
Composing Secure Compilers
Matthis Kruse

CISPA Helmholtz Center for Information Security
Germany

matthis.kruse@cispa.de

Marco Patrignani
CISPA Helmholtz Center for Information Security

Germany
marco.patrignani@cispa.de

1 Introduction1

Compilers translate programs from a source to a target pro-2
gramming language. A secure compiler preserves source3
level properties at the target level when interoperating with4
arbitrary program contexts (which are considered attackers).5
A recent theory of secure compilation is Robust Compila-6
tion (RC), which is a collection of criteria for secure compil-7
ers [1, 2, 13]. Informally, a compiler is RC if a source program8
and its compiled counterpart, linked with an arbitrary source9
and target context respectively, satisfy that property.10

Even though there exist robust compilers, they are far from11
practical. Real-world compilers consist of several smaller12
compilers that are composed with each other in different13
ways. An example would be any compiler based on the LLVM14
toolchain [11], whose optimisation pipeline consists of many15
passes, which one can view as independent compilers com-16
posed with each others. Also, any lowering steps, such as17
from a frontend language to LLVM IR and subsequently to as-18
sembly, are compilers. To the best of our knowledge, current19
work on robust compilation does not discuss the preserva-20
tion of source-level properties for compilers such as the ones21
above.22
This paper investigates how different compiler compo-23

sitions preserve different classes of hyperproperties, given24
that these compilers attain some form of RC. We examine25
whether these compositions preserve at least the set intersec-26
tion of classes. We then show that the order of optimisations27
in a RC pipeline does not matter for property preservation.28
Finally, we conclude with a discussion on what happens if29
some compilers in the pipeline do not attain RC for some30
classes of interest.31

2 Compositionality32

In this work, programs p are elements of P, the set of partial33
programs of a given programming language. A compiler is a34
partial function J•KS→T from programs p of some source lan-35
guage S to programs p of some target language T. Compilers36
satisfying Definition 2.1 below attain RC [2], the intuition37
there is that if the programmer makes certain assumptions38
on what a program does, these assumptions also hold for the39
compiled program. In that definition, indicate hyperprop-40
erties [7] with Π and classes of hyperproperties (i.e., sets41
of Π) as C. A program 𝑝 robustly satisfies class C (written42
𝑝 ⊨𝑅 C) if its behaviour is included in an element of C when43
linked with an arbitrary program context. Similarly, for some44
Π ∈ C, we write 𝑝 ⊨𝑅 Π whenever 𝑝 robustly satisfies Π.45

Definition 2.1 (Robust Compilation). For a given class C,
a compiler from languages S to T robustly preserves C (⊢
J•KS→T : C) iff

∀Π ∈ C,∀p ∈ P, p ⊨𝑅 Π =⇒ JpKS→T ⊨𝑅 Π

In practice, (robust) compilers are composed of numerous 46
others. Therefore, we now investigate their compositionality. 47

2.1 Simple Compositionality 48

We first consider function composition, i.e., plugging the re- 49
sult of one compiler into another one. Such pipelines happen 50
when optimising source code (so, at the level of a suitable 51
intermediate representation), but also on a higher level: Con- 52
sider as an example a typical TypeScript compilation pipeline. 53
First, the compiler translates TypeScript code to JavaScript, 54
which a part of V8 eventually compiles the code just-in-time 55
to assembly. 56

Definition 2.2 (Sequential Composition of Compilers). Given 57
two compilers J•KS→I and J•KI→T, their sequential composi- 58
tion is J•KS→T = JJ•KS→I KI→T. 59

Assuming that two compilers preserve certain classes, 60
their sequential composition preserves the least upper bound, 61
i.e., the set intersection of those classes: 62

Lemma 2.3 (Sequential Composition with RC). Given ⊢ 63
J•KS→I : C1 and ⊢ J•KI→T : C2, then ⊢ J•KS→I→T : C1 ∩ C2. 64

Using an inductive argument, Lemma 2.3 generalises to 65
𝑛 RC compilers, each preserving one of 𝑛 classes. To do 66
so, one has to generalise the composition of two RC com- 67
pilers to a set of 𝑛 ones. A real-world example for such 68
deeply nested compositions is the TypeScript compilation 69
mentioned above. When compiling JavaScript, V8 translates 70
the code to Ignition Bytecode. At runtime, the Ignition inter- 71
preter does some performance measurements and particular 72
parts of the code are eventually compiled to machine code. 73

We now consider a compiler that invokes two other com- 74
pilers. Java andKotlin are popular languages used in industry 75
that are one example of such a composition and they both 76
compile to JVM Bytecode. 77

Definition 2.4 (Upper Composition). Given two compilers 78
J•KS→T and J•KI→T, their upper composition is 79

J•KS+I→T = 𝜆𝑝.

