
A Case Study in Information Flow Refinement
for Low Level Systems

Roberto Guanciale1, Christoph Baumann2, Pablo Buiras1, Mads Dam1, and
Hamed Nemati3

1 KTH Royal Institute of Technology, Stockholm, Sweden
{robertog,pablo,mfd}@kth.se

2 Ericsson Research Security, Kista, Sweden christoph.baumann@ericsson.com
3 Stanford University, Stanford, United States and CISPA Helmholtz Center for

Information Security,Saarbrücken, Germany hnnemati@stanford.edu

Abstract. In this work we employ information-flow-aware refinement to
study security properties of a separation kernel. We focus on refinements
that support changes in data representation and semantics, including the
addition of state variables that may induce new observational power or
side channels. We leverage an epistemic approach to ignorance-preserving
refinement where an abstract model is used as a specification of a sys-
tem’s permitted information flows that may include the declassification
of secret information. The core idea is to require that refinement steps
must not induce observer knowledge that is not already available in the
abstract model. In particular, we show that a simple key manager may
cause information leakage via a refinement that includes cache and timing
information. Finally, we show that deploying standard countermeasures
against cache-based timing channels regains ignorance preservation.

1 Introduction

The last decade has seen a number of formally verified separation kernels [1,
18, 25], which can provide strong isolation among software components. Nev-
ertheless, their resilience against sophisticated attacks that use low level mi-
croarchitectural features [32, 40, 24, 27, 33, 34, 3] is not proven. For realistic
microarchitectures a monolithic analysis of kernel’s confidentiality properties is
not feasible, since this would require to take into account caches, multiple cores,
pipelines, buses, GPUs, devices, and so on. To cope with this complexity, a mod-
ular approach based on some form of refinement [2] is essential, since it would
allow to handle different security threats at different abstraction levels. The
main problem is that standard refinements (e.g., trace inclusion) do not sup-
port confidentiality properties [36]: the refined model may provide an observer
with information of the execution environment such as execution time or power
consumption that may introduce side channels.

We have recently developed [11] a theory for secure refinement that supports
data refinement, i.e., changes in data representation, reducing nondeterminism

2 R. Guanciale et al.

and underspecification, and adding state variables that may introduce discrim-
inating power. The key idea is to use the abstract model as a specification of
the permitted information flow, and then to ensure that this flow is an upper
bound of the corresponding flow in the refined model. We achieve this using
knowledge in the sense of [20]. If the progression of observer knowledge on all
refined computations is the same or weaker than the one on corresponding ab-
stract computations then the refined model does not leak more information than
the abstract model, hence we say it is a Ignorance-Preserving Refinement, IPR.

Here we demonstrate our theory by analysing a provably secure low-level
system. The system consists of a kernel and processes that use different types
of communication, provide services to each other, and operate concurrently. At-
tackers are compromised processes with unknown behaviour that attempt to
acquire secret information from the trusted victims.

For our case study, we formalize a machine with a flat memory. Since veri-
fying functional correctness of the kernel is out of our scope, we axiomatize the
expected kernel properties on the abstract model. In order to demonstrate the
notion of knowledge, we introduce a simple key manager, which is a process that
owns a secret key and allows a potentially malicious client (i.e., another process)
to obtain the key-dependent Message Authentication Code of input data.

The goal of IPR is to only protect secrets that are already represented at
abstract level, hence IPR does not imply noninterference preservation “out of
the box”: a concrete model may introduce new types of unrelated implementation
information that can be freely leaked. We illustrate the usage of IPR via a refined
model, where we add caches and timing information. The question we then need
to answer is if this refinement step can cause information to be leaked that would
not be possible in the abstract model. Unsurprisingly, given the many results
on this topic in the literature [40, 21, 44], we show that for the key manager
the answer is affirmative, due to timing differentials when caches are involved.
We then demonstrate that IPR is regained when a simple countermeasure is
deployed.

In general, IPR is not sequentially composable, therefore some procedures are
secure only if they are executed once. In this paper we also show how sequential
compositionality for IPR can be achieved via a kind of relational Hoare logic [12]
lifted to refinements. We further apply our proposed solution to verify that IPR
is guaranteed when cache colouring [30] or constant time programming, both
standard countermeasures against cache-based timing channels, are deployed.

To make presentation easier to follow, we structure the paper by interleaving
the theoretical definitions and results of [11] with their application to the case
study. In particular, in Section 2 we introduce an abstract modeling framework
and the epistemic notions of knowledge and ignorance, which allow to formalize
the abstract information flows. Section 3 presents instantiation of the abstract
framework to our case study. In sections 4, 5 and 6 we present our account of
refinement and IPR and show the usage of IPR via a refined model. Sections 7
and 8 discuss our solution to make IPR sequentially composable and apply it to

A Case Study in Information Flow Refinement for Low Level Systems 3

some examples countermeasures against cache-based timing attacks. Finally, in
Sections 9 and 10 we discuss related work and give our concluding remarks.

2 Models, Knowledge, and Ignorance

The models we consider in this work are extended transition systems equipped
with a store and an observation function. A model M = (S0, S,→, L,PId ,O,Obs)
is a labeled transition system with a set of states S = Var → Val that map vari-
ables from Var to values in Val ; S0 ⊆ S the set of initial states; → ⊆ S ×L× S
the transition relation; O a set of observations, PId a set of process, or observer
id’s, and for each p ∈ PId an observation function Obsp : S → O that returns
the observations in O an observer can make in a given state.

We let s, s′ range over states, α, β range over observations and write s→αp→s′,
if Obsp(s′) = α and s → s′. A final state is any state s in which no transition
starts, i.e., for which no s′ exists such that s → s′. Observation functions Obsp
allow to encode both statically determined sets of variables observed by process
p and dynamically varying notions of observability.

In the context of a given transition system, a run ρ ∈ R(M) is a finite
sequence s0 · · · sn such that s0 ∈ S0 and si−1 → si for all i > 0 for which si
is defined. The i’th state of ρ, ρ(i), is si, the first (last) element of ρ is fst(ρ)
(lst(ρ)), |ρ| ∈ N is the length of ρ (i.e. number of states in the run), and ρ(: i) is
the prefix of ρ having length i. A complete run is one that cannot be extended,
i.e. there is no s such that ρ(|ρ| − 1)→ s. In that case lst(ρ) = ρ(|ρ| − 1) is final.

The notions of observation trace, observation equivalence, and the epistemic
notions of knowledge and its dual, ignorance, are standard. First, two states s1,
s2 are observationally equivalent as seen by process p, s1 ∼p s2, if p has the
same observations in the two states, Obsp(s1) = Obsp(s2). We write 〈s〉p for
the equivalence class that contains s. An observation trace for p is the sequence
of observation of some run ρ, i.e. Obsp(ρ) = Obsp(ρ(0)) · · ·Obsp(ρ(|ρ| − 1)).
A complete trace is a trace of a complete run, and the runs ρ1 and ρ2 are p-
observation equivalent ρ1 ∼p ρ2, if p’s observations in ρ1 are the same as p’s
observations in ρ2, i.e. Obsp(ρ1) = Obsp(ρ2). To avoid clutter, we often omit the
“p”-subscript when understood from the context.

In the context of a given model M we view a property as a set φ ⊆ R(M),
namely the set of runs for which the property holds. This allows to define the
standard epistemic modality Kpφ of perfect recall knowledge and its De Morgan
dual Ipφ of “ignorance” on properties φ in the following way:

– ρ ∈ Kpφ, if for all ρ′ ∈ R(M), if ρ′ ∼p ρ then ρ′ ∈ φ.
– ρ ∈ Ipφ, if there is ρ′ ∈ φ such that ρ′ ∼p ρ.

In this paper we focus on confidentiality properties, i.e. observer ignorance rather
than knowledge.

The set Ipφ is the set of runs ρ that are “compatible” with some ρ′ in φ in
the sense that p cannot tell ρ′ from ρ. Thus, if φ holds for ρ′, for all p can tell
φ may hold for ρ as well. Accordingly, we call a set φ a p-ignorance set if φ is

4 R. Guanciale et al.

closed under ∼p. The initial ignorance of a property φ is the set of initial states

of runs in Ipφ, i.e. I init
p φ = {ρ′(0) | ρ′ ∈ Ipφ}.

If the transition relation is deterministic, for each initial state there is a
unique maximal run. We use the notation R(s) to identify the maximal run
starting from state s, and R(s, n) to identify the run starting from s and taking
exactly n steps. These definitions are extended pointwise to sets of states, so if S
is a set of states, then R(S) is the set of maximal runs starting from states in S,
and R(S, n) is the set of runs of length n starting from states in S. Notice that
for a deterministic system the standard notion of non-interference can directly
expressed in terms of initial ignorance:

Proposition 1. A system is non-interfering from m to n if for every pair of
runs ρ ∼p ρ′ ∈ R(S0,m) it holds that R(ρ′(0), n) ⊆ Ip(R(ρ(0), n)). A de-
terministic system is non-interfering from m to n iff for all Ip(R(S0, n)) =

R(Iinitp (R(S0,m)), n).

