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Abstract

A square coloring of a graph G is a coloring of the square G2 of G, that is, a coloring of the
vertices of G such that any two vertices that are at distance at most 2 in G receive different
colors. We investigate the complexity of finding a square coloring with a given number of q
colors. We show that the problem is polynomial-time solvable on graphs of bounded treewidth
by presenting an algorithm with running time n2

tw+4+O(1) for graphs of treewidth at most tw.
The somewhat unusual exponent 2tw in the running time is essentially optimal: we show that for
any ε > 0, there is no algorithm with running time f(tw)n(2−ε)

tw
unless the Exponential-Time

Hypothesis (ETH) fails.
We also show that the square coloring problem is NP-hard on planar graphs for any fixed

number q ≥ 4 of colors. Our main algorithmic result is showing that the problem (when the
number of colors q is part of the input) can be solved in subexponential time 2O(n2/3 logn) on
planar graphs. The result follows from the combination of two algorithms. If the number q of
colors is small (≤ n1/3), then we can exploit a treewidth bound on the square of the graph to solve
the problem in time 2O(

√
qn logn). If the number of colors is large (≥ n1/3), then an algorithm

based on protrusion decompositions and building on our result for the bounded-treewidth case
solves the problem in time 2O(n logn/q).



1 Introduction

The square G2 of a graph G has the same vertex set as G and two vertices in G2 are adjacent if
and only if they are at distance at most 2 in G. A square coloring of G is a proper vertex coloring
of G2, or equivalently, an assignment of colors to the vertices of G such that not only adjacent
vertices receive different colors, but this is also true for vertices at distance 2. Observe that if G
has maximum degree ∆, then a square coloring of G certainly needs at least ∆ + 1 colors.

The notion of square coloring appeared in many different forms in the combinatorics and
computer science literature. Wegener [48] conjectured that a planar graph can be square col-
ored with 3

2∆ + 1 colors (for ∆ ≥ 7). This conjecture started a long and still active line of re-
search, with the goal of obtaining upper bounds on the square chromatic number of various graph
classes [2,3,9,10,15,39,44,46]. A strong edge coloring is the distance-2 version of an edge coloring,
i.e, a strong edge coloring of G is a square coloring of the line graph of G. Erdős and Nešetřil [27]
conjectured that 5

4∆2 colors are always sufficient for a strong edge coloring. While the conjecture
is still open, there are many partial results towards this bound and on similar bounds for, e.g.,
planar graphs [4,12,17,29,38]. Some of these combinatorial upper bounds are algorithmic and give
polynomial-time approximation algorithms for computing the square chromatic number of, e.g.,
planar graphs (see also [2, 34]).

In computer science, graph coloring and its variants are often used as a model for assignment
problems where adjacent vertices are in conflict and hence cannot receive the same resource (time
slot, frequency, processor, etc.) [11, 13, 18–20, 31, 45, 47]. Then the Square Coloring problem
(given a graph G and a number q, determine whether there is a square coloring of G with q colors)
is the natural extension where not only adjacent vertices, but even vertices at distance two are
in conflict. In an even more general setting, an L(p, q)-labeling models a frequency assignment
problem: assuming that the colors are the integers, adjacent vertices have to receive colors that
have difference at least q, while vertices at distance 2 have to receive colors that have difference at
least p. Now a square coloring is precisely a L(1, 1)-labeling. The Square Coloring problem also
received significant attention also in the field of distributed computing (under the name distance-2
coloring or d2-coloring), as it appears naturally for example in unique naming and derandomization
[5, 23,24,28,32].

How does the complexity of Square Coloring differ from usual Vertex Coloring problem?
The problem is known to be NP-hard for every fixed q ≥ 4 [16,34,36]. Note that if q = 3, then every
YES-instance has maximum degree 2, hence Square Coloring is polynomial-time solvable. The
goal of this paper is to look at the exact complexity of solving the Square Coloring problem on
certain important classes of graphs. One can observe that the square of an interval graph is always
an interval graph [40], hence Square Coloring is also polynomial-time solvable on interval graphs.
The square of a tree is not necessarily a tree, but it is chordal [41], hence Square Coloring on
trees is also polynomial-time solvable.

Treewidth is a graph invariant that, roughly speaking, measures how close the graph is to having
a treelike structure. The combinatorial and algorithmic aspects of treewidth were extensively studied
in the literature, both as a standalone goal and in applications to other graph classes (see, e.g., [7]).
The algorithmic importance of treewidth comes from the fact that many hard algorithmic problems
are polynomial-time solvable on graphs of bounded treewidth. For example, for every fixed tw,
the chromatic number problem is linear-time solvable for graphs of treewidth at most tw. More
precisely, q-Coloring can be solved in time qO(tw) · n, which, together with the fact that a graph
of treewidth tw has chromatic number at most tw + 1, implies that a 2O(tw log tw) · n algorithm for
chromatic number.

It was shown by Zhou, Kanari, and Nishizeki [49] that Square Coloring is also polynomial-
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time solvable on bounded-treewidth graphs. More precisely, given an n-vertex graph G with
treewidth tw, their algorithm decides in time (q + 1)28tw+1 · nO(1) if G admits a square coloring
with q colors. Our first result is improving the exponent of the running time from 256tw to roughly
2tw.

Theorem 1.1. Square Coloring can be solved in time (q+ 1)2tw+4 ·nO(1) on graphs of treewidth
tw.

The algorithm follows standard dynamic programming techniques on tree decompositions; how-
ever, we make some extra effort to ensure that 2tw appears in the exponent and not ctw for some
c > 2. Note that this form of running time is somewhat unusual. Typically, when considering a
problem on graphs of treewidth tw, then either the problem is fixed-parameter tractable (FPT)
parameterized by treewidth (that is, it can be solved in time f(tw) · nO(1) for some function f) or
W[1]-hard, but nO(tw) time is sufficient to solve it. Fiala, Golovach, and Kratochvíl [20] showed
that Square Coloring is W[1]-hard parameterized by treewidth, hence tw has to appear in the
exponent of n in the running time (observe that n colors are always sufficient to obtain a square
coloring of G, i.e., we can always assume q ≤ n). It may seem inefficient that the exponent of the
running time depends on the treewidth in such a drastic way in our algorithm, but we show that the
exponential dependence seems to be unavoidable. The lower bound assumes the Exponential-Time
Hypothesis (ETH) of Impagliazzo, Paturi, and Zane [30].

Theorem 1.2. Assuming ETH, for any ε > 0 and any function f , there is no f(tw)n(2−ε)tw time
algorithm solving Square Coloring on graphs of treewidth tw.

That is, our algorithm with 2tw in the exponent is essentially optimal. We are not aware of
any other natural problem with a similar dependence on treewidth. Interestingly, for the measure
cliquewidth cw, it is known that the best possible running time for Vertex Coloring has 2cw in
the exponent (assuming ETH) [25].

Next, we turn our attention to planar graphs. The q-Coloring problem is NP-hard on planar
graphs for q = 3, but becomes polynomial-time solvable for every q ≥ 4 (because of the Four Color
Theorem). By contrast, we show that Square Coloring is NP-hard on planar graphs for every
fixed q ≥ 4.

Theorem 1.3. Square-q-Coloring is NP-hard on planar graphs for every fixed q ≥ 4.

Even though 3-Coloring is NP-hard on planar graphs, it can be still solved more efficiently
than on general graphs. It is known that an n-vertex planar graph has treewidth O(

√
n). This com-

binatorial bound and the 2O(tw) ·n algorithm for 3-Coloring immediately imply a subexponential
2O(
√
n) time algorithm. On the other hand, for general graphs, a 2o(n) time algorithm would violate

ETH.
Does Square Coloring also admit a subexponential algorithm on planar graphs? As there is

no constant bound on the number of colors needed for square coloring planar graphs, we consider
the version where the number q of colors is part of the input. The treewidth-based approach does
not seem to work. First, even though treewidth is O(

√
n), Theorem 1.1 would give only a double

exponential n2O(
√
n) time algorithm. We can try to use the twO(tw) · n algorithm on the square of

the planar graph. However, the square of an n-vertex planar graph G can have treewidth up to
n− 1 (for example, when G is a star with n− 1 leaves and hence G2 is an n-clique). Therefore, this
approach would give only a 2O(n logn) time algorithm. Nevertheless, our main algorithmic result is
a positive answer to this question:

Theorem 1.4. Square Coloring can be solved in time 2O(n2/3 logn) on planar graphs.
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The slightly unusual exponent 2/3 comes from a trade off between two algorithms with running
time 2O(

√
qn logn) and 2O(n logn/q), respectively. By using the former for q ≤ n1/3 and the latter for

q ≥ n1/3, the bound O(n2/3 log n) on the exponent follows.

1.1 Our Techniques

In this section, we briefly overview the techniques and main ideas used in the results of the paper.

Algorithm for bounded-treewidth graphs. Let us recall first the definition of tree decompo-
sitions (see Section 2 for more details). A tree decomposition of a graph G consists of a rooted
tree T and a bag β(t) ⊆ V (G) for every node t of T with the following properties: (i) every vertex
v of G appears in at least one bag, (ii) for every vertex v of G, the bags containing v correspond
to a connected subtree of T , (iii) if two vertices of G are adjacent, then there is at least one bag
containing both of them. The width of a tree decomposition is the size of the largest bag minus
one, and the treewidth of a graph is the smallest possible width of a decomposition. For a node t of
T , let us denote by Vt the union over all bags β(t′) where t′ is a descendant of t (including t itself).

A standard way of designing algorithms on tree decompositions is to define some number of
subproblems for each node t of the decomposition, and then solve them in a bottom up way.
Typically, these subproblems ask about the existence of partial solutions having a certain type. We
classify the partial solutions into some number of types in such a way that if two partial solutions
have the same type and one has an extension into a full solution, then the same extension would
work for the other solution as well. The subproblems at node t would correspond to finding which
types of partial solutions are possible. Finally, we argue that if we have solved every subproblem
for every child t′ of t, then the subproblems at t can be solved efficiently. For example, for the
q-coloring problem, the partial solutions at node t are proper colorings of the graph G[Vt]. We
define types by classifying the partial solutions according to how they color β(t). As |β(t)| ≤ tw+1,
this gives at most qtw+1 types. Then easy recurrence relations show how to solve these subproblems
if all the subproblems are already solved for every child of t.

Let us observe that we cannot define the types of partial solutions the same way in the case of
the Square Coloring problem. It very well may be that two colorings of G[Vt] agree on β(t),
but one has an extension to G, whereas the other one does not. For example, let χt be a square
coloring of Vt and let u be a vertex not in Vt. Then, whether χt can be extended to a square coloring
χ of G where χ(u) is red, depends not only on whether u has a neighbor in β(t) that was colored
red by χt, but also on whether those vertices have a neighbor in Vt \ β(t) that was colored red by
χt (see Figure 1). Thus, we cannot define the types of partial solutions at node t based only on
how they color β(t), but we need to take into account the colors on the neighbors of these vertices.
This suggests a more refined way of defining the type of a partial solution based on how each vertex
v ∈ β(t) is colored and also which subset of the q colors appears already in the neighborhood of
each v ∈ β(t). However, as β(t) can be up to tw + 1, this definition would result in up to (q ·2q)tw+1

types. As q can be of order n, this is clearly too many.
Our main insight is that instead of precisely describing which colors appear in the neighborhood

of each vertex, we classify the colors according to where they appear and only consider the number of
colors in each class. More precisely, the type of a partial solution χt of Vt depends on the following.

(I) The coloring χt restricted to β(t) (up to qtw+1 possibilities).

(II) For each color c that appears on β(t) in χt, the subset of Sc of β(t) that has c in its neigh-
borhood (up to (2tw+1)tw+1 possibilities).
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Figure 1: The figure shows two 7-colorings χt and χ′t of Vt that agree on β(t), and hence have
the same type for the (ordinary) 7-Coloring problem. For example, both can be extended to a
coloring ofG with the extension shown in the figure. However, if we consider the Square Coloring
problem, they are not of the same type: the extension shown in the figure extends χt to a proper
square coloring, while it is not a valid extension of χ′t (as it creates two red vertices at distance 2).

(III) For a subset A ⊆ β(t), let qA be the number of colors c that do not appear on β(t) in χt, but
A is exactly the subset of β(t) that has c in its neighborhood. Considering every A ⊆ β(t),
we have (q + 1)2tw+1 possibilities for the values of qA.

All together, this gives roughly (q + 1)2tw+1 different types of partial solutions, which matches the
running time we would like to achieve.

The process of solving the subproblems in a bottom up manner is fairly standard, but there is
one more challenge if we want to achieve the claimed running time. Typically, the main bottleneck
in dynamic programming on a tree decomposition appears when handling the join nodes, that is,
nodes t of the tree decomposition having exactly two children t′, t′′ and β(t) = β(t′) = β(t′′) holds.
Consider a square coloring χt of Vt and its restrictions χt′ and χt′′ to Vt′ and Vt′′ , respectively.
Suppose that a color c appears in the neighborhood of A′ ⊆ β(t) in χt′ , and on A′′ in χt′′ . Then
in the coloring χt, color c appears in the neighborhood of exactly A′ ∪ A′′. The main difficulty is
that our description of types (as defined in the previous paragraph) does not define where a given
color c appears, it only specifies the number of colors that appear in the neighborhood of a given
set. This suggests that if we have a description of the type of χt′ and χt′′ , then we need to somehow
match up the colors in χt′ with the colors of χt′′ to determine what type of partial colorings of Vt
they can be combined into. This can be formulated as an integer linear programming problem. In
order to solve this problem efficiently and have 2tw in the exponent of n, we use another layer of
dynamic programming.

Lower bound for bounded-treewidth graphs. As a starting point, we first prove a lower
bound for a problem involving vectors, and then reduce that to Square Coloring. In the Vector
k-Sum problem, we are given k lists A1, . . . , Ak, each list containing n integerm-dimensional vectors,
and a target vector t. The task is to select exactly one vector from each list such that they sum
up to exactly t. Problems of similar flavor were considered before (see, e.g., [1, 33]), but we need
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a lower bound with specific parameter settings and restrictions. By a reduction from Subgraph
Isomorphism for 3-regular graphs and a known lower bound for this problem [35], we prove that if
k = O(2w), m = O(2w), then there is no f(t)n(2−ε)w time algorithm for any ε > 0, unless ETH fails.
Our reduction produces instances of Vector k-Sum with the following additional properties:

1. For every Ai, there are at most 3 coordinates where the vectors in Ai can be non-zero.

2. Every coordinate is non-zero in at most 2 lists.

As we shall see, these properties will be crucial for our lower bound.
Given the lower bound in the previous paragraph, our task is to reduce an instance of Vector

k-Sum with k = O(2w), m = O(2w) to an instance of Square Coloring with treewidth roughly
w. That is, the treewidth of the new instance should be at most logarithmic in k and m. Then
it follows that f(tw)n(2−ε)tw time algorithm for any ε > 0 would violate ETH. While the reduction
is highly technical with an elaborate construction of a sequence of gadgets, here we give a brief
overview of the main ideas of the proof and in particular how the logarithmic bound for treewidth
can be achieved. It will be convenient to describe the reduction to a slight extension of the problem
where some vertices are “colorless”: they do not need to be colored in the solution, but they are
relevant for computing the distances. At the end of the proof, we show how the reduction can be
modified if these vertices are also colored.

Figure 2 shows the structure of the constructed instance. On the left, we have 2m setsX1, . . . , Xm,
Y1, . . . , Ym where |Xi| = |Yi| is exactly the i-th coordinate of the target vector t. Let the number q
of colors be

∑m
i=1 |Xi|. We want to ensure that in every square coloring with q colors,

1. disjoint sets of colors appear on Xi and Xj for i 6= j,

2. the same set of colors appear on Xi and Yi.

While there are many different ways of achieving this, the following construction ensures the log-
arithmic bound on the treewidth. We introduce a set S of r ≈ logm colorless vertices. For every
i ∈ [m], we choose a distinct subset Si ⊆ S of size r/2 + 1 and connect every vertex of Xi to every
vertex of Si, and every vertex of Yi to every vertex of S \ Si. Note that as

(
r

r/2+1

)
≈ 2r ≈ m,

we can choose distinct Si’s. Observe that Xi and Yi do not have common neighbors, allowing the
use of the same colors on these two sets. As Si ∩ Sj 6= ∅ if i 6= j, there is a vertex of S adjacent
to every vertex of Xi ∪ Xj , implying that a color cannot be used on both Xi and Xj . Similarly,
(S \ Si) ∩ Sj 6= ∅ if i 6= j, implying that a color cannot be used on both Yi and Xj . Together with
the bound on the number q of colors, this implies that Yi has to use the same set of colors as Xi.
Therefore, this gadget defines a partition into m sets of colors, each set having the required size,
and each set appearing on two sets of vertices, Xi and Yi.

Next, we introduce a new colorless vertex x and k vector selection gadgets W1, . . . ,Wk, repre-
senting the lists A1, . . . , Ak. We design the gadgets in a way that ensures that their treewidth is
some constant α ≤ 20. Suppose that vectors in Ai are nonzero only in the three coordinates i1, i2,
i3. Then gadget Wi is attached to vertex x, and for every ` ∈ {1, 2, 3}, to one of Xi` and Yi` . As
every coordinate is nonzero in the vectors of at most two lists, these attachments can be done in
such a way that every Xj or Yj is used only by one gadget. Therefore, if we remove vertex x and
the set S, then the instance falls apart into disjoint gadgets. As each gadget has treewidth at most
α, it follows that the constructed graph has treewidth at most |S|+ α+ 1 ≈ logm, as required.

The role of the vertex selection gadgets is the following. Suppose that gadget Wi is attached to
Xi1 ∪Xi2 ∪Xi3 and to vertex x. We know that vertices in Xi1 ∪Xi2 ∪Xi3 receive distinct colors and
in every coloring Wi “exhibits” some set Ci of colors to x, that is, Ci is the set of colors appearing
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Figure 2: The high-level structure of the constructed instance of Square Coloring in the proof
Theorem 1.2. Each Wi is connected to three color classes; here only the connections of W1 are
indicated.

on the neighbors of x in the gadget Wi. The possible square colorings of gadget Wi can be classified
into n different “states”, corresponding to the n vectors in Ai. If a vector vi ∈ Ai has value a` at
coordinate i` for ` ∈ {1, 2, 3}, then in the corresponding state exactly a` colors of Xi` are exhibited
to x. The colors on the neighbors of x should be all different, which means that the gadgets together
should exhibit at most |Xi` | colors of Xi` . In other words, if vector vi ∈ Ai corresponds to the state
of gadget Wi, then

∑k
i=1 vi should be a vector whose i`-th coordinate is at most |Xi` |. Observing

this for every coordinate shows that
∑k

i=1 vi ≤ t. With additional arguments, this can be extended
to show that there is actually equality. Therefore, the possible combination of states of the vector
selection gadgets in square colorings of the constructed graph correspond to the solutions of the
Vector k-Sum instance.

We remark that the actual proof is somewhat different, for example, the sketch above ignores
the fact that the gadget Wi should always exhibit the same number of colors to x. In the proof,
we find it more convenient to define the Vector k-Sum problem such that t = 0 and hence the
vectors may have positive and negative integer values. Then we represent each coordinate with two
sets of colors and if a vector has value ai at the i-th coordinate, then the gadget exhibits M − ai
and M + ai colors from these sets, respectively. The proof idea described above goes through with
appropriate modifications.

Algorithm for planar graphs. The subexponential algorithm in Theorem 1.4 is obtained as
a combination of two algorithms (see Figure 3). It is known that an n-vertex planar graph has
treewidth O(

√
n), but this bound is obviously not true in general for the square of a planar graph.

However, we can obtain a useful bound if we take into account the maximum degree ∆ of the graph
as well.

Lemma 1.5. Let G be a planar graph of maximum degree ∆. Then

tw(G2) = O
(√

n∆
)
.

We can assume that ∆ is at most the number q of colors, otherwise there is no solution. Thus,
we can assume that the treewidth of G2 is O(

√
nq). By using a qO(tw) ·nO(1) algorithm for q-coloring

a graph of treewidth tw, we obtain the first algorithm:
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Figure 3: The running time of the algorithms from Lemma 1.6 (blue) and 1.7 (green) as a function
of the the number q of colors. The x-axis shows the number of colors in logarithmic scale, i.e.,
q = nα. The y-axis shows the running time in double logarithmic scale, i.e., the algorithms run in
time nO(nβ).

Lemma 1.6. Square Coloring can be solved in time qO(
√
qn) on planar graphs.

Let us now discuss the second algorithm, which has running time 2O((n logn)/q). Let N2[v] be
the set of vertices at distance at most 2 from v. The initial observation is that if |N2[v]| ≤ q,
then coloring v does not present any difficulty: if the rest of the graph is colored, there is still at
least one color c that is unused in the distance-2 neighborhood of v and hence we can assign c to
v. Let U = {v | |N2[v]| > q}. Once we have a partial square coloring of the vertices of U , then
it can be extended to a square coloring of G. This implies that G has a square coloring if and
only if G′ = G[N [U ]] has (note that we need to include the neighbors of U into G′ to preserve the
distance-2 paths between vertices of U). It follows that we can assume that G = G[N [U ]], that is,
U is a dominating set of G. Using a simple greedy selection argument, we can show that there is a
subset U ′ ⊆ U of size O(n/q) that is a distance-3 dominating set of G, that is, every vertex of G is
at distance at most 3 from U ′.

Known results show that if a planar graph has a small distance-3 dominating set, then it can
be decomposed into a smaller planar graph with small treelike attachments, called protrusions,
connected to it. Formally, an (α, δ, k)-protrusion decomposition is a tree decomposition where the
root bag has size at most α, all the other bags have size at most k, and the root has at most δ
children. It follows from earlier work [8] (see also [22]) that if G has a distance-3 dominating set of
size O(n/q), then it has an (O(n/q), O(n/q), O(1))-protrusion decomposition.

How to solve the Square Coloring problem given such a protrusion decomposition T? An
obvious approach would be to try every possible coloring of the root bag (qO(n/q) possibilities,
which is feasible in our target running time), and then somehow extend the coloring to all children
of the root bag. As the bags below the root have size O(1), this should be very similar to square
coloring graphs of treewidth O(1), which is polynomial-time solvable by Theorem 1.1. However,
this approach is flawed. If t′, t′′ are two children of the root r, then two vertices v′ ∈ β(t′) \ β(r)
and v′′ ∈ β(t′′) \ β(r) can be at distance 2 from each other (via a vertex in β(r)) and hence may
need to receive distinct colors. This means that even if the colors of the vertices of β(r) are fixed,
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we cannot just extend the coloring to the subtree of each child independently, as such conflicts have
to be avoided as well.

An natural extension to circumvent this problem is to not only guess the coloring of the root
bag, but also guess the type of the coloring of each of the subtrees of the root as described in Items
(I) - (III). To be more precise, let r denote the root of the protrusion decomposition T and let
t1, . . . , tδ be the children of r. Let us also denote by Vi, i ∈ {1, . . . , δ}, the set of all vertices located
in bags below ti (including ti itself). Since Vi ∩ β(r) has size O(1) the number of different types for
each individual subtree is bounded by qO(1). So in total, there are only qO(δ) = qO(n/q) possibilities
for guessing all the types, which is still feasible in our target running time. However, this does still
not solve the problem pointed out above due to Item (III). Let us say a color c is i-free if the color
c does not appear in Vi ∩ β(r) (given a fixed coloring of the root bag). For each set A ⊆ Vi ∩ β(r),
Item (III) only provides the number qi,A of i-free colors c so that A is exactly the set that has c in
its neighborhood (only considering vertices from Vi \β(r)). Hence, we need to identify a suitable set
of i-free colors Ci,A of size qi,A which contains precisely those colors c. The challenge is to do this
in a consistent way. Indeed, as already indicated above, we need to assign colors in such a way that
Ci,A ∩Ci′,A′ = ∅ for all distinct (i, A), (i′, A′) such that A∩A′ 6= ∅, as otherwise a vertex v ∈ A∩A′
has two neighbors that are assigned the same color, one in the subtree rooted at ti, and one in the
subtree rooted at ti′ .

To solve this problem, we yet again rely on dynamic programming. Let Z be the set of all pairs
(i, A) where i ∈ {1, . . . , δ} and A ⊆ Vi ∩ β(r). Note that |Z| = O(n/q). For each individual color
c ∈ {1, . . . , q} and every subset Z ′ ⊆ Z, we can check whether assigning c to exactly those sets
Ci,A for which (i, A) ∈ Z ′ leads to any color conflict. Note that the number of subsets Z ′ ⊆ Z
is bounded by 2O(n/q), so this is indeed feasible in the given time frame. Now, checking whether
qi,A many i-free colors can be assigned to Ci,A for every (i, A) ∈ Z in a consistent can be done
by a dynamic program that iteratively increases the number of available colors q′ ≤ q and checks
which “demands” on i-free colors can be met by only using colors from {1, . . . , q′}. Once we arrive
at q′ = q colors, we can deduce whether all guesses made so far (i.e., the coloring of the root bag
and all the types of partial coloring of Vi) are consistent which completes the algorithm. Overall,
we obtain the second algorithm.

Lemma 1.7. Square-q-Coloring can be solved in time nO(n/q) on planar graphs.

Finally, Theorem 1.4 follows from applying the algorithm from Lemma 1.6 for q ≤ n1/3, and the
algorithm from Lemma 1.7 for q ≥ n1/3 (see also Figure 3).

NP-hardness for planar graphs. The NP-hardness of Square Coloring on planar graphs
was shown by Lloyd and Ramanathan [34]. However, they only show hardness for q = 7 colors. We
extend this to any fixed number q ≥ 4 of colors by reducing from 3-Coloring restricted to planar
input graphs.. The NP-hardness of this problem has been proven in [43]. Let G denote a planar
graph for which we wish to test 3-colorability. In order to create an equivalent instance of Square
Coloring (with q colors) we follow the natural strategy of splitting the set of q colors into a set
of 3 “candidate” colors and q − 3 “auxiliary” colors. Now, the basic idea is to extend G by certain
gadgets that ensure that every original vertex of G needs to be colored by one of the “candidate”
colors, and adjacent vertices in the original graph G need to receive different colors. The main
challenge of this approach is to devise a method to distribute the information of which colors are
the “candidate” colors over the entire graph.

Here, our main insight is that, for every plane graph G (i.e., a planar graph together with its
embedding in the plane) of minimum degree 3, one can draw a circle on the plane that crosses every
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(a) The planar graph K4 together with a circle that
crosses every edge of K4 exactly twice.

u

v

Cj

Ci

AiAi+1

Aj Aj+1

(b) The constructed instance of Square Col-
oring for q = 7 when zooming in on an edge uv
of the original graph G.

Figure 4: Visualization of the reduction from 3-Coloring to Square Coloring on planar graphs.

edge of G exactly twice (and does intersect any vertex of G). An example is given in Figure 4a.
Given such a circle, we can distribute the information of which colors are the “candidate” colors
and which are the “auxiliary” colors along the circle while preserving planarity. Suppose q ≥ 5.
Figure 4b shows the constructed instance of Square Coloring when zooming in on a single edge
uv ∈ E(G) of the original graph G. In the example, the colors red, blue and green are the “candidate”
colors and yellow, orange, violet and cyan are the “auxiliary” colors. This information is forwarded
along the blue circle by the construction shown the Figure 4b. To be more precise, we introduce sets
of vertices Ci and Ai for all i ∈ [2|E(G)|] where each Ci contains 3 vertices and each Ai contains
q − 3 ≥ 2 vertices. The sets Ci and Ai are placed alternately on the constructed circle where each
Ci is associated with a crossing between the constructed circle and an edge of G (see also Figure 4).
For every i ∈ [2|E(G)|] we introduce edges between Ai and Ci as well as Ci and Ai+1 as indicated
in Figure 4b. We obtain that, in the square graph, both Ai ∪Ci and Ci ∪Ai+1 form cliques, which
means that all q colors have to be used on both sets. In particular, this implies that all sets Ai and
Ai+1 have to be colored by the same set of colors which are declared to be the “auxiliary” colors.
Overall, we obtain that all sets Ai are colored by the “auxiliary” colors and all sets Ci are colored
by the “candidate” colors.

Looking at Figure 4b, it can also be checked that u and v need to be assigned distinct “candidate”
colors. Indeed, the only way to color Ci and Cj in a consistent way is to color them in the same
way from top to bottom. So overall, we can thus ensure that all vertices of G are colored by one of
the “candidate” colors and adjacent vertices need to receive distinct colors. This almost completes
the reduction. As the last remaining step, we only need to ensure that gadgets living on two edges
incident to the same vertex do not interfere with one another. However, this can easily be assured
by some simple gadgets that are introduced at every vertex of G.

Observe that the above construction requires q ≥ 5 since the red vertices in Figure 4b always
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have degree 4 (independent of the number of colors q). For q = 4, we design a specialized reduction
which is slightly easier than the one described above. Here, the main insight is that we only need to
distribute one “auxiliary” color which can be done in a more direct way while preserving planarity.

