
Sample Compression Schemes for Balls in Graphs
Jérémie Chalopin !

Aix-Marseille Université, Université de Toulon, CNRS, LIS, Marseille, France

Victor Chepoi !

Aix-Marseille Université, Université de Toulon, CNRS, LIS, Marseille, France

Fionn Mc Inerney !

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Sébastien Ratel !

Aix-Marseille Université, Université de Toulon, CNRS, LIS, Marseille, France

Yann Vaxès !

Aix-Marseille Université, Université de Toulon, CNRS, LIS, Marseille, France

Abstract
One of the open problems in machine learning is whether any set-family of VC-dimension d admits
a sample compression scheme of size O(d). In this paper, we study this problem for balls in graphs.
For balls of arbitrary radius r, we design proper sample compression schemes of size 4 for interval
graphs, of size 6 for trees of cycles, and of size 22 for cube-free median graphs. We also design
approximate sample compression schemes of size 2 for balls of δ-hyperbolic graphs.
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1 Introduction

Sample compression schemes were introduced by Littlestone and Warmuth [22], and have been
vastly studied in the literature due to their importance in computational machine learning.
Roughly, a sample compression scheme consists of a compressor α and a reconstructor β,
and the aim is to compress data as much as possible, such that data coherent with the
original data can be reconstructed from the compressed data. For balls in graphs, sample
compression schemes of size k can be defined as follows. Given a ball B = Br(x) of a graph
G = (V, E), a realizable sample for B is a signed subset X = (X+, X−) of V such that X+ is
included in B, and X− is disjoint from B. Given a realizable sample X, X is compressed to
a subsample α(X) ⊆ X of size at most k. The reconstructor β takes α(X) as an input and
returns β(α(X)), a subset B′ of vertices of G that is consistent with X, i.e., X+ is included
in B′, and X− is disjoint from B′. If B′ is always a ball of G, then the compression scheme
is proper. If X+ = B and X− = V \ B, then β(α(X)) must coincide with B. Note that a
proper sample compression scheme of size k for the family of all balls of G yields a sample
compression scheme of size k for any subfamily of balls (e.g., for balls of a fixed radius r),
but this scheme is no longer proper. Sample compression schemes are labeled if β knows the
labels of the elements of α(X), and are unlabeled otherwise (abbreviated LSCS and USCS,
resp.). The Vapnik-Chervonenkis dimension (VC-dimension) of a set system was introduced
by Vapnik and Chervonenkis [27] as a complexity measure of set systems. VC-dimension is
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31:2 Sample Compression Schemes for Balls in Graphs

central in PAC-learning, and is important in combinatorics and discrete geometry. Floyd and
Warmuth [17] asked whether any set-family of VC-dimension d has a sample compression
scheme of size O(d). This remains one of the oldest open problems in machine learning.

In this paper, we consider the family of balls in graphs, which is as general as the sample
compression conjecture. Indeed, the sample compression conjecture for set families in general
is equivalent to the same conjecture restricted to the family of balls of radius 1 on split graphs
in which samples only contain vertices in the clique, and the centers of the unit balls are in the
stable set. Balls in graphs also constitute an important topic in graph theory, and moreover,
their VC-dimension has often been considered in the literature (see, e.g., [4, 7, 10, 16, 26]).

The VC-dimension of the balls of radius r of a graph not containing Kn+1 as a minor is at
most n [10]. This result was extended to arbitrary balls in [7]. Hence, the VC-dimension of
balls of planar graphs is at most 4 (2 for trees and 3 for trees of cycles), and the VC-dimension
of balls of a chordal graph G is at most its clique number ω(G). The VC-dimension of balls
of interval graphs was shown to be at most 2 in [16]. Finally, the VC-dimension of balls of
cube-free median graphs is unknown, but we can prove that it is at least 4.

Our results. In this paper, we design proper sample compression schemes of small size for
the family of balls of a graph G. We investigate this problem for different graph classes. For
trees of cycles, we exhibit proper LSCS of size 6 for all balls. Then, we design proper LSCS of
size 22 for all balls of cube-free median graphs. We also construct proper LSCS of size 4 for
all balls of interval graphs. Finally, we define (ρ, µ)-approximate proper sample compression
schemes, and design (2δ, 3δ)-approximate LSCS of size 2 for δ-hyperbolic graphs.

Related work. Floyd and Warmuth [17] proved that, for any concept class of VC-dimension
d, any LSCS has size at least d

5 , and that, for some maximum classes of VC-dimension
d, they have size at least d. Pálvölgyi and Tardos [25] proved that some concept classes
of VC-dimension 2 do not admit USCS of size at most 2. On the positive side, it was
shown by Moran and Yehudayoff [24] that LSCS of size O(2d) exist (their schemes are not
proper). For particular concept classes, better results are known. Floyd and Warmuth [17]
designed LSCS of size d for regions in arrangements of central hyperplanes in Rd. Ben-David
and Litman [5] obtained USCS of size d for regions in arrangements of affine hyperplanes
in Rd. Helmbold, Sloan, and Warmuth [19] (implicitly) constructed USCS of size d for
intersection-closed concept classes. Moran and Warmuth [23] designed proper LSCS of size d

for ample classes. Chalopin et al. [9] designed USCS of size d for maximum families. They
also combinatorially characterized USCS for ample classes via the existence of unique sink
orientations of their graphs. However, the existence of such orientations is open. Chepoi,
Knauer, and Philibert [12] extended the result of [23], and designed proper LSCS of size d for
concept classes defined by Complexes of Oriented Matroids (COMs). COMs were introduced
in [3] as a natural common generalization of ample classes and Oriented Matroids [6].

2 Definitions

Concept classes and sample compression schemes. Let V be a non-empty finite set. Let
C ⊆ 2V be a family of subsets (also called a concept class) of V . The VC-dimension VC-dim(C)
of C is the size of a largest set Y ⊆ V shattered by C, i.e., such that {C ∩ Y : C ∈ C} = 2Y .
In machine learning, a (labeled) sample is a set X = {(x1, y1), . . . , (xm, ym)}, where xi ∈ V

and yi ∈ {−1, +1}. To X is associated the unlabeled sample X = {x1, . . . , xm}. A sample
X is realizable by a concept C if yi = +1 if xi ∈ C, and yi = −1 if xi /∈ C. A sample X is
realizable by a concept class C if X is realizable by some C ∈ C.
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We adopt the language of sign maps and sign vectors from [6]. Let L be a set of sign vectors,
i.e., maps from V to {±1, 0} := {−1, 0, +1}. The elements of L are also called covectors.
For X ∈ L, let X+ := {v ∈ V : Xv = +1} and X− := {v ∈ V : Xv = −1}. X = X− ∪ X+

