and the isolated process are over this RPC connection,
communications between the process sandbox and the outside have to go through
the main process. Since the runtime of a worker is, on average, less than 1 ms, the
isolation must not introduce a high performance overhead. Thus, one instance
of a worker frequently reads out the performance counters per script execution
and computes a moving average. From our results in Section 5, we observed that
the normalized iTLB performance provides the best detection tradeoff in terms
of performance overhead and accuracy. We first run an attack and collect its
performance-counter data. Additionally, we collect anonymized per-CPU-core
performance-counter data of real scripts running in production. Based on our
evaluation in Section 5.1, we use a threshold of 4096 retired branches per iTLB



Robust and Scalable Process Isolation against Spectre in the Cloud 11

Scheduling
and routing

H
T

T
P

cl
ie

n
t

H
T

T
P

se
rv

er

Inbound
HTTP
proxy

Outbound
HTTP
proxy

V
8

Is
o
la

te

V
8

Is
o
la

te

V
8

Is
o
la

te

V
8

Is
o
la

te

Main Runtime Process

Scheduling
and routing

V8 Isolate

Process Sandbox

Scheduling
and routing

V8 Isolate

Process Sandbox

Outer Sandbox

Supervisor

Control plane

Disk

Other

Cloudflare RPC

In-process calls

HTTP

Fig. 5: DyPrIs overview.

access to distinguish between a suspicious and a benign script. If a script ex-
ceeds this threshold, we flag it as a potential Spectre attack and isolate it into a
separate process. In contrast to, e.g., browser tabs, worker are stateless. Thus,
a worker can simply be migrated. Isolating instead of terminating ensures that
the worker can continue running, e.g., in case the detection was a false positive,
while it cannot access data of any other worker.

5 Evaluation

In this section, we evaluate the accuracy and performance overhead of our de-
tection methodology. We choose a threshold of 4096 branch accesses per iTLB
access, which allows distinguishing a Spectre attack from a benign script. We
use a large set of different programs to sample the number of mispredicted and
retired branches. For our set, we observe that out of 141 programs, which in-
cludes the 13 Spectre gadgets from Kocher [33], we cannot distinguish 4 benign
programs from a Spectre gadget, resulting in a false-positive rate of 2.83 % with
a small performance overhead of 2 %. Using our normalized counters approach,
we observe a negligible overhead of 2 % in our production environment.

5.1 Normalized Performance Counters

We evaluated our approach on 5 Intel Xeon server CPUs (Broadwell, Skylake
4116, Skylake 6162, Skylake 6162, Cascade Lake 6262) and one AMD Epyc Rome



12 M. Schwarzl, C. Canella, D. Gruss, M. Schwarz

0 40,000 80,000
0
2
4
6
8

Branch Accesses / ITLB Accesses

D
en

si
ty Production system

Attack

0 50 100 150
0

2,000
4,000
6,000
8,000

Branch Misses / ITLB Accesses

D
en

si
ty Production system

Attack

0 20,000 40,000
0

2 ⋅ 10
−4

4 ⋅ 10
−4

6 ⋅ 10
−4

L1 Accesses / ITLB Accesses

D
en

si
ty Production system

Attack

0 100 200 300
0

5 ⋅ 10
−2

0.1

0.15

L1 Misses / ITLB Accesses

D
en

si
ty Production system

Attack

0 100 200
0

0.2

0.4

L3 Accesses / ITLB Accesses

D
en

si
ty Production system

Attack

0 50 100 150
0
2
4
6
8

L3 Misses / ITLB Accesses
D

en
si

ty Production system

Attack

Fig. 6: Performance counters of average Cloudflare Workers and a Spectre attack
on the production system.

