
Microarchitectural Leakage Templates and Their Application to
Cache-Based Side Channels

Ahmad Ibrahim∗

CISPA Helmholtz Center for
Information Security

ahmad.ibrahim@cispa.de

Hamed Nemati∗
Stanford University

CISPA Helmholtz Center for
Information Security

hnnemati@stanford.edu

Till Schlüter
CISPA Helmholtz Center for

Information Security
till.schlueter@cispa.de

Nils Ole Tippenhauer
CISPA Helmholtz Center for

Information Security
tippenhauer@cispa.de

Christian Rossow
CISPA Helmholtz Center for

Information Security
rossow@cispa.de

ABSTRACT

The complexity of modern processor architectures has given rise
to sophisticated interactions among their components. Such in-
teractions may result in potential attack vectors in terms of side
channels, possibly available to userland exploits to leak secret data.
Exploitation and countering of such side channels requires a de-
tailed understanding of the target component. However, such de-
tailed information is commonly unpublished for many CPUs.

In this paper, we introduce the concept of Leakage Templates to
abstractly describe specific side channels and identify their occur-
rences in binary applications. We design and implement Plumber,
a framework to derive the generic Leakage Templates from indi-
vidual code sequences that are known to cause leakage (e.g., found
by prior work). Plumber uses a combination of instruction fuzzing,
instructions’ operand mutation and statistical analysis to explore
undocumented behavior of microarchitectural optimizations and
derive sufficient conditions on vulnerable code inputs that if hold
can trigger a distinguishing behavior. Using Plumber we identified
novel leakage primitives based on Leakage Templates (for ARM
Cortex-A53 and -A72 cores), in particular related to previction (a new
premature cache eviction), and prefetching behavior. We show the
utility of Leakage Templates by re-identifying a prefetcher-based
vulnerability in OpenSSL 1.1.0g first reported by Shin et al. [40].

CCS CONCEPTS

• Security and privacy → Side-channel analysis and counter-

measures.

KEYWORDS

microarchitecture, side channel, leakage templates

∗Both authors contributed equally to the paper

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9450-5/22/11. . . $15.00
https://doi.org/10.1145/3548606.3560613

ACM Reference Format:

Ahmad Ibrahim, HamedNemati, Till Schlüter, Nils Ole Tippenhauer, and Chris-
tian Rossow. 2022. Microarchitectural Leakage Templates and Their Ap-
plication to Cache-Based Side Channels. In Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security (CCS ’22),
November 7–11, 2022, Los Angeles, CA, USA. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3548606.3560613

1 INTRODUCTION

The past decade has witnessed a surge in side-channel attacks that
exploit underspecified or undocumented hardware features [3, 16,
18, 23, 30, 44, 55], mostly focusing on cache-related leakage. The
hidden nature of microarchitectural features has led to the devel-
opment of techniques to test for the presence in hardware, and
semi-automatically identify new vulnerabilities [11, 27, 28, 31, 37,
42, 43, 51] that allow the attacker to violate process isolation to
obtain secret data, or to manipulate the victim’s execution. Existing
approaches to identify side channels commonly yield architecture-
specific distinguishing examples, i.e., concrete code examples that
represent side-channel leakage. Generalization from such concrete
examples is a known hard problem, as it requires a detailed under-
standing of the processor component that introduces the channel.
Details on information flow properties of microarchitectures are
generally scarce, not publicly available, or depend on industrial
secrets. As result, determining whether a given application is vul-
nerable to cache-related side-channel leakage is challenging.

Recent approaches already demonstrate the power of automation
in the context of side channel analysis [11, 27, 37, 42, 51]. Gras et
al. propose ABSynthe [11] to automatically infer leakage maps that
show how instructions influence each other’s contention behav-
ior. Their system can identify and optimize for microarchitecture-
specific side channels exploiting hyperthreading. In addition,Weber
et al. introduce a fuzzing framework Osiris that synthesizes instruc-
tion sequences to identify timing-based side channels [51]. To this
end, Osiris proposed an automated system to identify sequences
that trigger and reset certain microarchitectural states. Finally, with
Transynther [27], Moghimi et al. present an approach to synthesize
Meltdown-type attacks. Transynther varies known attack patterns
to create candidate attack code snippets and then evaluates whether
these snippets leak data. All of these approaches have in common
that they automate the search for new (variants of) side channels, a
big leap towards automation. Having said this, they (i) are specific

https://doi.org/10.1145/3548606.3560613
https://doi.org/10.1145/3548606.3560613

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Ahmad Ibrahim, Hamed Nemati, Till Schlüter, Nils Ole Tippenhauer, and Christian Rossow

towards their use case (e.g., contention, Meltdown), (ii) limit their
search space (e.g., instruction operands are largely ignored), and
(iii) focus on attack code generation instead of finding a generic
pattern for vulnerabilities that can be matched in existing code.

In this work, we introduce the concept of Leakage Templates
(or LTs for short), which consist of a generalized code sequence
and a set of relations on input parameters that, when satisfied, can
trigger specific leakage behavior in victim code (see § 3.4 for more
details). Given such an LT for a target hardware platform, we can
identify code sequences (and required input values) that expose a
specific side channel behavior (see § 7 for an example). We thereby
address two research questions: (1) How can we learn generic LTs
for largely-undocumented leakage behavior? (2) How can we use
the LTs to find side channel vulnerabilities?

To this end, we design and implement Plumber (source is avail-
able at [36]) to facilitate generating such LTs, leveraging instruction
fuzzing, instructions’ operands mutation, and statistical analysis. The
design of Plumber is based on exploring the architectural space
through the execution of program-input pairs, and analyzing the
resulting microarchitectural states (focusing on caching). We design
a domain-specific language that simplifies the generation of a large
number of instruction sequences (i.e., programs) and mutating their
operands. Further, we use a statistical analysis approach to classify
microarchitectural states and to extract relations on inputs. To vali-
date our approach, we studied the cases of the cache replacement
policy of the ARM Cortex-A72 and two microarchitectural features
of the ARM Cortex-A53 processors: previction and prefetching.

Previction is a recently discovered yet widely undocumented
processor behavior of evicting cache lines before the corresponding
cache set is full [28]. Since previction behaves differently for two
addresses that only differ in their cache lines’ offset, it may vio-
late existing assumptions used to secure software [30]. Prefetching,
on the other hand, is a partially documented feature that allows
the processor to detect regular memory access patterns and to fill
cache lines with anticipated addresses by proactively continuing
the pattern. However, many details of prefetching (e.g., the num-
ber of prefetched lines) are undocumented. In addition, the cache
replacement policy of ARM processors is not well-documented.

Leveraging Plumber, we analyze cache replacement policy, pre-
viction and prefetching behavior of the processor’s core and derive
related LTs. For the replacement policy experiment, the derived
LT establishes eviction strategies of L1 data cache. In the case of
previction, the extracted LTs reveal conditions under which bits of
memory address loads are leaked.

For prefetching, we leverage Plumber to discover parameters
such as the minimal number of loads to trigger prefetching, the im-
pact of intermediate instructions, the impact of page boundaries on
prefetching, and the impact of cache hits. In other words, we show
how the obtained LTs expose prefetching side channels that allow
to infer the control flow of a program and to leak secret informa-
tion. Those channels are different from existing prefetching-based
attacks discussed in the literature [6, 12, 40, 49], which target the
x86 architecture and either attack a software-based prefetcher [12]
or use a simulated CPU [6] for their analysis. Most similar to our
approach is the work of Shin et al. [40] which exploits the hardware
prefetcher to attack a constant-time Elliptic Curve Diffie-Hellman
(ECDH) implementation from OpenSSL. However, compared to

ours, they used a different side channel, i.e. the effect of the order
of accessed lookup table entries on the behavior of the prefetcher.

Although our focus in this paper is on the ARM architecture and
cache-based side channels, the Plumber design is generic and can
be used to detect LTs for other features like the cache slice mapping
of Intel processors (see Appendix B for a discussion). Also, while the
main goal of Plumber is to ease generating LTs, it can also be used
to help reverse engineering of undocumented microarchitectural
features. For example, § 10 shows how Plumber can be applied to
discover the structure of the Cortex-A53’s branch predictor.

Contributions. Our main contributions are as follows:
• We introduce the concept of Leakage Templates, which allow
to identify code sequences (and required values) that ex-
pose a specific side channel behavior in a binary application
executed on a specific architecture (§ 3).

• We design and implement Plumber, a framework that gen-
erates LTs, and allows to obtain a deeper understanding of
hidden behavior of microarchitectures (§ 4, § 5, and § 10).

• We show Plumber’s efficacy by investigating the undocu-
mented eviction policy of Cortex-A72’s L1 cache and previc-
tion and prefetching behaviors of the Cortex-A53 processors
(§ 6), and identify five novel side channels (§ 8).

• We demonstrate how a derived LT can be used to identify a
side channel in a binary application (§ 7).

2 BACKGROUND

Side channels are hidden information flow paths, which are poten-
tially exploitable by an attacker to leak data. The number of attacks
exploiting microarchitectural features, like caches [3, 30, 44, 45, 55],
continues unabated. Therefore, the study of information flow anal-
ysis techniques to ensure the absence of side channel leakages is a
topic of increasing relevance. Central to such an analysis is a model
capturing the channel. However, the complexity of modern proces-
sors and the lack of information about their features make infeasible
to explicitly model all the relevant, complex, and intertwined fea-
tures like cache hierarchies and out-of-order execution. Abstract
observational models tackle this problem by over-approximating at-
tacker capabilities to observe flow of information via side channels.

2.1 Information Flow Analysis Tools – Scam-V

A key requirement of observational models is their soundness, i.e.
observationally equivalent states should lead to executions that
cannot be distinguished by an attacker on real hardware. Scam-
V [28] automates validation of observational models’ soundness. At
high level, Scam-V generates well-formed random binary programs,
which are denoted by P. It then constructs pairs of initial states I
s.t. executions of P from these states are observationally indistin-
guishable on the model. Scam-V then tests if the two states are also
indistinguishable on hardware in the presence of undocumented
microarchitectural components. Any experiment which enables
the attacker to distinguish one microarchitecture-level execution
from another represents a counterexample to the soundness of the
observational model. We call a counterexample a leakage witness
in this paper. A leakage witness can be seen as an instantiation of
our Leakage Templates that can be used by an attacker to infer a
function of the (secret) data via relevant side channels.

Microarchitectural Leakage Templates and Their Application to Cache-Based Side Channels CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

Figure 1: A previction counterexample.

Previction. Previction is an undocumented behavior of the ARM
Cortex-A53 processors which invalidates cache-related observa-
tional models. Previction causes a cache line to be evicted before
the corresponding cache set is full. Scam-V [28] discovers a handful
instances of this behavior. However, the real cause of previction is
unknown. The authors conjecture that the processor detects a short
sequence of loads to the same cache set and anticipates more loads
to the same set with no reuse of previously loaded values. It evicts
the valid cache line in order to make space for more colliding lines.

Fig. 1 depicts a previction counterexample. The program consists
of five loads. The given inputs are observationally equivalent: they
only differ for the value of x0, which affects the address used for the
first load. However, the addresses 0x80100000 and 0x80100020 in x0
have the same tag and cache set index and only differ in the offset
within the same cache line. The addresses of all load instructions
are mapped to the same cache set, i.e., set 0. Since the cache is
4-way associative and is initially empty, one expects no eviction
to occur. Executing the program with the given inputs on the real
hardware, however, results in two different cache states. In one case
x0 is present in the cache, while in the other case it is not.

