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ABSTRACT
Machine learning models are vulnerable to membership inference
attacks in which an adversary aims to predict whether or not a par-
ticular sample was contained in the target model’s training dataset.
Existing attack methods have commonly exploited the output in-
formation (mostly, losses) solely from the given target model. As
a result, in practical scenarios where both the member and non-
member samples yield similarly small losses, these methods are
naturally unable to differentiate between them. To address this
limitation, in this paper, we propose a new attack method, called
TrajectoryMIA, which can exploit the membership information
from the whole training process of the target model for improving
the attack performance. To mount the attack in the common black-
box setting, we leverage knowledge distillation, and represent the
membership information by the losses evaluated on a sequence of
intermediate models at different distillation epochs, namely distilled
loss trajectory, together with the loss from the given target model.
Experimental results over different datasets and model architec-
tures demonstrate the great advantage of our attack in terms of
different metrics. For example, on CINIC-10, our attack achieves at
least 6× higher true-positive rate at a low false-positive rate of 0.1%
than existing methods. Further analysis demonstrates the general
effectiveness of our attack in more strict scenarios.1
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Figure 1: (a) the loss distribution of all target member and
non-member samples on the target model; (b) the loss tra-
jectory for specific member and non-member samples that
have similarly small (< 0.02) losses on the target model. Using
loss trajectory can help differentiate between these specific
member and non-member samples.

(CCS ’22), November 7–11, 2022, Los Angeles, CA, USA. ACM, New York, NY,
USA, 14 pages. https://doi.org/10.1145/3548606.3560684

1 INTRODUCTION
Recent machine learning (ML) tasks have involved sensitive data
such as healthy records in model training. However, prior stud-
ies [5, 12, 40] have shown that most of the training data can be
memorized by the ML models, which incurs the risk of privacy
leakage. Membership inference attack (MIA) [40] is one of the pri-
vacy attacks against ML models whereby an adversary aims to infer
whether or not a target sample was used to train a specific ML
model. As of today, MIA is the de facto standard for evaluating ML
models’ privacy risks.

In order to infer the membership of a given target sample, most
of the current MIA methods have used its losses (or posteriors)
obtained from the target model as their inputs [37, 40, 52]. The
general assumption of these MIAs is that member samples have
overall smaller losses than non-member samples [52]. These MIAs
are effective in terms of average-case metrics (e.g. balanced accu-
racy and ROC-AUC); however, they cannot differentiate between
member and non-member samples that have similar losses, while
the fact is most non-member samples have similarly small losses as
member samples, as illustrated in Figure 1a. This is also the reason
that the current MIAs suffer a relatively high false-positive rate [4].
In this paper, we investigate whether an adversary can leverage
other signals to improve membership inference performance, in
particular, reducing the attack’s false-positive rate.

https://github.com/DennisLiu2022/Membership-Inference-Attacks-by-Exploiting-Loss-Trajectory
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Although a non-member sample might have a small loss like a
member sample on a target model, since it does not participate in
the training process of the model, it might exhibit a different loss
trajectory, i.e., its losses evaluated on the target model at its different
training epochs, than a member sample. Our general hypothesis is
that an adversary can exploit a sample’s loss trajectory to differen-
tiate between member and non-member samples. As can be seen
from Figure 1b, there are indeed substantial differences between the
loss trajectory of member vs. non-member samples even when both
have similarly small losses on the target model (the losses at its last
epoch). Specifically, the loss trajectory of non-member samples is
lower than that of member samples. This can be explained based on
the hypothesis of sample hardness [4, 15, 36, 46, 48], which suggests
these non-member samples with small losses are essentially easy
samples while member samples are gradually learned through the
whole training process to eventually reach similarly small losses.
See more detailed discussion in Section 3.2.

In this paper, we propose a novel membership inference attack
against machine learning models, namely TrajectoryMIA, which
leverages target samples’ loss trajectory to differentiate members
from non-members. We focus on machine learning classifiers in
the image domain as most of the MIAs are evaluated in the same
setting. However, we emphasize that TrajectoryMIA is general
and can be directly applied to ML models in other domains.

To mount TrajectoryMIA, the first step is to obtain the target
sample’s loss trajectory. However, in practical scenarios, the adver-
sary can only observe the final trained target model instead of all
the intermediate models during the target model’s training process.
To solve this, we leverage knowledge distillation [21]. Concretely,
the adversary first performs a black-box model distillation to the
target model to obtain a distilled model. During the process, they
keep all the intermediate versions of the distilled model locally.
Here, different versions correspond to different training epochs.
Then, the adversary evaluates the target sample’s loss on each of
the intermediate distilled models to obtain the target sample’s loss
trajectory, namely distilled loss trajectory. In the end, the attack
model, which is a membership classifier, takes as input the target
sample’s distilled loss trajectory as well as its loss on the original
target model to infer the sample’s membership status. Note that
TrajectoryMIA only needs to perform model distillation once and
keeps on reusing the distilled intermediate models for all target
samples at inference time.

We evaluate TrajectoryMIA on a comprehensive suite of bench-
mark datasets, with extensive comparisons to other advanced at-
tack methods. Following the recent recommendation on evaluating
MIAs [4], we mainly focus on the metric that measures True-Positive
Rate at low False-Positive Rate (TPR at low FPR), but also report
results in terms of other average-case metrics, including balanced
accuracy and ROC-AUC. Experimental results show that Trajec-
toryMIA is able to achieve 5.3% TPR at 0.1% FPR on the CINIC-10
dataset, at least 6× better than other considered advanced attacks.
Furthermore, we evaluate the attack performance at a more fine-
grained level by calculating the TPR at low FPR for separate groups
of target samples that have varied loss values on the target model.
The evaluation results demonstrate that TrajectoryMIA achieves
strong performance in all the settings. We conduct extensive abla-
tion studies to analyze the impact of different important factors on

the attack success of TrajectoryMIA, e.g., the size of the dataset
used for training the target model and for the knowledge distillation,
as well as the number of epochs used in the distillation process. We
further explore TrajectoryMIA in more strict scenarios with re-
laxed assumptions about the knowledge of the adversary, including
different architectures between the target model and local models,
and data distribution shift. Finally, we provide additional insights
into understanding the characteristics of TrajectoryMIA, by dis-
cussing the importance of its main components. In general, this
paper makes the following contributions:
• We take the first step to exploit the information from the
training process of the target model to conduct member-
ship inference attacks, and propose a novel attack method
TrajectoryMIA based on knowledge distillation.
• We demonstrate that TrajectoryMIA consistently outper-
forms other advanced attack methods in common scenarios,
but also in more strict scenarios with relaxed assumptions.
• We provide in-depth analyses about the impact of each com-
ponent of TrajectoryMIA and other important factors on
the attack performance.

