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Abstract

The Lottery Ticket Hypothesis continues to have
a profound practical impact on the quest for small
scale deep neural networks that solve modern
deep learning tasks at competitive performance.
These lottery tickets are identified by pruning
large randomly initialized neural networks with
architectures that are as diverse as their applica-
tions. Yet, theoretical insights that attest their
existence have been mostly focused on deep fully-
connected feed forward networks with ReLU acti-
vation functions. We prove that also modern archi-
tectures consisting of convolutional and residual
layers that can be equipped with almost arbitrary
activation functions can contain lottery tickets
with high probability.

1. Introduction
The Lottery ticket (LT) Hypothesis (Frankle & Carbin, 2019)
has fueled the interest in deep neural network pruning to a
reduce the number of trainable parameters with the purpose
to save computational resources, regularize, and perform
meaningful structure learning. Most newly developed al-
gorithms are benchmarked and evaluated in the imaging
domain. Naturally, most architectures that are pruned in
practice contain therefore convolutional layers. In particu-
lar residual blocks, and skip connections in general, seem
to provide iterative pruning algorithms an advantage over
less computationally cumbersome approaches (Ma et al.,
2021). It is subject of an ongoing debate to which degree
different algorithms are successful in finding task specific
computational neural network structures (Su et al., 2020;
Ma et al., 2021; Fischer & Burkholz, 2022) and whether
LTs are identifiable by contemporary pruning algorithms
to solve complex problems with large scale architectures
(Frankle et al., 2020; Renda et al., 2020). Theoretical in-
sights into the conditions when we can expect to find LTs
can provide guidance regarding when improvements could
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be feasible.

Our work contributes to the discussion with the assurance
that LTs likely exist under realistic conditions in convolu-
tional networks with or without residual blocks even when
pruning algorithms are currently challenged to find them.
This is in line with the Strong Lottery Ticket Hypothesis
(SLTH), which has been posed by (Ramanujan et al., 2020)
based on experiments in inspiration of (Zhou et al., 2019). It
suggests that a sufficiently large neural network with random
parameters contains, with high probability, for each target
network (of certain maximal size) a sub-network that can
approximate the target network with high accuracy. Such a
sub-network is also called strong LT and does not need to be
trained in order to achieve a performance that is competitive
with the one of the target network.

The existence of such strong LTs has been proven for fully-
connected feed forward architectures and ReLU activation
functions by providing a probabilistic lower bound on the
required width of the larger random network. First proven
by (Malach et al., 2020), the width requirements have suc-
cinctly been improved to a logarithmic factor in the relevant
variables (Pensia et al., 2020; Orseau et al., 2020) and ex-
tended to nonzero biases (Fischer & Burkholz, 2021). The
only results for convolutional architectures are provided by
(Burkholz et al., 2022; da Cunha et al., 2022) but either ap-
ply to specific targets (Burkholz et al., 2022) or are restricted
to positive inputs (da Cunha et al., 2022) and do not cover
common data transformations. Furthermore, all of these
results rely on random networks that have at least twice the
depth of the target network. This excludes constructions,
in which the LTs can have residual blocks of the same size
as in the target network, and reduces the expressiveness of
the target networks, as they cannot utilize a large part of
the available depth for a sparser representation (Yarotsky,
2018; Mhaskar et al., 2017). To overcome these limitations,
we follow a similar strategy as (Burkholz, 2022) to extend
existence results to a larger class of activation functions
and random networks that have a similar depth as the target
network (L+ 1). We solve the additional challenge to prune
and construct convolutional filters with and without skip
connections and residual blocks. In doing so, we propose
a different construction than (da Cunha et al., 2022) that is
not restricted to positive inputs.
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1.1. Contributions

1) We prove the existence of strong lottery tickets in convo-
lutional neural network architectures, potentially with skip
connections and residual blocks. 2) Our constructions are
not restricted to CNNs with positive inputs and ReLUs in
contrast to (da Cunha et al., 2022). 3) Our proofs apply to a
large class of activation functions, including ReLUs, Leaky
ReLUs, Tanh, and Sigmoids. 4) We present two types of
constructions: (a) one in which the large, randomly initial-
ized neural network that contains LTs has at least twice the
depth of a target network, i.e. L0 = 2Lt; and one in which
the target can leverage almost the full depth of the large
network for a sparser representation, as L0 = Lt + 1. 5)
We verify in experiments that our theory derives realistic
conditions. Based on insights on solving subset sum approx-
imation problems experimentally, we assess the expected
sparsity of our LTs.

1.2. Related Literature

Most LT experiments are conducted in the context of image
classification and thus rely heavily on pruning convolutional
and residual neural network architectures to reduce the num-
ber of trainable parameters of a neural network (LeCun
et al., 1990a; Mozer & Smolensky, 1989; Han et al., 2015;
Frankle & Carbin, 2019; Srinivas & Babu, 2016; Lee et al.,
2020; You et al., 2020; Frankle et al., 2020; Renda et al.,
2020; Liu et al., 2021a; Liu et al.; Weigend et al., 1991;
Savarese et al., 2020a; Chen et al., 2021c; Savarese et al.,
2020b; LeCun et al., 1990b; Hassibi & Stork, 1992; Dong
et al., 2017; Li et al., 2017; Molchanov et al., 2017; Zhang
et al., 2021c). Some exceptions include graph neural net-
works (Chen et al., 2021b) and GANs (Chen et al., 2021a),
which still utilize convolutions. One of the main objectives
is to reduce the computational burden associated with deep
learning. This can also be achieved with the help of core
sets (Zhang et al., 2021b) or by starting the pruning not from
a dense but a sparse random architecture (Evci et al., 2020;
Liu et al., 2021b). Pruning before training (Wang et al.,
2020; Lee et al., 2019; Verdenius et al., 2020; Tanaka et al.,
2020; Ramanujan et al., 2020) is also a promising research
direction but iterative pruning methods often perform better
(Frankle et al., 2021; Ma et al., 2021; Fischer & Burkholz,
2022), while most benefits seem to result from residual skip
connections (Ma et al., 2021). Another objective in the iden-
tification of LTs is structure learning, which seems to be
more effective at lower sparsity levels (Su et al., 2020; Lee
et al., 2020) and in many cases Iterative Magnitude Prunings
(IMP) (Han et al., 2015; Frankle & Carbin, 2019) can fail to
find structures that perform superior to random or smaller
dense networks (Ma et al., 2021). Regardless, pruning can
have provable regularization and generalization properties
(Zhang et al., 2021a). At least for fully-connected architec-
tures it has also been shown that structurally relevant LTs

exist theoretically.

Most of the discussed pruning methods try to find weak LTs
by identifying a sparse neural network architecture that is
well trainable. Strong LTs are sparse sub-networks that per-
form well even without training and just rely on their initial
parameters (Zhou et al., 2019; Ramanujan et al., 2020) and
are thus also weak LTs. Their existence has been proven for
fully-connected feed forward networks with RELU activa-
tion functions by providing lower bounds on the width of
the large, randomly initialized neural network that contains
them (Malach et al., 2020; Pensia et al., 2020; Orseau et al.,
2020; Fischer & Burkholz, 2021; Burkholz et al., 2022). In
addition, it was shown that multiple candidate tickets exist
that are also robust to parameter quantization (Diffenderfer
& Kailkhura, 2021). These works are restricted to ReLUs
and always assume that the large randomly initialized neural
networks has at least twice the depth of a target network
L0 ≥ 2Lt. (Burkholz, 2022) extends these results to more
general activation functions and also introduces a strategy
to handle L0 ≥ Lt + 1. Up to our knowledge, (Burkholz
et al., 2022; da Cunha et al., 2022) are the only theoreti-
cal works on convolutional architectures and apply only to
ReLU activation functions. While (Burkholz et al., 2022)
uses convolutions to obtain specific representations of basis
functions, (da Cunha et al., 2022) studies general convolu-
tional layers but is restricted to target networks with positive
inputs, which does not cover the common image transfor-
mation procedures. We present more general results that
also apply to potentially negative inputs, require less depth,
can handle skip connections, which seem to be essential for
the success of state-of-the-art pruning algorithms (Ma et al.,
2021), and cover a large class of activation functions.

2. Background and notation
Let a convolutional neural network f : D ⊂ Rc0×d0 →
RcL×dL be defined on a compact domain D and have chan-
nels c̄ = [c0, c1, ..., cL], i.e., depth L and width cl in layer
l ∈ [L] := {0, ..., L}. It is equipped with a continuous
activation function φ(x) that has Lipschitz constant T on a
compact domain that includes the possible inputs. f maps
an input tensor x(0) to neurons x(l)ik as:

x
(l)
i = φ

(
h
(l)
i

)
, h

(l)
i =

cl−1∑
j=1

W
(l)
ij ∗ x

(l−1)
j + b

(l)
i , (1)

where h(l) is the pre-activation, W (l) ∈ Rcl×cl−1×kl is the
weight tensor that consists of filters (or convolutional ker-
nels), b(l) ∈ Rcl is the bias vector of layer l, and ∗ denotes
a convolution operation. To simplify and generalize our
notation, we have flattened the filter dimension to kl. For
2d convolutions, as they are commonly in use on imaging
data, the weight tensor would actually have the size W (l) ∈
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Rcl×cl−1×k′1,l×k′2,l so that kl = k′1,lk
′
2,l. The convolution

operation between any 2-dimensional tensors K and X is
defined as (K ∗X)ij =

∑
i′,j′ Ki′j′X(i−i′+1)(j−j′+1) in

this case. We assume that the inputs are always suitably
padded with zeros and that the symbol ∗ performs the con-
volutions in the right dimensions. The flattened notation
just makes it easier to discuss higher dimensional filters at
the same time. In addition to convolutional layers, we also
allow for residual and more general skip connections. Skip
connections modify the network above as

x
(l)
i = φ

(
h
(l)
i

)
+

l−1∑
t=1

ct∑
j=1

M
(l,t)
ij ∗ x(t)

j . (2)

Usually, most of the operators M
(l,t)
ij are zero. In case

of residual connections, M (l,t)
ij1 = 1 are one-dimensional

filters that encode the identity and do not impose any ad-
ditional learnable or prunable parameters. Without loss of
generality, we assume that each parameter (weight or bias)
θ is bounded by |θ| ≤ 1 − ε. In addition, we require that
each tensor element is bounded as |xiq| ≤ 1. Otherwise,
our estimate of the error that we allow in the approximation
of each target parameter would become more complicated.
Moreover, we denote with Nw,l the number of all nonzero
weight and bias parameters in Layer l that do not correspond
to skip connections, while Nm,l counts the number of all
nonzero parameters involved in skip connections that lead
to Layer l.

