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ABSTRACT

The OPC UA protocol is an upcoming de-facto standard for building
Industry 4.0 processes in Europe, and one of the few industrial
protocols that promises security features to prevent attackers from
manipulating and damaging critical infrastructures. Despite the
importance of the protocol, challenges in the adoption of OPC UA’s
security features by product vendors, libraries implementing the
standard, and end-users were not investigated so far.

In this work, we systematically investigate 48 publicly available
artifacts consisting of products and libraries for OPC UA and show
that 38 out of the 48 artifacts have one (or more) security issues.
We show that 7 OPC UA artifacts do not support the security fea-
tures of the protocol at all. In addition, 31 artifacts that partially
feature OPC UA security rely on incomplete libraries and come
with misleading instructions. Consequently, relying on those prod-
ucts and libraries will result in vulnerable implementations of OPC
UA security features. To verify our analysis, we design, implement,
and demonstrate attacks in which the attacker can steal credentials
exchanged between victims, eavesdrop on process information, ma-
nipulate the physical process through sensor values and actuator
commands, and prevent the detection of anomalies.

CCS CONCEPTS

« Security and privacy — Key management; Usability in se-
curity and privacy; Authentication.
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1 INTRODUCTION

The increasing interconnection of industrial components critically
relies on the security of the communication protocol adopted for
Machine to Machine (M2M) communication to prevent adversarial
manipulation of the process, leading to significant monetary loss
and physical damage [59]. The OPC Unified Architecture (OPC UA)
protocol [20] is often considered the de-facto standard for build-
ing Industry 4.0 processes and it is the reference communication
protocol in RAMI4.0 (the reference model for Industry 4.0 [66] in
European countries such as France, Italy and Germany [23]). In
2006, the OPC Foundation released the first OPC UA specification
featuring security mechanisms such as authentication, authoriza-
tion, integrity, and confidentiality. The German Federal Office for
Information Security (BSI) released the ‘OPC UA Security Analy-
sis’ [9], reporting that ‘No systematic errors could be detected’ in
the OPC UA standard.

Nevertheless, there seem to be significant challenges to set up se-
cure OPC UA deployments in practice. In [14], the authors perform
a scan for OPC UA servers reachable over the Internet and find that
92% of the deployments show issues with security configuration.
Among those, 44% of the servers are accessible without any authen-
tication requirements. To mitigate that issue, the authors suggest
(similar to [9]) to disable insecure security modes and policies and
enforce user authentication. The authors of [14] suggest that their
findings are due to the configuration complexity of OPC UA, but
no root cause analysis was provided. Indeed, OPC UA requires a
correct configuration to prevent attacks such as: i) attackers feeding
incorrect information to clients (Rogue Server attack); ii) eavesdrop
and change values which can directly alter the physical process
(Rogue Client attack); iii) or both (Middleperson attack).

Security threats through configuration complexity are in general
investigated in the field of usable security [2, 26, 35]. For example,
studies demonstrated that a little set of demo applications or poor
documentation resulted in insecure deployments [35]. Challenges
in setting up OPC UA networks were not investigated so far.

In this work, we are the first to systematically investigate the
security of a range of OPC UA libraries and products. Despite the
popularity of OPC UA and its advanced security concept (compared
to other industrial protocols), we show that in practice many OPC
UA artifacts have missing support for security features of the pro-
tocol. Those limitations make the security configuration infeasible,
or give a false sense of security (i.e., traffic encryption occurs with
untrusted parties). Several of the artifacts that claim to feature OPC
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UA security rely on libraries that are incomplete, insecure and pro-
vide instructions that lead to insecure settings. While such issues
are implementation-specific, we show that the OPC UA standard
is insufficient, as it supports those insecure behaviors. Lastly, we
propose several practical countermeasures.

To assess the vulnerability of libraries, we create a framework
that implements Rogue Server, Rogue Client, and Middleperson
attacks. For each library, we set up a client and/or server application
using protocol options that can be expected to provide a secured
OPC UA instance, and then attack that system. For cases where
the attacks succeed, we further investigate the cause. We show
that Middleperson attacks are possible and allow to manipulate
the process and prevent reliable control of the system. Surpris-
ingly, we find that even recovery of plaintext credentials from
intercepted encrypted communications is easily possible with our
Rogue Server and Middleperson attacks. This finding contrasts with
prior work [55], where the authors perform a Middleperson attack
on OPC UA applications and conclude that it is impossible to re-
cover user passwords in OPC UA systems (even with security mode
‘None’).

Contributions. We summarize our contributions as follows

e We systematically analyze 22 products and identify signifi-
cant recurring (for 15 out of 22) issues with the availability
OPC UA security features, or their setup instructions.

e We systematically analyze 16 libraries and for all of them we
identify at least one reoccurring issue with the implementa-
tion of security features (either at client side, at server side
or both).

e We demonstrate the feasibility of the identified attacks by
implementing the attacks with custom proof-of-concept ap-
plications!.

Disclosure. We discussed our findings with the OPC foundation,
leading to improvements of the specifications. Our work was based
on publicly available information extracted from user manuals, li-
brary documentation and the OPC UA standard. As the feasibility of
our attacks depends on (past) end-user configuration process carried
out in the target system and not on a specific software/hardware
vulnerability, there was no disclosure to vendors required. Never-
theless, our findings already led to improvements of at least one
artifact after public discussion of this work.

Organization. The remainder of this work is organized as fol-
lows. In Section 2 we present the details of the OPC UA protocol.
In Section 3 we present our research methodology together with
system and attacker model. In Section 4 we explain how we build
the framework that we use to analyze the libraries. In Section 5 we
report the results of our research. A discussion of countermeasures
is presented in Section 6. Related work is presented in Section 7
followed by conclusions in Section 8.