Finally, let us also point out the constructed instance of Square Coloring has O(qn) many
vertices (where n denotes the number of vertices of G). As a result, building on known lower bounds
for 3-Coloring on planar graphs (see, e.g., [14, Theorem 14.9]), we also obtain the following
conditional lower bound for Square Coloring.

Theorem 1.8. Assuming ETH, there is no 2o(
√
n) time algorithm solving Square Coloring on

planar graphs.

In particular, assuming ETH, the algorithm from Lemma 1.6 is essentially optimal for constant
number of colors q.

1.2 Structure of the Paper

After providing the necessary preliminaries in the next section, we prove Theorem 1.1 in Section 3.
Afterward, we show a matching lower bound (Theorem 1.2) in Section 4. In Section 5, we prove
Lemmas 1.6 and 1.7 which together imply Theorem 1.4. Finally, we provide the hardness results
for Square Coloring on planar graphs in Section 6 where we show Theorems 1.3 and 1.8.

2 Preliminaries

Basics For an integer k ≥ 1 we denote [k] := {1, 2, . . . , k} and [k]0 := {0, 1, . . . , k}. We define Z>0

to be the set of positive integers, and Z≥0 to be the set of non-negative integers. For a finite set X
we denote by 2X the powerset of X, i.e., the set of all subsets of X, and

(
X
k

)
denotes the set of all

k-element subsets of X. If not otherwise stated, log denotes the logarithm with base 2.
We use standard notation for graphs. A graph is pair G = (V (G), E(G)) with finite vertex set

V (G) and edge set E(G) ⊆
(
V (G)

2

)
. Unless stated otherwise, all graphs considered in this paper

are simple (i.e., there are no loops or mulitedges) and undirected. We use uv as a shorthand for
edges {u, v} ∈ E(G). The (open) neighborhood of a vertex v ∈ V (G) is denoted by NG(v) := {w ∈
V (G) | vw ∈ E(G)}. The degree of v is the size of its neighborhood, i.e., degG(v) := |NG(v)|.
The closed neighborhood is NG[v] := NG(v) ∪ {v}. More generally, for a set X ⊆ V (G), we define
NG(X) := (

⋃
v∈X NG(v)) \X and NG[X] := NG(X)∪X. We usually omit the index G if it is clear

from context.
A path of length k between two vertices v, w ∈ V (G) is a sequence of pairwise distinct vertices

v = u0, . . . , uk = w such that ui−1ui ∈ E(G) for all i ∈ [k]. The distance between v and w, denoted
by distG(v, w), is the length of the shortest path between v and w. For X ⊆ V (G) we write G[X]
to denote the induced subgraph on vertex set X, and G −X := G[V (G) \X] denotes the induced
subgraph on the complement of X.

Colorings LetG be a graph. For q ≥ 1 a (proper) q-coloring ofG is a mapping χ : V (G)→ [q] such
that χ(v) 6= χ(w) for all edges vw ∈ E(G). A square q-coloring of G is a mapping χ : V (G) → [q]
such that χ(v) 6= χ(w) for all distinct v, w ∈ V (G) such that distG(v, w) ≤ 2. Observe that a
mapping χ : V (G) → [q] is a square q-coloring of G if and only if χ is a q-coloring of the square
graph G2 defined by V (G2) := V (G) and

E(G2) := {vw | v 6= w,distG(v, w) ≤ 2}.
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A coloring of G is a q-coloring of G for some number q ≥ 1. Similarly, a square coloring of G is a
square q-coloring of G for some number q ≥ 1. We consider the following computational problem.

Square Coloring
Input: A graph G, and an integer q.
Question: Is there a square q-coloring of G?

Also, we call Square-q-Coloring the variant of the problem where the number of colors is
fixed to q.

Given a graph G and an arbitrary mapping χ : V (G)→ [q], we define a (color) conflict to be a
pair of vertices violating the square coloring constraint, that is, a (color) conflict is pair of distinct
vertices v, w ∈ V (G) such that distG(v, w) ≤ 2 and χ(v) = χ(w).

Tree Decompositions Next, we define tree decompositions and state some basic properties.
For a more thorough introduction to treewidth and its many applications, we refer the reader
to [14, Chapter 7].

Let G be a graph. A tree decomposition of G is a pair (T, β) consisting of a rooted tree T and
a mapping β : V (T )→ 2V (G) such that

(T.1)
⋃
t∈V (T ) β(t) = V (G),

(T.2) for every edge vw ∈ E(G) there is some node t ∈ V (T ) such that {u, v} ⊆ β(t), and

(T.3) for every v ∈ V (G) the set {t ∈ V (T ) | v ∈ β(t)} induces a connected subtree of T .

The width of a tree decomposition (T, β) is defined as maxt∈V (T ) |β(t)|−1. The treewidth of a graph
G, denoted by tw(G), is the minimum width of a tree decomposition of G.

The following fact on tree decompositions is well-known.

Observation 2.1. Let G be a graph and let (T, β) be a tree decomposition of G. Also let S ⊆ V (G)
such that G[S] is connected. Then

TS := {t ∈ V (T ) | β(t) ∩ S 6= ∅}

induces a connected subtree of T .

When designing algorithms on graphs of bounded treewidth, one usually builds on nice tree
decompositions. Let (T, β) be a tree decomposition and denote Xt := β(t) for t ∈ V (T ). The
decomposition is nice if Xr = ∅ where r denotes the root of T , X` = ∅ for all leaves ` ∈ V (T ), and
every internal node t ∈ V (T ) has one of the following types:

Introduce: t has exactly one child t′ and Xt = Xt′∪{v} for some v /∈ Xt′ ; the vertex v is introduced
at t,

Forget: t has exactly one child t′ and Xt = Xt′ \ {v} for some v ∈ Xt′ ; the vertex v is forgotten at
t, or

Join: t has exactly two children t1, t2 and Xt = Xt1 = Xt2 .
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It is well-known that every tree decomposition (T, β) of G of width tw can be turned into a nice
tree decomposition of the same width tw of size O(tw · |V (T )|) in time O(tw2 ·max(|V (G)|, |V (T )|))
(see, e.g., [14, Lemma 7.4]).

When dealing with tree decompositions of graphs, we adopt the standard notion of using the
word “node” for nodes of T and the word “vertex” for vertices of G.

For upper-bounding the treewidth of a graph, there is a useful characterization via a graph-
theoretic game called cops and robbers. The game is parameterized by a number k and a graph
G, the playing field. It has two teams, one with k cops and one with a single robber. The rules
are as follows: The k cops select their starting vertices in the graph. Then the robber may choose
their starting vertex. The cops can always see the robber and adapt their strategy accordingly.
Similarly, the robber can see the cops. The game now proceeds in rounds, where in each round, one
of the cops chooses an arbitrary destination vertex and takes off via helicopter in the direction of
that vertex. While the cop is traveling, the robber sees where they will land and may now move
arbitrarily along edges of the graph, as long as they do not pass through stationary cops. When
the robber has finished moving, the cop lands. The cops win if they catch the robber after a finite
number of moves. Otherwise, the robber wins. We say that k cops can catch a robber on G if the k
cops have a winning strategy in this game.

Theorem 2.2 ( [42]). A graph G has treewidth at most tw if and only if tw + 1 cops can catch a
robber on G.

Planar Graphs A plane graph is a pair consisting of a graph G and an embedding of G in the
plane (without any edge crossings). A graph G is planar if it can be embedded in the plane. Let G
be a planar graph and fix some embedding of G in the plane. For each v ∈ V (G) we can cyclically
order the incident edges EG(v) := {e ∈ E(G) | v ∈ e} clockwise according to the fixed embedding.
In our constructions of planar, we occasionally require the existence of planar embeddings where
this cyclic ordering of incident edges satisfies certain properties. Let us remark at this point that
fixing such a cyclic ordering for every v ∈ V (G) uniquely describes an embedding of G in the plane
(if it exists) up to homeomorphisms. Hence, it usually suffices to give such a cyclic ordering for every
vertex of G to describe the embedding. This is usually referred to as a combinatorial embedding of
G. It is well-known that, given a planar graph G, a combinatorial embedding of G can be computed
in polynomial time (see, e.g., [37]).

3 Dynamic Programming for Graphs of Bounded Treewidth

In this section, we show that Square Coloring can be solved in polynomial time over graphs of
bounded treewidth. More precisely, the main result of this section is the following theorem.

Theorem 3.1 (Theorem 1.1 restated). There is an algorithm solving Square Coloring in time
(q + 1)2(tw+4) · nO(1) on input graphs of treewidth tw.

We will prove this by describing a dynamic programming algorithm on the tree decomposition.
First observe that, using the algorithm from [6], we can compute a tree decomposition of G

of width tw in time 2O(tw3 log tw) · n = (q + 1)2(tw+4) · nO(1). This can be converted to a nice tree
decomposition of the same width with O(tw · n) bags in time O(tw2 · n) [14, Lemma 7.4]. This
means that if we can show the existence of an algorithm with running time (q + 1)2(tw+4) · nO(1) for
the same problem where an optimal nice tree decomposition is already given, we are done, since
that running time will dominate both aforementioned running times.
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Hence, it suffices to show that such an algorithm exists. For the remainder of this section let us
fix an input graph G, a number of colors q ≤ n, and a nice tree decomposition (T, β) of width tw
such that |V (T )| = O(tw · n). For t ∈ V (T ) we denote Xt := β(t) and Vt denotes the union of all
bags located in the subtree rooted at node t (including t itself).

We will use dynamic programming (DP) over the nice tree decomposition. The obvious approach
would be to have a DP table where a state of a bag encodes for each vertex of the bag what its color
is, as well as a list of what colors are within distance one. This way we can always check whether
a coloring of a vertex is valid by asserting that none of its neighbors have the same color and that
none of its neighbors have the color in their list. However, this introduces a factor of 2tw ·q in the
running time, where q is the number of colors. Since the necessary number of colors may be as large
as n, this can be exponential in n, which we do not want.

Instead, we will track equivalence classes of colors. For a fixed node t ∈ V (T ) and a coloring
χ̄ : Vt → [q], we say that a vertex v ∈ Xt is cone-adjacent to a color c ∈ [q] if there exists a vertex
u ∈ N(v) ∩ (Vt \Xt) such that χ̄(u) = c. For a fixed color c ∈ [q], we call the set of vertices v ∈ Xt

which are cone-adjacent to c the bag-adjacent set of c, i.e.,

At(χ̄, c) := {v ∈ Xt | v is cone-adjacent to c}.

Now, for a specific t ∈ V (T ) and a coloring χ̄ : Vt → [q], we say that two colors c1, c2 ∈ [q] are
equivalent if At(χ̄, c1) = At(χ̄, c2). We naturally identify an equivalence class by the bag-adjacent
set A ∈ 2Xt that is shared by all colors the equivalence class contains.

The main insight in our dynamic programming algorithm is that apart from the coloring of the
vertices in a bag Xt, the only relevant information that gets transmitted from one side of the bag
to the other is the size of each of the equivalence classes. Specifically, we will store the number of
free colors in each equivalence class, i.e., colors that do not also appear in the bag.

Now let us describe the dynamic programming algorithm in detail. We begin by specifying the
structure and content of the dynamic programming table.

Definition 3.2 (Entries of the DP table). For each node t ∈ V (T ), each χ : Xt → [q], each
ξ : Xt → 2Xt and each mapping ρ : 2Xt → [q]0, there is an entry D[t][χ][ξ][ρ] which is set to true
(>) if there exists a square q-coloring χ̄ of G[Vt] such that

(DP.1) χ(v) = χ̄(v) for all v ∈ Xt,

(DP.2) ξ(v) = At(χ̄, χ(v)) for all v ∈ Xt, i.e., the color of v is contained in the equivalence class ξ(v),
and

(DP.3)
ρ(A) = |{c ∈ [q] | At(χ̄, c) = A} \ {χ(v) | v ∈ Xt}|

for all A ∈ 2Xt , i.e., ρ(A) gives the number of free colors (i.e., colors in [q] \ χ(Xt)) that are
in the equivalence class A.

Note that for every t ∈ V (T ) and every coloring χ̄ of Vt there exist corresponding induced
mappings χ, ξ and ρ. In particular, for every square q-coloring of G[Vt], there is a corresponding
entry in the partial table D[t] that is set to true.

Also observe that the DP table defined above has

|D[t]| ≤ qtw+1 · (2tw+1)tw+1 · (q + 1)2(tw+1) ≤ (q + 1)tw+1+(tw+1)2+2tw+1
(1)

many entries for each node t ∈ V (T ).
The following lemma is the main technical result of this section.
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Lemma 3.3. There is an algorithm that, given a graph G, a number q and a nice tree decomposition
(T, β) of G of width tw, computes all table entries D[t][χ][ξ][ρ] in time |V (T )| · (q+ 1)2(tw+4) · nO(1).

Before diving into the proof of Lemma 3.3, let us first derive Theorem 3.1 assuming the lemma
holds true.

Proof of Theorem 3.1. Let G denote the input graph and q the number of colors. The algorithm first
computes a tree decomposition of G with O(n) bags and width tw = tw(G) in time 2O(tw3 log tw) ·n =

(q+ 1)2(tw+4) ·nO(1) using the algorithm from [6]. This decomposition can be turned into a nice tree
decomposition with O(tw · n) bags and width tw in time O(tw2 · n).

The algorithm computes all entries D[t][χ][ξ][ρ] of the DP table in time (q + 1)2(tw+4) · nO(1).
After having calculated all entries, we take the root r of T (which, by definition of a nice tree
decomposition, satisfies Xr = ∅) and output YES if and only if D[r][ε1][ε2][ρ] = > for the two
empty functions ε1 : ∅ → [q], ε2 : ∅ → {∅} and ρ : {∅} → [q]0 with ρ(∅) = q.

The correctness of this algorithm follows directly from Definition 3.2. Indeed, D[r][ε1][ε2][ρ] = >
if and only if there exists a coloring of Vr = V (G) such that for the (empty) bag of the root, we
have that (DP.1) the coloring coincides with the empty coloring for this bag, (DP.2) for each vertex
of the empty bag, its color is contained in the equivalence class defined by ξ, and (DP.3) for each
S ∈ 2∅, we have that ρ(S) gives the number of free colors that are in the equivalence class S – in
this case, we check that all q colors are indeed in the equivalence class of the empty set. In other
words, D[r][ε1][ε2][ρ] = > if and only if there exists a square coloring of G.

To complete the proof, observe that the overall running time of the algorithm is bounded by
(q + 1)2(tw+4) · nO(1).

We now turn to the proof of Lemma 3.3. Here, the following definition turns out to be useful
which formulates basic, local conditions for a table entry to evaluate to true.

Definition 3.4 (Local validity). We say that a 4-tuple (t, χ, ξ, ρ) is locally invalid if any of the
following conditions are met:

(L.1) there exist two adjacent vertices u, v ∈ Xt such that χ(u) = χ(v) (i.e., the coloring in the bag
is invalid due to two vertices with distance one having the same color),

(L.2) there exist three vertices u, v, w ∈ Xt such that uv, vw ∈ E(G) and χ(u) = χ(w) (i.e., the
coloring in the bag is invalid due to two vertices with distance two having the same color), or

(L.3) there exist two adjacent vertices u, v ∈ Xt such that v ∈ ξ(u) (i.e., a vertex u has a color
which occurs in the set of cone-adjacent colors of one of its neighbors v and is thus within
distance two).

It is easy to check that D[t][χ][ξ][ρ] is false for every locally invalid tuple (t, χ, ξ, ρ).
Also, we shall use another dynamic programming algorithm as a subroutine to solve certain

integer linear programs efficiently. More precisely, we rely on the following subroutine.

Lemma 3.5. Given an ILP instance of the form {Ax = b; ∀i : 0 ≤ xi ≤ ‖b‖∞; x integer} where
A and b have non-negative entries, we can determine feasibility of that instance in time O(V · C ·
(‖b‖∞ + 1)C+1), where V is the number of variables and C is the number of constraints (i.e., A is
a C × V matrix).

Proof. Let x = (x1, . . . , xV ). We show that there exists a dynamic programming algorithm that
achieves this running time. We will have a DP table D structured as follows: For each 0 ≤ i ≤ V
and each (d1, . . . , dC) ∈ {0, . . . , ‖b‖∞}C , we have that D[i][d1][d2] . . . [dC ] = > (here, > refer to
true) if there is an assignment to the variables x1, . . . , xV such that
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1. ∀j > i : xj = 0 and

2. ∀j ∈ [C] : Aj · x = dj (where Aj is the j-th row in A)

and ⊥ otherwise. Intuitively, the entry reflects whether there exists a partial assignment to the
first i variables such that for each j, the left-hand side of the jth equality constraint has value dj .
Trivially, the solution to the entire instance will then be stored in D[V ][b1][b2] . . . [bC ].

We compute these values bottom-up. The base case D[0][0][0] . . . [0] = > is obvious. Now for
each value of i from 1 to V , we do the following. For each choice of xi ← vi where 0 ≤ vi ≤ ‖b‖∞,
we compute the product w := A · v, where v is a vector with vi in the i-th position and zeros
everywhere else. Then, for each value of d = (d1, . . . , dC) ∈ {0, . . . , ‖b‖∞}C , we test whether
D[i−1][d1][d2] . . . [dC ] is true. If so, we also set D[i][d1 +w1][d2 +w2] . . . [dC +wC ] to true (assuming
dj + wj ≤ ‖b‖∞ for all j ∈ [V ], otherwise we just continue with the next d).

It is easy too see that the algorithm is correct. For running time, we do V + 1 iterations in
the outermost loop over values of i, ‖b‖∞ + 1 iterations in the second loop over values of vi and
(‖b‖∞ + 1)C iterations in the innermost loop over values of d. In each iteration of the innermost
loop we use O(C) many steps to update a single DP table entry. Hence, the running time is
O(V · C · (‖b‖∞ + 1)C+1).

Now, we are ready to give the proof of Lemma 3.3.

Proof of Lemma 3.3. We calculate the entries of the DP table D bottom-up starting with the leaf
nodes. Before executing the main algorithm, we initialize all entries of the table to false.

Leaf: Suppose t ∈ V (T ) is a leaf node. Since (T, β) is a nice tree decomposition, it holds that
Xt = ∅. Thus, the only possible values for χ and ξ are the empty functions ε1, ε2, and ρ only has
the empty set in its domain. For each ρ : {∅} → [q]0, we define

D[t][ε1][ε2][ρ] =

{
> if ρ(∅) = q

⊥ otherwise
.

The correctness of this base cases is obvious. For the running time, note that, for a fixed leaf node
t ∈ V (T ), we only need to compute q + 1 entries of the DP table which can be done in time nO(1).

Introduce: Suppose t ∈ V (T ) is an introduce node with the unique child t′ ∈ V (T ). Hence, there
is some v /∈ Xt′ such that Xt = Xt′ ∪ {v}.

We iterate over all triples (χ′, ξ′, ρ′) such that D[t′][χ′][ξ′][ρ′] is true. For each possible extension
χ of χ′ (i.e., for all χ : Xt → [q] such that χ|Xt′ = χ′, or equivalently all colorings of v), we do the
following. First, we define an extension ξ of ξ′. If χ(v) was not a free color in χ′, i.e., there is some
v′ ∈ Xt′ such that χ(v′) = χ(v), we define

ξ(u) :=

{
ξ′(u) if u 6= v

ξ′(v′) if u = v

for all u ∈ Xt. Note that this is well-defined since ξ′(v′) = ξ(v′′) for all v′, v′′ ∈ Xt′ such that
χ(v′) = χ(v′′) by Condition (DP.2).

In the other case χ(v) is a free color, and we also iterate over all possible choices of the equivalence
class Av ⊆ Xt′ such that ρ′(Av) > 0 and define

ξ(u) :=

{
ξ′(u) if u 6= v

Av if u = v
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for all u ∈ Xt. Finally, we define ρ by setting

ρ(A) :=


0 if v ∈ A
ρ′(A)− 1 if χ(v) is a free color in χ′ and A = Av

ρ′(A) otherwise

for all A ∈ 2Xt . Now, for each such (χ, ξ, ρ) such that (t, χ, ξ, ρ) is locally valid, we set D[t][χ][ξ][ρ]
to true.
(Correctness.) We need to show that we correctly compute the all entries of D[t] according to
Definition 3.2.

First, suppose the algorithm sets D[t][χ][ξ][ρ] to true in iteration (χ′, ξ′, ρ′). In particular, this
means that D[t′][χ′][ξ′][ρ′] is true. Hence, by induction, there exists a square q-coloring χVt′ of G[Vt′ ]
satisfying the conditions of Definition 3.2.

We first argue that we may assume without loss of generality that

At′(χVt′ , χ(v)) = ξ(v). (2)

Indeed, if there exists some v′ ∈ Xt′ such that χ(v) = χ(v′) = χ′(v′) then At′(χVt′ , χ(v)) =
At′(χVt′ , χ

′(v′)) = ξ′(v′) = ξ(v) by Condition (DP.2) and the definition of ξ. Otherwise, ξ(v) = Av
for some Av ⊆ Xt′ such that ρ′(Av) > 0. Since ρ′(Av) > 0, there is some color c ∈ [q] \ {χ′(u) |
u ∈ Xt′} such that Av = At′(χVt′ , c). By renaming colors, we may assume without loss of generality
that c = χ(v) which implies that At′(χVt′ , χ(v)) = Av = ξ(v).

Now, we extend χVt′ to a coloring χVt of Vt by setting

χVt(u) =

{
χ(u) if u = v

χVt′ (u) otherwise
.

We first argue that χVt is a square coloring of G[Vt]. Recall that we only set D[t][χ][ξ][ρ] to true if
(t, χ, ξ, ρ) is locally valid, i.e., if Conditions (L.1) - (L.3) are satisfied. Since χVt′ is a square coloring
of G[Vt′ ], any potential color conflict has to involve the vertex v introduced at t, i.e., either there is
a vertex u ∈ Vt′ such that χVt(u) = χVt(v) and distG[Vt](u, v) ≤ 2, or there are u,w ∈ NG[Vt](v) such
that χVt(u) = χVt(w). Note that by the definition of nice tree decompositions v is not adjacent to
any vertices in Vt \Xt. Hence there are only four cases we need to consider:

1. There is some u ∈ Xt ∩ N(v) such that χ(u) = χVt(u) = χVt(v) = χ(v). However, this is
prevented by (L.1).

2. There are two vertices u,w ∈ Xt ∩N(v) such that χ(u) = χVt(u) = χVt(w) = χ(w). However,
this is prevented by (L.2).

3. There are vertices w ∈ Xt∩N(v) and v 6= u ∈ Xt∩N(w) such that χ(u) = χVt(u) = χVt(v) =
χ(v). However, this is also prevented by (L.2).

4. There are vertices w ∈ Xt ∩ N(v) and u ∈ N(w) ∩ (Vt \ Xt) such that χVt′ (u) = χVt(u) =
χVt(v) = χ(v). This means that w ∈ At′(χVt′ , χ(v)) = ξ(v) using Equation (2). However, this
is prevented by (L.3).

Next, we show that χVt satisfies Conditions (DP.1) - (DP.3). Clearly, (DP.1) is satisfied since
χ|Xt′ = χ′. For (DP.2), observe again that v is not adjacent to any vertices in Vt \Xt. This implies
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that ξ(u) = ξ′(u) = At′(χV ′t , χ
′(u)) = At(χVt , χ(u)) for all u ∈ Xt′ . Also, ξ(v) = At′(χV ′t , χ(v)) =

At(χVt , χ(u)) by Equation (2).
To show (DP.3), let A ∈ 2Xt . If v ∈ A then A 6= At(χVt , c) for all c ∈ [q] since v is not adjacent

to any vertices in Vt \Xt. So ρ(A) = 0 = |{c ∈ [q] | At(χVt , c) = A} \ {χ(v) | v ∈ Xt}| as desired.
Otherwise, A ∈ 2Xt′ and, similar as above, we have that {c ∈ [q] | At(χVt , c) = A} = {c ∈ [q] |
At′(χVt′ , c) = A}. Since At′(χVt′ , χ(v)) = ξ(v) = Av in the case where χ(v) is a free color, Condition
(DP.3) follows.

Conversely, suppose there exists a square q-coloring χVt of G[Vt] satisfying (DP.1) - (DP.3). We
show that the algorithm sets D[t][χ][ξ][ρ] to true. Certainly, we can restrict χVt to a square coloring
χVt′ := χVt |Vt′ of G[Vt′ ], and indeed it is easy to see (analogous to the arguments for (DP.1) -
(DP.3) above) that this coloring satisfies the conditions of Definition 3.2 for the corresponding tuple
(t′, χ′, ξ′, ρ′). Hence, by induction, the algorithm sets D[t′][χ′][ξ′][ρ′] to true. So to prove that the
algorithm sets D[t][χ][ξ][ρ] to true, it suffices to show that (t, χ, ξ, ρ) is locally valid.

However, this is easy to see via the following argument. Invalidity conditions (L.1) and (L.2)
cannot be fulfilled, because χVt is a valid square coloring and χ = χVt |Xt . Also, (L.3) is also not
fulfilled by Condition (DP.2). So (t, χ, ξ, ρ) is locally valid which concludes the proof.
(Running Time.) Let us analyze the running time of computing all DP table entries for t. For
each possible choice of (χ′, ξ′, ρ′), we iterate over q ≤ n choices of the color of v and at most 2tw+1

many possible choices for the set Av (in the case that χ(v) is a free color). The time for computing
χ, ξ and ρ, and then indexing the correct D[t][χ][ξ][ρ] can be naively bounded by 2tw · nO(1).

So overall, the running time can be bounded by

|D[t′]| · 22tw · nO(1) = (q + 1)tw+1+(tw+1)2+2tw+1 · 22tw · nO(1) = (q + 1)2tw+2 · nO(1)

using Equation (1).

Forget: Next, suppose t ∈ V (T ) is a forget node with unique child t′ ∈ V (T ). So there is some
v ∈ Xt such that Xt = Xt′ \ {v}. We iterate over all triples (χ′, ξ′, ρ′) such that D[t′][χ′][ξ′][ρ′] is
true.

We define χ := χ′|Xt , and also define ξ via

ξ(u) :=

{
ξ′(u) \ {v} if χ′(u) 6= χ′(v)

ξ′(u) \ {v} ∪ (N(v) ∩Xt) if χ′(u) = χ′(v)

for all u ∈ Xt. Finally, we define ρ : 2Xt → [q]0 via

ρ(A) :=

{
ρ′(A) + ρ′(A ∪ {v}) + 1 if χ′(v) /∈ χ′(Xt) and ξ(v) = A

ρ′(A) + ρ′(A ∪ {v}) otherwise

for all A ∈ 2Xt . We set D[t][χ][ξ][ρ] to true.
(Correctness.) First suppose the algorithm sets D[t][χ][ξ][ρ] to true in iteration (χ′, ξ′, ρ′). In
particular, this means that D[t′][χ′][ξ′][ρ′] is true. Hence, by induction, there exists a square q-
coloring χVt′ of G[Vt′ ] satisfying the conditions of Definition 3.2 (with respect to (t′, χ′, ξ′, ρ′)).

We show that choosing χVt := χVt′ as a coloring for Vt suffices, i.e., that it also satisfies the
conditions of Definition 3.2 with respect to (t, χ, ξ, ρ). Since Vt = Vt′ it immediately follows that
χVt is a square coloring of G[Vt].
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Condition (DP.1) is clearly satisfied since χ = χ′|Xt . So consider (DP.2) and let u ∈ Xt. If
χ′(u) 6= χ′(v) then

ξ(u) = ξ′(u) \ {v} = At′(χVt′ , χ
′(u)) \ {v} = At′(χVt , χ(u)) \ {v} = At(χVt , χ(u))

as desired. Otherwise, χ′(u) = χ′(v) and

ξ(u) = ξ′(u) \ {v} ∪ (N(v) ∩Xt)

= At′(χVt′ , χ
′(u)) \ {v} ∪ (N(v) ∩Xt)

= At′(χVt , χ(u)) \ {v} ∪ (N(v) ∩Xt)

= At(χVt , χ(u)).

Finally, to see that (DP.3) is satisfied, consider that for any A ∈ 2Xt , the equivalence classes A and
A∪ {v} are conflated. The off-by-one in the case χ′(v) /∈ χ(Xt)∧ ξ(v) = A is due to the color χ′(v)
becoming a free color again (and in compliance with Definition 3.2 we only count free colors in ρ).

Conversely, suppose that there exists a square q-coloring χVt of G[Vt] satisfying the conditions
in Definition 3.2. We show that the algorithm sets D[t][χ][ξ][ρ] to true. Certainly, χVt′ = χVt is
a valid square coloring of G[Vt′ ], and, since ξ and ρ are correctly updated (as argued in the last
paragraph), it satisfies the conditions of Definition 3.2. Hence, by induction, D[t′][χ′][ξ′][ρ′] is set
to true. So the algorithm sets D[t][χ][ξ][ρ] to true.
(Running Time.) Let us again analyze the running time of computing all DP table entries for t.
For each possible choice of (χ′, ξ′, ρ′), we calculate (χ, ξ, ρ) in time 2twnO(1) and set the corresponding
entry D[t][χ][ξ][ρ] to true. So overall, we get a running time that is bounded

|D[t′]| · 2tw · nO(1) = (q + 1)tw+1+(tw+1)2+2tw+1 · 2tw · nO(1) = (q + 1)2tw+2 · nO(1)

using Equation (1).

