
On the Privacy Risks of Cell-Based NAS Architectures
Hai Huang

CISPA Helmholtz Center for
Information Security

Zhikun Zhang
CISPA Helmholtz Center for

Information Security

Yun Shen
NetApp

Michael Backes
CISPA Helmholtz Center for

Information Security

Qi Li
Tsinghua University &
Zhongguancun Lab

Yang Zhang
CISPA Helmholtz Center for

Information Security

ABSTRACT
Existing studies on neural architecture search (NAS) mainly focus
on efficiently and effectively searching for network architectures
with better performance. Little progress has been made to system-
atically understand if the NAS-searched architectures are robust
to privacy attacks while abundant work has already shown that
human-designed architectures are prone to privacy attacks. In this
paper, we fill this gap and systematically measure the privacy risks
of NAS architectures. Leveraging the insights from our measure-
ment study, we further explore the cell patterns of cell-based NAS
architectures and evaluate how the cell patterns affect the privacy
risks of NAS-searched architectures. Through extensive experi-
ments, we shed light on how to design robust NAS architectures
against privacy attacks, and also offer a general methodology to
understand the hidden correlation between the NAS-searched ar-
chitectures and other privacy risks.1

CCS CONCEPTS
• Security and privacy; • Computing methodologies→Ma-
chine learning;

KEYWORDS
neural architecture search; membership inference attacks; cell pat-
terns

ACM Reference Format:
Hai Huang, Zhikun Zhang, Yun Shen,Michael Backes, Qi Li, and Yang Zhang.
2022. On the Privacy Risks of Cell-Based NAS Architectures. In Proceedings
of the 2022 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’22), November 7–11, 2022, Los Angeles, CA, USA. ACM, New
York, NY, USA, 15 pages. https://doi.org/10.1145/3548606.3560619

1 INTRODUCTION
Deep neural networks (DNNs) have enjoyed a remarkable boom
in recent decades and achieved superior performance in many

1The source code of our experiments can be found at https://github.com/MiracleHH/
nas_privacy

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’22, November 7–11, 2022, Los Angeles, CA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9450-5/22/11. . . $15.00
https://doi.org/10.1145/3548606.3560619

real-world tasks (e.g., image classification [28, 38, 67], object detec-
tion [46, 60], text classification [36, 79], etc.). With significant ad-
vances in computing power, DNNs have become more complicated.
They are both deeper [49, 61] and wider [49, 50] to further improve
model performance (e.g., GPT-1/2/3 [4, 56, 57], DALL-E [59], etc.).
Despite their success, manually designing those complex networks
in a trial-and-error way remains a tedious task, requiring both
architectural engineering skills and domain expertise.

Neural architecture search (NAS) [3, 86] is a natural step towards
resolving the above challenge. It aims at automating the search
process for the most suitable deep neural network architectures
for specific tasks. The core idea of NAS is using a search strategy
to select an architecture from a predefined search space, and lever-
age a performance estimation strategy to guide the search process.
Directly searching all eligible architectures is computationally ex-
pensive; thus the mainstream cell-based NAS methods treat the
whole network architecture as a combination of specific modules
to reduce the search space (Figure 1 illustrates a typical cell-based
NAS architecture). Previous work has shown that the architectures
selected by cell-based NAS techniques can attain comparable per-
formance or even outperform those traditional human-designed
architectures on tasks such as image classification [23, 39, 87], ob-
ject detection [22, 72], etc. Existing NAS research mainly focuses
on two directions — identify efficient and effective search strategies
to obtain the best architecture candidates [2, 10, 73] and improve
the robustness of NAS-searched architectures against adversarial
examples [15, 24, 41]. On the other hand, although abundant work
has already shown that human-designed architectures are prone
to privacy attacks, little progress has been made to systematically
understand if the NAS-searched architectures are robust to privacy
attacks given their complex network topology [54]. In privacy at-
tacks, an adversary’s goal is to gain knowledge of the target model’s
training data, which is not intended to be shared. The most popular
attack in this domain is membership inference attack (MIA) [64]
which enables an attacker to infer whether a sample is used to
train a target model. So far, little attention has been paid on the
membership privacy of NAS-searched architectures.
OurWork. In this paper, we focus on the aforementioned member-
ship inference attack against NAS-searched architectures due to its
pervasiveness and the privacy impact in the real world. Concretely,
we address two research questions in this study — whether NAS-
searched architectures are robust to membership inference attacks
and how architectural information affects such robustness. Note that
the first research question has been discussed by some prelimi-
nary work [54] in a limited scenario, i.e., label-only membership
inference [13, 43].

https://doi.org/10.1145/3548606.3560619
https://github.com/MiracleHH/nas_privacy
https://github.com/MiracleHH/nas_privacy
https://doi.org/10.1145/3548606.3560619

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Hai Huang, et al.

Reduction Cell

Normal Cell

Normal Cell

Reduction Cell

Softmax

<latexit sha1_base64="Aj0m+0SI3a2Qn7B/3Ly9hee3QHo=">AAAB73icbVDLSgNBEOz1mcRX1KOXwSB4Crsi6jHoxWME88AkhNnJbDJkdnad6RXDkp/wIqKIV0/+ize/RiePgyYWNBRV3VR3+7EUBl33y1lYXFpeWc1kc2vrG5tb+e2dqokSzXiFRTLSdZ8aLoXiFRQoeT3WnIa+5DW/fzHya3dcGxGpaxzEvBXSrhKBYBStVG+iCLkhqp0vuEV3DDJPvCkplLLx083H/Xe5nf9sdiKWhFwhk9SYhufG2EqpRsEkH+aaieExZX3a5Q1LFbUxrXS875AcWKVDgkjbUkjG6u+JlIbGDELfdoYUe2bWG4n/eY0Eg7NWKlScIFdsEhQkkmBERseTjtCcoRxYQpkWdlfCelRThvZFOfsEb/bkeVI9KnonxeMrr1A6hwkysAf7cAgenEIJLqEMFWAg4QGe4cW5dR6dV+dt0rrgTGd24Q+c9x/+3ZOu</latexit>⇥n

<latexit sha1_base64="u59fYJ5Kl2OwaU3siLkBo4aT3Mk=">AAAB63icbZDLSsNAFIZP6q3WW9Wlm2ARKkJJRNRl0I3LCvYCbSiT6aQdOjMJMxMxhL6CGwVF3PpC7vo2TtoutPWHgY//P4c55wQxo0o7zsQqrKyurW8UN0tb2zu7e+X9g6aKEolJA0csku0AKcKoIA1NNSPtWBLEA0Zaweg2z1uPRCoaiQedxsTnaCBoSDHSuRVWn0575YpTc6ayl8GdQ8U77p69Try03it/d/sRTjgRGjOkVMd1Yu1nSGqKGRmXuokiMcIjNCAdgwJxovxsOuvYPjFO3w4jaZ7Q9tT93ZEhrlTKA1PJkR6qxSw3/8s6iQ6v/YyKONFE4NlHYcJsHdn54nafSoI1Sw0gLKmZ1cZDJBHW5jwlcwR3ceVlaJ7X3Mvaxb1b8W5gpiIcwTFUwYUr8OAO6tAADEN4hjd4t7j1Yn1Yn7PSgjXvOYQ/sr5+AIpGkOY=</latexit>

f(x)

<latexit sha1_base64="jqylwcxBagMhesCQ8VFOWEkScmo=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNUY9ELx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmhdl77JcqVdK1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOknjQU=</latexit>x

Normal Cell

<latexit sha1_base64="Aj0m+0SI3a2Qn7B/3Ly9hee3QHo=">AAAB73icbVDLSgNBEOz1mcRX1KOXwSB4Crsi6jHoxWME88AkhNnJbDJkdnad6RXDkp/wIqKIV0/+ize/RiePgyYWNBRV3VR3+7EUBl33y1lYXFpeWc1kc2vrG5tb+e2dqokSzXiFRTLSdZ8aLoXiFRQoeT3WnIa+5DW/fzHya3dcGxGpaxzEvBXSrhKBYBStVG+iCLkhqp0vuEV3DDJPvCkplLLx083H/Xe5nf9sdiKWhFwhk9SYhufG2EqpRsEkH+aaieExZX3a5Q1LFbUxrXS875AcWKVDgkjbUkjG6u+JlIbGDELfdoYUe2bWG4n/eY0Eg7NWKlScIFdsEhQkkmBERseTjtCcoRxYQpkWdlfCelRThvZFOfsEb/bkeVI9KnonxeMrr1A6hwkysAf7cAgenEIJLqEMFWAg4QGe4cW5dR6dV+dt0rrgTGd24Q+c9x/+3ZOu</latexit>⇥n

<latexit sha1_base64="Aj0m+0SI3a2Qn7B/3Ly9hee3QHo=">AAAB73icbVDLSgNBEOz1mcRX1KOXwSB4Crsi6jHoxWME88AkhNnJbDJkdnad6RXDkp/wIqKIV0/+ize/RiePgyYWNBRV3VR3+7EUBl33y1lYXFpeWc1kc2vrG5tb+e2dqokSzXiFRTLSdZ8aLoXiFRQoeT3WnIa+5DW/fzHya3dcGxGpaxzEvBXSrhKBYBStVG+iCLkhqp0vuEV3DDJPvCkplLLx083H/Xe5nf9sdiKWhFwhk9SYhufG2EqpRsEkH+aaieExZX3a5Q1LFbUxrXS875AcWKVDgkjbUkjG6u+JlIbGDELfdoYUe2bWG4n/eY0Eg7NWKlScIFdsEhQkkmBERseTjtCcoRxYQpkWdlfCelRThvZFOfsEb/bkeVI9KnonxeMrr1A6hwkysAf7cAgenEIJLqEMFWAg4QGe4cW5dR6dV+dt0rrgTGd24Q+c9x/+3ZOu</latexit>⇥n

3210

Input 0 Input 1

Output
Sep Conv 3x3
Sep Conv 5x5
Dil Conv 3x3
Dil Conv 5x5
Skip Connect
Max Pool 3x3
Avg Pool 3x3

Figure 1: Illustration of the cell-based NAS architecture. The
normal and reduction cells are repeated multiple times and
connected together to constitute the whole network architec-
ture, and the cell structures for normal and reduction cells
will be searched in the search process of NAS. In the box on
the right, there is a general DARTS [44] search space proto-
type where the arrows with dashed lines represent possible
edges and each selected edge will be assigned with one oper-
ation indicated by one colored arrow on the right.

To this end, we first conduct a comprehensive measurement
study to systematically evaluate the privacy risks of NAS-searched
architectures identified by cell-based NAS algorithms, the most pop-
ular and influential NAS methods [70]. We find that NAS-searched
architectures are generally more robust against MIAs. For instance,
9 out of 10 NAS-searched architectures are more robust to member-
ship inference attacks than all other 10 human-designed architec-
tures for the ⟨Black-Box, Shadow⟩ attack setting (see Section 3 for
more details) on the CIFAR10 dataset [1] in our study. Interestingly,
our findings show that the robustness against MIAs varies from
architecture to architecture. As we see in Figure 3, it is evident that
certain NAS-searched architectures are more vulnerable to MIAs
than others. For example, architectures searched by TENAS [10]
tend to be more prone to membership inference attacks.

Following the new insights from our measurement study, we
move on to understand how different internal structures impact the
privacy robustness of NAS-searched architectures. To this end, we
introduce a general framework to extract cell patterns related to
MIA performance (see Section 4). Concretely, we first evaluate the
MIA effectiveness on the well-performed architectures, and then
extract the cell patterns for the relatively vulnerable and robust
architectures separately under the assistance of a regression model.
Here, this regression model is trained with the former evaluation
results to give direct MIA performance predictions on cell archi-
tectures. Finally, we use the extracted cell patterns to modify the
internal structures of the target cell architectures and compare the
MIA performance before and after the modifications to estimate the
effectiveness of the cell patterns. This framework is generic and can

be applied to any other analysis work similar to our objective. Fol-
lowing this framework, we evaluate the MIA performance of 2,678
NAS-searched architectures from the NAS-Bench-301 dataset [66]
and show that we can identify certain cell patterns that promote or
demote MIA performance.