CPU. To decide whether a script is susceptible or not, we collect performance
data from the production system running our Spectre attack. We recorded the
performance counters on the production environment and sampled over 50 000
times as a baseline. Figure 6 shows the normalized performance counters of our
cloud machines. For last-level-cache accesses, misses, and branch misses, the
numbers of the attack script are below the average script. For the number of
L1-cache accesses and retired branches, we can clearly distinguish average script
from attack. Especially for the retired branches, the distance between an at-
tack script and the average regular script is 34 times the standard deviation of
a benign script. We collected our numbers from real-world worker production
machines to calculate the false-positive rate. We choose the number of normal-
ized retired branch instructions as an indicator for a Spectre attack and run it
on our cloud machines. First, we run a Spectre attack to verify whether their
number is in a similar range on each test machine. We then evaluate different
threshold boundaries for the number of normalized retired branch instructions
and report the number of false positives. Figure 7 shows the number of false
positives depending on the threshold on our cloud machines in the production
environment. For a strict threshold, i.e., 1024, the false-positive rate is 21.41 %.
However, this threshold is set higher to reduce the number of false positives. The
numbers of false positives are in a similar range on each of the tested machines.
Setting the threshold to 4096, results in an average false positive rate of 0.61 %
on our devices. For a threshold of 8192 the average false-positive rate decreases
to 0.26 %, and at a threshold of 65 536 , we do not observe any false positives.



Robust and Scalable Process Isolation against Spectre in the Cloud 13

1,0
00

2,0
00

3,0
00

4,0
00

5,0
00

6,0
00

7,0
00

8,0
00

0

10

20

Threshold

F
a
ls

e
P

o
si

ti
v
es

[%
]

Broadwell (7)

Skylake 4116 (8)

Skylake 6162 (9 lbg-1g)

Skylake 6162 (9 lbg-4)

Cascade Lake(9.5)

AMD Epyc Rome (10)

Fig. 7: Number of false positives depending on the normalized iTLB threshold.

Next, we look at the performance overhead of our attack when the attacker
tries to get below the detection thresholds. Getting below this threshold requires
the attacker to significantly slow down the amplified Spectre attack. Since the
attacker cannot get rid of the cache eviction, the number of amplification itera-
tions has to be reduced. Consequently, if the number of amplification iterations
is reduced, more requests, i.e., samples, are required to clearly distinguish cache
hits and misses (cf. Figures 3a and 3b). We evaluate the best possible attacker
in native code who only mistrains one branch. By omitting amplification or with
a small factor of 10, we can reduce the number of retired branch instructions /
iTLB accesses on our test devices to 604.71 and 3492.41, respectively, which is
in the ranges of an average script. However, with the latter, the leakage rate is
1 bit/h. Thus, we set the threshold to 4096 and receive an average false positive
rate of 0.61 % on our tested devices. Figure 8 illustrates the decrease in leakage if
the attack degrades from an amplified Spectre attack to a sequential attack. Us-
ing a non-amplified approach, about 250 000 requests are required (Section 3.3).
We achieve a leakage of 1 bit/h in a local-network scenario. Hence, as an addi-
tional security margin, we limit the number of subsequent requests per worker to
10 000 on the same machine. If more than 10 000 requests are issued, we redirect
the request to a different machine. Thus, we can still prevent leakage from a
slowed-down attack using our threshold-based approach. We assume that there
are no attacks running on the production system, thus we cannot measure the
number of false negatives. Our own attack is detected by the threshold, as well as
the 15 Spectre samples provided by Kocher [33]. In addition, we evaluated and
analyzed the new and larger Spectre-PHT gadgets generated by FastSpec [60].
The gadgets are based on the the 15 variants, and we observe that the gener-
ated gadgets are quite similar. We evaluated 100 random gadgets from FastSpec
and did not observe any false negatives with our detection. As the mistraining
for those gadgets is similar, the branch accesses per iTLB access are in a simi-
lar range. We also evaluated the detection on the Spectre JavaScript PoC from
Röttger and Janc [57]. Even with the low amplification factor of 4 000 in this
PoC, we reliably detect the attack (n = 500, µ = 19 253.73 ).