2 BACKGROUND ON OPC UA

OPC UA [20] is an industrial communication protocol developed
by the OPC foundation that allows platform-independent and se-
cure communication by design. Those two characteristics make

IThe framework is available at https://github.com/scy-phy/OPC-UA-attacks-POC
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Figure 1: (a) Overview of the connection establishment pro-
cedure. The server provides a list of endpoints. The client
selects which endpoint to connect to. If a secure endpoint is
chosen, the application authentication through certificates
is performed. (b) Options available for the endpoint configu-
ration. The Security Mode, Security Policy and User Identity
Token are chosen independently from each other.

this protocol stand out when compared to other common indus-
trial protocols. Adopting this protocol in an industrial plant allows
integration between heterogeneous hardware, which is instead a
constraint brought by proprietary protocols (e.g., Siemens S7). At
the same time, the modern security-by-design features offered by
the protocol promise to mitigate some of the common security
threats for CPS (e.g., no message authentication or encryption). The
last OPC UA specification 1.04 was released in 2018 and is divided
into eighteen parts. Part 2 describes the security model of OPC UA,
and Part 4 describes the services that implement security primi-
tives. Two communication strategies are possible: client-server and
publisher-subscriber. Both allow messages to be signed to ensure
authenticity and encrypted to add confidentiality. OPC UA does
not enforce the use of security, messages can be exchanged without
security. Figure 1(a)(b) reports an example of secure connection es-
tablishment in client-server. A server offers several endpoints, each
defined by a Security Mode, a Security Policy, and the supported
User Identity Token(s). When initiating a connection, the client
chooses the endpoint (from an unauthenticated list of endpoints).
The Security Mode defines how messages are exchanged to achieve
authentication, confidentiality, and integrity. Available Security
Modes are None, Sign, SignAndEncrypt. Security Policies define
the cryptographic primitives used for the specific security mode.
The UserldentityToken defines the supported user authentication
methods for an endpoint: Anonymous (no user authentication),
Username&Password, Certificate [49].

Certificate Management. Secure connection establishment (Se-
curity Mode not ‘None’) requires OPC UA applications (clients and
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servers) to exchange their Application Instance Certificate. Upon
receiving a certificate, an application needs to decide whether the
received certificate is trustworthy. To this end, each OPC UA appli-
cation has a list of certificates that are trusted (Certificate Trustlist).
This list contains self-signed certificates or certificates from Cer-
tificate Authorities (CA). In the first case, the certificates are often
exchanged manually between applications, but the use of a Certifi-
cate Manager with a Global Discovery Server (GDS) is also possible.
GDS provides two main functionalities: i) Application discovery:
OPC UA applications use the GDS to find available applications that
have previously registered with the GDS. ii) Certificate manage-
ment: applications push and pull certificate to the GDS to update
Trustlist.

Secure Connection Establishment. To establish a secure con-

nection, the server sends its certificate through the GetEndpoints
response. If the client trusts the server and selects a secure end-
point, the OpenSecureChannel message carries the client certifi-
cate. Upon trusting the client’s certificate on server side, the secure
channel is established. The OpenSecureChannel request and re-
sponse use asymmetric encryption and messages contain nonces
used to compute the symmetric signing and encryption keys used
in sessions [48]. Due to space constraints further details can be
found in Appendix A.

3 OPC UA SECURITY ASSESSMENT
METHODOLOGY

OPC UA features a number of cryptographic options to establish
secure channels (see Section 2). Like in any system, authentication
of parties to each other (application authentication in OPC UA)
requires either pre-shared secrets or certificates with public keys.
In this work, we argue that in the ICS setting (in which OPC UA is
adopted), no public PKI (e.g., with root CAs) is available, so a core
issue is how to establish the initial trust between parties. On the
Internet, the initial distribution of public keys is commonly solved
by shipping devices (or OS) with certificates of a set of core root cer-
tificate authorities (CAs). Servers (identified by unique DNS names)
then provide certificates authenticated directly (or indirectly) by
those root CAs. Such a solution is not possible for ICS networks,
as they are air-gapped and do not provide (externally verifiable)
unique addressing. Local self-signed CAs are an alternative, but
their certificates will not be shipped together with devices newly in-
troduced into the system. For this reason, bootstrapping the security
in an OPC UA system relies on the manual certificates distribution.
In OPC UA there are two ways to perform certificate management
and distribution: i) Through self-signed certificates, ii) through the
GDS CertificateManager (see Section 2). The focus of our security
assessment is the application authentication functionality required
for the security in OPC UA.

3.1 System and Attacker Model

We assume a local ICS network with OPC UA server as depicted in
Figure 2. The system operator guarantees security in the OPC UA
system by allowing the server to offer only secure endpoints (i.e.,
Sign or SignAndEncrypt, see Section 2) as suggested by the BSI [9].
We note that Intrusion Detection Systems are out of scope in our
model as we aim to look at security guarantees from the OPC UA

CPSloTSec °22, November 7, 2022, Los Angeles, CA, USA

SCADA Wl G
OPC UA Client (g, ok Station

— Attacker

=
[||||]- | ,__..\2)
e

[

OPC UA Server

Sensors

(@)

Actuators

Figure 2: Example OPC UA network with a server and two
clients. An attacker that wants to establish themselves as a
PitM has to (1) pose as an OPC UA client towards the legiti-
mate OPC UA server and (2) as an OPC UA server towards a
legitimate client.

artifacts. We assume the network operator follows the user manual
shipped with the deployed ICS hardware/software to configure the
OPC UA server and client security(this is a common assumption in
related usable security works, e.g., [2]). In this work, we consider
three attackers with different goals corresponding to the OPC UA
model introduced in the Part 2 of the standard [49].

Rogue Server. A new device is introduced and now needs to
establish secure OPC UA communications with other devices. An
attacker is present in the network and aims to manipulate OPC
UA clients by providing malicious information or stealing OPC UA
user credentials. They? create a server that offers secure endpoints
to establish a secure connection with new clients and make them
believe that they are communicating with the actual OPC UA server
in the network.

Rogue Client. An attacker aims to connect to the OPC UA server
to eavesdrop or manipulate the information shared between the
server and clients. They create a client that attempts to connect to
the server although not authorized by the network operator.

Middleperson attack (PitM). An attacker aims to establish them-
selves as Middleperson between the client and server, intercepting
and manipulating all communications between both. This requires
achieving Rogue Client and Server objectives.

3.2 Research Questions and Challenges

With our research, we aim to address the following research ques-
tions. R1. What are practical challenges for the correct use of OPC UA
security features? R2. Are OPC UA security features correctly imple-
mented by the vendors and products? R3. What are the consequences
of breaking OPC UA security features?

While addressing those research questions, we tackle the follow-
ing research challenges: i) Partially proprietary products without
source code. ii) available OPC UA libraries partially documented,
iii) unavailability of products (or real deployments) for testing.

2We use the gender-neutral ‘they’ as pronoun in this work
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3.3 Proposed Approach

Our approach focuses on the analysis of security features imple-
mented by OPC UA compatible artifacts. We focus on implemented
key management functionalities i.e., i) Proprietary hardware and
software that implements OPC UA stack, ii) Open-source libraries
that implement the OPC UA stack.

To address R1, we survey proprietary and open source OPC
UA enabled products. We investigate practical challenges for cor-
rectly configuring secure OPC UA setups in the analyzed products
checking availability of features. Investigating challenges to set up
security is common practice in usable security, where resources
available to developers are analyzed to understand if they help
configuring secure systems [2, 26, 34, 35].