We distinguish three different types of neural networks: a
target network ft, a LT fε, and a source network f0. The
target network ft is approximated by the LT fε, which we
obtain by pruning f0. We also write fε ⊂ f0, meaning that
fε is constructed by masking some parameters of f0, i.e.
setting some of them to 0, while the other parameters keep
their original value. The parameters of the source network
f0 are drawn from a random distribution as follows.
Assumption 2.1 (Parameter initialization). We assume that
the parameters of the source network f0 are independently
distributed as w(l)

ij ∼ U ([−σl, σl]), b(1)i ∼ U ([−σl, σl])
and b(l)i = 0 for l > 1.

Note that they could also follow any other distribution that
contains a uniform distribution, for instance, a normal dis-
tribution (Pensia et al., 2020). In our theorems and proofs,
we choose σl conveniently based on the activation functions.
For ReLUs, for instance, σl = 1 is common. In practice, we
usually have σl ∝ 1/

√
ck to avoid vanishing or exploding

gradients. To transfer our results to this setting, we need to
scale each parameter of the LT of our proofs by a scaling
factor λl (Burkholz, 2022). For homogeneous activation
functions like ReLUs or Leaky ReLUs, these scaling factors
can also be joined into a single one λ =

∏
l λl that is applied

to the output (Fischer & Burkholz, 2021). Note that if the

target network parameter would not fulfill our assumption
|θ| ≤ 1, we could simply adjust the scaling factors so that
the initial parameter distribution and the network parameters
vary within the same range. As these scaling factors could
still be learned or just derived based on the parameter initial-
ization, our existence results transfer to realistic parameter
initialization settings.

As the parameters of the source network are random, f0
needs to be bigger than the target so that we have enough
alternatives to pick the right ones. Because of two strategies
that help us increase our options, the LT also consists of
more parameters and neurons than the target network. These
two strategies are (a) solving subset sum approximation
problems and (b) using several layers to approximate a
target layer.

Subset Sum Approximation Instead of searching for a
single parameter in f0 that closely matches a target parame-
ter θt, we approximate it by the sum of multiple parameters
θt ≈

∑
n∈S θ0,n. There are usually many options to rep-

resent such a sum and each possibility can be cast as a
subset of a larger base set of size m, which contains 2m

candidate subsets. This explains why solving subset sum ap-
proximation problems to find a suitable subset is successful
with high probability based on relatively small base sizes
m. We frequently use a theorem by (Lueker, 1998), which
has been extended by (Burkholz et al., 2022) to solve subset
sum approximation problems if the random variables are
not necessarily identically distributed. For convenience it
is stated as Cor. A.2 in more general form in the appendix.
We primarily utilize the following simplification in our con-
struction.
Corollary 2.2 (Subset sum approximation (Lueker, 1998)).
Let X1, ..., Xm be independent, uniformly distributed
random variables with Xk ∼ U [−1, 1] or Xk ∼
U [−1, 1]U [−1, 1] and ε, δ ∈ (0, 1) be given. Then for any
θt ∈ [−1, 1] there exists a subset S ⊂ [m] so that with
probability at least 1 − δ we have |θt −

∑
k∈S Xk| ≤ ε if

m ≥ C log
(

1
min(δ,ε)

)
.

Naturally, a question that decides about the practicality of
using this result is the size of the constant C. Repeated
solutions of subset sum problems by optimal exhaustive
searches over subsets for different base set sizes m with
Xk ∼ U [−1, 1] suggest that C ≈ 3, which means that our
approach is feasible. More insights on subset sum problems
are discussed in the experiments section.

(b) The second strategy to construct LTs is concerned with
making base sets {X1, ..., Xm} available to solve subset
sum approximation problems. A common approach is to
create multiple versions of the input to a layer, which usu-
ally populate an additional intermediary layer in f0 and fε
before approximate target neurons are constructed in the
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Figure 1. Construction of the target Layer l′ in Layers 2l′ − 1 and 2l′ of the source network f0.

following layer. This results in source networks and LTs
that need twice the depth of a target network, i.e, L0 = 2Lt.
(da Cunha et al., 2022) has transferred this idea for fully-
connected feed forward architectures to convolutional layers
with ReLU activation functions. However, the first layer
has multi-dimensional input in general, which limits the ap-
proach to positive inputs. Our first contribution is to derive
a different (L0 = 2Lt)-construction that can handle any
input and works for multiple activation functions, including
ReLUs. Afterwards, we transfer the Lt+1 construction idea
for fully-connected feed forward neural networks (Burkholz,
2022) and general activation functions to convolutional lay-
ers. An important consequence of this construction is that
we can also cover residual blocks that are of the same size
in all three networks, the target, the source, and the LT.

Activation Functions The (L0 = 2Lt)-construction in
fully-connected networks relies on the fact that ReLUs
φR(x) = max{x, 0} can easily represent the identity as
x = φR(x)− φR(−x) so that neurons in the intermediary
layer correspond to the positive φ(x

(l−1)
i ) and the negative

part φ(−x(l−1)i ) of input neurons x(l−1)i . Similarly, Leaky
ReLUs φLR(x) = φR(x)− αφR(−x) encode the identity
as x = (φLR(x)− φLR(−x))/(1 + α). Most other activa-
tion functions can be approximated locally around the origin
by a shifted Leaky ReLU and thus fulfill our following as-
sumption.

Assumption 2.3 (Activation function (first layer)). For
any given ε′ > 0 exists a neighborhood [−a(ε′), a(ε′)]
of 0 with a(ε′) > 0 so that the activation function φ can
be approximated by φ̂(x) on that neighborhood such that
supx∈[−a,a] |φ(x)−φ̂(x)| ≤ ε′, where φ̂(x) = m+x+d for
x ≥ 0 and φ̂(x) = m−x+d for x < 0 withm+,m−, d ∈ R
and m+ +m− 6= 0. We further assume that g(x) = x/a(x)
is invertible on an interval ]0, ε′′] with ε′′ > 0.

For instance, ReLUs φ(x) = max(x, 0) inflict zero error
on R (i.e., a = ∞) with m+ = 1, m− = 0, and d =
0. Leaky ReLUs can be represented without error with

m+ = 1, m− = α, and d = 0 for an α > 0. φ(x) =
tanh(x) is approximately linear so that | tanh(x) − x| ≤
x3/3 for |x| < π/2, which can be seen by Taylor expansion
of tanh. This implies that the choicem+ = 1,m− = 1, and
d = 0 with a = min{(3ε′)1/3, π/2} fulfills our assumption.
Sigmoids φ(x) = 1/(1 + exp(−x)) can be analyzed in
the same way with m+ = m− = 0.25, d = 0.5, and
a = min{(48ε′)1/3, π}, since φ(x) = (tanh(x/2) + 1)/2.

All these activation functions can approximate the identity
as |x− r (φ(x)− φ(−x))| ≤ 2rε′, where we have defined
r := 1

m++m−
. To abbreviate our notation later on, we

also use µ±(x) := m+ for x > 0, µ±(x) := m− for
x < 0, and µ±(0) := 0 for x = 0. Note that we always
have µ±(x) + µ±(−x) = m+ + m− = 1/r. Functions
with m+ = m− = m and d = 0 like TANH can also be
approximated by |x − φ(x)/m| ≤ ε′/m and do not need
separate approximations of the positive and the negative part.
The ability to easily approximate the identity is a valuable
property to construct target networks that fit the depth of
the source network. We can always increase the depth of a
target by concatenating identity approximating layers. Note
that we otherwise only need this assumption in the middle
layers of the (2Lt)-construction and the first layer of the
(Lt+ 1)-construction. Any other activation functions do not
even need to fulfill this assumption.

3. Existence Results
The main idea in our construction of LTs rests on the linear-
ity of convolutions. Concretely, let us assume for a moment
that the input tensors in Eq. (1) of the LT are identical to a tar-
get input up to a scalar factor λj , i.e., x(l−1)

j′ = λj′x
(l−1)
t,j

for all j′ ∈ Ij . It follows that
∑
j′∈Ij W

(l)
ij′ ∗ x

(l−1)
j′ =∑

j′∈Ij W
(l)
ij′ ∗ (λj′x

(l−1)
t,j ) =

(∑
j′∈Ij W

(l)
ij′ λj′

)
∗x(l−1)

t,j .

We could therefore use
(∑

j′∈Ij W
(l)
ij′ λj′

)
in the LT to ap-

proximate a target tensor W (l)
t,ij by masking some of the

components w(l)
ij′q according to subset sum approximation.
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In fact, all entries for the indices j′q can be used indepen-
dently to approximate the corresponding target tensor entry
with index q. Hence, our main task is to create multiple
candidates λj′x

(l−1)
t,j for an input x(l−1)

t,j . Our two different
construction approaches differ in how they achieve this.

3.1. Two Layers for One

Informally, our first objective is to show that for any con-
volutional and/or residual target network ft with depth Lt,
maximum channel size ct, and kernel size kt, there exists
with probability 1− δ a sub-network fε of a source network
with depth L0 = 2Lt that approximates the target up to
error ε > 0 if the source network has maximum channel
size c0 ≥ Ccts0 log(ctktLt/min{ε, δ} for a constant C
that is independent of ε, δ, ct, kt, and the stride s0 of filters
in uneven layers of f0.

Why do the source network and the LT have twice the depth?
Fig. 1 visualizes the answer. Every neuron in an even layer
l = 2l′ of the LT approximates the corresponding neuron
in layer l′ of the target so that x2l′

0,j ≈ xl
′
t,j and c0,2l′ = ct,l′

for every l′ ∈ [Lt]. What happens in the uneven layers
l = 2l′ + 1? We create multiple versions of the input
neurons x(2(l′−1))

0,j to support our subset sum approximation
problems and we achieve this with the help of univariate
filters. Note that the filters of f0 do not need to be univariate
themselves. We can also prune them into this state by setting
all filter entries except for one to zero. Which filter entry
we keep as nonzero depends on the stride. For simplicity,
let us assume here that we have univariate filters w(2l′−1)

i′j1
with stride s0 = 1 already. How to transfer other cases to
this setting is discussed in the appendix.