Roadmap. In Section 2, we introduce the preliminary knowledge
about machine learning, membership inference attacks, and knowl-
edge distillation. Section 3 presents the threat model, design intu-
ition, and the details of our attack method. We conduct extensive
experiments to show the effectiveness of our attack in Section 4,
and the impact of important factors on the attack performance
in Section 5. In Section 6, we provide an in-depth analysis on the
impact of each component in our attack. We discuss the related
work in Section 7 and conclude the paper in Section 8.

2 PRELIMINARY
2.1 Machine Learning
For machine learning classification tasks, a learned neural network
M𝜃 is a function that maps each data sample from a dataset X to its
class/label in a label set Y. Given a sample x, its output fromM𝜃 ,
denoted as 𝑝 =M𝜃 (x), is a vector that represents the prediction
posteriors of the sample over different pre-defined classes. In order
to train a ML model, a loss function L(𝑦, 𝑝) is defined to determine
the error between a sample’s prediction posteriors and its corre-
sponding label. Cross-entropy loss is one of the most common loss
functions used for classification tasks, and it is defined as:

L𝐶𝐸 (𝑦, 𝑝) = −
𝑘∑︁
𝑖=1

𝑦𝑖 log𝑝𝑖 (1)

where 𝑘 is the total number of classes.𝑦𝑖 equals 1 only if the sample
belongs to class 𝑖 and otherwise 0, and 𝑝𝑖 is the 𝑖-th element of
the prediction posteriors. The model training is implemented to
minimize the empirical loss by stochastic gradient descent:

𝜃𝑖+1 ← 𝜃𝑖 − 𝜖
∑︁

(𝑥,𝑦) ∈B
∇𝜃L(𝑦,M𝜃𝑖 (x)) (2)

where B is a small batch of training samples and 𝜖 is the learning
rate for iteratively updating the parameters 𝜃 of the neural network.
The model will be trained for multiple epochs (times that the entire
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training set is passed to the model) in order to achieve a well-
generalized model. Normally, the intermediate models at different
epochs can be preserved and the training process can be stopped
at a specific epoch.

2.2 Membership Inference Attacks
The objective ofmembership inference attacks is to identifywhether
or not a target sample exists in the training set of the given model.
First proposed by [40], MIA has drawn great attention in various
scenarios [6, 7, 16, 20, 30, 31, 42, 56]. What makes the MIA so im-
portant is its connection to privacy leakage due to the increasingly
sensitive data for training ML models and also its simplicity to be
deployed.

Definition of MIA. Concretely, given a target sample x, a trained
ML model M𝜃 and some external knowledge of the adversary,
denoted by I, membership inference attacks A can be defined by
the following function:

A : x,M𝜃 ,I → {0, 1} (3)

Here, 0 means x is not a member fromM𝜃 ’s training set and 1
means x is a member. Most of the current MIA attacks are based on
training a binary classifier, which we follow as well in this paper.

Adversary’s Knowledge. Basically, the adversary is assumed to
have black-box access to the target model, that is, they can only
obtain the posteriors output by the target model for each query
sample. In addition, they are able to leverage an auxiliary dataset
that comes from the same distribution as the training set of the tar-
get model. In this way, they can train a shadow model to mimic the
behavior of the target model and take as input the posteriors output
by the shadow model for training a binary classifier, namely attack
model. The trained attack model is then used to infer the member-
ship of any given target sample. To make the attack more efficient,
some studies [37, 52] use the output from the target model directly
as a signal to predict the membership status without training any
shadow model.

Recently, MIA has also been explored in other scenarios, includ-
ing white-box [31] and label-only [8, 28, 34]. The former scenario
assumes the adversary has full access to the target model, which
contains the model architecture and parameters. The latter scenario
considers a more strict setting in which the adversary can only
get the hard label predicted by the target model. As a result, the
adversary mounts the attack by perturbing the sample to change
its predicted label, and then measures the magnitude of the pertur-
bation. If it is larger than a predefined threshold, the adversary will
consider the sample as a member and otherwise a non-member.

Defense Against MIA. The overfitting level of the ML model is
one of the major factors that influence the success of the MIA as
demonstrated in [37, 40]. For this reason, general regularization
techniques, such as Dropout [44] and confidence penalty [33], can
be used to defend against MIAs. Besides, knowledge distillation
is another effective tool for mitigating MIAs, such as PATE [32]
and DMP [39]. MemGuard [22] obfuscates the output from the tar-
get model to reduce the information that can be leveraged by the
adversary. However, it fails when a label-only MIA is conducted.
DP-SGD [3], one popular application of differential privacy (DP)

in machine learning, provides a provable privacy guarantee for de-
fending against membership inference attacks. It can achieve strong
protection against MIAs, but with a sacrifice in severe accuracy
degradation for the original classification tasks.

2.3 Knowledge Distillation
Knowledge distillation (KD) represents a class of methods that
train a smaller student model to have better performance by learn-
ing based on the output of a larger teacher model. The key idea
of KD is that the soft information (i.e. output posteriors) from a
larger teacher model contains a lot more information than the hard,
ground-truth label. Here we adopt the most classical KD framework
proposed byHinton et al. [21]. Given any input x, the corresponding
output from the teacher model is essentially a vector of posteriors,
denoted as 𝑝𝑡 = [𝑝𝑡1, · · · , 𝑝

𝑡
𝐶
], 𝐶 is the number of classes, and the

output from the student model is 𝑝𝑠 . Normally, these posteriors are
calculated through a softmax function, but in order to make them
softer so as to extract more information from the teacher model, it
is modified to:

𝑝𝑡𝑖 =
exp𝑠

𝑡
𝑖
/𝜏∑

𝑗 exp
𝑠𝑡
𝑗
/𝜏 (4)

where 𝑠𝑡
𝑖
is the logit value before the softmax function for the 𝑖-th

class and 𝜏 is the temperature used for controlling the softness level.
To learn a student model through distillation, one only needs to
submit a set of samples to the target model and obtains their poste-
riors. Then, the student model is trained on the samples supervised
by their posteriors using the loss that is a linear combination of
the typical Cross-entropy L𝑐𝑙𝑠 and the knowledge distillation loss
L𝐾𝐷 :

L = 𝛼L𝑐𝑙𝑠 + (1 − 𝛼)L𝐾𝐷 (5)
Here, L𝐾𝐷 is calculated between the soft posteriors output from
the teacher model 𝑝𝑡 and student model 𝑝𝑠 by Kullback-Leibler
divergence loss:

L𝐾𝐷 (𝑝𝑡 , 𝑝𝑠 ) =
𝑘∑︁
𝑖=1

𝑝𝑡𝑖 log
𝑝𝑡
𝑖

𝑝𝑠
𝑖

(6)

In this paper, we aim to learn a student model that is as similar
to the teacher model as possible, and thus we set 𝛼 = 0 and 𝜏 = 1.
Note that knowledge distillation in this setting is similar to model
stealing techniques [47].