We further apply our analysis framework to mitigating MIA on
NAS-searched architectures. The evaluation results show that our
cell patterns can successfully promote or demote the MIA perfor-
mance on the target NAS architectures in the majority of cases. In
addition, our cell patterns, though extracted from NAS-Bench-301
dataset, can be transferred to different datasets, attacks, and search
spaces. Finally, we show that our work is complementary to existing
MIA defense mechanisms when applying the MIA demotion cell
patterns to the target NAS architectures, and can further enhance
the effectiveness of existing defense strategies. We hope that our
findings will inspire future work on designing more robust NAS
architectures against membership leakage.
Contributions. In summary, we make the following contributions.
• We systematically evaluate the privacy risks of NAS-searched
architectures. Through extensive experiments on four datasets,
we show that NAS-searched architectures are usuallymore robust
than human-designed architectures. Our finding is contrary to
the results from Pang et al. [54]. However, the privacy risks of
the NAS-searched architectures must be individually evaluated.
• We introduce a general framework to analyze the relationship be-
tween the NAS-searched architectures and corresponding privacy
attacks. We successfully instantiate it to understand, analyze, and
identify the hidden cell patterns that impact MIA performance.
• We explore the correlation between the NAS-searched architec-
tures and the robustness against MIAs and identify certain cell
patterns that impact MIA performance. The experimental results
show that our cell patterns can successfully demote or promote
MIA performance on target NAS architectures in most cases. Fur-
thermore, our cell patterns can transfer to new attack settings
and are complementary to existing defense work.

2 PRELIMINARIES
2.1 Cell-based Neural Architecture Search
Overview. The search space of NAS can be extremely large if we
directly search for and enumerate every single candidate structure
of the whole network. To cope with this challenge, cell-based NAS
algorithms treat the whole network architecture as a combination
of specific small modules, which is referred to as cells. As such,
we only need to search for the structures of the basic cells, which
significantly reduces the search space and speeds up the search
process. Due to the outstanding performance and high flexibility,
cell-based NAS algorithms have dominated the NAS research [70].
Figure 1 illustrates a typical cell-based NAS architecture.

There are usually two types of cells in such architectures, normal
cell and reduction cell. The normal cell preserves the dimension of
the input, while the reduction cell reduces the spatial dimension
of the input. The reduction cells are usually placed at the 1/3 and
2/3 positions of the total number of cells, and the rest are normal
cells [44]. Under this setting, a cell-based NAS architecture usually
has only two reduction cells and tends to have more normal cells es-
pecially when the network is deep. Both normal and reduction cells

On the Privacy Risks of Cell-Based NAS Architectures CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

are composed of topological combinations of candidate operations
(e.g., separable convolution and skip connection).

The discrete candidate operations can be represented as contin-
uous architectural parameters such that the whole architecture can
be differentially optimized regarding both the model weights and
architectural parameters in the search process. We can gradually
train a super network that contains all possible edges in a cell to
search for suitable structures of both normal and reduction cells.
When we evaluate the performance of candidate architectures, only
a limited number (e.g., 2) of input edges with the highest archi-
tectural parameters for each intermediate node in the cell will be
retained as real corresponding operations. The model weights will
be inherited from the super network by the current candidate ar-
chitecture to evaluate the performance on a validation dataset. In
this way, the search space and computation cost are significantly
reduced compared to previous NAS methods.
DARTS. We use DARTS [44], the most typical cell-based NAS
algorithm, to demonstrate the general concepts and workflow of
the cell-based NAS methods. The right box of Figure 1 illustrates
the cell search space of the DARTS algorithm, which is represented
by a directed acyclic graph (DAG) containing 7 nodes, i.e., 2 input
nodes, 4 intermediate nodes, and 1 output node, and multiple edges.
The nodes represent the state of the data, and the edges represent
the operations on the data. The operation 𝑜 (𝑖, 𝑗) between node 𝑖
and 𝑗 is selected from a predefined operation set containing 𝐾 = 7
different operations. For an intermediate node 𝑗 , it obtains the
intermediate data 𝑥 (𝑗) by aggregating all of its predecessors, i.e.,
𝑥 (𝑗) =

∑
𝑖< 𝑗 𝑜

(𝑖, 𝑗)𝑥 (𝑖) . The outputs of all intermediate nodes will
be concatenated to the output node in the end. In the final cell
architecture, each intermediate node is only allowed to have 2 input
nodes. Therefore, though there are 14 possible edges to connect
intermediate nodes in Figure 1, we can only choose (4×2 = 8) edges
from them and fill these edges with the most likely operations.
For simplicity, we refer to the search space defined in the DARTS
algorithm as DARTS search space. Note that, there are also some
other kinds of search spaces, the most representative one among
them is NAS-Bench-201 [18], a much simpler and smaller search
space. More details can be found in Appendix C of our technical
report [31]. 2

2.2 Membership Inference Attack
Membership inference attacks (MIAs) against machine learning
models aim to infer whether a target sample 𝑥 is used to train a
target model 𝑓target. As such, MIA directly leads to a privacy breach,
allowing the adversaries to learn sensitive information about the
training data. For example, in the real world, 𝑥 can be a clinical
record or an individual. MIA enables the attackers can infer whether
this clinical record or individual has been used to train a model
associated with a certain disease. This is evidently a privacy and
confidentiality violation.

Consider the most common attack setting where the adversary
has black-box access to the target model [64], to launch such an
attack, the attackers first train a shadow model 𝑓shadow using a
shadow dataset 𝒟train

shadow, which performs the same task as 𝑓target
(e.g., classification). The attackers then query 𝑓shadow using both

2Due to space limitation, we defer all the appendices to our technical report [31]

𝒟train
shadow (member data) and𝒟test

shadow (non-member data) and obtain
the query responses 𝑅 = 𝑅member ∪𝑅non-member. They can build an
attack model 𝑓attack : 𝑅 → {0, 1}, where the responses of member
data are labeled as 1 and those of non-member are labeled as 0. At
the attack time, the attackers query 𝑓target using the data instance
𝑥 and use 𝑓attack to infer whether 𝑥 ∈ 𝒟train

target or not using the
response from the target model 𝑓target.

3 PRIVACY MEASUREMENT OF
NAS-SEARCHED ARCHITECTURES

3.1 Motivation
Many papers point out that overfitting of the target ML models
(i.e., the target model performs much better on its training data
than test data) is the main factor contributing to the success of
MIAs [47, 62, 64, 80]. Shu et al. [65] show that the cell architec-
tures searched by cell-based NAS tend to be shallow and wide to
make the loss value converge stably and fast during the search
process, which usually leads to competitive generalization perfor-
mance though it is not guaranteed to be the best. In other words,
the architectures searched by these NAS algorithms usually have
low overfitting levels. Therefore, a natural hypothesis is that NAS-
searched architectures are more robust against MIAs than tradi-
tional human-designed ones. Yet, recent work from Pang et al. [54],
using empirical results, demonstrates that the NAS architectures are
more vulnerable to MIAs than those human-designed architectures,
even though the former have better normal model performance
than the latter. Note that the conclusion of Pang et al. [54] is based
on the label-only scenario for MIA in a black-box setting. In light
of the conflicting results, in this section, we comprehensively eval-
uate the performance of MIAs on NAS-searched architectures and
human-designed architectures in both black-box and white-box
settings with different levels of knowledge. Our goal is to eliminate
the potential experimental bias introduced in the previous research
and compare the MIA performance on both categories in a wider
spectrum of attack scenarios.

3.2 Measurement Setting
Datasets. We use 4 diverse benchmark datasets to conduct the
measurement experiments, including CIFAR10 [1], CIFAR100 [1],
STL10 [14], and CelebA [48]. We refer the readers to Appendix A
of our technical report [31] for the details of these datasets.
NAS Algorithms. We use 10 representative NAS algorithms to
conduct the experiments: (1) DARTS-V1 [44]; (2) DARTS-V2 [44];
(3) ENAS [55]; (4) GDAS [17]; (5) SETN [16]; (6) Random [5]; (7)
TENAS [10]; (8) DrNAS [12]; (9) PC-DARTS [78]; (10) SDARTS [11].
We defer the detailed description of them to Appendix A of our
technical report [31].
Manual Architectures. For comparison, we also select 10 rep-
resentative human-designed architectures to conduct the experi-
ments: (1) ResNet [25]; (2) ResNext [76]; (3) WideResNet [82]; (4)
VGG [67]; (5) DenseNet [30]; (6) EfficientNet [69]; (7) RegNet [58];
(8) CSPNet [71]; (9) BiT [37]; (10) DLA [81]. We refer the readers
to Appendix A of our technical report [31] for the details of these
architectures.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Hai Huang, et al.

Data Configuration. To facilitate the fair comparison of differ-
ent MIA methods, we split the original dataset 𝒟 into 4 disjoint
parts with the same size, i.e.,𝒟train

target,𝒟
test
target,𝒟

train
shadow and𝒟test

shadow.
𝒟train
target and 𝒟test

target serve as the training and testing dataset of the
target model, while𝒟train

shadow and𝒟test
shadow are utilized as the training

and testing dataset of the shadow model. As for the NAS algorithm,
we further split𝒟train

target into two disjoint parts with the same size to

obtain𝒟traint
target and𝒟

trainv
target , where𝒟

traint
target and𝒟

trainv
target are used as the

training and validation datasets respectively of the NAS algorithm
in the search process. After the final NAS architecture is generated,
we train it from scratch using 𝒟train

target and test its performance on
𝒟test
target. Note that our NAS training/validation data split is in line

with the latest research by Oymak et al. [53], which states that the
train-validation accuracy gap decreases rapidly when the validation
data is mildly large. Take CIFAR10 dataset for example, the size
of 𝒟trainv

target is 7,500, which is fairly sizeable and matching the rec-
ommendation by Oymak et al. [53]. In turn, we are more likely to
make our NAS-searched architectures achieve better generalization
performance.
Attacker’s Knowledge. According to the different knowledge lev-
els the attacker has about the target model, we classify the existing
MIAs into 5 types and use them to evaluate the above 10 NAS
algorithms and 10 human-designed models. In this way, we can
conduct a thorough and objective evaluation of both NAS-searched
and human-designed architectures in all known MIA attach scenar-
ios [29, 47].
• ⟨Black-Box, Shadow⟩. In this scenario, the attacker only has black-
box access to the target model with a local shadow dataset and
does not know the training dataset of the target model.
• ⟨Black-Box, Partial⟩. The attacker has black-box access to the
target model and has partial knowledge of the training dataset
of the target model.
• ⟨White-Box, Shadow⟩. The attacker has white-box access to the
target model with only a local shadow dataset and does not know
the training dataset of the target model.
• ⟨White-Box, Partial⟩. The attacker has white-box access to the
target model and has partial knowledge of the training dataset
of the target model. This is the strongest attack scenario.
• ⟨Label-Only⟩. The attacker only has black-box access to the tar-
get model and can only infer information from the output labels
of the target model, which is the weakest attack scenario.

Note that the attacker obtains all confidence scores returned by
the target model except for the ⟨Label-Only⟩ MIA scenario. We
defer the training details of the target models and attack models to
Appendix A of our technical report [31].

3.3 Measurement Results
Model Performance. The model performance and overfitting of
both NAS-search and human-designed models on 4 benchmark
datasets are shown in Table 1. We can observe that the performance
of the architectures searched by NAS is comparable to or even
better than that of the human-designed architectures. Our model
performance results are consistent with the previous research from
both the ML community [11, 87] and Pang et al. [54]. The over-
fitting levels on the CIFAR100 and STL10 datasets are relatively

Table 1: Normal test accuracy of NAS-searched and human-
designed architectures on four different datasets. The num-
bers in the parentheses stand for the corresponding overfit-
ting levels.