To address R2, we propose a framework to verify the correct-
ness of implementations of OPC UA security features in hardware
and software products. For proprietary products, we consult user
manuals as we had no access to physical products. For libraries, we
practically tested the security features deploying OPC UA clients
and server locally. We tested the three attacks presented in the
Attacker Model, which are feasible due to erroneous or incomplete
key management features. For each library, we set up OPC UA
server and client following the instructions and demo applications
provided with libraries. Testing the application is useful because,
a) not all functionality provided by products was sufficiently de-
scribed in documentation to be able to classify its features for our
paper; b) documentation and code does not always match, so we
double-checked with our implementation and demos. We note that,
demo applications, user manuals and documentations are resources
used by developers to build their applications, so it is realistic to
follow them to identify poor security implementations and propa-
gation of security pitfalls [2, 35]. Recently, it was reported that it
was possible to alter the infotainment system firmware on a 2021
Hyundai Ioniq car using publicly known AES 128-bit CBC private
keys provided as an example in NIST documents [61].

To address R3, we show that breaking the application authen-
tication configuration will have severe consequences on OPC UA
security. An attacker will be able to obtain plain-text passwords
when legitimate clients connect to Rogue Server or the Middleper-
son system and perform user authentication, to modify the data
seen by OPC UA clients and servers, and to execute function calls
on an OPC UA server that can interfere with the physical process
(e.g., send commands to actuators).

4 FRAMEWORK AND IMPLEMENTATION

In this section, we present our framework for the security assess-
ment of OPC UA artifacts. First, we will describe our framework
from a high-level perspective. Then, we provide the details of our
framework implementation.

4.1 Framework

Our framework tests OPC UA clients and OPC UA servers against
Rogue Server, Rogue Client, and Middleperson attacks. For OPC UA
servers, the framework identifies vulnerabilities to Rogue Client
Attacks, while for OPC UA clients the framework identifies vul-
nerabilities to Rogue Server Attacks. The framework checks for
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Figure 3: Rogue Server workflow. The server waits for a
new connection. When the Server receives a getEndpoints
request it provides a certificate that was not trusted on the
client side upon connection (in red). If the client trusts the
server certificate and sends an OpenSecureChannel to the
server, the Rogue Server allows the connection (in green).
The attacker can, for example, steal credentials and send ma-
nipulated data.

vulnerabilities generated by incorrect (or incomplete) Trustlist man-
agement. When both Rogue Client and Rogue Server vulnerabilities
are present in the OPC UA network, Middleperson attacks can be
exploited.

Rogue Server. In Figure 3 we report the steps followed to verify
the vulnerability to the Rogue Server. The test employs an OPC UA
Rogue Server to test OPC UA clients. The Rogue Server waits for
a getEndpoints request from a victim client and replies offering
secure endpoints and its self-signed application instance certificate
that is not present in the client’s Trustlist. The victim client receives
the endpoints and the certificate. The Trustlist of the OPC UA victim
client does not contain the Rogue Server’s certificate. The victim
client should not establish a secure connection with the untrusted
Rogue Server as the root of trust between client and Rogue Server
was not established upon connection. If the victim client is correctly
configured, it will not continue the interaction with the Rogue
Server. Otherwise, the victim client trusts the Rogue Server and
instantiates an OpenSecureChannel request that the Rogue Server
accepts.

As a consequence, an attacker can send fake data to the vic-
tim client and steal user credentials. User credentials stealing oc-
curs when the ActivateSession request with ‘UserldentityToken’
‘user&password’ is instantiated by the Client. The request (contain-
ing user and password) is encrypted with the keys derived from
the OpenSecureChannel Nonces. Moreover, the password is en-
coded in UTF-8 and encrypted with the server public key (i.e., the
key received from the untrusted Rogue Server). Despite the differ-
ent encryption techniques applied to encrypt the password before
transmission, the Rogue Server will decrypt them because the client
allows the connection with untrusted parties.
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Rogue Client
BT it .
: getEndpoints()

Tested Server

ﬁtl(l])oillts description

(OpenSecureChannel()

Figure 4: Rogue Client workflow. The dashed boxes con-
tain the flowchart representing the application server/client
logic. Diamonds represent a decision by the client/server ac-
cording to the data flow and management. The client lists
all the secure endpoints on the server and for each one, it
tries to connect providing an arbitrary self-signed certificate
(highlighted in red) that was not shared with the server in
advance. If the client successfully connects, the server is not
correctly managing certificates.

Rogue Client. In Figure 4 we report the steps followed by our
framework to verify the vulnerability to the Rogue Client in OPC
UA servers. The test employs an OPC UA Rogue Client to the test
OPC UA server implementations. The Rogue Client scans all the
endpoints offered by an OPC UA server and tries to establish a
secure connection to all of them, one by one. The Trustlist of the
OPC UA server does not contain the Rogue Client’s certificate.
Hence, the Rogue Client should not be entitled to establish a secure
connection with the server because the root of trust between client
and server was not acknowledged upon connection. If the client
succeeds in connecting, it means that the server implementation is
managing erroneously the certificates, and it is deviating from the
expected behavior prescribed by OPC UA protocol. The server is
then considered vulnerable to Rogue Client attacks.

As a consequence of a Rogue Client attack, an attacker can
perform different actions on the server according to the server
configuration. The attacker possibilities range from reading val-
ues published by the attacked OPC UA server to writing values
and executing commands on the server that influence the physical
process.

Middleperson. Figure 5 reports the steps followed by our frame-
work to verify the vulnerability to the Middleperson attack. The
test leverages the concepts of Rogue Client and Rogue Server used
at the same time to achieve the Middleperson attack. The attacker
instantiates a Rogue Server in the network. The client requests a
secure connection with the Rogue Server (as described in the previ-
ous paragraphs). If the attacked server requires user authentication
with username and password, the Rogue Server can request the user
identity token from the victim’s client and steal the credentials. At
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Figure 5: Example of Middleperson attack with stealing of
session credentials (User Identity Token: User&Password).
The attacker acts both as Rogue Client and Server. The
Target Client connects to the Middleperson Server. The
client is vulnerable to Rogue Server attack and trusts the
server cert without verification and instantiates a OpenSe-
cureChannel() request. The Rogue Server allows the con-
nection. When the client instantiates a session the Rogue
Server accepts it and decrypts the provided credentials. The
Middleperson connects to the Target Server (vulnerable to
Rogue Client Attacks) and creates a session providing the
stolen credentials

this point, the Rogue Client instantiates a connection with the vic-
tim’s server by providing the stolen credentials and takes control of
the industrial process (as described in the Rogue Client paragraph).
The attacker forwards stealthily (from the process operators) the
information received from the victim client to the victim server and
vice versa.