We have w
(2l′−1)
i′j1 = λi′j for every i′ ∈ Ij and

w
(2l′−1)
i′j1 = 0 otherwise. This creates preactivations

h
(2l′−1)
i′ =

∑
j′W

(2l′−1)
i′j′ ∗ x

(2l′−2)
0,j′ = λi′jx

(2l′−2)
0,j ,

which is exactly what we were looking for. Yet, we still
have to send each entry through an activation function
receiving φ(λi′jx

(2l′−2)
0,j ). To handle input entries with

different signs, we have to create neurons with positive
(λi′j > 0) and negative (λi′j < 0). For |λi′j | small
enough, we can then approximate φ as in Assumption 2.3,
use this to construct the identity, and exchange the order
of the summation and convolution because of the local
linearity of φ. We receive

∑
i′∈Ij W

(2l′)
0,ii′ ∗ φ(λi′jx

(2l′−2)
0,j )

≈
(∑

i′∈Ij ,λi′j>0 W
(2l′)
0,ii′ λi′j

)(
µ±(x

(2l′−2)
0,j )x

(2l′−2)
0,j

)
+(∑

i′∈Ij ,λi′j<0 W
(2l′)
0,ii′ λi′j

)
∗
(
µ±(−x(2l′−2)

0,j )x
(2l′−2)
0,j

)
≈W

(l′)
t,ij ∗

[
r
(
µ±(−x(2l′−2)

0,j ) + µ±(−x(2l′−2)
0,j

)
x
(2l′−2)
0,j

]
≈ W

(l′)
t,ij ∗ x

(l′−1)
t,j , if we can approxi-

mate r
∑
i′,λi′j>0 w

(2l′)
0,ii′qλi′j ≈ w

(l′)
t,ijq and

r
∑
i′,λi′j<0 w

(2l′)
0,ii′qλi′j ≈ w

(l′)
t,ijq for all filter en-

tries q by appropriate masking of the tensor el-
ements w

(l′)
t,ijq. In addition, we have used that

r
(
µ±(−x(2l′−2)

0,j ) + µ±(−x(2l′−2)
0,j

)
= 1 by defini-

tion and that we have x
(2l′−2)
0,j ≈ x

(l′−1)
t,j by construction.

Biases can be obtained similarly by approximating∑
i′,q w

(2l′)
0,ii′ µ±(b

(2l′−1)
0,i′ )b

(2l′−1)
0,i′ ≈ b

(l′)
t,i .

Theorem 3.1 (LT existence (2Lt-construction)). Assume
that ε, δ ∈ (0, 1), a convolutional target network (without
skip connections) ft(x) : D ⊂ Rc0×d0 → RcL×dLt with
architecture c̄t of depth Lt with Nt,l nonzero parameters
in Layer l, and a source network f0 with architecture n̄0 of
depth L0 = 2Lt are given. Let φ be the activation function
of ft with Lipschitz constant T fulfilling Assumption 2.3 with
d = 0. Then, with probability at least 1 − δ, f0 contains
a subnetwork fε ⊂ f0 so that each output component i is
approximated as maxx∈D |ft,iq(x)− fε′,iq(x)| ≤ ε, if for
all l′ ∈ [Lt] we have

c0,2l′+1 ≥ Cct,l log

(
Nt

min{ε/∏Lt
s=l(3TNt,s), δ}

)
,

and n0,2l′ ≥ nt,l′ + 1, and if the parameters
of f0 are initialized according to Assumption 2.1
with σ2l′+1 = r/σ2l′ and σ2l′ = a(ε′′)/2 and

ε′′ = g−1

 ε′

CNt log

(
Nt

min{ε/∏Lt
s=l

(3TNt,s),δ}

)
 for g(ε′′) =

ε′′/(a(ε′′)).

The proof is provided in the appendix. In summary, two
main insights enable the success of this construction and
allow for generally positive and negative inputs in contrast
to (da Cunha et al., 2022). First, we convolute the input
channels with an univariate filter in the first layer (and not in
the second as (da Cunha et al., 2022)). Second, the insight
that we can then prune the entries of each filter in the second
layer independently, which follows from the linearity of
convolutions, makes the construction parameter efficient
and flexible.

We could derive a more advantageous scaling of the error if
we would additionally assume that

∥∥∥W (l)
t

∥∥∥
2
≤ 1. Note also

that the error does not depend on the input tensor dimension,
i.e., the image size. This would change if we also incorpo-
rated a common flattening operation and fully-connected
layers, which are often used to solve classification problems
in the end. In this case, the image dimension would deter-
mine the number of input features to the fully-connected
layers. As these are handled in a different work (Burkholz,
2022), we skip a deeper discussion. We would only need to
adapt the initial ε to combine them.
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1

<latexit sha1_base64="Nq11DLNeV/9LgcpaM2QuTgifC7g=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoPoQcOuBPUY9OIxgnlgsoTZySQZMju7zPQKYclfePGgiFf/xpt/4yTZg0YLGoqqbrq7glgKg6775eSWlldW1/LrhY3Nre2d4u5ew0SJZrzOIhnpVkANl0LxOgqUvBVrTsNA8mYwupn6zUeujYjUPY5j7od0oERfMIpWemDdFE/l8Zk36RZLbtmdgfwlXkZKkKHWLX52ehFLQq6QSWpM23Nj9FOqUTDJJ4VOYnhM2YgOeNtSRUNu/HR28YQcWaVH+pG2pZDM1J8TKQ2NGYeB7QwpDs2iNxX/89oJ9q/8VKg4Qa7YfFE/kQQjMn2f9ITmDOXYEsq0sLcSNqSaMrQhFWwI3uLLf0njvOxdlCt3lVL1OosjDwdwCCfgwSVU4RZqUAcGCp7gBV4d4zw7b877vDXnZDP78AvOxzeNrZAy</latexit>ct,l0�1 <latexit sha1_base64="frS8z8cRU+D2tsZR/Hsh6lplJSQ=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPoQcKuBPUY9OIxgnlAsoTZySQZMju7zvQKYclPePGgiFd/x5t/4yTZgyYWNBRV3XR3BbEUBl3328mtrK6tb+Q3C1vbO7t7xf2DhokSzXidRTLSrYAaLoXidRQoeSvWnIaB5M1gdDv1m09cGxGpBxzH3A/pQIm+YBSt1GLdFM/l6aRbLLlldwayTLyMlCBDrVv86vQiloRcIZPUmLbnxuinVKNgkk8KncTwmLIRHfC2pYqG3Pjp7N4JObFKj/QjbUshmam/J1IaGjMOA9sZUhyaRW8q/ue1E+xf+6lQcYJcsfmifiIJRmT6POkJzRnKsSWUaWFvJWxINWVoIyrYELzFl5dJ46LsXZYr95VS9SaLIw9HcAxn4MEVVOEOalAHBhKe4RXenEfnxXl3PuatOSebOYQ/cD5/AK/Vj8A=</latexit>ct,l0

<latexit sha1_base64="8TJ0+F5YXX1SgXsDf2V3dzH2uOA=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BIvoQctuKeqx6MVjBfsB26Vk02wbmk2WZFYoS3+GFw+KePXXePPfmLZ70OqDgcd7M8zMCxPBDbjul1NYWV1b3yhulra2d3b3yvsHbaNSTVmLKqF0NySGCS5ZCzgI1k00I3EoWCcc3878ziPThiv5AJOEBTEZSh5xSsBKPu1n7nlNnF5403654lbdOfBf4uWkgnI0++XP3kDRNGYSqCDG+J6bQJARDZwKNi31UsMSQsdkyHxLJYmZCbL5yVN8YpUBjpS2JQHP1Z8TGYmNmcSh7YwJjMyyNxP/8/wUousg4zJJgUm6WBSlAoPCs//xgGtGQUwsIVRzeyumI6IJBZtSyYbgLb/8l7RrVe+yWr+vVxo3eRxFdISO0Rny0BVqoDvURC1EkUJP6AW9OuA8O2/O+6K14OQzh+gXnI9vmFaQKg==</latexit>c0,2l0�1
<latexit sha1_base64="8TJ0+F5YXX1SgXsDf2V3dzH2uOA=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BIvoQctuKeqx6MVjBfsB26Vk02wbmk2WZFYoS3+GFw+KePXXePPfmLZ70OqDgcd7M8zMCxPBDbjul1NYWV1b3yhulra2d3b3yvsHbaNSTVmLKqF0NySGCS5ZCzgI1k00I3EoWCcc3878ziPThiv5AJOEBTEZSh5xSsBKPu1n7nlNnF5403654lbdOfBf4uWkgnI0++XP3kDRNGYSqCDG+J6bQJARDZwKNi31UsMSQsdkyHxLJYmZCbL5yVN8YpUBjpS2JQHP1Z8TGYmNmcSh7YwJjMyyNxP/8/wUousg4zJJgUm6WBSlAoPCs//xgGtGQUwsIVRzeyumI6IJBZtSyYbgLb/8l7RrVe+yWr+vVxo3eRxFdISO0Rny0BVqoDvURC1EkUJP6AW9OuA8O2/O+6K14OQzh+gXnI9vmFaQKg==</latexit>c0,2l0�1

<latexit sha1_base64="8TJ0+F5YXX1SgXsDf2V3dzH2uOA=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BIvoQctuKeqx6MVjBfsB26Vk02wbmk2WZFYoS3+GFw+KePXXePPfmLZ70OqDgcd7M8zMCxPBDbjul1NYWV1b3yhulra2d3b3yvsHbaNSTVmLKqF0NySGCS5ZCzgI1k00I3EoWCcc3878ziPThiv5AJOEBTEZSh5xSsBKPu1n7nlNnF5403654lbdOfBf4uWkgnI0++XP3kDRNGYSqCDG+J6bQJARDZwKNi31UsMSQsdkyHxLJYmZCbL5yVN8YpUBjpS2JQHP1Z8TGYmNmcSh7YwJjMyyNxP/8/wUousg4zJJgUm6WBSlAoPCs//xgGtGQUwsIVRzeyumI6IJBZtSyYbgLb/8l7RrVe+yWr+vVxo3eRxFdISO0Rny0BVqoDvURC1EkUJP6AW9OuA8O2/O+6K14OQzh+gXnI9vmFaQKg==</latexit>c0,2l0�1

<latexit sha1_base64="frS8z8cRU+D2tsZR/Hsh6lplJSQ=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPoQcKuBPUY9OIxgnlAsoTZySQZMju7zvQKYclPePGgiFd/x5t/4yTZgyYWNBRV3XR3BbEUBl3328mtrK6tb+Q3C1vbO7t7xf2DhokSzXidRTLSrYAaLoXidRQoeSvWnIaB5M1gdDv1m09cGxGpBxzH3A/pQIm+YBSt1GLdFM/l6aRbLLlldwayTLyMlCBDrVv86vQiloRcIZPUmLbnxuinVKNgkk8KncTwmLIRHfC2pYqG3Pjp7N4JObFKj/QjbUshmam/J1IaGjMOA9sZUhyaRW8q/ue1E+xf+6lQcYJcsfmifiIJRmT6POkJzRnKsSWUaWFvJWxINWVoIyrYELzFl5dJ46LsXZYr95VS9SaLIw9HcAxn4MEVVOEOalAHBhKe4RXenEfnxXl3PuatOSebOYQ/cD5/AK/Vj8A=</latexit>ct,l0