is called the support of X, and its complement X0 := V \ X = {v ∈ V : Xv = 0} the zero
set of X. Since X0 = V \ (X− ∪ X+), we will view any sample X as X− ∪ X+. Let ⪯ be
the product ordering on {±1, 0}V relative to the ordering of signs with 0 ⪯ −1 and 0 ⪯ +1.
Any concept class C ⊆ 2V can be viewed as a set of sign vectors of {±1}V : for any C ∈ C we
consider the sign vector X(C), where Xv(C) = +1 if v ∈ C and Xv(C) = −1 if v /∈ C. For
simplicity, we will consider C as a family of sets and as a set of {±1}-vectors. We now define
sample compression schemes. This way of presenting them seems novel. From the definition,
it follows that a sample X is just a {±1, 0}-sign vector. Given a concept class C ⊆ 2V and
C ∈ C, the set of samples realizable by C consists of all covectors X ∈ {±1, 0}V such that
X ⪯ C. We denote by ↓ C the set of all samples realizable by C.

A proper labeled sample compression scheme (proper LSCS) of size k for a concept
class C ⊆ {±1}V is defined by a compressor α : {±1, 0}V → {±1, 0}V and a reconstructor
β : {±1, 0}V → C such that, for any realizable sample X ∈↓ C, α(X) ⪯ X ⪯ β(α(X)) and
|α(X)| ≤ k, where ⪯ is the order between sign vectors defined above, and α(X) is the support
of the subsample of the sign vector X. Hence, α(X) is a signed vector with a support of size
at most k such that α(X) ⪯ X, and β(α(X)) is a concept C of C viewed as a sign vector.
It suffices to define the map α only on ↓ C, and the map β only on Im(α) := α(↓ C). The
condition X ⪯ β(α(X)) is equivalent to the condition β(α(X))|X = X, which means that
the restriction of the concept β(α(X)) to the support of X coincides with the sign vector X.
Proper unlabeled sample compression schemes (proper USCS) are defined analogously, only
that α(X) is not a signed vector, but a subset of size at most k of the support of X. For
graphs, any preprocessing on the input graph G, such as a labeling or an embedding of G, is
permitted and known to both the compressor and the reconstructor. As in, e.g., [22, 24],
information, like representing the support as a vector with coordinates, is also permitted,
and when we use such information, we refer to α and β as vectors rather than maps. Lastly,
in our schemes, the reconstructor returns the empty set when X+ = ∅, and thus, one may
consider that our schemes are not proper. We note that in all of the LSCS for the family
of balls of arbitrary radius we exhibit in this paper, we could simply choose an ordering on
the vertices of the graph G = (V, E), and put into α(X) a single vertex z ∈ X− such that
its successor z′ in the ordering does not belong to X−. Then, the reconstructor returns a
ball B0(z′) that does not intersect X = X− by the choice of z. However, to avoid additional
complications for such degenerate cases, we make use of the empty set.

Graphs. Every graph G = (V, E) in this paper is simple and connected. The distance
d(u, v) := dG(u, v) between two vertices u and v of a graph G is the length of a (u, v)-shortest
path. The interval I(u, v) is the set of vertices contained in (u, v)-shortest paths. A set
S is gated if, for any vertex x ∈ V , there is a vertex x′ ∈ S (the gate of x, with x′ = x if
x ∈ S) such that x′ ∈ I(x, y) for any y ∈ S. A median of a triplet u, v, w is any vertex in
I(u, v) ∩ I(v, w) ∩ I(w, u). A graph G is median [1] if any triplet of vertices u, v, w has a
unique median. For any vertex x ∈ V and any integer r ≥ 0, the ball of radius r centered
at x is the set Br(x) := {v ∈ V : d(v, x) ≤ r}. The unit ball B1(x) is usually denoted by
N [x] and called the closed neighborhood of x. The sphere of radius r centered at x is the
set Sr(x) = {z ∈ V : d(z, x) = r}. Let also cBr(u) = V \ Br(u). Two balls Br1(x) and
Br2(y) are distinct if Br1(x) and Br2(y) are distinct as sets. We denote by B(G) the set of
all distinct balls of G, and by Br(G) the set of all distinct balls of radius r of G. For a subset
Y ⊆ V , we call diam(Y ) = max{d(u, v) : u, v ∈ Y } the diameter of Y , and we call any pair
u, v ∈ Y such that d(u, v) = diam(Y ) a diametral pair of Y .

MFCS 2022
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3 Trees of cycles

A tree of cycles (or cactus) is a graph in which each block (2-connected component) is a cycle
or an edge. We can design proper labeled (unlabeled, resp.) sample compression schemes of
size 2 for balls of (metric, resp.) trees, and balls of radius r of trees [8]. Indeed, for balls in
metric trees, α(X) is generally a diametral pair u, v of X+ and we return the ball of radius
d(u, v)/2 centered at the middle point of the (u, v)-shortest path. This does not work for
balls of radius r in trees, for which we cleverly encode a center.

We now describe the main result of this section: a proper labeled sample compression
scheme of size 6 for balls of trees of cycles. Let G be a tree of cycles. For a vertex v of G

that is not a cut vertex, let C(v) be the unique cycle containing v. If v is a cut vertex or
a degree-one vertex, then set C(v) = {v}. Let T (G) be the tree whose vertices are the cut
vertices and the blocks of G, and where a cut vertex v is adjacent to a block B of G if and
only if v ∈ B. For any two vertices u, v of G, let C(u, v) denote the union of all cycles and/or
edges on the unique path of T (G) between C(u) and C(v). Note that C(u, v) is a path of
cycles, and that C(u, v) is gated. Let X be a realizable sample for B(G), and {u+, v+} a
diametral pair of X+. The next lemma shows that the center of a ball realizing X can always
be found in C(u+, v+).

▶ Lemma 1. Let Br(x) be a ball realizing X, x′ be the gate of x in C(u+, v+), and r′ =
r − d(x, x′). Then, the ball Br′(x′) also realizes X.

In what follows, let Br(x) be a ball realizing X with x in C(u+, v+) (it exists by Lemma 1).
Let C be a cycle of C(u+, v+) containing x. The main idea is to encode a region of C(u+, v+)
where the center x of Br(x) is located (this region may be C), the center, and the radius
of Br(x) by a few vertices of X. The diametral pair {u+, v+} is in α(X). If X contains a
vertex w ̸= u+, v+ whose gate in C(u+, v+) is in C, then C is easily detected by including w

in α(X). In this case, it remains to find the position of x in C and to compute the radius r.
This is done by using 2 or 3 vertices of X. Otherwise, if the gates in C(u+, v+) of all vertices
w ∈ X \ {u+, v+} are outside C, then we show that Br(x) is determined by 4 vertices in X.