2.2 ARMv8 internal memory subsystem

ARMv8 processors have two levels of caches: (1) a level one (L1)
cache per each core; and (2) a last level cache (L2) shared between
cores. When the CPU needs to read a memory location that is
currently not cached, it fetches the requested data from memory
into a cache line and tags that line with the memory location where
the data was read from. When a line is loaded from memory and all
potential destination lines in the cache are occupied, the CPU uses a
specific replacement policy to decide which colliding line(s) should
be evicted. The eviction policy ensures that the cache always stores
the most popular content, thus using the available space efficiently.

Table 1 shows our notation to extract cache-related information
from an address. sameTag, sameSet and samePage are predicates
checking for equality of cache tag, set, or page indices of addresses.

Prefetcher. The L1 cache implements a prefetcher, for some
configurable 𝑘 ∈ N. When the prefetcher detects 𝑘 cache misses
whose set indices are separated by a fixed stride, the prefetcher
starts to fill the cache with a sequence of lines from memory loca-
tions whose addresses match the stride of the initial cache misses.
We call such sequences prefetch streams. An exception happens
when prefetching crosses a small page (4K) boundary. In this case
the prefetcher stops fetching data from the adjacent page.

3 LEAKAGE TEMPLATES

We now introduce Leakage Templates and motivate their utility.

Table 1: Summary of notations.

Notation Description

ai A physical address
ai𝑚−𝑛 Bits𝑚 through 𝑛 of ai
set(ai) = ai6−12 ai cache set index
tag(ai) = ai13−31 ai cache tag
word(ai) = ai2−5 ai word offset
bus(ai) = ai4−5 ai bus round
page(ai) = ai12−31 ai page index
sameTag(ai, aj, . . .) Cache tag equality predicate
sameSet(ai, aj, . . .) Cache set equality predicate
samePage(ai, aj, . . .) Page index equality predicate

3.1 Goal and Motivation for Leakage Templates

Goal of the analyst. The overall setting is depicted in Fig. 3. We
assume that the analyst has concrete examples of (artificial) code
(for a specific hardware architecture) that behave distinctively on
the microarchitectural level for different inputs, thus exposing an
undocumented behavior. We call these examples distinguishing ex-
amples. Plumber takes as input an abstract description of a leaking
code snippet in terms of a Generative Testcase Specification (GTS)
(see § 4.1 for more details). The goal of the analyst is to utilize
this behavior to leak information from a real-world application. To
achieve this, the analyst needs to identify code segments in the
target application that under certain analyst-controllable conditions
trigger the undocumented microarchitectural behavior.

Motivation for Leakage Templates. As the analyst starts with
concrete code sequences (in form of distinguishing examples), it is
unlikely that the exact same code sequences will appear in another
target application. Therefore, we need to abstract from the concrete
code sequences and find: (1) a generalized code sequence, (2) a set
of relevant attributes, and (3) relations between those attributes
that expose the specific side channel. We call such information a
Leakage Template or LT. The LT abstractly defines the conditions
for code segments under which the leakage is observed. Given an
LT, an analyst can identify code segments in a target application
that expose a side channel. We demonstrate in § 7 how binaries can
be scanned for code sections that match the code pattern from a
LT. In addition, we show how dynamic binary analysis techniques
can be used to analyze a matching code section for the presence of
side-channel leakage based on the relations from a LT.

Sources of distinguishing examples. There are at least two
general ways of finding distinguishing examples. Such examples
can be derived from abstract (natural language) descriptions of the
architecture’s behavior, e.g., in manuals. Moreover, one can extract
these examples from concrete code traces that expose the intended
side channel, e.g., out of tools like Scam-V or zero-day exploits.

3.2 Motivating Example I: Caching

Assume that simple caching behavior of a CPU was insufficiently
documented, and the analyst tries to understand in which parts of
a target application (and under which conditions) caching occurs.

Initial Information. A starting leakage witness (i.e. a distin-
guishing code example with a pair of inputs) could contain a se-
quence of two load instructions (for variable addresses), and two
instances (i.e., pairs of input addresses) where different behavior

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Ahmad Ibrahim, Hamed Nemati, Till Schlüter, Nils Ole Tippenhauer, and Christian Rossow

was observed. In the first instance, both loads refer to the same
address, while in the second instance, two distinct addresses (on dif-
ferent cache lines) are accessed. When executing the two instances
on a clean cache state, the second load will be considerably faster
for the first instance compared to the second one.

Leakage Template.An abstract LT that describes this side chan-
nel would specify: (1) an abstract code template (i.e., at least two
loads from symbolic addresses with potentially other instructions
in between); (2) the two possible behaviors (i.e., fast and slow execu-
tion time of the second load); and (3) the relations over the loaded
addresses which lead to the respective behaviors.

Benefit of the Leakage Template. The starting leakagewitness
just provides one concrete code instance that leads to the leakage
behavior, while the LT ideally covers every possible sequence of
instructions in which two loads lead to caching. Consequently,
one would expect that the leakage witness alone will not enable
the analyst to identify instances of the side channel leakage in an
arbitrary target program, while the LT is expected to have much
higher chances to discovering related code fragments.

3.3 Motivating Example II: Previction

For previction, the leakage behavior appears to require a more
complex code sequence (see § 2.1).

Initial information. In this case, a starting leakage witness
could contain a sequence of five loads, and two sets of addresses
which lead to different behaviors, as summarized in Fig. 1.

Leakage Template. An LT that describes this side channel
would specify: (1) an abstract code template (e.g., at least five loads
from symbolic addresses with potentially a number of other instruc-
tions in between); (2) the two possible behaviors (i.e., previction
or no previction); and (3) the abstract relations over the loaded
addresses which lead to the respective behaviors.

3.4 Definition of Leakage Templates

Based on the provided motivation for LTs, we now describe the
components of LTs themselves. An LT is a triple (P(𝐴),B,R(𝐴,𝑏));
with P(𝐴) being a code template with a set of attributes 𝐴 ⊆ A, B
a set of observed distinct behaviors, and R : A × B → 2P𝐴 maps a
behavior 𝑏 ∈ B to a (set of) predicate(s) on attributes, where P𝐴 is
the set of predicates on 𝐴. We note that our definition of behavior
is generic. For instance, it may refer to temporal (e.g., measuring
execution time) or spatial (e.g., monitoring cache content) behav-
ior. For the latter, the behavior refers to the difference between
the initial (before execution of the code template) and final (after
execution of the code template) state of the monitored component
(e.g., cache). Given this description, we provide additional details
on the resulting LT for our caching example in Fig. 2. In § 6.2 we
show how an LT for the previction example can be derived.

4 PLUMBER

We now present our design of Plumber, a framework to automat-
ically derive LTs (focusing on caching behavior). In particular, in
our design we had to address the following challenges:

• C1: We need to construct efficient specifications to steer
testcase generation towards generating inputs which are
likely to trigger a specific microarchitectural behavior.

Figure 2: Caching LT. • (fast), ◦ (slow) are distinguishing

behaviors. NIIs are Non-Interfering Instructions.

• C2: Size of input space (number of possible code sequences
and input values) is too large. Thus, we need an approach to
explore the input space and ensure high test coverage which
in turn increases accuracy of the derived relations.

• C3: We need to get accurate measurements with minimal
noise, close to ‘ground truth’ of the respective channel.

• C4: The relations between attributes in code sequences and
triggered behaviors can be very complex and counter-intuitive,
and manual derivation of such relations (if not impossible) is
highly error prone. So, we need to develop a statistical anal-
ysis technique to automate finding the correlation between
attributes and observed behavior.

4.1 Abstract Framework Design

Plumber’s input is a Generative Testcase Specification (GTS), which
abstractly describes programs to analyze in a domain-specific lan-
guage, and whose leakage effects are to be monitored. The detailed
description of GTS and the language (and how it addresses C1) is
provided in § 4.2 and 4.3. The framework outputs the LT, including
the behavior of the monitored microarchitectural components, and
the relations between attributes and the behaviors.

As shown in Fig. 3, the framework consists of two parts. The
Backend instantiates and executes testcases (i.e., program-input
pairs) from a (preprocessed) GTS. The Frontend encapsulates the
Backend, towards the outside it receives a GTS and outputs LTs.

We present each component by describing the steps required to
derive an LT from a GTS. 1○ The Preprocessor parses the GTS and
forwards the result to the Testcase Instantiator. 2○ The Instantiator
then systematically generates testcases (addressing C2) based on
the parsed preprocessed GTS. 3○ The Runner executes every test-
case in a controlled environment (addressing C3) and returns the
behavior to the Classifier. 4○ The Classifier classifies the programs
(if necessary) based on their behavior and stores them. 5○ The An-
alyzer interprets classified behaviors (addressing C4) and returns
relations on the attributes which trigger specific microarchitectural
behavior (i.e., B and R(𝐴,𝑏) of the LT).

A possible application of an LT is to identify instances of it in
binaries. This can be done using a Template Matcher 6○, which
may use static and dynamic binary analysis techniques to find code
sections matching the LT’s code pattern as well as its relations. We
discuss a proof-of-concept implementation in § 7.

4.2 Definition of GTS

The GTS (used as input of Plumber) intuitively defines sequence(s)
of instructions to be executed over (mutated) operands, and mi-
croarchitectural component(s) to be monitored (e.g., content of the
cache). The GTS can also specify the initial state of (monitored)
component(s) before the execution of its instruction sequences.

Microarchitectural Leakage Templates and Their Application to Cache-Based Side Channels CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

Figure 3: Overview of Plumber components.

To addressC1 as outlined earlier, we introduce a domain-specific
generative language. The language provides three main features.
(i) It allows us to abstractly specify possible mutations of the pro-
gram (i.e. enabling very generic code templates), (ii) it allows us to
specify which data in the programs should be fuzzed or mutated
(i.e. defining domains for attributes), and (iii) it allows us to specify
a set of relations to apply to non-fuzzed data in the testcases.

4.3 Specification Language

A Generative Testcase Specification (GTS) is formed of a sequence
of directives that specify different operations, e.g., arithmetic op-
erations or nop instructions. The proposed language defines an
extensible set of directives, which includes M, A and N. The direc-
tive M denotes memory loads, the directive A denotes arithmetic
or logical operations, and the directive N denotes nop instructions.
Additionally, the language defines two directives that allow reverse
engineering the branch predictor (see § 10). Sc1,bool denotes an
instruction that sets a variable (identified by c1) to a boolean value
bool, and Bc1,bool,step denotes a branch instruction that jumps
step steps when the value of the variable identified by c1is bool.
The default value of a variable is false (F).

The addresses of load operations are mapped to a certain cache
set and have specific tags. It is possible to define the tag and
set attributes of a memory directive. We use Mt1,s1 to refer to a
load from an address with tag t1 and cache set s1. The values
of these attributes allow determining the relation between tags
or sets of different loads. When omitted, these attributes acquire
default values which are identical for the same request. The lan-
guage allows defining arithmetic relations between the tag (and
set) attributes of different memory directives. For example, the GTS
M M Mt1,s1 Mt1,s1 Mt1+1,s1+5 A A N represents two loads of memory
addresses with the same set and the same tag (default), followed by
two other loads with a different tag t1 and a different set s1 and
a fifth load with tag (t2 = t1 + 1) and set (s2 = s1 + 5), two arith-
metic or logical operations, and a nop instruction. The values of
the operands of other instructions, e.g., arithmetic operations, can
be defined in the same manner, e.g., Av1,v2 represents an arithmetic
operation with two operands v1and v2.