Consequences of the Middleperson attack comprise the union of
the outcomes identified for Rogue Client and Rogue Server.

4.2 Implementation

We implemented our framework (i.e., Rogue Server, Rogue Client,
and Middleperson) using the python opc-ua [21] open-source li-
brary. The implementation serves as a Proof of concept (POC) of
our attacks. We have implemented the POC using the python opc-
ua since the library offers support to all the functions required to
implement our proposed attacks. Moreover, the functionalities are
easy to prototype and deploy.

Our framework consists of four python modules, framework,
utils, rogueclient, and rogueserver for a total of 571 lines of
code. For each of the three attacks, we report a description of how
we realized functionalities through the python modules.

Framework module. The framework module interacts with the
attacker. It offers a command-line interface to select the attack
(i.e., Rogue Server, Rogue Client, or Middleperson).

Rogue Server attack. When Rogue Server attack is selected, the

rogueserver module performs the following to mount and start
the attack. First, the program executes port scanning in the network
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to identify available OPC UA servers on port 4840. The attacker se-
lects a benign server that they want to clone with the Rogue Server
attack. At this point, the sequence of unencrypted and unauthenti-
cated primitives FindServers() and GetEndpoints () requests are
sent to the benign server to retrieve endpoints information, server
information, and the server certificate. A Rogue Server is created
with this information. The Rogue Server has the same name, offers
the same endpoints (same security mode, security policy), the same
user identity token, and provides a self-signed certificate filled with
the same information as the benign server (except fingerprints).
When Rogue Server is configured, port forwarding is enabled in
the network to route requests intended to the victim’s server to the
Rogue Server. Finally, the server is started and waits for a victim
client to connect to it without performing certificate validation. If
the connection succeeds, the Rogue Server starts publishing fake
data, and if the victim’s client provides user credentials, the Rogue
Client decrypts them.

Rogue Client attack. When Rogue Client attack is selected, the
rogueclient module performs the following actions to mount
and start the attack. First, the attack performs port scanning in
the network to identify available OPC UA servers on port 4840.
The attacker chooses the victim server that they want to connect
through the Rogue Client attack. At this point, the client attempts
the OpenSecureChannel () request to the victim server endpoints
(one by one), providing a self-signed certificate that was not in-
serted in the victim server Trustlist upon connection. If the cert is
trusted, the attack is successful. Furthermore, if the victim server re-
quires the user identity token 'None’: the Rogue Client instantiates a
ActivateSession() request and can start reading (or writing) val-
ues at server nodes. If a user identity token with username and pass-
word is required, the attacker can input them (e.g., they retrieved
them with a Rogue Server attack). Finally, the ActivateSession()
request is sent to the server.

Middleperson attack. When the Middleperson attack is selected,
our POC realizes the attack depicted in Figure 5. The rogueserver
and rogueclient modules are used in parallel (i.e., in threads).
First, the Rogue Server is created to capture victim client requests
in the network and acquire user credentials. Once the credentials
are retrieved, the Rogue Client is instantiated and connects to the
victim’s server providing the stolen credentials. The attack is suc-
cessful if both the victim’s client and server do not populate the
Trustlist upon connection.

5 ASSESSMENT RESULTS

In this section, we present the results of our security assessment
of 22 OPC UA products by different vendors (i.e., mostly OPC UA
servers for PLCs), and 26 systems we build using 16 libraries. We
start by reporting the selection criteria of the artifacts considered
in this work. Next, we investigate the availability of features of
the OPC UA stack implemented in the considered artifacts. Then
we perform a security assessment for OPC UA products with our
framework and look for vulnerabilities to Rogue Client, Rogue
Server, Middleperson attacks.
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5.1 Artifacts Selection Criteria

For the two categories of OPC UA artifacts considered in our work,
we used the following selection criteria. Note that not all the arti-
facts are certified by the OPC Foundation.

Proprietary products. We assessed only proprietary products
with publicly accessible manuals that provide details on the avail-
ability of OPC UA security features, as we had no access to hardware
products.

Libraries. We assessed libraries based on the availability as open-
source or free (i.e., unlimited unpaid access) versions. For open-
source libraries, we consulted GitHub and selected the libraries
based on their popularity (e.g., number of stars), and we consulted
the list at this repository?.

5.2 Adoption of OPC UA features

For the artifacts considered we investigate which features of OPC
UA are implemented.

Proprietary products. In Table 1 we summarize the adoption
of OPC UA features of the 22 proprietary OPC UA products that
are offered by vendors to configure their industrial devices. The
table is organized into four parts: Certification by OPC Foundation,
support of publish-subscribe, compatibility with Global Discovery
Server, security features. Out of 22 software packages that were
analyzed, four vendors rely on Codesys automation software to im-
plement OPC UA features. None of the products considered support
the publish-subscribe model. This feature, announced in the first
semester of 2018, is not yet supported by products. In October 2020,
Codesys software released the OPC UA PubSub SL [12] extension
that supports Publish-Subscribe, currently vendors do not integrate
it yet. Four vendors mention compatibility with GDS servers, but
it is not clear if these vendors also offer their implementation of a
GDS server or provide functionality for their products to connect
to third-party software.

Concerning the security features, out of 22 OPC UA servers,
three vendors (Beijer, Honeywell, and Yokogawa) do not support
security features. It means that deploying an OPC UA network
with industrial devices from those brands will always result in an
insecure deployment since the only supported security policy is
None. Two vendors (Beckoff, and Lenze) support security with
deprecated cryptographic primitives, making their applications de
facto insecure. For the remaining 16 products that support secu-
rity features, we have looked at how the user manual guides the
customers through the server configuration. Specifically, we ob-
served that two vendors (Mitsubishi and National Instruments)
instruct their users to configure security None. Then, three ven-
dors (B&R, Omron, and Panasonic) discourage the use of None, and
seven vendors (Bachmann, Codesys, Hitachi, Rockwell, Siemens,
Wago, Eaton) do not give recommendations on the preferred pol-
icy. Furthermore, four vendors (ABB, General Electric, Schneider,
Wiedmiiller) recommend a specific Security Policy (Schneider and
Weidmiiller use security mode SignAndEncrypt as default). Finally,
one vendor (Bosch Rexroth) does not support security mode None,
thereby enforcing authenticated connections. We report in the table

30pen62541: List of Open Source OPC UA Implementations (version pushed on March
10, 2020)


https://github.com/open62541/open62541/wiki/List-of-Open-Source-OPC-UA-Implementations
https://github.com/open62541/open62541/wiki/List-of-Open-Source-OPC-UA-Implementations
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Table 1: OPC UA in proprietary products. @/O denotes if the product supports/not supports a feature. © denotes that there are
problems with feature configuration.