Spectre-BTB, Spectre-RSB and Spectre-STL. In addition to Spectre-PHT we
also run our performance counter analysis on other Spectre variants exploiting
the branch-target buffer (BTB), return-stack buffer (RSB) and store-to-load



14 M. Schwarzl, C. Canella, D. Gruss, M. Schwarz

399114.52

45691.64

19753.31

14545.98
4096

3492.41
604.71

0
50

100
150
200

BTB Accesses / ITLB Accesses

L
ea

k
ed

b
it

s/
h

[
]

Leakage No observable leakage but still detected

0

50

100

P
ro

b
a
b
il
it

y
o
f

d
et

ec
ti

o
n

Probability of detection

Fig. 8: Branch accesses / iTLB accesses and the corresponding leakage rate.

(STL) forwarding. We create native code proof-of-concepts for these variants
executing each gadget 10 000 times on a Xeon Silver 4208. We ran the PoCs 500
times and collected the number of branch and iTLB accesses. The numbers for
Spectre-BTB and RSP are an order of magnitude lower than for Spectre-PHT
(µbtb = 423171.54). However, they are still detected with the same metric (n =
500): Spectre-BTB (µbtb = 23401.20), Spectre-RSB (µrsb = 38369.17), Spectre-
STL (µstl = 982.20). The metric for Spectre-STL is far below the threshold
of 4096. However, the values for memory disambiguation.history reset are
significantly higher on average if the store-to-load logic is exploited in Spectre-
STL (n = 500, µstl = 8993.98, µnostl = 2644.73). Thus, we also use this counter
to detect potential Spectre-STL attacks.

5.2 DyPrIs

We integrate DyPrIs in Cloudflare Workers, which requires modifications of
6459 lines of code, not including the Spectre detection mechanism. As with any
isolation technology, the performance overhead varies depending on the work-
load [48]. Cloudflare Workers is an environment where typical guest workloads
use very little memory and spend very little CPU time responding to any par-
ticular event. As a result, in this environment, DyPrIs’s overhead is expected to
be large compared to the underlying workload. In a first test, we evaluate the
overhead for a test script by increasing the number of isolated processes, i.e., the
number of sandboxed V8 isolates, up to 500. We measure the overhead in terms
of executed scripts per second, i.e., the requests executed per second from the
localhost and the total amount of consumed main memory. The execution is re-
peated 10 times per isolation level with 2000 requests (n = 20000, σrps = 3.87 %,
σmem = 0.23 %). Figure 9 shows the requests per second and the total memory
consumption based on the number of isolated V8 processes. As expected, we
observe a linear decrease in the possible number of requests per second and a
linear increase in the memory consumption. Further, we performed a load test of
Cloudflare Workers runtime using a selection of sample guest workers simulating
a heavy-load machine. They mostly respond to I/O in under a millisecond and
allocate little memory. By forcing process isolation on the workers, the memory
overhead of each guest was 2x-5x higher, and CPU time was 8x higher, compared
to a worker using a single process. We performed a second test using a real-world



Robust and Scalable Process Isolation against Spectre in the Cloud 15

0 50 100 150 200 250 300 350 400 450 500
0
2
4
6
8

⋅10
8

Number of sandboxed V8 isolates

T
o
ta

l
m

em
o
ry

u
sa

g
e[

B
]

Memory

0

1,000

2,000

R
eq

u
es

ts
p

er
se

co
n
dRequests

Fig. 9: Requests per second and memory consumption of process isolation.

worker known to be unusually resource hungry in both CPU and memory usage.
In this case, memory overhead is 20 %-70 % worse with DyPrIs, and CPU time
about 60 % worse. These numbers appear to be high, but when only 0.61 % of
workers are isolated, the overhead is negligible. As our proof of concept was not
optimized, it still has big potential for optimizations. For example, it currently
uses an RPC protocol [3] to communicate between processes, but does so over
a Unix domain socket. This protocol is designed in such a way that it could be
communicated in shared memory, reducing communication overhead. The im-
plementation could also use OS primitives for faster context switching, such as
the FUTEX SWAP feature proposed by Google. However, while especially the
CPU overhead could be reduced, there is always a significant cost incurred by
context switching and marshalling to communicate between processes. The total
overhead on all machines can only be estimated as it depends on the workload.
The detection overhead is 2 %. In the worst case, we are slightly worse than full
process isolation due to the 2 % detection overhead.