The language also provides an extensible set of macros and oper-
ators that allow constructing a meaningful GTS as well as defining
the initial state of hardware components. Note that this language
is extensible, i.e., it allows defining new macros and operators for
investigating various processor components.

Power []dirattr, n, i. This macro allows repeating directive(s)
𝑛 times, while incrementing the attribute attr of the directive dir
by a value of 𝑖 . For example, the GTS

[
Mt1,s1

]
Ms, 2, 1 can be used to

refer to the GTS: Mt1,s1 Mt1,s1+1. The power macro can be also used
with a single input 𝑛. In this case the directive(s) are repeated 𝑛

times. For example, the GTS presented above can also be expressed
as: [M]2

[
Mt1,s1

]
2 [A]2 N.

Wildcard #n. This macro expands to 𝑛 arbitrary directives that
do not perform memory operations. For example, one possible
expansion of M #3 M is M N N N M.

Shuffle ()!. This operator generates all possible permutations
of a GTS while omitting those with similar directives. For example,(
[M]2 Mt1,s1

)
! refers to the set: {M M Mt1,s1 ; M Mt1,s1 M; Mt1,s1 M M}.

Subset ()⊂. This operator generates all possible subsets of a
GTS while omitting those with similar directives. For example,(
[M]2 Mt1,s1

)
⊂ refers to the set: {M M; M Mt1,s1 ; M; Mt1,s1 }.

Slide ()n. For a given GTS, this operator shifts all loaded ad-
dresses one set at a time up to 𝑛 times. For example,

(
Mt1,s1 Mt2,s2

)
3

refers to the set: {Mt1,s1 Mt1,s1 ; Mt1,s1+1 Mt1,s1+1; Mt1,s1+2 Mt1,s1+2}.
Merge (:)+. This operator merges two requests by sliding the

directives of the first over the second as demonstrated by the fol-
lowing example.

(
Mt1,s1 Mt2,s2 : Mt3,s3 Mt4,s4

)
+ refers to the set:{

Mt1,s1 Mt2,s2 Mt3,s3 Mt4,s4 ; Mt1,s1 Mt3,s3 Mt2,s2 Mt4,s4 ;
Mt3,s3 Mt1,s1 Mt4,s4 Mt2,s2 ; Mt3,s3 Mt4,s4 Mt1,s1 Mt2,s2

}
Load offset mutation ⟨⟩@. For every load instruction, the

operator signals generation of a testcase for all possible addresses
with the indicated tag and set, i.e., it brute forces word offsets. For
example, ⟨M M⟩@ generates a set formed of all two loads having
the same tag and set with all possible combinations of word offsets.

Cache line mutation ⟨⟩$. For every load instruction, this oper-
ator signals the generation of a testcase for every possible memory
address having the indicated tag and word offset, i.e., it brute forces
all possible sets. For example, ⟨M M⟩$ generates a set formed of all
two loads that have the same tag for all possible combinations of
sets, i.e., {Mt1,s1 Mt1,s2 } for every set s1and s2.

Repetition | |n. This operator repeats the GTS 𝑛 times, e.g., the
GTS

��M Mt1,s1
��3 corresponds to: {M Mt1,s1 ; M Mt1,s1 ; M Mt1,s1 }.

Precondition P(). This operator allows setting up the state of
different hardware components before the execution of testcase.
For instance, the GTS P

(
Mt1,s1 Mt2,s1

)
⟨M M⟩$ generates cache line

mutation testcases where two lines in s1 are already occupied.

5 DESIGN & IMPLEMENTATION

Plumber currently targets the ARM architecture. It is implemented
in C and Python as well as ARM assembly. We exploit ARM assembly
for: (a) implementing testcases, (b) setting up and (accurately) read-
ing architectural components, and (c) increasing the performance.
However, our design is applicable to other architectures. In the
following, we present the implementation details for Plumber’s
components presented in Fig. 3.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Ahmad Ibrahim, Hamed Nemati, Till Schlüter, Nils Ole Tippenhauer, and Christian Rossow

Load Register

Output x0 x1 x2 x3 x4

1 1 · · · 000000000000000 1 · · · 000000000000000 · · · · · · 1 · · · 100000000000000
2 1 · · · 000000000000100 1 · · · 000000000000000 · · · · · · 1 · · · 100000000000000
3 1 · · · 000000000001000 1 · · · 000000000000000 · · · · · · 1 · · · 100000000000000
4 1 · · · 000000000001100 1 · · · 000000000000000 · · · · · · 1 · · · 100000000000000
5 1 · · · 000000000010000 1 · · · 000000000000000 · · · · · · 1 · · · 100000000000000
6 1 · · · 000000000010100 1 · · · 000000000000000 · · · · · · 1 · · · 100000000000000
7 1 · · · 000000000011000 1 · · · 000000000000000 · · · · · · 1 · · · 100000000000000
8 1 · · · 000000000011100 1 · · · 000000000000000 · · · · · · 1 · · · 100000000000000
9 1 · · · 000000000100000 1 · · · 000000000000000 · · · · · · 1 · · · 100000000000000

· · ·
220 1 · · · 000000000111100 1 · · · 000000000111100 · · · · · · 1 · · · 100000000111100

Figure 4: Input bit table from a class causing previction.

Shaded columns are registers responsible for previction.

Shaded rows are inputs missing from the table. Mutated bits

are in bold and the bits causing previction are underlined.

5.1 Frontend

The Frontend handles user interaction and has three components:
Preprocessor. The preprocessor interprets a given GTS and

forwards the results to the Backend. It expands repetition, power
and wildcard macros. Wildcard is expanded by randomly picking
directives from the set of defined operations. The Preprocessor is
also responsible for expanding the shuffle, subset, slide and merge
operators, i.e., it generates permutations of a given GTS by applying
the respective operations and forwards them to the Backend.

Classifier. This component classifies the output of the Backend
based on the behavior of the monitored component, e.g., for pre-
viction/prefetching, output is classified based on the occurrence of
previction/prefetching (or the previcted/prefetched addresses). For
every behavior, the classifier generates a bit table containing the
binary representation of mutated instruction operands, e.g., accessed
addresses for cache line mutation. Fig. 4 shows an example of a bit
table generated for previction. Each testcase is represented by one
row in the table, each column represents a loaded address.

Analyzer. The analyzer extracts relations between inputs and
their effect on the monitored microarchitectural behavior of the
component. It exposes a set of primitive operations over bit tables
to generate and validate such relations. Our primitives have similar
meaning as SQL statements. Examples include: (a) count () which
counts the number of rows (or columns) in a table; (b) the vari-
adic function select (cond (x𝑖 [𝑚𝑖 . . . 𝑛𝑖], ...),x𝑖 [𝑚𝑖 . . . 𝑛𝑖], ...) that re-
turns all rowswhose fields are in the relation cond, e.g., select (x𝑖 [𝑗] =
1,x𝑖) returns rows where the 𝑗th bit of the register x𝑖 is 1; (c) the
variadic function relation(x𝑖 [𝑚𝑖 . . . 𝑛𝑖],x 𝑗 [𝑚 𝑗 . . . 𝑛 𝑗], . . .) which
takes two or more inputs and returns a linear relation over specific
bits of the inputs. We define an example analyzer function for pre-
viction. Other analyzer functions typically follow the same strategy.
As shown in Fig. 5, this function has three phases:

Candidate selection. This step pinpoints parts of the inputs (i.e.,
specific bits from every address) that are correlated with the ob-
served behavior (e.g., previction). Let ◦ denote function compo-
sition; occ = count ◦ select defines the composition of count and
select. The analyzer determines the candidate bits as follows:

For every address x𝑖 , the analyzer uses occ(x𝑖 [𝑚 . . . 𝑛] = 𝑥,x𝑖)
to find the number of occurrences of each possible value 𝑥 ∈
{0, 1} (𝑚−𝑛) for the non-constant bit sequence indexed by 𝑚 and
𝑛, i.e., mutated bits (step 1○). It compares these actual occurrences

2a

2b

3

Theory Validation
Constraint on

Missing Values

Relation:

Candidate selection Relation extraction Relation validation

True

1
False

False

1

Figure 5: The analyzer function flowchart for previction.

to the expected number of occurrences of this value, i.e., it checks
whether occ(x𝑖 [𝑚 . . . 𝑛] = 𝑥,x𝑖) = Total

npos ; where Total denotes the

size of the bit table; and npos = 2(𝑚−𝑛) is the number of different
possible values for the bit sequence indexed by 𝑚 and 𝑛. Every
address where the number of occurrences of (some or all) values
deviates from the expectation is marked as a candidate address.

If all addresses have the same number of occurrences equal to
Total
npos , the analyzer proceeds to step 1’○. In this step, the analyzer
repeats the previous check on pairs of operands. For every pair of
operands x𝑖 and x 𝑗 the analyzer checks whether occ(x𝑖 [𝑚 . . . 𝑛] =
𝑥 ∧ x 𝑗 [𝑚 . . . 𝑛] = 𝑦,x𝑖 ,x 𝑗) = Total

n′pos
, for all possible values 𝑥,𝑦 ∈

{0, 1} (𝑚−𝑛) , where n′pos = 22×(𝑚−𝑛) is the number of possible val-
ues for the two bit sequences. Every pair of addresses for which
the number of occurrences of (some or all) values deviates from the
expectation is marked as a pair of candidate interrelated addresses.

Relation extraction. Next, the analyzer detects the constraints on
certain bits in a candidate address or the interrelation between bits
in candidate interrelated addresses. In step 2a○, the analyzer uses occ
to determine these constraints by checking every candidate address
for the missing values. In step 2b○, the analyzer uses the function
relation(x𝑖 [𝑚 . . . 𝑛],x 𝑗 [𝑚 . . . 𝑛]) to find the interrelation between
the non-constant bits of interrelated candidate addresses. It finds
𝑎 and 𝑏 in the equation 𝑦 = 𝑎𝑥 + 𝑏 mod (𝑚 − 𝑛), where 𝑥 and 𝑦
represent the interrelated bits in the two addresses, respectively.

Relation validation. 3○ This phase validates the generated con-
straints and relations. A constraint is validated by using the occ
function to check whether all value combinations of unrelated bits
occur in the bit table. A relation is validated by using occ(”𝑦 =

𝑎𝑥 + 𝑏”,x𝑖 [𝑚 . . . 𝑛],x 𝑗 [𝑚 . . . 𝑛]) to check whether: (i) every row
in the bit table satisfies the extracted relation and (ii) every value
combination of unrelated bits occurs in the bit table.

5.2 Backend

The Backend is responsible for generating concrete testcases (a set
of programs and their inputs) from a GTS, setting up microarchi-
tectural components, executing the programs over their respective
inputs on real hardware, and returning the microarchitectural be-
havior of this execution. The Backend is formed of two components:

Instantiator. This component receives an expanded GTS from
the Preprocessor and generates concrete testcases. It uses an instruc-
tion store to pick instructions for each operation when generating
programs. It further uses an address store to generate inputs. In
particular, for the first occurrence of every tag and/or set attribute
value, the generator picks random values from the store and queries
their corresponding address. For every consecutive occurrence of a

Microarchitectural Leakage Templates and Their Application to Cache-Based Side Channels CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

Table 2: Approximate total execution time for the experi-

ments. 𝑑 ,𝑚 and 𝑠 stand for day(s),minute(s) and second(s).