Vendor Platform OPC Cert. ‘ Pub-Sub ‘ GDS ‘ Security Trustlist Recommended Policy
B&R ADI OPC UA [38] [ ] O O o [ ] Not specified
Bachmann OPC UA Client/Serv. [4] O O O () © Not specified
Beckoff TC3 OPC UA [5] O O O 0 () Deprecated protocols
Beijer iX Developer [6] O O O O O None
Bosch Rexroth  ctrlX CORE [7] @) O @) () 0 None not supported
General Electric  iFIX [24] O O [} ) © Basic256Sha256
Honeywell ControlEdge Builder [28] ot O @) @) @) None
Lenze Easy Starter [36] @) O @) © () Deprecated protocols
Mitsubishi MX Configurator-R [40] ) O @) () () None
National Instr. InsightCM [42] @) O O ® () None
Omron SYSMAC-SE2 [45] ) O O () ) Not specified
Panasonic HMWIN Studio [54] @) O () () () Not specified
Rockwell Factory talk linx [56] @) O @) () () Not specified
Schneider Control Expert [18] () O @) () () Basic256Sha256
Siemens STEP 7 [60] () O ) () 0 Not specified
Weidmiiller u-create studio [64] @) @) O () ) Basic256Sha256
Yokogawa SMARTDAC+ [65] O O O O O None

Codesys based platforms
Codesys Codesys V3.5 [11] (@) () @) () ()] Not specified
ABB Automation Builder [1] @) O O () 0 Basic256Sha256
Eaton XSOFT-CODESYS [16] O O O [ ] 0 Not specified
Hitachi HX Codesys [27] (@) O @) () ()] Not specified
Wago elcockpit [63] [ O () () ()] Not specified

*State of the documentation consulted during the investigation. After a preprint release of this manuscript, the documentation related to the

product was updated. Now it supports security and it is certified.

if the certificate Trustlist is supported as required by the OPC UA
specification. As we can see from the table, most vendors support
it but there are several problems in the configuration procedure
detailed in user manuals that make deployments vulnerable to the
three attacks considered in our manuscript. We will detail the con-
figuration issues in the following subsections.

Libraries. In Table 2 we report the results of our research about the
adoption of OPC UA features that we conducted over 16 libraries
to deploy OPC UA in industrial plants. The table is divided into
four parts: support of publish-subscribe, compatibility with Global
Discovery Server, server security features, client security features.

Out of 16 libraries: 11 libraries implement server features, and
15 libraries implement client features. Specifically, 10 libraries of-
fer server and client features, 5 offer solely client features, and 1
offers solely server features. Publish-Subscribe is implemented by
2 libraries (open62541, S20PC), also in this case, this feature is not
widely adopted. At the moment of writing, the OPC Foundation

official implementation (UA .NET) does not support this connection
mode. GDS is implemented by 1 library (UA .NET). With respect
to security features implemented in servers, 10 out of 11 offer se-
curity features. Regarding the security features implemented in
clients, 12 out of 15 implement security features. Moreover, we
have investigated the correctness of security features implementa-
tion. Specifically, we looked at the availability of the Trustlist for
certificate verification as described in the OPC UA standard. Among
server implementations, 6 (Eclipse Milo, node-opcua, Rust opcua,
open62451, S20PC, and UA .NET) offer this feature, while the other
5 (ASNeG, LibUA, OpenScada UA, Python-opcua) do not allow the
server to verify to which clients they are communicating with.
Among the client implementations, 6 (Eclipse Milo, Rust opcua,
open62541, UA .NET, opc-ua-client, and UAExpert) offer Trustlist
functionality, while 4 libraries (LibUA, node-opcua, OpenScadaUA,
Python-opcua) do not provide the feature to verify the party that
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Table 2: OPC UA Libraries. @/O denotes if the product supports/not supports a feature. © denotes that there are problems
with feature configuration. Security column reports if the library implements security features. Trustlist column reports if
the library implements application authentication. Demo column reports if demo application supports secure connection

OPC | Pub Server Client
Name Lang. Cert. | Sub | GDS | Security Trustlist Demo App. | Security Trustlist Demo App.
ASNeG [3] C++ o | o] O ® O - o* - -
Eclipse Milo [17] Java O @) @] [ ] [ ] [ ] [ ] © O
Free OpcUA [22] C++ O O O - - - O - -
LibUA [37] C# o|lol| o ° O O ° 0 o)
node-opcua [44] Js @) o* O [ [ ] © [ ] O O
opc-ua-client [13] C# O O - - - - o [ (D)
opcua [57] Rust O O O o o © [ J [ (D)
opcua [25] Golang O O O - - - ([ ] - -
opcua [29] TypeScript | O @) - - - - O - -
opcuadj [51] Java @) O O ©) - - - - -
open62541 [52] C " | @ | O ° ° © ° ° ()
OpenScada UA [53] C++ O O @) () O O ® @) O
Python-opcua [21]  Python @) @) @) () @] @) [ ] @) O
S20PC [58] C ot | e | O ° ° ° ° © ©
UA.NET [50] C# [ ] (@) [ ]  J [ ] [ ] [ { ©
UAexpert [62] C++ ) O @) - - - ® [ ©

*Server certified, client not certified. "Denotes that the feature is going to be introduced in the next release

they are communicating with. Regarding the remaining 2 imple-
mentations (Golang opcua, and S20PC), we ran into issues while
verifying their secure connection functionalities that prevented us
from testing the availability of Trustlist features. Finally, we check
the security features and verify their correct configuration in the
demo applications provided in their repository.

5.3 Vulnerability to Rogue Server

We tested the vulnerability of 15 Client implementations from li-
braries, as vendors do not offer OPC UA client functionalities (apart
from Bachmann). We found that all available Client demo applica-
tions are configured to connect to an endpoint with security mode
None, i.e., no security. For 3 libraries (ASNeG, Free OpcUa, opcua ts)
no other mode is possible. The ASNeG library will support security
features starting from the next release. The 12 remaining libraries
support secure connections.

For those 12 libraries, we verified their support to Trustlist for
certificate management and tested it with our framework imple-
mentation. In 4 libraries (LibUA, node-opcua, OpenScada UA, and
python-opcua), the Trustlist is not supported.