Architecture Dataset
CIFAR10 CIFAR100 STL10 CelebA

H
um

an
-d
es
ig
ne
d

ResNet 0.6587 (0.3413) 0.2993 (0.7005) 0.4948 (0.5052) 0.7438 (0.2562)
ResNext 0.6410 (0.3590) 0.3026 (0.6973) 0.4711 (0.5289) 0.7468 (0.2532)
WideResNet 0.6431 (0.3569) 0.3028 (0.6971) 0.4662 (0.5338) 0.7516 (0.2484)
VGG 0.7796 (0.2204) 0.4395 (0.5603) 0.6102 (0.3895) 0.7627 (0.2373)
DenseNet 0.7509 (0.2491) 0.4128 (0.5871) 0.5815 (0.4185) 0.7506 (0.2494)
EfficientNet 0.5637 (0.4360) 0.2401 (0.7597) 0.3862 (0.6132) 0.7240 (0.2687)
RegNet 0.5360 (0.4640) 0.2252 (0.7744) 0.4206 (0.5794) 0.7366 (0.2632)
CSPNet 0.6745 (0.3255) 0.3151 (0.6848) 0.5169 (0.4831) 0.7434 (0.2566)
BiT 0.6165 (0.3835) 0.2417 (0.7581) 0.4274 (0.5726) 0.7401 (0.2599)
DLA 0.6245 (0.3755) 0.3049 (0.6948) 0.4517 (0.5483) 0.7411 (0.2589)

N
A
S-
se
ar
ch
ed

DARTS-V1 0.7043 (0.0979) 0.4071 (0.5929) 0.5917 (0.0911) 0.7663 (0.0272)
DARTS-V2 0.7028 (0.0962) 0.3895 (0.6105) 0.6123 (0.3877) 0.7704 (0.0777)
ENAS 0.6343 (0.0270) 0.3895 (0.6057) 0.3726 (0.0302) 0.7664 (0.2331)
GDAS 0.6621 (0.0657) 0.4111 (0.1956) 0.6357 (0.3154) 0.7639 (0.2311)
SETN 0.7108 (0.0765) 0.4107 (0.1991) 0.5206 (0.0412) 0.7672 (0.2278)
Random 0.8112 (0.1886) 0.4313 (0.3671) 0.6452 (0.3517) 0.7659 (0.2032)
TENAS 0.7937 (0.2063) 0.4353 (0.5645) 0.5754 (0.4246) 0.7559 (0.2403)
DrNAS 0.7768 (0.2232) 0.4224 (0.5774) 0.6025 (0.3975) 0.7625 (0.2013)
PC-DARTS 0.7647 (0.2353) 0.4273 (0.5726) 0.6040 (0.3960) 0.7612 (0.1726)
SDARTS 0.7641 (0.2359) 0.4410 (0.5485) 0.6400 (0.3600) 0.7727 (0.0790)

high due to the fact that the test accuracy on these two datasets
is much lower than that on the CIFAR10 and CelebA datasets, and
the training accuracy on all four datasets can reach round 1.0 for
most architectures under the same training settings. We can see
that, most architectures comply with the general rule that a higher
test accuracy tends to lead to a lower overfitting level.

Moreover, we observe that the NAS-searched architectures usu-
ally have lower overfitting levels than the human-designed archi-
tectures on all four datasets, which leads us to expect the robustness
of the NAS-searched architectures against MIAs should be better
than that of the human-designed ones, since previous work [47]
have shown that a higher overfitting level of the target model usu-
ally leads to a better MIA performance. However, this conjecture
conflicts with the observations of Pang et al.’s work [54], i.e., the
NAS-searched architectures are more vulnerable to MIAs than the
human-designed architectures, which motivates us to further ex-
plore the reason behind the conflicts and estimate the real privacy
threats of various MIAs on the NAS-searched architectures. In fact,
Pang et al. [54] only consider the label-only attack scenario in which
the attacker has only access to the output labels of the target model,
and their data sampling method for testing the MIA performance in
their released code implementation3 is actually biased to some data
samples with extremely high confidence scores. To test our conjec-
ture and comprehensively study the MIA threats on NAS-searched
architectures with reliable and unbiased experimental results, we
further evaluate the MIA performance with the aforementioned 5
attack settings on both the NAS-searched and the human-designed
architectures.
Robustness Against Privacy Attacks. We compare their exper-
imental results under aforementioned 5 different attack settings.
The experimental results of ⟨Label-Only⟩, ⟨Black-Box, Shadow⟩,
and ⟨White-Box, Shadow⟩ on the CIFAR10, CIFAR100 and STL10

3https://github.com/ain-soph/autovul/blob/main/projects/membership.py

https://github.com/ain-soph/autovul/blob/main/projects/membership.py

On the Privacy Risks of Cell-Based NAS Architectures CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

R
es

N
et

R
es

N
ex

t
W

id
eR

es
N

et
V

G
G

D
en

se
N

et
E

ffi
ci

en
tN

et
R

eg
N

et
C

S
P

N
et

B
iT

D
L

A

D
A

R
T

S
-V

1
D

A
R

T
S

-V
2

E
N

A
S

G
D

A
S

S
E

T
N

R
an

do
m

T
E

N
A

S
D

rN
A

S
P

C
-D

A
R

T
S

S
D

A
R

T
S

0.4

0.6

0.8

1.0
A

U
C

Human-designed

NAS-searched

(a) CIFAR10

R
es

N
et

R
es

N
ex

t
W

id
eR

es
N

et
V

G
G

D
en

se
N

et
E

ffi
ci

en
tN

et
R

eg
N

et
C

S
P

N
et

B
iT

D
L

A

D
A

R
T

S
-V

1
D

A
R

T
S

-V
2

E
N

A
S

G
D

A
S

S
E

T
N

R
an

do
m

T
E

N
A

S
D

rN
A

S
P

C
-D

A
R

T
S

S
D

A
R

T
S

0.4

0.6

0.8

1.0

A
U

C

Human-designed

NAS-searched

(b) CIFAR100

R
es

N
et

R
es

N
ex

t
W

id
eR

es
N

et
V

G
G

D
en

se
N

et
E

ffi
ci

en
tN

et
R

eg
N

et
C

S
P

N
et

B
iT

D
L

A

D
A

R
T

S
-V

1
D

A
R

T
S

-V
2

E
N

A
S

G
D

A
S

S
E

T
N

R
an

do
m

T
E

N
A

S
D

rN
A

S
P

C
-D

A
R

T
S

S
D

A
R

T
S

0.4

0.6

0.8

1.0

A
U

C

Human-designed

NAS-searched

(c) STL10

Figure 2: The performance of MIAs with the ⟨Label-Only⟩ setting on different datasets.

R
es

N
et

R
es

N
ex

t
W

id
eR

es
N

et
V

G
G

D
en

se
N

et
E

ffi
ci

en
tN

et
R

eg
N

et
C

S
P

N
et

B
iT

D
L

A

D
A

R
T

S
-V

1
D

A
R

T
S

-V
2

E
N

A
S

G
D

A
S

S
E

T
N

R
an

do
m

T
E

N
A

S
D

rN
A

S
P

C
-D

A
R

T
S

S
D

A
R

T
S

0.4

0.6

0.8

1.0

A
U

C

Human-designed

NAS-searched

(a) CIFAR10

R
es

N
et

R
es

N
ex

t
W

id
eR

es
N

et
V

G
G

D
en

se
N

et
E

ffi
ci

en
tN

et
R

eg
N

et
C

S
P

N
et

B
iT

D
L

A

D
A

R
T

S
-V

1
D

A
R

T
S

-V
2

E
N

A
S

G
D

A
S

S
E

T
N

R
an

do
m

T
E

N
A

S
D

rN
A

S
P

C
-D

A
R

T
S

S
D

A
R

T
S

0.4

0.6

0.8

1.0
A

U
C

Human-designed

NAS-searched

(b) CIFAR100

R
es

N
et

R
es

N
ex

t
W

id
eR

es
N

et
V

G
G

D
en

se
N

et
E

ffi
ci

en
tN

et
R

eg
N

et
C

S
P

N
et

B
iT

D
L

A

D
A

R
T

S
-V

1
D

A
R

T
S

-V
2

E
N

A
S

G
D

A
S

S
E

T
N

R
an

do
m

T
E

N
A

S
D

rN
A

S
P

C
-D

A
R

T
S

S
D

A
R

T
S

0.4

0.6

0.8

1.0

A
U

C

Human-designed

NAS-searched

(c) STL10

Figure 3: The performance of MIAs with the ⟨Black-Box, Shadow⟩ setting on different datasets.

R
es

N
et

R
es

N
ex

t
W

id
eR

es
N

et
V

G
G

D
en

se
N

et
E

ffi
ci

en
tN

et
R

eg
N

et
C

S
P

N
et

B
iT

D
L

A

D
A

R
T

S
-V

1
D

A
R

T
S

-V
2

E
N

A
S

G
D

A
S

S
E

T
N

R
an

do
m

T
E

N
A

S
D

rN
A

S
P

C
-D

A
R

T
S

S
D

A
R

T
S

0.4

0.6

0.8

1.0

A
U

C

Human-designed

NAS-searched

(a) CIFAR10

R
es

N
et

R
es

N
ex

t
W

id
eR

es
N

et
V

G
G

D
en

se
N

et
E

ffi
ci

en
tN

et
R

eg
N

et
C

S
P

N
et

B
iT

D
L

A

D
A

R
T

S
-V

1
D

A
R

T
S

-V
2

E
N

A
S

G
D

A
S

S
E

T
N

R
an

do
m

T
E

N
A

S
D

rN
A

S
P

C
-D

A
R

T
S

S
D

A
R

T
S

0.4

0.6

0.8

1.0

A
U

C

Human-designed

NAS-searched

(b) CIFAR100

R
es

N
et

R
es

N
ex

t
W

id
eR

es
N

et
V

G
G

D
en

se
N

et
E

ffi
ci

en
tN

et
R

eg
N

et
C

S
P

N
et

B
iT

D
L

A

D
A

R
T

S
-V

1
D

A
R

T
S

-V
2

E
N

A
S

G
D

A
S

S
E

T
N

R
an

do
m

T
E

N
A

S
D

rN
A

S
P

C
-D

A
R

T
S

S
D

A
R

T
S

0.4

0.6

0.8

1.0
A

U
C

Human-designed

NAS-searched

(c) STL10

Figure 4: The performance of MIAs with the ⟨White-Box, Shadow⟩ setting on different datasets.

datasets are shown in Figure 2, Figure 3, and Figure 4 respectively.
The results of the other two attack settings on these three datasets
and all attack settings on the CelebA dataset can be found in Ap-
pendix B of our technical report [31].

First, we can observe that the MIAs usually have better perfor-
mance under the white-box settings than the black-box settings. For
instance, on the CIFAR10 dataset, the highest AUC score for MIAs
onNAS architectures is around 0.81 under the ⟨White-Box, Shadow⟩
setting, while that under the ⟨Black-Box, Shadow⟩ is about 0.72, and
that under the most constrained ⟨Label-Only⟩ settings is around
0.68.We believe that it is due to the abundant additional information
(e.g., model weights, gradients) that the attackers extract from the
white-box target model. Consequently, they can further manipulate
such information to improve the performance of attacks. For exam-
ple, the attacker can concatenate the gradients of hidden layers of

the target white-box model with the output posteriors to serve as
the input features for the attack model, which are more likely to
enlarge the difference between members and non-members.

Second, given the same target dataset, the same target model
tends to perform similarly in different attack settings. We can see
that the architectures which obtain relatively high MIA AUC scores
in one attack setting are still very likely to acquire relatively high
MIA performance in other attack settings, and the histograms of
different attack settings on the same dataset are quite similar. This
interesting finding is also reasonable. Even though different attack
settings might affect attack effectiveness, the majority of informa-
tion needed by the attack is still offered by the output of the target
model. Therefore, the same architecture tends to share similar ro-
bustness against MIAs regardless of the various attack settings.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Hai Huang, et al.