The partitioning of X. For a vertex y ∈ C(u+, v+), set ry := max{d(y, u+), d(y, v+)} and
r∗

y := max{d(y, w) : w ∈ X+}. Clearly, Br∗
y
(y) is the smallest ball centered at y containing

X+. For any vertex z of G, we denote by z′ its gate in C(u+, v+). Let u∗ and v∗ be the
gates of u+ and v+ in C. We partition X and X− as follows. Let Xu (X−

u , resp.) consist
of all w ∈ X (w ∈ X−, resp.) whose gate w′ in C(u+, v+) belongs to C(u+, u∗). The sets
Xv and X−

v are defined analogously. Let XC (X−
C , resp.) consist of all the vertices w ∈ X

(w ∈ X−, resp.) whose gates w′ in C(u+, v+) belong to the cycle C. Note that some of these
sets can be empty and that X−

u ⊆ Xu, X−
v ⊆ Xv, and X−

C ⊆ XC . Let u0 be the cut vertex
of C(u+, v+) farthest from u∗, and such that, for any vertex w ∈ Xu, its gate w′ ∈ C(u+, v+)
is not in C(u0, u∗). Analogously, we define the cut vertex v0 with respect to v∗ and Xv. If
u∗ = u+ (v∗ = v+, resp.), then set u0 = u∗ = u+ (v0 = v∗ = v+, resp.).

First, suppose that XC = ∅. Let w1 be a vertex of Xu closest to u0, and z1 a vertex of
X−

u closest to x. Note that w1 always exists as u+ is in Xu, and that z1 exists if and only if
X−

u is non-empty. Similarly, we define the vertices w2 and z2 with respect to Xv and X−
v .

See Fig. 1 for an illustration. The next lemmas show how to compute Br(x) in this case.

▶ Lemma 2. For y ∈ C(u0, v0), if there exists a vertex w ∈ X+ \ Bry (y), then w′ ∈ C(y).
Consequently, if XC = ∅, then, for any y ∈ C(u0, v0), we have X+ ⊂ Bry

(y) and ry = r∗
y.
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v+C v∗

X−u

u+

w′1

z1

x

X−v

v0

w2

w′2

z2

X−C

u∗u0

w1

Xu Xv

Figure 1 The vertices and sets used in the proper labeled sample compression scheme for trees of
cycles. The ball Br(x) is represented in red. The cycles outside C(u+, v+) are represented as paths.

▶ Lemma 3. If X− ̸= ∅ and XC = ∅, then Br∗
y
(y) ∩ X− = ∅ for any vertex y ∈ C(u0, v0)

such that Br∗
y
(y) ∩ {z1, z2} = ∅.

Now, suppose that XC ̸= ∅. By the definition of r∗
x, Br∗

x
(x) also realizes X. Let w be a

vertex of X whose gate w′ in C(u+, v+) is in C. If, for every y ∈ C, Br∗
y
(y) realizes X, then

Br∗
w′

(w′) realizes X, and, in this case, let s ∈ X+ be such that d(w′, s) = r∗
w′ . Otherwise, we

can find two adjacent vertices x and y of C such that Br∗
x
(x) realizes X, but Br∗

y
(y) does

not. This implies that there is a vertex z ∈ X− with z ∈ Br∗
y
(y) \ Br∗

x
(x). In this case, let

s, t ∈ X+ be such that r∗
y = d(y, s) and r∗

x = d(x, t), with t = s whenever r∗
y = r∗

x + 1. Let s′,
t′, and z′ be the respective gates of s, t, and z in C. If s = t (s ̸= t, resp.), then let P ′ be the
path of C between s′ and z′ (t′, resp.) containing the edge xy. See Fig. 2 for an illustration.

▶ Lemma 4. For adjacent vertices x, y ∈ C, and the corresponding vertices z ∈ X− and
s ∈ X+, one of the following conditions holds:
(1) r∗

y = r∗
x + 1, d(x, z) = d(y, z) + 1, and d(x, s) = d(y, s) − 1;

(2) r∗
y = r∗

x + 1, d(x, z) = d(y, z), and d(x, s) = d(y, s) − 1;
(3) r∗

y = r∗
x, d(x, z) = d(y, z) + 1, and d(x, s) = d(y, s);

(4) r∗
y = r∗

x, d(x, z) = d(y, z) + 1, and d(x, s) = d(y, s) − 1.

Without the knowledge of r∗
x and r∗

y, the relationships between d(x, z) and d(y, z), and
between d(x, s) and d(y, s) do not allow us to distinguish between the cases (1) and (4). This
can be done by additionally using the vertex t ∈ X+ defined above. Indeed, in Case (1) we
have t = s, while in Case (4) we have t ̸= s and d(x, t) = d(y, t) + 1. We continue with the
following simple lemma for paths (where, for each edge xy in the path, x is to the left of y):

▶ Lemma 5. Let Q be a graph which is a path with end-vertices a ̸= b, and let d′ be its
distance function. Then, Q contains a unique edge x0y0 such that d′(x0, b)−d′(x0, a) ∈ {1, 2}.

(1) (2) (3) (4)

x

y

s′

t′z′

z

s

t

y

x x

y

s′

s

s′

s

z′

z

z′

z

z′ z s′ s

t′

t

x

y

P ′ P ′ P ′ P ′

Figure 2 Definition and positioning of s, t, and z in the four cases of Lemma 4.

We use Lemma 5 to find adjacent vertices x0 and y0 of C and an integer r∗
x that satisfy a

condition of Lemma 4. Let P ′ be the path between z′ and s′ (or between s′ and t′) containing
the edge xy as defined above. Let P be the path of G obtained by joining the shortest (s′, s)-
and (z, z′)-paths ((s, s′)- and (t′, t)-paths, resp.) to P ′. Let d′ be the distance function on P .

MFCS 2022
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▶ Lemma 6. Let P be the (s, z)-path or (s, t)-path of G defined above. Let x0y0 be the unique
edge of P satisfying the conclusion of Lemma 5. Then, x0 = x and y0 = y. Moreover,
(1) if P is an (s, z)-path, d′(x0, z) = d(x0, z), and d′(y0, s) = d(y0, s), then r∗

x = d(y0, s) − 1;
(2) if P is an (s, z)-path, d′(x0, z) = d(x0, z) + 1, and d′(y0, s) = d(y0, s), then r∗

x =
d(y0, s) − 1;

(3) if P is an (s, z)-path, d′(x0, z) = d(x0, z), and d′(y0, s) = d(y0, s) + 1, then r∗
x = d(y0, s);

(4) if P is an (s, t)-path, then r∗
x = d(x0, t).