In 3 libraries, we had issues configuring and running the client
application in a secure configuration. In Eclipse Milo, the demo
client does not perform certificate validation and the documenta-
tion does not provide details about how to enable the Trustlist on
although the feature is present in the source code. In S20PC the

source code features the Trustlist management, but we were not
able to test it due to errors and missing details for the configuration.
Finally, in Golang opcua we were not able to find information re-
lated to the Trustlist neither in the documentation, nor in issues in
the repository, nor in the code, hence we assume that this feature
is not supported.

In 5 clients, the Trustlist is supported, but we found two types
of insecure behavior that make these clients vulnerable to Rogue
Server attacks:

i) Trustlist disabled by default. In 4 libraries (Opcua Rust,
UA.Net, and open62541, opc-ua-client) the demo client accepts
all server certificates by default. The user can disable this option,
then the libraries behave correctly w.r.t. the certificate validation
procedure. While this setting is only meant to be used during de-
velopment and testing, it is an additional hurdle that can lead to a
seemingly secure application that is vulnerable to a Rogue Server
attack.

ii) Use of Secure Channel primitives to perform certificate
exchange. In one implementation (UAexpert with GUI interface)
the instructions guide the user to perform a GetEndpoints request
to retrieve the Server certificate. The server replies to the client
sending his certificate to the client. The Client prompts the error
‘BadCertificateUntrusted’ since the server certificate fails the secu-
rity check. At this point, the client is asked to trust the certificate
and re-instantiate a secure connection. This behavior is susceptible
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to Rogue Server attacks since the certificates are exchanged through
an insecure channel. UAexpert offers the option to trust certificates
before a connection to server, but this is not the default workflow
in the instructions.

Overall, all 12 clients that support security features exhibit vul-
nerabilities that can be exploited in a Rogue Server attack. Even
libraries that have handled security correctly on the server-side are
lacking security features on the client-side, forcing users to lower
the security properties of their OPC UA deployments.

5.4 Vulnerability to Rogue Client

Proprietary products. Since we do not have access to actual de-
vices, our analysis relies on the official user manuals shipped with
products. The results for the 22 analyzed products are reported
in Table 1. The vendors Yokogawa [65], Honeywell [28] and Bei-
jer [6] do not support any security features for OPC UA: this means
that they do not offer secure communications channels to send
information to clients and will not be able to perform application
authentication.

For the remaining 19 companies, we have investigated if they
use the Trustlist to enable only certain clients to connect to the
server. All the companies implement the Trustlist for certificate
verification, only 7 out of 19 correctly instruct the users to configure
it. We found that 12 companies report insecure instructions to
perform the certificate exchange necessary to build the Trustlist
that makes them vulnerable to Rogue Client attack. In particular,
we have identified two different issues with the instructions:

i) Trustlist disabled by default. The instructions by default
guide the user that enables security to configure the server to accept
all certificates and optionally the user can configure the Trustlist.
If the server has default settings, an attacker can connect a client
to the server providing an arbitrary certificate that is not verified
upon trusting it. Siemens and Bachmann’s products are affected by
this issue.

ii) Use of Secure Channel primitives to perform certificate
exchange. The issue resides in the procedure used to exchange
certificates. The product affected by this issue leverages the unau-
thenticated OpenSecureChannel request to move the client certifi-
cate from client to server (instead of building the Trustlist before
any connection in the network). This behavior can be leveraged by
an attacker to install its Rogue Client certificate on a target server.
On the server-side, the certificate is manually or automatically
trusted. An operator would need to carefully check the certificate
thumbprint to notice that the installed certificate is not authorized.
We identified this as a common behavior in the instructions from 10
different vendor products (ABB, Beckoff, Bosch Rexroth, Codesys,
Eaton, General Electric, Hitachi, Lenze, Panasonic, and Wago). All
4 products analyzed based on Codesys software propagate this inse-
cure behavior present in the Codesys documentation. This problem
may potentially threaten more than 400 device manufacturers that
rely on this Codesys software.

Libraries. We tested the vulnerability to Rogue Client attack of
the 10 server libraries that offer security features. This evaluation is
done with our framework implementation as described in Section 4.
To perform our test, we started with demo applications shipped
with the libraries and then verified if the library itself has additional
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capabilities not used in the demo to manage security features. If
additional features are available, we add them to the server to test
the library.

All libraries provide a demo server or a tutorial explaining how to
set up a simple OPC UA server. Five demo applications offer secure
and insecure endpoints, and five offer exclusively security None. For
demo applications where only insecure endpoints are supported,
any client can connect to the server via the security mode and
policy None (i.e., without securely authenticating). Next, we tested
the certificate management functionalities offered through Trustlist
(mode Sign or SignAndEncrypt). We found that 6 libraries support
the Trustlist of certificates, and 4 do not support it.

With our framework Rogue Client we tested the 6 demo servers
provided by the implementations that support the Trustlist. Our
framework tries to establish a connection in mode Sign or Sig-
nAndEncrypt where the client provides a self-signed certificate,
which was not listed on the server before connecting. According to
the OPC UA standard, such connections should be rejected by the
server. In 3 cases the demo server rejects connection from untrusted
clients (Eclipse Milo, UA.Net, s2opc). The Eclipse Milo demo server
reachable online rejects unknown clients, and users are required to
upload their client certificates to the server to appear in the server
Trustlist and connect. Similarly, the demo servers provided by the
UA.Net library and the s2opc library reject connection attempts of
unknown clients. Moreover, we found that 3 demo servers show
the same two types of insecure behaviors identified in the vendor
section.

i) Trustlist disabled by default. Untrusted connections are
allowed (by default) in 2 libraries (node-opcua, open62541), which
do not enforce the use of the Trustlist to start the server. Again, we
found a major flaw in the certificate management. In node-opcua
there is a Boolean variable "automaticallyAcceptUnknownCertifi-
cate’ that is turned to 'true’ by default when creating OPC UA server.
This setting is transparent to users that are allowed to build a server
without setting this variable explicitly. In the open62541 library, the
user can start the server with or without the Trustlist. The Trustlist
can be selected as an optional parameter to start the server from
the command-line interface. When the server is started without the
Trustlist, any incoming certificate is accepted, the program notifies
the user is notified of this behavior.

ii) Use of Secure Channel primitives to perform certificate
exchange. The Rust opcua library uses the Trustlist for certificate
validation in demo applications, in our opinion the suggested proce-
dure on certificate exchange is insecure. After a connection attempt,
the client certificate is stored in the ‘rejected’ list of certificates from
where an operator should move it to the trusted folder. An attacker
can create a certificate like the real client certificate that is difficult
to tell apart.