That is, after m transitions from the initial state, a system does not leak infor-
mation for n−m transitions if the ignorance after n transitions is equal to the
runs obtained by staring from a state that was in the initial ignorance after m
transitions.

3 Case study: Processor Model and Separation Kernel

We introduce the abstract processor model used in the paper, ignoring things
like caches and time related to the refined model introduced in Section 6. The
example is based on an operating system that allows processes {0, . . . , N} to
execute on a sequential processor, where process number 0 represents the kernel
and others are unprivileged processes.

A state of the abstract model is a total function s : Var → Val , where
Var = regs∪mem, regs is the set of registers (including special purpose registers
that control memory protection, program counter, etc.), and mem is the set of
memory addresses.

The transition relation s
l−→ s′ is deterministic and represents the execution

of a single machine instruction. We annotate the transition system with label l
to capture the list of memory operations performed by the instruction. This list
includes all addresses that are involved in the elaboration of instructions such
as page tables and instruction memory. Operations (rd, a) and (wt, a) model the
reading and writing of address a respectively. We use R(l) and W (l) to extract
the set of read/written addresses.

The following notation allows us to abstract from the kernel, exposing com-
mon abstractions that depend on special purpose registers and the internal kernel
data structures. We use P (s) ∈ PId to identify the active process in s. The kernel
control’s memory resources allocation and configures the Memory Management
Unit (MMU) accordingly. The sets W (s, p) ⊆ R(s, p) represent the sets of ad-
dresses that process p is allowed to write/read. Figure 1 shows an example with
three user processes.

A Case Study in Information Flow Refinement for Low Level Systems 5

Fig. 1. Access permissions of eight memory pages for three processes. Gray boxes
represent addresses that are in W and white boxes represent addresses that are only
in R. Processes p1 and p2 can directly communicate using addresses in page 4, which
can be written by both processes. Page 3 provides a unidirectional channel, since it
cannot be modified by p2. Page 2 is readable by both processes and can be used to store
shared libraries. Page tables affect the process behaviour and should not be modifiable
by unprivileged processes, therefore they cannot be in {3, 4, 5, 8}. Process p3 is isolated
and its communication with p2 must be mediated by the kernel, which may decide to
copy data from/to {7, 8} or change access permissions.

We make some general assumptions that reflect the above intuition. First,
processes cannot violate MMU settings, and they are unable to escalate their
access privileges without mediation of the kernel:

Kernel Assumption KA 1 If s
l−→ s′ and P (s) = p 6= 0 then

1. R(l) ⊆ R(s, p) and W (l) ⊆W (s, p)
2. ∀p′. R(s, p′) = R(s′, p′) and W (s, p′) = W (s′, p′)
3. ∀a ∈ mem \W (l) . s(a) = s′(a)

In other words: An unprivileged process p can read and write only addresses
for which it has the necessary permissions (1.1). It cannot affect the read/write
permissions of any process (1.2), and if p does not write to a given address, then
the content of that address remains unchanged (1.3).

Secondly, the behaviour of the active process depends on the registers, the
region of memory that can be accessed, and the content of the memory that is
read:

Kernel Assumption KA 2 If P (s1) = P (s2) = p, R(s1, p) = R(s2, p), W (s1, p) =

W (s2, p), s1
l−→ s′1, and for all a ∈ regs ∪ R(l) then s1(a) = s2(a), then there is

some s′2 such that s2
l−→ s′2 and for all a ∈ regs ∪W (l) . s′1(a) = s′2(a)

These properties are enforced by all secure kernels, cf. [1, 18, 25], and they do
not restrict the kernel design. The kernel is free to change memory grants (i.e. to
allocate, free, and change ownership of memory regions) and to copy data among
processes. Processes can communicate via shared memory if the kernel allows it.
Moreover, these properties do not constrain the presence of microarchitectural
communication channels, e.g., due to the insecure usage of caches. Finally, these

6 R. Guanciale et al.

rules accommodate collaborative as well as preemptive multi-tasking and do not
constrain information flows made available by the kernel scheduler.

To apply the epistemic framework introduced in Section 2 we need to also
provide an observation model. Processes are able to observe the CPU registers
when they are active. Moreover, in this example we use a so-called trace driven
model [41]. An adversarial process is able to capture the state of its accessible
memory (and cache if available) while another process is running. This model
allows us to take into account scenarios where memory operations have effects on
some other components, like caches or memory mapped devices, that could be
controlled by an attacker. In these cases, the intermediary states of the memory
that is accessible by the attacker provide a sound overapproximation of the
information available to the attacker. Accordingly, the observations of process p
in state s, obsp(s), contain:

1. The identity of the active process, P (s).
2. p’s memory rights, R(s, p) and W (s, p).
3. The content of the accessible memory,

{(a, s(a)) | a ∈ R(s, p)} .

4. The CPU register contents when p is active,

if (P (s) = p) then {s(r) | r ∈ regs} else ∅ .

Notice that a process is able to observe resources that can affect its behaviour
only indirectly. For example in Figure 1, process p2 can observe that the first
memory page is not in W (s, p2), since writing in this memory page raises a page
fault and activates the kernel.

3.1 A Simple Key Manager

To demonstrate the model of knowledge and prepare the ground for later refine-
ments we introduce an abstract model/specification of a simple key manager.
The system executes the assumed kernel and two processes: p1 is the key man-
ager and p2 is a potentially malicious client. Memory is statically partitioned
like in Figure 1.

The key manager owns a secret key and provides a service that allows other
processes to obtain the Message Authentication Code (MAC) of a piece of input
data using the secret key. This MAC can be used, for instance, by a client
to remotely authenticate the device. Process p2 cannot directly access the key,
which is stored in page 1, and input data and results are communicated via
the shared page 4. This system has an intended information leakage: the MAC
of the input data with the secret key. In terms of language-based security, the
key-manager declassifies the result of this computation, and the goal of the later
refinement step is to show that it adds no more information channels than what
is already allowed by the abstract model.

A Case Study in Information Flow Refinement for Low Level Systems 7

Fig. 2. Three phases and context switches of the example. Dashed arrows represent
multiple transitions.

For the purpose of demonstrating our framework it is not important that
the key manager uses cryptographically secure primitives. Therefore, a MAC
algorithm based on m rounds of a naive Feistel cipher is used: data d = d0d1
consists of two bytes, key k = k1 . . . km consists of m round keys, and the i-th
round is computed as follows:

MAC−1(d, k) = d0
MAC0(d, k) = d1
MACi(d, k) = MACi−2(d, k)⊕ Ti[ki + MACi−1(d, k)]

where + is addition modulo 256, and ⊕ is bit-wise xor. The MAC is computed
using m tables Ti of 256 entries, which implements publicly known byte permu-
tations.

We assume that process p2 is active in the initial state s0, and that the system
progresses in three phases of Figure 2:

1. p2 writes d in page 4, and requests a new service,

2. p1 computes locally MACm(d, k) and writes the result in page 4,

3. p2 uses the received MAC.

In between the three phases, the kernel simply context switches between the two
processes, without affecting any resource that is observable by the two processes
(i.e. it does not change memory permissions and does not modify pages 1 . . . 6).
For simplicity, we also assume that the context switch requires a constant amount
of instructions. Phase i is started after start(i) transitions and completed after
end(i) transitions. Let s0 be the initial state:

– start(1) = 0, since we regard the system as starting only when boot is
complete and the kernel hands over control to the client, p2.

– R(s0, end(1)) is the run ending once p2 has prepared the request and control
has been passed to the kernel.

– R(s0, start(2)) is the run ending when the kernel has completed the context
switch and passed control to p1.

Our analysis focuses on the ignorance of the client p2.

8 R. Guanciale et al.

Initial ignorance. Ip2
(R(s0, 0)) = I init

p2
(R(s0, 0)) = 〈s0〉p2

, which is set of initial
states where p2 is active and pages {2 . . . 6} have the same memory content
as s0, independently of the content of pages {1, 7, 8}. Thus, initially p2 has no
information about k.

Phase 1 and 3. During the first n ≤ end(1) transitions, due to KA 1 and
KA 2, for every s1 ∈ 〈s0〉p2

let ρ1 = R(s1), it is the case that ρ0(n) ∼p2
ρ1(n),

therefore R(s0, n) ∼p2 R(s1, n) and Ip2(R(s0, end(1))) = R(I init
p2

(R(s0, 0)), n).

Moreover, I init
p2

(R(s0, end(1)) = I init
p2

(R(s0, 0)): as expected, the operating sys-
tem prevents the client from gaining information without an explicit commu-
nication performed by p1 or by the kernel itself. For the same reason, dur-
ing the third phase, i.e., for n ≥ start(3), it is the case that Ip2

(R(s0, n)) =

R(I init
p2

(R(s0, start(3))), n).