6 Discussion

Comparison between Cloudflare Workers and competing approaches.
The main challenge of edge computing is to run various applications of numer-
ous tenants efficiently. Approaches like AWS Lambda and Azure Functions rely
on containers to achieve this [2, 42]. While their design strictly prevents Spectre
attacks on other tenants, the performance overhead is higher for the use case of
edge computing than Cloudflare Workers [10]. The Cloudflare Workers archi-
tecture is stateless in a sense that every worker in any data centre can process
any request, i.e., the request is processed by the worker with the lowest latency.
Cloudflare Workers rely on a single-process architecture with language-level iso-
lation to isolate their tenants architecturally. However, as we showed, this design
leads to potential Spectre attacks. A similar design with language-level isolation
of WebAssembly code from different tenants is used by Fastly [17]. Therefore,
Fastly also needs to consider Spectre attacks within the same process by either
applying DyPrIs or switching to full isolation via processes or containers.
Mitigation versus Detection. Especially in high-performance scenarios, such
as cloud systems, Spectre mitigations [7, 34, 31] result in high power consump-
tion. Hence, instead of paying the constant costs of mitigations, dectecing at-
tack can reduce the costs. However, the problem of detecting side-channel and



16 M. Schwarzl, C. Canella, D. Gruss, M. Schwarz

transient-execution attacks is still an open research problem. There is no uni-
versal solution that covers all different types of attacks.
False Positives and Negatives. DyPrIs suffers from false positives and false
negatives [15, 72], similar to other detection and mitigation techniques [65, 25].
False positives only impact the performance and not the security. False negatives
occur when slowing down attacks to 1 bit/h (cf. Table 2 in Appendix A in the
extended version [56]). Therefore, the maximum execution time is restricted to
30 s, far from 1 h. Using the machine learning approach of Gulmezoglu [26],
the false positive rate could be reduced further. However, this approach would
require a re-training with real-world data of Cloudflare Workers and a frequent
re-updating of the training set. Adding additional code pages also allows getting
below the thresholds. To “hide” the native attack, we access 125 additional
code pages (500 kB) per bit to get the branch accesses / iTLB accesses below
the threshold (cf. Figure 10 in Appendix A in the extended version [56]). While
feasible in native code, the resulting code size causes V8 to abort the optimization
phase, stopping the attack.
Comparison to existing detections Besides full site isolation, prior work
discusses detection but not how to stop attacks once they are detected. Exist-
ing static analysis approaches [27, 13] on binaries are not applicable to the use
case of Cloudflare Workers. Approaches that perform taint tracking and fuzzing
on binaries to dynamically detect gadgets [25, 65, 52, 47] are infeasible for the
high-performance requirements of Cloudflare Workers. The approach of Mam-
bretti et al. [40] does not evaluate real-world workloads and cannot distinguish
the different workloads of Cloudflare Workers from an external process.
Reliability of HPCs In DyPrIs As Zhou et al. [72] and Das et al. [15]
discuss, using HPCs for detection of cache attacks can lead to flaws caused by
non-determinism and overcounting. We showed that in our statistical approach
both only marginally reduce the performance of DyPrIs not the security.
Alternative Spectre JS attacks Concurrent work [57] has demonstrated
a Spectre exploit on V8, leaking up to 60 B/s using timers with a precision
of 1 ms or worse through a L1 covert channel. Similarly to our PoC, it uses
a Spectre-PHT gadget to read out-of-bound from a JavaScript TypedArray,
giving an attacker access to the entire address space. The PoC uses small-sized
TypedArrays for which the backing store is allocated in the isolate itself. Thus,
it leaks data inside the same isolate. In concurrent work, Agarwal et al. [1] has
extended the PoC from Röttger and Janc [57] to leak data using 64-bit addresses
using a local timing source. They use speculative type confusion between an
ArrayBuffer and a custom object that should be properly aligned across two
cache lines.