3 ATTACK METHODOLOGY
In this section, we introduce the methodology of TrajectoryMIA.
We start by defining the threat model. Then, we introduce the
design intuition of our attack and explain why it works. Finally,
the detailed pipeline of our attack is provided to illustrate how to
conduct TrajectoryMIA with knowledge distillation in practical
scenarios with only black-box access to the target model.

3.1 Threat Model
In this paper, we focus on the commonly-adopted, black-box sce-
nario of MIAs, in which the adversary only has access to the pos-
terior output from the target model. For a given target model,
we assume that the adversary has an auxiliary dataset D𝑎 that
comes from the same distribution as the target model’s training
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Figure 2: Theworking pipeline of ourmethod. Different from
the conventionalMIA pipeline, ourmethod uses a proportion
of the auxiliary dataset as the knowledge distillation dataset
for obtaining distilled target/shadowmodels at their different
epochs, and each sample is represented by the concatenation
of the loss from the target/shadow model and the distilled
loss trajectories from the distilled target/shadow models.

set D𝑡 . This follows the standard setting of most of the advanced
MIAs [4, 37, 40, 43, 48]. Both the data used to train the shadow
model and used to distill the target/shadow model for obtaining
the corresponding distilled loss trajectory are sampled from this
auxiliary dataset. Furthermore, we assume the adversary knows the
architecture of the target model. Later in Section 5, we show that
these two assumptions on the adversary’s knowledge about the
training data distribution and the architecture of the target model
can be relaxed.

3.2 Design Intuition
As ML models are trained to minimize the losses from their training
samples, it is assumed that member samples are on average more
likely to have smaller losses than non-member samples, which is
also due to the overfitting of the model. Thus, losses (or posteriors)
are used as common signals by most current methods to conduct
membership inference. Although these loss-based attacks are effec-
tive in terms of the average-case metrics such as balanced accuracy
and ROC-AUC; they actually fail to differentiate between mem-
ber samples and non-member samples when both of them have
small losses. We show it in Figure 1a, the loss distribution between
member samples and non-member samples from the target model,
that most non-member samples indeed get similar small losses as
member samples. This causes a high false-positive rate in most
existing MIAs and renders them unreliable in real scenarios. To
this end, we propose to utilize other stronger signals to enhance
membership inference and especially aim to reduce the attack’s
false-positive rate.

The main idea behind our attack is to leverage the major differ-
ence betweenmember samples and non-member samples, that is the
former indeed participates in the training of the target model while
the latter does not. Our general hypothesis is that non-member
samples should have a distinct changing pattern on the losses eval-
uated at each training epoch, namely loss trajectory, compared to
member samples. As illustrated in Figure 1b, for those member

and non-member samples that have similarly small losses from
the model at its last training epoch (i.e., the given target model),
they behave quite differently along the training process regarding
the changing pattern of the loss trajectory. This difference has a
close connection to sample hardness. Concretely, we show that
non-member samples are indeed easier samples in terms of two
existing sample hardness metrics. For the metric that defines the
hardness as the epoch when the model does not change the pre-
diction [15, 46], the result for members vs. non-members is 35.4
vs. 26.1. For the metric that defines the hardness as the loss from
arbitrary reference models [4, 36, 48], the result is 0.006 vs. 0.005.
Thus, loss trajectory can provide a more detailed profile for data
samples and can be used as a stronger signal to conduct MIA.

3.3 Attack Method
Inspired by the differences in the loss trajectory between the mem-
ber and non-member samples, we propose a new membership in-
ference attack, called TrajectoryMIA. In order to mount Trajec-
toryMIA, the adversary needs to get the loss trajectory from the
training process of the target model. However, in practical scenar-
ios, the adversary only has black-box access to the target model, i.e.,
only the target model at its last training epoch is directly accessible.
To address this issue, we leverage knowledge distillation. Specifi-
cally, the adversary first conducts a standard model distillation to
the target model and gets a distilled model. By doing this, the ad-
versary has full control of the distillation process and can preserve
the distilled target models at different epochs. After distillation, the
adversary can evaluate any given target sample on all intermediate
distilled models to acquire its loss trajectory, which we call distilled
loss trajectory. Finally, the attack model takes as input this distilled
loss trajectory together with the loss obtained from the original
target model to infer the membership.

The detailed pipeline of TrajectoryMIA is illustrated in Figure 2.
It consists of four stages: shadow model training, model distillation,
attack model training, and membership inference. In particular, the
model distillation stage is newly introduced by ourTrajectoryMIA,
and the other three stages follow the common MIA pipeline except
that the input to the attack model is different.

Shadow Model Training. As aforementioned, the adversary has
an auxiliary dataset D𝑎 drawn from the same distribution as the
training dataset D𝑡 of the target modelM𝑇 . This auxiliary dataset
is split into two disjoint subsets. One subset is used as the shadow
datasetD𝑠 to train a shadow modelM𝑆 in conjunction with classi-
cal training techniques. Following the common practice, we use the
same architecture of the target model to build our shadow model.

Model Distillation. The other subset of the auxiliary dataset is
used as the knowledge distillation dataset D𝑘 to distill the trained
shadow model and the target model in order to obtain their distilled
loss trajectory. Specifically, in order to make the distilled model
more similar to the original model (target model or trained shadow
model), we only use the posteriors output from the original model
and distilledmodel to calculate a Kullback-Leibler divergence loss in
the distillation process, and do not consider the ground truth label.
One thing needs to mention, for the shadow model, although we
already have the loss trajectory from its actual training process, we
still conduct the distillation to it in order to make sure its distilled
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Table 1: Training and testing accuracy for all model architectures on different datasets.