0.68 0.73 0.59

…

…AUC

(1) NAS-searched Architectures Preparation

Statistics

Regression
Model

Extracted
Cell Patterns

(2) Cell Pattern Extraction (3) Cell Architecture Modifications

Cell Pattern

Figure 5: The overview of our framework exploring the correlation between the NAS architectures and MIA performance.

More importantly, we find that the NAS-searched architectures
tend to be more robust against various MIAs than the manual ones,
which means the latter faces more serious privacy threats than
the former. For example, the red bars are usually lower than the
blue bars in Figure 2. This further validates our aforementioned
conjecture. However, we notice that our conclusion is contrary to
the results from Pang et al. [54]. The root cause of such divergence
is due to different sampling strategies used to sample member
and non-member data. In our case, the distributions of member
and non-member data have the same distribution as the original
dataset. Pang et al. [54], however, sample data points with high
classification confidence scores from the original dataset per their
official implementation.4 Their sampling strategy cannot guarantee
the distributions of sampled member and non-member data have
the same distribution as the original dataset.

4 ON EXPLORING PRIVACY-RELATED CELL
PATTERNS

The empirical experimental results in Section 3 show that the NAS
architectures are usually more robust against MIAs; however, dif-
ferent NAS architectures still pose different levels of robustness
against MIAs. Some NAS architectures (e.g., DARTS-V2) even ap-
pear to be more vulnerable to MIAs than the human-designed VGG
on the STL10 dataset. Therefore, in this section, we aim to under-
stand the relationship between the robustness against MIAs and
the NAS architectures. Concretely, we seek to address the follow-
ing questions: (1)What are the common structures among existing
NAS architectures which might impact MIAs? (2) Can we find some
existing architectural patterns to decrease the MIA risks of the NAS
architectures when building NAS? and (3) If we do, can we maintain
the model performance while decreasing the MIA risks?

4.1 Overview
Figure 5 illustrates the overall framework for analyzing and eval-
uating the correlation between the cell patterns and robustness
against MIAs of NAS architectures, which consists of three steps.

• NAS-searched Architecture Preparation. We first collect a
large number of NAS-searched architectures with good model
utility and evaluate the corresponding MIA performance on them
for subsequent analysis.
• Cell Pattern Extraction.We then look deep into the internal
cell structures of these NAS-searched architectures and propose

4Line 52 in https://github.com/ain-soph/autovul/blob/main/projects/membership.py

a new method to extract common cell patterns that can promote
or demote the MIA performance.
• Cell Architecture Modification. Finally, we use the extracted
cell patterns to modify the internal cell structure of the target
architecture to promote or demote the MIA performance on it.

4.2 NAS-searched Architectures Preparation
It is infeasible for us to train thousands of NAS-searched architec-
tures from scratch. Instead, we use NAS-Bench-301 [66], a large
scale open-sourced benchmark dataset that contains 59,328 full-
trained NAS-searched architectures identified by 17 representative
NAS algorithms in a huge DARTS search space (i.e., 1018 possible
architectures) on the CIFAR10 dataset. We drop the redundant ar-
chitectures which appear multiple times in NAS-Bench-301 and
obtain a collection of NAS-searched architectures consisting of
53,558 unique architectures.

As we can see in Table 1, NAS-searched architectures with high
test accuracy tend to have low overfitting levels. Their cell patterns
are more likely to have better robustness against MIAs while main-
taining good model performance at the same time. Besides, in the
real world, the end users tend to choose architectures with high
model performance. As such, we select the top 5% (i.e., 2,678) archi-
tectures with the highest test accuracy scores from NAS-Bench-301.
We then evaluate the MIA effectiveness under the most powerful
attack setting, i.e., ⟨White-Box, Partial⟩ (see Section 3.2 for details)
for each sampled architecture to constitute an Architecture-to-MIA
dataset containing the well-performed architectures and their cor-
responding MIA AUC scores. The MIA AUC scores in this new
dataset range from 0.7311 to 0.8773. We group the architectures
withMIA AUC scores higher than 0.84 and lower than 0.78 into high
(denoted as 𝒜high) and low (denoted as 𝒜low) MIA categories. In
total, we have 297𝒜high and 303𝒜low NAS-searched architectures
for our cell pattern analysis.

4.3 Cell Pattern Extraction
To get a deeper understanding of the cell structures preferred by the
robust or vulnerable NAS architectures, we look into the internal
cell structures and try to extract some common cell patterns for
specific objectives (e.g., demote the performance of MIAs). Here
we take the 𝒜high and 𝒜low architectures for cell pattern extrac-
tion since they are the most vulnerable and robust architectures
respectively in our constructed Architecture-to-MIA dataset.
Operation Distributions. We first analyze the distributions of
operations in the normal and reduction cells of these two types of
architectures. We have an interesting finding that the convolution

https://github.com/ain-soph/autovul/blob/main/projects/membership.py

On the Privacy Risks of Cell-Based NAS Architectures CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

mp3 ap3 skip s3 s5 d3 d5
Operation

0

100

200

300

400

500

F
re

qu
en

cy

Ahigh

Alow

(a) Normal

mp3 ap3 skip s3 s5 d3 d5
Operation

0

100

200

300

400

500

F
re

qu
en

cy

Ahigh

Alow

(b) Reduction

Figure 6: Distributions of various operations in the normal
and reduction cells of both 𝒜high and 𝒜low architectures.

operations seem critical for model performance while the pooling
operations are preferred to mitigate MIAs. As shown in Figure 6,
the separable convolutions and skip connections occupy the majority
of operations in both normal and reduction cells regardless of the
architecture type, which means that these operations are critical
to model performance on original tasks. However, we find some
changes in the distribution of operations when the architecture type
moves from𝒜high to𝒜low, especially for specific operations in the
reduction cells. Furthermore, according to previous observations
in [70], the reduction cell has a relatively small impact on the
overall model performancewhich is dominated by normal cells. And
both the 𝒜high and 𝒜low architectures sampled by us have good
model performance, so it is expected that the difference between
the operation distributions in the normal cells of these two types
of architectures is relatively small. Therefore, we can observe that
the change of the operation distributions in the reduction cells
is more obvious than that in the normal cells. The frequency of
the average pooling 3 × 3 operation ap3 increases drastically by
175% when the architecture type changes from 𝒜high to 𝒜low. In
general, as for the reduction cells, the convolution operations are
preferred by the 𝒜high architectures, while the pooling operations
(especially the average pooling operation) are favored by the 𝒜low
architectures. When it comes to the normal cells, even though the
operation distributions of both the 𝒜high and 𝒜low architectures
are quite similar to retain model performance, we can still observe
that the separable convolution 3 × 3 operation s3 is particularly
favored by the 𝒜high architectures.
Operation Importance. The information obtained from merely
the distributions of various operations is far from enough to rep-
resent the common cell patterns among the well-performed archi-
tectures since the NAS architectures might comply with specific
topologies to guarantee model performance. Therefore, we go even
further to extract specific cell patterns containing both the topol-
ogy and operation information. To construct a cell pattern with
specific edges, we need to determine the importance of each edge.
Following similar strategy in [70], we use Operation Importance (OI)
to measure the impact of specific operations with specific edges.
For a NAS cell architecture 𝛼 , the directed edge 𝑒 (𝑖, 𝑗) starts from
node 𝑖 to node 𝑗 , we assume that the edge 𝑒 (𝑖, 𝑗) is assigned with
operation 𝑜𝑡 , then the OI metric for 𝑜𝑡 on edge 𝑒 (𝑖, 𝑗) is computed

Table 2: Performance of different regression models trained
on the constructed dataset.

Model Metrics
𝑅2 SpearmanR

SVR 0.1097 0.3055
Random Forest 0.1021 0.3155
LGBoost 0.0718 0.2783
XGBoost 0.1332 0.3394
BANANAS -0.0586 0.2003
GIN 0.0788 0.3751

as follows:

OI(𝛼, 𝑒 (𝑖, 𝑗) := 𝑜𝑡) =
∑ |𝒩 (𝛼,𝑒 (𝑖,𝑗) :=𝑜𝑡) |
𝑘=1 𝑓 (𝛼𝑘)
|𝒩 (𝛼, 𝑒 (𝑖, 𝑗) := 𝑜𝑡) |

− 𝑓 (𝛼), (1)

where 𝑓 (𝛼) stands for the MIA AUC score of NAS cell architecture
𝛼 and 𝒩 (𝛼, 𝑒 (𝑖, 𝑗) := 𝑜𝑡) represents the neighbor cell set of the
original cell architecture 𝛼 .

We regard a cell as a neighbor cell of the original cell architecture
𝛼 with operation 𝑜𝑡 on edge 𝑒 (𝑖, 𝑗) when we either replace operation
𝑜𝑡 with another operation 𝑜𝑝 (𝑜𝑝 ≠ 𝑜𝑡) or change the input node 𝑖
of edge 𝑒 (𝑖, 𝑗) to another preceding node 𝑞(𝑞 ≠ 𝑖) in the original cell
architecture 𝛼 to obtain the current cell. OI compares the average
MIA performance on the neighbor cells with that on the original cell
architecture. A positive value indicates that the current operation
in the current edge can mitigate the MIA threats, while a negative
value means that the current operation can contribute to MIA per-
formance. Therefore, the attacker prefers the operation-assigned
edge with a small negative value, while the defender favors an edge
with a large positive value. Note that the MIA evaluation on one
cell can be time-consuming (usually takes about 2 hours in our
experiments). Even if we consider only modifying a single edge
in a cell, it may affect multiple neighbor cells. In turn, iteratively
evaluating each neighbor cell after re-training from scratch would
be computationally prohibitive when there are many original cells
for analysis.
GIN-based Regression Model. To speed up the computation pro-
cess and make this method feasible in reality, we use the aforemen-
tioned Architecture-to-MIA dataset to train a regression model to
directly predict the MIA performance when the cell architecture is
given. The core idea is to build a regression model to achieve the
speed-up. The input of the regression model is the architecture, and
the output data is its corresponding predicted MIA AUC score. Here
we randomly divide the Architecture-to-MIA dataset into three parts
with 80%, 10%, and 10% as training, validation, and testing datasets,
respectively. We test multiple regression methods (i.e., SVR [19],
Random Forest [27], LGBoost [35], XGBoost [9], BANANAS [75],
and GIN [77]) to select the model which can best fit the relationship
between the NAS architectures and MIA AUC scores. The experi-
ments use the same parameter settings for these regression models
as the publicly available implementation of NAS-Bench-301.5

The experimental results are show in Table 2. We use twometrics
(i.e., 𝑅2 and SpearmanR) to estimate the performance of different
regression models. 𝑅2(coefficient of determination) measures how
well the observed results are replicated by the model according

5https://github.com/automl/nasbench301.git

https://github.com/automl/nasbench301.git

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Hai Huang, et al.

to the proportion of the outcome variance successfully explained
by the model. SpearmanR (Spearman rank-order correlation coeffi-
cient) measures the monotonicity of the relationship between the
two datasets (i.e., the ground-truth AUC scores and the predicted
AUC scores in our experiments). Higher scores of 𝑅2 are preferred
and the best possible value of it is 1.0, while scores with higher
absolute values are favored for SpearmanR whose best score is
+1/-1. We can observe that the XGBoost model obtains the best
𝑅2 score while the GIN model achieves the best SpearmanR score.
Additionally, since the architecture of a NAS cell can be represented
as a DAG, and GIN model is a powerful variation of Graph Neural
Networks (GNNs) which can learn plentiful information from the
architectures of graph data and have surpassed many traditional
techniques on graph tasks, it is very reasonable to use GIN in this
scenario. As a result, we choose the GIN model as the regression
model for further experiments and analysis. Note that we use this
GIN-based regression model 𝑓 to replace 𝑓 in Equation 1. In turn,
we can immediately estimate the MIA AUC score after we get one
specific cell architecture.
Cell Pattern Categories. According to the goals of different cell
patterns, we divide the cell patterns into two categories, i.e., MIA
promotion and MIA demotion, where the MIA promotion cell pat-
terns aim to improve the performance of MIAs while the MIA de-
motion cell patterns attempt to mitigate MIA threats. Take the MIA
demotion cell patterns for example, we prefer to choose the edges
with a large positive value. Additionally, to accumulate the effec-
tiveness of every single edge in the cell pattern, when constructing
the cell pattern one by one edge, we ensure that the selected new
edge is adjacent to the current cell pattern (i.e., having nodes in
common). In this way, all selected edges are connected as a whole
graph. Besides, we make sure that the cell patterns comply with
the DARTS cell construction rule, e.g., each intermediate node has
at most two input edges.
Extraction Strategy. The extraction strategy is shown in Algo-
rithm 1. To focus on the operation-signed edges which are more
common among sampled architectures, we only consider and com-
pare the OI scores of those edges appearing more than 14 times
in the candidate edge set ℰ when we analyze the cell patterns for
the normal or reduction cells of 𝒜high or 𝒜low architectures. Our
extraction strategy consists of 4 steps:

• Initialization.We separately compute the operation importance
for the normal and reduction cells in𝒜high or𝒜low architectures,
and follow Line 1-7 to prepare for the extraction.
• Edge Constraint Checking. We check the number of edges in
the current cell pattern in Line 8 and will terminate the extrac-
tion process in advance using Line 24 if no more new edge is
successfully added to the current cell pattern graph.
• Construction Rule Checking. We check whether the current
edge is adjacent to the current cell pattern graph and also comply
with the rule in the DARTS search space using Line 14.
• Operation Importance Checking. We check whether the op-
eration importance score of the current edge meets our require-
ments using Line 15 and will update the current cell pattern and
other data recorders using Line 16-22 if this edge is successfully
added.