Context switches. Since we assume that the kernel does not affect any resource
that is observable by the process and that the context switch is done in “constant
time”, then Ip2(R(s0, start(i+ 1))) = R(I init

p2
(R(s0, end(i))), start(i+ 1)) for

i ∈ {1, 2}.

Phase 2. The client p2’s ignorance now decreases, since process p2 learns the
MAC. In fact, a run ρ1 is in Ip2

(R(s0, end(2))), if its initial state s1 is in I init
p2

(ρ0)
(i.e. s1 ∼p2 s0) and

MACm(d, k) = MACm(d, k′)

where k′ is the key in s1. In terms of information-theoretic security, by learning
the MAC, p2 also learns a correlation between k and k′ that reduces the entropy
of k by 8 bits.

In the trace based model, the attacker controlling p2 can observe its memory
while process p1 is executing. Therefore, if p1 uses the shared page 4 to temporary
store the value of T1[k1 + d1], instead of computing locally the first round, then
the ignorance of p2 is further reduced and the attacker directly learns the first
byte of the key.

4 Refinement and Ignorance Preservation

We now compare two models, an abstract model Ma with states s ∈ S, runs
Ra, and transition relation →a, typically used to predict the desired behavior,
and a concrete, or implementation model Mc, with states t ∈ T , runs Rc, and
relation →c, that is used to describe how the abstract behavior is realized. We
write ρ, φ for (sets of) abstract runs and σ, ψ for concrete ones. The two models
are connected by a refinement relation s ⇓ t, or function dte = s, which for each
concrete state t produces one or more abstract states s, which t is intended to
refine. We refer to refinement relations of the latter form as functional. In this
section we set out the basic properties we assume of refinements before we turn
in Section 4.1 to information flow preservation.

A Case Study in Information Flow Refinement for Low Level Systems 9

A large section of work in the refinement domain is based on the notion of
(forward) simulation, cf. [23, 45, 17], which in the present synchronous setting
can be cast as follows.

Definition 1 (Simulation, Observation Preservation).

1. The refinement relation ⇓ is a simulation of →c by →a, if s ⇓ t and t→c t
′

implies s→a s
′ ⇓ t′ for some s′. Moreover, if s ⇓ t, then s is initial or final

if and only if t is.
2. The relation ⇓ preserves p-observations, if whenever s ⇓ t it holds that Obsp(t) =

Obsp(s).

In the functional case the equivalent condition to 1.1 is that t→ t′ implies dte →
dt′e. The simulation property 1.1 allows abstractions to be point-wise extended
to runs by ρ = s0 · · · sn ⇓ t0 · · · tn = σ if si ⇓ ti for all i : 0 ≤ i ≤ |ρ| = |σ| = n+1
and for sets φ, ψ, φ ⇓ ψ, if for all ρ ∈ φ there is σ ∈ ψ such that ρ ⇓ σ, and
vice versa, for all σ ∈ ψ there is ρ ∈ φ such that ρ ⇓ σ. In the functional case
Moreover, we denote by ⇑ the direct image of ⇓−1, i.e., ψ⇑ = {ρ | ∃σ ∈ ψ. ρ ⇓ σ}
and obtain:

Corollary 1. If ⇓ is a simulation of the concrete model, then 1. φ ⇓ ψ ⇒ φ ⊆
ψ⇑ and 2. (ψ⇑) ⇓ ψ. 2

For functional correctness, refinement usually requires both simulation and
observation preservation. In this work we rely on the simulation condition as
the crucial hook needed to relate computations at abstract and concrete level.
Preservation of observations in the sense of 1.2 is used, e.g., in [4] but its neces-
sity appears less clear. For ignorance preservation the key issue is preservation
of observable distinctions and not necessarily the observations themselves. In-
deed, as we show in this paper it is perfectly possible to conceive of meaningful
refinement-like relations that preserve observation distinctions but not the ob-
servations themselves.

The key is to shift attention from preservation of observations to preservation
of distinctions. In particular we distinguish observational equivalence relation ∼p

on the abstract model from its counterpart (written ≈p) on the concrete model.
This motivates the following well-formedness condition:

Definition 2 (Well-formedness). The refinement relation ⇓ is well-formed,
if s1 ⇓ t1 and t1 ≈p t2 and s2 ⇓ t2 implies s1 ∼p s2.

For functional refinement relations this becomes the condition that t1 ≈p t2
implies dt1e ∼p dt2e.

Well-formedness reflects the expectation that information content of models
should generally increase under refinement. Then, if two abstract states are ob-
servationally distinct, we should expect this discriminating power to be preserved
to concrete level. We obtain:

Proposition 2. Suppose that the simulation ⇓ is well-formed. Then:

1. If ρ1 ⇓ σ1 and σ1 ≈p σ2 and ρ2 ⇓ σ2 then ρ1 ∼p ρ2.

10 R. Guanciale et al.

2. Suppose φ ⇓ ψ, then Ipφ ⊇ (Ipψ)⇑.

Proof. 1. Follows immediately from Def. 2. 2. If ρ ∈ (Ipψ)⇑ then we find σ ∈ Ipψ
such that ρ ⇓ σ and a σ′ ∈ ψ such that σ ≈p σ

′. By φ ⇓ ψ there is ρ′ ∈ φ with
ρ′ ⇓ σ′ and by well-formedness ρ ∼p ρ

′. But then ρ ∈ Ipφ.

In other words it follows directly from well-formedness and the simulation
property that ignorance is preserved from concrete to abstract level. We define:

Definition 3 (Refinement). The refinement relation ⇓ is a refinement, if ⇓
is well-formed and a simulation.

4.1 Ignorance Preservation

One key idea for confidentiality preservation, proposed originally by Morgan [38],
is to compare ignorance at abstract level with ignorance at concrete level: If the
ignorance at concrete level is “at least as high as” (in [38]: a superset of) the
ignorance at abstract level, no more information is learned by executing the pro-
tocol at concrete level than what is learned by executing the ideal functionality.
While Prop. 2.2 is useful, our interest, however, is in preservation of ignorance
in the opposite direction.

However, ignorance at abstract and concrete levels is not readily compa-
rable, as in our setting (as opposed to [38]) the state spaces related by the
refinement are different. In general, refinement will reduce nondeterminism and
add observational power by implementation choices, e.g., for data representa-
tion. Nevertheless, reflecting our view of the abstract model as specifying the
desired information flow properties, all information relevant for the analysis of
information flow preservation is available already at abstract level. Thus we can
use the refinement relation to push epistemic properties between the abstract
and concrete levels, as follows:

Definition 4 (Ignorance-Preserving Refinement, IPR). The refinement
⇓ is p-ignorance-preserving, if ⇓ is a well-formed simulation such that φ ⇓ ψ
implies Ipφ ⇓ Ipψ.

We relativize ignorance preservation to the processes p since this allows to
use different abstraction functions for each p, reflecting the potentially different
views each process may have of the refinement. It becomes clear that Def. 4 is
the desired property if we consider an equivalent formulation:

Proposition 3. The refinement ⇓ is p-ignorance-preserving, iff φ ⇓ ψ implies
Ipφ = (Ipψ)⇑.

Proof. By Cor. 1.1, Ipφ ⇓ Ipψ implies Ipφ ⊆ (Ipψ)⇑ and by well-formedness
(Prop. 2.2) Ipφ = (Ipψ)⇑. The other direction follows directly via ((Ipψ)⇑) ⇓ Ipψ
by Cor. 1.2.

A Case Study in Information Flow Refinement for Low Level Systems 11

Thus, IPR means that we have the same ignorance for observer p on both
levels, when viewed in terms of the abstract model. In particular, a concrete
model observer p cannot distinguish more behaviors than possible on the abstract
model, when “re-abstracting” the set of indistinguishable concrete runs. The
following is a useful sufficient and necessary condition for ignorance-preserving
refinement:

Definition 5 (Paired Refinement). The refinement ⇓ is paired, if for all ρ,
ρ′, σ′:

If ρ ∼p ρ
′ ⇓ σ′ then there exists σ s.t. ρ ⇓ σ ≈p σ

′. (∗)

Proposition 4. The paired refinement condition (∗) holds for refinement ⇓ if,
and only if, ⇓ is p-ignorance-preserving.

Proof. The implication IPR ⇒ (∗) follows directly from Ipφ ⇓ Ipψ for φ = {ρ′}
and ψ = {σ′}. For direction (∗)⇒ IPR, assume that φ ⇓ ψ for the refinement ⇓.
For any ρ ∈ Ipφ we find ρ′ ∈ φ such that ρ ∼p ρ

′ and a σ′ ∈ ψ such that ρ′ ⇓ σ′.
By (∗) we find σ s.t. ρ ⇓ σ and σ ≈p σ

′, i.e. σ ∈ Ipψ. Conversely, if σ ∈ Ipψ
then we find σ′ ∈ ψ such that σ ≈p σ

′ and then a ρ′ ∈ φ such that ρ′ ⇓ σ′. By
the simulation property we find ρ such that ρ ⇓ σ and then by well-formedness,
ρ ∼p ρ

′, i.e. ρ ∈ Ipφ, as desired.