The compressor α(X). The compressor α(X) is a vector with six coordinates, which
are grouped into three pairs: α(X) := (α1(X), α2(X), α3(X)). The pair α1(X) ⊆ X+ is a
diametral pair (u+, v+) of X+, α2(X) is used to specify the region of C(u+, v+) where the
center of the target ball is located, and the pair α3(X) is used to compute the radius of this
ball. We use the symbol ∗ to indicate that the respective coordinate of α(X) is empty.

We continue with the definitions of α2(X) and α3(X). First, suppose that XC = ∅, i.e.,
Xu ∪ Xv = X and X−

u ∪ X−
v = X−. Then, set α2(X) := (w1, w2) and α3(X) := (z1, z2).

Now, suppose that XC ̸= ∅. Let w be a vertex of X whose gate w′ in C(u+, v+) belongs to
C. If Br∗

x
(x) realizes X for any vertex x of C, then set α2(X) := (w, ∗) and α3(X) := (s, ∗),

where s ∈ X+ is such that d(w′, s) = r∗
w′ . Otherwise, we pick an edge xy of C such that

Br∗
x
(x) realizes X and Br∗

y
(y) does not realize X. Let s′, t′, and z′ be the respective gates in

C of the vertices s, t, and z as defined previously. If s = t, then the path P is defined by the
vertices s and z, and set α3(X) := (s, z). Otherwise, the path P is defined by the vertices s

and t, and set α3(X) := (s, t). Moreover, set α2(X) := (∗, w) if the edge xy belongs to the
path from s′ to z′ (from s′ to t′, resp.) in the clockwise traversal of C, and α2(X) := (w, ∗)
otherwise. Formally, the compressor function α is defined in the following way:
(C1) if X− = ∅, set α1(X) = α2(X) = α3(X) := (∗, ∗);
(C2) otherwise, if |X+| = 0, set α1(X) = α2(X) := (∗, ∗) and α3(X) := (z, ∗), where z is an

arbitrary vertex of X−;
(C3) otherwise, if X+ = {u}, set α1(X) := (u, ∗), α2(X) := (∗, ∗), and α3(X) := (z, ∗),

where z is an arbitrary vertex of X−;
(C4) otherwise, if |X+| ≥ 2 and XC = ∅, set α1(X) := (u+, v+), α2(X) := (w1, w2), and

(C4i) if the vertex z2 does not exist, then set α3(X) := (z1, ∗);
(C4ii) if the vertex z1 does not exist, then set α3(X) := (∗, z2);
(C4iii) if the vertices z1 and z2 exist, set α3(X) := (z1, z2);

(C5) otherwise (|X+| ≥ 2 and XC ̸= ∅), and
(C5i) if, for any vertex y ∈ C, the ball Br∗

y
(y) realizes X, then set α1(X) := (u+, v+),

α2(X) := (w, ∗), and α3(X) := (s, ∗), where s ∈ X+ is such that d(w′, s) = r∗
w′ ;

(C5ii) otherwise, if s and z are given, and the edge xy belongs to the clockwise (s′, z′)-path
of C, then set α2(X) := (∗, w) and α3(X) := (s, z);

(C5iii) otherwise, if s and z are given, and the edge xy belongs to the counterclockwise
(s′, z′)-path of C, then set α2(X) := (w, ∗) and α3(X) := (s, z);

(C5iv) otherwise, if s and t are given, and the edge xy belongs to the clockwise (s′, t′)-path
of C, then set α2(X) := (∗, w) and α3(X) := (s, t);

(C5v) otherwise, if s and t are given, and the edge xy belongs to the counterclockwise
(s′, t′)-path of C, then set α2(X) := (w, ∗) and α3(X) := (s, t).
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The reconstructor β(X). Let Y be a vector on six coordinates grouped into three pairs Y1,
Y2, and Y3. If Y1 = (y1, y2), then, for any vertex t of G, we denote by t′ its gate in C(y1, y2).
For any vertex y of C(y1, y2), we also set ry := max{d(y, y1), d(y, y2)}. The reconstructor β

takes Y and returns a ball Br(y) of G defined in the following way:
(R1) if Y = ((∗, ∗), (∗, ∗), (∗, ∗)), then β(Y ) is any ball that contains the vertex set of G;
(R2) if Y = ((∗, ∗), (∗, ∗), (y5, ∗)), then β(Y ) is the empty set;
(R3) if Y = ((y1, ∗), (∗, ∗), (y5, ∗)), then β(Y ) is the ball B0(y1);
(R4) if Y1 = (y1, y2) and Y2 = (y3, y4), then let u0 be the cut vertex of C(y′

3) between y′
3

and y2, and v0 be the cut vertex of C(y′
4) between y′

4 and y1. Then, β(Y ) is any ball
Bry (y) centered at y ∈ C(u0, v0) such that Bry (y) contains no vertex of Y3.

(R5i) if Y = ((y1, y2), (y3, ∗), (y5, ∗)), then β(Y ) is the ball Br(y′
3) of radius r = d(y′

3, y5);
(R5ii) if Y = ((y1, y2), (∗, y4), (y5, y6)) and (y5, y6) ∈ X+ × X−, let xy be the edge of the

(y′
5, y′

6)-path in the clockwise traversal of the cycle C(y′
4) such that |d′(x, y6) − d′(x, y5)| ∈

{1, 2} and y is closer to y6 than x is. Let β(Y ) be the ball Br(x), where r = d(y, y5) if
d′(y, y5) = d(y, y5) + 1, and r = d(y, y5) − 1 otherwise;

(R5iii) if Y = ((y1, y2), (y3, ∗), (y5, y6)) and (y5, y6) ∈ X+ × X−, let xy be the edge of the
(y′

5, y′
6)-path in the counterclockwise traversal of C(y′

3) such that |d′(x, y6) − d′(x, y5)| ∈
{1, 2} and y is closer to y6 than x is. Let β(Y ) be the ball Br(x), where r = d(y, y5) if
d′(y, y5) = d(y, y5) + 1, and r = d(y, y5) − 1 otherwise;

(R5iv) if Y = ((y1, y2), (∗, y4), (y5, y6)) and (y5, y6) ∈ X+ × X+, let xy be the edge of the
(y′

5, y′
6)-path in the clockwise traversal of the cycle C(y′

4) such that |d′(x, y6) − d′(x, y5)| ∈
{1, 2} and y is closer to y6 than x is. Let β(Y ) be the ball Br(x), where r = d(x, y6);

(R5v) if Y = ((y1, y2), (y3, ∗), (y5, y6)) and (y5, y6) ∈ X+ × X+, let xy be the edge of the
(y′

5, y′
6)-path in the counterclockwise traversal of the cycle C(y′

3) such that |d′(x, y6) −
d′(x, y5)| ∈ {1, 2} and y is closer to y6 than x is. Let β(Y ) be the ball Br(x), where
r = d(x, y6);

▶ Proposition 7. For any tree of cycles G, the pair (α, β) of vectors defines a proper labeled
sample compression scheme of size 6 for B(G).