Target CIFAR-10 CIFAR-100 GTSRB CINIC-10
Model Train acc Test acc Train acc Test acc Train acc Test acc Train acc Test acc

MibileNetV2 97.2% 70.2% 100.0% 32.4% 100.0% 78.4% 98.8% 52.0%
VGG-16 100.0% 82.6% 99.9% 47.5% 100.0% 84.1% 99.9% 65.8%
ResNet-56 98.3% 76.2% 94.1% 42.2% 100.0% 88.1% 97.4% 60.7%
WideResNet-32 93.6% 77.1% 94.5% 45.1% 100.0% 85.4% 90.5% 62.8%

loss trajectory is better aligned with the distilled loss trajectory
from the target model. This is reasonable as we cannot access
the actual loss trajectory from the target model and the distilled
loss trajectory of the target model may behave differently. More
discussion regarding the advantage of this specific design choice
can be found in Section 6. The distillation process for our shadow
model can be derived from Equation 2 and Equation 6 as:

𝜃𝑖+1 ← 𝜃𝑖 − 𝜖
∑︁

(𝑥,𝑦) ∈D𝑘

∇𝜃L𝐾𝐷 (M𝑆 (x),M𝑆
𝜃𝑖
(x)) (7)

where 𝑖 = 1, 2 · · · , 𝑁 as 𝑁 is the number of epochs for model
distillation, meaning that we can obtain 𝑁 intermediate shadow
models. Similarly, we use the same knowledge distillation dataset
D𝑘 to distill the target model and get 𝑁 distilled target models in
total.

Attack Model Training. The adversary trains an attack model
on the shadow dataset D𝑠 as common MIA methods do, but the
only difference is that the input to the attack model becomes the
concatenation of the loss trajectory from all distilled shadowmodels
and the loss from the original shadow model:

x̂ = L(M𝑆
𝜃1
(x), 𝑦) ⊕ · · · ⊕ L(M𝑆

𝜃𝑁
(x), 𝑦) ⊕ L(M𝑆 (x), 𝑦) (8)

Here x̂ is the input to the attack model and the corresponding label
is 1 when x is used for training the shadow model and otherwise 0.

Membership Inference. Finally, the adversary can infer the mem-
bership of each given target sample by feeding the concatenation of
its losses obtained from 𝑁 + 1 target models (including one original
target model and all 𝑁 distilled target models) to the trained attack
model.

For label-only attacks, we do not have the posteriors but only
the hard labels predicted by the target model. Thus, we can view
the predicted hard label as the ground truth to calculate the Cross-
entropy loss instead of the Kullback-Leibler divergence loss in the
distillation process. Accordingly, the loss from the target model
will be replaced by the HopSkipJump boundary distance, and the
same is done for the shadow model as we want to better align the
training and testing phase of the attack model.

4 EVALUATION
In this section, we conduct extensive experiments to evaluate our
TrajectoryMIA on diverse model architectures and benchmarking
datasets, with comparisons to other representative attack baselines.
We focus on the commonly-adopted, black-box attack scenario, but
also explore the more challenging, label-only scenario.

4.1 Experimental Setup

Datasets. For the main experiments, we consider the following
four image datasets:
• CIFAR-10 [1]. The CIFAR-10 is a benchmark dataset used
for classification tasks, which has totally 60000 images with
10 classes and each class has the same number of samples.
Each sample has a size of 32×32×3.
• CINIC-10 [9]. CINIC-10 is an extension of CIFAR-10 via
the addition of downsampled ImageNet [10] images for the
same classes in CIFAR-10. The number of classes is 10 as
well but with 270000 images in total. The size of each sample
is 32×32×3.
• CIFAR-100 [1]. Similar to CIFAR-10 dataset, CIFAR-100
also contains 60000 images with a size of 32×32×3. And it
has 100 classes with 600 images for each class.
• GTSRB [2]. German Traffic Sign Recognition Benchmark
(GTSRB) is a classification benchmark with 51839 images for
all 43-category traffic signs. Since the size of each sample
varies, we resize them to 32×32×3.

We also show the effectiveness of our approach on the following
three datasets beyond the image domain:
• Purchase. The Purchase is a simplified dataset based on Kag-
gle’s “acquire valued shoppers” dataset (with 197324 records),
where each record has 600 binary features. Following Shokri
et al. [40], we use it to conduct a 100-classes classification
task.
• Location [50]. The Location is a “check-in” dataset in the
Foursquare social network. We use the same method in [40]
to filter out the whole dataset and get 5010 records with 30
classes in total, and each record has 446 binary features.
• News. The News (20 Newsgroup) dataset is a commonly
used dataset for text classification. The dataset consists of
20000 newsgroup documents categorized into 20 classes. We
follow [37] to preprocess the dataset in our experiments.

For each dataset, the number of samples for constructing the
training and testing sets of target and shadow models (D𝑡

𝑡𝑟𝑎𝑖𝑛
,

D𝑡𝑡𝑒𝑠𝑡 , D𝑠𝑡𝑟𝑎𝑖𝑛 , and D
𝑠
𝑡𝑒𝑠𝑡 , respectively) are the same and the re-

maining data samples are used for knowledge distillation dataset
D𝑘 . The details of data splitting for different datasets can be found
in [29].

Models. For image datasets, we consider four popular neural
network architectures including ResNet-56 [17], MobileNetV2 [38],
VGG-16 [41], and WideResNet-32 [54] for the target, shadow, and
distilled models. And for the other three datasets, we apply a 2-layer
MLP. We use SGD with a learning rate of 0.1, Nesterov momentum
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Figure 3: ROC curves for attacks on four different datasets and four model architectures (from top to bottom: ResNet-56,
MobileNetV2, VGG-16, and WideResNet-32).

Table 2: Attack performance of different attacks against ResNet-56 trained on four datasets. Additional results for the other
three model architectures with a similar pattern can be found in our technical report [29].