Join: Finally, assume t ∈ V (T ) is a join node, i.e., t has exactly two children t′, t′′ ∈ V (T ) and
Xt = Xt′ = Xt′′ . Consider an entry D[t][χ][ξ][ρ] of the DP table. To determine whether D[t][χ][ξ][ρ]
is true we iterate over all triples (χ′, ξ′, ρ′) as well as (χ′′, ξ′′, ρ′′) such that D[t′][χ′][ξ′][ρ′] and
D[t′′][χ′′][ξ′′][ρ′′] are both true. We set D[t][χ][ξ][ρ] to true if

(i) χ = χ′ = χ′′,

(ii) ξ′(u) ∩ ξ′′(u) = ∅ for all u ∈ Xt,

(iii) ξ(u) = ξ′(u) ∪ ξ′′(u) for all u ∈ Xt, and

(iv) there exists a function η : 2Xt′ × 2Xt′′ → [q]0 such that

(J.1)
∀A′ ∈ 2Xt′ , A′′ ∈ 2Xt′′ : A′ ∩A′′ 6= ∅ =⇒ η(A′, A′′) = 0,

(J.2)

∀A′ ∈ 2Xt′ :
∑

A′′∈2Xt′′

η(A′, A′′) = ρ′(A′) and ∀A′′ ∈ 2Xt′′ :
∑

A′∈2Xt′

η(A′, S′′) = ρ′′(A′′),
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(J.3)
∀A ∈ 2Xt : ρ(A) =

∑
A′,A′′∈2Xt
A′∪A′′=A

η(A′, A′′).

Let us provide some intuition on these conditions. Condition (i) is self-explanatory. Condition
(ii) ensures that there are no conflicts when merging partial square-colorings for the two subcones
Vt′ and Vt′′ for non-free colors (i.e., colors from {χ(v) | v ∈ Xt}). Indeed, if v ∈ ξ′(u) ∩ ξ′′(u),
this means that v is adjacent to some v′ ∈ Vt′ \ Xt of color χ(u), and v is also adjacent to some
v′′ ∈ Vt′′ \ Xt of the same color χ(u). Condition (iii) ensures that ξ is updated correctly: if the
color of u is cone-adjacent to the vertices in ξ′(u) in the first subcone, and to the vertices in ξ′′(u)
in the second subcone, it will be cone-adjacent exactly to the vertices in ξ′(u) ∪ ξ′′(u) in the entire
cone Vt. Finally, for Condition (iv), we need to check that ρ is correctly obtained from ρ′ and ρ′′

which is achieved by an auxiliary mapping η describing the number of shared free colors between
two equivalence classes from the two different subcones. More precisely, for two equivalence classes
A′ ∈ 2Xt′ , A′′ ∈ 2Xt′′ , we interpret the value η(A′, A′′) as the number of free colors that occur in
both the equivalence classes identified with A′ and A′′.

With this interpretation in mind, (J.1) checks that no color is shared between equivalence classes
that have a non-empty shared neighborhood, i.e., no color used in one of the subcones is within
distance two of that same color in the other subcone (this is the counterpart of Condition (ii) for free
colors). Condition (J.2) checks that all numbers add up in the correct way. And finally, knowing
the number shared colors between two equivalence classes, we can deduce ρ using (J.3). Indeed, any
fixed free color c occurs in some equivalence class A′ in the first subcone and an equivalence class
A′′ in the second subcone (note that the free colors in both subcones are identical since χ′ = χ′′).
Hence, c is a shared color of A′ and A′′ and is counted in (and only in) η(A′, A′′). The color c will
be in the equivalence class corresponding to A′ ∪A′′ = A in the entire subcone Vt.

Since χ, ξ, ρ, χ′, ξ′, ρ′, χ′′, ξ′′, ρ′′ are fixed in each iteration, Conditions (i) and (iii) can trivially be
checked in polynomial time. For Condition (iv), we view Conditions (J.1) - (J.3) as an integer linear
program (ILP) with unknowns η(A′, A′′), A ∈ 2Xt′ , A′′ ∈ 2Xt′′ . Now, we can check the feasibility of
this ILP using Lemma 3.5 and set D[t][χ][ξ][ρ] accordingly.
(Correctness.) First suppose the algorithm sets D[t][χ][ξ][ρ] to true via triples (χ′, ξ′, ρ′) and
(χ′′, ξ′′, ρ′′) and the mapping η that satisfies (J.1) - (J.3). Since D[t′][χ′][ξ′][ρ′] and D[t′′][χ′′][ξ′′][ρ′′]
are true, we know by induction that there exist square q-colorings χVt′ of G[Vt′ ] and χVt′′ of G[Vt′′ ]
which satisfy the conditions in Definition 3.2. We show that if the algorithm sets D[t][χ][ξ][ρ] to
true, then we can combine χVt′ and χVt′′ into a square coloring χVt for G[Vt] using the function η.
Towards this end, we start by showing the following claim.
Claim 3.1. There is a square q-colorings λVt′′ of G[Vt′′ ] such that

1. λVt′′ satisfies (DP.1) - (DP.3) with respect to (t′′, χ′′, ξ′′, ρ′′), and

2. for every A′ ∈ 2Xt′ and A′′ ∈ 2Xt′′ it holds that

η(A′, A′′) = |{c ∈ [q] | At′(χVt′ , c) = A′ ∧At′′(λVt′′ , c) = A′′} \ {χ(v) | v ∈ Xt}|.

Proof. We obtain λVt′′ from χVt′′ by renaming colors. More precisely, we define a bijection π : [q]→
[q] and define λVt′′ (u) := π(χVt′′ (u)) for all u ∈ Vt′′ .

First, we choose the identity for all colors in the bagXt, i.e., π(c) = c for all c ∈ {χ′′(v) | v ∈ Xt}.
In the second step, we will use η to permute free colors. For each pair of equivalence classes

A′ ∈ 2Xt′ , A′′ ∈ 2Xt′′ , we arbitrarily match η(A′, A′′) free colors from the equivalence class A′ to free
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colors from the equivalence class A′′, i.e., we define π in such a way that

η(A′, A′′) = |{c ∈ [q] | At′(χVt′ , c) = A′ ∧At′′(χVt′ , π
−1(c)) = A′′} \ {χ(v) | v ∈ Xt}|

Note that this is always possible, and indeed that it achieves a full matching, by condition (J.2).
Also, λVt′′ still satisfies (DP.1) - (DP.3) with respect to (t′′, χ′′, ξ′′, ρ′′) since only free colors are
renamed. y

Using the last claim, we may assume without loss of generality that χVt′′ = λVt′′ . We define a
coloring χVt of Vt via

χVt(v) =

{
χVt′ (v) if v ∈ Vt′
χVt′′ (v) if v ∈ Vt′′

.

First observe that χVt is well-defined by Condition (i).
We show that χVt is a square coloring of G[Vt]. Let u,w ∈ Vt be distinct vertices such that

distG[Vt](u,w) ≤ 2. If uw ∈ E(G) then u,w ∈ Vt′ or u,w ∈ Vt′′ , and the respective square coloring
χVt′ or χvt′′ prohibits that u and v have the same color.

Otherwise, there is some v ∈ Vt such that uv, vw ∈ E(G). As before, if u, v, w ∈ Vt′ or
u, v, w ∈ Vt′′ , the respective square coloring χVt′ or χvt′′ prohibits that u and v have the same color.
Since u, v and v, w are adjacent, each pair of vertices must be in the same subcone. So without
loss of generality the only other case we need to consider is u ∈ Vt′ \Xt, v ∈ Xt and w ∈ Vt′′ \Xt.
Suppose without loss of generality that χVt(u) = χVt(w). First suppose there is some u′ ∈ Xt such
that χVt(u) = χ(u′). Then v ∈ ξ′(u) and v ∈ ξ′′(w) which contradicts Condition (ii).

Otherwise, let Au := At(χVt , χ(u)) and Aw := At(χVt , χ(w)). We have v ∈ Au and v ∈ Aw by
definition and hence, Au ∩Aw 6= ∅. So η(Au, Aw) = 0 by condition (J.1). This means that

{c ∈ [q] | At′(χVt′ , c) = Au ∧At′′(χVt′′ , c) = Aw} \ {χ(v) | v ∈ Xt} = ∅

by Claim 3.1. But c := χVt(u) = χVt(w) is contained in the first set, but not the second one. So
this gives again a contradiction. Overall, we get that χVt is a square coloring of G[Vt].

It remains to show that χVt satisfies the conditions in Definition 3.2. Condition (DP.1) immedi-
ately follows from (i).

For u ∈ Xt we have that

ξ(u) = ξ′(u) ∪ ξ′′(u)

= At′(χVt′ , χ
′(u)) ∪At′′(χVt′′ , χ

′′(u))

= At′(χVt′ , χ(u)) ∪At′′(χVt′′ , χ(u))

=
{
v ∈ Xt

∣∣∣ (∃w ∈ Vt′ \Xt′ : vw ∈ E(G) ∧ χVt′ (w) = χ(u)
)

∨
(
∃w ∈ Vt′′ \Xt′′ : vw ∈ E(G) ∧ χVt′′ (w) = χ(u)

)}
= At(χVt , χ(u))

which implies Condition (DP.2).
For Condition (DP.3), we first observe that

At(χVt , c) = At′(χVt′ , c) ∪At′′(χVt′′ , c)

for all colors c ∈ [q] using the same arguments as above. Hence, Condition (J.3) and Claim 3.1
imply that

ρ(A) =
∑

A′,A′′∈2Xt
A′∪A′′=A

η(A′, A′′) = |{c ∈ [q] | At(χVt , c) = A} \ {χ(v) | v ∈ Xt}|
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for all A ∈ 2Xt as desired.

Conversely, suppose there exists a square q-coloring χVt of G[Vt] satisfying the conditions in
Definition 3.2. We show that the algorithm sets D[t][χ][ξ][ρ] to true.

To do this, we consider χVt |Vt′ and χVt |Vt′′ . Certainly, these colorings are square colorings
of G[Vt′ ] and G[Vt′′ ], respectively. They immediately induce triples (χ′, ξ′, ρ′) and (χ′′, ξ′′, ρ′′) by
choosing these mappings in such a way that χVt |Vt′ witnesses that D[t′, χ′, ξ′, ρ′] is true. The
colorings χVt |Vt′ and χVt |Vt′′ also define η by setting

η(A′, A′′) := |{c ∈ [q] | At′(χVt , c) = A′ ∧At′′(χVt , c) = A′′} \ {χ(v) | v ∈ Xt}|.

Now, it is easy to check that Conditions (i) - (iv) are satisfied. So the algorithm sets D[t][χ][ξ][ρ]
to true.
(Running Time.) We analyze the running time of computing all DP table entries for t.

Iterating over all choices of χ, ξ, ρ, χ′, ξ′, ρ′, χ′′, ξ′′, ρ′′ takes

|D[t]| · |D[t′]| · |D[t′′]| ≤ (q + 1)3·(tw+1+(tw+1)2+2tw+1)

many iterations by Equation (1). For each iteration, we only require polynomial time to check
Conditions (i) - (iii). For the ILP used to check Condition (iv), the number of unknowns is at most
22(tw+1). Note that (J.1) just says that certain unknowns are zero. We can hence ignore them and
delete them from all equations. The number of remaining linear equations from (J.2) and (J.3) is
at most (2tw+1 + 2tw+1) + 2tw+1 = 3 · 2tw+1. The unknowns are constrained by 0 ≤ η(S′, S′′) ≤ q.
Hence, the ILP can be solved in time in time O(22·(tw+1) · 2tw+1 · (q + 1)3·2tw+1+1) by Lemma 3.5.

So overall, the running time can be bounded by

(q + 1)3·(tw+1+(tw+1)2+2tw+1) · 23·(tw+1) · (q + 1)3·2tw+1+1 · nO(1)

= (q + 1)6·(tw+1)+3·(tw+1)2+6·2tw+1+1 · nO(1)

= (q + 1)2tw+4 · nO(1).

We complete the proof by observing that, for every node t, all entries of D[t] can be computed in
time (q+ 1)2tw+4 · nO(1). So overall, the running time is bounded by |V (T )| · (q+ 1)2tw+4 · nO(1).

4 Lower Bound for Graphs of Bounded Treewidth

We have seen an algorithm solving Square Coloring in time (q + 1)2tw+4 · nO(1). We now show
that assuming the Exponential Time Hypothesis (ETH), this running time is essentially optimal.
More specifically, we show:

Theorem 1.2 (restated). Assuming ETH, for any ε > 0 and any function f , there is no f(tw)n(2−ε)tw

time algorithm solving Square Coloring on graphs of treewidth tw.

4.1 Problems Used in the Reduction

In our proof of Theorem 1.2, we will use two other problems, which we define below. The first will
be the starting point of our reduction, the second will be an intermediate problem.
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4.1.1 The (Colored) Subgraph Isomorphism Problem

The starting point for the hardness result is the well-known Subgraph Isomorphism problem:

Subgraph Isomorphism
Input: A pattern graph H and a host graph G
Question: Does there exist a subgraph of G that is isomorphic to H?

We will actually use a colored variant of this, in which the vertices of H are colored using |V (H)|
unique colors. The graph G is also colored arbitrarily using these |V (H)| colors. The problem now
has the additional constraint that the isomorphism must preserve colors. We define a convenient
version of this as follows:

Colored Subgraph Isomorphism
Input: A pattern graph H with k vertices, a host graph G with k · n vertices, and a function
f : V (G)→ V (H) such that ∀h ∈ V (H) : |f−1(h)| = n
Question: Does there exist a subgraph G′ of G such that ∀h ∈ V (H) : |f−1(h) ∩ V (G′)| = 1
and G′ is isomorphic to H?

4.1.2 The (Restricted) Vector k-Sum Problem

We first define the basic Vector k-Sum problem, before stating a restricted version that we use
in our reduction.

Vector k-Sum
Input: k lists A1, . . . , Ak of m-dimensional vectors, each of size n, and an m-dimensional target
vector t
Question: Is there a way to pick one vector from each list such that the sum of these vectors
is exactly t? That is,

∃v1 ∈ A1, . . . , vk ∈ Ak :

k∑
i=1

vi = t ?

Definition 4.1. Let parameters m,n ∈ Z>0 be arbitrary. We define a set of m-dimensional vectors
A to be a node-representing vector list if there existD+, D− ⊆ [m] with |D+∪D−| = |D+|+|D−| = 3
such that

∀a ∈ A : ∀j ∈ [m] : aj ∈


[1, n2] if j ∈ D+

[−n2,−1] if j ∈ D−

{0} otherwise

We call the elements of D+ the positive dimensions, the elements of D− the negative dimensions
and the elements of D+ ∪D− the non-zero dimensions.
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Restricted Vector k-Sum
Definition: Let parameters m, k, n ∈ Z>0 be arbitrary. We define a Restricted Vector
k-Sum instance to be a Vector k-Sum instance that satisfies all of the following conditions:

1. The target vector of the instance is (0, ..., 0) ∈ Zm.
2. There are k vector lists, each of size exactly n4.
3. All vector lists are node-representing vector lists with parameters m,n.
4. Each j ∈ [m] is a non-zero dimension in exactly two of the n4 vector lists.

4.2 The Reduction Chain

To prove Theorem 1.2, we rely on the hardness of certain instances of Colored Subgraph Iso-
morphism under ETH, and construct a two-step reduction from those instances of Colored Sub-
graph Isomorphism to instances of Square Coloring.

For the former, we use a result that follows directly from [35]. It shows the hardness of Colored
Subgraph Isomorphism with cubic pattern graphs parameterized by its number of edges. Recall
that a graph H is cubic if every vertex has degree exactly 3.

Theorem 4.2. Let m0 > 0 be arbitrary. The Colored Subgraph Isomorphism problem, re-
stricted to cubic pattern graphs with m ≥ m0 edges, cannot be solved in time f(m)no(m/ logm) for
any function f , unless ETH fails.

This follows from [35, Corollary 6.1] when using as a graph family G a family of cubic expander
graphs with at least m0 edges. It is well-known that cubic expander graphs have treewidth Ω(m)
(where m denotes the number of edges) [26].

Now, our two-step reduction consists of a reduction from Colored Subgraph Isomorphism
with cubic pattern graphs to Restricted Vector k-Sum instances, and then from those instances
to Square Coloring instances. More precisely, we prove the following theorems:

Theorem 4.3. There exists a polynomial-time algorithm A that, given a Colored Subgraph
Isomorphism instance with a k-vertex cubic pattern graph H (which has m = 3k/2 edges) and
a (k · n)-vertex host graph G, outputs an equivalent Restricted Vector k-Sum instance with
parameters m, k, n.

Theorem 4.4. There exists an algorithm B such that for every ε > 0 there exists an mε ∈ Z>0

such that for all m > mε, the following holds. Let k ∈ Z>0 be arbitrary. Given a Restricted
Vector k-Sum instance with parameters m, k, n, the algorithm B produces an equivalent Square
Coloring instance with treewidth at most (1 + ε) log(m) +O(1) and with (k+m+n)O(1) vertices.

Moreover, the algorithm runs in time (k +m+ n)O(1).

Assuming both theorems hold, we can already prove Theorem 1.2, i.e., assuming ETH, Square
Coloring cannot be solved in time f(tw)n(2−ε)tw for any ε > 0.

Proof of Theorem 1.2. Without loss of generality let 0 < ε ≤ 1 (otherwise it is trivial). Choose
0 < ε̃ ≤ 1 such that 1 − ε̃ = log(2 − ε); note that this is always possible. Now assume that
there exists an algorithm C solving Square Coloring in time f(tw)N (2−ε)tw = f(tw)N2(1−ε̃)tw on
graphs of treewidth at most tw. Without loss of generality, we may assume that f is monotonically
increasing.

First, we use Theorem 4.4 with ε′ = ε̃, obtaining an algorithm B and a constant mε′ > 0.
Our goal is to design an algorithm with running time h(m)no(m/ logm) for Colored Subgraph
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Isomorphism, where h is some arbitrary function and where the pattern graphs are restricted to
cubic graphs with m > mε′ edges. By Theorem 4.2, this implies that ETH is false.

Hence let such a Colored Subgraph Isomorphism instance be given. We use algorithm A
from Theorem 4.3 to convert this into an equivalent Restricted Vector k-Sum instance with
parameters m, k, n. This conversion runs in time (n+m)O(1).

For all m > mε′ , the algorithm B from above converts a Restricted Vector k-Sum instance
with parameters m, k, n into a Square Coloring instance with treewidth tw ≤ (1+ ε̃) log(m)+α,
where α denotes a suitable absolute constant, and with N = (k + m + n)O(1) vertices. Note that
m = 3k/2, so N = (m+ n)O(1). This conversion runs in time (k +m+ n)O(1) = (m+ n)O(1).

Now, we use algorithm C on this newly constructed Square Coloring instance. Let us define
g(m) := f((1 + ε̃) log(m) + α). Observe that f(tw) ≤ g(m). Then algorithm C runs in time

f(tw)N2(1−ε̃)tw = g(m)
(

(m+ n)O(1)
)2(1−ε̃)((1+ε̃) log(m)+α)

.

We rewrite this as
g(m)(m+ n)O(2ξ)

where
ξ := (1− ε̃)((1 + ε̃) log(m) + α).

Setting δ := ε̃2 > 0, we get that ξ = (1− δ) log(m) +O(1). Hence 2ξ = O(m(1−δ)). So the running
time can be written as

g(m)(m+ n)O(2ξ) = g(m)mO(m(1−δ))nO(m(1−δ)) = h(m)no(m/ logm)

for some suitable h(m) = g(m) ·mO(m(1−δ)).
Note that we have an additional running time of (m + n)O(1) for both of the two reduction

steps, but this is dominated by the above running time. Hence we have an algorithm for Colored
Subgraph Isomorphism running in total time h(m)no(m/ logm) as desired.

In the next two sections, we will construct the reductions that prove Theorems 4.3 and 4.4.

4.3 From Subgraph Isomorphism to Restricted Vector Sum

First we prove Theorem 4.3, which provides the reduction from Colored Subgraph Isomorphism
to Restricted Vector k-Sum. We restate it below:

Theorem 4.3 (restated). There exists a polynomial-time algorithm A that, given a Colored
Subgraph Isomorphism instance with a k-vertex cubic pattern graph H (which has m = 3k/2
edges) and a (k·n)-vertex host graph G, outputs an equivalent Restricted Vector k-Sum instance
with parameters m, k, n.

Proof. Let a Colored Subgraph Isomorphism instance with a k-vertex m-edge cubic pattern
graph H, along with a host graph G be given. In the following, we construct an equivalent Re-
stricted Vector k-Sum instance.

First, we purge redundant vertices from H. That is, for each u0 ∈ V (H) with neighbours
u1, u2, u3 such that 6 ∃(u′0, u′1, u′2, u′3) ∈ f−1(u0)×f−1(u1)×f−1(u2)×f−1(u3) : {u′0u′1, u′0, u′2, u′0u′3} ⊆
E(G), we remove u0 from V (H) and all vertices in f−1(u0) from V (G).

Having done that, we define our target vector to be (0, . . . , 0) ∈ Zm. We rename the vertices of
H to {h1, . . . , hk}. We also define an arbitrary bijection bE : E(H)→ [m].
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Structure of the Vectors We now create k vector lists Ah1 , . . . , Ahk . The vector list Ahi is
responsible for the node hi ∈ V (H). All vectors have dimension m. Each dimension represents one
of the edges of H. Specifically, for a vector a, a[bE(e)] is the entry of the vector corresponding to
the edge e ∈ E(H).

Now pick an arbitrary vertex u0 ∈ V (H) and let it be connected to three other vertices
u1, u2, u3 ∈ V (H). In the following, we construct the list Au0 of vertex u0. The list has at most n4

vectors for now – we will later fill the list with dummy vectors to achieve exactly n4 vectors.
Specifically, for each choice of (u′0, u

′
1, u
′
2, u
′
3) ∈ f−1(u0)×f−1(u1)×f−1(u2)×f−1(u3) such that

u′0u
′
1, u
′
0u
′
2, u
′
0u
′
3 ∈ E(G), we create one vector au′0,{u′1,u′2,u′3} ∈ Au0 . Note that the vector is identified

by the choice of central vertex u′0 and the set of its three neighbouring vertices {u′1, u′2, u′3}.

Entries of the Vectors We now construct the entries of these vectors. First, we define an
arbitrary ordering � on V (H).

For each edge vw ∈ E(H), we denote by E(G)vw the set of edges in G that connect a vertex in
f−1(v) to a vertex in f−1(w). Furthermore, we define an arbitrary bijection bvw : E(G)vw → [n2].

Fix a node u0 ∈ V (H) and let u0 have neighbours u1, u2, u3. We go through all choices of
(u′0, u

′
1, u
′
2, u
′
3) ∈ f−1(u0) × f−1(u1) × f−1(u2) × f−1(u3) such that u′0u′1, u′0u′2, u′0u′3 ∈ E(G). For

each such choice and each j ∈ [m], we set

au′0,{u′1,u′2,u′3}[j] :=


bu0ui(u

′
0u
′
i) if ∃i ∈ [3] : j = bE(u0ui) ∧ u0 � ui

−bu0ui(u′0u′i) if ∃i ∈ [3] : j = bE(u0ui) ∧ u0 � ui
0 otherwise

Dummy vectors This almost concludes the construction. We still have to guarantee that each
vector list has exactly n4 vectors. So far, each vector list has at most n4 vectors. Recall that we
purged redundant vertices from V (H) at the beginning of the reduction, thus each vector list must
have at least one vector. Hence, we can simply fill each vector list by duplicating any of its vectors
until the list has exactly n4 vectors.

Proof of Running Time Note that in the construction, for each node u0 ∈ V (H) with neighbours
u1, u2, u3, we iterate over all 4-tuples (u′0, u

′
1, u
′
2, u
′
3) ∈ f−1(u0)× f−1(u1)× f−1(u2)× f−1(u3) and

each j ∈ [m]. Since we do a constant number of operations for each such choice, this takes time
O(kn4m). We have m = 3k/2, thus this can be rewritten as O(m2n4). This is obviously the
dominating term in the running time of the reduction.

Proof of Correct Format We show that the instance we constructed fulfills all conditions for
being a Restricted Vector k-Sum instance. Conditions 1 and 2 are obviously satisfied.

For condition 3, fix a node u0 ∈ V (H) and let u0 have neighbours u1, u2, u3. Consider the
vector list Au0 . In order for Au0 to be a node-representing vector list, we must present its positive
dimensions D+ and negative dimensions D−. Indeed, for each i ∈ [3], we define

bE(u0ui) ∈

{
D+ if u0 � ui
D− otherwise

(3)

This obviously shows |D+ ∪D−| = |D+| + |D−| = 3. Furthermore, if we rewrite this definition, it
becomes D+ = {j | ∃i ∈ [3] : j = bE(u0ui) ∧ u0 � ui} and D− = {j | ∃i ∈ [3] : j = bE(u0ui) ∧ ui �
u0}.
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Hence all that remains to be shown is that

∀a ∈ A : ∀j ∈ [m] : aj ∈


[1, n2] if ∃i ∈ [3] : j = bE(u0ui) ∧ u0 � ui
[−n2,−1] if ∃i ∈ [3] : j = bE(u0ui) ∧ u0 � ui
{0} otherwise

However, this can be seen directly from the definition of the vector entries above.
For condition 4, fix j ∈ [m]. We must show that j is a non-zero dimension in exactly two vector

lists. Since bE is a bijection, there must be u, v ∈ V (H) such that bE(uv) = j. Without loss of
generality, assume u � v. Then by the definition of the non-zero dimension in formula 3 above,
it must be true that j is a positive dimension in the vector list Au and a negative dimension in
the vector list Av. Furthermore, there do not exist any other vector lists in which j is a non-zero
dimension.

Proof of Equivalence Note that a choice of a vector in Au0 , where N(u0) = {u1, u2, u3}, induces
a choice of vertices from f−1(u0), f−1(u1), f−1(u2) and f−1(u3). Now let us look at our construction
of vector entries, and why they lead to equivalence of this new instance to the original Colored
Subgraph Isomorphism instance.

Suppose there exists a solution g : V (H) 7→ V (G) for the Colored Subgraph Isomorphism
instance. For each u0 ∈ V (H) with neighbours u1, u2, u3 ∈ V (H), we choose from Au0 the vec-
tor ag(u0),{g(u1),g(u2),g(u3)}. Note that this vector exists because it is guaranteed that the edges
g(u0)g(u1), g(u0)g(u2), g(u0)g(u3) ∈ E(G) exist by the fact that g is a solution. We obtain a choice
of vectors that we will prove to be a solution to the Restricted Vector k-Sum instance.

Now fix an edge u0v0 ∈ E(H) with u0 � v0 and let u0 have neighbours u1, u2 and v0 have
neighbours v1, v2. We consider the dimension bE(u0v0) responsible for the edge u0v0. We know
that ag(u0),{g(v0),g(u1),g(u2)}[bE(u0v0)] = bu0v0(g(u0)g(v0)) and that ag(v0),{g(u0),g(v1),g(v2)}[bE(u0v0)] =
−bu0v0(g(u0)g(v0)). Hence their sum is 0. Furthermore, these two vectors are from the only two
lists which have non-zero entries is this dimension. Hence the sum of all chosen vectors has a 0 in
this dimension. Since this is true for all dimensions, we have proven that the vector choices are a
solution to the Restricted Vector k-Sum instance.

Conversely, suppose there exists a choice of vectors that is a solution to the Restricted Vec-
tor k-Sum instance. We now show that the choice of vertices it induces is well-defined and that it
is a solution to the Colored Subgraph Isomorphism instance.

Observe the dimension corresponding to an arbitrary edge uv ∈ E(H) with u � v, namely
dimension bE(uv). Of the chosen vectors, only two can have a non-zero entry in this dimension,
namely the chosen vectors au ∈ Au and av ∈ Av. Let au induce a selection of u′ ∈ f−1(u) and
v′ ∈ f−1(v) and let av induce a selection of u′′ ∈ f−1(u) and v′′ ∈ f−1(v). By construction, au
will have a value of buv(u′v′) in dimension bE(uv), while av will have a value of −buv(u′′v′′) in
dimension bE(uv). Since our target vector is (0, . . . , 0), this means that we have the constraint
(buv(u

′v′)) + (−buv(u′′v′′)) = 0. Since buv is a bijection this implies the constraint u′v′ = u′′v′′.
Hence the induced choices u′ and u′′ as well as v′ and v′′ coincide. This shows that the vertex choice
induced by the vector solution is well-defined.

Let us summarize the induced vector choices into a map g : V (H) 7→ V (G). It remains to show
that this map is a solution to the Colored Subgraph Isomorphism instance with which we
started.