7 Conclusion

In this paper, we presented DyPrIs, a practical low-overhead solution to actively
detect and mitigate Spectre attacks. We first presented an amplified JavaScript
remote attack on Cloudflare Workers, which leaks 2 bit/min, i.e., 1 bit per worker



Robust and Scalable Process Isolation against Spectre in the Cloud 17

invocation. We proposed a practical approach for actively detecting and mitigat-
ing Spectre attacks. We show that it is still possible to efficiently detect Spectre
attacks using performance counters with a false-positive rate of 0.61 % at the cost
of 2 % overhead for the detection. We demonstrate that conditionally applying
process isolation based on a detection mechanism has a better performance than
full process isolation, under the same security guarantees.

Acknowledgments

We want to thank our anonymous reviewers and in particular our shepherds
Roberto Di Pietro and Vijayalakshmi Atluri. This work was supported by gen-
erous gifts from Cloudflare. We want to especially thank Harris Hancock, Claudio
Canella and Moritz Lipp for valueable feedback on this work. Any opinions or
recommendations expressed in this work are those of the authors and do not
necessarily reflect the views of the funding parties.

References

1. Ayush Agarwal, Sioli O’Connell, Jason Kim, Shaked Yehezkel, Daniel Genkin,
Eyal Ronen, and Yuval Yarom. Spook.js: Attacking Chrome Strict Site Isolation
via Speculative Execution. In S&P, 2022.

2. Amazon. AWS Lambda@Edge, 2019. URL: https://aws.amazon.com/lambda/

edge/.
3. Anonymous. Anonymized for Double Blind Submission, 2019.
4. Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandt ner, Alessan-

dro Sorniotti, Babak Falsafi, Mathias Payer, and Anil Kurmus. SMoTherSpectre:
exploiting speculative execution through port contention. In CCS, 2019.

5. Samira Briongos, Gorka Irazoqui, Pedro Malagón, and Thomas Eisenbarth.
Cacheshield: Detecting cache attacks through self-observation. In CODASPY,
2018.

6. David Brumley and Dan Boneh. Remote timing attacks are practical. Computer
Networks, 48(5):701–716, 2005.

7. Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin von Berg,
Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss. A System-
atic Evaluation of Transient Execution Attacks and Defenses. In USENIX Security
Symposium, 2019. Extended classification tree and PoCs at https://transient.fail/.

8. Marco Chiappetta, Erkay Savas, and Cemal Yilmaz. Real time detection of
cache-based side-channel attacks using hardware performance counters. ePrint
2015/1034, 2015.

9. Cloudflare. Cloudflare Workers, 2019. URL: https://www.cloudflare.com/

products/cloudflare-workers/.
10. Cloudflare. Cloudflare Workers, 2019. URL: https://blog.cloudflare.com/

cloud-computing-without-containers/.
11. Cloudflare. Anonymized for Double Blind Submission, 2020.
12. Cloudflare. Limits - Cloudflare Workers, 2021. URL: https://developers.

cloudflare.com/workers/platform/limits.
13. Jonathan Corbet. Finding Spectre vulnerabilities with smatch, April 2018. URL:

https://lwn.net/Articles/752408/.



18 M. Schwarzl, C. Canella, D. Gruss, M. Schwarz

14. Scott A Crosby, Dan S Wallach, and Rudolf H Riedi. Opportunities and limits of
remote timing attacks. ACM Transactions on Information and System Security
(TISSEC), 12(3):17, 2009.