Attack TPR at 0.1% FPR Balanced accuracy AUC

method CIFAR-10 CINIC-10 CIFAR-100 GTSRB CIFAR-10 CINIC-10 CIFAR-100 GTSRB CIFAR-10 CINIC-10 CIFAR-100 GTSRB

Salem et al. [37] 0.1% 0.0% 0.2% 0.3% 0.610 0.623 0.577 0.677 0.628 0.646 0.612 0.755
Yeom et al. [52] 0.1% 0.2% 0.1% 0.0% 0.647 0.705 0.772 0.797 0.646 0.755 0.804 0.818
Song et al. [43] 0.1% 0.2% 0.1% 0.0% 0.650 0.707 0.773 0.681 0.644 0.728 0.804 0.820
Ye et al. [51] 0.0% 0.1% 0.2% 0.0% 0.527 0.603 0.578 0.606 0.531 0.632 0.605 0.618
Watson et al. [48] 0.5% 0.6% 0.9% 1.5% 0.631 0.698 0.727 0.798 0.677 0.735 0.778 0.822

Ours 2.1% 5.3% 4.9% 7.3% 0.650 0.730 0.800 0.839 0.724 0.819 0.886 0.914
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Figure 4: TPR at 0.1% FPR of different attacks for ResNet-56 trained on four datasets for samples with different ranges of losses
obtained from the target model. Here we consider three loss ranges, ’small’: [0.0,0.02), ’medium’: [0.02,0.2), and ’large’: [0.2,+∞].
Additional results for the other model architectures with a similar pattern can be found in our technical report [29].

of 0.9 and a cosine learning rate schedule for optimization. We also
adopt data augmentations for images in order to make the models
more generalized. All the models are trained from 20 to 150 epochs
in terms of the model size and dataset complexity. For the attack
model, we train a 4-layer MLP.

Metrics. We consider the following evaluation metrics:
• Full Log-scale ROC. It is the commonly-used Receiver Op-
erating Characteristic (ROC) curve comparing the ratio of
true-positives to false-positives, but reported in logarithmic
scale for emphasizing the low FPR regime [4]
• TPR at Low FPR. It summarizes the attack performance
at a single low false-positive rate for quick evaluation [4].
We also take a step further to apply this metric to separate
groups of samples that have different levels of loss obtained
from the target model.
• Balanced Accuracy and AUC. They are two widely used
average-case metrics to measure the performance for binary
classification tasks, including most previous MIAs [30, 37,
48, 51]. Here the “Balanced” means that the number of the
member and non-member samples is the same. Since they
are not the most suitable metrics for evaluating MIAs, we
adopt them here just for completeness.

Attack Baselines. We mainly compare our new MIA method
with five representative existing methods [37, 43, 48, 51, 52] as the
baselines. Among them, Salem et al. [37] utilize posteriors to con-
duct the attack while Yeom et al. [52] leverage the loss from target
model; Song et al. [43] propose a metric-based method without
the use of attack model; Watson et al. [48] and Ye et al. [51] both
consider sample hardness where the former use reference models
and the latter leverage distilled models. To ensure a fair comparison,
those methods that involve model training have access to the same
auxiliary dataset, and use a single shadow/reference model like
ours. Please refer to Section 7.1 for more descriptions of these five
methods.

4.2 Experimental Results
Here, we show the detailed attack results in the black-box setting
with a comparison to 5 advanced baseline methods; among them,

Table 3: Attack performance of our attack and LiRA (online
version) [4] for ResNet-56 trained on CINIC-10.

Metric LiRA [4] Ours

TPR at 0.1% FPR 5.0% 5.3%
Balanced accuracy 0.713 0.730
AUC 0.793 0.819

we compare our attack to a state-of-the-art method LiRA as well. Be-
sides, we apply our attack in the label-only scenario and also attack
the model defended with DP-SGD. Table 1 reports the performance
of the models we attack.

Black-boxAttacks. We first evaluate different attacks in the black-
box scenario. As can be seen from Figure 3, our method consistently
achieves the best performance on the low-FPR regime. The TPR
at 0.1% FPR further confirms this conclusion, as shown in Table 2.
Regarding the two aggregate metrics, balanced accuracy and AUC,
we can also observe that our method strictly dominates all the
baselines.

We then evaluate different attacks at a more fine-grained level by
looking at the TPR at 0.1% FPR on separate groups of samples that
have different levels of loss values from the target model. Here we
consider three levels of loss values, i.e., ’small’: [0.0,0.02), ’medium’:
[0.02,0.2), and ’large’: [0.2,+∞). For the GTSRB dataset, we run the
experiments for five times and take the average because some loss
ranges may suffer from unstable results due to the limited number
of data samples. As demonstrated in Figure 4, our attack outper-
forms all other baselines across all different loss ranges. The above
experimental observations also hold for the other three model ar-
chitectures (MobileNetV2, VGG-16, and WideResNet-32) and three
datasets (Purchase, Location, and News), for which the results can
be found in our technical report [29].

Comparison with LiRA. Besides the evaluation recommendation
on the low-FPR regime, Carlini et al. [4] also introduce a new attack
method called Likelihood Ratio Attack (LiRA), which achieves the
state-of-the-art attack performance. For LiRA, the adversary trains
N shadow models, of which half are IN models (trained with target
sample (x, 𝑦) and the other half are OUT models (trained without



CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Yiyong Liu, et al.

10−3 10−2 10−1 100

False Positive Rate

10−3

10−2

10−1

100

T
ru

e
P

os
it

iv
e

R
at

e

Ours, auc=0.819

Online, auc=0.793

Figure 5: ROC curves of our attack compared with LiRA (on-
line version) [4] for ResNet-56 trained on CINIC-10.

Table 4: TPR at 0.1% FPR of different attacks on CINIC-10 in
the label-only setting.

Model Architecture Li & Zhang [28] Watson et al. [48] Ours

MobileNetV2 0.2% 0.2% 0.8%
VGG-16 0.2% 0.1% 0.3%
ResNet-56 0.3% 0.2% 0.3%
WideResNet-32 0.0% 0.0% 0.1%

Table 5: Balanced acc of different attacks on CINIC-10 in the
label-only setting.

Model Architecture Li & Zhang [28] Watson et al. [48] Ours

MobileNetV2 0.782 0.761 0.828
VGG-16 0.735 0.728 0.806
ResNet-56 0.713 0.676 0.733
WideResNet-32 0.615 0.595 0.667

(x, 𝑦)). Then Gaussians are fitted to the confidences of the IN and
OUT models on (x, 𝑦). Finally, the confidence of (x, 𝑦) from the
target model will be used to conduct a parametric Likelihood-ratio
test.