Proof. Let X be a realizable sample for B, Y = α(X), and Br(x∗) = β(Y ). We prove
case by case that the ball Br(x∗) realizes the sample X. One can easily see that the
cases (Rk) and their subcases in the definition of β correspond to the cases (Ck) and
their subcases in the definition of α: namely, the vector Y in Case (Rk) has the same
specified coordinates as the vector α(X) in Case (Ck). We consider only the Case (R4),
the other cases being similar. Then, Y1 = (y1, y2) and Y2 = (y3, y4). Since Y = α(X), the
sample X satisfies the conditions of Case (C4), i.e., |X+| ≥ 2 and XC = ∅. Therefore,
Y1 = (y1, y2) = (u+, v+) = α1(X), Y2 = (y3, y4) = (w1, w2) = α2(X), and Y3 (containing one
or two vertices) coincides with α3(X) (containing one or two vertices z1, z2 as in subcases
(C4i)–(C4iii)). The ball Bry

(y) returned by Case (R4) is centered at y ∈ C(u0, v0), contains
Y1, and is disjoint from Y3. Since the target ball Br(x) has its center on C(u0, v0) and is
compatible with X ⊇ Y1 ∪ Y3, the ball Bry (y) is well-defined. By Lemma 2, Bry (y) contains
X+. By Lemma 3, Bry

(y) is disjoint from X−. Thus, Bry
(y) is compatible with X. ◀

▶ Remark 8. The most technically involved case of the previous result is the case XC ̸= ∅. In
fact, this case corresponds to proper labeled sample compression schemes in spiders, i.e., in
graphs consisting of a single cycle C and paths of different lengths emanating from this cycle.
Due to this case, α(X) in our result is not a signed map but a signed vector of size 6. Thus,
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in this case, we need extra information compared to the initial definition of proper labeled
sample compression schemes. The VC-dimension of the family of balls in a spider and in a
tree of cycles is 3. We wonder whether the family of balls in spiders admits a proper labeled
sample compression scheme without any information that is of (a) size 3 or (b) constant size.

4 Cube-free median graphs

The dimension dim(G) of a median graph G is the largest dimension of a hypercube of G. A
cube-free median graph is a median graph of dimension 2, i.e., a median graph not containing
3-cubes as isometric subgraphs. For references about median graphs, see [1]. For cube-free
median graphs, see [2, 11, 13, 14]. We use the fact that intervals of median graphs are gated.
We describe a proper LSCS of size 22 for balls of cube-free median graphs.

Let G be a cube-free median graph. Let X be a realizable sample for B(G), and {u+, v+}
a diametral pair of X+. The next lemma shows that the center of a ball realizing X can
always be found in I(u+, v+) (this result does not hold for all median graphs):

▶ Lemma 9. If x′ is the gate of x in the interval I(u+, v+), and r′ = r − d(x, x′), then X is
a realizable sample for Br′(x′), i.e., X+ ⊆ Br′(x′) and X− ∩ Br′(x′) = ∅.

By [14], I(u+, v+) of a cube-free median graph has an isometric embedding in the square
grid Z2. We denote by (za, zb) the coordinates in Z2 of a vertex z ∈ I(u, v). We consider
isometric embeddings of I(u, v) in Z2 for which u = (0, 0) and v = (va, vb) with va ≥ 0 and
vb ≥ 0. We fix a canonical isometric embedding, which can be used both by the compressor
and the reconstructor. Finally, we use the same notation for the vertices and their images
under the embedding, and we denote by I the interval I(u+, v+) embedded in Z2. As usual,
for a vertex z ∈ V , we denote by z′ its gate in the interval I(u+, v+).

The compressor α(X). The compressor α(X) is a vector with 22 coordinates grouped
into four parts α(X) := (α1(X), α2(X), α3(X), α4(X)). The part α1(X) ⊆ X+ consists of
a diametral pair (u+, v+) of X+. The part α2(X) ⊆ X has size 4, and is used to specify a
region R ⊆ I = I(u+, v+) such that the gates in I(u+, v+) of all the vertices of X are located
outside or on the boundary of R. Moreover, R contains the center x of the target ball Br(x).
The parts α3(X) ⊆ X+ and α4(X) ⊆ X− each have size 8 and are used to locate the center
and the radius of a ball Br′′(y) realizing X. Now, we formally define αi(X), i = 1, ..., 4.
Let X1 := {w ∈ X : w′

b ≥ xb}, X2 := {w ∈ X : w′
a ≥ xa}, X3 := {w ∈ X : w′

b ≤ xb}, and
X4 := {w ∈ X : w′

a ≤ xa}. Since I(u+, v+) is gated, X = ∪4
i=1Xi. Denote by X ′

i, i = 1, ..., 4,
the gates of the vertices of Xi in I(u+, v+). Set α2(X) := (w1, w2, w3, w4) ∈ X4, where:

w1 is a vertex of X1 whose gate w′
1 has the smallest ordinate among the vertices of X ′

1;
w2 is a vertex of X2 whose gate w′

2 has the smallest abscissa among the vertices of X ′
2;

w3 is a vertex of X3 whose gate w′
3 has the largest ordinate among the vertices of X ′

3;
w4 is a vertex of X4 whose gate w′

4 has the largest abscissa among the vertices of X ′
4;

For a vertex w = (wa, wb) ∈ Z2, we consider the four coordinate halfplanes H≤wa
:= {t : ta ≤

wa}, H≥wa ,H≤wb
, and H≥wb

. Let R be the set of vertices of I that belong to the intersection
of the halfplanes H1 := H≤w1b

, H2 := H≤w2a
, H3 := H≥w3b

, and H4 := H≥w4a
. If a vertex

wi does not exist, then the corresponding halfplane Hi is not defined. From the definition,
the inside of R does not contain gates of vertices of X. We denote by Si, i = 1, ..., 4, the
intersection of I with the closure of the complementary halfspace of Hi. We call Si, i = 1, ...4,
a strip of I. Consequently, the interval I is covered by the region R, two horizontal strips S1
and S3, and two vertical strips S2 and S4. Using this notation, we can redefine Xi as the
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Figure 3 On the left, the region R and the halfstrips S′
1(x), S′′

2 (x), S′
3(x), and S′′

4 (x). On the
right, the regions R, R′, and R′′ computed from α(X). Steps 1-4 of the reconstruction correspond
to the black, green, blue, and red parts of the figure. The target center x is given in gray.

sets of all the vertices of X whose gate in I belongs to the strip Si. Consequently, X ′
i ⊆ Si.