Execution time

Eviction 62𝑚
E1 E2 E3 E4 E5Previction 0.7𝑑 6𝑠 7𝑚 1.5𝑑 > 1𝑠
E6 E7 E8 E9 E10

C
a
s
e
s
t
u
d
y

Prefetching 4𝑑 6𝑚 > 1𝑠 > 1𝑠 0.2𝑑

tag or set, the generator uses the previously selected tag and/or set
from the first occurrence. In the case of arithmetic relation between
these attributes, the generator searches for addresses that satisfy
this relation. Alternatively, the Testcase Instantiator can generate
new addresses and add them to the address store. Finally, the Instan-
tiator generates and/or mutates inputs of instructions as requested.
For example, when the GTS includes an offset mutation operator,
the generator generates inputs with all possible address combina-
tions by brute forcing their word offset. The generated testcases are
forwarded to the Runner. When the cache line mutation operator
is used, the Instantiator generates inputs with all possible address
combinations by brute forcing the set index.

Runner. The Testcase Runner receives a testcase from the In-
stantiator to be executed on the hardware. The Runner first inserts
memory barriers between the program’s instructions. It then con-
nects to the hardware, and refreshes the microarchitectural state,
e.g., clears the cache. The Runner then sets up microarchitectural
components by executing the precondition part of the program. The
program is then executed using ARM TrustZone. ARM TrustZone
provides the highest level of privilege that allows the execution of
all possible instructions as well as the inspection of microarchitec-
tural states. Most importantly, TrustZone provides direct access
to the cache state through privileged debug instructions. Having
said that, Plumber may also leverage other techniques to infer the
microarchitectural state (e.g., Reload+Time typically used in cache
side-channel attacks [34, 53] to infer the content of the cache) if
such special debug instructions are unavailable.

We conduct our experiments as bare-metal code—there are no
background processes or interrupts which could induce noise in
terms of cache content or timing. We still experience a low amount
of noise due to the shared memory subsystem (such as the GPU) and
because our experiments are not synchronized with the memory
controller. We found that this noise could be safely ignored.

6 APPLICATION

We show the utility of LTs and the effectiveness of Plumber through
three case studies: cache eviction policy, previction and prefetching.
For each case the presented LT is only a fragment of the identified
LT. Missing cases are omitted due to either (1) clarity, i.e., complex
relations are omitted, or (2) inconclusive outcome, i.e., cases that
generate random behavior and may not be reliably exploited. Ex-
periments are done on Raspberry Pi 3 & 4— widely used ARMv8
platforms, which use Cortex-A53 and -A72 CPUs, respectively. On
these processors, data is transferred between memory and cache in
blocks of 64 bytes and the L1 data cache is 4-way set associative.

Cortex-A53 cores show the previction behavior, and although
the CPU is well-documented, the exact behavior of the prefetcher

on these cores is unknown. For example, the ARM manuals do
not answer any of the following questions: (Q1) How much data is
prefetched? (Q2) Do non-memory operations influence the prefetch-
ing behavior? And (Q3), do load operations in one page affect
prefetching due to memory loads from a different page?

To perform the experiments, we used a cluster of five Raspberry
Pi 3 and one Pi 4 boards. Table 2 shows the approximate total execu-
tion time to perform each experiment. Note that each experiment is
a one-time effort required once per side channel and architecture.

6.1 Case Study: Eviction

To best illustrate the utility of LTs, we use Plumber to analyze the
ARM Cortex-A72 cache eviction behavior. For experiment genera-
tion we leverage the parameterized eviction strategy from Rowham-
mer.js [13] for x86 architectures and adopted in ARMageddon [22]
for ARM CPUs. The eviction strategy is shown in Algorithm 1.

Algorithm 1: Parameterized eviction strategy
1 for (𝑠 = 0; 𝑠 ≤ 𝑆 − 𝐷 ; 𝑠 += 𝐿) do
2 for (𝑐 = 0; 𝑐 ≤ 𝐶; 𝑐 += 1) do
3 for (𝑑 = 0;𝑑 ≤ 𝐷 ;𝑑 += 1) do
4 ∗𝑎[𝑠 + 𝑑];

For this experiment, we created the following GTS which corre-
sponds to the parameterized eviction strategy:��P (

Mt2,s1
[[[

Mt1,s1
]
Mt,D, 1

]
C
]
Mt, S, L

)
Mt2,s1

��1000
where each experiment is repeated 1000 times. The results were
classified based on the existence of the pre-loaded address, indi-
cating whether eviction occurred. Based on the results, the LT in
Fig. 6.a was generated. The generated LT has an error tolerance of
5%, i.e., testcases that lead to eviction in more than 95% of the times
where classified as triggering (•) behaviors.

The eviction test characterized by the parameterized eviction
strategy is not a typical use case for Plumber. However, it is suit-
able for illustrating LTs. This test also demonstrates how Plumber
facilitates reverse engineering tasks as will be shown in § 10.

6.2 Case Study: Previction

We used Scam-V [28] to generate a set of leakage witnesses, i.e., pro-
grams that may cause previction on the ARM Cortex-A53 (see § 2.1).
All the generated examples were formed of exactly five load instruc-
tions. Moreover, looking at the cache content, it was evident that
all leakage witnesses loaded three different tags to the same cache
set (and optionally a fourth tag to a different set), i.e., two to three
loads targeted the same cache line. We exploit this knowledge to
construct initial GTSes. We use these GTSes in five experiments
(E1–E5) to iteratively refine an LT for previction:

E1: Minimal Code. First, we wanted to check whether the ob-
tained leakage witnesses contain minimal programs that trigger
previction. We created a GTS which generates testcases contain-
ing all possible subsets (without repetition) of all instructions of
each leakage witness. The GTS further mutated the word offsets for
each of the loaded addresses. None of the generated testcases trig-
gered previction. Thus, the leakage witnesses contained minimal
previction programs.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Ahmad Ibrahim, Hamed Nemati, Till Schlüter, Nils Ole Tippenhauer, and Christian Rossow

Figure 6: Case studies’ LTs with selected relations. In (a) 𝑎𝑏 means 𝑏 times inlining repetition of instruction 𝑎. In (b), #𝑛𝑖 is
inlining 𝑛𝑖 simple arithmetic, logical or nop instructions. For (a) and (b) triggering and not triggering behavior are denoted by

• and ◦, respectively. In (c), P𝑙 denotes distinguishing behaviors and 𝑙 is the number of prefetched lines. Relations must be

checked in order, the first matching relation determines the number of expected prefetches.

Table 3: Example permutation outcome. Each number rep-

resents an instruction from the initial testcase. Underlined

numbers are loads from addresses that have the same tag.

PR
1-2-3-4-5, 1-2-3-5-4, 2-1-3-4-5, 2-1-3-5-4,
4-1-2-3-5, 4-2-1-3-5, 4-3-1-2-5, 4-1-3-2-5,
5-1-2-3-4, 5-2-1-3-4, 5-3-1-2-4, 5-1-3-2-4

nPR 2-3-1-5-4, · · · , 2-3-1-4-5, · · · , 3-4-1-5-2, · · ·

Performing E1 requires doing 4 sets of experiments, each con-
sisting of 5!/(5 − 𝑥)! × 16𝑥 testcases, where 1 ≤ 𝑥 ≤ 4. Table 2
shows the total execution time to perform this experiment.

E2: Order of Instructions. Next, we checked whether the order
of instructions affects previction. We created GTSes which generate
testcases containing all possible permutations of instructions in
distinct leakage witnesses, e.g.,

(
Mt1,s1 Mt1,s1 Mt1,s1 Mt2,s1 Mt3,s1

)
!.

In this GTS, the first three loads (denoted as 1, 2 and 3) target
the same cache line, but at different offsets. The outcome of the
permutation is shown in Table 3. PR (first row) denotes previction
and nPR (second row) denotes that no previction occurred. We draw
three conclusions from this test:

• Relation on tags: The relation between the location of tags
affects previction. Only programs with three consecutive
load instructions with the same tag cause previction.

• Tag value: The exact tag value and location of the three con-
secutive loads does not matter, and can be similarly arbitrary
for the non-consecutive load instructions.

• Word offset: Previction behavior differs based on the byte
(word) offset of the loaded addresses. In our example, multi-
ple programs with the same order of cache sets and tags are
in both PR and nPR, e.g., 2-1-3-5-4 (PR) and 2-3-1-5-4 (nPR).
These permutations have instructions 1 and 3 swapped, i.e.,
two load instructions that only differ in their word offset.

E3: Tags and Sets.We also checked the effect of exact tag and
set values on previction. We created GTSes which generate test-
cases that preserve the relations between tags and/or sets of loaded
addresses, while randomly changing these addresses:

(1)
�� [Mt1,s1]3 Mt2,s1 Mt3,s1

��10000
(2)

��Mt2,s1 [
Mt1,s1

]
3 Mt3,s1

��10000
(3)

��Mt2,s1 [
Mt1,s1

]
2 Mt4,s2 Mt3,s1

��10000
For every GTS, all 10,000 generated testcases show the same

behavior. Thus, the exact values of tags and sets do not matter.
E4: Word Offset Behavior. In E2, we observed that the byte

offsets of loaded addresses affect previction. To broaden our un-
derstanding, in this experiment, we leveraged GTSes as shown in
Table 4. They generate testcases for 5-load programs with all pos-
sible combinations of tags and sets (for loads targeting up to two
cache sets) while mutating the word offset. On Cortex-A53, each
cache line (64 bytes) is divided into four disjoint “buses” of 16 bytes
(i.e. a cache line is loaded in 4 bus rounds). For example, for three
tag-identical loads in a sequence of five set-identical loads, previc-
tion occurs if the bus of the first load is not the direct successor to
the bus targeted by the second load.

This experiment took approximately 1.5 days to complete. The
most time consuming part of this experiment is the case number
12 in Table 4 which consists of 12 × 165 testcases.

E5: Priming the Cache. We further checked if previction also
affects data cached before the execution of a testcase. We created
GTSes which generate and execute previction testcases while 1-4
lines of a cache set are occupied:

(1) P
(
Mt4,s1

) [
Mt1,s1

]
3 Mt2,s1 Mt3,s1

(2) P
(
Mt4,s1 Mt5,s1

) [
Mt1,s1

]
3 Mt2,s1 Mt3,s1

(3) P
(
Mt4,s1 Mt5,s1 Mt6,s1

) [
Mt1,s1

]
3 Mt2,s1 Mt3,s1

(4) P
(
Mt4,s1 Mt5,s1 Mt6,s1 Mt7,s1

) [
Mt1,s1

]
3 Mt2,s1 Mt3,s1

The results show that when the targeted set is half full (the
second GTS), one of the two preloaded cache lines is evicted. As we
will show, this insight may result in a side-channel attack (see § 8).