Algorithm 1: Cell Pattern Extraction
Input: Candidate edge set ℰ , maximum number of edges in

the cell pattern 𝐿, demotion flag 𝛿
Output: Cell pattern graph 𝐺𝑝

1 Initialize the in-degree dictionary 𝐷in with 0 for each node;
2 Initialize the existing cell pattern graph 𝐺𝑝 , edge topology

set 𝐸𝑝 and node set 𝑉𝑝 as empty sets;
3 if 𝛿 then
4 Sort ℰ in descending order according to OI scores;
5 else
6 Sort ℰ in ascending order according to OI scores;
7 Add the input node of the first edge ℰ1 in ℰ to 𝑉𝑝 ;
8 while |𝐺𝑝 | < 𝐿 do
9 𝜖 ← False;

10 𝑁 ← |ℰ |;
11 for 𝑖 ← 1 to 𝑁 do

// Start node 𝑢, end node 𝑣, operation 𝑜
12 (𝑢, 𝑣, 𝑜) ← ℰ𝑖 ;
13 𝜏 ← OI((𝑢, 𝑣, 𝑜));
14 if (𝑢 ∈ 𝑉𝑝 or 𝑣 ∈ 𝑉𝑝) and (𝑢, 𝑣) ∉ 𝐸𝑝 and

𝐷in [𝑣] < 2 then
15 if (𝛿 and 𝜏 > 0) or (not 𝛿 and 𝜏 < 0) then
16 𝐺𝑝 ← 𝐺𝑝 ∪ (𝑢, 𝑣, 𝑜);
17 𝐸𝑝 ← 𝐸𝑝 ∪ (𝑢, 𝑣);
18 𝑉𝑝 ← 𝑉𝑝 ∪ {𝑢, 𝑣};
19 𝐷in [𝑣] ← 𝐷in [𝑣] + 1;
20 ℰ ← ℰ \ (𝑢, 𝑣, 𝑜);
21 𝜖 ← True;
22 break
23 if not 𝜖 then
24 break

Note that the NAS cell architectures in the NAS-Bench-301 dataset
have 4 intermediate nodes and up to 8 edges in a cell can bemodified;
thus, we thereby set 𝐿 = 8. We set the demotion flag 𝛿 to “True” to
search for the MIA demotion cell patterns, and “False” otherwise
to search for the MIA promotion cell patterns.

4.4 Cell Architecture Modifications
Through the above efforts, we can extract the cell patterns from
the Architecture-to-MIA dataset. Based on these cell patterns, we
could go further to modify the internal cell structure of the target
architecture to promote or demote MIA performance on it.
Extracted Patterns. Figure 7 illustrates the extracted patterns,
including bothMIA demotion and promotion cell patterns extracted
from normal cells and reductions, respectively. We have several
interesting findings according to the extracted cell patterns.
• First, separable convolution and dilated separable convolution
operations are preferred by the normal cells in both the MIA de-
motion and promotion cell patterns. As we have discussed before,
this is because the model performance is mainly determined by
the normal cells and some common operations are necessary for
maintaining good model performance.

On the Privacy Risks of Cell-Based NAS Architectures CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Input 1

3210

1

2

3

4

5

Input 1

10

Input 0

2 3

1
2 34 5

6

7

Normal Reduction

MIA Demotion Cell Patterns

Input 1

3210

Input 0

1

2
3

4 5

6

7

8

Input 1

3210

Input 0

12

345

67

8

Normal Reduction

MIA Promotion Cell Patterns

 Avg Pool 3x3 Sep Conv 3x3 Sep Conv 5x5 Dil Conv 3x3 Dil Conv 5x5

Figure 7: The extracted cell patterns for both MIA demotion and promotion on both normal and reduction cells. The numbers
in circles near edges indicate the order in which the corresponding edges were selected for the cell pattern in the cell.

• Second, reduction cells prefer average pooling operations when
demoting MIAs but favor convolution operations for MIA pro-
motion. This is also consistent with our findings in the operation
distributions of different architectures (see Section 4.3).
• Third, the edges in the MIA demotion cell pattern on normal cells
are mainly connected between intermediate nodes, while those
of other cell patterns are mainly connected to the input nodes.
We speculate the reason is that MIA demotion cell patterns use
this way to impede direct information transmission for normal
cells. According to the statistical results in Figure 6 and the ex-
tracted MIA promotion cell patterns in Figure 7, convolution
operations seem to be beneficial to MIAs but the normal cells
have to use them to retain good model performance even in the
MIA demotion cell pattern. To weaken the negative impact of
convolutions on privacy, the MIA demotion cell patterns prefer to
place these operations in some positions not directly connected
to the input nodes to avoid the information with high fidelity
being leaked through these operations. On the contrary, max-
pooling operations seem to be helpful to mitigate MIAs, so they
are mainly directly connected between the input nodes and the
intermediate nodes to protect the original information. As for the
MIA promotion cell patterns, convolution operations are largely
connected to the input nodes to facilitate extracting information
with high fidelity.

Cell Architecture Modifications. Our architectural modifica-
tions to the target architectures work as follows. First, according
to our goal (e.g., promoting MIA performance on the target archi-
tecture) and the constraints on our modifications, we constitute
corresponding cell patterns from Figure 7 to guide modifications on
specific types of cells. For example, when we want to achieve MIA
demotion goal, and we are limited to perturb only the normal cell
architectures and determine the structure in a cell for up to 4 edges,
we select 4 edges from the MIA demotion cell pattern on normal
cells following the sequence of the corresponding circled numbers
(shown in the left side of Figure 7). We then get the required cell
pattern as shown in the upper part of Figure 8.

Second, upon obtaining the cell pattern, we compare the internal
structure of both the cell pattern and the normal cell of the target
architecture. If an edge 𝑒 (𝑖, 𝑗) with the assigned operation 𝑜𝑡 in the
cell pattern does not exist in the target normal cell, we replace
another existing edge 𝑒 (𝑘,𝑗) in the target normal cell with the same

Input 1

3210

Cell Pattern

3210

Input 0 Input 1

Output
Original Cell Architecture

3210

Input 0 Input 1

Output
Modified Cell Architecture

3210

Input 0 Input 1

Output
Comparison Results

Sep Conv 3x3
Sep Conv 5x5
Dil Conv 3x3
Dil Conv 5x5
Skip Connect
Max Pool 3x3
Avg Pool 3x3

Figure 8: An example of cell architecture modifications based
on the cell pattern. The arrows with dashed lines represent
candidate edges to be replaced, while the filled double arrows
with solid lines stand for the newly added edges as modifica-
tions.

end node of 𝑒 (𝑖, 𝑗) . If there already exists the edge 𝑒 (𝑖, 𝑗) but with
a different operation 𝑜𝑡 ′ (𝑜𝑡 ′ ≠ 𝑜𝑡) in the target normal cell, we
simply alter its operation 𝑜𝑡 ′ to 𝑜𝑡 later. The arrows with dashed
lines in Figure 8 represent the original edges ready to be changed.

Finally, we make the modifications to the replacement candidate
edges, and replace these edges with the corresponding edges in the
cell pattern. The filled double arrows with solid lines in Figure 8
stand for the newly added edges to the target normal cell. After tak-
ing these three steps, the target normal cell is successfully modified
to comply with the cell pattern.

5 CELL PATTERN EVALUATION
5.1 Experimental Setup
Cell PatternModification Configuration.We evaluate three cat-
egories of cell modifications, namely Only-Reduction, Only-Normal
and Dual modifications. Only-Reduction modifications are exclu-
sively made to the reduction cell of the target NAS architecture.
Similarly, Only-Normal modifications are made only to the normal
cell of the target NAS architecture. Dual modifications indicate
that the modifications are made to both reduce and normal cells of

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Hai Huang, et al.

3 4 5

m

0.74

0.76

0.78

0.80

0.82

0.84

0.86

M
IA

A
U

C

None

Only-Reduction

Only-Normal

Dual

(a) Demotion

3 4 5

m

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

M
IA

A
U

C

None

Only-Reduction

Only-Normal

Dual

(b) Promotion

Figure 9: MIA performance with various cell patterns under
different cell pattern constraints. “None” means no architec-
tural modification is applied to the target architectures.

the target architecture. For all these modifications, we use the cell
patterns identified in Figure 7.
Modification Budget. Note that the cell patterns extracted in
Figure 7 tend to include as many edges as possible to either demote
or promote MIA performance. However, in the real world, we may
not be allowed to modify that many edges in a cell since it would
significantly limit the space searchable by various NAS algorithms.
That is, the more edges determined by the cell patterns, the fewer
edges useable by the NAS algorithm, since the overall amount of
edges is fixed. For example, we have 8 edges in total for the DARTS
cell (see Figure 1). If the cell pattern has 6 edges, a NAS algorithm
has only 2 edges to search. We thereby set a modification budget𝑚
to limit the number of edges we can select from one cell pattern. In
turn, our final cell patterns used in our experiments contain at most
the first𝑚 edges from the full cell patterns as shown in Figure 7.
We use𝑚 = {3, 4, 5} to evaluate the effectiveness of cell pattern
modifications.
Runtime Configuration. Unless otherwise mentioned, we ran-
domly sample 10 NAS-searched architecture instances from our
Architecture-to-MIA dataset as the target NAS architectures and
average their results. We set𝑚 = 4 and conduct the experiments
on the CIFAR10 dataset by default.

5.2 Effectiveness of the Cell Patterns
We evaluate the MIA performance under the ⟨White-Box, Partial⟩
setting on the CIFAR10 dataset. The experimental results for both
MIA performance and model utility (i.e., the test performance on
the testing dataset for the target model) are shown in Figure 9 and
Figure 10 respectively.

The first observation is that our cell patterns can successfully de-
mote or promoteMIAs as intended in all cases. TakeOnly-Reduction
modification and modification budget𝑚 = 4 for instance, the aver-
age MIA AUC score of the target architectures drops from 0.8141 to
0.7861. Though a small MIA AUC score decrease from the absolute
value perspective, however, such drop can reduce the privacy risks
since the real-world models usually requires a huge amount of user
data to train.

Our second observation is that it is relatively easier to demote
MIA AUC scores of NAS-searched architectures than to promote

3 4 5

m

0.74

0.76

0.78

0.80

0.82

0.84

0.86

T
es

t
A

cc
ur

ac
y

None

Only-Reduction

Only-Normal

Dual

(a) Demotion

3 4 5

m

0.74

0.76

0.78

0.80

0.82

0.84

T
es

t
A

cc
ur

ac
y

None

Only-Reduction

Only-Normal

Dual

(b) Promotion

Figure 10: Model utility with various cell patterns under dif-
ferent cell pattern constraint values. “None” means no archi-
tectural modifications are applied to the target architectures.