Furthermore, for a vertex z ∈ Z2, each strip Si is partitioned into two strips S′
i(z) and S′′

i (z)
by the vertical or horizontal line passing via z. The labeling of the strips is done in the
clockwise order around z, see Fig. 3 (left). Let α3(X) := (s1, t1, s2, t2, s3, t3, s4, t4), where

s1 is a vertex of X+ furthest from x, whose gate s′
1 belongs to S′

1(x), and t1 is a vertex
of X+ such that its gate t′

1 belongs to S′′
1(x) and the abscissa of t′

1 is closest to xa;
s2 is a vertex of X+ furthest from x, whose gate s′

2 belongs to S′′
2(x), and t2 is a vertex

of X+ such that its gate t′
2 belongs to S′

2(x) and the ordinate of t′
2 is closest to xb;

s3 is a vertex of X+ furthest from x, whose gate s′
3 belongs to S′

3(x), and t3 is a vertex
of X+ such that its gate t′

3 belongs to S′′
3(x) and the abscissa of t′

3 is closest to xa;
s4 is a vertex of X+ furthest from x, whose gate s′

4 belongs to S′′
4(x), and t4 is a vertex

of X+ such that its gate t′
4 belongs to S′

4(x) and the ordinate of t′
4 is closest to xb.

Let α4(X) := (p1, q1, p2, q2, p3, q3, p4, q4), where pi is a vertex of X− closest to x, whose gate
p′

i belongs to S′
i(x), and qi is a vertex of X− closest to x, whose gate q′

i belongs to S′′
i (x). If

any of the vertices of the four groups is not defined, then its corresponding coordinate in
α(X) is set to ∗.

The reconstructor β(Y ). Let Y be a vector of 22 coordinates corresponding to a re-
alizable sample and grouped into four parts Y1 := (y1, y2), Y2 := (y3, y4, y5, y6), Y3 :=
(y7, y8, y9, y10, y11, y12, y13, y14), and Y4 := (y15, y16, y17, y18, y19, y20, y21, y22). The recon-
structor β(Y ) returns a ball Br′′(y) by performing the following steps (see Fig. 3 (right)):
1. Using Y1, canonically isometrically embed I(y1, y2) into Z2 as I.
2. Using Y2, compute the gates y′

i of yi in I and compute the region R as the intersection of
the halfplanes H≤y1b

, H≤y2a , H≥y3b
, and H≥y4a with I.

3. Using Y3, compute the set R′ ⊆ R of all y = (ya, yb) ∈ R such that the gates
y′

7, y′
8, y′

9, y′
10, y′

11, y′
12, y′

13, y′
14 belong to S′

1(y), S′′
1(y), S′′

2(y), S′
2(y), S′

3(y), S′′
3(y), S′′

4(y),
S′

4(y), resp. For each y ∈ R′, let r′
y be the smallest radius such that Y1 ∪ Y3 ⊆ Br′

y
(y).

4. Using Y4, compute the region R′′ ⊆ R consisting of all the vertices y ∈ R such that the
gates y′

15, y′
16, . . . , y′

21, y′
22 belong to the strips S′

1(y), S′′
1(y), . . ., S′

4(y), S′′
4(y), respectively.

For each y ∈ R′′, let r′′
y be the largest radius such that Br′′

y
(y) ∩ Y4 = ∅.

5. Let R0 := {y ∈ R′ ∩ R′′ : r′′
y ≥ r′

y} and return as β(Y ) any ball Br′′
y

(y) with y ∈ R0.

▶ Proposition 10. For any cube-free median graph G, the pair (α, β) of vectors defines a
proper labeled sample compression scheme of size 22 for B = B(G).
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5 Interval Graphs

For any interval graph G = (V, E), we construct proper LSCS of size 4 for B(G) and Br(G).
We consider a representation of G by a set of segments Jv, v ∈ V of R with pairwise distinct
ends. For any u ∈ V , we denote by Ju = [su, eu] its segment, where su is the start of Ju, and
eu is the end of Ju, i.e., su ≤ eu. We use the following property of interval graphs:

▶ Lemma 11. If u, v ∈ Br(x), su, sz < sv, and eu < ev, ez, then z ∈ Br(x).

Proof. Since sz < sv and eu < ez, if Ju and Jv intersect, then Jz covers the segment [sv, eu],
and otherwise, Jz intersects [eu, sv]. Let P be a path obtained from a shortest (x, u)-path
of G by removing u, and Q be a path obtained from a shortest (x, v)-path by removing
v. The union JS of all segments of S := P ∪ {x} ∪ Q intersects Ju and Jv. If Ju and Jv

intersect, then Jz covers [sv, eu], and thus, intersects JS . Otherwise, JS covers [eu, sv], and
Jz intersects [eu, sv]. In both cases, Jz and JS intersect, whence a segment of S intersects
Jz. Since all segments of S are at distance at most r − 1 from x, z ∈ Br(x). ◀

Let X be a realizable sample for B(G). A farthest pair of X+ is a pair {u+, v+} such
that u+ is the vertex in X+ whose interval Ju+ ends farthest to the left, and v+ is the
vertex in X+ whose interval Jv+ begins farthest to the right, i.e., for any w ∈ X+, we
have eu+ < ew and sw < sv+ . If u+ ̸= v+, then [eu+ , sv+ ] ∩ Jw ≠ ∅ for any w ∈ X+. If
u+ = v+, then Ju+ ⊆ Jw for any w ∈ X+. A vertex p− of X− is a left-bounder if there is a
ball Br(x) realizing X such that ep− < sx and, for all p ∈ X− with ep < sx, it holds that
ep ≤ ep− . Analogously, a vertex q− of X− is a right-bounder if there is a ball Br(x) realizing
X such that ex < sq− and, for all q ∈ X− with ex < sq, it holds that sq− ≤ sq. If p− is a
left-bounder and q− is a right-bounder, then {p−, q−} is a bounding pair of X−. The farthest
pair {u+, v+} of X+ and the bounding pair {p−, q−} of X− have the following properties:

▶ Lemma 12. If u+, v+ ∈ Br(x) and r > 0, then X+ ⊆ Br(x).

Proof. Pick any w ∈ X+ \ {u+, v+}. By the definition of u+ and v+, we have sw < sv+

and eu+ < ew. If u+ ̸= v+, then su+ < sv+ and eu+ < ev+ , and so, su+ , sw < sv+ and
eu+ < ev+ , ew. By Lemma 11, w ∈ Br(x). Now, let u+ = v+. Then, Ju+ ⊂ Jw, and thus,
any segment intersecting Ju+ also intersects Jw. Consequently, w is included in any ball of
G of radius r > 0 containing u+, and, in particular, w ∈ Br(x). ◀

▶ Lemma 13. If ep− < sx and p− /∈ Br(x), then, for all z ∈ X− with ez < ep− , z /∈ Br(x).
Also, if ex < sq− and q− /∈ Br(x), then, for all w ∈ X− with sq− < sw, w /∈ Br(x).