Previction Leakage Template. Our experiments resulted in
LTs that allow us to identify previction side channels in applica-
tions. Fig. 6.b illustrates an example LT. Each of the experiments
substantially refined this template. E1 dictated the general struc-
ture of five loads; E2 contributed to the set and tag affinity; E3
showed that we do not need to constrain certain tag/set values; E4
revealed the bus relationship; and E5 gave auxiliary information

Microarchitectural Leakage Templates and Their Application to Cache-Based Side Channels CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

Table 4: Example GTSes used as input to Plumber

Requests description

(1) ⟨[M]5⟩@ 1 Tag & 1 Set
(2)

〈[
Mt1,s1

]
4 Mt2,s1

〉
@ 2 Tags & 1 Set(3)

〈[
Mt1,s1

]
3

[
Mt2,s1

]
2
〉
@

· · ·
(12)

〈
Mt1,s1 Mt2,s1 Mt3,s1 Mt4,s1 Mt5,s2

〉
@ 5 Tags & 2 Sets

about previction behavior when caches are primed. E7 explains
how we derived the wildcard instructions between the loads.

6.3 Case Study: Prefetching

Based on the ARM Cortex-A53’s reference manual, prefetching
could leak the (1) number of loads, (2) relation between loaded
addresses (a.k.a. stride), (3) cache miss occurrences, and (4) end
of a page. These characteristics are not sensitive, as they can be
extracted from the cache content even in the absence of prefetching.
We aim at validating the documented behavior, and also examine
whether the undocumented behavior could leak sensitive informa-
tion. To this end, we again design five experiments (E6–E10).

E6: Prerequisites for Prefetching. First, we wanted to devise
necessary conditions for prefetching and determine the number
of prefetched cache lines (Q1). We created GTSes which generate
testcases for all possible programs consisting of (three to five)1
loads while mutating their set index:〈[

Mt1,s1
]
3
〉
$,

〈[
Mt1,s1

]
4
〉
$,

〈[
Mt1,s1

]
5
〉
$.

The main outcome of this test is an LT describing the relations
between loaded cache lines and the number of prefetched addresses.
Consider the GTS Mt1,s1 Mt1,s2 Mt1,s3 . Prefetching occurs when
s3 − s2 = s2 − s1 ≤ 𝛿𝑚𝑎𝑥 , where 𝛿𝑚𝑎𝑥 = 4 denotes the maximum
stride. Moreover, programs with 3–4 consecutive loads trigger the
prefetching of 3 additional cache lines, while streams with 5 loads
lead to 4 prefetched addresses.

For prefetching,E6 is themost time consuming case, as it consists
of 3 sets of experiment each containing 2(7×𝑥) testcases of 𝑥-loads
programs, where 𝑥 ∈ {3, 4, 5}. For the 𝑥 = 3 case we have done the
full experiment but for the two other cases we have fixed a few
bits (1 and 2 bits resp.) of the set indices to make the experiment
manageable. Overall this experiment took 4 days to complete: 0.2d
for 𝑥 = 3, 1d for 𝑥 = 4 and 2.8d for 𝑥 = 5.

E7: Intermediate Instructions. Next, we wanted to check the
effect of intervening instructions on prefetching (Q2). For this, we
have created GTSes which generate testcases containing programs
with a fixed stride and a varying number of intermediate arithmetic
instructions. For 0 < 𝑛 ≤ 100 and 0 < 𝑚 ≤ 30 we created:

(1) Mt1,s1 [A]n Mt1,s1+1 Mt2,s1+2 Mt1,s1+3
(2) Mt1,s1 Mt1,s1+1 [A]n Mt2,s1+2 Mt1,s1+3
(3) Mt1,s1 Mt1,s1+1 Mt2,s1+2 [A]n Mt1,s1+3
(4) Mt1,s1 [A]m Mt1,s1+1 [A]m Mt2,s1+2 [A]m Mt1,s1+3

We created similar GTSes for 3- and 6-load streams.
Our results showed that adding instructions between consecutive

loads could alter the number of prefetched addresses, e.g., adding 3
arithmetic instructions between two consecutive loads can increase
the number of prefetched addresses from 3 to 4. Similarly, adding
1We chose this range as 1–2 loads do not trigger prefetching, and more than 5 loads
would create too many testcases.

4 arithmetic instructions increases this number to 7 and adding 5
instructions reduces it again to 3. Thus, the prefetcher may leak
the control flow at the granularity of one instruction, a new insight
which may lead to potential side channels (see § 8).

E8: Respecting Page Boundary. We also checked whether
prefetching respects page boundaries (as stated in the manual), i.e.,
if the processor prefetches addresses past the end of a page (Q3).
To this end, we created GTSes to generate testcases containing
programs with fixed strides while gradually shifting the loaded
addresses toward the next page, i.e., up to one page (64 ∗ 64 = 4096).
For 0 < 𝑛 ≤ 5 we created:

(1)
(
Mt1,s1 Mt1,s1+𝑛 Mt1,s1+2𝑛

)
64

(2)
(
Mt1,s1 Mt1,s1+𝑛 Mt1,s1+2𝑛 Mt1,s1+3𝑛

)
64

(3)
(
Mt1,s1 Mt1,s1+𝑛 Mt1,s1+2𝑛 Mt1,s1+3𝑛 Mt1,s1+4𝑛

)
64

The results show that testcases at the end of the page had fewer
prefetched cache lines as not to cross page boundary. Testcases
with loads spread across different pages did not cause prefetching.

E9: Multiple Prefetching Sequences. We now explore how
the prefetcher handles multiple, possibly interleaving sequences.
To this end, we specify a GTS that merges three 3-load sequences
with distinct tags and sets, i.e., from different memory pages.((

Mt1,s1 Mt1,s1+1 Mt1,s1+2 : Mt2,s2 Mt2,s2+1 Mt2,s2+2
)
+

: Mt3,s3 Mt3,s3+1 Mt3,s3+2

)
+

Our results show that the prefetcher becomes active for only the
first two sequences; any additional sequence will not be prefetched.
To decide which one is first, the prefetcher picks the first sequences
of three consecutive loads (two strides). This means that multiple
independent sequences can cause interference, even if they are
on different pages (Q3). Again, this novel observation can lead to
potential side channels to leak information (§ 8).

E10: Cache Hits. Finally, we tested the influence of cache hits
on prefetching. We created GTSes, which generated and executed
prefetching testcases while one of the loaded addresses is cached:

(1) P
(
Mt1,s1

) 〈
Mt1,s1 Mt1,s1+1 Mt1,s1+2

〉
$

(2) P
(
Mt2,s2

)
Mt1,s1 Mt2,s2 Mt1,s1+1 Mt1,s1+2

The GTS (1) did not trigger prefetching for all generated test-
cases, while the GTS (2) induced a behavior similar to that of Mt1,s1
Mt1,s1+1 Mt1,s1+2. Thus, the prefetcher only monitors cache misses,
i.e., preloaded data may destroy sequences that would have other-
wise been prefetched. This is problematic if prefetched sequences
from different pages (and contexts) interfere with each other.

Prefetching Leakage Template. Fig. 6.c illustrates an LT for
a 3-load stream, allowing to identify prefetching side channels in
applications. To construct this LT: E6 identified constraints on the
cache sets; E7 derived bounds on intermediate instructions and
their effect on the prefetching behavior; E8 refined constraints on
cache sets based on page boundaries; E9 revealed the interference
between interleaving prefetching sequences; andE10 gave auxiliary
information about the effect of cache hits on prefetching.

7 MATCHING PREFETCHING LT IN BINARIES

We now demonstrate how an LT can be used to identify an instance
of the side channel it describes in a target binary.

Target Binary and Side Channel. As a proof of concept, we
re-identify a known prefetching-based side channel in OpenSSL
1.1.0g. It was first found and exploited on an Intel CPU by Shin

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Ahmad Ibrahim, Hamed Nemati, Till Schlüter, Nils Ole Tippenhauer, and Christian Rossow

et al. [40]. Data-dependent loads from a lookup table may or may
not trigger the prefetcher to load certain cache lines into the cache,
depending on the resulting memory access pattern. Therefore, the
cache state of potentially prefetched cache lines indicates the exis-
tence of relations between the accessed lookup table elements and,
by extension, the processed data. Shin et al. exploit these relations
to leak the scalar of a scalar point multiplication on an elliptic curve.
In Elliptic Curve Diffie-Hellman (ECDH), a scalar represents the
private key. The attack recovers the key incrementally. The same
computation is applied to both the target scalar and a candidate
scalar. By changing the candidate scalar such that the prefetching
behavior assimilates, both scalars assimilate as well. Even though
this vulnerability is no longer present in recent OpenSSL versions,
we still consider it a reasonable case study to demonstrate that LTs
can be used to identify real-world vulnerabilities in binaries.

Approach: Combining Static and Dynamic Analysis. Shin
et al. [40] limit the scope of their search to a specific cryptographic
operation. In contrast, our starting point is the whole OpenSSL
binary. We combine static and dynamic binary analysis techniques
to search it for instances of the prefetching LT (see Fig. 6.c). First,
we scan the binary for code sections that match the code pattern
P(𝐴) of the LT. This results in a list of candidate code sections that
potentially contain a prefetching side-channel. Second, we need
to check whether a candidate section satisfies different relations
R(𝐴,𝑏) for different input values. If this is the case, we expect
the section to show input-dependent behavior, indicating a side
channel. Not all relations can be resolved statically, especially if they
refer to addresses in instruction operands. To overcome this, we
dynamically analyze the target code to learn its concrete addresses.

Performing Static Analysis. We use asmregex [5] to statically
scan the target binary for the code pattern P(𝐴) of the prefetch-
ing LT. Asmregex searches binaries for code sections that match a
specified pattern. We extended the tool by approx. 200 LoC (code
available at [36]) to support a subset of the ARM instruction set and
added support for backreferences to the pattern language. Back-
references allow to express simple relations between instructions.
For instance, two subsequent load instructions can be required to
use the same base address register. To identify code sections match-
ing P(𝐴) in OpenSSL, we convert P(𝐴) into the asmregex pattern
shown in Appendix A. This pattern matches 429 3-load sequences
across 18 OpenSSL modules. By briefly inspecting the matching
candidate sections, we identify accesses to lookup tables in 11 of
these modules. The remaining matches are predominantly caused
by operations on complex data structures. Most importantly, we
identify the code section exploited in [40] among the candidates in
the module crypto/bn/bn_gf2m.o. Further investigation of other
matches is considered out of scope.

Performing Dynamic Analysis.We proceed with the dynamic
analysis step to check a candidate code section for input-dependent
behavior using the relationsR(𝐴,𝑏) from the LT.We create a simple
wrapper program that calls the matching library function with
varying input values. This program can be used to log all (input-
dependent) loads from the relevant lookup table SQR_tb, which
spans across three cache lines in memory. We record two different
traces for each input value. First, we use Valgrind [29] and GDB
[10] to record an access trace, a list of all loads from SQR_tb during
program execution. This trace can be used to determine the expected

Table 5: Confusion matrix, comparing prefetching behavior

classification based on relations with the actual behavior.

Relation-based classification

P0 P3 undecidable
Actual

behavior

P0 66 0 0
P3 0 6 28

prefetching behavior based on the relations R(𝐴,𝑏) from the LT.
Second, we use a Flush+Reload side channel to record a cache trace.
This trace contains the cache state of the memory lines around
SQR_tb after execution. It is captured for evaluation purposes and
indicates the actual prefetching behavior of the CPU.

In order to show that the LT accurately represents the prefetching
behavior, we recorded traces for 100 random input values to the
library function. For each input value, we determined the expected
prefetching behavior using the access trace2 and compared it with
the actual behavior using the corresponding cache trace.