{
JpKS→T if 𝑝 ∈ P
JpKI→T if 𝑝 ∈ P

PriSC’22, January 22nd, 2022, Philadelphia, PA, USA Matthis Kruse and Marco Patrignani

We can derive a similar result to Lemma 2.3 here, too:80

Lemma 2.5 (Upper Composition with RC). Given ⊢ J•KS→T :81
C1 and ⊢ J•KI→T : C2, then ⊢ J•KS+I→T : C1 ∩ C2.82

Lemma 2.5 also generalises inductively to a number of83
compilers and classes. A practical example of why that might84
be useful is the Java Virtual Machine with its JVM Bytecode,85
which has numerous frontends: Java,Kotlin, Scala, andClojure,86
to list a few examples.87

With the same idea, we define a dual composition that goes88
from a single source language to multiple target languages.89
dune is a build system which can be used to compile OCaml90
code to both assembly and Caml Bytecode.91

Definition 2.6 (Lower Composition). Given two compilers92
J•KS→T and J•KS→I , their lower composition is J•KS→I+T.93

Lemma 2.7 (Lower Composition with RC). Given ⊢ J•KS→T :94
C1 and ⊢ J•KS→I : C2, then ⊢ J•KS→I+T : C1 ∩ C2.95

As before, this can be generalized to an arbitrary number96
of compilers, which also has a connection to the real-world,97
given by the diverse set of assembly language dialects.98

The following free theorem (Lemma 2.8) is a direct conse-99
quence of Lemma 2.3 where the involved compilers’ input100
and output are both partial programs in the same language.101
Given that some compiler passes attain RC, they can be com-102
bined in an arbitrary order and the result preserves the same103
least upper bound. A compiler’s pipeline ordering is difficult104
and often hand-tuned. The lemma allows us to not care about105
the particular order of optimisations regarding their robust106
property preservation. So, the compiler developer is free to107
swap passes around.108

Lemma2.8 (Swappable). Given ⊢ J•KT→T
(1) : C1 and ⊢ J•KT→T

(2) :109

C2, then ⊢ JJ•KT→T
(2) KT→T

(1) : C1 ∩ C2 and ⊢ JJ•KT→T
(1) KT→T

(2) :110
C1 ∩ C2.111

However, in practice, compiler passes are not necessar-112
ily attaining RC. Consider any stereotypical compilation113
pipeline. Programmers want properties at the source level114
to be preserved at the target level. Thus, if source programs115
robustly satisfy some property, so should their compiled116
counterparts. Unfortunately, it might not be necessary for117
compilation passes from one intermediate representation118
to the other to preserve properties robustly. This also has119
a security justification since compiler intermediate repre-120
sentations are not where typical attackers reside (i.e., the121
target language). So, there might be some stronger property122
a pass has to satisfy in order to render the whole compilation123
pipeline secure: this is what we study next.124

2.2 Advanced Compositionality125

Consider the following C code snippet that performs an126
infinite loop if an invalid pointer is given:127

in t something (in t ∗ p t r) { 128
while (! p t r) ; 129
return ∗ p t r ; 130

} 131

Compiling such code with optimisations turned on by using 132
the command g++ -O2 and the g++ compiler version 11.2 133
yields an x86-program where the potentially infinite loop 134
has been removed: 135

something (in t ∗) : 136
mov eax , DWORD PTR [r d i] 137
re t 138

We now have an attack to violate memory safety: call the 139
function with an invalid pointer and the program derefer- 140
ences it. 141

To prevent such issues we can use instrumentation passes 142
that enforce memory safety by adding dynamic checks to the 143
program and crashing appropriately when a violation is de- 144
tected. There exist several memory-safety instrumentations, 145
both for target [8, 15–19] and source languages [3, 12, 14]. 146
We now sketch how to extend our work with instrumen- 147

tations, which enforce specific classes of hyperproperties. 148

Definition 2.9 (Secure Instrumentation for Preserving C). 149
A secure instrumentation with respect to some class C is a 150
pass that enforces hyperproperties described by some other 151
class C′ without violating C-satisfying programs. We denote 152
such a secure instrumentation as: J•KS→T ≻C C′. 153

Using this, we firstlywant to inspect a compilation pipeline 154
frommemory-safe Rust to optimised, insecure C, to memory- 155
safe CheckedC. Intuitively, we want to be able to state that 156
this pipeline preserves memory safety, despite the fact that 157
the pass to C does not. 158

Example 2.10 (Enforcement may preserve...). Given classes 159
C1,C2 (resp. no property and memory safety, in our Rust to 160
CheckedC example) and compilers J•KS→I ,J•KI→T, if: 161

• ⊢ J•KS→I : C1 162
• J•KI→T ≻C1 C2 163

Then, ⊢ J•KS→I→T : C1 ∪ C2. 164

Dually, running a compiler that does not respect memory- 165
safety after a memory-safety instrumentation nullifies its 166
preservation: 167