However, this is trivial: For every edge uv ∈ E(H), suppose u has other neighbours u1, u2. We
must have chosen a vector ag(u),{g(v),g(u1),g(u2)} from Au. Since ag(u),{g(v),g(u1),g(u2)} exists, it must
be true that g(u)g(v), g(u)g(u1), g(u)g(u2) ∈ E(G). For us, it is enough that g(u)g(v) ∈ E(G).
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Since this is true for every edge uv ∈ E(H), all edge constraints of the Colored Subgraph
Isomorphism instance are satisfied.

4.4 From Restricted Vector Sum to Square Coloring

We now show Theorem 4.4, which provides a way to convert a Restricted Vector k-Sum
instance to an equivalent Square Coloring instance of low treewidth. We restate it below:

Theorem 4.4 (restated). There exists an algorithm B such that for every ε > 0 there exists
an mε ∈ Z>0 such that for all m > mε, the following holds. Let k ∈ Z>0 be arbitrary. Given
a Restricted Vector k-Sum instance with parameters m, k, n, the algorithm B produces an
equivalent Square Coloring instance with treewidth at most (1 + ε) log(m) + O(1) and with
(k +m+ n)O(1) vertices.

Moreover, the algorithm runs in time (k +m+ n)O(1).

Our proof of this theorem is very long and highly technical. It spans the rest of this section.
Let ε > 0 be given. We choose mε in such a way that

∀m > mε : mε > 2(1 + ε) logm+ 6 (4)

which is certainly possible. We will explain this choice later. Continuing, let m > mε also be
given. Finally, let a Restricted Vector k-Sum instance with parameters m, k, n be given, for
k, n ∈ Z>0. Name the vector lists A1, . . . , Ak.

4.4.1 Preparation

Before we describe the reduction algorithm, we note a few key definitions and details used in the
reduction.

Colorless and forced-color vertices We use colorless vertices in our construction. These are
normal vertices that simply won’t be assigned a color. Note that neighbouring nodes of colorless
vertices must still have pairwise distinct colors. We will later describe how to get rid of these
colorless vertices again.

Similarly, we will use vertices with a predetermined color, e.g. when we say that we create a “red
vertex”. These are normal vertices that we will connect in such a way that they are forced to assume
the color we assign (red, in this case). Of course, red is not a fixed color, but will be identified as
being the color that is used to color a certain other vertex somewhere in the graph.

Colors used in reduction We now define our target number of colors q. That is, the result of
the reduction will be a YES-instance if and only if it will be colorable using q colors.

The colors we use are divided into three categories:

Counting Colors: There are a total of 2m · 2n6 so-called counting colors, which are grouped into
color classes. There are 2m of these color classes, one pair of color classes for each dimension
of the vectors from the Restricted Vector k-Sum instance. We number the color classes
1, . . . , 2m and say that dimension i ∈ [m] corresponds to color classes 2i − 1 and 2i. Each
color class has 2n6 colors.

Logic Colors: We have an additional three colors which we name red, green and blue. They are
used for local logic computations in some of the gadgets.
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Neutral Colors: Finally, we have some number qcolorless of colors which are used in the final step
of the reduction, where we replace the colorless vertices with colored vertices. We will later
define qcolorless to be the total number of colorless vertices in our constructed graph, but for
now we leave it as a variable.

Hence in total, we have q = 2m · 2n6 + 3 + qcolorless many colors.

The central vertex x The output graph of our reduction will have a special colorless vertex
named x. It is special because most important conditions are encoded via its neighbourhood.
Accordingly, most gadgets we construct for our reduction will have an essential part of their “output”
be how they control the coloring of neighbors of x.

Relations Defining Gadgets To describe some of the gadgets used in the reduction, we define
a specific notion of a gadget, along with a specific notation. Our gadgets will have a set of input
vertices Vin, a set of output vertices Vout and a set of vertices Vx that are adjacent to the central
vertex x. In the input, we distinguish between single vertices and sets of vertices which we call
“color class inputs”. Each gadget will have some number d of these color class inputs, and we will
call these sets of vertices I1, . . . , Id.

The behaviour of the gadget will then be defined by a relation R of input colorings, output
colorings and vector specifications of colorings of Vx. We refer to the latter as “vector output”.
Informally, the relation defines what combinations of output colorings and vector outputs are allowed
for what inputs.

More formally, the relation R will be a subset of tuples (χin, χout, vx) where χin : Vin → [q]
and χout : Vout → [q], and where vx ∈ Zd≥0. For each j ∈ [d], the jth entry of vx corresponds
to the j-th input color class. Informally said, it will contain the number of output vertices in
Vx that are colored using colors from χin(Ij). More formally, each gadget has a corresponding
function p : (Vx → [q])→ Zd≥0 which maps output colorings to output vectors. For a given coloring
χin : Vin → [q] (which will always be clear from context) and any coloring χx : Vx → [q], the jth
entry of p(χx) is then given by

p(χx)j := |χin(Ij) ∩ χx(Vx)|

Our definitions of R will always ensure that
∑d

j=1(vx)j = |Vx|, i.e. that all colors on the x-
adjacent vertices must be distinct.

The relation R will be defined by two sets of constraints, Cin and CR. Informally, Cin will
contain constraints on the input, meaning it will specify for what colorings of Vin we even care
about the behaviour of the gadget, and CR will contain constraints that specify the behaviour for
those inputs. Formally, for any colorings χin : Vin → [q], χout : Vout → [q] and any vx ∈ Zd≥0, we have
that (χin, χout, vx) ∈ R if and only if χin satisfies all constraints contained in Cin and (χin, χout, vx)
satisfies all constraints contained in CR. We write this as χin ` Cin and (χin, χout, vx) ` CR.

We will formally define each gadget in a specification table containing the parameters the con-
struction and behaviour of the gadget depends on, a description of the sets of interface vertices
Vin, Vout and Vx, as well as a description of the sets of conditions Cin and CR from which R is
constructed.

For each gadget we use, we provide a construction and then prove that this construction does
indeed conform to the behaviour described. We define the latter formally as follows:

Definition 4.5. We say that a gadget G behaves according to a relation R if it satisfies both of the
following:
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Output Guarantee: . For any square q-coloring χ of the gadget such that χ|Vin ` Cin, it must also
hold that (χ|Vin , χ|Vout , p(χ|Vx)) ` CR (and, as a direct corollary, that (χ|Vin , χ|Vout , p(χ|Vx)) ∈
R).

Existence Guarantee: For any (χin, χout, vx) ∈ R and any vector S = (S1, . . . , Sd) with S1 ⊆
χin(I1), S2 ⊆ χin(I2), . . . , Sd ⊆ χin(Id) such that ∀j ∈ [d] : |Sj | = (vx)j , there exists a square
q-coloring χ of the gadget such that χ|Vin = χin, χ|Vout = χout and ∀j ∈ [d] : Sj ⊆ χ(Vx).

Furthermore, we say that a gadget G satisfies a specification table if G behaves according to the
the relation defined by the table entries specifying Cin and CR.

We are now ready to describe our reduction.

4.4.2 The Top-Level Structure

In this section, we describe and prove the reduction on a very high level. Specifically, we will
assume the existence of three gadgets that behave in a certain way and then use them to construct
the reduction output. Finally, we prove that this output is equivalent to the Restricted Vector
k-Sum instance that was the reduction input. The construction of the gadgets we use – which is
very involved – will be done in the next section.

The gadgets we will use here are called the subset gadget, the color class copy gadget and the
vector selection gadget.

The Subset Gadget As mentioned in the last section, we specify the inputs, outputs and be-
haviour of gadgets via a gadget specification table. Table 1 does this for the subset gadget.

Subset Gadget
parameter(s) α, β ∈ Z>0 with α ≥ β
Vin α vertices
Vout β vertices
Vx ∅
Cin |χin(Vin)| = |Vin|
CR χout(Vout) ⊆ χin(Vin) and |χout(Vout)| = |Vout|

Table 1: The specification table of the subset gadget

To build intuition on gadget specification tables, let us explicitly state what the table expresses.
The first row tells us that the construction and behaviour of the subset gadget depend on two
parameters α, β ∈ Z>0 with α ≤ β. The next two rows that the gadget has α input vertices and
β output vertices. Note that in all our gadgets, the sets of input and output vertices always have
an empty intersection. The fourth row tells us that none of the vertices of the subset gadget are
adjacent to the central vertex x (as defined in the section on preparation). The fifth row, which
specifies the constraints Cin, tells us that we only care about the behaviour of the subset gadget
if the input coloring colors the input vertices with pairwise distinct colors. Finally, the last row
specifies the constraints CR, namely that the output coloring must use pairwise distinct colors that
must be a subset of the colors used in the input coloring. Stated more intuitively, the output colors
must be a subset of the input colors. Note that if α = β, the output coloring must use exactly the
input colors. In this case, we may also call the gadget an equality gadget.

If we look back on how we defined gadgets, the subset gadget must satisfy both the output
guarantee and the existence guarantee. In this case, the output guarantee states that as long as the
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input consists of pairwise distinct colors, the output must be a subset of those colors. The existence
guarantee states that for any input coloring such that its colors are pairwise distinct and any output
colorings such that its colors are a subset of the input colors, there exists a square q-coloring of the
subset gadget that expands on those two colorings.

We will use the subset gadget a lot in our reduction, mainly as equality gadget for copying
around colors or groups of colors.

The Color Class Copy Gadget Next, we describe the color class copy gadget. It groups the
color classes into the color classes and creates a copy of each color class. The gadget is formally
specified by Table 2.

Color Class Copy Gadget
parameter(s) m,n ∈ Z>0

Vin vertex groups X1, . . . , X2m, each of size 2n6; define X :=
⋃2m
i=1Xi

Vout vertex groups Y1, . . . , Y2m, each of size 2n6; define Y :=
⋃2m
i=1 Yi

Vx ∅
Cin @u, v ∈ X : χin(u) = χin(v)

CR ∀i ∈ [2m] : χin(Xi) = χout(Yi)

Table 2: The specification table of the color class copy gadget

Basically, this gadget takes as input a grouping of distinct colors onX1, . . . , X2m, and guarantees
that this same grouping is also output on the vertex groups Y1, . . . , Y2m. The reader may note that
this gadget could be constructed by simply, for each i, connecting Xi to Yi via a subset gadget. So
why introduce a gadget for this? The construction we will describe in a later section will actually
be slightly more involved, with the aim being to achieve a lower treewidth in the reduction graph.

Our reduction output will only contain one instance of the color class gadget.

The Vector Selection Gadget Finally, we come to the vector selection gadget. Our reduction
will contain k of these gadgets, one for each of the vector groups A1, . . . , Ak. Its construction
and that of its subgadgets is very involved, and will be the longest part in the description of the
reduction.

More formally, the purpose of this gadget is to simulate the selection of a vector from a node-
representing vector list A as defined in Definition 4.1. Recall that that means that there exist
positive dimensions D+ and negative dimensions D− such that |D+ ∪D−| = |D+|+ |D−| = 3, and
that we call D+ ∪D− the non-zero dimensions. We define D+ ∪D− =: {z1, z2, z3}.

We remove zero-entries from each aj ∈ A and denote the result NZ(aj) = ((aj)z1 , (aj)z2 , (aj)z3).
The vector selection gadget will have six color class inputs, and as such we have d = 6 for the

dimension d of the vector output. We call a vector output vx ∈ Z6 of this gadget a vector-generated
output of A if ∃t ∈ [n4] : vx = (n6 + NZ(at)1, n

6 − NZ(at)1, n
6 + NZ(at)2, n

6 − NZ(at)2, n
6 +

NZ(at)3, n
6 −NZ(at)3). In that case we say that vx is generated by at (or NZ(at)).

The behaviour of the gadget is then specified by Table 3.
This specification is slightly more involved, so let us go through it one by one. The first row

simply tells us that the construction and behaviour of the gadget depends on a node-representing A
– this is the vector list from which we will simulate the selection of a vector. The second and third
rows tell us that the gadget has six color class inputs and three inputs for the logic colors red, green
and blue. Furthermore, it has three logic color outputs. If we peek at the first condition of CR in
the last row of the table, the gadget will actually guarantee that it outputs its logic color inputs
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Vector Selection Gadget
parameter(s) a node-representing vector list A with parameters m,n ∈ Z>0

Vin • Six groups of 2n6 vertices I1, I2, I3, I4, I5, I6 (the color class inputs),
and

• three “logic” input vertices r, g, b.
Vout three “logic” output vertices r′, g′, b′.
Vx a total of 6n6 vertices
Cin • |χin(I1 ∪ I2 ∪ I3 ∪ I4 ∪ I5 ∪ I6 ∪ {r, g, b})| =

|I1 ∪ I2 ∪ I3 ∪ I4 ∪ I5 ∪ I6 ∪ {r, g, b}|
• χin(r) = red, χin(g) = green, χin(b) = blue

CR 1. χout(r
′) = χin(r), χout(g

′) = χin(g) and χout(b
′) = χin(b),

2. It must hold that vx is a vector-generated output of A, as defined
above.

Table 3: The specification table of the vector selection gadget

unchanged, meaning the logic color outputs r′, g′, b′ receive the same colors as the logic color inputs
r, g, b, respectively. So the interesting behaviour doesn’t happen in the coloring of the output, but
rather in the vector output of the gadget – i.e. in the coloring of the neighbours of x. For this, we
look at the fourth row of the table, which specifies that Vx consists of some 6n6 vertices. If we peek
at the second condition of CR, we see that the vector output encoded on these vertices must be a
vector-generated output. Being vector-generated means that it encodes a certain vector from the
vector list A, but in a slightly modified form as specified in the definition. Finally, the fifth row
simply tells us that we only care about the behaviour of the gadget if all inputs are colored with
pairwise different colors and if r, g, b are colored with the logic colors red, green and blue.

Connecting the Gadgets We provide a sketch of the reduction in Figure 5. Before we de-
scribe how we fit the gadgets described above together, a quick word on the intuition behind this
construction.

To reduce the Restricted Vector k-Sum instance to a Square Coloring instance, we will
need a concept of numbers, vectors, summation and equality constraints in the context of square
q-colorings. The vector selection gadgets already gives us a concept of vectors and numbers via its
vector output by coloring neighbours of x with a certain number of colors from each of its input
color classes. If two vector selection gadgets get the same color class as one of their color class
inputs, and they both expose a certain number of colors from this class to x, this can be viewed
as summation: the total number of colors from that color class exposed to x is the sum of colors
from that color class that are exposed to x by each of the two vector selection gadgets. Note that
the sets of colors that are exposed must be pairwise different, since all neighbours of x are trivially
within distance two. This directly gives us a concept of lesser-than-or-equal constraints: The sum
of the number of colors from a certain color class that are exposed by vector selection gadgets must
be less than the total number of colors from that color class. Finally, we can encode an equality
constraints x = y by encoding it as the two lesser-than-or-equal constraints x ≤ y and y ≤ x.

With this in mind, let us connect the gadgets we have so far.
First, we create the central vertex x and a color class copy gadget. We denote the latter by

G(cpy). Now we create k vector selection gadgets, which we denote by G(sel,1), . . . , G(sel,k). For each
i ∈ [k], we define the parameter of G(sel,i) to be the vector list Ai.
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Figure 5: Overview of the construction. Dashed edges represent connections via equality gadgets.
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We identify any of the elements (e.g. sets, vertices, conditions) of G(sel,i) or G(cpy) by super-
scripting them with (sel, i) or (cpy), respectively. E.g. the input vertex set Vin of G(sel,1) and the
set X1 of G(cpy) become V (sel,1)

in and X(cpy)
1 , respectively.

We assume that for each i ∈ [k], all vertices in V (sel,i)
x are already connected to x via an edge.

In fact, these are the only vertices in the entire reduction connected to x.
We create a colorless vertex wX and connect it to all vertices in V (cpy)

in , as well as to the vertices
r(sel,1), g(sel,2), b(sel,3). This ensures that all colors used in the color classes, as well as the logic colors,
are all pairwise distinct. We also ensure that the logic colors are passed to each vector selection
gadget by using one equality gadget each to connect, for each i ∈ [k − 1], the vertex (r′)(sel,i) with
r(sel,i+1), (g′)(sel,i) with g(sel,i+1) and (b′)(sel,i) with b(sel,i+1). Note that connecting two vertices via
an equality gadget simply means that one of the vertices is the input and the other is the output.

All that remains is to route the color classes from the color class copy gadget to the vector
selection gadgets. Recall that in a Restricted Vector k-Sum instance, each j ∈ [m] is a non-
zero dimension in exactly two of the vector lists. Also, each vector list is a node-representing
vector list and thus has exactly three non-zero dimensions. Finally, recall that dimension i ∈ [m]
corresponds to color classes 2i− 1 and 2i.

For each i ∈ [k], let vector list Ai have non-zero dimensions D+ ∪ D− =: {z(i)
1 , z

(i)
2 , z

(i)
3 }.

The corresponding color class indices are the elements of the ordered set L(i) := (l
(i)
1 , . . . , l

(i)
6 ) :=

(2z
(i)
1 −1, 2z

(i)
1 , 2z

(i)
2 −1, 2z

(i)
2 , 2z

(i)
3 −1, 2z

(i)
3 ). We wish to connect the color classes with indices from

L(i) to the inputs of G(sel,i) in some way. Note that by the fact that each dimension is a non-zero
dimension in at most two vector lists, this means that each color class is an input to at most two
vector selection gadgets. In other words, ∀` ∈ [2m] : |{i | ` ∈ L(i)}| = 2.

Hence we go through each i ∈ [k] and each `
(i)
j ∈ L(i). Define ` := `

(i)
j for simplicity. If

` /∈
⋃
i′∈[i−1] L

(i′), we connect I(sel,i)
j to X(cpy)

` via a subset gadget. Otherwise, we connect I(sel,i)
j to

Y
(cpy)
` via a subset gadget. Again, connecting two vertex groups via a subset gadget simply means

that one vertex group is the input of the subset gadget and the other is the output.
This concludes the top-level construction of the reduction output instance.

Correctness Let us argue why this new Square Coloring instance is equivalent to the Re-
stricted Vector k-Sum instance. In other words, we show the following lemma:

Lemma 4.6. Assume that there exist gadgets satisfying the specification tables 1, 2 and 3, and that
they are used in the construction above.

Then the input Restricted Vector k-Sum instance has a solution a(1) ∈ A1, . . . , a
(k) ∈ Ak

if and only if the Square Coloring instance constructed above has a solution coloring χ.

For the proof, we need the following property, which is easy to verify for each of our gadget
constructions.

Property 4.7. For any gadget G in our reduction except for the color class copy gadget, and for
any vertex v ∈ V (G) that is adjacent to any vertex from Vin ∪ Vout ∪ Vx of G, we have that v is
colorless.

This property holds even for the lower-level gadgets which we will specify later. Stated more
intuitively, its says that for all but one gadget, any outwardly exposed vertices are only connected
to colorless vertices within the gadget. This makes our correctness proofs easier because we do
not need to worry about color conflicts between two inner vertices (i.e. non-input and non-output
vertices) that are from different gadgets.
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We are now ready to prove Lemma 4.6.

Proof. For the first direction, assume the Restricted Vector k-Sum instance has a solution
a(1) ∈ A1, . . . , a

(k) ∈ Ak such that
∑k

i=1 a
(i) = (0, . . . , 0) ∈ Zm. We must show that our newly

constructed Square Coloring instance also has a solution coloring χ.
Let us construct this coloring χ. First, we color V (cpy)

in using all of the 2m · 2n6 counting colors.
We also color r(sel,1), g(sel,1), b(sel,1) using the logic colors red, green and blue, respectively. Note that
we have now already used each available color once.

We can now arbitrarily color V (cpy)
out such that the coloring satisfies C(cpy)

R , i.e. such that the color
groupings are preserved. We may then use the existence guarantees of G(cpy) to find a coloring for all
vertices of G(cpy). Now recall that each color class input of each vector seleciton gadget is connected
via a subset gadget to either a X(cpy)

i for some i or a Y (cpy)
i for some i. We color it such that the con-

dition CR of the subset gadget is fulfilled, i.e. such that the color class input gets assigned all colors
of that color class. We can then use the existence guarantee of each subset gadget to find a coloring
for the vertices of the gadget. We also color, for each i ∈ [k] \ {1}, the vertices r(sel,i), g(sel,i), b(sel,i)

with red, green and blue respectively. We do the same with (r′)(sel,i), (g′)(sel,i), (b′)(sel,i) for each
i ∈ [k− 1]. We can now use the existence guarantees for the subset gadgets that connect these logic
inputs and logic outputs.

All that remains is to expand the coloring χ we constructed so far to the vertices of the vector
selection gadgets. Note that for each i ∈ [k], the input and output vertices of vector selection
gadget G(sel,i) are already colored. In particular, for each ` := `

(i)
j ∈ L(i) (with j ∈ [6]), we

know that I(sel,i)
j is connected to either X(cpy)

` or Y (cpy)
` via a subset gadget, and is hence colored

using the color class with index `. To use the existence guarantees, it suffices to specify an output
vector v(sel,i)

x and a vector S(sel,i) that satisfy the conditions of the existence guarantees. In other
words, we need that (χ|

V
(sel,i)
in

, χ|
V

(sel,i)
out

, v
(sel,i)
x ) ∈ R(sel,i) and S(sel,i) = (S

(sel,i)
1 , . . . , S

(sel,i)
6 ) with

S
(sel,i)
1 ⊆ χ(I

(sel,i)
1 ), . . . , S

(sel,i)
6 ⊆ χ(I

(sel,i)
6 ) such that ∀j ∈ 6 : |S(sel,i)

j | = (v
(sel,i)
x )j . The former

means that the tuple must satisfy the conditions in C
(sel,i)
in and C

(sel,i)
R . The conditions in C

(sel,i)
in

and the first condition of C(sel,i)
R are obviously satisfied, hence it suffices to choose v(sel,i)

x such that
it is a vector-generated output of Ai. We choose it to be the vector-generated output generated
by a(i) from the solution of the Restricted Vector k-Sum instance, that is we choose it to be
(n6 + NZ(a(i))1, n

6 −NZ(a(i))1, n
6 + NZ(a(i))2, n

6 −NZ(a(i))2, n
6 + NZ(a(i))3, n

6 −NZ(a(i))3).
Now for our choice of S(sel,i). We want all neighbours of the central vertex x to have distinct

colors, hence we want that ∀(i, j), (i′, j′) ∈ [k] × [6] : (i, j) 6= (i′, j′) =⇒ S
(sel,i)
j ∩ S(sel,i′)

j′ = ∅. To
do this, we go through all d ∈ [m]. Let i, i′ ∈ [k] with i < i′ be the indices of the two vector lists in
which d is a non-zero dimension, i.e. d = z

(i)
j and d = z

(i′)
j′ for some j, j′ ∈ [3]. We know that X(cpy)

2d−1

is connected via subset gadget to I(sel,i)
2j−1 and X(cpy)

2d is connected to I(sel,i)
2j . Furthermore Y (cpy)

2d−1 is

connected to I(sel,i′)
2j′−1 and Y (cpy)

2d is connected to I(sel,i′)
2j′ .

We have (v
(sel,i)
x )2j−1 = n6 + NZ(a(i))d and (v

(sel,i)
x )2j = n6 −NZ(a(i))d and (v

(sel,i′)
x )2j−1 = n6 +

NZ(a(i′))d and (v
(sel,i′)
x )2j = n6−NZ(a(i′))d. Furthermore, we have that by the fact that a(1), . . . , a(k)

is a solution to the Restricted Vector k-Sum, we must have ∀d′′ ∈ [m] :
∑k

i′′=1 a
(i′′)
d′′ = 0. Since

i, i′ are the only two non-zero dimensions of d, we hence have a(i)
d + a

(i′)
d = 0. Thus, (v

(sel,i)
x )2j−1 +

(v
(sel,i′)
x )2j−1 = 2n6 and (v

(sel,i)
x )2j + (v

(sel,i′)
x )2j = 2n6.

Note that each color class has exactly 2n6 colors. Hence we can choose S(sel,i)
2j−1 as any arbi-

trary (v
(sel,i)
x )2j−1 colors from χ(I

(sel,i)
2j−1 ) = χ(X

(cpy)
2d−1). We use the rest of the colors from χ(X

(cpy)
2d−1) =
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χ(I
(sel,i′)
2j−1 ) for S(sel,i′)

2j−1 . We furthermore choose S(sel,i)
2j as any arbitrary (v

(sel,i)
x )2j colors from χ(I

(sel,i)
2j ) =

χ(X
(cpy)
2d ) and choose S(sel,i′)

2j−1 as the rest of the colors from χ(X
(cpy)
2d ) = χ(I

(sel,i′)
2j−1 ).

Note that apart from guaranteeing that the neighbours of x are colored using distinct colors, it
is easy to see that actually, for each counting color, there exists exactly one neighbour of x that is
colored using that color.

We can now finally use the existence guarantees of the vector selection gadgets to find colorings
for them. Hence χ is now a complete coloring of our graph.

It is obvious that there are no color conflicts between neighbours of wX . We have also already
argued above that there are no color conflicts between neighbours of x. Furthermore, by the existence
guarantees of the gadgets we used, no color conflicts can exist between two vertices from the same
gadget. Hence the only color conflicts that could still exist would be between two vertices from
different gadgets. However, such conflicts are prevented by Property 4.7. Hence χ is a valid square
q-coloring.

Now for the second direction. Assume our new Square Coloring instance has a solution χ.
We must show that the Restricted Vector k-Sum instance also has a solution a(1), . . . , a(k).

We know that the neighbours of wX must be colored using pairwise different colors, meaning the
vertices in V (cpy)

in and r(sel,1), g(sel,1), b(sel,1) all have different colors. Hence we can use the output
guarantees of G(cpy) to conclude that ∀i ∈ [2m] : χ(X

(cpy)
i ) = χ(Y

(cpy)
i ). We also use the output

guarantees of all subset gadgets connecting vertex groups of the color class copy gadgets to color
class inputs of vector selection gadgets. As a simple corollary, we get that for all i ∈ [k] and each
l := l

(i)
j ∈ L(i), we have that χ(I

(sel,i)
j ) = χ(X

(cpy)
` ).

Call χ(r(sel,1)), χ(g(sel,1)), χ(b(sel,1)) red, green and blue, respectively. We now go through each
i ∈ [k−1]. For each such i, we know that the first condition of C(sel,i)

R is that χ((r′)(sel,i)) = χ(r(sel,i)),
χ((g′)(sel,i)) = χ(g(sel,i)) and χ((b′)(sel,i))) = χ(b(sel,i)). And indeed, we can use the output guarantees
of G(sel,i) to show that this holds. Furthermore, we can use the output guarantees of the subset
gadgets connecting the logic color outputs of G(sel,i) to the logic color inputs of G(sel,i+1) to show
that χ(r(sel,i+1)) = χ((r′)(sel,i)), χ(g(sel,i+1)) = χ((g′)(sel,i)) and χ(b(sel,i+1))) = χ((b′)(sel,i)). Hence,
by transitivity, all these vertices are colored red, green and blue, respectively.

For each i ∈ [k], we now use the output guarantees of G(sel,i) again. We know that the sec-
ond condition of C(sel,i)

R is that v(i) := p(χ|
V

(sel,i)
x

) is a vector-generated output of Ai. We choose
a(1), . . . , a(k) such that for all i ∈ [k], we have that v(i) is the vector-generated output generated by
a(i). In other words, we have v(i) = (n6+NZ(a(i))1, n

6−NZ(a(i))1, n
6+NZ(a(i))2, n

6−NZ(a(i))2, n
6+

NZ(a(i))3, n
6 −NZ(a(i))3).

We now go through each d ∈ [m]. Let i, i′ ∈ [k] with i < i′ be the indices of the two vector lists
in which d is a non-zero dimension, i.e. d = z

(i)
j and d = z

(i′)
j′ for some j, j′ ∈ [3].

We know that χ(I
(sel,i)
2j−1 ) = χ(I

(sel,i′)
2j′−1 ) = χ(X

(cpy)
2d−1) and χ(I

(sel,i)
2j ) = χ(I

(sel,i′)
2j′ ) = χ(X

(cpy)
2d ).

Hence we know that in G(sel,i), a total of n6 + NZ(a(i))j neighbours of x are colored using colors
from χ(X

(cpy)
2d−1) and a total of n6−NZ(a(i))j neighbours of x are colored using colors from χ(X

(cpy)
2d ).

Furthermore, in G(sel,i′), a total of n6 + NZ(a(i′))j′ neighbours of x are colored using colors from
χ(X

(cpy)
2d−1) and a total of n6 − NZ(a(i′))j′ neighbours of x are colored using colors from χ(X

(cpy)
2d ).

Hence, (n6 + NZ(a(i))j) + (n6 + NZ(a(i′))j′) neighbours of x are colored using colors from χ(X
(cpy)
2d−1),

and (n6 −NZ(a(i))′j) + (n6 + NZ(a(i′))j′) neighbours are colored using colors from χ(X
(cpy)
2d ).