Intuitively, (∗) requires that for each pair of indistinguishable abstract runs, if
one of them is implemented, so is the other one and the corresponding concrete
runs are indistinguishable as well.

Assume models Mi, 0 ≤ i ≤ 2, and assume we have ignorance-preserving
refinements ⇓i, i ∈ {1, 2} from Mi−1 to Mi. Then the relational composition
⇓1 ◦ ⇓2 from M0 to M2 should be ignorance-preserving, too. The simulation
property and well-formedness properties are easily checked, it remains to show
that a vertically composed refinement is an IPR if its component refinements
are:

Proposition 5. If the refinements ⇓1 and ⇓2 are ignorance-preserving then so
is ⇓ = ⇓1 ◦ ⇓2.

Proof. Let φ ⇓1 ψ ⇓2 ξ. Using (∗), assume ρ0 ∼ ρ1 ⇓ τ1. We find σ1 such that
ρ1 ⇓1 σ1 ⇓2 τ1. By (∗) there is σ0 with ρ0 ⇓1 σ0 ≈ σ1. Applying (∗) again for
σ0 ∼ σ1 ⇓2 τ1, we obtain τ0 with ρ0 ⇓ τ0 ≈ τ1 and conclude via Prop. 4.

Vertical composability enables a common verification strategy to deal with
perfect recall attackers in epistemic settings: extend the abstract state with an
observable history variable that can be computed from existing observations;
prove that the abstraction that disregards the history variable is a CPR, and
finally analyse a refined model w.r.t. the extended model.

12 R. Guanciale et al.

5 Case Study: Adding a History Variable

In the model processes can observe the active process P (s). Therefore we can
add an observable variable H that keeps track of the number of transitions
performed by each process (this variable simplifies the formalisation of constant

time execution in Section 8). Let s
l−→ s′, then u = (s,H)

l−→ (s′, H ′) = u′ and

H ′(p) = H(p) +

{
1 if P (s) = p

0 otherwise

For this extended model, the simulation simply disregards the history variable.

Lemma 1. For every process p, s ⇓ (s,H) is a IPR for the model of Section 4.1.

Proof: The extended model is simulated by the abstract model by construction,
similarly well-formedness trivially holds. Therefore it suffices to demonstrate
Eq. ∗. Let t = (s,H), σ ∈ R(t), ρ ∈ R(s) such that for every σ(n) = (ρ(n), Hn)
for some n, ρ′ ∈ R(s′), ρ′ ∼p ρ, and t′ = (s′, H). By construction exist σ′ ∈ R(t′)
such that for every n exists H ′n such that σ(n) = (ρ(n), Hn). Since ρ(n) ∼p ρ

′(n),
and since P () is observable we can conclude that H ′n = Hn. Therefore σ′ ≈p σ.
�

6 Case Study: Cache Aware Model

To demonstrate IPR we first introduce a refined version of Section 3’s processor
model. In this model the processes are executed on data-cache enabled hardware
and are allowed to measure the time needed to execute their own instructions.
The refined state has the form t = (s,H, c, τ0, . . . , τn) where H is the history
variable introduced in above, c is a shared cache and τi is the clock for the
process pi. In this model, the processes do not have a shared clock, which is
reasonable for systems that offer only virtualized time to processes.

To be general we use an abstract model for caches. The cache has S entries
(sets), and c is a total function from {0, . . . ,S − 1} to cache entries. A cache
entry e = (h, d) is a pair, where h contains metadata (e.g. validity, tag, state
of replacing policy, dirtiness flags, etc.) and d contains the data of the entry. In
case of a direct mapped cache this is the complete data stored in the cache line,
in multi-way caches the data stored across all the ways. We use the following no-
tation: idx(a) identifies the cache entry corresponding to the address a, hit(h, a)
holds if the address a is stored in the entry e, and get(e, a) extracts the content
of the address from the entry.

To simplify the notation we introduce the following operators to filter lists
of operations accessing the same cache entry i:

ε|i = ε and ((op, a) ◦ l)|i = (op, a) ◦ l|i if idx(a) = i else l|i ,

where ◦ is the list constructor. To extract metadata of cache entries that collide
for a given set of addresses A, we have:

c|A = {(idx(a), c(idx(a)).h) | a ∈ A}

A Case Study in Information Flow Refinement for Low Level Systems 13

d(s,H, c, τ0, . . . , τn)e = (s′, H) defines the abstraction map for the cache-
enabled model, where

s′(a) =

{
get(c(idx(a)), a), if hit(c(idx(a)).h, a)
s(a), otherwise

The behaviour of the cache is governed by four model assumptions, similar
in spirit to those of Section 3.

First, we assume that the kernel abstractions P , R, and W are overloaded
for the refined model and invariant w.r.t. the abstraction function:

Kernel Assumption KA 3 P (t) = P (dte) and for every process p, R(t, p) =
R(dte, p) and W (t, p) = W (dte, p).

Secondly, the cache is transparent:

Cache Assumption CA 1 If t
l−→ t′ then dte l−→ dt′e

In other words: A transition enabled at refined level remains enabled at abstract
level once any state information added in the refinement is abstracted away.
Note, that this implies that the simulation condition (Def.1) holds in our model.
System software must use special precautions to ensure CA 1 and KA 3, for
example by flushing caches and Translation Lookaside Buffer (TLB) when page
tables are updated.

Moreover, the metadata of a cache entry does not depend on cache data or
accesses to addresses belonging to other entries:

Cache Assumption CA 2 Let t1
l1−→ t′1 and t2

l2−→ t′2. For every entry index
i < S such that t1.c(i).h = t2.c(i).h, if l1|i = l2|i then t′1.c(i).h = t′2.c(i).h.

CA 2 expresses that for any two transitions in the cache-aware model, if:

– the metadata associated with a cache entry i is the same in the two prestates,
and

– the two transitions read and write the same addresses,

then the cache metadata associated with entry i is the same in the two poststates.
Assumptions CA 1 and CA 2 are general enough to grant a wide scope to our

analysis. They accommodate write-through as well as write-back caches, both
direct and multi-way associative caches, several types of replacement policies,
and do not require inertia (i.e. they allow the eviction of lines even in absence
of cache misses for the corresponding entry).

Finally, for the processes’ virtualized clocks we make the following assump-
tions:

Time Assumption TA 1 If t1
l−→ t′1 and p = P (t1) then

1. For all p′ 6= p, t1.τp′ = t′1.τp′ .

2. If P (t2) = p, t2
l−→ t′2, t1.τp = t2.τp, then for all a ∈ regs ∪ R(l). dt1e(a) =

dt2e(a), and t1.c|R(l)∪W (l) = t2.c|R(l)∪W (l), then t′1.τp = t′2.τp.

14 R. Guanciale et al.

The upshot of TA 1 is that: Only the clock of the active process is incremented
(TA 1.1); The execution time of an instruction depends only on the register state,
the accessed memory contents, and cache metadata of accessed cache entries
(TA 1.2).

For guaranteeing CA 2 and TA 1.2 the cache must provide some sort of
isolation among cache entries. This is usually the case when the replacement
policy does not have state information that is shared among cache entries. An
example that violates the requirements is prefetching of adjacent entries in case
of cache misses. In this case, the metadata of a cache entry is dependent on the
accesses performed in the adjacent entries. Also, for the same type of cache, the
prefetching of adjacent cache entries can slow down the execution of a memory
access.

In the refined model, a process p can further observe the corresponding pri-
vate clock and the resources that can indirectly affect it, namely the metadata
of the cache elements that can be accessed using the readable memory. Formally,
obsp(t) now contains:

1. The identity of the active process, P (t),
2. p’s memory rights, R(t, p),W (t, p)
3. The content of accessible memory: (a, dte(a)) | a ∈ R(t, p)}
4. The CPU registers when p is active: if (P (s) = p) ∧a ∈ regs then s(a) else ⊥ .
5. p’s local clock, t.τp
6. The cache state as seen by p, t.c|R(t,p)

Lemma 2. For the models of Sections 3 and 6, the function d·e is a well-formed
refinement.

Proof: The first part of Definition 1 is obvious because cache and time are
transparent on the abstract model and other observations are identity-mapped.
For Definition 2, for every s ∼p dt0e let t be a state with the same registers and
memory of s, the same timers as t0, t.c(i).h = t0.c(i).h for all i, and t.c(i).d such
that get(c(idx(a)), a) = s(a) if hit(t0.c(idx(a)), a). Then t satisfies s = dte and
t ∼p t0. �

From KA 3 it follows directly that two states are observation-equivalent if
their corresponding abstractions are observation-equivalent, the process clocks
are the same, and the metadata of the accessible cache entries are equivalent:

Lemma 3. If dt1e ∼p dt2e , t1.τp = t2.τp, and also t1.c|R(t1,p)
= t2.c|R(t2,p)

,
then t1 ≈p t2 holds.