Following the original work of LiRA, 256 shadow models (128 IN
models and 128 OUT models) are trained. We find that using fewer
shadow models results in worse attack performance, and using
only (128) out models also leads to a low performance, 2.1%. To
ensure a fair comparison, LiRA also queries the target model once
for each sample instead of multiple times, the same as in our attack.
It can be seen from Table 3 that LiRA achieves comparable (but a
bit lower) attack performance to ours, and the detailed comparison
in terms of ROC curve in Figure 5 further confirms this. However,
LiRA is not practically feasible due to the necessity of training N
shadow models for each given target sample at inference time. In
contrast, our attack requires no inference-time model training but
only queries to obtain the corresponding loss trajectory.

Label-only Attacks. When the target model only returns a hard
prediction, that is a single label, rather than a continuous-valued
output like posteriors, membership inference can still be conducted
by label-only attacks. Here we use the CINIC-10 dataset and ResNet-
56 to evaluate our attack in the label-only scenario. We compare

Table 6: Attack performance of our attack against DP-SGD
for ResNet-56 trained on CINIC-10.

Noise C = 10
Multiplier (𝜎) 𝜖 Model acc Attack acc TPR at 0.1% FPR

0.0 ∞ 0.520 0.560 0.2%
0.2 > 1000 0.485 0.544 0.2%
0.5 > 100 0.438 0.528 0.1%
1.0 8 0.332 0.512 0.1%

0.325 0.375 0.425 0.475 0.525
Model Accuracy
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Figure 6: The trade-off between model accuracy and attack
accuracy of different attacks against DP-SGD with different
noise multiplier for ResNet-56 trained on CINIC-10.

the result to the original boundary-attack in [28] and label-only
attacks with calibration in [48] as other baselines do not take this
scenario into consideration.

Table 4 and Table 5 report the attack performance between Tra-
jectoryMIA and other baselines. Similar to the results in Table 2,
label-only attacks can also benefit from loss trajectory with in-
creased TPR at 0.1% FPR and balanced attack accuracy. However,
the performance increase is observably smaller compared to the
results in score-based attacks. One possible reason is that solely
relying on the hard predicted labels from the target model, the
distilled loss trajectory contains much less information than us-
ing the posteriors; besides, due to the same reason, the loss from
the original model is replaced by the corresponding HopSkipJump
boundary distance, which is not as reliable as using the loss to infer
the membership.

Attacking DP-SGD. Differential Privacy (DP) [11] is a widely used
mechanism to defend machine learning models against different
privacy attacks [24, 25, 42]. Essentially, it provides a bound on the
ability to distinguish two neighboring datasets that differ in the
presence of one data sample, which has a close connection to our
problem of membership inference.

Here we adopt the popular mechanism DP-SGD [3] to evaluate
our attack under the DP-based defense. We fix the clip bound C
to 10 and change the noise multiplier from 0.0 to 1.0 to control
the privacy budget 𝜖 . As can be seen from Table 6 and Figure 6,
applying DP in the training process achieves strong defense effects
against all attacks, although our attack still outperforms others
across all privacy budgets. However, DP also reduces the classifi-
cation accuracy heavily even when 𝐶 = 10, 𝜎 = 0.0, and 𝜖 = ∞.
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Table 7: The impact of the knowledge distillation set size for
ResNet-56 trained on CINIC-10. The accuracy of the target
model is 60.7 %.

Knowledge distillation
set size

Distilled
model acc

Attack
acc

Attack
TPR at 0.1% FPR

20000 63.5% 0.713 1.8%
70000 63.4% 0.720 2.2%
120000 63.5% 0.729 3.5%
170000 63.9% 0.725 2.8%
220000 63.6% 0.730 5.3%

10−3 10−2 10−1 100

False Positive Rate

10−3

10−2

10−1

100

T
ru

e
P

os
it

iv
e

R
at

e

Distillation Set Size

220000

170000

120000

70000

20000

Figure 7: ROC curves of our attack with different knowledge
distillation set size for ResNet-56 trained on CINIC-10.

This trade-off between defense strength and classification accuracy
makes DP not feasible in practical scenarios.

5 ABLATION STUDY
In this section, we analyze the impact of several important factors
on attack performance. We first discuss the impact of the size of
the knowledge distillation dataset as well as the number of epochs
used in distillation for getting the distilled loss trajectory. We then
explore the impact of the overfitting level of the target model by
changing the size of the target model training set. Finally, we relax
the two major assumptions about the adversary, namely the data
distributions of the auxiliary dataset D𝑎 and the architectures of
the target model.

5.1 Knowledge Distillation Set Size
For knowledge distillation, a generally important factor that in-
fluences the distillation performance is the size of the distillation
dataset. Here we explore the impact of this factor on our attack
performance. We follow the same settings in Section 4.2 for training
the target model and the distilled models, except that the size of the
knowledge distillation dataset D𝑘 is varied from 20000 to 220000.

Table 7 and Figure 7 summarize the results. As expected, when
the adversary is able to acquire a larger set of auxiliary data, the
attack performance could be improved both in TPR at 0.1% FPR
and balanced accuracy. Differently, the classification accuracy of
different distilled models remains very similar. This difference indi-
cates that the membership information distilled from the training
process does not have a direct connection to the functionality (as

represented by the classification accuracy) of the distilled model,
which we will discuss more in Section 6.

5.2 Number of Knowledge Distillation Epochs
The number of epochs for knowledge distillation will influence
both the computational cost in the distillation process and the
input dimension to the attack model. Thus, it is crucial to figure
out how many epochs are necessary in the distillation process to
obtain the distilled loss trajectory.

We can see from Figure 8 that distilling the target model for more
epochs indeed increases the attack TPR at low FPR whereas has
little impact on the attack accuracy across all different datasets and
model architectures. However, although more distillation epochs
can give us a better attack performance, the larger the number of
epochs is, the lower the marginal benefits will be, thus we need to
find a trade-off between them. Take CIFAR-10 and CINIC-10 for
example, the number of epochs for the distilled models trained on
these two datasets to reach a similar classification accuracy as the
target model are around fifty and five respectively, and interestingly,
just using the same epochs for distillation can also make the attack
performance near the best. Another extreme case is the GTSRB
dataset where if we continue the distillation for too many epochs
after the distilled model already reaches the time point to have
comparable functionality as the target model, it even degrades the
attack performance. Thus, this time point can be used as a strong
signal for us to stop the distillation so as to save the computational
cost and keep a considerable attack performance at the same time.