Evaluation. Table 5 illustrates the classification performance.
For all 66 cases where the load instructions satisfy the relations
for P0, the cache traces show that no prefetching occurred. In six
cases, the relations for behavior P3 are satisfied. The three relevant
load instructions load data from three consecutive cache lines and
the number of instructions between the load instructions (𝑛1 and
𝑛2) is within the specified bounds. In all six cases, the cache trace
shows that prefetching of three additional cache lines occurred.
In the remaining 28 cases, the relations for none of the behaviors
from the LT are satisfied. The reason is that the distances 𝑛1 and 𝑛2
between the relevant load instructions are outside the parameter
range we tested when the LT was created. We denote these cases
as undecidable cases. We note that no misclassifications occurred.

Conclusion.We successfully demonstrated that the prefetcher
of the Cortex-A53 CPU shows input-dependent behavior for the
library function under investigation. This is the base requirement
for the differential attack in [40]. The LT helped us to re-identify this
vulnerability known from the Intel architecture in ARM binary code.
In contrast to prior work, our starting point was the whole OpenSSL
code base. For code sections that closely match the LT (i.e., they
closely correspond to code and relations that Plumber encountered
during creation of the LT), the behavior classification based on the
relations is accurate. When unknown relations occur, undecidable
cases are more likely to appear. In our example, undecidable cases
occur due to higher values of 𝑛1 and 𝑛2 than we used when creating
the LT (to keep the number of test cases within a reasonable range).
However, these cases can be detected and the analyst may use them
to design further experiments in order to refine the LT in a targeted
manner. This highlights again that a LT, which can hardly be ever
complete, can be developed in an iterative fashion.

8 NOVEL LEAKAGE PRIMITIVES

Our experiments in § 6 also helped us to identify five novel prefetch-
ing based leakage primitives. For four of these primitives, we present
a minimal code example and evaluation results of its leakage speed
2As we found in § 6.3-E10 that the prefetcher only operates on cache misses, the
load instructions relevant to the prefetcher are not necessarily the first three load
instructions in the matching code section. Therefore, we perform our analysis based
on the first three loads in each access trace that target different cache lines.

Microarchitectural Leakage Templates and Their Application to Cache-Based Side Channels CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

Table 6: Transmission and error rates of sota. covert channels.

Covert channel (Element) Speed Error rate

Liu et al. [24] (L3) 600 kbit/s 1 %
Pessl et al. [35] (DRAM) 411 kbit/s 4.11 %
Maurice et al. [26] (L3) 362 kbit/s 0 %
PRF_IS 276 kbit/s 0.05 %
PRF_OS 206 kbit/s 2.1 %
PRF_CF 76 kbit/s 0.7 %
PR_FR 73 kbit/s 1.2 %
Maurice et al. [25] (L3) 751 bit/s 5.7 %
Wu et al. [52] (memory bus) 747 bit/s 0.09 %
Semal et al. [39] (memory bus) 480 bit/s 5.46 %
Schwarz et al. [38] (DRAM) 11 bit/s 0 %

I

Figure 7: Histograms showing the execution time of the chan-

nel w.r.t. behavior (solid blue line) or not (dashed red line).

and error rate (see Table 6 and Fig. 7). We omit the evaluation of
PR_PP as it is not applicable in our covert channel setup.

8.1 Previction w/ Shared Memory (PR_FR)
Our previction-based Flush+Reload primitive PR_FR is based on our
insights fromE4 in § 6.2. Unlike traditional Flush+Reload primitives,
PR_FR allows leaking information based on a bus rather than cache
lines. The idea is to make the (observable) occurrence of previction
dependent on a secret bit (the leak target) by changing bus relations.

The primitive PR_FR in Fig. 8 leverages the strong bus depen-
dency between the consecutive load instructions in a valid previc-
tion sequence. Let the lines 8–12 be a valid previction sequence
following our LT in Fig. 6.b, i.e., x1–x3 being consecutive loads
with a “valid” bus relation, and x4/x5 arbitrary other loads from the
same set. The idea is to use a secret-dependent conditional change
to the byte offset of the first load (x1) to destroy previction (lines
1 through 6). That is, the word offset of the first address loaded
(in x1) depends on the value of the least significant bit of the data
stored in x20. According to the LT, the relation between the offsets
in the addresses in x1 and x2 determines if x1 will be previcted from
the cache. Thus, by measuring the time required to load from the
address stored in x1, the receiver can learn whether this address
resides in the cache and consequently leak the secret bit.

8.2 Previction w/o Shared Memory (PR_PP)
Based on experiment E5 in § 6.2, previction may target preloaded
memory addresses and leak information in the absence of shared
memory, e.g., through Prime+Probe. The sender code of our previc-
tion-based Prime+Probe primitive PR_PP is similar to that of PR_FR.
However, in PR_PP, the receiver first loads two memory lines into
the targeted cache set before the execution of the sender code. The
receiver then probes the lines to determine the leaked bits.

8.3 Prefetching Control-Flow Leakage (PRF_CF)
PRF_CF allows leaking the control flow of a program based on
prefetching. It is based on the results of E7 in § 6.3. Fig. 8 shows an
example code of PRF_CF. The sender code has a 4-load prefetching
sequence with a fixed stride (lines 2, 5, 8, and 15). The loads are
separated by a number of arithmetic instructions. The instruction
at line 12 is conditionally executed depending on one bit of a secret
that is stored in x20 (lines 9 through 12). According to E7, the
number of executed instructions within a prefetching sequence
affects the number of prefetched cache lines. By measuring the
time required to reload a (possibly prefetched) address x1+512, the
receiver can determine whether an instruction was executed and
consequently learn the secret bit.

8.4 Prefetching on an Interrupted Seq. (PRF_IS)
Inspired by E7, we tested the effect of intermediate memory opera-
tions on prefetching. We observed that an intermediate load from
a different page leads to prefetching of additional cache lines by
a 3-load stream. PRF_IS is based on this outcome. It also allows
leaking accesses to non-shared memory through shared pages.

As shown in Fig. 8, the sender code contains a 3-load prefetching
sequencewith a fixed stride and an interleaving load from a different
page, i.e., [x10] (lines 8 through 11). Since the processor ignores
cache hits, the number of prefetched lines will depend on whether
x10 is cached. Consequently, by measuring the time required to
load from x1+512, the receiver can determine whether x10 has been
cached and consequently learn the secret bit.

In contrast to the prefetching experiment in § 6.3, PRF_IS checks
how the prefetcher’s behavior changes when it observes interleaved
loads from different pages (i.e., across page boundaries). Note that
in PRF_IS all predicted addresses are within bounds of the same
page (in accordance with E7).

8.5 Prefetching and Outstanding Seq. (PRF_OS)
PRF_OS exploits competing prefetching sequences to leak accesses
to non-shared memory through shared pages. In other words, it
allows leaking secrets through Flush+Reload even when secret-
dependent memory accesses are from non-shared memory. PRF_OS
is based on the outcome of experiments E9 and E10 in § 6.3.

As shown in Fig. 8, the sender has three interleaving 3-load
streams with fixed strides (lines 8, 11, 14; lines 9, 12, 15; and lines 10,
13, 16). These streams are preceded by a load from the address x3,
whose execution depends on one bit of a secret stored in x20 (lines
1 through 4). According to E9, memory addresses are prefetched for
sequences whose strides are detected first. Additionally, according
to E9, the processor ignores cache hits when detecting prefetch-
ing sequences. Consequently, depending on whether x3 is cached,

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Ahmad Ibrahim, Hamed Nemati, Till Schlüter, Nils Ole Tippenhauer, and Christian Rossow

Figure 8: Examples for leakage primitives. ldtmmeasures the ldr execution time for the given address, T is the threshold.

prefetching would be triggered for either the first or the second two
prefetching sequences. By measuring the time required to load from
x1+512, the receiver can determine whether prefetching occurred
for the third stream and consequently learn the secret bit.

9 RELATEDWORK

Reverse-engineering cache behavior. Prior work on reverse-
engineering the cache behavior mainly focused on replacement poli-
cies. In particular, existing approaches aim at reverse-engineering
known permutation-based replacement policies [1, 2], e.g., FIFO
and PLRU, as well as new adaptive policies [7, 17]. Some approaches
pursued ad-hoc means [1, 2], others relied on a novel register au-
tomata learning technique [7] or compared hardware output against
software-simulated caches [41, 50]. However, these methods are
either not practical [7], or not general and do not guarantee correct-
ness [50]. We rather design a framework to better understand un-
documented behavior of hardware features such as previction [28],
eviction policies and the cache prefetcher and specify their leakage
templates. Plumber can also be used to facilitate reverse engineer-
ing of microarchitectural components like the branch predictor.

Side-channel attacks. Over the past decades, researchers have
devised various means to exfiltrate secrets from computing de-
vices based on electromagnetic [9], power-based [20], and timing-
based [14, 34, 45, 53] side channels. Timing-based side channels can
be exploited purely in software, thus also remotely. Most timing
attacks exploit timing differences introduced by processor caches.
Cache-based attacks proposed in the literature include but are not
limited to Prime+Probe [34, 44], Flush+Reload [53], Evict+Time [32],
and their variants [14, 15]. Such attacks target implementations of
cryptographic algorithms [14, 19, 21, 32], and more generic attack
vectors such as keylogging [15]. Closely related to previction are
CacheOut [48] and RIDL [47] which use cache eviction to leak se-
cret information. Similarly, CacheBleed [54] exploits cache bank
conflicts to break, resp., RSA and AES.

Plumber vs. Scam-V Plumber’s goal is to facilitate under-
standing microarchitectural behavior, e.g., triggers and effects, via
easily constructed queries. The approach of Scam-V [28] (and simi-
lar tools, e.g., [11, 51]) is complementary to that of Plumber. This
relation is better expressed as a two-step approach: first, Scam-V

or similar tools are used to detect a possible channel by specify-
ing the monitored component, e.g., the cache state, which often is
dictated by the vulnerability discovery tool (e.g., port contention
in [11], or execution time in [51]). Whenever the tool discovers
yet-unsupported types of side channels on monitored components,
Plumber can be used to learn the correlation between (attacker-
controlled) inputs and the channel (see Fig. 3). The challenging
aspect of such an integration is the generalization of concrete code
examples, which can be provided by the analyst.

Scam-V finds a channel by executing randomly generated program-
input pairs. Using an SMT solver to generate inputs requires careful
engineering of the queries sent to the solver, otherwise generated
inputs and thus counterexamples will be too similar which makes
them not suitable for statistical analysis. Conversely, Plumber
makes input generation more efficient by using GTS and allows
learning the correlation between inputs and the channel.

10 DISCUSSION

We proceed to discuss the utility of Plumber in other use cases and
its limitations. In particular, we show that Plumber can facilitate
reverse engineering of microarchitectural features. We show this by
applying Plumber to reverse engineer the structure of the Cortex-
A53’s branch predictor. In Appendix B we discuss the possibility of
applying Plumber to reverse engineer cache slice mapping.

Reverse Engineering with Plumber: Branch Predictor. The
only available information on the Cortex-A53 branch predictor unit
is that it is a global type that uses branch history registers (BHRs)
and a 3072-entry pattern history table (PHT) [8]. Each entry of
the PHT contains a 2-bit saturating counter to predicate a branch
outcome. The PHT is accessed via a BHR that stores the history
of the recently executed branches (see Fig. 9.a). The goal is to find
the size and the number of BHRs, the structure of the PHT, and the
mechanism used to map branches to this table. Our experiment is
inspired by the work of Uzelac et al. [46] to reverse engineer the
branch predictor of Intel’s Pentium M CPU.