Example 2.11 (...but, order matters!). Given classes C1,C2 168
and compilers J•KS→I ,J•KI→T, if: 169

• J•KS→I ≻C1 C2 170
• ⊢ J•KI→T : C1 171

Then, ⊢ J•KS→I→T : C1. 172

Beyond this general theory, we also intend to study the 173
compositionality aspects of concrete hyperproperties, such 174
as Speculative Non-Interference [10], memory safety [4, 5, 9], 175
and cryptographic constant-time [6]. 176

https://godbolt.org/z/bnaGnPe36

Composing Secure Compilers PriSC’22, January 22nd, 2022, Philadelphia, PA, USA

References177
[1] Carmine Abate, Roberto Blanco, S, tefan Ciobâcă, AdrienDurier, Deepak178

Garg, Cătălin Hrit,cu, Marco Patrignani, Éric Tanter, and Jérémy179
Thibault. 2020. Trace-Relating Compiler Correctness and Secure Com-180
pilation. In Programming Languages and Systems, Peter Müller (Ed.).181
Springer International Publishing, Cham, 1–28.182

[2] Carmine Abate, Roberto Blanco, Deepak Garg, Catalin Hritcu, Marco183
Patrignani, and Jérémy Thibault. 2019. Journey Beyond Full Abstrac-184
tion: Exploring Robust Property Preservation for Secure Compilation.185
In 2019 IEEE 32nd Computer Security Foundations Symposium (CSF).186
256–25615. https://doi.org/10.1109/CSF.2019.00025187

[3] Periklis Akritidis, Manuel Costa, Miguel Castro, and Steven Hand. 2009.188
Baggy Bounds Checking: An Efficient and Backwards-Compatible De-189
fense against out-of-Bounds Errors. In Proceedings of the 18th Confer-190
ence on USENIX Security Symposium (Montreal, Canada) (SSYM’09).191
USENIX Association, USA, 51–66.192

[4] Arthur Azevedo de Amorim, Maxime Dénès, Nick Giannarakis, Cătălin193
Hriţcu, Benjamin C. Pierce, Antal Spector-Zabusky, and Andrew Tol-194
mach. 2015. Micro-Policies: Formally Verified, Tag-Based Security195
Monitors. In 2015 IEEE Symposium on Security and Privacy (2015 IEEE196
Symposium on Security and Privacy). San Jose, United States, 813 – 830.197
https://doi.org/10.1109/SP.2015.55198

[5] Arthur Azevedo de Amorim, Cătălin HriŢcu, and Benjamin C. Pierce.199
2018. TheMeaning ofMemory Safety. In Principles of Security and Trust,200
Lujo Bauer and Ralf Küsters (Eds.). Springer International Publishing,201
Cham, 79–105.202

[6] Gilles Barthe, Benjamin Grégoire, and Vincent Laporte. 2018. Se-203
cure Compilation of Side-Channel Countermeasures: The Case of204
Cryptographic “Constant-Time”. In CSF 2018 - 31st IEEE Computer205
Security Foundations Symposium. Oxford, United Kingdom. https:206
//hal.archives-ouvertes.fr/hal-01959560207

[7] Michael R. Clarkson and Fred B. Schneider. 2008. Hyperproperties.208
In Proceedings of the 21st IEEE Computer Security Foundations Sympo-209
sium, CSF 2008, Pittsburgh, Pennsylvania, USA, 23-25 June 2008. IEEE210
Computer Society, 51–65. https://doi.org/10.1109/CSF.2008.7211

[8] Vítor Bujés Ubatuba De Araújo, Álvaro Freitas Moreira, and Rodrigo212
Machado. 2016. Týr: A Dependent Type System for Spatial Memory213
Safety in LLVM. Electronic Notes in Theoretical Computer Science 324214
(2016), 3–13. https://doi.org/10.1016/j.entcs.2016.09.003 WEIT 2015,215
the Third Workshop-School on Theoretical Computer Science.216

[9] Udit Dhawan, Catalin Hritcu, Raphael Rubin, Nikos Vasilakis, Silviu217
Chiricescu, Jonathan M. Smith, Thomas F. Knight, Benjamin C. Pierce,218
and Andre DeHon. 2015. Architectural Support for Software-Defined219
Metadata Processing. SIGARCH Comput. Archit. News 43, 1 (March220
2015), 487–502. https://doi.org/10.1145/2786763.2694383221

[10] Marco Guarnieri, Boris Köpf, José F. Morales, Jan Reineke, and Andrés222
Sánchez. 2019. SPECTECTOR: Principled Detection of Speculative223
Information Flows. arXiv:1812.08639 [cs.CR]224