6.1 Timing Channels in the Refined Model

Caches and timing information pose threats to the key manager. For simplicity,
we assume that variables of p1 and every entry of tables Ti are allocated on
different cache entries. Moreover, we assume that in the initial state dt0e = s0,
clocks are zero, the cache is initially empty, and that process p2 knows the
memory layout of the key manager.

A Case Study in Information Flow Refinement for Low Level Systems 15

CA 1 guarantees that in the abstract and refined models process p2 prepares
the same inputs and process p1 provides the same replies. Therefore p2’s knowl-
edge obtained by observing registers, memory, and active process is the same in
the two models. However, in the refined model cache and timing effects must be
taken into account, as these are not reflected at the abstract level. We assume
that p2 “primes” the cache every time it is executed, filling all entries with data
belonging to page 6. For simplicity, we assume that victim p1 accesses only the
addresses needed to implement the key manager, and that the kernel always
accesses the same sequence of addresses during context switches.

It is easy to show that IPR holds for the first start(2) transitions. Let ρn
and σn be the runs R(s0, n) and R(t0, n) respectively.

Initial knowledge. For every run (consisting only of the initial state) ρ′ ∈ Ip2(ρ0)
there is exactly one corresponding run σ′ ∈ Ip2(σ0) where the initial state
has empty cache, zero clocks, and such that dσ′e = ρ′. Therefore, dIp2

(σ0)e =
Ip2

(dσ0e), as desired.

Phase 1. For the first n ≤ end(1) transitions, the attacker clock and the cache
metadata depend on the initial cache state, which is empty in the initial state
of every σ′0 ∈ Ip2

(σ0). Therefore for every σ′0 ∈ Ip2
(σ0) there is σ′n ∈ Ip2

(σn)

such that σ′n(0) = σ′0(0). This means that Ip2(σn) = R(I init
p2

(σ0), n), hence
dIp2(σn)e = Ip2(dσne).

Context Switches. For end(i) < n ≤ start(i+ 1) after phases i ∈ {1, 2}, the
kernel accesses the same sequence of addresses and it cannot modify the process
clock. Therefore Ip2(t0, start(i+ 1)) = R(I init

p2
(R(s0, end(i))), start(i+ 1)) and

dIp2
(σstart(i+1))e = Ip2

(dσstart(i+1)e) if dIp2
(σend(i))e = Ip2

(dσend(i)e).
However, Phase 2 is more challenging. Starting from the last state of σstart(2)

the key manager accesses the input data, the key, and Ti[ki + MACi−1(d, k)] for
i ∈ {1 . . .m}. Therefore, after end(2) transitions, the cache entries that are
evicted are idx(Ti + ki + MACi−1(d, k)), where Ti + ki + j is the address of the
(ki + j)’th element of Ti. On the other hand, if the system had started from the

initial state t′0 ∈ I init
p2

(t0, start(2)) with key k′, then it would have evicted the
entries idx(Ti + k′i + MACi−1(d, k′)).

In other words, for the last state of σend(2) a dependency of the cache meta-
data c(j).h on indices j = idx(Ti + ki + MACi−1(d, k)) is being introduced,
causing dIp2

(σend(2))e to become (in general) a strict subset of Ip2
(ρend(2)), i.e.,

p2 in the refined model learns more than in the abstract model.

In practice, this side-channel enables p2 to discover the key. In fact, for the
first round, we cannot guarantee that the cache metadata is the same when
starting from an initial state where idx(T1+k′1+d1) differs from idx(T1+k1+d1).
This can result in different clocks for p2 after the next context switch (i.e. n >
start(3)). The same reasoning can be done for the other rounds.

16 R. Guanciale et al.

Fig. 3. Ignorance-Preserving Refinement for p2, which can distinguish by design the
key in s2 = dt2e. Refined states t0, t1 have different key and random seeds. Still,

dIinit
p2 (R(t0, end(2)))e = Iinit

p2 (R(s0, end(2))) = Iinit
p2 (R(dt0e, end(2))).

6.2 A Naive Countermeasure for the Key Manager

In this section we show the IPR condition in action by verifying a naive coun-
termeasure, which relies on randomization and the fact that the key manager
performs only a single access to each permutation box. We assume that p2 knows
the memory layout of p1 with the exception of the entries of the tables. Each
table Ti has been permuted using a random byte ri by moving the j’th entry to
position j⊕ri. We assume that p2 does not know ri. For this refinement we have
the same abstraction map, with exception of the entries of Ti which are mapped
as follows: dte(Ti+j) = t(Ti+(j⊕ri)). Therefore, in the refined model the MAC
is computed as MACi(d, k) = MACi−2(d, k)⊕ Ti[(ki + MACi−1(d, k))⊕ ri].

We use Figure 3 to illustrate the scenario. Each state of the refined model is
mapped to a unique abstract state via the abstraction d·e. The vice-versa is not
true: there are at least 256m refined states (for different values of r1 . . . rm) that
are mapped to the same abstract state. This arises from the fact that refined
states have more information than abstract ones.

The function d·e induces an equivalence relation: Two refined states are
abstraction-equivalent if their abstraction is the same. In our example, states
that are abstraction-equivalent must have the same key, but they can have dif-
ferent randomization of the permutation boxes. The equivalence class 〈t0〉p2

can
be partitioned into abstraction-equivalent classes (shown as dashed ellipses in
the figure), each corresponding to an abstract state of 〈s0〉p2

.

To demonstrate IPR for process p2 we focus on Phase 2, which is the one
that violates IPR due to the cache side channel. Let t0 be a given state with
a fixed key k and σn a run of n transitions starting from t0. The argument is
essentially relational. Assume a run ρ′n ∼ dσne. By (5) we have to find a refined
state t′ such that dt′e = ρ′n(0) and σ′n ∼p2

σn for σ′n ∈ R(t′, n), i.e. such that
σn(n′) ∼p2

σ′n(n′) for all n′ ≤ n. By the argument of Section 6 we must show

A Case Study in Information Flow Refinement for Low Level Systems 17

that we can find t′ such that

R(t′, end(2)) ∼p2 R(t0, end(2)) . (1)

Once this is established, agreement on the local clocks and cache states allows
(1) to extend to arbitrary n > end(2).

Assuming that, except for the table lookup, the MAC is computed using
registers only, finding t′ is tantamount to identifying a state that satisfies, for
every round i,

r′i ⊕ (k′i + MACi−1(d, k′)) = ri ⊕ (ki + MACi−1(d, k))

where ri and r′i are the random seeds of t0 and t′, respectively, d is the data in
both states, and k′ is the key in t′.

In fact, starting from any such t0 and t′ the key manager accesses exactly
the same memory locations (even if they have different keys) and therefore the
same cache lines have been evicted in R(t0, end(2)) and R(t′, end(2)). This, and
the fact that t0 and t1 produce the same MAC due to ρ′n ≈p2 dσne, guarantees
that R(t0, end(2)) and R(t′, end(2)) are indistinguishable by p2. This completes
the argument that the naive countermeasure is sufficient for the key manager to
satisfy IPR.

States that are abstraction-equivalent to t0 or t′ are dropped from the initial
ignorance set Ip2(σ0) during the computation, if they have a different random
seed than t0 or t′, i.e., even though they agree on the resulting MAC they are not
in I init

p2
(σend(2)) because the refined model reveals the different seed. However,

this does not violate IPR.
Unfortunately, the above countermeasure is not compositional: i.e., cannot

guarantee IPR if the key manager is invoked multiple times. Let the attacker
provide the data d in the first step, and in the third step request a second MAC
for data d′. Each step of the key manager satisfies IPR when executed in isolation.
However, their composition fails to satisfy IPR if the permutation boxes are not
re-randomized. In fact, in the abstract model the attacker learns the value of
MACm(k, d) and MACm(k, d′). However, in the refined model, the attacker can
learn more information regarding the key used for the first round. The first
execution of the key manager allows p2 to additionally learn r1 ⊕ (k1 + d1),
while the second execution allows the same process to learn r1 ⊕ (k1 + d′1).
Therefore, the combination of the two executions enables p2 to discover the
value of (k1 + d1)⊕ (k1 + d′1) which leaks additional bits of k1 depending on the
values of d1 and d′1.

7 Relational Verification

In order to handle an example of the size and complexity of our key manager a
way to sequentially compose refinements is very useful. Let M1 and M2 differ
only in that the initial states can be different in the two models, and that final
states of M1 are initial states in M2. That is:

18 R. Guanciale et al.

1. The state spaces of M1 and M2 are identical.
2. If s1 → s2 in M1 (i.e., s1 →1 s2) then s1 →2 s2.
3. If s1 →2 s2 and s1 →1 s

′
2 (i.e. s1 is not final in M1) then s1 →1 s2.

4. Final states in M1 are initial states in M2.
5. The observations in M1 and M2 agree, i.e., Obs1(s) = Obs2(s) for all state
s in M1 and M2.