<latexit sha1_base64="R2eMXaJv3vvGfYw/q2LNCz7ywjc=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRapBym7pajHohePFeyHtEvJptk2NMkuSVYoS3+FFw+KePXnePPfmLZ70NYHA4/3ZpiZF8ScaeO6305ubX1jcyu/XdjZ3ds/KB4etXSUKEKbJOKR6gRYU84kbRpmOO3EimIRcNoOxrczv/1ElWaRfDCTmPoCDyULGcHGSo/jcj+tXvDytF8suRV3DrRKvIyUIEOjX/zqDSKSCCoN4VjrrufGxk+xMoxwOi30Ek1jTMZ4SLuWSiyo9tP5wVN0ZpUBCiNlSxo0V39PpFhoPRGB7RTYjPSyNxP/87qJCa/9lMk4MVSSxaIw4chEaPY9GjBFieETSzBRzN6KyAgrTIzNqGBD8JZfXiWtasW7rNTua6X6TRZHHk7gFM7Bgyuowx00oAkEBDzDK7w5ynlx3p2PRWvOyWaO4Q+czx+4p4+3</latexit>

k0
2,l0

<latexit sha1_base64="0dHtoHtOt8RArYT9Kegt6ecp7/A=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRapBym7pajHohePFeyHtEvJptk2NMkuSVYoS3+FFw+KePXnePPfmLZ70NYHA4/3ZpiZF8ScaeO6305ubX1jcyu/XdjZ3ds/KB4etXSUKEKbJOKR6gRYU84kbRpmOO3EimIRcNoOxrczv/1ElWaRfDCTmPoCDyULGcHGSo/jcj/1Lnh52i+W3Io7B1olXkZKkKHRL371BhFJBJWGcKx113Nj46dYGUY4nRZ6iaYxJmM8pF1LJRZU++n84Ck6s8oAhZGyJQ2aq78nUiy0nojAdgpsRnrZm4n/ed3EhNd+ymScGCrJYlGYcGQiNPseDZiixPCJJZgoZm9FZIQVJsZmVLAheMsvr5JWteJdVmr3tVL9JosjDydwCufgwRXU4Q4a0AQCAp7hFd4c5bw4787HojXnZDPH8AfO5w+3H4+2</latexit>

k0
1,l0

<latexit sha1_base64="5NPzR4tubsYd/RC3n3SoOj/WPd0=">AAACHXicbVDLSsNAFJ34rPUVdelmsIh1U5JS1GXRjcsK9gFNLJPppB06yYSZibSE/Igbf8WNC0VcuBH/xkmbhW09cOFwzr3ce48XMSqVZf0YK6tr6xubha3i9s7u3r55cNiSPBaYNDFnXHQ8JAmjIWkqqhjpRIKgwGOk7Y1uMr/9SISkPLxXk4i4ARqE1KcYKS31zJoTIDX0/GScPiTlKjs7T3uJlUIHRZHgYzhnz1yV9sySVbGmgMvEzkkJ5Gj0zC+nz3EckFBhhqTs2lak3AQJRTEjadGJJYkQHqEB6WoaooBIN5l+l8JTrfShz4WuUMGp+nciQYGUk8DTndmxctHLxP+8bqz8KzehYRQrEuLZIj9mUHGYRQX7VBCs2EQThAXVt0I8RAJhpQMt6hDsxZeXSatasS8qtbtaqX6dx1EAx+AElIENLkEd3IIGaAIMnsALeAPvxrPxanwYn7PWFSOfOQJzML5/AdVromY=</latexit>

x
(2l0)
0 ⇡ x

(l0)
t

<latexit sha1_base64="KIUQKXYgobIRdqpdctynniVQvQE=">AAACIXicbVDLSsNAFJ3UV62vqEs3g0WsC0tSinZZdOOygn1AE8NkOmmHTh7MTKQl5Ffc+CtuXCjSnfgzTtosbPXAwOGcc5l7jxsxKqRhfGmFtfWNza3idmlnd2//QD886ogw5pi0cchC3nORIIwGpC2pZKQXcYJ8l5GuO77N/O4T4YKGwYOcRsT20TCgHsVIKsnRG5aP5Mj1kkn6mFRq7PyydpE6iZFCC0URDydwKaB8M/Nl6uhlo2rMAf8SMydlkKPl6DNrEOLYJ4HEDAnRN41I2gnikmJG0pIVCxIhPEZD0lc0QD4RdjK/MIVnShlAL+TqBRLO1d8TCfKFmPquSmbrilUvE//z+rH0GnZCgyiWJMCLj7yYQRnCrC44oJxgyaaKIMyp2hXiEeIIS1VqSZVgrp78l3RqVfOqWr+vl5s3eR1FcAJOQQWY4Bo0wR1ogTbA4Bm8gnfwob1ob9qnNltEC1o+cwyWoH3/AMjPo0s=</latexit>

x
(2l0�2)
0 ⇡ x

(l0�1)
t

<latexit sha1_base64="fdyWFQaOmTnk5Q2LzBMsLd02rD8=">AAACAnicbVDLSsNAFJ3UV62vqCtxM1jEurAkpajLohuXFewD2hgm00k7dDIJMxOxhODGX3HjQhG3foU7/8ZJm4VWD1w4nHMv997jRYxKZVlfRmFhcWl5pbhaWlvf2Nwyt3faMowFJi0cslB0PSQJo5y0FFWMdCNBUOAx0vHGl5nfuSNC0pDfqElEnAANOfUpRkpLrrnXD5AaeX5yn94mlRo7Oqkdp25ipdA1y1bVmgL+JXZOyiBH0zU/+4MQxwHhCjMkZc+2IuUkSCiKGUlL/ViSCOExGpKephwFRDrJ9IUUHmplAP1Q6OIKTtWfEwkKpJwEnu7MDpbzXib+5/Vi5Z87CeVRrAjHs0V+zKAKYZYHHFBBsGITTRAWVN8K8QgJhJVOraRDsOdf/kvatap9Wq1f18uNizyOItgHB6ACbHAGGuAKNEELYPAAnsALeDUejWfjzXiftRaMfGYX/ILx8Q3ARZZe</latexit>

x
(2l0�2)
0

<latexit sha1_base64="xvhm5e+OtBJ/9KHjM57sa3zo8ns=">AAACAHicbVC7TsNAEFzzDOFloKCgOREhQhPZUQSUETSUQSIPKTHW+XJOTjk/dHdGRJYbfoWGAoRo+Qw6/oZzkgISRlppNLOr3R0v5kwqy/o2lpZXVtfWCxvFza3tnV1zb78lo0QQ2iQRj0THw5JyFtKmYorTTiwoDjxO297oOvfbD1RIFoV3ahxTJ8CDkPmMYKUl1zzsBVgNPT99zO7TcpWfnmVuamXINUtWxZoALRJ7RkowQ8M1v3r9iCQBDRXhWMqubcXKSbFQjHCaFXuJpDEmIzygXU1DHFDppJMHMnSilT7yI6ErVGii/p5IcSDlOPB0Z36unPdy8T+vmyj/0klZGCeKhmS6yE84UhHK00B9JihRfKwJJoLpWxEZYoGJ0pkVdQj2/MuLpFWt2OeV2m2tVL+axVGAIziGMthwAXW4gQY0gUAGz/AKb8aT8WK8Gx/T1iVjNnMAf2B8/gDXDJXr</latexit>

x
(2l0)
0

<latexit sha1_base64="dgMiZjom8ElnogKQ/SqX1qL/ZGk=">AAACAHicbVDLSsNAFL2pr1pfURcu3AwWsW5KUoq6LLpxWcE+oI1hMp20QycPZiZCCdn4K25cKOLWz3Dn3zhpu9DWAxcO59zLvfd4MWdSWda3UVhZXVvfKG6WtrZ3dvfM/YO2jBJBaItEPBJdD0vKWUhbiilOu7GgOPA47Xjjm9zvPFIhWRTeq0lMnQAPQ+YzgpWWXPOoH2A18vy0kz2klRo/O8/c1MqQa5atqjUFWib2nJRhjqZrfvUHEUkCGirCsZQ924qVk2KhGOE0K/UTSWNMxnhIe5qGOKDSSacPZOhUKwPkR0JXqNBU/T2R4kDKSeDpzvxcuejl4n9eL1H+lZOyME4UDclskZ9wpCKUp4EGTFCi+EQTTATTtyIywgITpTMr6RDsxZeXSbtWtS+q9bt6uXE9j6MIx3ACFbDhEhpwC01oAYEMnuEV3own48V4Nz5mrQVjPnMIf2B8/gCjOpXK</latexit>

W
(2l0)
0

<latexit sha1_base64="TGhGuWJHImo84fb8f+RYMnXFygs=">AAACAnicbVDLSsNAFJ3UV62vqCtxM1jEurAkpajLohuXFewD2hgm00k7dDIJMxOhhODGX3HjQhG3foU7/8ZJm4W2HrhwOOde7r3HixiVyrK+jcLS8srqWnG9tLG5tb1j7u61ZRgLTFo4ZKHoekgSRjlpKaoY6UaCoMBjpOONrzO/80CEpCG/U5OIOAEacupTjJSWXPOgHyA18vykk94nlRo7ObNPUzexUuiaZatqTQEXiZ2TMsjRdM2v/iDEcUC4wgxJ2bOtSDkJEopiRtJSP5YkQniMhqSnKUcBkU4yfSGFx1oZQD8UuriCU/X3RIICKSeBpzuzg+W8l4n/eb1Y+ZdOQnkUK8LxbJEfM6hCmOUBB1QQrNhEE4QF1bdCPEICYaVTK+kQ7PmXF0m7VrXPq/XberlxlcdRBIfgCFSADS5AA9yAJmgBDB7BM3gFb8aT8WK8Gx+z1oKRz+yDPzA+fwCKppY8</latexit>