Direct Intermediate
Convolution Topology

0

200

400

600

800

1000

1200

F
re

qu
en

cy

Ahigh

Alow

(a) Normal

Direct Intermediate
Convolution Topology

0

250

500

750

1000

1250

1500

F
re

qu
en

cy

Ahigh

Alow

(b) Reduction

Figure 11: Distributions of convolutions with two types of
topology in the normal and reduction cells of both𝒜high and
𝒜low architectures.

them. Our hypothesis is that the convolution topology difference
between 𝒜low and 𝒜high may contribute to this phenomenon. To
this end, we further count the number of the convolution opera-
tions with two different topologies — the direct topology where
the convolution operations connect to the input nodes and the
intermediate topology where the convolution operations connect
two intermediate nodes. For instance, in the MIA demotion cell
pattern on the reduction cells in Figure 7, the edge marked with
the circled number 6 stands for the intermediate topology, while
all the other edges belong to the direct topology. The statistical
results for convolution topologies are shown in Figure 11. As we
can see in Figure 11, the frequency of direct convolution topology is
always higher than that of the intermediate convolutions. And also,
the normal cells in the 𝒜low architectures contain more interme-
diate convolution topology than those of the 𝒜high architectures.
Recall that Section 4.4 shows that the MIA promotion cell pattern
on both normal and reduction cells contains many direct convo-
lutions, while the MIA demotion cell patterns on both the normal
and reduction cells contain few direct convolutions. Adding more
direct convolutions (i.e., promotion) to𝒜high and𝒜low would have
less impact on MIA performance due to the fact that the frequency
of direct convolution topology is always high in both cases. On the
other hand, reducing direct convolutions (i.e., demotion) is more

On the Privacy Risks of Cell-Based NAS Architectures CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

effective in decreasing the MIA AUC scores, hence more evident in
𝒜high and 𝒜low.

Our third observation is that cell patterns with more edges tend
to have a larger impact on MIA robustness. For example, when
we increase the modification budget 𝑚 from 3 to 5 in Figure 9b,
the MIA performance of the target architectures under the Only-
Normal MIA promotion modifications ascend from 0.8148 to 0.8217.
Note that, even when the cell patterns have merely𝑚 = 3 edges,
the Only-Normal MIA demotion modifications can still effectively
decrease the MIA performance from 0.8141 to 0.7940 in Figure 9a.

Besides, in the MIA demotion scenario, the model utility is even
improved after the robustness of the target architecture has been
strengthened, which is a desired and satisfying result. The reason
behind this phenomenon is that the MIA performance is correlated
with the overfitting level of the target model [47]. After we apply
the MIA demotion cell patterns, the overfitting level of the target
model decreases. The reduced overfitting level helps the target
model generalize better and promote the model utility at the test
time. For instance, after the Only-Reduction MIA demotion mod-
ifications with 𝑚 = 4, the MIA performance in Figure 9a drops
from 0.8141 to 0.7861, while the corresponding test accuracy in
Figure 10a increases from 0.7866 to 0.7959. The overfitting level
of the target model drops from 0.2134 to 0.2041 in this case. Note
that, Only-Normal modifications usually have a relatively small
impact on the model performance of the target architectures. As
we have discussed in Section 4.4, the cell patterns on normal cells
have tried to mitigate the side effects on model performance and
mainly contain convolution operations.

Finally, Dual modifications usually have the largest impact on
the model utility and MIA robustness. For instance, when the mod-
ification budget limited to𝑚 = 3 in Figure 9a, Only-Normal and
Only-Reduction MIA demotion modifications can demote the MIA
AUC score of the target architectures from 0.8141 to 0.7940 and
0.7946 respectively, while Dual modifications can further reduce
the MIA AUC score to 0.7801. At the same time, the test accuracy
of the architecture in Figure 10a is improved from 0.7866 to 0.7948,
0.7950, and 0.8061 respectively for Only-Normal, Only-Reduction,
and Dual modifications. Note that, we also conduct ablation studies
on the impact of the number of cells and the number of intermediate
nodes in Appendix D of [31] to get a deeper understanding of the
cell patterns. Particularly, we find that deeper networks tend to be
more robust while wider networks tend to be more vulnerable to
MIAs.

5.3 Loss Contour Analysis
To further investigate the impact of MIA demotion or promotion
modifications, we leverage loss contour of the target architecture to
understand how those architectures behave after the modifications
have been made. We sample one architecture already evaluated
in Section 5.2, and plot its training loss contour with regarding to
model weight parameters changes using the code implementation6
of Li et al.’s work [40]. Both MIA demotion and promotion modifica-
tions are Only-Reduction ones, and the experiments are conducted
on the CIFAR10 dataset. The loss contours are shown in Figure 12.

6https://github.com/tomgoldstein/loss-landscape

A
B

(a) Original

(b) After Demotion (c) After Promotion

Figure 12: The contours before and after MIA demotion or
promotion modifications of the target architecture.

The circled gray areas 𝐴 and 𝐵 in Figure 12a represent the “trust-
worthy” areas for MIAs in the loss contour of the original target
architecture. We notice that the loss contour tends to be sparse
in 𝐴 and 𝐵. It means that small perturbations (e.g., training ran-
domness) on the model weights do not affect the loss values of the
training dataset much, offering “trustworthy” posteriors of training
members for the attacker to discriminate those of non-members.
In Figure 12b and Figure 12c, we use arrows to demonstrate the
changing trends of the loss contours near the trustworthy areas
compared to the original loss contour after the corresponding mod-
ifications. We observe that the loss contour near the trustworthy
areas of the original loss contour tends to be denser after the MIA
demotion modifications. In comparison, the trustworthy areas tend
to be sparser after the MIA promotion modifications. The potential
reason is that, when the loss contour in these areas becomes denser,
little perturbations on the model weights may make the loss values
change significantly. The consequence is that many data samples
are pushed close to the decision boundary of the current model. In
this way, the attacker can only get less confident posteriors from
the target model, which hinders the performance of MIAs. And
both the MIA demotion and promotion modifications affect the
robustness against MIAs by changing the shapes of the loss contour
of the target model. Further, our cell patterns have little impact on
the model performance, so the overall flatness of the loss contour
of the target model has not been changed much.

5.4 Transferability
Our cell patterns are extracted based on the MIA evaluation results
with themost knowledgeable ⟨White-Box, Partial⟩ attack setting on
the sampled architectures from NAS-Bench-301, a NAS architecture
dataset searched in the DARTS search space on the CIFAR10 dataset.
Here we want to check whether our cell patterns can transfer to
other scenarios.
Transferability among Different Attack Settings. Our cell pat-
terns are extracted based on the MIA evaluation results with the

https://github.com/tomgoldstein/loss-landscape

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Hai Huang, et al.

#1 #2 #3 #4

Attack

0.5

0.6

0.7

0.8

0.9

1.0

M
IA

A
U

C

None

Only-Reduction

Only-Normal

Dual

(a) Demotion

#1 #2 #3 #4

Attack

0.5

0.6

0.7

0.8

0.9

1.0

M
IA

A
U

C

None

Only-Reduction

Only-Normal

Dual

(b) Promotion

Figure 13: Transferring MIA performance of the cell pat-
terns on various MIAs. #1, #2, #3, and #4 represent the
⟨Black-Box, Shadow⟩, ⟨Black-Box, Partial⟩, ⟨White-Box, Shadow⟩
and ⟨Label-Only⟩ attack settings respectively.

⟨White-Box, Partial⟩ setting, here we would like to see whether
our cell patterns also work for other attacks with different attack
settings. We change the attack setting for MIAs and re-evaluate
the target architectures before and after the MIA demotion and
promotion modifications, and the results are shown in Figure 13.
We could see that our cell patterns are still effective for all these
attacks in all cases, which demonstrates the high transferability of
our cell patterns.
Transferability among Different Datasets. Our cell patterns are
extracted from the architectures searched on the CIFAR10 dataset,
here we want to explore whether our cell patterns are also effective
on other datasets. Here we apply our cell patterns to 4 architectures
using the last four NAS algorithms in Section 3.2 and searched
on CIFAR100, STL10 and CelebA datasets respectively, and eval-
uate the MIA performance and model utility before and after the
architectural modifications.

The experimental results on the CIFAR100 and STL10 datasets are
shown in Figure 14 and Figure 15. We defer the evaluation results
and corresponding analysis on the CelebA dataset to Appendix E
of [31]. It is observed that our cell patterns can still achieve the
desired MIA demotion or promotion goals in most cases, which
means our cell patterns are also transferable to different datasets.
Besides, we can observe that the Only-Reduction modifications tend
to have the best performance, while the Only-Normal modifications
are inferior to the former. The possible reason is that the model
performance of cell-based NAS architectures is mainly determined
by the normal cells [70], and the architectures searched on different
datasets tend to have different normal cell architectures, which
hinders the transferring of the cell patterns on normal cells.

Note that, since our cell patterns are extracted from the DARTS
search space, we also test the transferring effectiveness of our cell
patterns in the NAS-Bench-201 search space in Appendix F of our
technical report [31]. And it is observed that our cell patterns can
still partially transfer to the NAS-Bench-201 search space.

5.5 Enhancing Existing Defenses
Existing defenses against MIAs mainly focus on improving the
robustness of the target model by masking confidence scores [33,

CIFAR100 STL10

Dataset

0.75

0.80

0.85

0.90

0.95

1.00

M
IA

A
U

C

None

Only-Reduction

Only-Normal

Dual

(a) Demotion

CIFAR100 STL10

Dataset

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

M
IA

A
U

C

None

Only-Reduction

Only-Normal

Dual

(b) Promotion

Figure 14: Transferring MIA performance for the cell pat-
terns on different datasets.

CIFAR100 STL10

Dataset

0.35

0.40

0.45

0.50

0.55

0.60

0.65

T
es

t
A

cc
ur

ac
y

None

Only-Reduction

Only-Normal

Dual

(a) Demotion

CIFAR100 STL10

Dataset

0.35

0.40

0.45

0.50

0.55

0.60

0.65

T
es

t
A

cc
ur

ac
y

None

Only-Reduction

Only-Normal

Dual

(b) Promotion

Figure 15: Model utility under the transferred cell patterns
on different datasets.

43, 64], regularization [34, 51, 64], or differential privacy [6, 32, 63],
etc. In contrast, our MIA demotion cell patterns are performed in
the model architecture design phase and are different from previous
defense strategies. Naturally, we wonder if our approach can not
only improve the model robustness against MIAs by itself but also
complement existing defense techniques when using together?

To this end, we further conduct experiments to estimate whether
our MIA demotion cell patterns can enhance existing defense strate-
gies. We choose three representative defense methods which could
be applied on both black-box and white-box MIA settings, i.e., data
augmentation (DA) [34], label smoothing (LS) [68], and differential
privacy (DP) [21]. DA increases the number of training samples by
exerting slight modifications to the original data samples and can
decrease the overfitting level. LS is a regularization method to miti-
gate the overconfidence of the target model. DP adds well-calibrated
perturbations to the training process of the target model.

The experimental results are shown in Figure 16. We can see
that, our MIA demotion cell patterns can successfully enhance the
performance of these existing defense strategies in all cases in Fig-
ure 16a with a slight impact on the model utility in Figure 16b. To
further validate whether our cell patterns can enhance existing
defenses even when transferring to other attack settings, we con-
duct the transferability experiments of other attack settings under
defense in Appendix G of our technical report [31]. Overall, our

On the Privacy Risks of Cell-Based NAS Architectures CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

None DA LS DP

Defense

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
IA

A
U

C

Pure Defense

Defense + Cell Pattern

(a) MIA Performance

None DA LS DP

Defense

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
es

t
A

cc
ur

ac
y

Pure Defense

Defense + Cell Pattern

(b) Model Utility

Figure 16: MIA effectiveness and model utility under de-
fenses.