These properties allow to compose the two models sequentially while preserv-
ing observability properties. Note in particular that we allow states, not only
initial/final ones, to be present in both M1 and M2, which is meaningful for
unstructured programs. Also, the definition allows models to be sequentially split
and recomposed in a very flexible fashion, by simply stopping execution of M1

at whichever state is convenient for the analysis. In particular we can define the
sequential composition of M1 and M2 as the model M1;M2 with the initial
states of M1, states and observations of M1 (or M2), and transitions of M2.
We obtain:

Proposition 6.

R(M1;M2) = R(M1);R(M2)

= {ρ1; ρ2 | ρ1 ∈ R(M1), ρ2 ∈ R(M2), lst(ρ1) = fst(ρ2)}

where (ρ1s); (sρ2) = ρ1sρ2 is the sequential composition of runs.

Under information flow constraints the sequential composition of refinements is
generally highly delicate as shown in [43]. Here, we follow the approach of [11]
based on ideas from relational Hoare logic [12].

Definition 6 (Relational Refinement). Let symmetric relations Rpre , Rpost ⊆
T × T be given such that Rpre ⊆ ≈p. The triple {Rpre} ⇓ {Rpost} is a relational
refinement, if ⇓ is a well-formed refinement from Ma to Mc such that:

1. If s1 ⇓ t1 are initial states, then given any s1 ∼p s2, we can find a t2 such
that s2 ⇓ t2 and t1 Rpre t2.

2. If fst(σ1) Rpre t2, ρ1 ⇓ σ1, ρ1 ∼p ρ2, fst(ρ2) ⇓ t2, then a run σ2 exists
with fst(σ2) = t2, ρ2 ⇓ σ2, σ1 ≈p σ2, and if σ1 is complete, so is σ2 and
lst(σ1) Rpost lst(σ2).

The triple {Rpre} ⇓ {Rpost} expresses that whenever there is a complete run from
a concrete state t1, which is a refinement of an abstract state indistinguishable
from s2, then it is possible to find a complete run from some other concrete state
t2, which is a refinement of s2, and such that the two runs are indistinguishable,
Rpre holds on the initial states of the runs, and Rpost on the final states of the
two runs.

By conditioning Rpost on whether σ1 and σ2 are complete, the definition
covers both terminating and diverging programs. Clearly, the definition ensures
that the IPR condition holds.

Corollary 2. Any relational refinement is an IPR. 2

A Case Study in Information Flow Refinement for Low Level Systems 19

Also, we can show that relational refinements provide sequential compositional-
ity. To this end let ⇓ be a relational refinements from both Ma,1 to Mc,1 and
Ma,2 to Mc,2 (even if ⇓1 and ⇓2 are identical as relations they may not both
be relational refinements). For clarity we use ⇓i when we want to refer to ⇓ as a
relational refinement fromMa,i toMc,i, and ⇓1;⇓2 when we want to refer to ⇓
as a relational refinement on M1;M2. Sequential compositionality now follows
from the definitions in a straightforward fashion.

Theorem 1 (Sequential Compositionality [11]). Suppose {Rpre} ⇓1 {R}
and {R} ⇓2 {Rpost} are relational refinements. Then {Rpre} ⇓1;⇓2 {Rpost} is a
relational refinement. 2

It follows by Cor. 2 that if {Rpre} ⇓1 {R} and {R} ⇓2 {Rpost} are relational
refinements then the refinement ⇓1;⇓2 is ignorance preserving.

8 Case Study: Verification of Constant Time Execution
and Cache Coloring

In this section we verify security of two widely adopted countermeasures against
trace driven cache-based side channels: Constant time execution and cache col-
oring.

Hereafter we only consider models that have been extended with the history
variable H. The following definitions provide a formalization of cache coloring
and constant time execution. For each process p we use Ep to identify the indexes
of cache entries that process p is allowed to access. The kernel must restrict the
process-accessible memory to ensure this property:

Countermeasure C 1 If s
l−→ s′ and P (s) = 0 then for all p:

idx(R(s, p)) = idx(R(s′, p)) = Ep .

Since processes cannot directly change their access permissions (KA 1), C 1
allows the set of cache indices from the point of view of p to be partitioned into
two sets: private entries (EP

p = Ep \ ∪p′ 6=pEp′) and shared entries (ES
p = Ep ∩

∪p′ 6=pEp′). A trusted process p′ can perform unrestricted accesses to EP
p′ while

accesses to ES
p′ must satisfy constant time execution. The latter is formalized

by the following property, which requires that memory accesses that involve a
cache entry accessible by process p depend only on information that is available
to p:

Countermeasure C 2 A system is constant time w.r.t. process p if for every

s1 ∼p s2, if s1
l1−→ s′1, and s2

l2−→ s′2, then l1|Ep
= l2|Ep

.

Both C 1 and C 2 can be verified using the abstract model, since they only
constrain the list of accessed addresses and addressable indices, and they do
not require to explicitly analyse the cache state. C 1 is a kernel invariant to be
verified by standard techniques of program analysis. A number of tools exist to

20 R. Guanciale et al.

check C 2, including relational analysis [7] for binary programs, and abstract
interpretation [13] for source code in conjunction with secure compilation [9].

Finally, we can demonstrate that constant time execution and cache coloring
(or a mix of the two) prevent side-channels:

Theorem 2. For a process p, C 1 and C 2 guarantee IPR.

Proof: In order to prove IPR we show that the two properties ensure a rela-
tional refinement for each transition. This allows us to analyze each transition
independently and compose the refinements to obtain properties of complete
executions. In other words, we look at transition systems that have traces of
only one transition per trace and we compose horizontally to obtain the entire
transition system. Here the refinement pre- and post-relations are the same: ≈p.
Therefore condition (1) holds by definition and (2) holds by well-formedness of
d e.

By simulation (CA 1), if t1 ≈p t2, σ1 = t1
l1−→ t′1 then ρ1 = dt1e

l1−→ dt′1e.
Since transition systems here are left-total, then exists σ2 = t2

l2−→ t′2. Let ρ1 ∼p

ρ2 = dt2e
l2−→ s′2, by simulation (CA 1) and determinism of the transition system

we have that s′2 = dt′2e.
Therefore we must prove that t′1 ≈p t′2. Hypothesis t1 ∼p t2 ensures that

P (t1) = P (t2) = p′. Lemma 3 guarantees that ≈p is established if t′1.τp = t′2.τp,
and t′1.c|R(t′1,p)

= t′2.c|R(t′2,p)
. These equalities are demonstrated for two cases:

when p is the active process (p = p′) and when it is suspended (p 6= p′).

Case p = p′ As access permissions are not affected by the cache (KA 3) and
cannot be directly changed by the process (KA 1.2) we get for i ∈ {1, 2}:

R(t′i, p) = R(dt′ie, p) = R(dtie, p) = R(ti, p) (2)

Since the process can only access its own memory (KA 1.1), which is observable,
and the same observable access permissions are in place, it performs the same
instruction with the same effects on the abstract level (KA 2.1), hence:

R(l1) ∪W (l1) ⊆ R(dt1e, p) = R(t1, p) and l2 = l1 (3)

Therefore, for cache metadata we have

t1 ∼p t2

t1.c|R(t1,p)
= t2.c|R(t2,p)

Def. ∼p

t′1.c|R(t1,p)
= t′2.c|R(t2,p)

by (3) and CA 2

t′1.c|R(t′1,p)
= t′2.c|R(t′2,p)

by (2)

A Case Study in Information Flow Refinement for Low Level Systems 21

Similarly, for the process clock we have:

t1 ∼p t2

∀a ∈ R(l1).dt1e(a) = dt2e(a) Def. ∼p

and t1.c|R(l1)∪W (l1)
= t2.c|R(l1)∪W (l1)

and (3)

t′1.τp = t′2.τp by TA 1.2

Case p 6= p′ For the non-active process, the equality of τp follows directly from
TA 1.1. By t1 ∼p t2 we get:

R(t1, p) = R(t2, p) (4)

Since standard processes (p′ 6= 0) cannot change access permissions (KA 1.2)
and kernel (p′ = 0) constraints the observable cache entries of p to Ep (C 1),
then

idx(R(t′1, p)) = idx(R(t1, p)) = idx(R(t2, p))

= idx(R(t′2, p)) = Ep

Therefore t′1.c|R(t′1,p)
= t′2.c|R(t′2,p)

is equivalent to showing that t′1.c(i).h =

t′2.c(i).h for every i ∈ Ep:

t1 ∼p t2

t1.c(i).h = t2.c(i).h Def. ∼p and (4)

t′1.c(i).h = t′2.c(i).h by C 2 and CA 2

�

9 Related Work

Information flow security policies that require a complete absence of leakage
are usually specified using different variations of noninterference following the
approach pioneered by Goguen and Meseguer [22]. Various verification methods
for noninterference have been developed including the self-composition method
pioneered by Hähnle and others [19].