Finally, for the remaining 4 demo applications, the missing sup-
port to client certificate authentication is caused by missing features
in the library altogether. In particular, we found that there are 4
libraries where the implementation of the Trustlist is missing. In the
library LibUA, a function is prepared for the user with a comment
to implement certificate authentication. Users of the ASNeG and
the Python-opcua library have pointed out the missing security
features in issues on GitHub. For the ASNeG library, this feature is
planned for the next release [31]. Developers of the Python-opcua
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TrustList Correctly Implemented: 10 (20.8%)

Missing TrustList
Support: 11 (22.9%)

X X TrustList Disabled
Security Issues: 31 (64.6%) v Default: 8 (16.7%)

Insecure: 38 (79,2%)

Insecure TrustList
Configuration: 12 (25%),

OPC UA Enabled Artifacts: 48 (100%)

No Security Features: 7 (14.6%)

Figure 6: Summary of findings. It shows how the security
properties for the 48 OPC UA enabled artifacts are dis-
tributed. For the artifacts that are insecure the chart details
the reason of the insecure behavior. The majority of the OPC
UA artifacts present security issues.

library in 2017 acknowledged the issue [30], but it is not available
yet.

5.5 Vulnerability to Middleperson attack

In Section 4 we explained that the Middleperson attack can be per-
formed when there are servers vulnerable to Rogue Client attacks
and clients vulnerable to Rogue Server present at the same time
in the network. Combinations of aforementioned OPC UA servers
and clients that are vulnerable respectively to Rogue Client and
Rogue Server attacks would make a deployment that is vulnerable
to Middleperson attacks. In particular, we have identified that 19
servers’ artifacts out of 29 (65%) that support security features are
vulnerable to the Rogue Client attack (4 artifacts due to missing
Trustlist features and 15 due to insecure instructions Trustlist) and
12 clients out of 12 (100%) that support security are vulnerable to
Rogue Server attack (7 artifacts due to missing Trustlist features
and 5 due to insecure instructions to configure Trustlist). As we
can see there is a non-negligible risk to deploy an insecure OPC
UA network where an attacker can operate as Middleperson.

5.6 Summary of Findings

We considered a total of 48 OPC UA enabled artifacts: 22 products
from vendors and 16 libraries (of which 11 provide OPC UA servers,
15 provide OPC UA clients). Figure 6 reports a summary of our
findings that we detail in the following.

Seven artifacts do not support security features at all (14.6%).
Among the 41 remaining artifacts that support security features, we
found that 31 artifacts (64.6% of the 48 OPC UA artifacts) show issues
or errors in the Trustlist management that enable Rogue Client,
Rogue Server, and Middleperson attacks. The other 10 artifacts
(20.8% out of 48) correctly implement the Trustlist management
and instruct users about its configuration, and thus they are not
vulnerable to the Rogue Client, Rogue Server, and Middleperson
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attacks. The 31 artifacts that show security issues with the config-
uration of the Trustlist can be classified into the following three
categories:

e Missing Support for Trustlist. 11 artifacts do not imple-
ment Trustlist (or do not provide instructions about its con-
figuration) management although they implement OPC UA
security features, that is they offer functionality for signing
and encryption but not for the validation of certificates. This
makes their deployments always vulnerable to Rogue Client,
Rogue Server, Middleperson attacks.

e Trustlist disabled by default.

In 8 artifacts the Trustlist is disabled by default. This behavior
puts OPC UA deployments at risk as applications will accept
any incoming certificate, making them vulnerable to the
three considered attacks.

o Certificate exchange through Secure Channel primi-
tives. In 12 artifacts the instructions guide the users to use
unauthenticated Secure Channel primitives to perform cer-
tificate exchange. The user is guided to initiate a connection
such that the connecting applications send their certificates
to each other. Then the certificates are manually trusted for
each device. Since the certificates are sent via an insecure
channel an adversary can leverage this behavior to mount
an attack. The OPC UA standard allows this behavior [46]
assuming that only trained personnel are authorized to trust
incoming certificates exchanged through insecure channels.
In our opinion, this recommendation is flawed as insecure
channels allow simple manipulation of the certificates before
acceptance by the administrator (via Middleperson attacks),
and humans have been shown to be bad at detecting manip-
ulated certificates [10, 15].

Adoption of features. in our analysis of OPC UA features, we
found that the client-server model is available in all tested products
while the publisher-subscriber model is supported by 3 artifacts.
Moreover, the features offered by the GDS to manage certificates
are supported by 5 artifacts. Security features are widely adopted,
but they require the correct distribution of certificates to deploy a
secure network. As we found, this is not always the case in OPC
UA products as many of them do not implement the Trustlist for
certificates or do have issues in the configuration procedure.

Our investigation is the first about security of OPC UA artifacts.
Our findings and considerations are consistent with prior work
in usable security of cryptographic APIs [2, 26], which showed
that lack of comprehensive documentation and demo applications
will result in poor security configurations implemented in the final
deployments.

6 COUNTERMEASURES

Our work showed general missing support and incompleteness of
OPC UA security features in artifacts that make the certificate man-
agement often not possible or not required by default. Moreover,
we discovered some insecure behaviors allowed by the OPC UA
standard. In this section, we discuss countermeasures to prevent
vulnerabilities in OPC UA deployments and achieve an initial secure
key distribution.
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6.1 Certificate exchange via insecure channels

As explained in Section 3, initial key distribution for air-gapped
ICS is a non-trivial problem as devices cannot be shipped with root
CAs installed. OPC UA Global Discovery Servers with Certificate
Manager would be an alternative to manual certificate exchange, but
as we showed in Section 5 this feature is not widely implemented
and, in any case, the GDS certificates will not be shipped together
with devices newly introduced into the system. That implies that
bootstrapping the security in an OPC UA system critically relies on
manual pre-distribution of certificates even when GDS is deployed.

Currently the OPC UA standard does not provide effective solu-
tions to overcome this challenge, instead (as explained in Section 5)
it guides the users to exchange certificates through insecure chan-
nels. Given the technological challenges posed by ICS networks, we
suggest to i) update the standard (and manuals) to instruct users to
rely on out-of-band secure channels for initial certificate distribu-
tion, ii) enforce Trustlist population before use of OPC UA secure
channels and not through unsecured primitives as found commonly
in the consulted user manuals and the standard itself.