Since the size of a pattern history table should be a power of
2 [33], we assumed that Cortex-A53’s branch predictor should be
structured as three tables with 1024 entries, each connected to a
unique BHR of size 10 bits. Therefore, to ensure that every branch

Microarchitectural Leakage Templates and Their Application to Cache-Based Side Channels CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

1023

0

T NT T T

n bits
Indexing
Function

Branch Address

Initial Conditional Branches

Setup Conditional Branch

8 Conditional Branches 8 Conditional Branches

Setup1 Conditional Branches Setup2 Conditional Branches

Non-branch Instructions

Spy Conditional Branch

Instructions

P2
Not Taken

P1
Taken

P1 P2

P2P1

(a) Branch Predictor (b) Experiment Structure
T: Taken; NT: Not Taken

Prediction

Figure 9: Branch predictor experiment.

instruction is mapped to the same BHR and PHT, we additionally
assumed that the branch address modulo 3 is used to compute the
index to access BHR and PHT. Fig. 9.b shows the general struc-
ture of the experiment (adapted from [46]) we have conducted to
validate our conjectures. In this experiment the initial conditional
branches are used to force the branch predictor to mispredict the
setup conditional branch. Non-conditional instructions are dummy
instructions (e.g. nop) used to control the distance between the
setup 1/2 conditional branches and our spy conditional branch. To
ensure that all branches will be mapped to the same BHR and PHT
we pad the distances between all effective branch instructions with
nops, i.e., making their address congruent modulo 3.

To determine the size of the BHR and PHT we use a spy branch
with controllable outcome pattern. The branch is always taken if
reached through path 𝑃1 and not taken when reached through 𝑃2.
Thus, when the number of BHR entries for P1 and P2 are equal,
the spy branch will be mispredicted. Misprediction also happens if
the spy branch’s history is not present in the PHT. Since the spy
branch is not the only mispredicted branch, we observe (utilizing
the performance monitor unit (PMU)) ≈100% misprediction rate
when the spy branch is mispredicted and ≈60% otherwise.

Uzelac et al. [46] proposed an experiment to find the branch
address bits which affect the BHR (when PHT is not full). In their
experiment the observed misprediction rate is also either 60% or
100%. Based on this experiment, we utilize Plumber to discover the
PHT size for Cortex-A53. To do so, we generate a GTS to fuzz the
number of initial conditional branches and the distance between
the spy branch and the setup 1 and 2 branches. The GTS is formed
of the following blocks (see Fig. 9.b):[
Bc1,T,12 Sc2,T N

]
X (Initial conditional branches)

Sc1,bool Bc1,F,53 (Setup conditional branch)[
Bc2,T,12 Sc2,T N

]
8 Bc2,T,12 Sc2,T (Setup 1)[

Bc2,F,12 Sc2,T N
]
8 Bc2,F,12 Sc2,T (Setup 2)

[N]Y (Non-branch instructions)
Bc1,T,12 Sc2,T (Spy conditional branch)
For each tested combination of 𝑋 and 𝑌 , the concatenation of the
above blocks is executed 10,240 times, while alternating the value
of bool every 16 executions. This is done by using the power macro
as follows: [[bool = T]16 [bool = F]16]40.

For any number 𝑋 of initial conditional branches less than 1024
we got (almost) the same result as Uzelac (i.e. a misprediction rate

between 60% and 100%). However, when the PHT is full, the mis-
prediction rate is always 100%. The results of these experiments
support our conjecture on the size of PHT and BHR.

Plumber’s limitations. Given the complexity of the microar-
chitectural components and the number of side-channel attacks, the
current implementation of Plumber mainly targets cache-based
side channels and the implementation of some components is lim-
ited to ARM (ARM-v7 and -v8) and RISC-V architectures. However,
Plumber’s design is generic and not constrained to cache-related
channels and its implementation can be ported to other architec-
tures such as x86. The main challenge of such an adaptation is
porting Plumber’s inspection module, which is currently deployed
in ARM TrustZone. Moving to a new platform, e.g. Intel or AMD,
would require replacing the inspection module by an alternative
probing mechanism such as Flush+Reload [53] or Flush+Flush [14].

11 CONCLUDING REMARKS

We introduced the concept of Leakage Templates to abstractly de-
scribe specific side channels, and determine relations between input
parameters that when satisfied can trigger specific microarchitec-
tural behavior. LTs allow to automate identifying code snippets
that are vulnerable to side-channel attacks in application binaries
for certain target architectures. As such, they enable attackers and
analysts to identify potential side channels in applications.

As details on microarchitectural aspects such as cache eviction
policy, prefetching and previction are scarce, derivation of LTs is
challenging. Expressive specifications for testcases are required, a
large set of inputs has to be explored, and low noise measurement
setups are essential. Also, techniques to automate discovery of
relations between code, data, and leakage behavior are needed.

To address those challenges, we proposed Plumber, which lever-
ages instruction fuzzing, instructions’ operand mutation and statisti-
cal analysis to explore underspecified behavior of microarchitec-
tural optimisations. Plumber’s high-level goal is to facilitate the
understanding of microarchitectural behavior. Therefore, we expect
that the user has some prior knowledge regarding the existence of
undocumented behavior or potential information leakage.

We showed the utility of templates produced by Plumber by
identifying five novel side-channel attack primitives (for an ARM
Cortex-A53 core) and used Plumber to reverse engineer the A53’s
branch predictor structure. Also, we showed how LTs can be used
to identify an instance of the specified side channel in a target
binary. We plan to extend Plumber further, e.g., to reverse engineer
port contention behavior by setting the measured state to be the
execution time of various types of instructions. A generated request
would contain a number of instructions of the same type. Then,
the analysis would only compare execution times and return the
relation between executed and measured instructions. One can also
use execution time measurements to extract the operand/runtime
correlation of a multi-clock-cycle multiplier.

ACKNOWLEDGEMENT

This work was supported in part by the German Federal Ministry
of Education and Research (BMBF) through funding for the CISPA-
Stanford Center for Cybersecurity (FKZ: 13N1S0762).

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Ahmad Ibrahim, Hamed Nemati, Till Schlüter, Nils Ole Tippenhauer, and Christian Rossow

REFERENCES

[1] Andreas Abel and Jan Reineke. Measurement-based modeling of the cache
replacement policy. RTAS ’13, page 65–74, USA, 2013. IEEE Computer Society.

[2] Andreas Abel and Jan Reineke. Reverse engineering of cache replacement poli-
cies in intel microprocessors and their evaluation. In 2014 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS), pages
141–142, 2014.

[3] Onur Acıiçmez and Çetin Kaya Koç. Trace-driven Cache Attacks on AES (Short
Paper). In Proceedings of the 8th International Conference on Information and
Communications Security, ICICS, pages 112–121. Springer-Verlag, 2006.

[4] Gorka Irazoqui Apecechea, Thomas Eisenbarth, and Berk Sunar. Systematic
reverse engineering of cache slice selection in intel processors. IACR Cryptol.
ePrint Arch., page 690, 2015.

[5] asmregex. https://github.com/Usibre/asmregex/.
[6] Sarani Bhattacharya, Chester Rebeiro, and Debdeep Mukhopadhyay. Hardware

prefetchers leak: A revisit of SVF for cache-timing attacks. In 45th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO 2012, Workshops
Proceedings, Vancouver, BC, Canada, December 1-5, 2012, pages 17–23, 2012.

[7] Guillem Rueda Cebollero. Learning cache replacement policies using register
automata. 2013.

[8] ARM Cortex-A53 mpcore processor, technical reference manual. https://
developer.arm.com/documentation/ddi0500/j/.

[9] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic analy-
sis: Concrete results. CHES ’01, page 251–261, Berlin, Heidelberg, 2001. Springer-
Verlag.

[10] GDB developers. GDB: The GNU Project Debugger. https://www.gnu.org/
software/gdb.

[11] Ben Gras, Cristiano Giuffrida, Michael Kurth, Herbert Bos, and Kaveh Razavi.
Absynthe: Automatic blackbox side-channel synthesis on commodity microar-
chitectures. In 27th Annual Network and Distributed System Security Symposium,
NDSS 2020, San Diego, California, USA, February 23-26, 2020, 2020.

[12] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and Stefan Man-
gard. Prefetch side-channel attacks: Bypassing smap and kernel aslr. In Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’16, page 368–379, New York, NY, USA, 2016. Association for Com-
puting Machinery.

[13] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. Rowhammer.js: A
remote software-induced fault attack in javascript. In Detection of Intrusions and
Malware, and Vulnerability Assessment - 13th International Conference, DIMVA
2016, San Sebastián, Spain, July 7-8, 2016, Proceedings, pages 300–321, 2016.

[14] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard.
Flush+Flush: a fast and stealthy cache attack. In International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment, pages 279–299.
Springer, 2016.

[15] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache template attacks:
Automating attacks on inclusive last-level caches. In 24th USENIX Security
Symposium (USENIX Security 15), pages 897–912, Washington, D.C., August 2015.
USENIX Association.

[16] R. Guanciale, H. Nemati, C. Baumann, and M. Dam. Cache storage channels:
Alias-driven attacks and verified countermeasures. In 2016 IEEE Symposium on
Security and Privacy (SP), pages 38–55, 2016.

[17] Aamer Jaleel, Kevin B. Theobald, Simon C. Steely, and Joel Emer. High
performance cache replacement using re-reference interval prediction (rrip).
38(3):60–71, June 2010.

[18] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,
Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, et al. Spectre
attacks: Exploiting speculative execution. In 2019 IEEE Symposium on Security
and Privacy (SP), pages 1–19. IEEE, 2019.

[19] Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and
other systems. In Proceedings of the 16th Annual International Cryptology Confer-
ence on Advances in Cryptology, CRYPTO ’96, page 104–113, Berlin, Heidelberg,
1996. Springer-Verlag.

[20] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Proceedings of the 19th Annual International Cryptology Conference on Advances in
Cryptology, CRYPTO ’99, page 388–397, Berlin, Heidelberg, 1999. Springer-Verlag.

[21] Nate Lawson. Side-channel attacks on cryptographic software. IEEE Security &
Privacy, 7(6):65–68, 2009.

[22] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and Stefan
Mangard. Armageddon: Cache attacks on mobile devices. In 25th USENIX
Security Symposium, USENIX Security 16, Austin, TX, USA, August 10-12, 2016,
pages 549–564, 2016.

[23] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg.
Meltdown. arXiv preprint arXiv:1801.01207, 2018.

[24] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. Last-Level
Cache Side-Channel Attacks are Practical. In S&P, 2015.

[25] Clémentine Maurice, Christoph Neumann, Olivier Heen, and Aurélien Francillon.
C5: Cross-Cores Cache Covert Channel. In DIMVA, 2015.

[26] Clémentine Maurice, ManuelWeber, Michael Schwarz, Lukas Giner, Daniel Gruss,
Carlo Alberto Boano, Stefan Mangard, and Kay Römer. Hello from the Other
Side: SSH over Robust Cache Covert Channels in the Cloud. In NDSS, 2017.

[27] Daniel Moghimi, Moritz Lipp, Berk Sunar, and Michael Schwarz. Medusa: Mi-
croarchitectural data leakage via automated attack synthesis. In Srdjan Capkun
and Franziska Roesner, editors, 29th USENIX Security Symposium, USENIX Security
2020, August 12-14, 2020, pages 1427–1444. USENIX Association, 2020.