For realistic systems we need to support communication beyond the multi-
level security model. IPR allows to transfer arbitrary information flow properties
from specification (the abstract model) to implementation (the refined model)
without the need of a specific mechanism for declassification, like the ones pro-
posed in [42, 37, 5, 8, 6, 15, 37]. This allows to verify countermeasures against
side-channels without the need of taking into account the mechanism used to
analyze declassification in the abstract model.

The intuition behind IPR has been used to analyze information flow security
in presence of speculative processors. Both conditional noninterference [26] and

22 R. Guanciale et al.

speculative noninterference [28] are restricted forms of IPR that formalize ab-
sence of speculative side channels by requiring that states non-interfering under
non-speculative semantics are non-interfering under speculative semantics.

A precursor to IPR is the work of Cohen et al. [16] on abstraction in multi-
agent systems. They introduce an epistemic simulation relation that is essentially
a state-based version of IPR, and use this to show preservation of formulas in
the epistemic temporal logic ACTLK.

Morgan and McIver [38, 35] propose an instrumented shadow semantics for
ignorance-preserving program refinement, constructing the ignorance set explic-
itly for the final values of hidden variables. Moreover, their refinement requires
equality for all global variables, allowing the introduction of new observations
only as local variables within the scope of the refined program. These local vari-
ables cease to exist after the scope of the program has ended, hence the approach
does not allow for persistent implementation variables (e.g. state of caches) that
can carry data between invocations of different program segments.

One of the features that differentiate IPR from other works is that IPR sup-
ports introducing secret dependent observations together with sequential com-
positionality. Similarly to Section 6.2, a compiler may shuffle an array using a
random key r and introduce a memory look-up dependent on s⊕r without com-
promising the secrecy of s. This type of refinement is not considered in [9, 23, 17]
because it violates the assumption requiring that all refined runs of the same
abstract state have the same leakage. Similarly, this is not allowed in [39], since
modified variables must either be private, which is not the case for τp2

, or have
their classification decreased, which would prevent the indirect flow of s⊕r to τp2 .
This makes IPR a more permissive condition justifying information-theoretically
secure refinement. Therefore it allows us to raise the question when it is possi-
ble to infer that an entire implementation is information flow secure in terms
of the information flow security of the specification and the information flow
preservation of each step.

Heifer et all [29] have investigate how to formally verify prevention of timing
channels in seL4. Similarly to Section 8, they provide an abstracted representa-
tion of the hardware resources and postulated how they cause timing channels.
Their work is specific for seL4 and depends on specific kernel designs. In con-
tract, this work provides a blueprint for this type of analyses by using the general
framework of IPR.

Security of constant time programming has been investigated in [10], where
Barthe et. al. show that this policy protects against cache based side channels in
virtualized environments. In [9] the authors show that several compiler optimiza-
tions do not affect the constant time policy, by demonstrating that observational
noninterference w.r.t. a source state relation results in observational noninter-
ference w.r.t. a target state relation after compilation.

A Case Study in Information Flow Refinement for Low Level Systems 23

10 Concluding remarks

We have analyzed a provably secure separation kernel using a compositional
approach to information flow preserving refinement that is based on observer ig-
norance. In our abstract model, we have formalized a flat memory machine and
axiomatized kernel properties that entail functional correctness. Once we refined
the model to include caches and timing effects, we have shown information leak-
age for a simple key manager, i.e. observer ignorance is not preserved. Deploying
two widely-adopted countermeasures such as cache coloring or a constant-time
programming policy recovers ignorance preservation.

A possible extension of this work is to consider different attacker models.
If extended to multiple attackers, constant time execution does not guarantee
ignorance preservation individually for each attacker due to the presence of covert
channels. However, it may be possible to reduce this case to a single, distributed
attacker. In addition, one can handle access-driven attackers, i.e., attackers that
cannot perform observations while suspended, by introducing a weak transition
system that hides attacker-inactive steps.

It would also be interesting to extend the framework to handle other types of
system features. For example, to handle cache flushes we would require constant
time execution only for addresses that collide with cache entries that have not
been previously cleaned. This approach can work if one can demonstrate that
cache metadata is correctly reset after a flush, though unfortunately hardware
vendors do not usually provide enough details about implementations to con-
clude this. To handle dynamic cache partitions at the kernel level, we should
ensure the abstract model reflects any side channels that arise from the parti-
tioning mechanism.

A final and more difficult problem concerns attackers potentially abusing
low level “features” such as Rowhammer [31], mismatched cache attributes [27],
speculative execution, or self-modifying code to induce changes in program be-
havior that are not visible at the abstract level where the effect of these features
may not be reflected. We call such attacks behavior morphing. In such cases the
machinery in this paper no longer works fully as intended. On the other hand,
countermeasures against vulnerabilities like Rowhammer do exist [14] that suit-
ably confine the effects of any behavior morphing and should be verifiable using
techniques akin to the ones we present in this paper. We leave a proper treat-
ment of ignorance-preserving refinement in the presence of behavior morphing
for future work.

Acknowledgment. This work partially was supported by grants from the Swedish
Foundation for Strategic Research and the Swedish Civil Contingencies Agency,
and the German Federal Ministry of Education and Research (BMBF) through
funding for the CISPA-Stanford Center for Cybersecurity (FKZ: 13N1S0762).

Bibliography

[1] seL4 Project, available from: http://sel4.systems/. Accessed: 2017-04-21

[2] Abadi, M., Lamport, L.: The existence of refinement mappings. Theoreti-
cal Computer Science 82(2), 253–284 (1991). https://doi.org/10.1016/0304-
3975(91)90224-P

[3] Acıiçmez, O., Koç, Ç.K., Seifert, J.P.: Predicting secret keys via branch
prediction. In: Cryptographers’ Track at the RSA Conference. pp. 225–242.
Springer (2007)

[4] Alur, R., Cerný, P., Zdancewic, S.: Preserving secrecy under refinement. In:
International Colloquium on Automata, Languages and Programming. pp.
107–118. Springer (2006)

[5] Askarov, A., Chong, S.: Learning is change in knowledge:
Knowledge-based security for dynamic policies. In: Computer Se-
curity Foundations Symposium (CSF). pp. 308–322. IEEE (2012).
https://doi.org/10.1109/CSF.2012.31

[6] Askarov, A., Sabelfeld, A.: Gradual release: Unifying declassification, en-
cryption and key release policies. In: Symposium on Security and Privacy.
pp. 207–221. IEEE (2007). https://doi.org/10.1109/SP.2007.22

[7] Balliu, M., Dam, M., Guanciale, R.: Automating information flow anal-
ysis of low level code. In: Proceedings of the Conference on Computer
and Communications Security. pp. 1080–1091. CCS’14, ACM (2014).
https://doi.org/10.1145/2660267.2660322

[8] Balliu, M., Dam, M., Le Guernic, G.: Epistemic temporal logic
for information flow security. In: Workshop on Programming Lan-
guages and Analysis for Security. pp. 6:1–6:12. ACM (2011).
https://doi.org/10.1145/2166956.2166962

[9] Barthe, G., Grégoire, B., Laporte, V.: Secure compilation of side-channel
countermeasures: The case of cryptographic “constant-time”. In: IEEE
31st Computer Security Foundations Symposium (CSF). pp. 328–343 (July
2018). https://doi.org/10.1109/CSF.2018.00031

[10] Barthe, G., Betarte, G., Campo, J., Luna, C., Pichardie, D.: System-level
non-interference for constant-time cryptography. In: Proceedings of the 2014
ACM SIGSAC Conbference on Computer and Communications Security.
pp. 1267–1279. ACM (2014)

[11] Baumann, C., Dam, M., Guanciale, R., Nemati, H.: On compositional in-
formation flow aware refinement. In: 34th IEEE Computer Security Foun-
dations Symposium, CSF 2021, Dubrovnik, Croatia, June 21-25, 2021. pp.
1–16. IEEE (2021). https://doi.org/10.1109/CSF51468.2021.00010, https:
//doi.org/10.1109/CSF51468.2021.00010

[12] Benton, N.: Simple relational correctness proofs for static analyses
and program transformations. SIGPLAN Not. 39(1), 14–25 (Jan 2004).
https://doi.org/10.1145/982962.964003

http://sel4.systems/
https://doi.org/10.1016/0304-3975(91)90224-P
https://doi.org/10.1016/0304-3975(91)90224-P
https://doi.org/10.1109/CSF.2012.31
https://doi.org/10.1109/SP.2007.22
https://doi.org/10.1145/2660267.2660322
https://doi.org/10.1145/2166956.2166962
https://doi.org/10.1109/CSF.2018.00031
https://doi.org/10.1109/CSF51468.2021.00010
https://doi.org/10.1109/CSF51468.2021.00010
https://doi.org/10.1109/CSF51468.2021.00010
https://doi.org/10.1145/982962.964003

A Case Study in Information Flow Refinement for Low Level Systems 25

[13] Blazy, S., Pichardie, D., Trieu, A.: Verifying constant-time implementations
by abstract interpretation. In: European Symposium on Research in Com-
puter Security. pp. 260–277. Springer (2017)