Out-of-band certificate exchange can be achieved with different
solutions e.g., through secure protocols such as SSH, or through
physical solutions such as USB sticks and QR codes [38]. Each
of those viable solutions has different trade-offs in terms of us-
ability and security but in any case, offer better guarantees than
exchanging certificates through unsecured primitives. Of course,
exchanging OPC UA certificates through SSH requires that the com-
municating devices have already shared SSH secrets. USB sticks
are a widely supported solution to distribute certificates in the
industrial environment, as a drawback the users are required to
physically move around the plant to distribute the certificates to the
devices that are expected to communicate with each other. Finally,
QR codes represent another potentially easy to use and deploy solu-
tion to distribute certificates in the industrial environment [38]. In
particular, industrial devices could be shipped with a private public
key pair, the public key can be printed on a QR code sticker and
physically applied to the device. During the installation process
the operator scans the QR code and installs the certificate in the
Trustlist of the authorized devices in the industrial environment.
As a drawback of this method, an attacker could deploy a malicious
device in the industrial plant while performing a supply chain at-
tack and replace the QR code sticker with his own certificate on
legitimate hardware.

6.2 Missing support for Trustlist

End users should only use products and libraries that implement
the Trustlist management as described in the OPC UA standard. In
particular, products certified by the OPC can be expected to support
this feature. Artifacts that do not provide this feature should instead
implement it in order to allow communicating parties to trust each
other upon connection.

6.3 Trustlist disabled by default

End users should enable the Trustlist if disabled upon OPC UA
network configuration. Vendors recommend enabling the Trustlist
by default, and thus making it mandatory to populate the Trustlist
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upon the creation of secure channels. Enabling the Trustlist func-
tionality will require the user to perform additional steps to set up
a new device on the OPC UA network but those steps are of crucial
importance for the security of the ICS.

7 RELATED WORK

7.1 Security of open source OPC UA libraries

Mubhlbauer et al. [41] study the security of four popular open-source
libraries (UA .Net Standard, open62541, node-opcua, Python-opcua)
which we also inspect in this paper. The analysis focuses on five as-
pects: dependencies, timeouts, supported Security Policies, message
processing, and randomness. The authors identify two vulnerabili-
ties in the implementations: missing upper time limits in Python-
opcua making it vulnerable to DoS attacks and missing packet type
checks in node-opcua. The issues related to the Trustlist configura-
tion of the libraries investigated our work were not identified.

Neu et al. [43] and Polge et al. [55] showed the feasibility of
DoS attacks by a Rogue Client. They suggest network traffic anom-
aly detection as a countermeasure. Polge et al. [55] implemented a
Middleperson attack using Eclipse Milo. The attacked OPC UA appli-
cations are using Security Policy None or Aes128-Sha256-RsaOaep.
They report that if username and password are sent as part of the
ActivateSessionRequest message the password is encrypted even in
Security Mode None and can therefore not be recovered (in contrast
to our findings). The encryption of the password in Mode None
is optional in the Specification [47], this design choice was taken
by [32]. Encrypting credentials with untrusted certificates is suscep-
tible to Rogue Server attacks. Based on our findings, a Middleperson
attack that recovers plain-text credentials is possible. Therefore, a
Middleperson attacker can provide their own certificate, and the
user credentials are encrypted using the public key associated with
the attacker’s certificate.

7.2 Secure exchange of certificates

The security of the OPC UA protocol relies on certificates that au-
thenticate each application. Prior publications proposed techniques
to establish the initial root of trust. In [33], a PKI is implemented
that offers functionality to sign certificates or verify certificates
using the Online Certificate Status Protocol. Meier et al. [39] pro-
pose to connect a new OPC UA application to a physical device
with certificate manager functionality to install a certificate and
the Trustlist before connecting the application to the network.

7.3 Usability issues leading to insecure systems

Usability of security features is an active research topic that relates
to the usability of OPC UA security features. Several studies point
out that the integration of security features into programs and
systems has to be facilitated [26].

Acar et al. [2] compare the usability of five Python cryptographic
libraries. They find that APIs which offer fewer options lead to
better security results. In addition, the documentation of the library
and the availability of example code had a stronger influence on
the successful completion of the task than the experience of the
participant.

Krombholz et al. [35] conducted a usability study on the con-
figuration of HTTPS. In the study 28 system administrators were



CPSloTSec ’22, November 7, 2022, Los Angeles, CA, USA

asked to configure a web server with HTTPS. They found that par-
ticipants struggled to find reliable resources to learn the process, a
large number of configuration options were difficult to comprehend,
and the default configuration only offered weak security. Addition-
ally, the security benefits which a protocol such as HTTPS offers
are misunderstood or underestimated. Based on misconceptions
some administrators decide against using secure options [19, 34].

8 CONCLUSIONS

Usable security of libraries is an active research area [2, 26, 34, 35]
and showed how important features and documentation are for
secure deployments. In this work, we have systematically investi-
gated practical challenges faced to use OPC UA securely. To this
end, we introduced a security assessment methodology—our assess-
ment considers three attacks that can target OPC UA deployments,
Rogue Server, Rogue Client, and Middleperson attacks.

We systematically address three research questions: R1. What
are practical challenges for the correct use of OPC UA security
features? R2. Are OPC UA security features correctly implemented
by the vendors and products? R3. What are the consequences of
breaking OPC UA security features?

To address R1, we conducted the first systematical survey of
48 OPC UA artifacts provided by vendors or open source. Our
survey investigates the availability of OPC UA security, publish-
subscribe, and Global Discovery Server functionalities. We showed
that publish-subscribe and Global Discovery Server are not widely
adopted. Furthermore, we showed that 7 OPC UA artifacts do not
support security features of the protocol.

To address R2, we proposed a framework to investigate the
identified security issues. With our framework, we show that the
identified issues make OPC UA artifacts vulnerable to the consid-
ered attacks. We analyzed 48 OPC UA artifacts, 41 of those artifacts
support security features. We found that 31 out 41 artifacts present
three recurring pitfalls in the Trustlist management to establish the
initial root of trust.

To address R3, we designed, implemented, and demonstrated
three types of attacks. The attacks allow the attacker to steal user
credentials exchanged between victims, eavesdrop on process in-
formation, manipulate the physical process through sensor values
and actuator commands, and prevent the detection of anomalies.

Our findings demonstrate major security flaws in OPC UA arti-
facts that threaten the OPC UA security guarantees. Those results
imply that there are a significant number of OPC UA deployments
in industry that either do not provide full security guarantees or
rely on the absence of the attacker at configuration time for new
devices to bootstrap their authentication process. We believe that
our proposed systematic approach is useful to increase awareness
among users, developers and companies about the threats that
can be produced by the three identified pitfalls in the initial key
establishment and Trustlist configuration. As a complementary
result, our POC tool can be used as a tool to probe for erroneous
configurations and improve security in OPC UA deployments.
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cation occurs during session activation, after the initial application
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