W
(2l0�1)
0

<latexit sha1_base64="MwgaapjuHoDTd+AFKBo/t9a47SQ=">AAACAnicbVDLSsNAFJ3UV62vqCtxM1jEurAkpajLohuXFewD2hgm00k7dDIJMxOhhODGX3HjQhG3foU7/8ZJm4W2HrhwOOde7r3HixiVyrK+jcLS8srqWnG9tLG5tb1j7u61ZRgLTFo4ZKHoekgSRjlpKaoY6UaCoMBjpOONrzO/80CEpCG/U5OIOAEacupTjJSWXPOgHyA18vzES++TSo2dnNmnqZtYKXTNslW1poCLxM5JGeRouuZXfxDiOCBcYYak7NlWpJwECUUxI2mpH0sSITxGQ9LTlKOASCeZvpDCY60MoB8KXVzBqfp7IkGBlJPA053ZwXLey8T/vF6s/EsnoTyKFeF4tsiPGVQhzPKAAyoIVmyiCcKC6lshHiGBsNKplXQI9vzLi6Rdq9rn1fptvdy4yuMogkNwBCrABhegAW5AE7QABo/gGbyCN+PJeDHejY9Za8HIZ/bBHxifP5wClkc=</latexit>

b
(2l0�1)
0

<latexit sha1_base64="XhKUI/L9F4r6c7Aw9/eDehdGP4Q=">AAACAnicbVDLSsNAFJ3UV62vqCtxM1jEurAkpajLohuXFewD2hgm00k7dDIJMxOhhODGX3HjQhG3foU7/8ZJm4W2HrhwOOde7r3HixiVyrK+jcLS8srqWnG9tLG5tb1j7u61ZRgLTFo4ZKHoekgSRjlpKaoY6UaCoMBjpOONrzO/80CEpCG/U5OIOAEacupTjJSWXPOgHyA18vxklN4nlRo7ObNPUzexUuiaZatqTQEXiZ2TMsjRdM2v/iDEcUC4wgxJ2bOtSDkJEopiRtJSP5YkQniMhqSnKUcBkU4yfSGFx1oZQD8UuriCU/X3RIICKSeBpzuzg+W8l4n/eb1Y+ZdOQnkUK8LxbJEfM6hCmOUBB1QQrNhEE4QF1bdCPEICYaVTK+kQ7PmXF0m7VrXPq/XberlxlcdRBIfgCFSADS5AA9yAJmgBDB7BM3gFb8aT8WK8Gx+z1oKRz+yDPzA+fwClepZN</latexit>

h
(2l0�1)
0

<latexit sha1_base64="o2hvLYVsBn1LjhLmQoNUQGSR9wI=">AAAB8XicbVDLSgNBEJz1GeMr6tHLYBDiJexKUI9BLx4jmAcmS5iddJIhs7PLTK8YlvyFFw+KePVvvPk3TpI9aGJBQ1HVTXdXEEth0HW/nZXVtfWNzdxWfntnd2+/cHDYMFGiOdR5JCPdCpgBKRTUUaCEVqyBhYGEZjC6mfrNR9BGROoexzH4IRso0RecoZUeOghPmJbY2aRbKLpldwa6TLyMFEmGWrfw1elFPAlBIZfMmLbnxuinTKPgEib5TmIgZnzEBtC2VLEQjJ/OLp7QU6v0aD/SthTSmfp7ImWhMeMwsJ0hw6FZ9Kbif147wf6VnwoVJwiKzxf1E0kxotP3aU9o4CjHljCuhb2V8iHTjKMNKW9D8BZfXiaN87J3Ua7cVYrV6yyOHDkmJ6REPHJJquSW1EidcKLIM3klb45xXpx352PeuuJkM0fkD5zPH1GqkLI=</latexit>

(a)

<latexit sha1_base64="+Ut9sqvjAWv9B9ydcKbrsgVfHvw=">AAAB8XicbVDLSgNBEJz1GeMr6tHLYBDiJexKUI9BLx4jmAcmS5iddJIhs7PLTK8YlvyFFw+KePVvvPk3TpI9aGJBQ1HVTXdXEEth0HW/nZXVtfWNzdxWfntnd2+/cHDYMFGiOdR5JCPdCpgBKRTUUaCEVqyBhYGEZjC6mfrNR9BGROoexzH4IRso0RecoZUeOghPmJaCs0m3UHTL7gx0mXgZKZIMtW7hq9OLeBKCQi6ZMW3PjdFPmUbBJUzyncRAzPiIDaBtqWIhGD+dXTyhp1bp0X6kbSmkM/X3RMpCY8ZhYDtDhkOz6E3F/7x2gv0rPxUqThAUny/qJ5JiRKfv057QwFGOLWFcC3sr5UOmGUcbUt6G4C2+vEwa52Xvoly5qxSr11kcOXJMTkiJeOSSVMktqZE64USRZ/JK3hzjvDjvzse8dcXJZo7IHzifP1MwkLM=</latexit>

(b)

<latexit sha1_base64="0GQr0sNbLGF6eg+NiFaXSzgFoMo=">AAAB8XicbVDLSgNBEJz1GeMr6tHLYBDiJexKUI9BLx4jmAcmS5iddJIhs7PLTK8YlvyFFw+KePVvvPk3TpI9aGJBQ1HVTXdXEEth0HW/nZXVtfWNzdxWfntnd2+/cHDYMFGiOdR5JCPdCpgBKRTUUaCEVqyBhYGEZjC6mfrNR9BGROoexzH4IRso0RecoZUeOghPmJb42aRbKLpldwa6TLyMFEmGWrfw1elFPAlBIZfMmLbnxuinTKPgEib5TmIgZnzEBtC2VLEQjJ/OLp7QU6v0aD/SthTSmfp7ImWhMeMwsJ0hw6FZ9Kbif147wf6VnwoVJwiKzxf1E0kxotP3aU9o4CjHljCuhb2V8iHTjKMNKW9D8BZfXiaN87J3Ua7cVYrV6yyOHDkmJ6REPHJJquSW1EidcKLIM3klb45xXpx352PeuuJkM0fkD5zPH1S2kLQ=</latexit>

(c)

<latexit sha1_base64="GpE76WX+ubW5Mw49l6enedEhzF4=">AAAB/XicbVDLSsNAFL2pr1pf8bFzEyxC3ZREirosunFZwT6gjWEynbRDJ5MwMxFrCP6KGxeKuPU/3Pk3TtoutPXAwOGce7lnjh8zKpVtfxuFpeWV1bXiemljc2t7x9zda8koEZg0ccQi0fGRJIxy0lRUMdKJBUGhz0jbH13lfvueCEkjfqvGMXFDNOA0oBgpLXnmQS9EaugH6UN2l1bsk8xLVeaZZbtqT2AtEmdGyjBDwzO/ev0IJyHhCjMkZdexY+WmSCiKGclKvUSSGOERGpCuphyFRLrpJH1mHWulbwWR0I8ra6L+3khRKOU49PVknlXOe7n4n9dNVHDhppTHiSIcTw8FCbNUZOVVWH0qCFZsrAnCguqsFh4igbDShZV0Cc78lxdJ67TqnFVrN7Vy/XJWRxEO4Qgq4MA51OEaGtAEDI/wDK/wZjwZL8a78TEdLRiznX34A+PzB6V/lVw=</latexit>

x
(0)
t
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Figure 2. Comparison of LT construction approaches. (a) Target
network ft. (b) (2Lt)-construction. (c) (Lt + 1) construction.

We only state the theorem for activation functions φ(0) =
d = 0 here. For d 6= 0, we can derive similar results if we
change the initialization scheme to ’looks-linear’ initializa-
tion (Burkholz & Dubatovka) to control the error when we
approximate φ, see also (Burkholz, 2022).

3.2. (L0 = Lt + 1)-Construction

The (2Lt)-construction uses an additional layer to create
multiple versions of the input for each target layer. As
the neuron states are sent through the non-linear activation
function, we usually need to create two neurons, the analog
to the positive and the analog to the negative part of each
input channel. Yet, this extra effort would not be necessary if
we had immediately multiple versions of each input channel
available. As we cannot change the given input by the
data, to create multiple versions initially, we have to employ
the two-for-one layer construction to approximate the first
target layer. If we directly construct the ct,1 output channels
multiple times, we can however drop the next intermediary
layer completely and repeat constructing the channels of
the next layer so many times that they serve the solution of
subset sum approximation problems in the following layers.
Fig. 2 explains the main idea and the next theorem states
formally the existence result for this construction.

Theorem 3.2 (LT existence (2Lt-construction)). Assume
that ε, δ ∈ (0, 1), a convolutional target network (possibly
with skip connections) ft(x) : D ⊂ Rc0×d0 → RcL×dLt
with architecture c̄t of depth Lt, and a source network f0
with architecture n̄0 of depth L0 = Lt + 1 are given. Let φ
be the activation function of ft and f0 with Lipschitz con-
stant T . Furthermore, let φ0 be the activation function of f0
in the first layer fulfilling Assumption 2.3 with d = 0. Define
the number Nl of effective nonzero parameters in Layer l as
Nl = Nw,l+Nm,l. Then, with probability at least 1− δ, f0

contains a subnetwork fε ⊂ f0 so that each output compo-
nent is approximated as maxx∈D |ft,iq(x)− fε′,iq(x)| ≤ ε
if for all l ∈ [Lt] we have

c0,l+1 ≥ Cct,l log

(
1

min{εl, ρδ/Nl}

)
,

and n0,1 ≥ Cct,0 log
(

1
min{ε1,δρ}

)
with ρ =

CN1+γ
l log(1/min{minl εl, δ}) for any γ > 0.

εl = ε
2TNw,l

∏L
s=l+1(2(TNw,s+Nm,s))

. Additionally,

we require that the parameters of f0 are initialized
according to Assumption 2.1 with σl = 1 for l > 2,
σ1 = r/σ2 and σ2 = a(ε′′)/2 and suitably chosen ε′′.

The proof is given in the appendix. The main challenge in
the derivation is to identify the size of the required subset
sum blocks, as it depends on the number of total subset
sum problems that need to be solved. This number in turn
depends on the subset sum block sizes. Both need to be
balanced as stated in the theorem. We observe that the block
size is potentially larger in the (Lt + 1)-construction than in
the (2Lt)-construction if more subset sum problems need to
be solved to create multiple versions of the previous channel
directly. But this factor enters only the logarithm and is thus
small. The fact that the (2Lt)-construction requires often
double the amount of channels to regard the analogs of the
positive and negative part separately, is usually a stronger
requirement. For a very high number of target parameters,
the required Lt+1 blocks might still be larger. Furthermore,
the LT in the Lt + 1-construction consists of many more
parameters, yet, less neurons, which is often dominating
the computational needs on GPUs. We discuss these dif-
ferences in detail in the experiments section. Regardless of
the advantages and disadvantages of each construction, the
main purpose of this theorem is to show that LTs exist that
can leverage most of the source network’s depth. Which
construction could be found by different pruning algorithms
and which one would be better is a different question.

4. Experiments
Our theoretical insights suggest that source networks do not
need to be much larger than the networks that we want to
approximate by a lottery ticket - at least with regard to how
our width requirement scales with the relevant parameters.
Three possible challenges could still arise in practice. First,
the size of the constant in our width requirement might be
impractically large. Second, deep target networks consisting
of many parameters might be very fragile to small errors
in their parameters so that εl is so small that even log(1/εl)
in our width requirement is practically too large. Similarly,
it could be the case that we would need to solve so many
subset sum problems, in particular in the one-layer-for-one
construction, that δ/N would be too small. The following
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experiments rule out these three concerns and show that
constructing lottery tickets by solving subset sum approxi-
mations is practically feasible.

In fact, our proofs define implicitly an algorithm that ap-
proximates a target network by pruning a source network
consisting of m(ct,l + 1) + c0 channels in each convolu-
tional layer with l > 1, 2m2(ct,0 + 1) + c0 channels in the
first layer, and ct,L channels in the output layer. m here
refers to the size of subset sum blocks that we choose. c0
gives us the option to fail sometimes in solving a subset sum
problem and continue with pruning another neuron instead.
It is negligible in our experiments.

Thus, our first question has to be: How large should we
choose m (and m2)? Even though solving subset sum prob-
lems is in general NP-hard, for small enough m we can still
solve them optimally by exhaustively evaluating all subsets.
Fig. 3 (a) presents statistics on these optimal solutions for
m = 15, which is generally considered to be sufficiently
large in the literature. On average, the error within the 95%
standard confidence interval is (6± 0.8)10−4, but in most
cases it is much smaller, as the left skewed distribution
indicates. It exceeds 0.01 only in 0.3% of the cases.