Proof. For the first statement, towards a contradiction, suppose that ep− < sx and p− /∈
Br(x), but there exists z ∈ X− such that ez < ep− and z ∈ Br(x). Then, sz, sp− < sx since
sz ≤ ez < ep− < sx, and ez < ex, ep− as ez < ep− < sx ≤ ex. By Lemma 11, p− ∈ Br(x),
a contradiction. For the second statement, suppose by way of contradiction that ex < sq−

and q− /∈ Br(x), but there exists w ∈ X− such that sq− < sw and w ∈ Br(x). Then,
sx, sq− < sw since sx ≤ ex < sq− < sw, and ex < ew, eq− as ex < sq− < sw ≤ ew. By
Lemma 11, q− ∈ Br(x), a contradiction. ◀

The compressor α(X) of X is a vector with four coordinates grouped into two pairs:
α(X) := (α1(X), α2(X)). The pair α1(X) is a farthest pair {u+, v+} of X+ and the pair
α2(X) is a bounding pair {p−, q−} of X−. We use the symbol ∗ to indicate that the respective
coordinate of α(X) is empty. We define α(X) as follows:
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(C1) if X+ = ∅, then set α1(X) = α2(X) := (∗, ∗);
(C2) if X+ = {x}, then set α1(X) := (x, ∗) and α2(X) := (∗, ∗);
(C3) if |X+| ≥ 2, then set α1(X) := (u+, v+) if u+ ̸= v+ and α1(X) := (∗, v+) if u+ = v+;

(C3i) if X− = ∅, then set α2(X) := (∗, ∗);
(C3ii) if there exists a bounding pair of X−, then set α2(X) := (p−, q−);
(C3iii) if there exists a left-bounder, but not a right-bounder of X−, then set α2(X) :=

(p−, ∗);
(C3iv) if there exists a right-bounder, but not a left-bounder vertex of X−, then set

α2(X) := (∗, q−).

The reconstructor β takes any signed vector Y on four coordinates grouped into two pairs
Y1 and Y2 from Im(α), and returns a ball β(Y ) defined as follows:
(R1) if Y1 = Y2 = (∗, ∗), then β(Y ) is the empty ball;
(R2) if Y1 = (y1, ∗) and Y2 = (∗, ∗), then β(Y ) is the ball of radius 0 centered at y1;
(R3) if Y1 = (y1, y2) or Y1 = (∗, y2), then β(Y ) is any ball Br(x) of radius r ≥ 1 containing

Y1, not intersecting Y2, and such that:
(R3i) if Y2 = (∗, ∗), then no condition;
(R3ii) if Y2 = (y3, y4), then ey3 < sx and ex < sy4 ;
(R3iii) if Y2 = (y3, ∗), then ey3 < sx;
(R3iv) if Y2 = (∗, y4), then ex < sy4 .

Now, let X be a realizable sample for Br(G). If |X+| ≥ 2 or r ≥ 1, then we define α and
β as above, since, in these cases, we do not specify the radius of the ball realizing X in α, nor
the radius of the ball returned by β. So, we can exhibit a proper LSCS of size 4 for Br(G)
if we can deal with the case |X+| ≤ 1. The only difference is that if |X+| ≤ 1, then we set
α2(X) as in Case (C3), but we set α1(X) := (∗, ∗) when X+ = ∅, and α1(X) := (∗, x) when
X+ = {x}. Now, let r = 0. If |X+| = 0 and there is a ball B0(y) such that y /∈ X− and
ey < ez for any z ∈ V, z ̸= y, then α(X) := ((∗, ∗), (∗, ∗)). Otherwise, if |X+| = 0, there is a
ball B0(y) such that y /∈ X−, w′ ∈ X−, ew′ < ey, and, for all w ∈ V with ew < ey, we have
ew ≤ ew′ . In this case, α(X) := ((∗, ∗), (w′, ∗)). If X+ = {x}, set α(X) := ((x, ∗), (∗, ∗)).
Given any signed vector Y on four coordinates, β returns a ball β(Y ) defined as follows. If
Y = ((∗, ∗), (∗, ∗)), then β(Y ) is the ball B0(x) such that ex < ez for any z ∈ V \ {x}. If
Y = ((∗, ∗), (y3, ∗)), then β(Y ) is the ball B0(x) such that ey3 < ex, and, for all w ∈ V with
ew < ex, it holds that ew ≤ ey3 . Lastly, if Y = ((x, ∗), (∗, ∗)), then β(Y ) is the ball B0(x).

▶ Proposition 14. For any interval graph G = (V, E), the pair (α, β) of vectors defines a
proper labeled sample compression scheme of size 4 for B(G) and Br(G).

Proof. Let X be a realizable sample for B(G) (the case of Br(G) is similar), Y = α(X), and
Br(x) = β(Y ). The cases (Rk) and their subcases in the definition of β correspond to the
cases (Ck) and their subcases in the definition of α. The correctness is trivial if k = 1, 2. Now,
let k = 3. Since Y1 always contains a farthest pair of X+ and the returned ball Br(x) contains
Y1 and r ≥ 1, by Lemma 12, X+ ⊆ Br(x). Furthermore, in Case (C3), any ball realizing
X must have a radius r ≥ 1 since |X+| ≥ 2. Now, we prove that X− ∩ Br(x) = ∅. This is
trivial in subcase (R3i) since X− = ∅. In the remaining subcases of (R3), X− ∩ Br(x) = ∅
follows from the definition of the corresponding subcase of case (C3) and Lemma 13. ◀
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6 Hyperbolic graphs

A (ρ, µ)-approximate proper labeled sample compression scheme of size k for the family of
balls B(G) of a graph G compresses any realizable sample X to a subsample α(X) of support
of size k, such that β(α(X)) is a ball Br(x) such that X+ ⊆ Br+ρ(x) and X− ∩Br−µ(x) = ∅.
Let (V, d) be a metric space and w ∈ V . Let δ ≥ 0. A metric space (X, d) is δ-hyperbolic [18] if,
for any four points u, v, x, y of X, the two larger of the sums d(u, v)+d(x, y), d(u, x)+d(v, y),
and d(u, y) + d(v, x), differ by at most 2δ ≥ 0. Next, we show that δ-hyperbolic graphs admit
a (2δ, 3δ)-approximate labeled sample compression scheme of size 2.