Recall that ∀r ∈ [2m] : |X(cpy)
r | = 2n6. Since χmust color neighbours of x using pairwise distinct

colors, we must thus have (n6 + NZ(a(i))j) + (n6 + NZ(a(i′))j′) ≤ 2n6 and (n6 −NZ(a(i))j) + (n6 −

35



NZ(a(i′))j′) ≤ 2n6. Rewriting, we have NZ(a(i))j + NZ(a(i′))j′ ≤ 0 and NZ(a(i))j + NZ(a(i′))j′ ≥ 0.
Hence, NZ(a(i))j + NZ(a(i′))j′ = 0.

Recall that d = z
(i)
j = z

(i′)
j′ . Thus, a(i)

d = NZ(a(i))j and a
(i′)
d = NZ(a(i′))j′ , meaning we can

rewrite the above as a(i)
d + a

(i′)
d = 0. Since Ai and Ai′ were the only two vector lists in which d is a

non-zero dimension, we get that
∑k

r=1 a
(r)
d = 0.

Since we proved the above for all d ∈ [m], we can conclude
∑k

r=1 a
(r) = 0, which means

a(1), . . . , a(k) is a solution for the Restricted Vector k-Sum instance.

4.4.3 Constructing the Top-Level Gadgets

We will now see how to actually construct the three gadgets we used in our top-level construction.
The construction of the subset gadget and color class copy gadget are relatively short. However,

the construction of the vector selection gadget is very involved and requires us to first build a long
sequence of subgadgets.

Subset Gadget, Equality Gadget and Busses We begin with the most basic gadget, the
(α, β) subset gadget. It has some number α of input vertices, as well as β < α output vertices, and
it ensures that the colors used to color the output vertices are a subset of the colors used to color
the input vertices.

We have already specified the subset gadget via Table 1. A γ equality gadget is a subset gadget
with γ := α = β. It ensures that the set of input colors is the same as the set of output colors.

The construction of the subset gadget is very simple. The α input vertices in Vin are all connected
to a colorless vertex a. The vertex a is then connected to q − α new vertices, which we call the
complement vertices C. The complement vertices C are all connected to another colorless vertex b,
which is also connected to all output vertices Vout.

We wish to prove that the subset gadget actually encodes the subset constraint, that is:

Lemma 4.8. The gadget constructed above satisfies the specification table of the subset gadget, as
shown in Table 1.

Proof. Output Guarantees: Let a square q-coloring χ such that χ|Vin ` Cin be given.
Since the input vertices Vin, the complement vertices and a form a star with q rays, χ must

be injective on Vin ∪ C. However, since there are α input vertices and q − α complement vertices,
we must have that the complement vertices are colored using all colors which do not appear on
the input vertices. Similarly, since the complement vertices C, the output vertices C and b form a
star, the output vertices must be colored using pairwise distinct colors which do not appear on the
complement vertices – in other words, using a subset of the colors of the input vertices, with no
duplicate colors.

Hence, (χ|Vin , χ|Vout , p(χ|Vx)) ` CR, where p(χ|Vx) = () is the zero-dimensional vector.
Existence Guarantees: Similarly, let (χin, χout, ()) ∈ R and S = () be given. It suffices to

extend χin and χout to a coloring χ by coloring the complement vertices C using the q − α colors
not appearing on the input. It is easy to see this is a valid square q-coloring.

Color Class Copy Gadget Now for the color class copy gadget, which was specified in Table 2.
As was mentioned earlier, there as actually a very simple way to construct this gadget. However,
we use a more involved construction in order to keep the treewidth of the reduction output graph
low.
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First, we ensure that the colors used to color the nodes in Vin are the same as the colors used
to color the nodes in Vout. We do this by connecting the all nodes in the former set to the nodes in
the latter set via a 2m · 2n6 equality gadget.

We now introduce 2r new colorless vertices S, for r := d (1+ε) log(m)
2 e (where ε was given at

the start of the reduction). This choice will guarantee
(

2r
r

)
> 2m, as we will argue later. Each

0 ≤ i ≤ 2m gets assigned a distinct size r subset Si of S. This is possible due to
(

2r
r

)
> 2m.

Each vertex of Xi is now connected to all vertices in Si, meaning Xi and Si now form a biclique.
Similarly, each vertex of Yi is connected to all vertices in S \ Si.

This concludes the construction of the gadget.

Lemma 4.9. The gadget constructed above satisfies the specification table of the color class copy
gadget, as shown in Table 2.

Proof. Output Guarantees: Let a square q-coloring χ be given such that χ|Vin ` Cin.
The 2m · 2n6 equality gadget forces all vertices in Y to use the colors from χ(X).
Now consider some fixed i. First, note that the colors of the vertices in Yi must be pairwise

distinct, since they are all adjacent to any arbitrary vertex in S \ Si and thus within distance two
of each other.

Now consider any j 6= i. We know that Sj and S \ Si share a vertex. Hence the colors used to
color Xj cannot be used in Yi, since the nodes in these sets are within distance two of each other.
Furthermore, we have already argued above that the vertices in Y , and hence in Yi, can only be
colored using the colors in χ(X).

Hence the only colors in χ(X) which remain to color Yi with are those used to color Xi. Since
there are 2n6 vertices in Yi which must have pairwise distinct colors, they must therefore have
exactly the colors used to color Xi.

Hence (χ|X , χ|Y , ()) ` CR.
Existence Guarantees: Let (χin, χout, ()) ∈ R and S = () be given. Obviously, the input and

output color sets of the subset gadget connecting X and Y are the same. Hence we can use the
existence guarantees for the subset gadget to derive a coloring for it. Combining this coloring with
χin and χout gives a q-coloring χ.

It remains to show that this χ is a valid square q-coloring. It is easy to see that no color
conflict arises with one the complement vertices of the subset gadget connecting X and Y . The
only remaining possible conflicts are between vertices of Xi and Yi for some i, since these are the
only vertices that share colors. Consider some fixed i. Certainly, the vertices in Yi share no common
neighbours in S with vertices in Xi, since the vertices in Xi are connected to Si while the vertices
in Yi are connected to S \ Si. Hence they are not within distance two.

Finally, let us quickly mention why we chose r as d (1+ε) log(m)
2 e. As we mentioned above, we

need
(

2r
r

)
> 2m. It is well-known that for any r, the inequality

(
2r
r

)
≥ 22r

2r+1 holds, so we need only
ensure that 22r

2r+1 > 2m. Substituting our choice r = d (1+ε) log(m)
2 e into the inequality and bounding

the rounding in both numerator and denominator, we get that is suffices to satisfy the inequality
m(1+ε)

(1+ε) log(m)+3 > 2m. By rewriting, it suffices to satisfy mε > 2(1 + ε) logm+ 6. However, we chose
mε such that any m > mε fulfills this inequality.

Socket Gadget We now come to the series of subgadgets that are needed for the vector selection
gadget. We start with the most low-level ones and use them to build more complex ones.
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The first fundamental building block is the socket gadget. There will be two types of socket
gadgets: constant sockets and switch gadgets. Both will have a control input which must receive
either red or blue. Constant sockets will always expose a color from one color class Ii (for some i)
to x, irregardless of the color of the control input (recall that exposing a color to x means that a
neighbour of x is assigned that color). We call constant sockets that always expose a color from the
coloring of I1 constant sockets of type 1, and similarly constant sockets that always expose a color
from the coloring of I2 sockets of type 2. On the other hand, switch sockets will output either a
color from I1 or I2 depending on the control input. We describe switch sockets by an abbreviation
of their control-to-exposed-color mapping. Specifically, switch gadgets that show a color from I1 for
a red control input and a color from I2 for a blue control input will be called switch sockets of type
r1b2, while the other type where the outputs are switched will be called switch sockets of type r2b1.

We specify all the different types of socket gadgets in Table 4. We use the Kronecker delta δij ,

defined as δij :=

{
1 if i = j

0 if i 6= j
.

Socket Gadget
parameter(s) n ∈ Z>0 and the type (constant / switch) and subtype (1 / 2 / r1b2 /

r2b1) of the gadget
Vin • Two groups of 2n6 vertices I1 and I2 (the color class inputs),

• three “logic” input vertices r, g, b, and
• a “control” input vertex s.

Vout • Two groups of 2n6 vertices I ′1, I ′2,
• three “logic” output vertices r′, g′, b′, and
• a “control” output vertex s′.

Vx a single vertex z
Cin • |χin(I1 ∪ I2 ∪ {r, g, b})| = |I1 ∪ I2 ∪ {r, g, b}|,

• χin(r) = red, χin(g) = green, χin(b) = blue, and
• χin(s) ∈ {red, blue}

CR We divide CR into output and vector conditions:
1. • χout(r

′) = χin(r), χout(g
′) = χin(g), χout(b

′) = χin(b),
• χout(s

′) = χin(s), as well as
• ∀i ∈ [6] : χout(I

′
i) = χin(Ii).

2. For constant sockets of type I (I ∈ [2]),
vx = (δI1, δI2).

For switch sockets of type rIbJ (I, J ∈ [2]),

vx =

{
(δI1, δI2) if χin(s) = red
(δI2, δI1) if χin(s) = blue

Table 4: The specification table of the socket gadget

The constant sockets are very easy to implement. They simply copy their inputs to the outputs
via equality gadgets. Furthermore, one of the input color classes (the one from which the socket
should expose a color to x) is connected to z, the vertex from Vx, via a (2n6, 1) subset gadget.

Now for the switch sockets, one of which is sketched in Figure 6. We describe an r2b1 switch
socket. Switch sockets of type r1b2 are completely analogous, the two color class inputs are simply
switched.
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(toward x)

subset subset

subset subset

subset

I’ I’

v w

1 2

u

Figure 6: Illustration of a switch socket gadget. The lower color class input is I1 in this figure, and
hence this socket is of type r2b1.
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First, we create a copy I ′1 of the color class input I1 and a copy I ′2 of color class input I2. Each
is connected to the original color class input by an equality gadget. The vertices in the copy I ′1 will
serve as input to a subset gadget whose output is copied to a vertex v. The vertices in I ′2 are the
input to another subset gadget whose input is copied to a vertex w.

The vertex v, together with a red vertex, serves as input to a (2,2) equality gadget. We call this
the left equality gadget. One of the outputs of the left equality gadget is connected by a normal
edge to a vertex that copies the control input. The other is copied to a (2,1) subset gadget which
we call the final subset gadget. On the other side, the vertex w, together with a blue vertex, serves
as input to a (2,2) equality gadget. We call this the right equality gadget. One of the outputs of
the right equality gadget is also connected to a vertex that copies the control input, while the other
is copied to the second input of the final subset gadget.

The output of the final subset gadget is copied to a vertex u, on which we forbid the colors red
and blue by connecting it to a red and a blue vertex. Finally, we connect u to z via an equality
gadget.

Lemma 4.10. The gadget constructed above satisfies the specification table of the socket gadget, as
shown in Table 4.

Proof. Output Guarantees: For constant socket gadgets, the output guarantees should be clear.
We hence turn to switch socket gadgets, specifically to a switch socket gadget of type r2b1. Switch
sockets of type r1b2 are analogous.

Let a square q-coloring χ be given such that χ|Vin ` Cin. It is easy to verify that χ must satisfy
part 1 of CR. Hence we focus on condition 2. If χin(s) = red, part 2 of CR becomes vx = (0, 1)
and if χin(s) = blue, it becomes vx = (1, 0). Hence if the control input is red, we must show that
χ(z) ∈ χ(I2), and if it is blue, that χ(z) ∈ χ(I1).

Due to the output guarantees of the first two subset gadgets, v and w must get a color from
χ(I1) and χ(I2), respectively. The left equality gadget gets as input v and a red vertex, and one of
its outputs is within distance one of a vertex which copies the control input. Hence if the control
input is red, that output cannot be red, so the other one must be. This other output is copied to
the first input of the final subset gadget. Similarly, the right equality gadget gets w and a blue
vertex as input, and one of its outputs is within distance one of a vertex which copies the control
input.

Note that each of the equality gadgets has one output which is fed into the final subset gadget.
Since the output of the final gadget is copied to u which cannot be red or blue, one of the inputs of
the final subset gadget is required to be neither red nor blue. Recall that if the control input is red,
the left equality gadget must copy red to the final subset gadget. For this red control input, the
other equality gadget must therefore copy one of the colors from χ(I2) to the final equality gadget.
This must therefore be the output of the gadget. Similarly, if the control input is blue, the right
equality gadget must copy blue to the final gadget. Hence the left equality gadget must copy one
of the colors from χ(I1) to the final equality gadget, and this must be the output of the gadget.

Hence (χ|Vin , χ|Vout , p(χ|Vx)) must also satisfy condition 2.
Existence Guarantees Let (χin, χout, vx) ∈ R and S = (S1, S2) be given. We have |S1|+|S2| =

1.
We start with constant socket gadgets. Assume without loss of generality that the socket gadget

is of type 1. Then we must have S1 =: {τ} ⊆ χ(I1) and S2 = ∅, and there must be a subset gadget
connecting I1 to z. First, we use the existence guarantees of the subset gadgets copying inputs to
outputs to extend the input coloring to those subset gadgets. Then we extend the input coloring
further by using the existence guarantees for the subset gadget connecting I1 to z such that z is
colored using τ . This obviously suffices.
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Now for the switch socket gadgets. We describe the proof for sockets of type r2b1, sockets of
type r1b2 are analogous. Furthermore, without loss of generality let χin(s) = red, the case that it
is blue is analogous. We must hence have S1 = ∅ and S2 = {τ} ⊆ χI2 . We will construct a coloring
where τ is the output.

We start to extend χin by using the existence guarantees for any equality gadgets which already
have a coloring on all their inputs, repeating this until no such equality gadget exists. We now have
input colorings for the topmost pair of subset gadgets, which receive colors from χin(I1) and χin(I2),
respectively. We then use the existence guarantees for those subset gadgets such that the left gadget
outputs an arbitrary color σ from χin(I1) and the right gadget outputs τ , and then use the existence
guarantees for the equality gadgets copying those outputs to the left and right equality gadgets.
These now have colored inputs – the left one gets red and the σ as input, while the right one gets
blue and τ . On both gadgets, one of the outputs is already within distance one of a vertex with red
coloring and is hence restricted in that it cannot also be colored red. In the right gadget, we must
hence use the existence guarantees such that this output is colored using σ, while the unrestricted
output is colored using red. In the right gadget, we use the existence guarantees such that the
restricted output is colored using blue, while the unrestricted output is colored using τ . We can
now use the existence guarantees for the equality gadgets copying the two unrestricted to the final
subset gadget. That gadget now has an input coloring – one of its inputs being red, the other τ ,
and we can use its existence guarantees to find a coloring such that its output is colored using τ .
We can then use the existence guarantees for equality gadgets two final times for the remaining two
equality gadgets. Note, too, that the vertex above z – which is restricted to not use red or blue –
is then also colored using τ , hence its restriction is satisfied.

Note finally that no color conflicts arise between inner vertices of different subset gadgets by
Property 4.7.

Edge Selection Gadget We now use the low-level socket gadget to build a slightly higher-level
gadget, the edge selection gadgets. Intuitively, it uses subset gadgets and socket gadgets to simulate
the selection of an edge between two groups of vertices. Its behaviour is specified in Table 5.

The construction we will use for this gadget is depicted in Figure 7. It will contain a long chain
of 2n2 socket gadgets, which we denote as G(1), . . . , G(2n2). Furthermore for each j ∈ [3], we identify
any of the elements (e.g. sets, vertices, conditions) of G(j) by superscripting them with (j). E.g. the
input vertix set Vin of G(1) and the vertex z of G(2) become V (1)

in and z(2), respectively.
The wiring of the gadget is very simple: the inputs Vin of the edge selection gadget are copied via

equality gadgets directly to the corresponding inputs in the set V (1)
in . Then for each j ∈ [2n2 − 1],

the outputs V (j)
out are then copied to the inputs V (j+1)

in . The outputs of G(2n2) are copied to the
outputs Vout of the edge selection gadget.

We now describe the chain in more detail. The gadgetsG(1) toG(n1), where n1 = min{n2, n2+α},
are constant sockets of type 1. After that, the gadgets G(n1+1) to G(n1+n2), where n2 = min{n2, n2−
α}, are constant sockets of type 2. Finally, the gadgets G(n1+n2+1) to G(n1+n2+n3), where n3 = |α|,
are switch sockets. If α is positive, they will be r2b1 switch sockets. If α is negative, they will be
r1b2 switch sockets.

Finally, the vertices in Vx are not new vertices. Instead, we set Vx =
⋃
j∈[2n2] V

(j)
x . Recall that

V
(j)
x in a socket gadget is simply the set containing only the vertex z(j).

Lemma 4.11. The gadget constructed above satisfies the specification table of the edge selection
gadget, as shown in Table 5.

Proof. First, let us note generally that the respective vector output v(j)
x of a socket gadget G(j) is
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Edge Selection Gadget
parameter(s) integers n ∈ Z>0 and α ∈ [−n2, n2]

Vin • Two groups of 2n6 vertices I1 and I2 (the color class inputs),
• three “logic” input vertices r, g, b, and
• a “control” input vertex s

Vout • Two groups of 2n6 vertices I ′1, I ′2,
• three “logic” output vertices r′, g′, b′, and
• a “control” output vertex s′

Vx a total of 2n2 vertices
Cin • |χin(I1 ∪ I2 ∪ {r, g, b})| = |I1 ∪ I2 ∪ {r, g, b}|

• χin(r) = red, χin(g) = green, χin(b) = blue
• χin(s) ∈ {red, blue}

CR We divide CR into output and vector conditions:
1. • χout(r

′) = χin(r), χout(g
′) = χin(g) and χout(b

′) = χin(b),
• χout(s

′) = χin(s), as well as
• ∀i ∈ [2] : χout(I

′
i) = χin(Ii).

2. • vx = (n2, n2) if χin(s) = red, and
• vx = (n2 + α, n2 − α) if χin(s) = blue.

Table 5: The specification table of the edge selection gadget

determined by the input coloring on its respective input vertices V (j)
in . Suppose all socket gadgets

have the same input coloring χin. Since Vx =
⋃
j∈[2n2] V

(j)
x , the vector output of the edge selection

gadget is simply the sum
∑2n2

j=1 v
(j)
x , and is hence also determined. Let us calculate it explicitly.

There are four cases to consider:

1. χin(s) = red and α > 0

2. χin(s) = red and α < 0

3. χin(s) = blue and α > 0

4. χin(s) = blue and α < 0

We have

n1 = min{n2, n2 + α} =

{
n2 in case 1 or 3
n2 + α in case 2 or 4

n2 = min{n2, n2 − α} =

{
n2 in case 2 or 4
n2 − α in case 1 or 3

n3 = |α| =

{
α in case 1 or 3
−α in case 2 or 4

Certainly, we have v(1)
x = . . . = v

(n1)
x = (1, 0) and v(n1+1)

x = . . . = v
(n1+n2)
x = (0, 1) in all cases. For

the last n3 gadgets, we have that

v(n1+n2+1)
x = . . . = v(n1+n2+n3)

x =

{
(1, 0) in case 2 or 3
(0, 1) in case 1 or 4
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Figure 7: Illustration of the edge selection gadget.

Hence, the vector output of the edge selection gadget is given by

2n2∑
j=1

v(j)
x =


n1(1, 0) + n2(0, 1) + n3(0, 1) = (n2, n2 − α+ α) = (n2, n2) in case 1
n1(1, 0) + n2(0, 1) + n3(1, 0) = (n2 + α− α, n2) = (n2, n2) in case 2
n1(1, 0) + n2(0, 1) + n3(1, 0) = (n2 + α, n2 − α) in case 3
n1(1, 0) + n2(0, 1) + n3(0, 1) = (n2 + α, n2 − α) in case 4

=

{
(n2, n2) if χin(s) = red
(n2 + α, n2 − α) if χin(s) = blue

Output Guarantees: Let a square q-coloring χ be given such that χ|Vin ` Cin. If χ(s) = red,
part 2 of CR becomes vx = (n2, n2), and if χ(s) = blue, it becomes vx = (n2 + α, n2 − α).

First, note that the output guarantees of the equality gadgets as well as those of the socket
gadgets mean that the input coloring χ|Vin is copied to the corresponding inputs of each of the
socket gadgets and finally to the corresponding outputs in Vout. Hence χ satisfies the first condition
of the output guarantee of the edge selection gadget.

For the second part, by the fact that each of the socket gadgets receives the same input coloring
mirrored from χ|Vin , the calculation above with χin = χ|Vin shows that p(χ|Vx) =

∑2n2

j=1 v
(j)
x = vx.

Hence the second part of CR is also satisfied, meaning (χ|Vin , χ|Vout , p(χ|Vx)) ` CR.
Existence Guarantees: Let (χin, χout, vx) ∈ R and S = (S1, S2) with S1 ⊆ χin(I1), S2 ⊆

χin(I2) and (|S1|, |S2|) = vx be given. We will construct the square q-coloring χ by extending χin

and χout. First, for each of the socket gadgets G(j), we color both their inputs V (j)
in and their outputs

V
(j)
out using the corresponding colors of χin.
We can then obviously find colorings for the equality gadgets connecting these inputs and outputs

using the existence guarantees for the equality gadgets.
Recall that the vector output v(j)

x ∈ {(1, 0), (0, 1)} of each socket gadget G(j) is determined by
the coloring of its input, and we’ve already colored their inputs. Hence collect in I all j ∈ [2n2]

such that v(j)
x = (1, 0) and in J all j ∈ [2n2] such that v(j)

x = (0, 1). Since we have colored all of the
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socket gadget inputs using the same coloring, we can now use the calculation above to show that
(|I|, |J |) = vx.

Note that we also have vx = (|S1|, |S2|). Hence, we can do the following: For each j ∈ I, define
a set S(j)

1 = τ for a unique τ ∈ S1. Furthermore, for each j ∈ J , define a set S(j)
2 = τ for a unique

τ ∈ S2. It must be true that
⋃
j∈I S

(j)
1 = S1 and

⋃
j∈I S

(j)
2 = S2.

We can now, for each j ∈ I, use the existence guarantees of G(j) for S = (S
(j)
1 , ∅) and, for each

j ∈ J , use the existence guarantees of G(j) for S = (∅, S(j)
2 ). We use the colorings obtained to

complete χ.
Note finally that no conflict can arise between inner vertices of different subgadgets by Prop-

erty 4.7.

Vector State Gadget Now for the next-higher level of gadget, the vector state gadget. It simply
combines three vector state gadgets that act on different color classes, but are controlled by the
same control input. It is described by Table 6.

Vector State Gadget
parameter(s) an integer n ∈ Z>0 and a vector y = (y1, y2, y3) ∈ [−n2, n2]3

Vin • Six groups of 2n6 vertices I1, I2, I3, I4, I5, I6 (the color class inputs),
• three “logic” input vertices r, g, b,
• and a “control” input vertex s.

Vout • Six groups of 2n6 vertices I ′1, I ′2, I ′3, I ′4, I ′5, I ′6,
• three “logic” output vertices r′, g′, b′, and
• a “control” output vertex s′.

Vx a total of 6n2 vertices
Cin • |χin(I1 ∪ I2 ∪ I3 ∪ I4 ∪ I5 ∪ I6 ∪ {r, g, b})| =

|I1 ∪ I2 ∪ I3 ∪ I4 ∪ I5 ∪ I6 ∪ {r, g, b}|
• χin(r) = red, χin(g) = green, χin(b) = blue
• χin(s) ∈ {red, blue}

CR We divide CR into output and vector conditions:
1. • χout(r

′) = χin(r), χout(g
′) = χin(g), χout(b

′) = χin(b)
• χout(s

′) = χin(s)
• ∀i ∈ [6] : χout(I

′
i) = χin(Ii)

2. • vx = (n2, n2, n2, n2, n2, n2) if χin(s) = red
• vx = (n2 + y1, n

2 − y1, n
2 + y2, n

2 − y2, n
2 + y3, n

2 − y3) if
χin(s) = blue

Table 6: The specification table of the vector state gadget

Our construction of the vector state gadget is depicted in Figure 8. Let us describe the con-
struction in detail. As was said, the gadget consists of three edge selection gadgets, one for each
pair of color classes. Hence we create three edge selection gadgets G(1), G(2), G(3). The parameter
of G(j) is αj := yj for each j ∈ [3]. Furthermore for each j ∈ [3], we identify any of the elements
(e.g. sets, vertices, conditions) of G(j) by superscripting them with (j).

The overall wiring of the vector state gadget is simple. Via equality gadgets, the gadget G(j)

(j ∈ [3]) will receive the color class input I2j−1 as its input I1 and the color class input I2j as its
input I2. Similarly, equality gadgets copy the output I ′1 of G(j) to the output I ′2j−1 and the output
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Figure 8: Illustration of a vector state gadget.

I ′2 to the output I ′2j . The three logic colors and the control input are copied from the vector state
gadget inputs to the inputs of G(1), then from the outputs of G(1) to the inputs of G(2), from the
outputs of G(2) to the inputs of G(3), and from the outputs of G(3) to the outputs of the vector
state gadget.

Finally, the vertices in Vx are not new vertices. Instead, we set Vx =
⋃
j∈[2n2] V

(j)
x .

Lemma 4.12. The gadget constructed above satisfies the specification table of the vector state gadget,
as shown in Table 6.

Proof. First, let us note generally that the respective vector output v(j)
x of an edge selection gadget

G(j) is determined by the input coloring on its respective input vertices V (j)
in .

Let an input coloring χin : Vin → [q] be given. Suppose each of the inputs V (j)
in , j ∈ [3] is colored

using a coloring χ(j)
in such that χ(j)

in (r(j)) = red, χ(j)
in (b(j)) = blue, χ(j)

in (g(j)) = green, χ(j)
in (s(j)) =

χin(s), χ
(j)
in (I

(j)
1 ) = χin(I2j−1) and χ(j)

in (I
(j)
2 ) = χin(I2j). Since Vx =

⋃
j∈[3] V

(j)
x , the vector output of

the vector state gadget is
∑3

j=1 v
(j)
x . Hence, we have that the vector output is simply

∑3
j=1 v

(j)
x =

(n2, n2, 0, 0, 0, 0) + (0, 0, n2, n2, 0, 0) + (0, 0, 0, 0, n2, n2) = (n2, n2, n2, n2, n2, n2) if χin(s) = red, or∑3
j=1 v

(j)
x = (n2 + y1, n

2 − y1, 0, 0, 0, 0) + (0, 0, n2 + y2, n
2 − y2, 0, 0) + (0, 0, 0, 0, n2 + y3, n

2 − y3) =

(n2 + y1, n
2 − y1, n

2 + y2, n
2 − y2, n

2 + y3, n
2 − y3) if χin(s) = blue.

Output Guarantees: Let a square q-coloring χ be given such that χ|Vin ` Cin. If χ(s) = red,
part 2 of CR becomes vx = (n2, n2, n2, n2, n2, n2), and if χ(s) = blue, it becomes vx = (n2 +y1, n

2−
y1, n

2 + y2, n
2 − y2, n

2 + y3, n
2 − y3).

First of all, note that the vertices of Vout are connected to the corresponding vertices of Vin by
a chain of equality gadgets or by gadgets that copy their inputs to their outputs. Hence χ is forced
to color the output vertices such that they mirror the input colors, satisfying part 1 of CR.
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Figure 9: Illustration of a one-way switch gadget. Again, dash-dotted edges represent (1,1) equality
gadgets. Crossed out vertices are colorless vertices.

Furthermore, the coloring χ mirrors the input χ|Vin to all edge selection gadget inputs (either
by subset gadgets or by the previous edge selection gadgets mirroring the control input to the
control output) such that it fulfills the conditions for the calculation above. By this calculation,
p(χ|Vx) =

∑3
j=1 v

(j)
x = vx. Hence part 2 of CR is also satisfied, meaning (χ|Vin , χ|Vout , p(χ|Vx)) ` CR.

Existence Guarantees: Let (χin, χout, vx) ∈ R and S = (S1, S2, S3, S4, S5, S6) with S1 ⊆
χin(I1), S2 ⊆ χin(I2), . . . , S6 ⊆ χin(I6) with (|S1|, |S2|, |S3|, |S4|, |S5|, |S6|) = vx be given. We will
construct the square q-coloring χ by extending χin and χout.

For all j ∈ [3], we color the inputs and outputs V (j)
in , V

(j)
out of G(j) in the obvious way. We can now

use the existence guarantees of each of the equality gadgets contained in the vector state gadget to
obtain a coloring for them, and we incorporate these colorings into χ. All that remains is to find a
coloring for each of the edge selection gadgets. To do this, we use the existence guarantees of the
gadget G(j) for j ∈ [3] with S(j) = (S2j−1, S2j) and use these colorings to complete χ. Hence, we
have χ(Vx) = χ(

⋃
j∈[3] V

(j)
x ) =

⋃
j∈[3] χ(V

(j)
x ) =

⋃
k∈[6] Sk. Obviously, we thus have p(χ|Vx) = vx

and ∀k ∈ [6] : Sk ⊆ χ(Vx).
Note finally that no conflict can arise between inner vertices of different subgadgets due to

Property 4.7.