[14] Brasser, F., Davi, L., Gens, D., Liebchen, C., Sadeghi, A.R.: Can’t touch
this: Software-only mitigation against rowhammer attacks targeting kernel
memory. In: 26th {USENIX} Security Symposium ({USENIX} Security 17).
pp. 117–130 (2017)

[15] Chong, S., Myers, A.C.: Security policies for downgrading. In: Conference
on Computer and Communications Security. pp. 198–209. ACM (2004).
https://doi.org/10.1145/1030083.1030110

[16] Cohen, M., Dam, M., Lomuscio, A., Russo, F.: Abstraction in model check-
ing multi-agent systems. In: Proc. 8th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS), Vol, 2. pp. 945–952
(2009)

[17] Costanzo, D., Shao, Z., Gu, R.: End-to-end verification of information-flow
security for C and assembly programs. In: Proceedings of the 37th ACM
SIGPLAN Conference on Programming Language Design and Implementa-
tion (PLDI). pp. 648–664 (2016). https://doi.org/10.1145/2908080.2908100

[18] Dam, M., Guanciale, R., Khakpour, N., Nemati, H., Schwarz, O.: Formal
verification of information flow security for a simple ARM-based separation
kernel. In: Proceedings of the Conference on Computer and Communica-
tions Security. pp. 223–234. CCS’13, ACM (2013)

[19] Darvas, Á., Hähnle, R., Sands, D.: A theorem proving approach
to analysis of secure information flow. In: Hutter, D., Ullmann, M.
(eds.) Security in Pervasive Computing, Second International Confer-
ence, SPC 2005, Boppard, Germany, April 6-8, 2005, Proceedings. Lec-
ture Notes in Computer Science, vol. 3450, pp. 193–209. Springer
(2005). https://doi.org/10.1007/978-3-540-32004-3 20, https://doi.org/

10.1007/978-3-540-32004-3_20

[20] Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about knowl-
edge. MIT Press (1995)

[21] Ge, Q., Yarom, Y., Cock, D., Heiser, G.: A survey of microarchitectural
timing attacks and countermeasures on contemporary hardware. J. Cryp-
tographic Engineering 8(1), 1–27 (2018)

[22] Goguen, J.A., Meseguer, J.: Security policies and security models.
In: Symposium on Security and Privacy. pp. 11–20. IEEE (1982).
https://doi.org/10.1109/SP.1982.10014

[23] Graham-Cumming, J., Sanders, J.W.: On the refinement of non-
interference. In: Proceedings Computer Security Foundations Workshop IV
(CSFW). pp. 35–42 (1991). https://doi.org/10.1109/CSFW.1991.151567

[24] Gruss, D., Maurice, C., Mangard, S.: Rowhammer.js: A remote software-
induced fault attack in Javascript. In: Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment. pp. 300–321. Springer (2016)

[25] Gu, R., Shao, Z., Chen, H., Wu, X., Kim, J., Sjöberg, V., Costanzo, D.:
Certikos: An extensible architecture for building certified concurrent os ker-
nels. In: Proceedings of the 12th USENIX Conference on Operating Systems

https://doi.org/10.1145/1030083.1030110
https://doi.org/10.1145/2908080.2908100
https://doi.org/10.1007/978-3-540-32004-3_20
https://doi.org/10.1007/978-3-540-32004-3_20
https://doi.org/10.1007/978-3-540-32004-3_20
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1109/CSFW.1991.151567

26 R. Guanciale et al.

Design and Implementation. pp. 653–669. OSDI’16, USENIX Association,
Berkeley, CA, USA (2016)

[26] Guanciale, R., Balliu, M., Dam, M.: Inspectre: Breaking and fix-
ing microarchitectural vulnerabilities by formal analysis. In: CCS ’20:
2020 ACM SIGSAC Conference on Computer and Communications
Security, Virtual Event, USA, November 9-13, 2020. pp. 1853–1869
(2020). https://doi.org/10.1145/3372297.3417246, https://doi.org/10.

1145/3372297.3417246
[27] Guanciale, R., Nemati, H., Baumann, C., Dam, M.: Cache stor-

age channels: Alias-driven attacks and verified countermeasures. In:
Symposium on Security and Privacy. pp. 38–55. IEEE (2016).
https://doi.org/10.1109/SP.2016.11

[28] Guarnieri, M., Köpf, B., Morales, J.F., Reineke, J., Sánchez, A.: Spectector:
Principled detection of speculative information flows. In: 2020 IEEE Sym-
posium on Security and Privacy, SP 2020, San Francisco, CA, USA, May
18-21, 2020. pp. 1–19 (2020). https://doi.org/10.1109/SP40000.2020.00011,
https://doi.org/10.1109/SP40000.2020.00011

[29] Heiser, G., Klein, G., Murray, T.: Can we prove time protection? In: Pro-
ceedings of the Workshop on Hot Topics in Operating Systems. pp. 23–29
(2019)

[30] Kessler, R.E., Hill, M.D.: Page placement algorithms for large real-
indexed caches. Transactions on Computer Systems 10(4), 338–359 (1992).
https://doi.org/10.1145/138873.138876

[31] Kim, Y., Daly, R., Kim, J., Fallin, C., Lee, J.H., Lee, D., Wilkerson, C.,
Lai, K., Mutlu, O.: Flipping bits in memory without accessing them: An
experimental study of dram disturbance errors. In: Proceeding of the 41st
Annual International Symposium on Computer Architecuture. pp. 361–372.
ISCA ’14, IEEE Press, Piscataway, NJ, USA (2014)

[32] Kocher, P., Genkin, D., Gruss, D., Haas, W., Hamburg, M., Lipp, M., Man-
gard, S., Prescher, T., Schwarz, M., Yarom, Y.: Spectre attacks: Exploiting
speculative execution. ArXiv e-prints (Jan 2018)

[33] Kocher, P.C.: Timing attacks on implementations of diffie-hellman, rsa, dss,
and other systems. In: Annual International Cryptology Conference. pp.
104–113. Springer (1996)

[34] Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Cryptology
Conference on Advances in Cryptology. pp. 388–397. Springer (1999)

[35] McIver, A., Morgan, C.C.: Sums and Lovers: Case studies in security,
compositionality and refinement. In: Formal Methods. pp. 289–304. Springer
(2009)

[36] McLean, J.: The specification and modeling of computer security. Computer
23(1), 9–16 (Jan 1990). https://doi.org/10.1109/2.48795

[37] van der Meyden, R.: What, indeed, is intransitive noninterference? In: Euro-
pean Symposium on Research in Computer Security (ESORICS). pp. 235–
250. Springer (2007)

[38] Morgan, C.: The Shadow Knows: Refinement and security in sequen-
tial programs. Science of Computer Programming 74(8), 629–653 (2009).
https://doi.org/10.1016/j.scico.2007.09.003

https://doi.org/10.1145/3372297.3417246
https://doi.org/10.1145/3372297.3417246
https://doi.org/10.1145/3372297.3417246
https://doi.org/10.1109/SP.2016.11
https://doi.org/10.1109/SP40000.2020.00011
https://doi.org/10.1109/SP40000.2020.00011
https://doi.org/10.1145/138873.138876
https://doi.org/10.1109/2.48795
https://doi.org/10.1016/j.scico.2007.09.003

A Case Study in Information Flow Refinement for Low Level Systems 27

[39] Murray, T.C., Sison, R., Pierzchalski, E., Rizkallah, C.: Compositional ver-
ification and refinement of concurrent value-dependent noninterference. In:
IEEE 29th Computer Security Foundations Symposium, (CSF). pp. 417–
431 (2016). https://doi.org/10.1109/CSF.2016.36

[40] Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures:
The case of AES. In: RSA Conference on Topics in Cryptology. pp. 1–20.
Springer (2006)

[41] Page, D.: Theoretical use of cache memory as a cryptanalytic side-channel.
IACR Cryptology ePrint Archive 2002, 169 (2002)

[42] Rushby, J.: Noninterference, transitivity and channel-control security poli-
cies. Tech. rep., SRI International (1992)

[43] Santen, T., Heisel, M., Pfitzmann, A.: Confidentiality-preserving refinement
is compositional - Sometimes. In: Proceedings of the 7th European Sympo-
sium on Research in Computer Security (ESORICS). p. 194–211. Springer-
Verlag (2002)

[44] Stefan, D., Buiras, P., Yang, E.Z., Levy, A., Terei, D., Russo, A., Mazières,
D.: Eliminating cache-based timing attacks with instruction-based schedul-
ing. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) European Symposium
on Research in Computer Security. pp. 718–735. Springer (2013)

[45] Van der Meyden, R., Zhang, C.: Information flow in systems with sched-
ulers, Part II: Refinement. Theor. Comput. Sci. 484, 70–92 (May 2013).
https://doi.org/10.1016/j.tcs.2013.01.002

https://doi.org/10.1109/CSF.2016.36
https://doi.org/10.1016/j.tcs.2013.01.002

	A Case Study in Information Flow Refinement for Low Level Systems