15. Sanjeev Das, Jan Werner, Manos Antonakakis, Michalis Polychronakis, and Fabian
Monrose. Sok: The challenges, pitfalls, and perils of using hardware performance
counters for security. In S&P, 2019.

16. Deno. A Globally Distributed JavaScript VM, 2021. URL: https://deno.com/
deploy.

17. Fastly. Serverless Compute Environment - Fastly Compute@Edge, 2021. URL:
https://www.fastly.com/products/edge-compute/serverless.

18. Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. A Survey of Microarchitec-
tural Timing Attacks and Countermeasures on Contemporary Hardware. Journal
of Cryptographic Engineering, 2016.

19. Enes Göktaş, Kaveh Razavi, Georgios Portokalidis, Herbert Bos, and Cristiano
Giuffrida. Speculative Probing: Hacking Blind in the Spectre Era. In CCS, 2020.

20. Google. SafeSide: Understand and mitigate software-observable side-channels,
2019. URL: https://github.com/google/safeside.

21. Google Project Zero. What is a ”good” memory corruption vulnerabil-
ity?, 2015. URL: https://googleprojectzero.blogspot.com/2015/06/what-is-
good-memory-corruption.html.

22. Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano Giuffrida.
ASLR on the Line: Practical Cache Attacks on the MMU. In NDSS, 2017.

23. Daniel Gruss, Clémentine Maurice, and Stefan Mangard. Rowhammer.js: A Re-
mote Software-Induced Fault Attack in JavaScript. In DIMVA, 2016.

24. Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard.
Flush+Flush: A Fast and Stealthy Cache Attack. In DIMVA, 2016.

25. Marco Guarnieri, Boris Köpf, José F Morales, Jan Reineke, and Andrés Sánchez.
SPECTECTOR: Principled Detection of Speculative Information Flows. In S&P,
2020.

26. Berk Gulmezoglu, Ahmad Moghimi, Thomas Eisenbarth, and Berk Sunar. For-
tuneTeller: Predicting Microarchitectural Attacks via Unsupervised Deep Learn-
ing. arXiv:1907.03651, 2019.

27. Red Hat. Spectre And Meltdown Detector, 2018. URL: https://access.redhat.
com/labsinfo/speculativeexecution.

28. Nishad Herath and Anders Fogh. These are Not Your Grand Daddys CPU Per-
formance Counters – CPU Hardware Performance Counters for Security. In Black
Hat Briefings, 2015.

29. Jann Horn. speculative execution, variant 4: speculative store bypass, 2018.
30. Intel. Intel Analysis of Speculative Execution Side Channels, 2018. Revision 4.0.
31. Intel. Speculative Execution Side Channel Mitigations, 2018. Revision 3.0.
32. Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. Mascat: Preventing microar-

chitectural attacks before distribution. In CODASPY, 2018.
33. Paul Kocher. Spectre Mitigations in Microsoft’s C/C++ Compiler, 2018.
34. Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,

Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. Spectre Attacks: Exploiting Speculative Execution. In S&P,
2019.

35. Esmaeil Mohammadian Koruyeh, Khaled Khasawneh, Chengyu Song, and Nael
Abu-Ghazaleh. Spectre Returns! Speculation Attacks using the Return Stack
Buffer. In WOOT, 2018.



Robust and Scalable Process Isolation against Spectre in the Cloud 19

36. Moritz Lipp, Vedad Hadžić, Michael Schwarz, Arthur Perais, Clémentine Maurice,
and Daniel Gruss. Take a Way: Exploring the Security Implications of AMD’s
Cache Way Predictors. In AsiaCCS, 2020.

37. Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, An-
ders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,
and Mike Hamburg. Meltdown: Reading Kernel Memory from User Space. In
USENIX Security Symposium, 2018.