[11] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Frame-225
work for Lifelong Program Analysis and Transformation. San Jose,226
CA, USA, 75–88.227

[12] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve228
Zdancewic. 2010. CETS: Compiler Enforced Temporal Safety for C. In229
Proceedings of the 2010 International Symposium on Memory Manage-230
ment (Toronto, Ontario, Canada) (ISMM ’10). Association for Comput-231
ing Machinery, New York, NY, USA, 31–40. https://doi.org/10.1145/232
1806651.1806657233

[13] Marco Patrignani and Deepak Garg. 2021. Robustly Safe Compilation,234
an Efficient Form of Secure Compilation. ACM Trans. Program. Lang.235
Syst. 43, 1 (2021), 1:1–1:41. https://doi.org/10.1145/3436809236

[14] Manuel Rigger, Roland Schatz, Matthias Grimmer, and Hanspeter237
Mössenböck. 2017. Lenient Execution of C on a Java Virtual Ma-238
chine: Or: How I Learned to Stop Worrying and Run the Code. In239

Proceedings of the 14th International Conference on Managed Lan- 240
guages and Runtimes (Prague, Czech Republic) (ManLang 2017). As- 241
sociation for Computing Machinery, New York, NY, USA, 35–47. 242
https://doi.org/10.1145/3132190.3132204 243

[15] Michael Sammler, Rodolphe Lepigre, Robbert Krebbers, Kayvan 244
Memarian, Derek Dreyer, and Deepak Garg. 2021. RefinedC: Automat- 245
ing the Foundational Verification of C Code with Refined Ownership 246
Types. In Proceedings of the 42nd ACM SIGPLAN International Confer- 247
ence on Programming Language Design and Implementation (Virtual, 248
Canada) (PLDI 2021). Association for ComputingMachinery, New York, 249
NY, USA, 158–174. https://doi.org/10.1145/3453483.3454036 250

[16] David Tarditi, Archibald Samuel Elliott, Andrew Ruef, and Michael 251
Hicks. 2018. Checked C: Making C Safe by Extension. In 252
IEEE Cybersecurity Development Conference 2018 (SecDev). IEEE, 253
53–60. https://www.microsoft.com/en-us/research/publication/ 254
checkedc-making-c-safe-by-extension/ 255

[17] Erik van der Kouwe, Vinod Nigade, and Cristiano Giuffrida. 2017. 256
DangSan: Scalable Use-after-Free Detection. In Proceedings of the 257
Twelfth European Conference on Computer Systems (Belgrade, Serbia) 258
(EuroSys ’17). Association for Computing Machinery, New York, NY, 259
USA, 405–419. https://doi.org/10.1145/3064176.3064211 260

[18] Marco Vassena and Marco Patrignani. 2019. Memory Safety Preserva- 261
tion for WebAssembly. arXiv:1910.09586 [cs.PL] 262

[19] Robert N.M. Watson, Jonathan Woodruff, Peter G. Neumann, Si- 263
mon W. Moore, Jonathan Anderson, David Chisnall, Nirav Dave, 264
Brooks Davis, Khilan Gudka, Ben Laurie, Steven J. Murdoch, Robert 265
Norton, Michael Roe, Stacey Son, and Munraj Vadera. 2015. CHERI: 266
A Hybrid Capability-System Architecture for Scalable Software Com- 267
partmentalization. In 2015 IEEE Symposium on Security and Privacy. 268
20–37. https://doi.org/10.1109/SP.2015.9 269

https://doi.org/10.1109/CSF.2019.00025
https://doi.org/10.1109/SP.2015.55
https://hal.archives-ouvertes.fr/hal-01959560
https://hal.archives-ouvertes.fr/hal-01959560
https://hal.archives-ouvertes.fr/hal-01959560
https://doi.org/10.1109/CSF.2008.7
https://doi.org/10.1016/j.entcs.2016.09.003
https://doi.org/10.1145/2786763.2694383
http://arxiv.org/abs/1812.08639
https://doi.org/10.1145/1806651.1806657
https://doi.org/10.1145/1806651.1806657
https://doi.org/10.1145/1806651.1806657
https://doi.org/10.1145/3436809
https://doi.org/10.1145/3132190.3132204
https://doi.org/10.1145/3453483.3454036
https://www.microsoft.com/en-us/research/publication/checkedc-making-c-safe-by-extension/
https://www.microsoft.com/en-us/research/publication/checkedc-making-c-safe-by-extension/
https://www.microsoft.com/en-us/research/publication/checkedc-making-c-safe-by-extension/
https://doi.org/10.1145/3064176.3064211
http://arxiv.org/abs/1910.09586
https://doi.org/10.1109/SP.2015.9

	1 Introduction
	2 Compositionality
	2.1 Simple Compositionality
	2.2 Advanced Compositionality

	References