MIA demotion cell patterns are shown to be able to promote the
effectiveness of the existing defense methods in almost all cases for
various attack settings, setting a safer lower bound for the existing
defense strategies.

5.6 Guidelines for Improving Robustness
According to previous experimental results and analysis, we can
conclude some general and meaningful guidelines for designing
and using more robust cell-based architectures against MIAs:
(1) Convolution operations are important for model performance;

however, the architectures with relatively high MIA perfor-
mance tend to have more convolution operations than others.
Therefore, we should use moderate number of convolution oper-
ations to strike a tradeoff between model utility and robustness.

(2) Use less convolutions directly connected to the input nodes.
(3) If more convolution operations are indeed necessary, refer to

the second guideline. In this case, constructing a deeper network
architecture is recommended.

(4) Limit the width of the cell, which usually can be easily done by
limiting the number of intermediate nodes in a cell.

6 RELATEDWORK
Membership Inference Attack. Membership inference attack
(MIA) is a privacy attack method to infer whether a given data
sample is present in the training dataset of the target machine
learning models [29]. It is firstly proposed by Shokri et al. [64]
and has developed many variants for various scenarios. Shokri et
al. [64] use multiple shadow models trained on the shadow dataset
to mimic the behavior of the target model, then train an attack
model with the output posteriors of the shadow models to predict
if a sample is used to train the target model. Salem et al. [62] re-
lax the key assumptions of Shokri et al. [64] and propose model
and data independent attack methods to effectively predict mem-
berships under various attack settings. Since then, membership
inference attacks have been applied to many domains (e.g., com-
puter vision [43, 52, 80], graph data [26], unlearning systems [7, 8],
and even recommender system [83]) and different target models
(e.g., classification model [7], generative model [6], embedding
model [45] and multi-exit model [42]) with different attack tech-
niques. To mitigate the privacy threats of membership inference

attacks, many defense strategies have been proposed, including
confidence masking [43], regularization [51, 64], differential pri-
vacy [6, 20, 74, 84, 85] and knowledge distillation [63]. Our MIA
demotion cell patterns utilize the inherent robustness of specific
structures to mitigate the vulnerability of the target model. Those
patterns are model-agnostic and complementary to existing defense
work to further enhance the robustness of the target model.
Security and Privacy of NAS. The security and privacy threats
of NAS architectures have not been well-studied and previous re-
search also leads to contradictory findings. Guo et al. [24] reveal
several insightful observations (e.g., convolution operations to di-
rect connection edge, densely connected patterns, etc.) that can
improve the adversarial robustness of NAS-searched architectures.
Their research leads to some recent research work improving the
robustness of NAS-searched architectures against adversarial per-
turbations to improve the accuracy of those models [15, 41]. On the
other hand, Oymak et al. [53] demonstrate that the train-validation
accuracy gap decreases rapidly when the validation data is mildly
large (i.e., achieving a low overfitting level), which in turn makes
NAS-searched architectures robust against MIAs. Yet, in the most
recent work, Pang et al. [54] show that NAS architectures are more
vulnerable to existing security and privacy attacks than the human-
designed architectures including MIAs. However, their research
only evaluates limited scenarios for these attacks. In our work, we
conduct a comprehensive measurement study of the privacy risks of
NAS architectures. We eliminate the experimental bias introduced
in the previous research and compare the MIA performance on both
NAS-searched architectures and human-designed architectures us-
ing all known MIA attack scenarios. We find that NAS-searched
architectures are generally more robust against MIAs but such
robustness varies from architecture to architecture.

7 CONCLUSION
In this paper, we conduct comprehensive measurement experiments
for MIAs on both NAS-searched and human-designed architectures,
and show that NAS-searched architectures tend to be more robust
against MIAs. Furthermore, to analyze the hidden cell patterns
affecting the robustness against MIAs, we design a general frame-
work to extract the cell patterns based on the evaluation results
on sampled NAS architectures. We use this framework to extract
both MIA demotion and promotion cell patterns from existing well-
performed NAS architectures. The experimental results show that
our cell patterns can successfully demote or promote the MIA per-
formance on the target architectures and can transfer to various
scenarios. Additionally, our MIA demotion cell patterns are com-
plementary to existing defense techniques and can further enhance
the performance of the latter. Finally, we offer some guidelines to
design more robust NAS architectures against MIAs in the future.

ACKNOWLEDGMENTS
We thank our shepherd Xi He and all anonymous reviewers for
their constructive comments. This work is partially funded by the
Helmholtz Association within the project “Trustworthy Federated
Data Analytics” (TFDA) (funding number ZT-I-OO1 4) and sup-
ported by NSFC under Grant 62132011.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Hai Huang, et al.

REFERENCES
[1] https://www.cs.toronto.edu/~kriz/cifar.html.
[2] Mohamed S Abdelfattah, Abhinav Mehrotra, Łukasz Dudziak, and Nicholas Don-

ald Lane. Zero-Cost Proxies for Lightweight {NAS}. In International Conference
on Learning Representations (ICLR), 2021.

[3] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing Neural
Network Architectures using Reinforcement Learning. In International Conference
on Learning Representations (ICLR), 2017.

[4] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language Models are Few-Shot Learners. In
Annual Conference on Neural Information Processing Systems (NeurIPS). NeurIPS,
2020.

[5] Han Cai, Jiacheng Yang, Weinan Zhang, Song Han, and Yong Yu. Path-Level
Network Transformation for Efficient Architecture Search. In International
Conference on Machine Learning (ICML). PMLR, 2018.

[6] Dingfan Chen, Ning Yu, Yang Zhang, and Mario Fritz. GAN-Leaks: A Taxonomy
of Membership Inference Attacks against Generative Models. In ACM SIGSAC
Conference on Computer and Communications Security (CCS), pages 343–362.
ACM, 2020.

[7] Min Chen, Zhikun Zhang, TianhaoWang, Michael Backes, Mathias Humbert, and
Yang Zhang. When Machine Unlearning Jeopardizes Privacy. In ACM SIGSAC
Conference on Computer and Communications Security (CCS), pages 896–911.
ACM, 2021.

[8] Min Chen, Zhikun Zhang, Tianhao Wang, Michael Backes, Mathias Humbert,
and Yang Zhang. Graph Unlearning. In ACM SIGSAC Conference on Computer
and Communications Security (CCS). ACM, 2022.

[9] Tianqi Chen and Carlos Guestrin. XGBoost: A Scalable Tree Boosting System. In
ACM Conference on Knowledge Discovery and Data Mining (KDD), pages 785–794.
ACM, 2016.

[10] Wuyang Chen, Xinyu Gong, and Zhangyang Wang. Neural Architecture Search
on ImageNet in Four {GPU} Hours: A Theoretically Inspired Perspective. In
International Conference on Learning Representations (ICLR), 2021.

[11] Xiangning Chen and Cho-Jui Hsieh. Stabilizing Differentiable Architecture
Search via Perturbation-based Regularization. In International Conference on
Machine Learning (ICML). PMLR, 2020.

[12] Xiangning Chen, Ruochen Wang, Minhao Cheng, Xiaocheng Tang, and Cho-Jui
Hsieh. DrNAS: Dirichlet Neural Architecture Search. In International Conference
on Learning Representations (ICLR), 2021.

[13] Christopher A. Choquette Choo, Florian Tramèr, Nicholas Carlini, and Nicolas
Papernot. Label-Only Membership Inference Attacks. In International Conference
on Machine Learning (ICML), pages 1964–1974. PMLR, 2021.

[14] Adam Coates, Andrew Y. Ng, and Honglak Lee. An Analysis of Single-Layer
Networks in Unsupervised Feature Learning. In International Conference on
Artificial Intelligence and Statistics (AISTATS), pages 215–223. JMLR, 2011.

[15] Chaitanya Devaguptapu, Devansh Agarwal, Gaurav Mittal, Pulkit Gopalani, and
Vineeth N Balasubramanian. On Adversarial Robustness: A Neural Architec-
ture Search Perspective. In IEEE International Conference on Computer Vision
Workshops (ICCVW), pages 152–161. IEEE/CVF, 2021.

[16] Xuanyi Dong and Yi Yang. One-Shot Neural Architecture Search via Self-
Evaluated Template Network. In IEEE International Conference on Computer
Vision (ICCV), pages 3681–3690. IEEE, 2019.

[17] Xuanyi Dong and Yi Yang. Searching for A Robust Neural Architecture in Four
GPU Hours. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1761–1770. IEEE, 2019.

[18] Xuanyi Dong and Yi Yang. NAS-Bench-201: Extending the Scope of Repro-
ducible Neural Architecture Search. In International Conference on Learning
Representations (ICLR), 2020.

[19] Harris Drucker, Chris J.C. Burges, Linda Kaufman, Alex Smola, and Vladimir
Vapnik. Support Vector Regression Machines. In Annual Conference on Neural
Information Processing Systems (NIPS), page 155–161. NIPS, 1996.

[20] Linkang Du, Zhikun Zhang, Shaojie Bai, Changchang Liu, Shouling Ji, Peng
Cheng, and Jiming Chen. AHEAD: Adaptive Hierarchical Decomposition for
Range Query under Local Differential Privacy. In ACM SIGSAC Conference on
Computer and Communications Security (CCS), page 1266–1288. ACM, 2021.

[21] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrat-
ing Noise to Sensitivity in Private Data Analysis. In Theory of Cryptography
Conference (TCC), pages 265–284. Springer, 2006.

[22] Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V. Le. NAS-FPN: Learning Scalable Feature
Pyramid Architecture for Object Detection. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 7036–7045. IEEE, 2019.

[23] Yu-Chao Gu, Li-Juan Wang, Yun Liu, Yi Yang, Yu-Huan Wu, Shao-Ping Lu, and
Ming-Ming Cheng. DOTS: Decoupling Operation and Topology in Differen-
tiable Architecture Search. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). IEEE, 2021.
[24] Minghao Guo, Yuzhe Yang, Rui Xu, Ziwei Liu, and Dahua Lin. When NAS

Meets Robustness: In Search of Robust Architectures against Adversarial Attacks.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
631–640. IEEE, 2020.

[25] KaimingHe, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning
for Image Recognition. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778. IEEE, 2016.

[26] Xinlei He, Rui Wen, Yixin Wu, Michael Backes, Yun Shen, and Yang Zhang. Node-
Level Membership Inference Attacks Against Graph Neural Networks. CoRR
abs/2102.05429, 2021.

[27] Tin Kam Ho. Random decision forests. In Proceedings of the 3rd International
Conference on Document Analysis and Recognition, volume 1, pages 278–282. IEEE,
1995.

[28] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. MobileNets: Ef-
ficient Convolutional Neural Networks for Mobile Vision Applications. CoRR
abs/1704.04681, 2017.

[29] Hongsheng Hu, Zoran Salcic, Lichao Sun, Gillian Dobbie, Philip S. Yu, and Xuyun
Zhang. Membership Inference Attacks on Machine Learning: A Survey. ACM
Computing Surveys, 2021.

[30] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger.
Densely Connected Convolutional Networks. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 2261–2269. IEEE, 2017.

[31] Hai Huang, Zhikun Zhang, Yun Shen, Michael Backes, Qi Li, and Yang Zhang.
On the Privacy Risks of Cell-Based NAS Architectures. CoRR abs/2209.01688,
2022.

[32] Bargav Jayaraman and David Evans. Evaluating Differentially Private Machine
Learning in Practice. In USENIX Security Symposium (USENIX Security), pages
1895–1912. USENIX, 2019.

[33] Jinyuan Jia, Ahmed Salem, Michael Backes, Yang Zhang, and Neil Zhenqiang
Gong. MemGuard: Defending against Black-Box Membership Inference At-
tacks via Adversarial Examples. In ACM SIGSAC Conference on Computer and
Communications Security (CCS), pages 259–274. ACM, 2019.