In addition to the approximation error, we are also inter-
ested in the number of parameters that enter our LT and
thus the size of the selected subset |S|. If our target layer
consists of Nl nonzero parameters, we expect that our LT
consists on average of mE(|S|)Nl parameters. Fig. 3 (b)
shows the distribution of |S|, which has E(|S|) ≈ 7. For
increasing m, the average error decreases but the average
subset size would increase, which is not ideal for construct-
ing sparse tickets. However, LTs do not require the op-
timal subset. A subset that reaches a small enough error
would be sufficient. Fig. 3 (c-d) show therefore statistics
for a subset selection process that searches through all sub-
sets but stops when it finds a subset whose approximation
error does not exceed 0.01. In this case, we only need
E(|S|) ≈ 2.3. This observation is also relevant for the
LT’s sparsity assessment. Commonly, sparsity is reported
relative to a dense network. Thus, if the target layer has
sparsity ρt = Nl/(ct,lct,l−1K), the LT has roughly ρε =
mE(|S|)Nl/([m(ct,l + 1) + c0][m(ct,l−1 + 1) + c0]K) ≈
ρtE(|S|)/m. Accordingly, the choice m = 15 and allowed
error εl = 0.01 let’s us construct LTs that have 15% of the
target’s sparsity. We could always reduce this number fur-
ther by equipping the source network with a higher number
of channels that we can prune away. The real quantity of
interest is therefore the total number of required nonzero
parameters, which we report in the following experiments
alongside the neural network performance.

We could repeat a similar analysis for the two-layers-for-
one construction. In this case, we would have to solve
subset sum problems with random variables that are dis-

Table 1. Test accuracy in % of pruned LTs and their L = 3 target
on MNIST for (L+ 1) construction. Averages and 0.95 standard
confidence intervals are reported for 10 repetitions.

TARGET LT

RELU 98.8 98.72 ± 0.04
LEAKY RELU 98.5 98.5 ± 0.03
TANH 98.14 98.09 ± 0.09
SIGMOID 98.52 98.5 ± 0.004

tributed as the product of two uniform random variables
Xk = U [−1, 1]U [−1, 1]. Statistics regarding this case are
presented in the appendix in Fig. 4. The overall distribu-
tions look similar. A base set size of m = 15 random
variables is also sufficient but results in an average error of
(7.6 ± 0.3)10−3, which is more than a magnitude higher
than in the previous case. Furthermore, we fail to achieve
an error smaller than 0.01 in 3.5% of the cases and rely on
subset sizes of E(|S|) ≈ 2.5. This only affects the first
layer of our experiments though.

To demonstrate that an error of εl = 0.01 per parameter
is indeed acceptable to obtain LTs most of the time, we
employ the described pruning strategy that solves subset
sum approximation problems with small subsets that try
to achieve an error of maximally εl = 0.01 with respect
to each parameter of a given target network. We identify
two different types of target networks with the established
Synflow algorithm and its open source code (Tanaka et al.,
2020), which we apply with exponential annealing of the
target sparsity with 12 steps on a machine with Intel(R)
Core(TM) i9-10850K CPU @ 3.60GHz processor and GPU
NVIDIA GeForce RTX 3080 Ti. Between pruning steps,
we train the pruned network for 50 epochs.

The first target network type is a small scale example with 3
layers and is pruned and trained on MNIST (Deng, 2012).
Its first two layers are convolutional with 32 channels and
3x3 filters before pruning. The last layer is a fully-connected
classification layer with softmax activation functions. We
obtain separate targets for four commonly used activation
functions in the first two layers: RELU, LEAKY RELU,
SIGMOID, and TANH and explicitly approximate the con-
volutional layers with an L + 1 construction by solving
the associated subset sum problems. The performance of
the resulting neural networks is reported in Table 1 and the
number of the pruned nonzero parameters in Table 2. We
observe a very similar performance of the LTs in compari-
son with the target networks. While we report averages over
50 independent runs, note that we can always find a couple
of lucky solutions that outperform the target network on the
test set. If we would use the optimal subset instead of a
small one, we would see no significant difference between
the target and the LT. Yet, the resulting LT would also con-
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Xk ⇠ U[�1,1](a) (b) (c) (d)

Figure 3. Subset sum approximation statistics. (a) & (c): Error of solving 105 independent subset sum problems. Each problem selects
|S| elements out of m = 15 independent random variables Xk ∼ U [−1, 1] to approximate a randomly drawn target z ∼ U [−1, 1]. The
green histogram in the right corner focuses on the smallest errors. (b) & (d): Size of approximating subset. (a) & (b): Best subset selection
based on exhaustive search. (c) & (d): Smallest subset that achieves an error of maximally ε = 0.01.

Table 2. Number of prunable neural network parameters for exper-
iments reported in Table 1 regarding the MNIST example.

TARGET LT

RELU 945 4386 ± 34
LEAKY RELU 940 4545 ± 44
TANH 950 3269 ± 19
SIGMOID 953 4198 ± 59

Table 3. Test accuracy in % of pruned LTs and their target for
ResNet-22 on CIFAR10 for (L+ 1) construction. Averages and
0.95 standard confidence intervals are reported for 50 repetitions.

TARGET LT LT (BEST 50%)

RELU 80.68 80.32 ± 0.13 80.69 ± 0.09
LEAKY RELU 80.68 80.11 ± 0.18 80.6 ± 0.1
TANH 80.86 80.48 ± 0.13 80.8 ± 0.1
SIGMOID 72.66 69 ± 2 73.2 ± 0.9

sist of more parameters. The delicate trade-off between LT
size and potential accuracy has to be solved in practice.

The second target that we consider has a more realistic
structure that is much deeper and includes residual blocks.
Similar to before, we prune and train ResNet-22 on CIFAR-
10 (Krizhevsky, 2009). To save computational time, we draw
for each parameter and error and associated set size from
the empirical distribution that we derived by solving 105

independent subset sum problems as shown in Figure 3 (c-
d) (and the appendix for the first layer). The results are
presented in Tables 3&4.

5. Conclusions
We have proven that pruning randomly initialized convolu-
tional neural networks, including residual blocks and skip

Table 4. Number of prunable neural network parameters for exper-
iments reported in Table 3 regarding the ResNet-22 example.

TARGET LT

RELU 31069 1058140 ± 559
LEAKY RELU 31113 1059537 ± 567
TANH 64491 2193086 ± 723
SIGMOID 116048 3934621 ± 1248

connections, can be a viable strategy to identify smaller
scale networks. These lottery tickets (LTs) can be found if
they approximate target networks whose width is smaller
by a logarithmic factor than the original random source net-
work. In practice, a factor of 1/15 is sufficient, as we have
verified in experiments. Our proofs are the first to cover
residual and skip connections and other activation functions
than ReLUs for convolutional layers. We have furthermore
presented a novel LT construction for convolutional layers
that is not restricted to positive inputs and discussed two
versions. The first one assumes that the depth of the target
network is Lt ≤ L0/2. This construction is more parameter
efficient but requires a relatively high depth and usually a
higher number of neurons than the second version. In the
second version, the target depth can only be slightly smaller
than the depth of the large random network Lt ≤ L0 − 1.
While the resulting LT consists of many more parameters
relative to the target representation, the target representation
itself can be much sparser, as it is allowed to utilize most
of the available depth L0. Furthermore, this construction
indicates that not only extremely deep networks contain
LTs. This is an important finding, as we can thus focus
our pruning efforts on neural networks of similar depth as
contemporary architectures, which are feasible to train.
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Figure 4. Subset sum approximation statistics. (a) & (c): Error of solving 105 independent subset sum problems. Each problem selects |S|
elements out of m = 15 independent random variables Xk ∼ U [−1, 1]U [−1, 1] to approximate a randomly drawn target z ∼ U [−1, 1].
The green histogram in the right corner focuses on the smallest errors. (b) & (d): Size of approximating subset. (a) & (b): Best subset
selection based on exhaustive search. (c) & (d): Smallest subset that achieves an error of maximally ε = 0.01.

A. Subset Sum Approximation
We generally have multiple random neurons and parameters available to approximate a target parameter z by ẑ up to error
ε so that |z − ẑ| ≤ ε. Let us denote these random parameters in the source network as Xi. If these contain a uniform
distribution, as defined below, we can utilize a subset of them for approximating z.

Definition A.1. A random variable X contains a uniform distribution if there exist constants α ∈ (0, 1], c, h > 0 and a
random variable G1 so that X is distributed as X ∼ αU [c− h, c+ h] + (1− α)G1.

(Burkholz et al., 2022) extended results by (Lueker, 1998) to solve subset sum approximation problems if the random
variables are not necessarily identically distributed. In addition, they also cover the case |z| > 1. The general statement
follows below.

Corollary A.2 (Subset sum approximation (Lueker, 1998; Burkholz et al., 2022)). Let X1, ..., Xm be independent bounded
random variables with |Xk| ≤ B. Assume that each Xk ∼ X contains a uniform distribution with potentially different
αk > 0 (see Definition A.1) and c = 0. Let ε, δ ∈ (0, 1) and t ∈ N with t ≥ 1 be given. Then for any z ∈ [−t, t] there exists
a subset S ⊂ [m] so that with probability at least 1− δ we have |z −∑k∈S Xk| ≤ ε if

m ≥ Cmax
{

1, th
}

mink{αk}
log

 B

min
(

δ
max{1,t/h} ,

ε
max{t,h}

)
 .

B. Additional Statistics on Solving Subset Sum Problems
In the 2-layers-for-one construction, we solve subset sum approximation problems based on independent random variables
with distribution Xk ∼ U [−1, 1]U [−1, 1], i.e., the product of two random variables. To be more precise, for ReLUs, the
random variables are distributed as Xk ∼ U [0, 1]U [−1, 1] or Xk ∼ U [−1, 0]U [−1, 1]. Because of the symmetry of the
uniform random variables, these are all identically distributed and we can just focus on the case Xk ∼ U [−1, 1]U [−1, 1].
Fig. 4 shows the corresponding statistics that are based on 105 independent subset sum problem solutions for base sets of
size m = 15.

A base set size of m = 15 random variables results in an average error of (7.6± 0.3)10−3, which is more than a magnitude
higher than in the case of Xk ∼ U [0, 1]. Furthermore, we fail to achieve an error smaller than 0.01 in 3.5% of the cases and
rely on subset sizes of E(|S|) ≈ 2.5.

C. Proofs
We frequently use the supremum norm of tensors, which is similarly defined as a vector norm refers to the maximum
absolute value of all components ‖X‖∞ := maxi,j,k |xijk|. It should not be confused with the operator norm.
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C.1. Proof of Thm. 3.1

The following corollary covers an important step in the proof of our (2L)-construction, as it focuses on the approximation of
a single layer by two layers in the source network.