One-Way Switch Gadget We now build another low-level gadget which will we will later com-
bine with vector state gadgets to build the vector selection gadget. The one-way switch gadget is
shown in Figure 9. It receives and outputs logic colors and a control color and allows the control
color to either stay constant or to switch from blue to red, but not the other way around.

The gadget is specified in Table 7.
The construction for the one-way switch gadget is as follows. We create four new vertices s, t, u

and v. We restrict s, t, u, v to only use subsets of the logic colors by connecting via an equality
gadget to the output of subset gadgets copying colors from the logic color bus. Specifically, s and
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One-Way Switch Gadget
parameter(s) none
Vin • Three “logic” input vertices r, g, b, and

• a “control” input vertex s.
Vout • three “logic” output vertices r′, g′, b′, and

• a “control” output vertex s′

Vx ∅
Cin • χin(r) = red, χin(g) = green, χin(b) = blue

• χin(s) ∈ {red, blue}
CR We group the conditions of CR into two parts:

1. χout(r
′) = χin(r), χout(g

′) = χin(g) and χout(b
′) = χin(b)

2. The control output χout(s
′) must satisfy

• χout(s
′) = red if χin(s) = red, and

• χout(s
′) ∈ {red, blue} if χin(s) = blue.

Table 7: The specification table of the one-way-switch gadget

v will be restricted to red and blue, u will be restricted to green and red and t will be restricted to
red, blue or green.

The vertex s will copy the control input vertex via an equality gadget, while the control output
vertex copies v via an equality gadget.

We now connect these vertices via subdivided edges (i.e. edges that have a colorless vertex in
the middle) as follows: s, t and v form a triangle, and t is connected to v. This concludes the
construction.

Let us argue why this behaves in the desired way, i.e. that it satisfies the following lemma:

Lemma 4.13. The gadget constructed above satisfies the specification table of the one-way switch
gadget, as shown in Table 7.

Proof. Output Guarantees: Let a square q-coloring χ be given such that χ|Vin ` Cin.
Part 1 of CR is obviously satisfied due to the equality gadgets.
Now suppose χ(s) = red. Since s is within distance two of t and t is restricted to red or blue,

t must be blue. Since t is distance-2-adjacent to v, v (and hence the output) must then be red,
which is what we wanted. Now suppose the input is blue. Then the fact that v is restricted to red
or blue already guarantees that the output cannot have any other color. Hence part 2 of CR is also
satisfied.

Existence Guarantees: Let (χin, χout, vx) ∈ R and S = () be given. We construct the square
q-coloring χ by extending χin and χout. Suppose χin(s) = red. Then we extend χin by coloring u
green, t blue and v red. We then use the existence guarantees of the subset and equality gadgets to
find colorings for them. It is obvious that this is possible.

Now suppose χin(s) = blue. We extend χin by coloring u red, t green and v with χout(s
′). We

then use the existence guarantees of the subset and equality gadgets to find colorings for them.
Again, it is obvious that this is possible.

As always, note that no conflict can arise between inner vertices of different subgadgets due to
Property 4.7.
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Figure 10: Illustration of the vector selection gadget. Dashed edges represent equality gadgets with
more than one input, while dash-dotted edges represent (1,1) equality gadgets.

Vector Selection Gadget Finally, we can construct the actual vector selection gadget. Recall
the definition of a vector-generated output and the specification of the vector selection gadget in
Table 3.

Please see Figure 10 for a sketch of the gadget. The overall structure of the vector selection
gadget is a long chain of vector state gadgets, with one-way switch gadgets in-between. Specifically,
we create n4 vector state gadgets G(vst,1), ..., G(vst,n4) (with parameters that we will specify later)
and n4 − 1 one-way switch gadgets G(ows,1), ..., G(ows,n4−1). For each j, we identify any of the
elements (e.g. sets, vertices, conditions) of G(vst,j) or G(ows,j) by superscripting them with (vst, j)
or (ows, j), respectively. E.g. the input vertex set Vin of G(vst,1) and the vertex b′ of G(ows,2) become
V

(vst,1)
in and (b′)(ows,2), respectively.
We create one additional vertex b̃. Now for the wiring of the gadget. In the following, when we

say we “connect” two vertices or two color class inputs/outputs, we mean create an equality gadget
where one of the vertices or vertex groups is the input, and the other is the output.

We connect b̃ separately to the input vertex b and to s(vst,1). For all j ∈ [6], we connect Ij to
I

(vst,1)
j . We connect r, g, b to r(vst,1), g(vst,1), b(vst,1), respectively. Then, for each i ∈ [n4−1], we con-

nect I(vst,i)
j to I(vst,i+1)

j for all j ∈ [6]. Furthermore we connect (r′)(vst,i), (g′)(vst,i), (b′)(vst,i), (s′)(vst,i)

to r(ows,i), g(ows,i), b(ows,i), s(ows,i), respectively, and also (r′)(ows,i), (g′)(ows,i), (b′)(ows,i), (s′)(ows,i) to
r(vst,i+1), g(vst,i+1), b(vst,i+1), s(vst,i+1), respectively. Finally, we connect (r′)(vst,n4), (g′)(vst,n4), (b′)(vst,n4)

to the logic color outputs r′, g′, b′, respectively. The chain state output (s′)(vst,n4) and the color class
outputs I(vst,n4)

j for all j ∈ [6] are left unconnected.
Note that the output guarantees of the one-way switch and vector state gadgets guarantee that

each one-way switch gadget outputs either red or blue on its control output, and that the vector
state gadgets output the same color on their control output as they receive on their control input.
For any coloring χ of the gadget, let us call χ(s(vst,p)) (for p ∈ [n4]) the chain state at position p.
Due to the behaviour of the one-way switch gadgets, it must be true that for any coloring of the
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gadget, there exists some t ∈ [n4] such that for all t′ ≤ t, the chain state at position t′ is blue, while
for all t′ > t, the chain state at position t′ is red.

Indeed, there are n4 possible positions t for the chain state switch from blue to red to occur
in the chain. These represent the n4 possible choices for the choice of ai ∈ A, i.e. the position of
this switch from blue to red will indicate what vector we selected from A. More specifically, if the
chain state switch happens at position t, we want the output of the vector selection gadget to be
(n6 + NZ(at)1, n

6 −NZ(at)1, n
6 + NZ(at)2, n

6 −NZ(at)2, n
6 + NZ(at)3, n

6 −NZ(at)3), i.e. we want
it to be the vector-generated output generated by at.

To complete the construction, we must still specify what the parameters of the vector state
gadgets are. First, for all i ∈ [3], define

Ri =

{
[1, n2] if zi ∈ D+

[−n2,−1] if zi ∈ D−

Obviously we have that ∀j ∈ [n4] : NZ(aj) ∈ R1 × R2 × R3. We now define the parameter yj for
the vector state gadget in the jth chain link gadget, for all j ∈ [n4]. We do this inductively by
setting y1 := NZ(a1) and ∀j ∈ [n4] \ {1} : yj := NZ(aj) − NZ(aj−1). Note that the parameter of
the vector state gadget must fulfill yj ∈ [−n2, n2]3. However, it is easy to see that our choice of
yj adheres to this: Simply note that for all i ∈ [3], we have NZ(aj)i,NZ(aj−1)i ∈ Ri and hence
NZ(aj)i −NZ(aj−1)i ∈ [minRi −maxRi,maxRi −minRi] = [−n2 + 1, n2 − 1].

The reason for this choice of parameters is that now, ∀j ∈ [n4] :
∑j

k=1 yk = NZ(aj). This will
be a crucial part of our correctness proof.

Lemma 4.14. The gadget constructed above satisfies the specification table of the vector selection
gadget, as shown in Table 3.

Proof. Define V (vst)
in =

⋃n4

j=1 V
(vst,j)
in . We say that a coloring χvst

in : V
(vst)
in → [q] is compliant if it

fulfills the following conditions:

1. ∀j ∈ [n4] : χ
(vst)
in (r(vst,j)) = red, χ(vst)

in (b(vst,j)) = blue, χ(vst)
in (g(vst,j)) = green

2. ∀j, j′ ∈ [n4] : ∀i ∈ [6] : χ
(vst)
in (I

(vst,j)
i ) = χ

(vst)
in (I

(vst,j′)
i )

3. There exists a t ∈ [n4] such that ∀t′ ≤ t : χ
(vst)
in (s(vst,t′)) = blue and ∀t′ > t : χ

(vst)
in (s(vst,t′)) =

red.

Furthermore, we say that it inherits a coloring χin : Vin → [q] with χin ` Cin if ∀j ∈ [n4] : ∀i ∈ [6] :

χ
(vst)
in (I

(vst,j)
i ) = χin(Ii).

Now, let us note generally that in the relation R of the vector state gadget, the third entry
is uniquely determined by the first, i.e. the input coloring uniquely determines the vector output
of the gadget. Hence, if we have a compliant coloring for V (vst)

in , we can uniquely determine the
corresponding vector output v(vst,j)

x of the jth vector state gadget, for all j ∈ [n4]. Since Vx =⋃
j∈[n4] V

(vst,j)
x , the vector output of the vector selection gadget is then

∑n4

j=1 v
(vst,j)
x .

More explicitly, let a compliant coloring with chain state switch at position t be given. Then
the vector output vx of the vector selection gadget is given by

vx =

n4∑
j=1

v(vst,j)
x
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=
t∑

j=1

v(vst,j)
x +

n4∑
j=t+1

v(vst,j)
x

=

t∑
j=1

(n2 + y
(vst,j)
1 , n2 − y(vst,j)

1 , n2 + y
(vst,j)
2 , n2 − y(vst,j)

2 , n2 + y
(vst,j)
3 , n2 − y(vst,j)

3 )

+
n4∑

j=t+1

(n2, n2, n2, n2, n2, n2)

= (

t∑
j=1

y
(vst,j)
1 ,−

t∑
j=1

y
(vst,j)
1 ,

t∑
j=1

y
(vst,j)
2 ,−

t∑
j=1

y
(vst,j)
2 ,

t∑
j=1

y
(vst,j)
3 ,−

t∑
j=1

y
(vst,j)
3 )

+ t(n2, n2, n2, n2, n2, n2) + (n4 − t)(n2, n2, n2, n2, n2, n2)

= (NZ(at)1,−NZ(at)1,NZ(at)2,−NZ(at)2,NZ(at)3,−NZ(at)3) + (n6, n6, n6, n6, n6, n6)

=
(
n6 + NZ(at)1, n

6 −NZ(at)1, n
6 + NZ(at)2, n

6 −NZ(at)2, n
6 + NZ(at)3, n

6 −NZ(at)3

)
Hence vx is vector-generated. More specifically, it is generated by at.

Output Guarantees: Let a square q-coloring χ be given such that χ|Vin ` Cin.
Part 1 of CR is obviously satisfied due to the equality gadgets.
For part 2, notice that the coloring of the logic color inputs and color class inputs, i.e. χ(Vin\{s}),

is propagated to the corresponding inputs of every vector state gadget, i.e. V (vst,j)
in \ {s(vst,j)}. This

happens either via equality gadgets or via other subgadgets’ constraints guaranteeing that they copy
inputs to outputs. Hence the first two conditions for χ|

V
(vst)
in

being a compliant coloring are already
satisfied. Due to the the way one-way switch gadgets, it is also not hard to see that condition 3 must
be satisfied. Let the chain state switch be at position t. Then can use the calculation above to show
p(χ|Vx) =

(
n6 + NZ(at)1, n

6 −NZ(at)1, n
6 + NZ(at)2, n

6 −NZ(at)2, n
6 + NZ(at)3, n

6 −NZ(at)3

)
. It

also immediately shows that p(χ|Vx) is vector-generated, which proves part 2 of CR. Hence we have
that (χ|Vin , χ|Vout , p(χ|Vx)) ` CR.

Existence Guarantees: Let (χin, χout, vx) ∈ R and S = (S1, S2, S3, S4, S5, S6) with S1 ⊆
χin(I1), S2 ⊆ χin(I2), . . . , S6 ⊆ χin(I6) with (|S1|, |S2|, |S3|, |S4|, |S5|, |S6|) = vx be given. Let vx be
generated by at, for some t ∈ [n4]. We will construct the square q-coloring χ by extending χin and
χout.

There is a unique coloring χ(vst)
in that is compliant, that has the chain state switch at position

t and that inherits χin. We incorporate it into χ. We can then use the existence guarantees of
all subgadgets except the vector state gadgets to find colorings for them that agree with the χ
constructed so far. It is easy to see that this is always possible.

Now for the vector state gadgets. Let us denote by v(vst,j)
x the vector output of G(vst,j) that

is already uniquely determined by χ|
V

(vst)
in

. We wish to find colorings for the vector state gadgets
resulting in this vector output.

We arbitrarily choose S(j) for all j ∈ [n4] such that the fulfill the conditions ∀j ∈ n4 :

(|S(j)
1 |, |S

(j)
2 |, |S

(j)
3 |, |S

(j)
4 |, |S

(j)
5 |, |S

(j)
6 |) = v

(vst,j)
x and ∀i ∈ [6] :

⋃n4

j=1 S
(j)
i = Si. Now we can use

the existence guarantees of the gadget G(vst,j) for each j ∈ [n4] with S(j) and use the resulting
colorings to complete χ. We have that χ(Vx) = χ(

⋃
j∈[n4] V

(j)
x ) =

⋃
j∈[n4] χ(V

(j)
x ) =

⋃
k∈[6] Sk. By

the calculation above, we thus have that p(χ|Vx) is the vector output generated by at and thus equal
to vx. Furthermore, ∀k ∈ [6] : Sk ⊆ χ(Vx).

Finally, as always, note that no conflict can arise between inner vertices of different subgadgets
due to Property 4.7.
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4.4.4 Removing Colorless Vertices

So far, the reduction relies on colorless vertices. We will now argue that they can be replaced by
normal vertices.

Before we do this, we need to introduce one small change to the subset gadget. The end goal
is that that all colorless nodes are replaced by normal vertices, which the current structure of the
subset gadget does not allow.

To fix this, we reduce the number of complement vertices by two – meaning that the total
number of complement vertices is now q − α − 2 instead of q − α – and add an edge between the
two colorless vertices.

Consider what happens if the replace the colorless vertices with normal vertices in the subset
gadget. We argue that this modified gadget still encodes a subset constraint. All complement
vertices, as well as both previously colorless nodes, are now within distance two of the α input
vertices. They are also pairwise within distance two of each other. Hence these q−α−2+2 vertices
must be colored using exactly the q−α colors which do not appear on the input vertices. But now
the output vertices are also within distance two of all complement vertices and the two previously
colorless vertices, hence they cannot be colored using any of those colors. Hence their colors must
be a subset of the colors used for the input vertices (and all their colors must be distinct). Hence
the subset gadget still behaves the same.

We now prove that we can replace all colorless vertices in the entire graph by normal vertices.
We argue that to convert a solution for the instance with colorless vertices to a solution for the
instance without colorless vertices, one can simply assign each previously colorless vertex one of the
neutral colors.

Hence the number of neutral colors qcolorless is set to the number of colorless vertices which
appear in the graph. Note that the construction of the graph does depend on the number of colors
because of the number of complement colors in the subset gadget. However, this does not lead to a
circular definition, since the complement vertices are not colorless. The number of colorless vertices
remains the same, even for a varying number of neutral colors.

It might seem counterintuitive to be so wasteful with the number of colors allowed when the
problem is to determine whether the graph can be colored using a certain number of colors q. After
all, we are proposing to use one color for each colorless vertex. Multiple colorless vertices can have
the same color without introducing distance-two coloring conflicts, so does this not mean that we
can trivially get away with using less colors, invalidating the entire reduction? Here is why this
is not true: Let us call all non-complement, non-colorless nodes “bound” nodes. The construction
of the subset gadgets depends on the total number of colors q, and works no matter how large q
grows. All bound nodes are connected by a series of subset gadgets to one of the color classes Xi

or Yi. All these subset gadgets have as input only colors from color classes or one or more of the
three logic colors. They forbid the neutral colors by having an appropriate number of complement
vertices. Hence all bound nodes cannot be colored using these neutral colors, and can instead only
be colored using one of the counting colors, or one of the logic colors.

Let us argue why this instance is equivalent to the one with colorless vertices.
If the instance with colorless vertices has a solution, we can simply convert this to a solution for

the instance without colorless vertices by coloring each colorless vertices using its unique neutral
color. For subsets gadgets, we must remove the two neutral colors from the complement vertices
which were used to color the two previously colorless nodes in the gadget. We must check that
there are no new distance-two color conflicts between these newly colored, previously colorless
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vertices and the bound nodes as well as the complement vertices. Since all bound nodes cannot
be colored using neutral colors, this certainly does not introduce any distance-two color conflicts
between a bound and a previously colorless vertex. Furthermore, no new distance-two conflicts
arise between previously colorless vertices, since each neutral color is only used on one previously
colorless node. There are no conflicts between complement vertices and previously colorless nodes
by the construction of the subset gadget (and since a previously colorless vertex in a subset gadget
cannot be distance-two adjacent to complement vertices from another subset gadget). Hence, the
colors of the previously colorless nodes introduce no new conflicts. Furthermore, the additional edge
in the subset gadget does not produce new conflicts, since it only changes distance-two relationships
between nodes within the subset gadget, for which we have already proven correctness above.

Now let us prove the other direction. Suppose the instance without colorless vertices has a
solution. We wish to convert this to a solution for the instance with colorless vertices. To do this,
we simply remove the colors of the colorless vertices. In subset gadgets, we color the two additional
complement vertices per subset gadgets by the colors which the two colorless vertices had. Certainly,
this does not introduce any new distance-two coloring conflicts.

4.4.5 Properties of the Reduction

Number of Vertices and Running Time Finally, let us quickly discuss an upper bound on
the number of vertices this newly constructed graph has. We will first bound the number of vertices
in the graph. The result will depend on qcolorless, since each subset gadget has q − α − 2 comple-
ment vertices. Recall that in our construction, qcolorless is the number of colorless vertices in the
construction. Hence by also bounding the number of colorless vertices, we can get a bound on the
total number of vertices of the graph that does not depend on qcolorless.

Discounting its inputs and outputs, a subset gadget has O(q) vertices total, of which 2 are
colorless. The color class copy gadget, which consists of the vertices V (cpy)

in , V (cpy)
out , the subset

gadget connecting the two as well as the vertex set S, has O(m ·n6)+O(m ·n6)+O(q)+O(logm) =
O(m · n6 + q) vertices in total. Of those, O(m · n6) vertices are colorless.

Now for the socket gadget. Both switch sockets and constant sockets simply consist of a constant
number of subset gadgets where α + β is always bounded by O(n6). Hence, the total number of
vertices is O(q + n6), and the total number of colorless vertices is O(1).

The edge selection gadget consists of 2n2 socket gadgets and O(n2) subset gadgets connecting
them. Hence the total number of vertices is O(n2(q+n6)), and the total number of colorless vertices
is O(n2).

Similarly, the vector state gadget consists of three edge selection gadgets and a constant number
of subset gadgets connecting them. Hence, again, the total number of vertices is O(n2(q+n6)), and
the total number of colorless vertices is O(n2).

The one-way switch gadget has a constant number of subset gadgets with α + β = O(1) and a
constant number of other vertices, including colorless vertices. Hence, it has O(1) total and O(1)
colorless vertices.

The vector selection gadget consists of n4 vector state gadgets and one-way switch gadgets, as
well as O(n4) subset gadgets connecting them. Hence, we have O(n4 · n2(q + n6)) = O(n6(q + n6))
vertices total, of which O(n4 · n2) = O(n6) are colorless.

Finally, the construction has k vector selection gadgets, one color class copy gadget, O(k) subset
gadgets connecting them, plus a constant number of additional vertices. Hence the total number
of vertices of the reduction output is k · O(n6(q + n6)) + O(m · n6 + q) + O(k) · O(q) + O(1) =
O(kn6(q + n6) + mn6), of which k · O(n6) + O(m · n6) + O(k) · O(1) + O(1) = O((k + m)n6) are
colorless.
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Recall that by construction, we have that qcolorless is set to the number of colorless vertices.
Hence, q = 2m · 2n6 + 3 + qcolorless = 2m · 2n6 + 3 + O(mn6) = O((k + m)n6). Hence, the total
number of vertices is O(kn6((k +m)n6 + n6) +mn6) = O(k(k +m)n12)).

Certainly, the construction of the graph can be done in time poly(|V (G)|), where G is the
output graph. Since, as shown above, there are poly(k,m) poly(n) vertices, this running time is
also upper-bounded by poly(k,m) poly(n).

Treewidth We now show that the graph we constructed has low treewidth. Specifically, we show
it has treewidth at most 4 log(m) + c, for some constant c. We show this via the cops-and-robbers
game from Theorem 2.2.

First, we place 2r+ 4 cops on the central vertex x, on wX , on the 2r vertices of S in G(cpy), and
on the two formerly colorless vertices in the 2m · 2n6 equality gadget connecting V (cpy)

in and V (cpy)
out .

These cops will never move. If the robber is on one of the complement vertices of the 2m · 2n6

equality gadget, we can catch them immediately with another cop.
We will now show that if the robber is not on one of the complement vertices, we can catch

them using only a constant number of additional cops.
Note that each X(cpy)

i or Y (cpy)
i is only connected to one vector selection gadget. Suppose we

deleted x, wX , as well as S and the 2m·2n6 subset gadget in G(cpy). Furthermore, suppose we delete,
for each i, the equality gadgets connecting (r′)(sel,i), (g′)(sel,i), (b′)(sel,i) to r(sel,i+1), g(sel,i+1), b(sel,i+1),
respectively. Then for each i, the vertices of G(sel,i) along with the six vertex groups X(cpy)

i or Y (cpy)
i

that G(vst,i) is connected to via equality gadgets form a connected component. Hence the robber
must be in one of these connected components, or in one of the equality gadgets connecting them.

It suffices to use six cops to block the logic color inputs and outputs of a vector selection gadget.
Hence, we will use twelve cops to slowly work through the chain of vector selection gadgets, always
blocking two consecutive vector selection gadgets. We start by blocking the inputs and outputs of
G(sel,1) and G(sel,2). Then for each i ∈ [k − 2], we remove the cops from G(sel,i) and place them on
the inputs and output of G(sel,i+2). At some point during this process, the robber must be trapped
within the equality gadgets connecting two vector selection gadgets, or within a vector selection
gadget and its connected vertex groups X(cpy)

i or Y (cpy)
i . In the former case, it is easy to catch them

using a constant number of additional cops. In the latter case, the six cops blocking the inputs and
outputs of that vector selection gadget will now remain there, and we must now catch the robber
within this vector selection gadget or its connected X(cpy)

i and Y (cpy)
i using a constant number of

additional cops.
The vector selection gadget has its six color class inputs (connected to the corresponding six Xi

and Yi) and its three logic color inputs and outputs. The main body of the gadget is made of the
chain of vector state gadgets G(vst,i) and one-way switch gadgets G(ows,i).

We can use two cops to disconnect the inputs and outputs of a subset gadget by placing them
on both of the formerly colorless vertices (note that one would suffice, but we use two to make the
argument below cleaner). Hence, for any vector state gadget, we can block the equality gadgets
that externally connect to its inputs and outputs using a constant number of cops.

We do this input-output blocking for the first vector selection gadget. Specifically, this blocks
the color class inputs I(sel,i)

j from the rest of the vector selection gadget. The robber is now either
on one of the equality gadgets leading to an Xi or Yi (which also includes the vertices of the Xi or
Yi), or they are within the vector selection gadget itself.

Assume they are on one of the equality gadgets going to the Xi or Yi. Certainly, we can block
the formerly colorless vertices using two cops, then catch the robber – who is either on one of the
complement vertices or on vertices of the Xi or Yi – using a third cop. Hence this case is trivial.
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Now assume the robber is within the vector selection gadget. We can now slowly go through
the chain of vector state and one-way switch gadgets, always blocking off the inputs and outputs of
two consecutive vector state gadgets.

We start by blocking off the inputs and outputs of G(vst,1) and G(vst,2). Then for each i ∈ [n4−2],
we remove the cops that are currently doing the input-output blocking for G(vst,i) and use them to
block off the inputs and outputs of G(vst,i+2). At some point during this process, the robber must
be trapped either within the complement vertices of one of the equality gadgets, within a vector
state gadget, or within a one-way-switch gadget.

If they are on complement vertices or within a one-way-switch gadget, a constant number of
additional cops obviously suffice to catch them. Hence, assume they are within a vector state gadget.
We must now use a constant number of additional cops to watch them within that gadget.

In the vector state gadget, there are constantly many subset gadgets connecting the edge selec-
tion gadget, hence we can block off all of them with a constant number of cops. Without loss of
generality we can assume the robber is now within one of the edge selection gadgets (they can also
be in complement vertices of the subset gadgets, but that case is trivial).

The edge selection gadget consists of a chain of socket gadgets. Again, we can go through the
chain by blocking off the input and output subset gadgets of a window of two consecutive socket
gadgets, always using a constant number of cops. Without loss of generality the robber is within
one of the socket gadgets.

Finally, both the constant and the switch socket gadget consist only of a constant number of
subset gadgets. If we block the constantly many formerly colorless vertices of these gadgets with
cops, the remaining vertices within the socket gadget form a collection of connected components
that each have a constant number of vertices (in fact, most are simply a single vertex). Certainly,
we can use a constant number of cops to go through these connected components one by one.

Hence, we have shown that after the initial 2r + 4 stationary cops have been placed, the cops
can catch the robber using a constant number of additional cops. Hence, the total number of cops
needed – and hence the treewidth of the graph – is bounded by 2r + O(1). Using our definition
r = d (1+ε) log(m)

2 e, we have shown that the graph has treewidth at most (1 + ε) log(m) +O(1).
This concludes the proof of Theorem 4.4.

5 Algorithms for Planar Graphs

We now turn to designing algorithms for Square Coloring on planar graphs. Let us write Pla-
nar Square Coloring (resp. Planar Square-q-Coloring) to refer to the variant of Square
Coloring (resp. Square-q-Coloring) where the input graph is planar. The main result of this
section is an algorithm that solves Planar Square Coloring in subexponential time 2O(n2/3 logn).

The algorithm consists of two subroutines, one of which covers the case that the number q of
available colors is small, and the second subroutine is used for large numbers of colors. The first
subroutine relies on the fact that we can bound the treewidth of G2 by O(

√
nq) at which point we

can rely on standard dynamic programming algorithms for q-Coloring. The second subroutine is
more intricate and here, the idea is to construct a (O(n/q), O(n/q), O(1))-protrusion decomposition
(see, e.g., [22, Chapter 15]) and then rely on dynamic programming ideas that are similar to those
already used in Section 3. This results in an algorithm for Planar Square Coloring running in
time nO(n/q).

Let us start with the first subroutine. Here, we use the fact that planar graphs of bounded
diameter have bounded treewidth. Let G be a graph. A spanning tree of G is a tree T with vertex
V (G) and edge set E(T ) ⊆ E(G). Here, we consider rooted spanning trees where an arbitrary
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vertex of T is declared to be the root of T . The height of T is the maximum distance between the
root of T and any other vertex of T .

Lemma 5.1 (see, e.g., [21, Lemma 12.10]). Let G be a planar graph that has a spanning tree of
height `. Then

tw(G) ≤ 3`.

Moreover, given a planar graph G and a spanning tree of G of height `, a tree decomposition of G
of width at most 3` can be computed in time O(` · n).

The next lemma is the key insight for the first subroutine.

Lemma 5.2. Let G be a planar graph of maximum degree ∆. Then

tw(G2) = O
(√

n∆
)
.

Moreover, given a planar graph G, a tree decomposition of G2 of width O
(√

n∆
)
can be computed

in polynomial time.

Proof. Since the treewidth of a graph G equals the maximum treewidth of its connected components
we may assume without loss of generality that G is connected. Fix r ∈ V (G) to be an arbitrary
vertex of G. We define

Di :=

{
v ∈ V (G)

∣∣∣∣ ⌊distG(v, r)

2

⌋
= i

}
for all i ∈ Z. We define

M :=

⌈√
n∆

∆

⌉
and let

Lj :=
⋃

i≡j mod M

Di

for all j ∈ {0, . . . ,M − 1}. Now let j∗ ∈ {0, . . . ,M − 1} such that |Lj∗ | is minimal. Clearly,

|Lj∗ | ≤
n

M
≤ n
√
n∆
∆

=
√
n∆.

Claim 5.1. Let i ∈ Z such that i ≡ j∗ mod M . Then

tw(G2[Di+1 ∪ · · · ∪Di+M−1]) ≤ (∆ + 1)(4 + 6(M + 1))− 1.

Moreover, a tree decomposition of G2[Di+1∪· · ·∪Di+M−1] of width at most (∆+1)(4+6(M+1))−1
can be computed in polynomial time.