[28] Hamed Nemati, Pablo Buiras, Andreas Lindner, Roberto Guanciale, and Swen
Jacobs. Validation of abstract side-channel models for computer architectures. In
Shuvendu K. Lahiri and Chao Wang, editors, Computer Aided Verification, pages
225–248, Cham, 2020. Springer International Publishing.

[29] Nicholas Nethercote and Julian Seward. Valgrind: A framework for heavyweight
dynamic binary instrumentation. SIGPLAN Not., 42(6):89–100, Jun 2007.

[30] Michael Neve and Jean-Pierre Seifert. Advances on access-driven cache attacks
on AES. In Proceedings of the 13th International Conference on Selected Areas in
Cryptography, SAC’06, pages 147–162. Springer-Verlag, 2007.

[31] Shirin Nilizadeh, Yannic Noller, and Corina S. Pasareanu. Diffuzz: Differential
fuzzing for side-channel analysis. In Software Engineering 2020, Fachtagung des
GI-Fachbereichs Softwaretechnik, 24.-28. Februar 2020, Innsbruck, Austria, pages
125–126, 2020.

[32] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and countermea-
sures: The case of AES. In Proceedings of the 2006 The Cryptographers’ Track
at the RSA Conference on Topics in Cryptology, CT-RSA’06, page 1–20, Berlin,
Heidelberg, 2006. Springer-Verlag.

[33] Emre Özer, Alastair Reid, and Stuart Biles. Low-cost techniques for reducing
branch context pollution in a soft realtime embedded multithreaded processor.
In 19th Symposium on Computer Architecture and High Performance Computing
(SBAC-PAD 2007), 24-27 October 2007, Gramado, RS, Brazil, pages 37–44, 2007.

[34] Colin Percival. Cache missing for fun and profit. In In Proc. of BSDCan 2005, 2005.
[35] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan

Mangard. DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks. In
USENIX Security Symposium, 2016.

[36] Plumber. https://github.com/scy-phy/plumber/.
[37] Hany Ragab, Alyssa Milburn, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.

CrossTalk: Speculative data leaks across cores are real. In S&P, May 2021. Intel
Bounty Reward.

[38] Michael Schwarz, Clémentine Maurice, Daniel Gruss, and Stefan Mangard. Fan-
tastic Timers and Where to Find Them: High-Resolution Microarchitectural
Attacks in JavaScript. In FC, 2017.

[39] Benjamin Semal, Konstantinos Markantonakis, Keith Mayes, and Jan Kalbantner.
One covert channel to rule them all: A practical approach to data exfiltration in
the cloud. 2020.

[40] Youngjoo Shin, Hyung Chan Kim, Dokeun Kwon, Ji Hoon Jeong, and Junbeom
Hur. Unveiling hardware-based data prefetcher, a hidden source of information
leakage. CCS ’18, page 131–145, New York, NY, USA, 2018. Association for
Computing Machinery.

[41] Armando Solar-Lezama. The sketching approach to program synthesis. In
Zhenjiang Hu, editor, Programming Languages and Systems, pages 4–13, Berlin,
Heidelberg, 2009. Springer Berlin Heidelberg.

[42] M. Caner Tol, Koray Yurtseven, Berk Gülmezoglu, and Berk Sunar. Fastspec:
Scalable generation and detection of spectre gadgets using neural embeddings.
CoRR, abs/2006.14147, 2020.

[43] Caroline Trippel, Daniel Lustig, and Margaret Martonosi. Checkmate: Automated
synthesis of hardware exploits and security litmus tests. In Proceedings of the
51st Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-51,
page 947–960. IEEE Press, 2018.

[44] Eran Tromer, Dag Arne Osvik, and Adi Shamir. Efficient cache attacks on AES,
and countermeasures. J. Cryptol., 23(2):37–71, January 2010.

[45] Yukiyasu Tsunoo, Teruo Saito, Tomoyasu Suzaki, andMaki Shigeri. Cryptanalysis
of DES implemented on computers with cache. In Proceedings of the Workshop on
Cryptographic Hardware and Embedded Systems, CHES’03, LNCS, pages 62–76.
Springer, 2003.

[46] Vladimir Uzelac and Aleksandar Milenkovic. Experiment flows and microbench-
marks for reverse engineering of branch predictor structures. In IEEE International
Symposium on Performance Analysis of Systems and Software, ISPASS 2009, April
26-28, 2009, Boston, Massachusetts, USA, Proceedings, pages 207–217, 2009.

[47] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo, Giorgi
Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. RIDL: Rogue
in-flight data load. In S&P, May 2019.

[48] Stephan van Schaik, Marina Minkin, Andrew Kwong, Daniel Genkin, and Yuval
Yarom. Cacheout: Leaking data on intel cpus via cache evictions, 2020.

[49] Jose Rodrigo Sanchez Vicarte, Pradyumna Shome, Nandeeka Nayak, Caroline
Trippel, Adam Morrison, David Kohlbrenner, and Christopher W Fletcher. Open-
ing pandora’s box: A systematic study of new ways microarchitecture can leak
private data. 2021.

[50] Pepe Vila, Pierre Ganty, Marco Guarnieri, and Boris Köpf. Cachequery: Learning
replacement policies from hardware caches. PLDI 2020, page 519–532, New York,
NY, USA, 2020. Association for Computing Machinery.

https://github.com/Usibre/asmregex/
https://developer.arm.com/documentation/ddi0500/j/
https://developer.arm.com/documentation/ddi0500/j/
https://www.gnu.org/software/gdb
https://www.gnu.org/software/gdb
https://github.com/scy-phy/plumber/

Microarchitectural Leakage Templates and Their Application to Cache-Based Side Channels CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

Figure 10: An asmregex pattern to identify instances of the

prefetching LT

[51] Daniel Weber, Ahmad Ibrahim, Hamed Nemati, Michael Schwarz, and Christian
Rossow. Osiris: Automated discovery of microarchitectural side channels. CoRR,
abs/2106.03470, 2021.

[52] Zhenyu Wu, Zhang Xu, and Haining Wang. Whispers in the Hyper-space: High-
speed Covert Channel Attacks in the Cloud. In USENIX Security Symposium,
2012.

[53] Yuval Yarom and Katrina Falkner. Flush+Reload: a high resolution, low noise,
L3 cache side-channel attack. In Proceedings of the 23rd USENIX Conference on
Security Symposium, pages 719–732, 2014.

[54] Yuval Yarom, Daniel Genkin, and Nadia Heninger. Cachebleed: a timing attack
on openssl constant-time RSA. J. Cryptogr. Eng., 7(2):99–112, 2017.

[55] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. Cross-
VM Side Channels and Their Use to Extract Private Keys. In Proceedings of the
Conference on Computer and Communications Security, CCS, pages 305–316. ACM,
2012.

A ASMREGEX PATTERN FOR THE PREFECH

LEAKAGE TEMPLATE

Fig. 10 shows the asmregex pattern that is used to identify instances
of the prefetching LT in binaries. It specifies a sequence of three
load instructions with a maximum distance of 5 other instructions
between them.

Each of the load instructions (ARMLD) is further required to fulfill
the following properties:

• Operand 0 (AG) is a general purpose register (e.g., x0).
• Operand 1 (QR) is a square bracket, followed by a general
purpose register (e.g., [x1)

• Operand 2 (RO) is a general purpose register, optionally fol-
lowed by a closing square bracket (e.g. x2 or x2])

Therefore, this pattern line matches both of the following instruc-
tions:

• ldr x0, [x1, x2]
• ldr x0, [x1, x2, lsl#3]

In addition, all three load instruction pattern lines contain a back-
reference to constrain operand 1. In particular, the pattern requires
that operand 1 is the same for all three load instructions. The back-
reference is initialized in line 2 and is used as a constraint in lines
4 and 6. This constraint is added as a heuristic to ensure that all

three loads load from addresses that are close to each other, which
is a mandatory requirement to trigger prefetching.

B REVERSE ENGINEERING CACHE SLICE

SELECTION

To improve the performance of the last-level cache, modern pro-
cessors divide it into multiple slices that can be accessed in parallel
by different cores. Intel CPUs use a deterministic hash function to
select cache slices. A reverse engineering approach for cache slice
selection of Intel CPUs based on Prime+Probe is suggested in [4].

The task is done in three steps: (1) 𝑚 data blocks residing in
the same slice are identified; (2) equations for slice mapping are
generated; (3) the used hash function is recovered. In what follows
we show how these steps can be done using Plumber. Since this
task is similar to the eviction example from § 6.1, the classifier clas-
sifies the output based on the existence of data block(s) in memory.
This can be achieved through probing and timing, or by simply
inspecting the content of the cache.

Step 1. An address is pre-loaded followed by 𝑏 loads to the same
cache set causing eviction of this line. Then one of the loads is
removed and the execution is repeated. If eviction no longer occurs,
it indicates that the removed load address maps to the same slice
as the pre-loaded address. This step is repeated until𝑚 data blocks
are identified. This experiment can be done by running the GTS:��P (

Mt1,s1 (Mtx,s1 · · · Mtx+b,s1)
)
Mt1,s1

��1000
where each experiment is repeated 1000 times.

Step 2. In this step more data blocks that reside in the same slice
are generated. This is done similar to step one. The only difference
is that the 𝑚 generated data blocks are used to prime the cache
(instead of one block). This step is repeated until a large number
of memory blocks that map to the same slice is identified. This
experiment is represented by the following GTS:��P (

Mt1,s1 · · · Mtm,s1 (Mtx,s1 · · · Mtx+b,s1)
)
Mt1,s1 · · · Mtm,s1

��1000
where each experiment is repeated 1000 times. The found blocks
are used to generate a system of equations/matrix. This can be
implemented within Plumber’s analyzer function.

Step 3. Based on the generated system of equations, the hash
function for the slice mapping can be recovered. This is done by
modelling this function as a concatenation of binary linear func-
tions. These functions are then determined based on the matrix
representing the system equations. This step can also be imple-
mented in Plumber’s analyzer function, given the individual bits
of each physical address provided by the Classifier.

	Abstract
	1 Introduction
	2 Background
	2.1 Information Flow Analysis Tools – Scam-V
	2.2 ARMv8 internal memory subsystem

	3 Leakage Templates
	3.1 Goal and Motivation for Leakage Templates
	3.2 Motivating Example I: Caching
	3.3 Motivating Example II: Previction
	3.4 Definition of Leakage Templates

	4 Plumber
	4.1 Abstract Framework Design
	4.2 Definition of GTS
	4.3 Specification Language

	5 Design & Implementation
	5.1 Frontend
	5.2 Backend

	6 Application
	6.1 Case Study: Eviction
	6.2 Case Study: Previction
	6.3 Case Study: Prefetching

	7 Matching Prefetching LT in Binaries
	8 Novel Leakage Primitives
	8.1 Previction w/ Shared Memory (PR_FR)
	8.2 Previction w/o Shared Memory (PR_PP)
	8.3 Prefetching Control-Flow Leakage (PRF_CF)
	8.4 Prefetching on an Interrupted Seq. (PRF_IS)
	8.5 Prefetching and Outstanding Seq. (PRF_OS)

	9 Related Work
	10 Discussion
	11 Concluding remarks
	References
	A Asmregex pattern for the prefech leakage template
	B Reverse Engineering Cache Slice Selection