38. G. Maisuradze and C. Rossow. ret2spec: Speculative Execution Using Return Stack
Buffers. In CCS, 2018.

39. Corey Malone, Mohamed Zahran, and Ramesh Karri. Are hardware performance
counters a cost effective way for integrity checking of programs. In STC, 2011.

40. Andrea Mambretti, Matthias Neugschwandtner, Alessandro Sorniotti, Engin
Kirda, William Robertson, and Anil Kurmus. Speculator: A Tool to Analyze Spec-
ulative Execution Attacks and Mitigations. In ACM ACSAC, 2019.

41. Ross Mcilroy, Jaroslav Sevcik, Tobias Tebbi, Ben L Titzer, and Toon Verwaest.
Spectre is here to stay: An analysis of side-channels and speculative execution.
arXiv:1902.05178, 2019.

42. Microsoft. Azure serverless computing, 2019. URL: https://azure.microsoft.
com/en-us/overview/serverless-computing/.

43. Maria Mushtaq, Jeremy Bricq, Muhammad Khurram Bhatti, Ayaz Akram, Vian-
ney Lapotre, Guy Gogniat, and Pascal Benoit. WHISPER: A Tool for Run-time
Detection of Side-Channel Attacks. IEEE Access, 2020.

44. Yossef Oren, Vasileios P Kemerlis, Simha Sethumadhavan, and Angelos D
Keromytis. The Spy in the Sandbox: Practical Cache Attacks in JavaScript and
their Implications. In CCS, 2015.

45. Soyeon Park, Sangho Lee, Wen Xu, Hyungon Moon, and Taesoo Kim. libmpk:
Software Abstraction for Intel Memory Protection Keys. arXiv:1811.07276, 2018.

46. Matthias Payer. HexPADS: a platform to detect “stealth” attacks. In ESSoS,
2016.

47. Zhenxiao Qi, Qian Feng, Yueqiang Cheng, Mengjia Yan, Peng Li, Heng Yin, and
Tao Wei. Spectaint: Speculative taint analysis for discovering spectre gadgets. In
NDSS, 2021.

48. Charles Reis, Alexander Moshchuk, and Nasko Oskov. Site Isolation: Process Sep-
aration for Web Sites within the Browser. In USENIX Security Symposium, 2019.

49. Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. Hey, You,
Get Off of My Cloud: Exploring Information Leakage in Third-Party Compute
Clouds. In CCS, 2009.

50. David Schrammel, Samuel Weiser, Stefan Steinegger, Martin Schwarzl, Michael
Schwarz, Stefan Mangard, and Daniel Gruss. Donky: Domain Keys–Efficient In-
Process Isolation for RISC-V and x86. In USENIX Security Symposium, 2020.

51. Michael Schwarz, Claudio Canella, Lukas Giner, and Daniel Gruss. Store-to-Leak
Forwarding: Leaking Data on Meltdown-resistant CPUs. arXiv:1905.05725, 2019.

52. Michael Schwarz, Moritz Lipp, Claudio Canella, Robert Schilling, Florian Kargl,
and Daniel Gruss. ConTExT: A Generic Approach for Mitigating Spectre. In
NDSS, 2020.

53. Michael Schwarz, Moritz Lipp, and Daniel Gruss. JavaScript Zero: Real JavaScript
and Zero Side-Channel Attacks. In NDSS, 2018.

54. Michael Schwarz, Clémentine Maurice, Daniel Gruss, and Stefan Mangard. Fantas-
tic Timers and Where to Find Them: High-Resolution Microarchitectural Attacks
in JavaScript. In FC, 2017.



20 M. Schwarzl, C. Canella, D. Gruss, M. Schwarz

55. Michael Schwarz, Martin Schwarzl, Moritz Lipp, Jon Masters, and Daniel Gruss.
NetSpectre: Read Arbitrary Memory over Network. In ESORICS, 2019.