Proof. For ease of notation let us define C := Di+1 ∪ · · · ∪ Di+M−1. Consider the sets R′ :=
D0 ∪ · · · ∪Di−1 and C ′ := Di ∪ · · · ∪Di+M . Note that G[R′] is connected (if R′ 6= ∅). Now let G′ be
the graph obtained from G by deleting all vertices outside of R′ ∪C ′ and contracting R′ to a single
vertex. Performing breath-first search on G′ starting at R′ results in a spanning tree of height at
most ` := 1 + 2(M + 1).
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So tw(G′) ≤ 3` by Lemma 5.1. Let (T, β′) be a tree decomposition of G′ of width at most
3`. We construct a tree decomposition (T, β) of G2[C] as follows (observe that the tree T remains
unchanged). For each t ∈ V (T ) we define

β(t) :=

 ⋃
w∈β′(t)∩C′

NG[w]

 ∩ C.
Clearly, (T, β) can be computed in polynomial time using the algorithm from Lemma 5.1.

We show that (T, β) is indeed a tree decomposition of G2[C]. First suppose that uv ∈ E(G2[C]).
Then there is some vertex w ∈ V (G) such that uw,wv ∈ E(G). Since w ∈ NG[C] and NG[C] ⊆ C ′
we conclude that w ∈ C ′. In particular, there is some node t ∈ V (T ) such that w ∈ β′(t). But then
u, v ∈ β(t) by definition.

So let v ∈ C and let Tv := {t ∈ V (T ) | v ∈ β(t)}. We have that

Tv = {t ∈ V (T ) | NG[v] ∩ β′(t) 6= ∅}.

SinceNG[v] induces a connected subgraph in G′ and (T, β′) is a tree decomposition, we conclude that
Tv induces a connected subtree of T (see Observation 2.1). So overall, (T, β) is a tree decomposition
of G2[C].

To complete the proof, we bound the width of (T, β). Let t ∈ V (T ). We have that

|β(t)| ≤ (∆ + 1) · |β′(t)| ≤ (∆ + 1)(3`+ 1) = (∆ + 1)(4 + 6(M + 1)). y

Now, we construct a tree decomposition (T, β) of G as follows. Let i1, . . . , ik be the list of all
indices i ∈ Z such that i ≡ j∗ mod M and Ci := Di+1 ∪ · · · ∪ Di+M−1 6= ∅. For every p ∈ [k]
we construct a tree decomposition (Tp, βp) of G2[Cip ] via the last claim. Moreover, let rp ∈ V (Tp)
denote an arbitrary node which is designated as the root of Tp. We define T to be the tree obtained
from the disjoint union of all trees Tp and a fresh root node r that is connected to the root node rp
for every p ∈ [k]. Formally,

V (T ) := {r} ∪
⋃
p∈[k]

({p} × V (Tp))

and
E(T ) := {r(p, rp) | p ∈ [k]} ∪

⋃
p∈[k]

{(p, t)(p, t′) | tt′ ∈ E(Tp)}.

We define
β(r) := Lj∗

and
β(p, t) := Lj∗ ∪ βp(t)

for all p ∈ [k] and t ∈ V (Tp). Clearly, (T, β) can be computed in polynomial time.
We show that (T, β) is indeed a tree decomposition of G2. Let uv ∈ G2. We distinguish several

cases. If u, v ∈ Lj∗ then u, v ∈ β(r). Otherwise, by symmetry, we may assume that u ∈ Cip for some
p ∈ [k]. Since distG(u, v) ≤ 2 and u ∈ Dip+1∪· · ·∪Dip+M−1 it follows that v ∈ Dip ∪· · ·∪Dip+M ⊆
Cip ∪ Lj∗ . If v ∈ Cip then there is some t ∈ V (Tp) such that u, v ∈ βp(t) ⊆ β(p, t). Otherwise
v ∈ Lj∗ and u, v ∈ β(p, t) for any t ∈ V (Tp) such that u ∈ βp(t).

Also, it is easy to see that for every v ∈ V (G) the set Tv := {t ∈ V (T ) | v ∈ β(t)} induces a
connected subtree of T . So overall, we conclude that (T, β) is a tree decomposition of G2.

Finally, for t ∈ V (T ), we have that

|β(t)| ≤ |Lj∗ |+ (∆ + 1)(4 + 6(M + 1)) = O
(√

n∆
)
.
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Now, to obtain an algorithm for Square-q-Coloring, we can combine the last lemma with
well-known algorithms for q-Coloring on graphs of bounded treewidth. The following theorem
can for example be obtained from [14, Theorem 7.9 & 7.18]

Theorem 5.3. For q ≥ 3, there is an algorithm that solves q-Coloring in time qO(tw) · nO(1) on
graphs of treewidth at most tw.

Theorem 5.4. There is an algorithm that solves Square-q-Coloring on planar graphs of maxi-
mum degree ∆ in time qO(

√
n∆).

Proof. Let G denote the input graph. We compute the graph G2 and apply the algorithm from
Theorem 5.4. By Lemma 5.2, we have that tw(G2) = O(

√
n∆). So the algorithm from Theorem

5.4 runs in time qO(
√
n∆).

Corollary 5.5 (Lemma 1.6 restated). There is an algorithm that solves Planar Square-q-
Coloring in time qO(

√
qn).

Proof. Let G denote the input graph. If G has maximum degree at least q then G2 contains a clique
of size at least q+ 1 and the we return NO. Otherwise, we run the algorithm from Theorem 5.4.

This completes the first subroutine. Next, we turn to the second subroutine which covers the
case that the number q of available colors is large. The basic strategy for this case is as follows. First,
we apply some simple reduction rules to remove vertices whose second neighborhood is small (those
vertices can always be colored in the end using a greedy strategy). Afterwards, there need to be
many vertices of large degree which allows us to identify a distance-3 dominating set D of small size,
i.e., every vertex of G is at distance at most 3 from some vertex in D. Using known techniques [8],
we use this dominating set to construct a (O(n/q), O(n/q), O(1))-protrusion decomposition. Finally,
we use dynamic programming approaches to design an algorithm for Square-q-Coloring given
the protrusion decomposition.

We start by describing a simple reduction rule. We say that a graph G is q-irreducible if
V (G) = U ∪ NG(U) where U := {u ∈ V (G) | |NG2 [u]| > q}. If G is not q-irreducible then we
can identify a strict induced subgraph of G that is equivalent to G with respect to the problem
Square-q-Coloring as the next lemma shows.

Lemma 5.6. Let G be a graph and let q ≥ 1 be an integer. Let U := {u ∈ V (G) | |NG2 [u]| > q}
and W := U ∪NG(U). Then G has a square q-coloring if and only if G[W ] has a square q-coloring.

Proof. The forward direction is trivial since any square q-coloring of G immediately restricts to a
square q-coloring of G[W ].

So assume that G[W ] has a square q-coloring χ′, i.e., χ′ is a q-coloring of (G[W ])2. We define
a coloring χ : V (G) → [q] as follows. First, we set χ(u) := χ′(u) for all u ∈ U . Since NG(U) ⊆ W ,
every path of length at most 2 between two vertices u, u′ ∈ U in G also exists in G[W ]. This implies
that χ(u) 6= χ(u′) for all distinct u, u′ ∈ U such that distG(u, u′) ≤ 2. Now, let {v1, . . . , v`} =
V (G) \ U and pick i ∈ [`]. Since vi /∈ U we have that |NG2 [vi]| ≤ q by definition. This means there
is some color ci ∈ [q] that is not used so far by any vertex in NG2 [vi]. We set χ(vi) := ci. Doing
this for all i ∈ [`], we obtain a square q-coloring χ of G.

Now, as the next intermediate target, we construct a distance-3 dominating set of a planar,
q-irreducible graph.
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Lemma 5.7. Let ` ∈ Z>0 be a positive integer. Also let G be a graph and suppose U ⊆ V (G) such
that |NG2 [u]| ≥ ` for all u ∈ U . Then there is a set D ⊆ U such that

|D| ≤ 2 · |E(G)|
`

and for every u ∈ U there is some w ∈ D such that distG(w, u) ≤ 2. Moreover, given the graph G
and the set U , one can compute such a set D in polynomial time.

Proof. We compute the set D using a greedy algorithm. We initialize D := ∅ and, as long as D does
not a dominate every vertex from U in the graph G2, we pick an arbitrary undominated vertex and
add it to D. Clearly, this can be done in polynomial time. We need to prove the desired bound on
the size of D. Suppose D = {v1, . . . , vs} where we list vertices in the order in which they are added
to D by the greedy algorithm described above. Observe that NG[vi] ∩NG[vj ] = ∅ for all i < j ∈ [s]
since otherwise vj would be dominated by vi and the greedy algorithm would not have added it to
D. Then

s · ` ≤
s∑
i=1

∑
w∈NG[vi]

degG(w) ≤
∑

w∈V (G)

degG(w) ≤ 2 · |E(G)|.

Rearranging the terms gives the desired bound.

Corollary 5.8. There is a polynomial-time algorithm that, given an integer q ≥ 1 and a q-irreducible
graph G, computes a set D ⊆ V (G) such that

1. for every v ∈ V (G) there is some w ∈ D such that distG(v, w) ≤ 3, and

2. |D| ≤ 2·|E(G)|
q .

Proof. Let U := {u ∈ V (G) | |NG2 [u]| > q}. By Lemma 5.7 there is some set D ⊆ U such that

|D| ≤ 2 · |E(G)|
q

and for every u ∈ U there is some w ∈ D such that distG(w, u) ≤ 2. Also, for every v ∈ V (G) there
is some u ∈ U such that distG(v, u) ≤ 1. In combination, gives the desired properties of the set D.
Finally, the set U can clearly be computed in polynomial time and afterwards, D is computed using
the algorithm from Lemma 5.7.

Now, we use the dominating set constructed in the corollary to obtain a (O(n/q), O(n/q), O(1))-
protrusion decomposition. Let us start by formally defining protrusion decompositions.

Definition 5.9. Let G be a graph and let α, δ, k ≥ 2 be integers. An (α, δ, k)-protrusion decompo-
sition of G is a rooted tree decomposition (T, β) of G such that

1. |β(r)| ≤ α where r is the root of T ,

2. |β(t)| ≤ k for every other node t ∈ V (T ) \ {r}, and

3. degT (r) ≤ δ.

Lemma 5.10 ( [8, Lemma 6.2]). Let r ≥ 1 be a fixed integer. Let G be a planar graph and
suppose that there is a set D ⊆ V (G) such that for every v ∈ V (G) there is some w ∈ D such
that distG(v, w) ≤ r. Then there is a (c|D|, c|D|, c)-protrusion decomposition of G where c is some
constant that only depends on r.

Moreover, given G and D, a (c|D|, c|D|, c)-protrusion decomposition of G can be computed in
polynomial time.
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We remark at this point that our definition of a protrusion decomposition, which follows [22],
is slightly different from the definition from [8]. However, up to constant factors in the parameters,
the precise definition does not matter for the existence of a protrusion decomposition (see also [22,
Chapter 15]). Let us also point out that [8, Lemma 6.2] does not directly state the existence of a
polynomial-time algorithm that computes the protrusion decomposition. However, the algorithm is
imminent from the proof. Alternatively, an algorithm can also be obtained via methods described
in [22, Chapter 15].

By combining Corollary 5.8 and Lemma 5.10 we obtain the following result.

Corollary 5.11. There is a polynomial-time algorithm that, given an integer q ≥ 1 and a q-
irreducible, planar graph G, computes a ( cnq ,

cn
q , c)-protrusion decomposition of G for some absolute

constant c.

The next lemma implements the last step of the second subroutine.

Lemma 5.12. There is an algorithm that, given a graph G, an integer q and an (α, δ, k)-protrusion
decomposition (T, β) of G, decides whether G has a square q-coloring in time |V (T )| · nO(α+δ·2k).

Proof. Let X := β(r) where r denotes the root of T . Also, let t1, . . . , tδ denote the children of r in
T , and define Yi := β(r) ∩ β(ti) for all i ∈ [δ]. Moreover, let Vi denote the set of vertices contained
in bags below ti (including ti itself). Finally, we define

Y :=
⋃
i∈δ

({i} × Yi)

and
Z := {(i, A) | i ∈ [δ], A ⊆ Yi}.

Observe that |Y| ≤ δ · k and |Z| ≤ δ · 2k.
The algorithm iterates over all triples of functions χ : X → [q], ξ : Y → 2X such that ξ(i, v) ⊆ Yi

for all i ∈ [δ] and v ∈ Yi, and ρ : Z → [q]0. Observe that the number of such triples is upper
bounded by

q|X| · (2k)δk · (q + 1)δ2
k

= qO(α+δ·2k). (5)

So let us fix such a triple (χ, ξ, ρ). We say that (χ, ξ, ρ) is locally valid if

(PL.1) χ(u) 6= χ(v) for all distinct u, v ∈ X such that distG[X](u, v) ≤ 2,

(PL.2) there are no vertices u,w ∈ Yi and v ∈ X such that uv ∈ E(G), u ∈ ξ(i, w) and χ(v) = χ(w),
and

(PL.3) there are no distinct i, i′ ∈ [δ] and v ∈ Yi, w ∈ Yi′ such that χ(v) = χ(w) and ξ(i, v)∩ξ(i′, w) 6=
∅.

Note that these conditions extend the conditions from Definition 3.4.
We also say that (χ, ξ, ρ) is extendable if, for every i ∈ [δ], there exists a square q-coloring χ̄i of

G[Vi] such that

(PD.1) χ(v) = χ̄i(v) for all v ∈ Yi,

(PD.2) ξ(i, v) = Ai(χ̄i, χ(v)) where

Ai(χ̄i, c) := {v ∈ Yi | ∃w ∈ Vi \ Yi : χ̄i(w) = c ∧ vw ∈ E(G)},

and
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(PD.3)
ρ(i, A) = |{c ∈ [q] | Ai(χ̄i, c) = A} \ {χ(v) | v ∈ Yi}|

for all A ∈ 2Yi .

Observe that these conditions precisely reflect the conditions from Definition 3.2 and hence, it can
be checked in time |V (T )| · nO(2k) whether (χ, ξ, ρ) is extendable by Lemma 3.3. If (χ, ξ, ρ) is not
locally valid and extendable, then the algorithm rejects the current triple (χ, ξ, ρ) and moves to the
next iteration.

Otherwise, similar to join operation in the proof Lemma 3.3, we need to verify that the partial
square q-colorings are compatible to one another and can indeed be combined into a global square
q-coloring. Let us say a color c ∈ [q] i-free (with respect to (χ, ξ, ρ)) if c /∈ {χ(v) | v ∈ Yi}. Here,
the remaining task is to assign, to every (i, A) ∈ Z, a set of ρ(i, A) of i-free colors in a consistent
way. We check this by implementing another dynamic programming algorithm.

For a set C ⊆ [q] of colors and a function % : Z → [q]0 we define γ(C, %) to be true if there is a
mapping η : Z → 2C satisfying the following conditions:

(i) |η(i, A)| = %(i, A),

(ii) η(i, A) ∩ {χ(v) | v ∈ Yi} = ∅,

(iii) η(i, A) ∩ η(i, A′) = ∅ for all distinct A,A′ ⊆ Yi,

(iv) η(i, A) ∩ η(i′, A′) = ∅ for all distinct (i, A), (i′, A′) ∈ Z such that A ∩A′ = ∅, and

(v) there are no (i, A) ∈ Z, u ∈ A and v ∈ X such that uv ∈ E(G) and χ(v) ∈ η(i, A).

(vi) there are no distinct i, i′ ∈ [δ], A ⊆ Yi, u ∈ Yi ∩ Yi′ , v ∈ Yi′ such that u ∈ ξ(i′, v), u ∈ A and
χ(v) ∈ η(i, A).

More intuitively, γ(C, %) is set to true if we can assign %(i, A) many free colors to every (i, A) ∈ Z
in a consistent way by only using colors from the set C. In particular, our goal is to determine
whether γ([q], ρ) is true. We achieve this by computing a suitable subset of the entries γ(C, %) using
a dynamic programming approach. More precisely, let Csing := {{c} | c ∈ [q]} be the set of all
singleton subsets of [q]. Also, let Cseg := {[q′] | q′ ∈ [q]} be the set of all initial segments of [q]. We
compute γ(C, %) for all C ∈ Csing ∪ Cseg and all possible mappings % using a dynamic programming
approach. The next claim shows how to compute the entries γ(C, %) for C ∈ Csing.
Claim 5.2. There is an algorithm that, given c ∈ [q] and % : Z → [q]0, determines whether γ({c}, %)
is true and runs in time polynomial in n and |Z|.

Proof. Since |{c}| = 1 there is at most one candidate function η : Z → 2C which satisfies Condition
(i) (i.e., η(i, A) = ∅ if %(i, A) = 0, and η(i, A) = {c} if %(i, A) = 1). Now, it can be easily checked
in time polynomial in n and |Z| whether all other Conditions (ii) - (vi) are satisfied. y

Now, we argue how to compute the remaining entries in a dynamic programming fashion.
Claim 5.3. Let C ⊆ [q] and % : Z → [q]0 be some mapping. Also suppose C = C1 ] C2. Then
γ(C, %) is true if and only if there are functions %1, %2 : Z → [q]0 such that

(A) γ(C1, %1) and γ(C2, %2) are true, and

(B) %(i, A) = %1(i, A) + %2(i, A) for all (i, A) ∈ Z.
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Proof. For the forward direction, first suppose that γ(C, %) is true, i.e., there is a function η : Z → 2C

satisfying Conditions (i) - (vi). For j ∈ {1, 2}, we define ηj : Z → 2Cj via ηj(i, A) := η(i, A) ∩ Cj .
Moreover, we define %j(i, A) := |ηj(i, A)|. We have

%(i, A) = |η(i, A)| = |η(i, A) ∩ C1|+ |η(i, A) ∩ C2| = |η1(i, A)|+ |η2(i, A)| = |%1(i, A)|+ |%2(i, A)|

which shows Property (B). Also, it is easy to verify that Property (A) holds via the witnessing
mappings η1 and η2. Indeed, for j ∈ {1, 2}, the function ηj satisfies Condition (i) by definition of
%j , and Conditions (ii) - (vi) for ηj follow directly from the corresponding properties of η.

For the backward direction let %1, %2 : Z → [q]0 be functions satisfying (A) and (B). By Property
(A), there are functions ηj : Z → 2Cj , j ∈ {1, 2}, satisfying Conditions (i) - (vi) with respect to
(Cj , %j). We define η : Z → 2C via η(i, A) := η1(i, A) ∪ η2(i, A). It is again easy to check that
η witnesses that γ(C, %) is true. Indeed, Condition (i) follows directly from Property (B) and the
definition of η. Also, as before, Conditions (ii) - (vi) for η follow directly from the corresponding
properties of η1 and η2. y

Now, we can iteratively compute all entries γ(C, %) where C ∈ Csing ∪ Cseg as follows. First, we
iterate over all C ∈ Csing and all choices of % and compute γ(C, %) using Claim 5.2. Afterwards,
we iterate over all values q′ ∈ {2, . . . , q} (starting at q′ = 2) as well as over all % : Z → [q]0. To
determine whether γ([q′], %) is true, we set C1 := {1, . . . , q′ − 1} and C2 := {q′} and iterate over all
function pairs %1, %2 : Z → [q]0 such that %(i, A) = %1(i, A) + %2(i, A) for all (i, A) ∈ Z. If there is
such a pair such that γ(C1, %1) and γ(C2, %2) are true, then we set γ(C, %) to true. This correctly
computes γ(C, %) by Claim 5.3.

Finally, the main algorithm returns YES (i.e., the algorithm concludes that G has a square
q-coloring) if γ([q], ρ) is true. Otherwise, the algorithm moves to the next iteration of the outer loop
(i.e., the algorithm chooses the next triple (χ, ξ, ρ)).

If the algorithm has checked all triples (χ, ξ, ρ) and never returned YES, then it returns NO.
(Correctness.) We argue that the algorithm described above correctly decides whether G has a
square q-coloring. If G is not q-irreducible, this follows directly from Lemma 5.6. So suppose that
G is q-irreducible.

First suppose there is some square q-coloring χ̄ of G. We define χ := χ̄|X and χ̄i := χ̄|Vi for all
i ∈ [δ]. Moreover, we define

ξ(i, v) = Ai(χ̄i, χ(v))

for all (i, v) ∈ Y, and

ρ(i, A) = |{c ∈ [q] | Ai(χ̄i, c) = A} \ {χ(v) | v ∈ Yi}|

for all (i, A) ∈ Z. We claim the algorithm return YES in the iteration (χ, ξ, ρ), i.e., we need to
show that (χ, ξ, ρ) is locally valid, extendable and γ([q], ρ) is true.

Condition (PL.1) is clearly satisfied since χ̄ is a square coloring of G. For Condition (PL.2)
suppose uv ∈ E(G), χ(v) = χ(w), and u ∈ ξ(i, w) = Ai(χ̄i, χ(w)). By definition, there is some
v′ ∈ Vi \ Yi such that χ(v′) = χ(w) = χ(v) and uv′ ∈ E(G). Note that v 6= v′ since v ∈ X. This
contradicts χ̄ being a square coloring ofG. Similarly, for Condition (PL.3), suppose there are distinct
i, i′ ∈ [δ] and v ∈ Yi, w ∈ Yi′ such that χ(v) = χ(w) and ξ(i, v) ∩ ξ(i, w). Let u ∈ ξ(i, v) ∩ ξ(i, w).
By definition, there are v′ ∈ Vi \ Yi such that χ(v′) = χ(v) and uv′ ∈ E(G), and w′ ∈ Vi′ \ Yi′ such
that χ(w′) = χ(w) and uv′ ∈ E(G). Overall, we obtain distinct vertices v′, u, w′ ∈ V (G) such that
uv′, uw′ ∈ E(G) and χ(v′) = χ(w′). Again, this contradicts χ̄ being a square coloring of G. So
(χ, ξ, ρ) is locally valid.
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Also, (χ, ξ, ρ) is extendable since Conditions (PD.1) - (PD.3) are satisfied by definition. So it
remains to argue that there is some witness η : Z → 2[q] showing that γ([q], ρ) is true. We define

η(i, A) := {c ∈ [q] | Ai(χ̄i, c) = A} \ {χ(v) | v ∈ Yi}.

We have that Conditions (i) - (iii) are trivially satisfied. Also, Conditions (iv) and (vi) can be
verified using the same arguments as for Condition (PL.3) (note that, using Condition (iii), we
only need to consider the case i 6= i′). Similarly, Condition (v) follows by the same arguments as
Condition (PL.2).

Finally, observe that the algorithm correctly computes γ([q], ρ) using Claims 5.2 and 5.3. So
overall, the algorithm returns YES.

In the other direction, suppose that the algorithm outputs YES, i.e., there is a triple (χ, ξ, ρ)
that is locally valid, extendable and γ([q], ρ) is true. Since (χ, ξ, ρ) is extendable, for every i ∈ [δ],
there is square q-coloring χ̄i of G[Vi] satisfying (PD.1) - (PD.3). Also, γ([q], ρ) is true meaning that
there is a mapping η : Z → 2[q] satisfying (i) - (iv) (with respect to the tuple ([q], ρ)). Since

|η(i, A)| = ρ(i, A) = |{c ∈ [q] | Ai(χ̄i, c) = A} \ {χ(v) | v ∈ Yi}|

by Conditions (PD.3) and (i), we can rename the colors in the coloring χ̄i (using Conditions (ii)
and (iii)) so that

η(i, A) = {c ∈ [q] | Ai(χ̄i, c) = A} \ {χ(v) | v ∈ Yi} (6)

for all (i, A) ∈ Z while preserving Conditions (PD.1) - (PD.3) (since we only rename free colors for
every i ∈ [δ]).

Now, we define the coloring χ̄ : V (G)→ [q] via

χ̄(v) :=

{
χ(v) if v ∈ X
χ̄i(v) if v ∈ Vi for some i ∈ [δ]

Note that χ̄ is well-defined by Condition (PD.1). We claim that χ̄ is a square coloring of G. Let
v, w ∈ V (G) be distinct vertices such that dist(v, w) ≤ 2. We need to argue that χ̄(v) 6= χ̄(w).

First suppose that v ∈ X. If vw ∈ E(G) then either w ∈ X and χ̄(v) 6= χ̄(w) by (PL.1), or
w ∈ Vi \X for some i ∈ [δ] which implies that v ∈ Vi and χ̄(v) 6= χ̄(w) since χ̄i is a square coloring
of G[Vi]. So suppose that dist(v, w) = 2 and let u ∈ NG(v)∩NG(w). If u,w ∈ X then χ̄(v) 6= χ̄(w)
by (PL.1). If w ∈ X, but u ∈ Vi \X for some i ∈ [δ] then v, w ∈ Vi, and χ̄(v) 6= χ̄(w) follows as
before. So suppose that w /∈ X, i.e., w ∈ Vi \X for some i ∈ [δ]. This means that u ∈ Vi. If v ∈ Vi
then again χ̄(v) 6= χ̄(w) follows as before. So suppose that v ∈ X \ Vi which means that u ∈ Yi.
If χ̄(w) is not i-free then there is some w′ ∈ Yi such that χ̄(w) = χ̄(w′) = χ(w′), and u ∈ ξ(i, w′)
by (PD.2). So χ(w′) 6= χ(v) by (PL.2) which implies that χ̄(v) 6= χ̄(w). In the other subcase χ̄(w)
is i-free which means that χ̄(w) ∈ η(i, A) where A = Ai(χ̄i, χ̄(w)) by Equation (6). Observe that
u ∈ A by definition. So χ̄(v) = χ(v) /∈ η(i, A) by Condition (v). It follows that χ̄(v) 6= χ̄(w). This
completes the case that v ∈ X.

By symmetry, we also obtain that χ̄(v) 6= χ̄(w) if w ∈ X. So suppose that v, w /∈ X. So there
are i, i′ ∈ [δ] such that v ∈ Vi \ Yi and w ∈ Vi′ \ Yi′ . If i = i′ then χ̄(v) 6= χ̄(w) since χ̄i is a square
coloring of G[Vi]. So suppose that i 6= i′. Observe that vw /∈ E(G). Since dist(v, w) ≤ 2 there is
some u ∈ NG(v) ∩NG(w). We have that u ∈ Yi ∩ Yi′ .

If χ(v) is i-free then χ̄(v) ∈ η(i, Av) where Av = Ai(χ̄i, χ̄(v)) by Equation (6), and u ∈ Av.
Similarly, if χ(w) is i′-free then χ̄(w) ∈ η(i′, Aw) where Aw = Ai′(χ̄i′ , χ̄(v)), and u ∈ Aw.

So if χ(v) is i-free and χ(w) is i′-free, then Av∩Aw 6= ∅ which implies that η(i, Av)∩η(i′, Aw) = ∅
by Condition (iv). It follows that χ̄(v) 6= χ̄(w).
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Next, suppose that χ(v) is i-free and χ(w) is not i′-free. Then there is some w′ ∈ Yi′ such
that χ̄(w) = χ̄(w′). Also, u ∈ ξ(i′, w′) by (PD.2). So χ(w′) /∈ η(i, Av) by Condition (vi). Since
χ̄(v) ∈ η(i, Av), we conclude that χ̄(v) 6= χ̄(w).

The case where χ(v) is not i-free and χ(w) is i′-free can be handled symmetrically.
So suppose χ(v) is not i-free and χ(w) is not i′-free. Then there is some v′ ∈ Yi such that

χ̄(v) = χ̄(v′), and there is some w′ ∈ Yi′ such that χ̄(w) = χ̄(w′). Also, u ∈ ξ(i, v′) ∩ ξ(i′, w′) by
(PD.2). So χ(v′) 6= χ(w′) by (PL.3). It follows that χ̄(v) 6= χ̄(w).

So overall, χ̄ is a square coloring of G which completes the correctness proof of the algorithm.
(Running Time.) By Equation 5, the outer loop of the algorithm considers at most qO(α+δ·2k)

many triples (χ, ξ, ρ). So let us fix such a triple. Clearly, it can be checked in polynomial time
whether (χ, ξ, ρ) is locally valid. By turning the subtree rooted at ti into a nice tree decomposition
of G[Vi] for all i ∈ [δ], we can use Lemma 3.3 to decide whether (χ, ξ, ρ) is extendable in time
|V (T )| · nO(2k). So it only remains to analyze the time required to compute the entries γ(C, %) for
all C ∈ Csing ∪ Cseg and all possible mappings %. First observe that the number of such pairs (C, %)
is bounded by

|Csing ∪ Cseg| · (q + 1)|Z| ≤ 2q · (q + 1)δ2
k

= qO(δ·2k).

If |C| = 1 then we can compute γ(C, %) in time polynomial in n and |Z| ≤ δ · 2k by Claim 5.2.
Otherwise, we use Claim 5.3 and computing an entry γ(C, %) takes time(

(q + 1)δ2
k
)2

(n+ |Z|)O(1).

So overall, computing all entries takes time

qO(δ·2k) ·
(

(q + 1)δ2
k
)2

(n+ |Z|)O(1) = qO(α+δ·2k) · (n+ |Z|)O(1).

So overall, the algorithm takes time

qO(α+δ·2k) ·
(
|V (T )| · nO(2k) + qO(δ·2k) · (n+ |Z|)O(1)

)
= |V (T )| · nO(α+δ·2k).

as desired.

Now, we can combine all the parts to obtain the following theorem.