Corollary C.1 (Layerwise approximation). Let a convolutional target layer x
(l′)
t,i = φ

(∑cl−1

j=1 W
(l′)
t,ij ∗ x

(l′−1)
t,j + b

(l′)
t,i

)
with cl′ output, cl′−1 input channels, and filter size kl′ , Nt nonzero parameters and activation function ful-
filling Assumption 2.3 with d = 0 be given. Moreover, we have a two-layer source network x

(2l′)
0,i =

φ
(∑c1/2

s=1 W
(2l′)
0,is ∗ φ

(∑cl′−1

j=1 W
(2l′−1)
0,sj ∗ x(2l′−2)

0,j

))
with parameters W

(2l′)
0 ∈ Rcl′×c1/2×kl′ and W

(2l′−1)
0 ∈

Rc1/2×cl′−1×1. All its tensor entries are independently uniformly distributed as w(2l′−1)
0,sjq ∼ U [−σ, σ] and w

(2l′)
0,isq ∼

U [−r/σ, r/σ]. Then, for every ε′, δ′ ∈ (0, 1), with probability 1 − δ′, there exists a sub-network x
(2l′)
ε′ ⊂ x

(2l′)
0 so that∥∥∥x(l′)

t − x
(2l′)
ε

∥∥∥
∞
≤ ε′ if

c1/2 ≥ Ccl′−1 log

(
Nt

min{ε′/(3T ), δ′/2}

)
, (3)

the input components fulfill
∥∥∥x(l′−1)

t,i − x
(2l′−2)
0,i

∥∥∥
∞
≤ ε′/(3TNt),

∥∥∥1− x
(2l′−2)
0,cl′−1+1

∥∥∥
∞
≤ ε′/(3TNt), and σ =

min {1, a(ε′′)/2} with

ε′′ = g−1

 ε′

3TNtC log
(

Nt
min{ε′/(3T ),δ′/2}

)
r
2


for g(ε′′) = ε′′/(a(ε′′)).

Proof. The first step of our construction of the LT x
(2l′)
ε′ is to prune the weight tensors in the first layer of the source

network W
(2l′−1)
0,js to univariate form. For each input neuron j, we reserve |Ij | neurons in the intermediary layer 2l′ − 1

with indices Ij so that w(2l′−1)
ε′,sj1 = w

(2l′−1)
0,sj1 = λsj if s ∈ Ij and w(2l′−1)

ε′,sj1 = 0 otherwise. After pruning, we thus have

φ
(∑cl′−1

j=1 W
(2l′−1)
ε′,sj ∗ x(2l′−2)

0,j

)
= φ

(
W

(2l′−1)
ε′,sj ∗ x(2l′−2)

0,j

)
= φ

(
λsjx

(2l′−2)
0,j

)
for an s ∈ Ij .

Per construction of the initialization, σ > 0 is chosen small enough so that∥∥∥φ(λsjx(2l′−2)
0,j

)
− µ±(λsjx

(2l′−2)
0,j )λsjx

(2l′−2)
0,j

∥∥∥
∞
≤ ε′′ (4)

according to Assumption 2.3. We achieve this, as |λsjx(2l
′−2)

0,jq | ≤ σ(1 + ε′/(3TNt)) ≤ a(ε′′) with |x(2l
′−2)

0,jq | ≤ 1 +

ε′/(3TNt), since |x(l
′−1)

t,jq | ≤ 1 is always assumed.

The next step of pruning is to mask some elements of the tensor in the second layer W (2l′)
0,is so that we can approximate our

target parameters. We set all parameters to zero w(2l′)
ε′,isq = 0 with the exception of w(2l′)

ε′,isq = w
(2l′)
0,isq for indices s ∈ Iijq ⊂ Ij .

These index sets are chosen by solving specific subset sum approximation problems based on the following two base sets
Ij,+ and Ij,− with Ij = Ij,+ ∪ Ij,−. They are defined according to the incoming link weight λsj in the first layer, i.e.
Ij,+ = {s ∈ Ij | λsj > 0} and Ij,− = {s ∈ Ij | λsj < 0}. The associated random variables Xs = w

(2l′)
0,isqλij/r are

distributed as U [0, 1]U [−1, 1] or U [−1, 0]U [−1, 1] per construction. As these contain uniform distributions (Pensia et al.,
2020), according to Thm. A.2, with probability 1− δ′′′ we can find subsets I±ijq ⊂ Ij,± so that

|wt,ijq −
∑
s∈I±ijq

Xs| ≤ ε′′′, (5)

if |Ij,±| ≥ C log
(

1
min{ε′′′,δ′′′}

)
. Solving two separate problems of this form leads to an index set Iijq = I+ijq ∪ I−ijq that

defines the parameters that we keep in our LT.
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We still have to approximate the target bias. For that purpose, we have reserved a constant input tensor x(2l′−2)
0,cl′−1+1 with

x
(2l′−2)
0,cl′−1+1,q ≈ 1 so that φ(λs(cl′−1+1)x

(2l′−2)
0,cl′−1+1,q) ≈ m+λs(cl′−1+1). We thus choose nonzero parameters with indices

Iib ⊂ Icl′−1+1 in the second layer that solve the subset sum approximation problem

|bt,i −
∑
s∈Iib

Xs| ≤ ε′′′, (6)

as the random variables Xs = w
(2l′)
0,is λs(cl′−1+1)m+ are distributed as m+rU [0, 1]U [−1, 1] (with |m+r| ≤ 1 most of the

time), which also contain a uniform distribution.

After pruning the first and the second layer of the source network this way, let us analyze the error that our LT inflicts. It
follows from the Lipschitz continuity of the activation function φ and our pruning to univariate tensors in the first layer that

∥∥∥x(l′)
t − x(2l′)

ε

∥∥∥
∞
≤ T max

i

∑
j

∥∥∥∥∥W (l′)
t,ij ∗ x

(l′−1)
t,j + b

(l′)
t,i −

c1/2∑
s=1

W
(2l′)
ε′,is ∗ φ

(
λsjx

(2l′−2)
0,j

)∥∥∥∥∥
∞

≤ T max
i

∑
j

∥∥∥∥∥W (l′)
t,ij ∗ x

(l′−1)
t,j + b

(l′)
t,i −

c1/2∑
s=1

W
(2l′)
ε′,is ∗

(
µ±
(
λsjx

(l′−1)
t,j

)
λsjx

(l′−1)
t,j

)∥∥∥∥∥
∞

+ T max
i

∑
j

∥∥∥∥∥
c1/2∑
s=1

W
(2l′)
ε′,is ∗

(
µ±
(
λsjx

(2l′−2)
0,j

)
λsj

[
x
(2l′−2)
0,j − x

(l′−1)
t,j

])∥∥∥∥∥
∞

+ T max
i

∑
j

∥∥∥∥∥
c1/2∑
s=1

W
(2l′)
ε′,is ∗

[
µ±
(
λsjx

(2l′−2)
0,j

)
λsjx

(2l′−2)
0,j − φ

(
λsjx

(2l′−2)
0,j

)]∥∥∥∥∥
∞
≤ ε′

(7)

Note that µ±
(
λsjx

(2l′−2)
0,j

)
= µ±

(
λsjx

(l′−1)
t,j

)
if |x(2l′−2)

t,j | > ε′/(3TNt) anyways. Otherwise, we would prune it to zero.
The first term concerns the subset sum approximation error, the second one the approximation of the input neurons, while
the third one originates in the approximation of the activation function in the first layer. We achieve our approximation
objective if we bound each of these errors by ε′/3 Note that the latter vanishes for ReLUs, Leaky ReLUs, or linear activation
functions because our approximation would actually be exact.

Let us first bound the subset sum approximation error. Recall that we have assumed that |x(l
′−1)

t,jq | ≤ 1. We can partition the
sum over the indices s to focus on the same input so that we can utilize the linearity of convolutions to derive

T max
i

∑
j

∥∥∥∥∥W (l′)
t,ij ∗ x

(l′−1)
t,j + b

(l′)
t,i −

c1/2∑
s=1

W
(2l′)
ε′,is ∗

(
µ±
(
λsjx

(l′−1)
t,j

)
λsj

)∥∥∥∥∥
∞

= T max
i

∑
j

∑
q

(∣∣∣∣∣rµ± (x(l′−1)t,jq

)W
(l′)
t,ijq − 1/r

∑
s∈I+ijq

w
(2l′)
ε′,isqλsj

∣∣∣∣∣+

∣∣∣∣∣∣∣rµ±
(
−x(l

′−1)
t,jq

)W
(l′)
t,ijq − 1/r

∑
s∈I−ijq

w
(2l′)
ε′,isqλsj


∣∣∣∣∣∣∣

+

∣∣∣∣∣b(l′)t,i −m+

∑
s∈Iib

w
(2l′)
0,is λs(cl′−1+1)

∣∣∣∣∣
)
≤ TNtε′′′ ≤ ε′/3,

(8)

where we have used Eqs. (5) & (6) and the fact that r(µ±(x) + µ±(−x)) = 1. Defining ε′′′ = ε′/(3TNt) derives our
width requirement so that we can solve the associated subset sum approximation problems. How should we choose δ′′′?
In total, we have to solve less than 2Nt problems. If each is successfully solved with probability 1− δ′′′ = 1− δ′/(2Nt),
we can see with the help of a union bounds that we can solve all of them with probability (1 − δ′). For every input
neuron, we need to prune a large enough base set with ||Ij | ≥ C log

(
1

min{ε′′′,δ′′′}

)
resulting in a width requirement of

c1/2 ≥ Ccl′−1 log
(

Nt
min{ε′/(3T ),δ′/2}

)
, as was to be shown.

Second, we have to show that we can bound the approximation error of the input neurons in Eq. (7). With the help of the
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previous approximation and recalling that |wt,ijq| ≤ 1− ε′′′ so that |wε′,ijq| ≤ 1, we see that

T max
i

∑
j

∥∥∥∥∥
c1/2∑
s=1

W
(2l′)
ε′,is ∗

(
µ±
(
λsjx

(2l′−2)
0,j

)
λsj

[
x
(2l′−2)
0,j − x

(l′−1)
t,j

])∥∥∥∥∥
∞

≤ TNt max
j

max
q
|x(l

′−1)
t,jq − x(2l

′−2)
0,jq | ≤ ε′/3

(9)

according to our assumption on maxj,q |x(l
′−1)

t,jq − x(2l
′−2)

0,jq |.
Third, let us bound the activation function approximation error in Eq. (7), which we control by the initialization constant
σ > 0, which we can make arbitrarily small.