[34] Yigitcan Kaya and Tudor Dumitras. When Does Data Augmentation Help With
Membership Inference Attacks? In International Conference on Machine Learning
(ICML), pages 5345–5355. PMLR, 2021.

[35] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and Tie-Yan Liu. LightGBM: A Highly Efficient Gradient Boosting
Decision Tree. In Annual Conference on Neural Information Processing Systems
(NIPS). NIPS, 2017.

[36] Yoon Kim. Convolutional Neural Networks for Sentence Classification. In
Conference on Empirical Methods in Natural Language Processing (EMNLP), page
1746–1751. ACL, 2014.

[37] Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung,
Sylvain Gelly, and Neil Houlsby. Big Transfer (BiT): General Visual Representa-
tion Learning. In European Conference on Computer Vision (ECCV), pages 491–507.
Springer, 2020.

[38] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet Classification
with Deep Convolutional Neural Networks. In Annual Conference on Neural
Information Processing Systems (NIPS), pages 1106–1114. NIPS, 2012.

[39] Hayeon Lee, Eunyoung Hyung, and Sung Ju Hwang. Rapid Neural Architecture
Search by Learning to Generate Graphs fromDatasets. In International Conference
on Learning Representations (ICLR), 2021.

[40] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visu-
alizing the Loss Landscape of Neural Nets. In Annual Conference on Neural
Information Processing Systems (NeurIPS). NeurIPS, 2018.

[41] Yanxi Li, Zhaohui Yang, Yunhe Wang, and Chang Xu. Neural Architecture
Dilation for Adversarial Robustness. In Annual Conference on Neural Information
Processing Systems (NeurIPS). NeurIPS, 2021.

[42] Zheng Li, Yiyong Liu, Xinlei He, Ning Yu, Michael Backes, and Yang Zhang.
Auditing Membership Leakages of Multi-Exit Networks. CoRR abs/2208.11180,
2022.

[43] Zheng Li and Yang Zhang. Membership Leakage in Label-Only Exposures. In
ACM SIGSAC Conference on Computer and Communications Security (CCS), pages
880–895. ACM, 2021.

[44] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable Archi-
tecture Search. In International Conference on Learning Representations (ICLR),
2019.

[45] Hongbin Liu, Jinyuan Jia, Wenjie Qu, and Neil Zhenqiang Gong. EncoderMI:
Membership Inference against Pre-trained Encoders in Contrastive Learning. In
ACM SIGSAC Conference on Computer and Communications Security (CCS). ACM,
2021.

[46] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C. Berg. SSD: Single Shot MultiBox Detector. In
European Conference on Computer Vision (ECCV), pages 21–37. Springer, 2016.

[47] Yugeng Liu, Rui Wen, Xinlei He, Ahmed Salem, Zhikun Zhang, Michael Backes,
Emiliano De Cristofaro, Mario Fritz, and Yang Zhang. ML-Doctor: Holistic Risk

https://www.cs.toronto.edu/~kriz/cifar.html

On the Privacy Risks of Cell-Based NAS Architectures CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Assessment of Inference Attacks Against Machine Learning Models. In USENIX
Security Symposium (USENIX Security). USENIX, 2022.

[48] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep Learning Face
Attributes in the Wild. In IEEE International Conference on Computer Vision
(ICCV), pages 3730–3738. IEEE, 2015.

[49] Andreas Loukas. What Graph Neural Networks Cannot Learn: Depth vs Width.
In International Conference on Learning Representations (ICLR), 2020.

[50] Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqiang Hu, and Liwei Wang. The
Expressive Power of Neural Networks: A View from the Width. In Annual
Conference on Neural Information Processing Systems (NIPS). NIPS, 2017.

[51] Milad Nasr, Reza Shokri, and Amir Houmansadr. Machine Learning with Mem-
bership Privacy using Adversarial Regularization. In ACM SIGSAC Conference on
Computer and Communications Security (CCS), pages 634–646. ACM, 2018.

[52] Milad Nasr, Reza Shokri, and Amir Houmansadr. Comprehensive Privacy Analy-
sis of Deep Learning: Passive and Active White-box Inference Attacks against
Centralized and Federated Learning. In IEEE Symposium on Security and Privacy
(S&P), pages 1021–1035. IEEE, 2019.

[53] Samet Oymak, Mingchen Li, and Mahdi Soltanolkotabi. Generalization Guaran-
tees for Neural Architecture Search with Train-Validation Split. In International
Conference on Machine Learning (ICML), pages 8291–8301. PMLR, 2021.

[54] Ren Pang, Zhaohan Xi, Shouling Ji, Xiapu Luo, and Ting Wang. On the Security
Risks of AutoML. In USENIX Security Symposium (USENIX Security). USENIX,
2022.

[55] Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and Jeff Dean. Efficient
Neural Architecture Search via Parameter Sharing. In International Conference
on Machine Learning (ICML). PMLR, 2018.

[56] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving
language understanding by generative pre-training. 2018.

[57] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. Language Models are Unsupervised Multitask Learners. OpenAI blog,
2019.

[58] Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr
Dollár. Designing Network Design Spaces. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 10428–10436. IEEE, 2020.

[59] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec
Radford, Mark Chen, and Ilya Sutskever. Zero-Shot Text-to-Image Generation.
In International Conference on Machine Learning (ICML), pages 8821–8831. JMLR,
2021.

[60] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: Towards
Real-Time Object Detection with Region Proposal Networks. CoRR abs/1506.01497,
2015.

[61] Itay Safran and Ohad Shamir. Depth-Width Tradeoffs in Approximating Natural
Functions with Neural Networks. In International Conference onMachine Learning
(ICML), pages 2979–2987. PMLR, 2017.

[62] Ahmed Salem, Yang Zhang, Mathias Humbert, Pascal Berrang, Mario Fritz, and
Michael Backes. ML-Leaks: Model and Data Independent Membership Inference
Attacks and Defenses on Machine Learning Models. In Network and Distributed
System Security Symposium (NDSS). Internet Society, 2019.

[63] Virat Shejwalkar and Amir Houmansadr. Membership Privacy for Machine
Learning Models Through Knowledge Transfer. In AAAI Conference on Artificial
Intelligence (AAAI), pages 9549–9557. AAAI, 2021.

[64] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Member-
ship Inference Attacks Against Machine Learning Models. In IEEE Symposium
on Security and Privacy (S&P), pages 3–18. IEEE, 2017.

[65] Yao Shu, Wei Wang, and Shaofeng Cai. Understanding Architectures Learnt by
Cell-based Neural Architecture Search. In International Conference on Learning
Representations (ICLR), 2020.

[66] Julien Siems, Lucas Zimmer, Arber Zela, Jovita Lukasik, Margret Keuper, and
Frank Hutter. NAS-Bench-301 and the Case for Surrogate Benchmarks for Neural
Architecture Search. CoRR abs/2008.09777, 2020.

[67] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks
for Large-Scale Image Recognition. In International Conference on Learning
Representations (ICLR), 2015.

[68] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbig-
niewWojna. Rethinking the Inception Architecture for Computer Vision. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 2818–2826.
IEEE, 2016.

[69] Mingxing Tan and Quoc V. Le. EfficientNet: Rethinking Model Scaling for Con-
volutional Neural Networks. In International Conference on Machine Learning
(ICML). PMLR, 2019.

[70] Xingchen Wan, Binxin Ru, Pedro M Esperança, and Zhenguo Li. On Redun-
dancy and Diversity in Cell-based Neural Architecture Search. In International
Conference on Learning Representations (ICLR), 2022.

[71] Chien-Yao Wang, Hong-Yuan Mark Liao, I-Hau Yeh, Yueh-Hua Wu, Ping-Yang
Chen, and Jun-Wei Hsieh. CSPNet: A New Backbone that can Enhance Learning
Capability of CNN. In IEEE Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), pages 1571–1580. IEEE, 2020.

[72] Ning Wang, Yang Gao, Hao Chen, Peng Wang, Zhi Tian, Chunhua Shen, and
Yanning Zhang. NAS-FCOS: Fast Neural Architecture Search for Object Detection.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
11943–11951. IEEE, 2020.

[73] Ruochen Wang, Minhao Cheng, Xiangning Chen, Xiaocheng Tang, and Cho-Jui
Hsieh. Rethinking Architecture Selection in Differentiable NAS. In International
Conference on Learning Representations (ICLR), 2021.

[74] Tianhao Wang, Joann Qiongna Chen, Zhikun Zhang, Dong Su, Yueqiang Cheng,
Zhou Li, Ninghui Li, and Somesh Jha. Continuous Release of Data Streams under
both Centralized and Local Differential Privacy. In ACM SIGSAC Conference on
Computer and Communications Security (CCS), page 1237–1253. ACM, 2021.

[75] Colin White, Willie Neiswanger, and Yash Savani. BANANAS: Bayesian Opti-
mization with Neural Architectures for Neural Architecture Search. In AAAI
Conference on Artificial Intelligence (AAAI), pages 10293–10301. AAAI, 2021.

[76] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. ResNeXt:
Aggregated Residual Transformations for Deep Neural Networks. In IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017.

[77] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How Powerful are
Graph Neural Networks? In International Conference on Learning Representations
(ICLR), 2019.

[78] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and
Hongkai Xiong. Partial Channel Connections for Memory-Efficient Differentiable
Architecture Search. In International Conference on Learning Representations
(ICLR), 2020.

[79] Liang Yao, Chengsheng Mao, and Yuan Luo. Graph Convolutional Networks for
Text Classification. In AAAI Conference on Artificial Intelligence (AAAI), page
7370–7377. AAAI, 2019.

[80] Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. Privacy Risk
in Machine Learning: Analyzing the Connection to Overfitting. In IEEE Computer
Security Foundations Symposium (CSF), pages 268–282. IEEE, 2018.

[81] Fisher Yu, Dequan Wang, Evan Shelhamer, and Trevor Darrell. Deep Layer
Aggregation. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 2403–2412. IEEE, 2018.

[82] Sergey Zagoruyko andNikos Komodakis. Wide Residual Networks. In Proceedings
of the British Machine Vision Conference (BMVC). BMVA Press, 2016.

[83] Minxing Zhang, Zhaochun Ren, ZihanWang, Pengjie Ren, Zhumin Chen, Pengfei
Hu, and Yang Zhang. Membership Inference Attacks Against Recommender
Systems. In ACM SIGSAC Conference on Computer and Communications Security
(CCS), pages 864–879. ACM, 2021.

[84] Zhikun Zhang, Tianhao Wang, Jean Honorio, Ninghui Li, Michael Backes, Shibo
He, Jiming Chen, and Yang Zhang. PrivSyn: Differentially Private Data Synthesis.
In USENIX Security Symposium (USENIX Security), pages 929–946. USENIX, 2021.

[85] Zhikun Zhang, Tianhao Wang, Ninghui Li, Shibo He, and Jiming Chen. CALM:
Consistent Adaptive Local Marginal for Marginal Release under Local Differential
Privacy. In ACM SIGSAC Conference on Computer and Communications Security
(CCS), page 212–229. ACM, 2018.

[86] Barret Zoph and Quoc V. Le. Neural Architecture Search with Reinforcement
Learning. CoRR abs/1611.01578, 2016.

[87] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. Learning
Transferable Architectures for Scalable Image Recognition. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 8697–8710. IEEE, 2018.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Cell-based Neural Architecture Search
	2.2 Membership Inference Attack

	3 Privacy Measurement of NAS-searched Architectures
	3.1 Motivation
	3.2 Measurement Setting
	3.3 Measurement Results

	4 On Exploring Privacy-related Cell Patterns
	4.1 Overview
	4.2 NAS-searched Architectures Preparation
	4.3 Cell Pattern Extraction
	4.4 Cell Architecture Modifications

	5 Cell Pattern Evaluation
	5.1 Experimental Setup
	5.2 Effectiveness of the Cell Patterns
	5.3 Loss Contour Analysis
	5.4 Transferability
	5.5 Enhancing Existing Defenses
	5.6 Guidelines for Improving Robustness

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