Theorem 5.13 (Lemma 1.7 restated). There is an algorithm that solves Planar Square-q-
Coloring in time nO(n/q).

Proof. Let G denote the input graph. The algorithm computes U := {u ∈ V (G) | |NG2 [u]| > q} and
W := U ∪NG(U). If W ( V (G) the algorithm deletes all vertices from V (G) \W and recursively
decides whether G[W ] has a square q-coloring. Observe that this is correct by Lemma 5.6.

Otherwise, G is q-irreducible. Using Corollary 5.11, we compute a (α, δ, c)-protrusion decom-
position (T, β) of G where α, δ = O(nq ) and c is some absolute constant. Afterwards, we decide
whether G has a square q-coloring using Lemma 5.12.

For the running time, observe that the algorithm always arrives at a q-irreducible graph after
polynomially many steps. Also, given a q-irreducible graph, the protrusion decomposition (T, β)
is computed in polynomial time by Corollary 5.11. Finally, the application of the algorithm from
Lemma 5.12 takes time nO(n/q).

Combining Corollary 5.5 and Theorem 5.13, we obtain a subexponential algorithm for Planar
Square Coloring.
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Corollary 5.14 (Theorem 1.4 restated). There is an algorithm that solves Planar Square Col-
oring in time 2O(n2/3 logn).

Proof. Let G be the input graph and q the number of colors. If

q ≤ n1/3

then we apply Corollary 5.5 giving a running time of

qO(
√
qn) = nO(

√
n4/3) = 2O(n2/3 logn).

Otherwise, we apply Theorem 5.13 resulting in a running time

nO(
√
n/q) = nO(n2/3) = 2O(n2/3 logn).

6 Lower Bounds for Planar Graphs

In this section, we provide hardness results for Planar Square Coloring. More precisely, we
prove the following theorem which implies Theorems 1.3 and 1.8.

Theorem 6.1. For every fixed q ≥ 4, the problem Planar Square-q-Coloring is NP-hard.
Moreover, assuming ETH, it cannot be solved in time 2o(

√
n).

Let us start with two basic remarks. First observe that the bound on q is optimal since Square-
q-Coloring is polynomial-time solvable (on general graphs) for all q ≤ 3. Indeed, if q ≤ 3, then
every graph G of maximum degree at least 3 is a trivial NO-instance since G2 contains a clique of
size at least 4. So it suffices to consider graphs of maximum degree at most 2 for which there is an
easy algorithm.

Also note that the theorem immediately implies the same hardness results for Square Color-
ing.

Corollary 6.2. Planar Square Coloring is NP-hard. Moreover, assuming ETH, it cannot be
solved in time 2o(

√
n).

To prove Theorem 6.1 we give a reduction from Planar 3-Coloring problem to Planar
Square-q-Coloring for all q ≥ 4 and then exploit known hardness results for Planar 3-
Coloring.

Theorem 6.3. Planar 3-Coloring is NP-hard. Moreover, assuming ETH, it cannot be solved
in time 2o(

√
n).

The NP-hardness of Planar 3-Coloring was first proved in [43]. For the second part of
theorem we refer to [14, Theorem 14.9].

To describe the reduction, we split it into two steps. We first consider a variant where we also
allow special equality edges where endpoints have to be assigned the same color. Then, in a second
step, we replace the equality edges by a simple gadget to complete the intended reduction. We
further split the first step depending on whether q = 4 or q ≥ 5 as different constructions are
needed for these two cases.
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Figure 11: A graph G is shown on the left and the graph constructed by Lemma 6.4 is displayed on
the right. All dashed edges represent equality edges contained in EQ. Each gray region is replaced
by the gadget from Figure 12 which ensures that all colors of outgoing vertices are pairwise distinct
except those connected by a thick edge which are forced to receive the same color.

6.1 Four Colors

We start by implementing the first step for q = 4. This is achieved by the next lemma.

Lemma 6.4. Let G be a connected planar graph. Then there is a graph H and a set EQ ⊆
(
V (H)

2

)
such that the following conditions are satisfied:

1. |V (H)| = 14|E(G)|,

2. H+EQ := (V (H), E(H) ∪ EQ) is planar and has maximum degree 3, and

3. G is 3-colorable if and only if there is coloring χ : V (H)→ {1, 2, 3, 4} such that

(a) χ(u) = χ(v) for all uv ∈ EQ, and

(b) χ(u) 6= χ(v) for all distinct u, v ∈ V (H) such that distH(u, v) ≤ 2.

Moreover, given the graph G, the pair (H,EQ) can be computed in polynomial time.

Proof. A visualization of the construction is given in Figure 11. Fix a planar embedding of G and
let F denote the set of faces. We set

V (H) := {(v, e) | v ∈ V (G), e ∈ E(G), v ∈ e}
∪ {(f, e) | f ∈ F, e ∈ E(G), e is incident to f}
∪ E(G)× {0, . . . , 9}.

Since every edge is incident to two vertices as well as two faces we get that |V (H)| = 14|E(G)|.
Let v ∈ V (G) and let e1, . . . , ed denote the indicent edges of v ordered cyclically according to

the fixed embedding of G. We define

EQ(v) := {(v, ei)(v, ei+1) | i ∈ [d]} ∪ {(v, ed)(v, e1)}. (7)
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Figure 12: The gadget used in Lemma 6.4 where equality edges are represented by dashed edges.
It has four outgoing vertices (u, e), (v, e), (f1, e) and (f2, e). The gadget enforces that (f1, e) and
(f2, e) receive the same color, and (u, e), (v, e) and (f1, e) receive pairwise distinct colors.

Next, let f ∈ F be a face of G and let e1, . . . , ek denote the indicent edges of f ordered cyclically
according to the fixed embedding of G. We define

EQ(f) := {(f, ei)(f, ei+1) | i ∈ [k]} ∪ {(f, ek)(f, e1)}. (8)

Finally, let e ∈ E(G) and suppose that e = uv. Also let f1, f2 ∈ F denote the two faces incident
to e. We set

EQ(e) := {(e, 0)(u, e), (e, 0)(e, 4), (e, 1)(e, 2), (e, 1)(f2, e), (e, 3)(v, e), (e, 7)(f1, e)}. (9)

We also set
M(e) := {01, 23, 29, 37, 45, 56, 68, 69, 78, 89}. (10)

A visualization is given in Figure 12. Overall, we now define

E(H) :=
⋃

e∈E(G)

{(e, i)(e, j) | ij ∈M(e)}

and
EQ :=

⋃
v∈V (H)

EQ(v) ∪
⋃
f∈F

EQ(f) ∪
⋃

e∈E(G)

EQ(e).

Clearly, H+EQ is planar and has maximum degree 3. Also, it is easy to see that the pair (H,EQ)
can be computed in polynomial time.

Suppose thatG is 3-colorable via a coloring µ : V (G)→ {1, 2, 3}. We define a coloring χ : V (H)→
{1, 2, 3, 4} as follows. Let e ∈ E(G) and suppose that e = uv. Also let f1, f2 ∈ F denote the two
faces incident to e. Suppose that a := µ(u), b := µ(v) and {a, b, c} = {1, 2, 3}. We set

• χ(u, e) = χ(e, 0) = χ(e, 4) = χ(e, 8) := a,

• χ(v, e) = χ(e, 3) = χ(e, 6) := b,

• χ(e, 9) := c, and
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• χ(f1, e) = χ(f2, e) = χ(e, 1) = χ(e, 2) = χ(e, 5) = χ(e, 7) := 4.

It is easy to verify that the coloring χ satisfies the desired properties (see also Figures 11 and 12).
In the other direction, suppose that χ : V (H)→ {1, 2, 3, 4} is a coloring with the desired prop-

erties.
Claim 6.1. Let e ∈ E(G) and let f1, f2 denote the two incident faces. Then χ(f1, e) = χ(f2, e).

Proof. By Equation (9) we get that that χ(f1, e) = χ(e, 7) and χ(f2, e) = χ(e, 1) = χ(e, 2). Also,
distH((e, i), (e, j)) ≤ 2 for all i, j ∈ {6, 7, 8, 9}. This means that

{χ(e, 6), χ(e, 7), χ(e, 8), χ(e, 9)} = {1, 2, 3, 4}.

By the same argument

{χ(e, 2), χ(e, 6), χ(e, 8), χ(e, 9)} = {1, 2, 3, 4}.

Combining both equations implies that χ(e, 7) = χ(e, 2). Overall, we get that χ(f1, e) = χ(f2, e). y

Combining the last claim and Equation (8) we obtain that all vertices from set {(f, e) | f ∈
F, e ∈ E(G), e is incident to f} receive the same color under χ. Without loss of generality suppose
that χ(f, e) = 4 for all e ∈ E(G) and incident faces f .

Using Equation (7), for every v ∈ V (G), there is some color µ(v) ∈ {1, 2, 3, 4} such that χ(v, e) =
µ(v) for all incident edges e ∈ E(G). Also χ(v, e) 6= 4 since χ(e, 1) = 4 by Equation (9). So
µ(v) ∈ {1, 2, 3} for every v ∈ V (G). It remains to show that adjacent vertices receive different
colors. So suppose that e = uv ∈ E(G). We have that χ(e, 3) = µ(v) using Equation (9). Also,
distH((e, i), (e, j)) ≤ 2 for all i, j ∈ {6, 7, 8, 9}. This means that

{χ(e, 6), χ(e, 7), χ(e, 8), χ(e, 9)} = {1, 2, 3, 4}.

Since distH((e, i), (e, 3)) ≤ 2 for all i ∈ {7, 8, 9}, we conclude that χ(e, 6) = χ(e, 3) = µ(v). Finally
µ(u) = χ(e, 4) using Equation (9). Since distH((e, 3), (e, 4)) ≤ 2 it follows that µ(u) 6= µ(v).

6.2 More Than Four Colors

Next, we implement the first step for q ≥ 5, i.e., we prove a varaint of Lemma 6.4 for q ≥ 5.
Before getting to the actual reduction, let us briefly explain why a different construction is required.
Intuitively speaking, the main idea for all reductions is to enforce that the “original” vertices of the
input graph can only be colored with one of three “candidate” colors. Hence, the information about
which three colors are those candidates needs to distributed over the entire graph. Alternatively,
it suffices to distribute the information which q − 3 colors are the “auxiliary” colors. For q = 4
this means that we only need to distribute one auxiliary color which turns out to be fairly easy.
However, for larger numbers of colors, we require a more intricate distribution strategy where the
idea is to forward the set of “auxiliary” colors along a cycle. In order to ensure that the set of
“auxiliary” colors is available at every edge of the input graph, we start by showing the following
lemma. Intuitively speaking, given a planar graph G together with an embedding of G, it constructs
a cycle in the plane that crosses every edge of G exactly twice (see also Figure 13f).

Lemma 6.5. Let G be a connected planar graph of minimum degree 3. Let G′ be the graph defined
via V (G′) := V (G) ∪ ~E(G), where ~E(G) := {(u, v) | uv ∈ E(G)}, and

E(G′) := {u(u, v), (u, v)(v, u), (v, u)v | uv ∈ E(G)}.

Then there is a set E∗ ⊆
( ~E(G)

2

)
such that
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1. the graph C = ( ~E(G), E∗) is a cycle, and

2. the multigraph G+ = (V (G′), E(G′)∪E∗) is planar via an embedding where, for every (u, v) ∈
~E(G), its four incident edges e1, . . . , e4, listed in the cyclic order of the embedding, are alter-
nately contained in the sets E(G′) and E∗.

Moreover, given the graph G, the set E∗ together with the desired embedding of G+ can be computed
in polynomial time.

Before diving into the proof, let us briefly clarify the last part of lemma. Consider the multigraph
G+ = (V (G′), E(G′) ∪ E∗). Every vertex (u, v) ∈ ~E(G) in this graph has four incident edges, two
of which are contained in the set E(G′) and the other two are being contained in E∗. The lemma
guarantees that there is a planar embedding of the multigraph G+ such that these two types of
edges always alternate when looking at the cyclic order e1, . . . , e4 induced by the embedding (see
also Figure 13f).

Proof. Fix a planar embedding of G and let F denote the set of faces. Consider the graph G′′ that
is obtained from G by subdividing every edge once, i.e., V (G′′) := V (G) ∪ E(G) and

E(G′′) := {ve | e ∈ E(G), v ∈ e}.

We define the set Ẽ ⊆
(
E(G)

2

)
as follows. For every face f ∈ F let e1, . . . , ek denote the incident

edges of f ordered cyclically according to the fixed embedding of G. We add pairs eiei+1, i ∈ [k],
and e1ek to the set Ẽ. Since G has minimum degree 3 the graph G̃ = (E(G), Ẽ) is 4-regular (see
also Figure 13b). Hence, G̃ has an Euler tour ẽ1, . . . , ẽm where ẽi ∈ Ẽ for every i ∈ [m].

We can naturally extend the embedding of G′′ (obtained from the fixed embedding of G) to an
embedding of G̃. Now, consider again the Euler tour ẽ1, . . . , ẽm. Since G̃ is 4-regular, each vertex
v ∈ V (G̃) is visited twice by the Euler, say via edges ẽi, ẽi+1 and ẽj , ẽj+1. We say that the Euler
tour ẽ1, . . . , ẽm is crossing at v if ẽi, ẽi+1 are not adjacent in the cyclic order of edges incident to v
in G̃ with respect to the fixed embedding of G̃ (see Figure 13b). By reoredering the edges of the
Euler tour, we may assume without loss of generality that ẽ1, . . . , ẽm is not crossing at any vertex
v ∈ V (G̃) (see Figure 13c).

Now, since each element of uv ∈ E(G) corresponds to two elements (u, v), (v, u) ∈ ~E(G), we
can transform the Euler tour ẽ1, . . . , ẽm into a cycle Ê ⊆

( ~E(G)
2

)
on ~E(G) in the natural way which

provides a planar embedding of Ĝ = (V (G′), E(G′) ∪ Ê) (see Figure 13d). Note that every vertex
~e ∈ ~E(G) ⊆ V (Ĝ) has degree 4 in Ĝ with two incident edges coming from E(G′) and the other two
coming from Ê.

To complete the proof, it only remains to ensure that these edges appear alternately (see Figure
13d). This can be achieved as follows. Consider a pair (u, v), (v, u) ∈ ~E(G). Either edges from
E(G′) and Ê already appear alternately along the cyclic order associated with the embedding for
both vertices (u, v) and (v, u), or this condition is violated for both of them. In the latter case, we
locally modify the set Ê as follows. First, we omit (u, v) from the cycle and connect its two adjacent
vertices via a new edge that is added to Ê. Afterwards, we “pull the cycle defined by Ê over the
edge uv ∈ E(G)”, i.e., we replace the occurrence of (v, u) by the pair (u, v), (v, u). In particular, this
adds (u, v)(v, u) to the set Ê, creating a multiedge in the graph Ĝ. This multiedge can be placed
on either side of the same edge (u, v)(v, u) ∈ E(G′) which means that there is always an embedding
such that incident edges of (u, v) alternately come from the sets E(G′) and Ê as desired (see Figure
13e).

We perform this modification for all pairs (u, v), (v, u) ∈ ~E(G) to obtain the desired final outcome
E∗ together with an embedding of G+ (see Figure 13f).
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(a) The input graph G.
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(b) We obtain G′′ by subdividing
every edge. The set Ẽ is makred in
blue where the numbers 1, . . . , 12
describe an Euler tour of G̃. The
Euler tour has two “crossings” at
the marked vertices.
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(c) By reoredering the edges on the
Euler tour, we can always obtain
an Euler tour without any “cross-
ings”.

(d) By splitting very subdivision
vertex (the green vertices), we ob-
tain the graph G′ and a cycle Ê
(the blue edges) on ~E(G). For the
marked vertices, the incident edges
are not alternating between Ê and
E(G′).

(e) By locally modifying the blue
edges, the constructed cycle is
fixed step by step to obtain the de-
sired outcome.

(f) Finally, we obtain the desired
multigraph G+. The edges from
the set E∗ are blue.

Figure 13: Visualization of the steps involved in the proof of Lemma 6.5. Given a planar graph of
minimum degree 3, we eventually obtain a cycle (shown by the blue edges) that crosses every edge
of the input graph exactly twice.
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Figure 14: Visualization of the construction from Lemma 6.6 on a single edge of G. The directed
cycle given by E∗ is shown in blue and crosses the edge exactly twice.

We complete the proof by observing that all steps can be performed in polynomial time.

Lemma 6.6. Let q ≥ 5. Let G be a connected planar graph of minimum degree 3. Then there is a
graph H and a set EQ ⊆

(
V (H)

2

)
such that the following conditions are satisfied:

1. |V (H)| = O(q · |V (G)|),

2. |EQ| = O(|V (G)|),

3. H+EQ := (V (H), E(H) ∪ EQ) is planar and has maximum degree q − 1, and

4. G is 3-colorable if and only if there is coloring χ : V (H)→ [q] such that

(a) χ(u) = χ(v) for all uv ∈ EQ, and

(b) χ(u) 6= χ(v) for all distinct u, v ∈ V (H) such that distH(u, v) ≤ 2.

Moreover, given the graph G, the pair (H,EQ) can be computed in polynomial time.

Proof. Let G′ be the graph defined via V (G′) := V (G)∪ ~E(G), where ~E(G) := {(u, v) | uv ∈ E(G)},
and

E(G′) := {u(u, v), (u, v)(v, u), (v, u)v | uv ∈ E(G)}.

By Lemma 6.5 there is a set E∗ ⊆
( ~E(G)

2

)
such that

1. the graph C = ( ~E(G), E∗) is a cycle, and

2. the multigraph G+ = (V (G′), E(G′) ∪ E∗) is planar via an embedding where, for every
(u, v) ∈ ~E(G), its four incident edges e1, . . . , e4, listed in the cyclic order of the embedding,
are alternately contained in the sets E(G′) and E∗.
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Actually, for the remainder of the proof, it is more convenient to assume that C = ( ~E(G), E∗) is a
directed cycle, i.e., let us arbitrarily direct an edge of E∗ and then direct all other edges accordingly
following the cycle defined by E∗.

We construct the graph H in two steps (see also Figure 14). First, we define

A := ~E(G)× {1, 2, 3}

and
B := E∗ × {4, . . . , q}.

Also, we define

EA,B := {(~e, 1)(~e, 2), (~e, 2)(~e, 3) | ~e ∈ ~E(G)}
∪ {((u, v), 3)((v, u), 3) | uv ∈ E(G)}
∪ {(~e1, i)((~e1, ~e2), 4), (~e2, i)((~e1, ~e2), 5) | (~e1, ~e2) ∈ E∗, i ∈ {1, 2, 3}}
∪ {((~e1, ~e2), 4)((~e1, ~e2), 5) | ((~e1, ~e2)) ∈ E∗}
∪ {((~e1, ~e2), 4)((~e1, ~e2), i), ((~e1, ~e2), 5)((~e1, ~e2), i) | (~e1, ~e2) ∈ E∗, i ∈ {6, . . . , q}}

Now consider the graph H ′ = (A ∪B,EA,B).
Claim 6.2. Let χ′ be a q-coloring of (H ′)2. Then

{χ′(~e1, i) | i ∈ {1, 2, 3}} = {χ′(~e2, i) | i ∈ {1, 2, 3}}

for all ~e1, ~e2 ∈ ~E(G). Moreover,
χ′((u, v), 1) 6= χ′((v, u), 1)

for all uv ∈ E(G).

Proof. Suppose that e∗ = (~e1, ~e2) ∈ E∗. Then the set

({~e1} × {1, 2, 3}) ∪ {e∗} × {4, . . . , q}

forms a clique in (H ′)2 and all q colors need to be used under χ′. The same statement holds for the

({~e2} × {1, 2, 3}) ∪ {e∗} × {4, . . . , q}.

It follows that
{χ′(~e1, i) | i ∈ {1, 2, 3}} = {χ′(~e2, i) | i ∈ {1, 2, 3}}

Since C = ( ~E(G), E∗) forms a cycle the first statement follows.
For the second statement suppose that uv ∈ E(G). Then χ′((u, v), 3) 6= χ′((v, u), 3) and

χ′((u, v), 2) 6= χ′((v, u), 3). In combination with the first statement it follows that

χ′((u, v), 3) = χ′((v, u), 1)

and hence,
χ′((u, v), 1) 6= χ′((v, u), 1).

y

We say that a q-coloring χ′ of (H ′)2 is good if χ′((u, v), 1) = χ′((u,w), 1) for all uv, uw ∈ E(G).
Claim 6.3. Let χ′ be a good q-coloring of (H ′)2. Then G is 3-colorable.
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Proof. Let µ : V (G)→ {1, 2, 3} be define in such a way that µ(u) = χ′((u, v), 1) for all uv ∈ E(G).
Observe that this is well-defined since χ′ is good. Now, µ(u) 6= µ(v) for all uv ∈ E(G) by Claim
6.2. y

Claim 6.4. Let µ : V (G) → {1, 2, 3} be a 3-coloring of G. Then there is a q-coloring χ′ of (H ′)2

such that
χ′((u, v), 1) = µ(u)

for all (u, v) ∈ ~E(G).

Proof. We define χ′(e∗, i) := i for all (e∗, i) ∈ B. Let uv ∈ E(G). Then µ(u) 6= µ(v). Let
c ∈ {1, 2, 3} be the unique third color that is distinct from µ(u) and µ(v). We set

• χ′((u, v), 1) := µ(u),

• χ′((u, v), 2) := c, and

• χ′((u, v), 3) := µ(v).

It can be easily verified that χ′ is a q-coloring of (H ′)2. y

Observe that the coloring defined in the last claim is a good q-coloring of (H ′)2. Hence, G is
3-colorable if and only if (H ′)2 has a good q-coloring. So to complete the proof, we use equality
edges to ensure that every valid coloring of H ′ is indeed good. We define the graph H via

V (H) := V (H ′) ∪ ~E(G)

and
E(H) := E(H ′).

For u ∈ V (G) let v1, . . . , vd denote its neighbors ordered cyclically according to the embedding of
G (which is inherited from the embedding of G+ in the natural way). We define

EQ(u) := {(u, vi)(u, vi+1) | i ∈ [d− 1]} ∪ {(u, v1)(u, vd)}

and
EQ := {(u, v)((u, v), 1) | (u, v) ∈ ~E(G)} ∪

⋃
u∈V (G)

EQ(u).

This completes the construction. We have

|V (H)| = | ~E(G)|+ |A|+ |B| = | ~E(G)|+ 3| ~E(G)|+ (q − 3)| ~E(G)| = (q + 1)| ~E(G)| = O(q|V (G)|)

since G is planar. Similarly,
|EQ| = 2| ~E(G)| = O(|V (G)|).

We have degH+EQ(~e) = 3 and degH+EQ(~e, i) = 4 for all i ∈ {1, 2, 3} and ~e ∈ ~E(G), and degH+EQ(e∗, i) =
q−1 for all e∗ ∈ E∗ and i ∈ {4, . . . , q}. Since q ≥ 5 it follows that H+EQ has maximum degree q−1.
Also, H+EQ is planar using the properties guaranteed by Lemma 6.5. Finally, the last condition
follows from Claim 6.4 and 6.3. Observe that the equality edges ensure that any valid coloring of
(H ′)2 has to be good.

Finally, it is easy to see that (H,EQ) can be computed in polynomial time using that the set
E∗ can be computed in polynomial time by Lemma 6.5.
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Figure 15: The equality gadget ensures that u and v need to be assigned the same color in any
square q-coloring. Moreover, as long as u (resp. v) has at most q − 2 further outside neighbors,
every valid coloring of the outside vertices can be extended into the gadget.

6.3 Removing Equality Edges

Having completed the first step of the reduction chain, it only remains to replace the equality edges
with suitable gadgets. Here, we can use ideas that already appeared in Section 4. However, let us
point out that we can not use exactly the same gadgets as in Section 4 since we are restricted in
the number of colors that are available. Indeed, suppose uv ∈ EQ is an equality edge. The vertex
u may be adjacent (via normal edges) to q − 2 further vertices and we need to ensure that the
equality gadget does not interfere with coloring those vertices. In Section 4, we resolved this issue
by introducing additional “neutral” colors which is not possible for the present reduction. Instead,
we use a slightly more complicated gadget (see Figure 15) which, in essence, chains together two
equality gadgets (using the construction from Section 4), to ensure that every valid coloring of the
original vertices can be extended to the gadget vertices.

Lemma 6.7. Let q ≥ 4. There is a polynomial-time algorithm that, given a connected planar graph
G, constructs a planar graph H such that

1. |V (H)| = O(q · |V (G)|), and

2. G is 3-colorable if and only if H2 is q-colorable.

Proof. By repeatedly removing vertices of degree at most 2 we may assume without loss of generality
that G has minimum degree 3 (if G is 2-degenerate we return a trivial YES-instance).

By Lemmas 6.4 and 6.6 there is a graph H ′ and a set EQ ⊆
(
V (H′)

2

)
such that

1. |V (H ′)| = O(q · |V (G)|),

2. |EQ| = O(|V (G)|),

3. (H ′)+EQ := (V (H ′), E(H ′) ∪ EQ) is planar and has maximum degree q − 1, and

4. G is 3-colorable if and only if there is coloring χ′ : V (H ′)→ {1, . . . , q} such that

(a) χ′(u) = χ′(v) for all uv ∈ EQ, and

(b) χ′(u) 6= χ′(v) for all distinct u, v ∈ V (H ′) such that distH′(u, v) ≤ 2.

We obtain H from H ′ by inserting an equality gadget between all pairs uv ∈ EQ as follows (see
also Figure 15). Formally, we define

V (H) := V (H ′) ∪ (EQ× {1, . . . , 2q − 1})
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and

E(H) := E(H ′) ∪ {u(uv, 1), v(uv, q + 2) | uv ∈ EQ} ∪ {(uv, i)(uv, j) | ij ∈M,uv ∈ EQ}

where

M = {{1, q − 1}, {q − 1, q}, {q, q + 1}, {q + 1, 2q − 1}}
∪ {{i, 1}, {i, q − 1}, {q + i, q + 1}, {q + i, 2q − 1} | i ∈ {2, . . . , q − 2}}

Clearly, H can be computed in polynomial time and H is planar since (H ′)+EQ is planar. Also,

|V (H)| = |V (H ′)|+ (2q − 1) · |EQ| = O(q · |V (G)|).

So it remains to prove that G is 3-colorable if and only if H2 is q-colorable. We start with two basic
observations.
Claim 6.5. Let u, v ∈ V (H ′). Then distH′(u, v) ≤ 2 if and only if distH(u, v) ≤ 2.

Proof. This is immediately clear by construction since the inserted gadgets do not allow for any
shortcuts for distances at most 2. y

Claim 6.6. Let χ be a q-coloring of H2 and let uv ∈ EQ. Then χ(u) = χ(v).

Proof. Looking at the inserted gadget it is easy to see that χ(u) = χ(uv, q) = χ(v). y

Now, first suppose that H2 is q-colorable via a coloring χ : V (H)→ {1, . . . , q}. Let χ′ := χ|V (H′)

be the restriction to V (H ′). Then χ′(u) = χ′(v) for all uv ∈ EQ by Claim 6.6. Also, for u, v ∈ V (H ′)
such that distH′(u, v) ≤ 2, we get that distH(u, v) ≤ 2 by Claim 6.5 which implies that χ′(u) 6= χ′(v).
So G is 3-colorable by Lemmas 6.4 and 6.6.

In the other direction, suppose that G is 3-colorable. By Lemmas 6.4 and 6.6 there is a coloring
χ′ : V (H ′)→ {1, . . . , q} such that

(a) χ′(u) = χ′(v) for all uv ∈ EQ, and

(b) χ′(u) 6= χ′(v) for all distinct u, v ∈ V (H ′) such that distH′(u, v) ≤ 2.

We claim that we can extend χ′ to a q-coloring χ of H2. Formally, we set χ(v) := χ′(v) for all
v ∈ V (H ′). Then χ(u) 6= χ(v) for all u, v ∈ V (H ′) such that distH(u, v) ≤ 2 by Claim 6.5.
Now consider some uv ∈ EQ. Let a := χ′(u) = χ′(v). We can color the vertices of the inserted
gadget as follows. First, we set χ(uv, q) := a. Since H ′ has maximum degree q − 1 we get that
|NH [u]| ≤ q. This means there is some color b ∈ {1, . . . , q} that is not used so far in NH [u] (we
have (uv, 1) ∈ NH [u] and this vertex is not colored yet). We set χ(uv, 1) := b. Similarly, there
is some color c ∈ {1, . . . , q} that is not used so far in NH [v], and we set χ(uv, 2q − 1) := c. The
remaining vertices of the gadget are not connected to vertices outside the gadget in H2 and we can
easily complete the coloring within the gadget. Indeed, there are q − 2 colors remaining for each of
the two sets {(uv, i) | i ∈ {2, . . . , q − 1}} and {(uv, i) | i ∈ {q + 1, . . . , 2q − 2}} and we only need to
ensure that χ(uv, q − 1) 6= χ(uv, q + 1). It is easy to see that this is always possible.

Finally, Theorem 6.1 directly follows from Lemma 6.7 and Theorem 6.3.
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