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1 Introduction1

Compilers translate programs from a source to a target pro-2
gramming language. A secure compiler preserves source3
level properties at the target level when interoperating with4
arbitrary program contexts (which are considered attackers).5
A recent theory of secure compilation is Robust Compila-6
tion (RC), which is a collection of criteria for secure compil-7
ers [1, 2, 13]. Informally, a compiler is RC if a source program8
and its compiled counterpart, linked with an arbitrary source9
and target context respectively, satisfy that property.10

Even though there exist robust compilers, they are far from11
practical. Real-world compilers consist of several smaller12
compilers that are composed with each other in different13
ways. An example would be any compiler based on the LLVM14
toolchain [11], whose optimisation pipeline consists of many15
passes, which one can view as independent compilers com-16
posed with each others. Also, any lowering steps, such as17
from a frontend language to LLVM IR and subsequently to as-18
sembly, are compilers. To the best of our knowledge, current19
work on robust compilation does not discuss the preserva-20
tion of source-level properties for compilers such as the ones21
above.22
This paper investigates how different compiler compo-23

sitions preserve different classes of hyperproperties, given24
that these compilers attain some form of RC. We examine25
whether these compositions preserve at least the set intersec-26
tion of classes. We then show that the order of optimisations27
in a RC pipeline does not matter for property preservation.28
Finally, we conclude with a discussion on what happens if29
some compilers in the pipeline do not attain RC for some30
classes of interest.31

2 Compositionality32

In this work, programs p are elements of P, the set of partial33
programs of a given programming language. A compiler is a34
partial function J•KS→T from programs p of some source lan-35
guage S to programs p of some target language T. Compilers36
satisfying Definition 2.1 below attain RC [2], the intuition37
there is that if the programmer makes certain assumptions38
on what a program does, these assumptions also hold for the39
compiled program. In that definition, indicate hyperprop-40
erties [7] with Π and classes of hyperproperties (i.e., sets41
of Π) as C. A program 𝑝 robustly satisfies class C (written42
𝑝 ⊨𝑅 C) if its behaviour is included in an element of C when43
linked with an arbitrary program context. Similarly, for some44
Π ∈ C, we write 𝑝 ⊨𝑅 Π whenever 𝑝 robustly satisfies Π.45

Definition 2.1 (Robust Compilation). For a given class C,
a compiler from languages S to T robustly preserves C (⊢
J•KS→T : C) iff

∀Π ∈ C,∀p ∈ P, p ⊨𝑅 Π =⇒ JpKS→T ⊨𝑅 Π

In practice, (robust) compilers are composed of numerous 46
others. Therefore, we now investigate their compositionality. 47

2.1 Simple Compositionality 48

We first consider function composition, i.e., plugging the re- 49
sult of one compiler into another one. Such pipelines happen 50
when optimising source code (so, at the level of a suitable 51
intermediate representation), but also on a higher level: Con- 52
sider as an example a typical TypeScript compilation pipeline. 53
First, the compiler translates TypeScript code to JavaScript, 54
which a part of V8 eventually compiles the code just-in-time 55
to assembly. 56

Definition 2.2 (Sequential Composition of Compilers). Given 57
two compilers J•KS→I and J•KI→T, their sequential composi- 58
tion is J•KS→T = JJ•KS→I KI→T. 59

Assuming that two compilers preserve certain classes, 60
their sequential composition preserves the least upper bound, 61
i.e., the set intersection of those classes: 62

Lemma 2.3 (Sequential Composition with RC). Given ⊢ 63
J•KS→I : C1 and ⊢ J•KI→T : C2, then ⊢ J•KS→I→T : C1 ∩ C2. 64

Using an inductive argument, Lemma 2.3 generalises to 65
𝑛 RC compilers, each preserving one of 𝑛 classes. To do 66
so, one has to generalise the composition of two RC com- 67
pilers to a set of 𝑛 ones. A real-world example for such 68
deeply nested compositions is the TypeScript compilation 69
mentioned above. When compiling JavaScript, V8 translates 70
the code to Ignition Bytecode. At runtime, the Ignition inter- 71
preter does some performance measurements and particular 72
parts of the code are eventually compiled to machine code. 73

We now consider a compiler that invokes two other com- 74
pilers. Java andKotlin are popular languages used in industry 75
that are one example of such a composition and they both 76
compile to JVM Bytecode. 77

Definition 2.4 (Upper Composition). Given two compilers 78
J•KS→T and J•KI→T, their upper composition is 79

J•KS+I→T = 𝜆𝑝.