Actually, there is an interrelationship between the size of the
knowledge distillation set and the epochs needed in the distillation
process, where more distillation data samples mean the model can
be distilled quickly. Thus, we go a step further to investigate the
connection between each other. As demonstrated in Figure 9, first,
both larger distillation set size (D𝑘 ) and more distillation epochs
can improve the attack performance. More interestingly, regarding
the TPR at 0.1% FPR, using 220000 distillation data samples with
only 1 epoch can have comparable performance as using 20000
samples in distillation with 100 epochs, although the number of
distillation epochs in the latter setting is 100 times larger than the
former one. This indicates that the impact of distillation dataset
size seems more significant. This is reasonable as a larger size of the
distillation set can help the distilled model to be more representative
and the distilled loss trajectory can obtain more information from
the original one while more epochs contribute a little especially
after the distilled model already has a similar classification accuracy
as the original model.

5.3 Overfitting Level of the Target Model
There is a general consensus that the success of MIAs is relevant to
the overfitting level of the target model [37, 40]. Here we represent
the overfitting level by the training and testing accuracy gap and
control it by varying the training set size. Specifically, we vary the
size ofD𝑡

𝑡𝑟𝑎𝑖𝑛
,D𝑡𝑡𝑒𝑠𝑡 ,D𝑠𝑡𝑟𝑎𝑖𝑛 andD𝑠𝑡𝑒𝑠𝑡 from 10000 to 30000, while

fixing the size of the knowledge distillation dataset D𝑘 as 150000.
As can be seen from Table 8, as expected, a larger training set

size incurs a lower training testing accuracy gap, indicating a lower
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Figure 8: The impact of number of knowledge distillation epochs on TPR at 0.1% FPR (top) and balanced accuracy (bottom).
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Figure 9: The impact of both knowledge distillation set size
and number of distillation epochs on attack success rate for
ResNet-56 trained on CINIC-10.

overfitting level. Figure 10 evaluates the corresponding attack per-
formance, and we can observe that the overfitting problem does
make the target model more vulnerable to our attack. However,
even when the size of the training set is increased to 30000 and the
model is well-generalized, our attack can still secure a good attack
performance (2.8% in terms of TPR at 0.1% FPR), which remains
much better than other attack baselines that are mounted on more
overfitted target models with 10000 training samples (cf. Table 2).

5.4 Disjoint Datasets
In this section, we will relax the assumption that the adversary
has the auxiliary dataset from the same distribution as the training
dataset of the target model. We compare two distribution settings:

• D𝑡 = D𝑎 , which means the dataset for training the tar-
get model, shadow model, and distilled models (target and
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Figure 10: ROC curves for ResNet-56 trained on CINIC-10
with different training set size.

shadow) are from the same distribution, i.e., the CINIC-10
dataset.
• D𝑡 ≠ D𝑎 , which means the dataset for training the target
model dataset and the auxiliary dataset are from different
distributions. Specifically, the target model is trained on
the CIFAR-10 portion of CINIC-10 but the adversary only
accesses the ImageNet portion as the auxiliary dataset.

Figure 11 shows that a distribution shift between the training
dataset of the target model and the auxiliary dataset will indeed de-
crease the attack performance in most cases. This can be explained
from two aspects. On the one hand, the shadow dataset is different
from the target dataset, which may lead to different functionality of
the shadow model and target model. On the other hand, the knowl-
edge distillation dataset is also different from the target dataset,
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Table 8: The impact of the overfitting level of target model
for ResNet-56 trained on CINIC-10.

Training Training testing Attack

set size acc gap Acc TPR at 0.1% FPR

10000 0.339 0.730 5.3%
15000 0.300 0.708 3.2%
20000 0.249 0.659 2.3%
25000 0.234 0.685 2.1%
30000 0.214 0.674 2.8%
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Figure 11: The impact of data distribution shift between the
target model training set and auxiliary dataset for different
models trained on CINIC-10.

which may cause the distilled loss trajectory to behave more differ-
ent from the actual one. As a result, less membership information
can be extracted to train the attack model.

5.5 Model Architecture
After validating the impact of dataset distribution shift, here we
focus on another assumption on the knowledge of the adversary
about the architecture of the target model. We vary the architec-
tures of the target model, shadow model, and distilled models while
keeping the architectures of the shadow model and distilled models
the same since both of them are under the full control of the ad-
versary locally. As can be seen from Figure 12, our attack performs
the best when the shadow model and distilled models have the
same architecture as the target model. In addition, using models
from the kindred family of model architectures (e.g., ResNet-56 and
WideResNet-32) will lead to a similar attack performance compared
to using exactly the same architecture. When the architectures are
totally different, although the attack performance will decrease, the
result is still better than those achieved by other baselines using the
same architecture for the target model and shadow model (or refer-
ence model), as reported in Section 4. One possible reason could
be that although the target model uses a different architecture, the
same architecture of the distilled target and shadow models still
achieve a close enough loss trajectory. Overall, the performance of
our attack in the above harder settings with relaxed assumptions
remains better than that of other attacks achieved in easier settings
(as shown in Table 2).
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Figure 12: The impact of the architecture differences between
the target model and local (shadow and distilled) models
trained on CINIC-10.

6 DISCUSSION
In this section, we discuss in more detail the characteristics of
our attack. We first analyze the different roles of the distilled loss
trajectory and the loss from the target model in our attack. We then
provide evidence that it is indeed better to use the loss trajectory
from the distilled shadow models rather than directly using that
from the actual training process of the shadow model.

Distilled Loss Trajectory. Here we show the impact of the dis-
tilled loss trajectory to the attack performance. Comparing the
result of 𝐿𝑜𝑠𝑠𝑛 and 𝐿𝑜𝑠𝑠1 in Table 9, using the distilled loss trajec-
tory can achieve more than 10× TPR at 0.1% FPR than solely using
the loss from the last distilled model. In addition, our original at-
tack can also have a considerable improvement over the improved
variant of the attack in [51], where we concatenate the loss from
the original model and the last distilled model together. A more
comprehensive picture of this observation is shown by the ROC
curves in Figure 13, where our attack achieves consistently best
TPR across the whole range of FPR.