T max
i

∑
j

∥∥∥∥∥
c1/2∑
s=1

W
(2l′)
ε′,is ∗

[
µ±
(
λsjx

(2l′−2)
0,j

)
λsjx

(2l′−2)
0,j − φ

(
λsjx

(2l′−2)
0,j

)]∥∥∥∥∥
∞

≤ T
∑
j

∑
q

∑
s

|w(2l′)
ε′,isq|ε′′ ≤ TNtC log

(
Nt

min{ε′/(3T ), δ′/2}

)
(r/σ)ε′′

(10)

We have to choose σ = a(ε′′)/2 small enough so that

ε′′ ≤ ε′

3TNtC log
(

Nt
min{ε′/(3T ),δ′/2}

)
r
σ

=
ε′

3TNtC log
(

Nt
min{ε′/(3T ),δ′/2}

)
r

2a(ε′′)

. (11)

Note that we can find an appropriate ε′′ because the function g(ε′′) = ε′′

a(ε′′) is invertible on a suitable interval ]0, ε′]. The
reason is that a(ε′′) is continuous and monotonically increasing in ε′′. We can therefore define

ε′′ = g−1

 ε′

3TNtC log
(

Nt
min{ε′/(3T ),δ′/2}

)
r
2

 . (12)

With this we can conclude that the LT approximates the target network up to error ε′.

Interestingly, note that the activation function approximation does not directly impact our width requirement. It relies,
however, on a suitable parameter initialization approach.

(2Lt)-construction Stacking Lt layers together, we can prove our LT existence theorem for the (2Lt)-construction.
Statement (LT existence (2Lt)-construction)). Assume that ε, δ ∈ (0, 1), a convolutional target network (without skip
connections) ft(x) : D ⊂ Rc0×d0 → RcL×dLt with architecture c̄t of depth Lt with Nt,l nonzero parameters in Layer l, and
a source network f0 with architecture n̄0 of depth L0 = 2Lt are given. Let φ be the activation function of ft with Lipschitz
constant T fulfilling Assumption 2.3 with d = 0. Then, with probability at least 1− δ, f0 contains a subnetwork fε ⊂ f0 so
that each output component i is approximated as maxx∈D |ft,iq(x)− fε′,iq(x)| ≤ ε if for all l′ ∈ [Lt]

c0,2l′+1 ≥ Cct,l log

(
Nt

min{ε/∏Lt
s=l(3TNt,s), δ}

)
,

and n0,2l′ ≥ nt,l′ + 1, and if the parameters of f0 are initialized according to Assumption 2.1 with σ2l′+1 = r/σ2l′ and

σ2l′ = a(ε′′)/2 and ε′′ = g−1

 ε′

CNt log

(
Nt

min{ε/∏Lt
s=l

(3TNt,s),δ}

)
 for g(ε′′) = ε′′/(a(ε′′)).

Proof. The proof is a repeated application of Corollary C.1. Only the first layer approximation is special, as we might not
have a constant tensor available among the data inputs to approximate the target biases of the first layer. In this case, we
need to modify our bias approximation by using the nonzero biases of f0 in Layer l = 1. Instead of pruning univariate
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tensors in the first layer that take a constant tensor as input, the neurons that we reserve in Layer 1 of the LT with indices Ib
receive completely zero weights but keep a bias term bε,s = b0,s. The remaining steps of the proof for the first layer are
identical to the proof of Corollary C.1.

It is only left to show how to adapt the ε′ and δ′ to account for multiple layer approximations. δ′ = δ/Nt with Nt =
∑
lNt,l

is sufficient to ensure that all subset sum approximations of all parameters are successful with probability δ. The adaptation
of the error, however, needs to take into account how error propagates through different layers. To approximate the output
successfully, Corollary C.1 requires that each input tensor element x(L−1)t,iq can have an error of maximally ε/(3TNt,L).
Repeating this argument inductively, results in an allowed error of εl = ε

(3T )Lt−l+1
∏Lt
s=lNt,s

in the approximation of the

target layer l.

Note that with stricter assumptions on the target parameters, we could also obtain a more favorable scaling of the error with
the number of nonzero parameters.

C.2. Proof of Thm. 3.2 (Lt + 1)-construction)

Statement (LT existence (Lt + 1)-construction)). Assume that ε, δ ∈ (0, 1), a convolutional target network (possibly with
skip connections) ft(x) : D ⊂ Rc0×d0 → RcL×dLt with architecture c̄t of depth Lt, and a source network f0 with
architecture n̄0 of depth L0 = Lt + 1 are given. Let φ be the activation function of ft and f0 with Lipschitz constant T .
Let further φ0 be the activation function of f0 in the first layer fulfilling Assumption 2.3 with d = 0. Define the number
Nl of effective nonzero parameters in Layer l as Nl = Nw,l +Nm,l. Then, with probability at least 1− δ, f0 contains a
subnetwork fε ⊂ f0 so that each output component is approximated as maxx∈D |ft,iq(x)− fε′,iq(x)| ≤ ε if for all l ∈ [Lt]

c0,l+1 ≥ Cct,l log

(
1

min{εl, ρδ/Nl}

)
,

and n0,1 ≥ Cct,0 log
(

1
min{ε1,δρ}

)
with ρ = CN1+γ

l log(1/min{minl εl, δ}) for any γ > 0. εl =
ε

2TNw,l
∏L
s=l+1(2(TNw,s+Nm,s))

. Additionally, we require that the parameters of f0 are initialized according to Assumption 2.1

with σl = 1 for l > 2, σ1 = r/σ2 and σ2 = a(ε′′)/2 and ε′′ = g−1
(

ε′

CNl log
(

Nl
min{εl,δ}

)) for g(ε′′) = ε′′/(a(ε′′)).

Proof. In contrast to Thm. 3.1, in the approximation of the target layers l > 1, we do not need to approximate the activation
function locally as a Leaky ReLU. Thus, we save the approximation error and the separate approximation of positive and
negative parts. Moreover, we can use smaller base sets to solve subset sum approximation problems because the random
variables are distributed as Xk ∼ U [−1, 1] instead of Xk ∼ U [0, 1]U [−1, 1].

Another advantage of this construction is that skip connections can be naturally integrated. As a consequence, we also have
to consider the error that we inflict by pruning or just representing skip connections. Let us regard the error at Layer l and
denote with εl the maximal error of a parameter approximation. Similar to before, we have∥∥∥x(l)t − x(l+1)

0

∥∥∥
∞
≤ TNw,lεl + TNw,l

∥∥∥x(l−1)t − x(l)0

∥∥∥
∞

+Nm,l max
s≤l−1

∥∥∥x(s)t − x(s+1)
0

∥∥∥
∞

≤ TNw,lεl + (TNw,l +Nm,l) max
s≤l−1

∥∥∥x(s)t − x(s+1)
0

∥∥∥
∞
.

(13)

In fact, it also follows that

max
s≤l

∥∥∥x(s)t − x(s+1)
0

∥∥∥
∞
≤ TNw,lεl + (TNw,l +Nm,l) max

s≤l−1

∥∥∥x(s)t − x(s+1)
0

∥∥∥
∞
. (14)

The error of the last layer can therefore be bounded by ε if we ensure that εL = ε/(2TNw,l) and

maxs≤L−1
∥∥∥x(s)t − x(s+1)

0

∥∥∥
∞
≤ ε/(2(TNw,L + Nm,L)). We can thus derive the error by propagating it from Layer

l to l − 1. This leads to the definition εl = ε
2TNw,l

∏L
s=l+1(2(TNw,L+Nm,L))

.

In addition, we need to investigate how many more subset sum approximations we have to solve in this construction. The
argument is very similar to the one for fully-connected networks (Burkholz, 2022). For completeness, we repeat it here.
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δ is modified by ρ ≥ ρ′ =
∑L
l=1 ρ

′
l, where ρ′ counts the increased number of required subset sum approximation problems

to approximate the L target layers with our lottery ticket and ρl counts the same number just for Layer l.

For each non-zero parameter, we will need two solve at least one subset sum approximation problem or sometimes two
in case of the first target layer. We denote the number of non-zero parameters in Layer l as Nl. Thus, if our target
network is dense without skip connections and all parameters are nonzero, we have Nl = ct,lct,l−1kt,l and in total
Nt =

∑L
l=1 ct,l(ct,l−1kt,l + 1).

Let us start with counting the number ρ′L of required subset sum approximation problems in the last layer because it
determines how many neurons we need in the previous layer. This in turn defines how many subset sum approximation
problems we have to solve to construct this previous layer.

The last layer requires us to solve exactly ρ′L = NL subset sum problems, which can be solved successfully with high
probability if c0,L−1 ≥ Cct,L−1 log(1/min{εL, δ/ρ′}). We will only need to construct a subset of these neurons with
the help of Layer L − 2, i.e., exactly the neurons that are used in the lottery ticket. If c0,L−1 is large, this might require
only 2 − 3 neurons per parameter. For simplicity, however, we bound this number by the total number of available
channels. To reconstruct one set of channels, we need approximate NL−1 parameters. As we have to maximally construct
C log(1/min{εL, δ/ρ′}) sets of these channels, we can bound ρ′L−1 ≤ CNL−1 log(1/min{εL, δ/ρ′}.
Note that we can solve all of these subset sum approximation problems with the help of ct,L−2 ≥
CNL−2 log(1/min{εL−1, δ/ρ′} of neurons and this number does not scale by the fact that we have to construct not
only ct,L−1 channels but a number that is increased by a logarithmic factor. The higher number of required neuron approxi-
mations only affects the number of required subset sum approximation problems and thus the needed success probability of
each parameter approximation via ρ.

Repeating the same argument for every layer, we derive ρ′l ≤ CNl log(1/min{εl+1, δ/ρ
′}, which could also

be shown formally by induction. In total we thus find ρ′ =
∑L
l=1 ρ

′
l ≤ CNl log(1/min{minl εl, δ/ρ

′}) ≤
CNt log(1/min{minl εl, δ/ρ}). A ρ that fulfills ρ = CNt log(1/min{minl εl, δ/ρ}) would therefore be sufficient to
prove our claim. ρ = CN1+γ

t log(1/min{ε, δ}) for any γ > 0 works, as CNγ
t ≥ log(Nt).

D. Activation functions with d 6= 0

As explained for fully-connected networks by (Burkholz, 2022), our derivations also apply to activation functions with
φ(0) = d 6= 0 if we initialize the parameters in our source network with the ’looks-linear’ initialization (Burkholz &
Dubatovka).

E. Strides
The main objective of pruning the first layer in Corollary C.1 is to create multiple versions of the input tensors. This can
be achieved by pruning 1-dimensional filters with stride 1. If the stride is higher and the filter dimensions is big enough
so that filter windows overlap, we can always prune the available filter down to an univariate one - with the given stride
s. Yet, with such a filter, if the stride is s > 1, we will not create a complete version of an input filter. If we multiply our
width requirement by the stride s, we can still reconstruct it by adding partial input filter versions. This can be achieved by
pruning a filter in the source network at different positions. For each additional position, we need another univariate filter,
which explains our increased width requirement.