{
JpKS→T if 𝑝 ∈ P
JpKI→T if 𝑝 ∈ P
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We can derive a similar result to Lemma 2.3 here, too:80

Lemma 2.5 (Upper Composition with RC). Given ⊢ J•KS→T :81
C1 and ⊢ J•KI→T : C2, then ⊢ J•KS+I→T : C1 ∩ C2.82

Lemma 2.5 also generalises inductively to a number of83
compilers and classes. A practical example of why that might84
be useful is the Java Virtual Machine with its JVM Bytecode,85
which has numerous frontends: Java,Kotlin, Scala, andClojure,86
to list a few examples.87

With the same idea, we define a dual composition that goes88
from a single source language to multiple target languages.89
dune is a build system which can be used to compile OCaml90
code to both assembly and Caml Bytecode.91

Definition 2.6 (Lower Composition). Given two compilers92
J•KS→T and J•KS→I , their lower composition is J•KS→I+T.93

Lemma 2.7 (Lower Composition with RC). Given ⊢ J•KS→T :94
C1 and ⊢ J•KS→I : C2, then ⊢ J•KS→I+T : C1 ∩ C2.95

As before, this can be generalized to an arbitrary number96
of compilers, which also has a connection to the real-world,97
given by the diverse set of assembly language dialects.98

The following free theorem (Lemma 2.8) is a direct conse-99
quence of Lemma 2.3 where the involved compilers’ input100
and output are both partial programs in the same language.101
Given that some compiler passes attain RC, they can be com-102
bined in an arbitrary order and the result preserves the same103
least upper bound. A compiler’s pipeline ordering is difficult104
and often hand-tuned. The lemma allows us to not care about105
the particular order of optimisations regarding their robust106
property preservation. So, the compiler developer is free to107
swap passes around.108

Lemma2.8 (Swappable). Given ⊢ J•KT→T
(1) : C1 and ⊢ J•KT→T

(2) :109

C2, then ⊢ JJ•KT→T
(2) KT→T

(1) : C1 ∩ C2 and ⊢ JJ•KT→T
(1) KT→T

(2) :110
C1 ∩ C2.111

However, in practice, compiler passes are not necessar-112
ily attaining RC. Consider any stereotypical compilation113
pipeline. Programmers want properties at the source level114
to be preserved at the target level. Thus, if source programs115
robustly satisfy some property, so should their compiled116
counterparts. Unfortunately, it might not be necessary for117
compilation passes from one intermediate representation118
to the other to preserve properties robustly. This also has119
a security justification since compiler intermediate repre-120
sentations are not where typical attackers reside (i.e., the121
target language). So, there might be some stronger property122
a pass has to satisfy in order to render the whole compilation123
pipeline secure: this is what we study next.124

2.2 Advanced Compositionality125

Consider the following C code snippet that performs an126
infinite loop if an invalid pointer is given:127

in t something ( in t ∗ p t r ) { 128
while ( ! p t r ) ; 129
return ∗ p t r ; 130

} 131

Compiling such code with optimisations turned on by using 132
the command g++ -O2 and the g++ compiler version 11.2 133
yields an x86-program where the potentially infinite loop 134
has been removed: 135

something ( in t ∗ ) : 136
mov eax , DWORD PTR [ r d i ] 137
re t 138

We now have an attack to violate memory safety: call the 139
function with an invalid pointer and the program derefer- 140
ences it. 141

To prevent such issues we can use instrumentation passes 142
that enforce memory safety by adding dynamic checks to the 143
program and crashing appropriately when a violation is de- 144
tected. There exist several memory-safety instrumentations, 145
both for target [8, 15–19] and source languages [3, 12, 14]. 146
We now sketch how to extend our work with instrumen- 147

tations, which enforce specific classes of hyperproperties. 148

Definition 2.9 (Secure Instrumentation for Preserving C). 149
A secure instrumentation with respect to some class C is a 150
pass that enforces hyperproperties described by some other 151
class C′ without violating C-satisfying programs. We denote 152
such a secure instrumentation as: J•KS→T ≻C C′. 153

Using this, we firstlywant to inspect a compilation pipeline 154
frommemory-safe Rust to optimised, insecure C, to memory- 155
safe CheckedC. Intuitively, we want to be able to state that 156
this pipeline preserves memory safety, despite the fact that 157
the pass to C does not. 158

Example 2.10 (Enforcement may preserve...). Given classes 159
C1,C2 (resp. no property and memory safety, in our Rust to 160
CheckedC example) and compilers J•KS→I ,J•KI→T, if: 161

• ⊢ J•KS→I : C1 162
• J•KI→T ≻C1 C2 163

Then, ⊢ J•KS→I→T : C1 ∪ C2. 164

Dually, running a compiler that does not respect memory- 165
safety after a memory-safety instrumentation nullifies its 166
preservation: 167

Example 2.11 (...but, order matters!). Given classes C1,C2 168
and compilers J•KS→I ,J•KI→T, if: 169

• J•KS→I ≻C1 C2 170
• ⊢ J•KI→T : C1 171

Then, ⊢ J•KS→I→T : C1. 172

Beyond this general theory, we also intend to study the 173
compositionality aspects of concrete hyperproperties, such 174
as Speculative Non-Interference [10], memory safety [4, 5, 9], 175
and cryptographic constant-time [6]. 176

https://godbolt.org/z/bnaGnPe36
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