An interval I(u, v) of a graph is ν-thin if d(x, y) ≤ ν for any two points x, y ∈ I(u, v) with
d(u, x) = d(u, y) and d(v, x) = d(v, y). Intervals of δ-hyperbolic graphs are 2δ-thin. A metric
space (X, d) is injective if, whenever X is isometric to a subspace Z of a metric space (Y, d′),
there is a map f : Y → Z such that f(z) = z for any z ∈ Z and d′(f(x), f(y)) ≤ d′(x, y) for
any x, y ∈ Y . By a construction of Isbell [20] (rediscovered by Dress [15]), any metric space
(V, d) has an injective hull E(V ), i.e., the smallest injective metric space into which (V, d)
isometrically embeds. Lang [21] proved that the injective hull of a δ-hyperbolic space is δ-
hyperbolic. It was shown in [15] that the injective hull T := T (u, v, y, w) of a metric space on
4 points u, v, y, w is a rectangle R := R(u′, v′, y′, w′) with four attached tips uu′, vv′, yy′, ww′

(one or several tips may reduce to a single point or R may reduce to a segment or a single
point). The smallest side of R is exactly the hyperbolicity of the quadruplet u, v, y, w.

Let X be a realizable sample of B(G) and {u+, v+} be a diametral pair of X+. Let Br∗(y)
be a ball of smallest radius such that X+ ⊆ Br∗(y) and X− ∩Br∗(y) = ∅. We set α(X) := ∅
if X+ = ∅, α(X) := X+ if |X+| = 1, and α(X) := {u+, v+} if |X+| ≥ 2. Given a subset Y

of size at most 2, the reconstructor returns β(Y ) = ∅ if Y = ∅, β(Y ) = B0(y) if Y = {y},
and β(Y ) = Bd(y1,y2)/2(x) if Y = {y1, y2}, where x is the middle of a (y1, y2)-geodesic.

▶ Proposition 15. For any δ-hyperbolic graph G = (V, E), the pair (α, β) defines a (2δ, 3δ)-
approximate proper labeled sample compression scheme of size 2 for B(G).

Proof. We first show that X+ ⊆ Br+2δ(x), where r = d(u+, v+)/2 and x is a middle of a
(u+, v+)-geodesic. Pick any w ∈ X+. Since u+, v+ is a diametral pair of X+, d(u+, w) ≤ 2r

and d(v+, w) ≤ 2r. We also have d(u+, v+) = 2r and d(x, u+) = d(x, v+) = r. Thus, the
three distance sums have the form d(u+, w) + d(x, v+) ≤ 3r, d(v+, w) + d(x, u+) ≤ 3r, and
d(u+, v+)+d(x, w) = 2r+d(x, w). By the definition of δ-hyperbolicity, we conclude that either
d(x, w) ≤ r (if d(u+, v+) + d(x, w) is at most 3r) or d(x, w) ≤ r + 2δ (if d(u+, v+) + d(x, w)
is the largest sum). Hence, w ∈ Br+2δ(x). We now show that X− ∩ Br−3δ(x) = ∅. Pick
w ∈ X− and consider the injective hull T of the points {u+, v+, y, w}. T is a rectangle R with
four tips (see Fig. 4) and is a subspace of the injective hull E(V ). Since w ∈ X−, w /∈ Br∗(y).
Since u+, v+ ∈ Br∗(y), we deduce that d(y, w) > d(y, u+) and d(y, w) > d(y, v+). Let x′ be
a point of I(u+, v+) ∩ T such that d(u+, x′) = d(u+, x) = r and d(v+, x′) = d(v+, x) = r.
Since the injective hull T is δ-hyperbolic, its intervals are 2δ-thin, and thus, d(x, x′) ≤ 2δ.

Case 1. u+, v+, y, and w are as in Fig. 4(1). First, suppose that x′ belongs to the tip
between u+ and u′ or to the segment between u′ and v′. Since y′ and w′ belong to a
common geodesic from y to w and from y to v+, and since v+ ∈ Br∗(y) and w /∈ Br∗(y),
we deduce that d(w, w′) > d(w′, v+) ≥ d(v′, v+). Consequently, d(v′, w) > d(v′, v+). If
x′ is located on the tip between u+ and u′ or on the segment between u′ and v′, then,
since r = d(x′, v+) = d(x′, v′) + d(v′, v+) and d(x′, w) = d(x′, v′) + d(v′, w), we obtain
that w /∈ Br(x′). Since d(x, x′) ≤ 2δ, w /∈ Br−2δ(x). If x′ belongs to the tip between v′

and v+, then r = d(x′, v+) ≤ d(v′, v+) ≤ d(v′, w), whence w /∈ Br(x′) and w /∈ Br−2δ(x).
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Figure 4 Cases 1-3 of Proposition 15.

Case 2. u+ and v+, and y and w are opposite in T as in Fig. 4(2). Consider x′ to be
on the boundary of T containing the vertices u′, w′, and v′. Since v+ ∈ Br∗(y) and
w /∈ Br∗(y), then d(v′, w′) + d(w′, w) > d(v′, v+). Note also that d(v′, w′) ≤ δ, and
thus, d(w, v′) > d(v′, v+) − δ. Independently of the location of x′ on the boundary of T ,
w /∈ Br−δ(x′). Thus, w /∈ Br−3δ(x).

Case 3. u+, v+, y, and w are as in Fig. 4(3). Since w′ belongs to a geodesic between y

and w and between y and v+, and w /∈ Br∗(y), v+ /∈ Br∗(y), we deduce that d(w′, w) >

d(w′, v′) + d(v′, v+) ≥ d(v′, v+). Independently of the location of x′, we obtain that
w /∈ Br−2δ(x). ◀

7 Perspectives

A direction of interest is to design proper sample compression schemes for balls of radius r

in trees of cycles or cube-free median graphs. Designing sample compression schemes of size
O(d) for balls in general median graphs G of dimension d is also open, as well as whether the
VC-dimension of B(G) is O(d) or not. For general median graphs, it no longer holds that
the interval between a diametral pair of X+ contains a center of a ball realizing X. However,
one can show that X+ contains 2d vertices whose convex hull contains such a center. This
convex hull can be d-dimensional and it is unclear how to encode the center in this region.

Other open questions are to design proper sample compression schemes of constant size
for balls of planar graphs and of size O(ω(G)) for balls of a chordal graph G. In [8], we
showed that the former is possible for balls of radius 1, and that the latter is possible for
split graphs. Finding proper sample compression schemes of size O(ω(G)) for B(G) is also
interesting for other classes of graphs from metric graph theory: bridged graphs (generalizing
chordal graphs) and Helly graphs; for their definitions and characterizations, see [1].
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