56. Martin Schwarzl, Pietro Borrello, Andreas Kogler, Kenton Varda, Thomas Schus-
ter, Daniel Gruss, and Michael Schwarz. Robust and Scalable Process Isola-
tion against Spectre in the Cloud (Extended Version), 2022. URL: https:

//martinschwarzl.at/media/files/robust_extended.pdf.
57. Stephen Roettger and Artur Janc. A Spectre proof-of-concept for a Spectre-

proof web, 2021. URL: https://security.googleblog.com/2021/03/a-spectre-
proof-of-concept-for-spectre.html.

58. Ben Titzer. What Spectre means for Language Implementers, 2019. URL: https:
//pliss2019.github.io/ben_titzer_spectre_slides.pdf.

59. Ben L. Titzer and Jaroslav Sevcik. A year with Spectre: a V8 perspective, 2019.
URL: https://v8.dev/blog/spectre.

60. M Caner Tol, Koray Yurtseven, Berk Gulmezoglu, and Berk Sunar. FastSpec:
Scalable Generation and Detection of Spectre Gadgets Using Neural Embeddings.
arXiv:2006.14147, 2020.

61. v8 developer blog, 2020. URL: https://v8.dev/blog/v8-release-83.
62. Anjo Vahldiek-Oberwagner, Eslam Elnikety, Deepak Garg, and Peter Druschel.

ERIM: Secure and Efficient In-process Isolation with Memory Protection Keys. In
USENIX Security Symposium, 2019.

63. Tom Van Goethem, Christina Pöpper, Wouter Joosen, and Mathy Vanhoef. Time-
less Timing Attacks: Exploiting Concurrency to Leak Secrets over Remote Con-
nections. In USENIX Security Symposium, 2020.

64. Pepe Vila, Boris Köpf, and Jose Morales. Theory and Practice of Finding Eviction
Sets. In S&P, 2019.

65. Guanhua Wang, Sudipta Chattopadhyay, Ivan Gotovchits, Tulika Mitra, and Abhik
Roychoudhury. oo7: Low-overhead Defense against Spectre attacks via Program
Analysis. Transactions on Software Engineering, 2019.

66. Han Wang, Hossein Sayadi, Avesta Sasan, Setareh Rafatirad, and Houman Homay-
oun. Hybrid-shield: Accurate and efficient cross-layer countermeasure for run-time
detection and mitigation of cache-based side-channel attacks. In ICCAD, 2020.

67. Han Wang, Hossein Sayadi, Avesta Sasan, Setareh Rafatirad, Tinoosh Mohsenin,
and Houman Homayoun. Comprehensive Evaluation of Machine Learning Coun-
termeasures for Detecting Microarchitectural Side-Channel Attacks. In GLSVLSI,
2020.

68. X. Wang and R. Karri. Numchecker: Detecting kernel control-flow modifying rootk-
its by using hardware performance counters. In DAC, 2013.

69. Yubin Xia, Yutao Liu, Haibo Chen, and Binyu Zang. CFIMon: Detecting violation
of control flow integrity using performance counters. In DSN, 2012.

70. Tianwei Zhang, Yinqian Zhang, and Ruby B. Lee. CloudRadar: A Real-Time
Side-Channel Attack Detection System in Clouds. In RAID, 2016.

71. Zeyu Zhang, Xiaoli Zhang, Qi Li, Kun Sun, Yinqian Zhang, Songsong Liu, Yukun
Liu, and Xiaoning Li. See through Walls: Detecting Malware in SGX Enclaves
with SGX-Bouncer. In AsiaCCS, 2021.

72. Boyou Zhou, Anmol Gupta, Rasoul Jahanshahi, Manuel Egele, and Ajay Joshi.
Hardware performance counters can detect malware: Myth or fact? In AsiaCCS,
2018.

73. Hongwei Zhou, Xin Wu, Wenchang Shi, Jinhui Yuan, and Bin Liang. Hdrop:
Detecting rop attacks using performance monitoring counters. In ISPEC, 2014.