Loss from Original Models. Apart from the distilled loss trajec-
tory, our attack also concatenates the loss from the original models
(the target model and the trained shadow model). We argue that it
is due to the difference between the functionality distillation and
membership information distillation. More concretely, although the
classification accuracy of the last distilled model can be similar to or
even better than the original model as illustrated in Table 7, it omits
some information about membership, thus there is still member-
ship information that can be extracted from the loss of the original
models. As can be seen from Table 9, when concatenating the loss
from the original model, our attack is substantially improved, e.g.,
TPR at 0.1% FPR increases from 1.7% to 5.3%. Similarly, if we leave
out the loss from the original model for the last distilled loss used
in [51], the attack is substantially degraded, e.g., TPR at 0.1% FPR
decreases from 1.2% to 0.1%.

Distilled Shadow Models. As mentioned before, we are able
to obtain the actual loss trajectory from the shadow model as it
is trained locally, but we still use the distilled one. Table 10 and
Figure 14 support this specific design by showing that using the
distilled loss trajectory can indeed lead to better attack performance
than directly using the actual loss trajectory. For example, the
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Table 9: The impact of incorporating the loss from the target
model (𝐿𝑜𝑠𝑠𝑡 ) into the loss trajectory (𝐿𝑜𝑠𝑠𝑛 for using losses
from all distilled models, and 𝐿𝑜𝑠𝑠1 for using only the last
one). The model is ResNet-56 trained on CINIC-10.

Metric 𝐿𝑜𝑠𝑠1 [51] 𝐿𝑜𝑠𝑠1+𝐿𝑜𝑠𝑠𝑡 𝐿𝑜𝑠𝑠𝑛 𝐿𝑜𝑠𝑠𝑛+𝐿𝑜𝑠𝑠𝑡 (ours)

TPR at 0.1% FPR 0.1% 1.2% 1.7% 5.3%
Accuracy 0.603 0.726 0.633 0.730
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Figure 13: The attack performance showing the effect of each
component in our attack, the name of the four methods are
the same as in Table 9.

distilled loss trajectory yields about 2× higher TPR at 0.1% FPR
than the actual loss trajectory.

This observation is understandable because directly using the
actual loss trajectory makes the loss trajectory not well aligned
with the distilled loss trajectory from the target model. This worse
alignment is due to the fact that the distilled loss trajectory could be
similar to the actual one yet not the same. For instance, when the
distillation dataset is larger than the shadow dataset, the distilled
model needs fewer epochs to reach a similar classification accu-
racy as the original shadow model. Thus if we use the actual loss
trajectory to train the attack model, the different patterns in the
distilled loss trajectory from the target model will incur a dissatisfied
membership prediction.

7 RELATEDWORK
7.1 Membership Inference Attacks
Currently, membership inference attack (MIA) has gaining atten-
tions for quantifying the privacy risks of machine learning mod-
els [16, 18, 19, 26, 27, 31, 37, 40, 43, 52]. Shokri et al. [40] propose
the first membership inference attack in black-box settings. They
train multiple shadow models to mimic the behavior of the target
model and use the posteriors obtained from these shadow models
to train multiple attack models. Salem et al. [37] later relax the as-
sumptions made in [40], and only train one shadow model without
the knowledge of architecture and data distribution used in target
model. Song et al. [43] introduce a metric-based attack without
training any attack model. Similarly, Yeom et al. [52] assume that
the adversary knows the target model’s training dataset distribu-
tion and size, and conducts membership inference by relying on
the samples’ loss.
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Figure 14: ROC curves of our attack with distilled loss trajec-
tory vs. actual loss trajectory for the shadow model.

Table 10: Attack performance of our method with distilled
loss trajectory vs. actual loss trajectory for the shadowmodel.

Metric Actual Distilled

TPR at 0.1% FPR 2.8% 5.3%
Acc 0.693 0.730
AUC 0.794 0.819

Recently, more studies begin to focus on addressing one major
problem shared by most MIAs, which is the high false-positive rate.
Ye et al. [51] design a model-dependent and sample-dependent MIA
via knowledge distillation, which trains multiple distilled models
to approximate the samples from the retrained model distribution.
Sablayrolles et al. [36] introduce a calibration term, computed by
the loss from both the models trained with and without the target
sample, in order to calibrate the loss from the target model. Similarly,
Watson et al. [48] view the loss from reference models (trained
without the target sample) as the sample’s hardness, and a smaller
difference between the loss from the target model and the sample’s
hardness implies that the target sample is more likely to be a non-
member. Carlini et al. [4] go a step further from [36] to develop a
Likelihood Ratio Attack. By taking advantage of the logit scaling,
Gaussian likelihood, and multiple queries, this attack can achieve
high TPR at low FPR.

7.2 Knowledge Distillation
The notion of transferring knowledge from larger models (teacher
models) to smaller ones (student models) emerges quite early. After
forming a framework under the name of knowledge distillation
(KD), this line of work is extended by either finding new approaches
for KD or applying KD in different domains. For the former direc-
tion, Romero et al. [35] use additional linear projection to train a
thinner and deeper student model. Zagoruykoet et al. [55] adopt
attention mechanism to advance the performance of knowledge
distillation. Yim et al. [53] propose a new method that adds addi-
tional losses to enhance the performance but also speeds up the
optimization process. Xu et al. [49] utilize conditional adversarial
networks to learn a loss function for KD. Regarding the applica-
tions of knowledge distillation, many studies have explored KD in
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other domains, such as semi-supervised learning [45], sequence
modeling [23] and multi-modal learning [14].

Our work is more related to a specific direction of knowledge
distillation, that is self-distillation [13]. In this direction, the teacher
model and student model have identical model architectures, and
the distillation is used to improve the performance of the student
over the teacher. However, there is still a core difference between
this direction and our work, that is we adopt the knowledge distil-
lation to extract the membership information represented by the
loss trajectory, but care less about the general performance of the
model.

8 CONCLUSION
In this paper, we take the first step to exploit the information from
the training process of the target model to conduct membership
inference. We demonstrate that the loss trajectory, i.e., losses of
the sample evaluated on the target model at its different training
epochs, can be used to represent such membership information.
Specifically, we propose a new attack method, call TrajectoryMIA,
that leverages knowledge distillation to extract the loss trajectory
information of the target model with only black-box access. Our ex-
tensive experiments demonstrate the state-of-the-art performance
of TrajectoryMIA, especially on a practically meaningful metric
that measures the true-positive rate at a low false-positive rate. We
also show the general advantage of our attack over existing meth-
ods for separate groups of target samples that have different loss
values. Additional analyses provide evidence on the importance
of each component of our TrajectoryMIA for its attack success.
For future work, one promising direction could be exploring more
fine-grained modeling of loss trajectories beyond simply using the
whole trajectory as the input feature.
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