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ABSTRACT
In recent years, a number of model-free process-based anomaly de-
tection schemes for Industrial Control Systems (ICS) were proposed.
Model-free anomaly detectors are trained directly from process data
and do not require process knowledge. They are validated based
on a set of public data with limited attacks present. As result, the
resilience of those schemes against general concealment attacks
is unclear. In addition, no structured discussion on the properties
verified by the detectors exists.

In this work, we provide the first systematic analysis of such
anomaly detection schemes, focusing on six model-free process-
based anomaly detectors. We hypothesize that the detectors verify
a combination of temporal, spatial, and statistical consistencies. To
test this, we systematically analyse their resilience against generic
concealment attacks. Our generic concealment attacks are designed
to violate a specific consistency verified by the detector, and require
no knowledge of the attacked physical process or the detector. In
addition, we compare against prior work attacks that were designed
to attack neural network-based detectors.

Our results demonstrate that the evaluated model-free detec-
tors are in general susceptible to generic concealment attacks. For
each evaluated detector, at least one of our generic concealment
attacks performs better than prior work attacks. In particular, the
results allow us to show which specific consistencies are verified
by each detector. We also find that prior work attacks that tar-
get neural-network architectures transfer surprisingly well against
other architectures.

CCS CONCEPTS
• Security and privacy→ Intrusion detection systems; •Com-
putingmethodologies→Anomaly detection; Ensemble methods.
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1 INTRODUCTION
Industrial Control Systems (ICS) enable the control of physical pro-
cesses by the interaction of computers, communication networks,
sensors, and actuators. Examples of such systems are water dis-
tribution systems, manufacturing plants, and smart grids. ICS are
threatened by malicious actors, who aim to damage or destabilize
physical processes [48]. Such attacks could be conducted through
local physical-layer manipulation [30, 43, 50], compromise of local
controllers [1, 15], or local network traffic [37].

To address those threats in a legacy compliant way, a number of
intrusion and anomaly detection schemes for ICS and in general
for Cyber-Physical Systems (CPS) have been proposed in the litera-
ture [3, 4, 9, 13, 17, 27, 40, 45]. Process-based anomaly detection [13]
schemes leverage actuator and sensor data to detect anomalies in
the process and operations of the system. We differentiate model-
free and model-based anomaly detectors, depending on whether a
physical model is leveraged by the scheme. Model-based detectors
leverage the physical process directly (e.g., by using a set of linear or
non-linear equations describing the process physics), those anom-
aly detection systems are harder to be constructed as the modeling
of the process requires a plant specific engineering effort [10, 36, 45].
Model-free detectors approximate the physical process indirectly
and use Machine Learning [3], Deep Learning [17, 27, 40], Sys-
tem Identification [4, 19, 45], and Data Mining [13] techniques
for the training of the classifier/predictor. Recently, model-free ap-
proaches were also introduced in commercial products for anomaly
detection in ICS by major security vendors [24]. Limited security
analysis of model-free schemes has been performed [11], in partic-
ular reconstruction-based detectors (using neural networks) were
attacked in a white and black-box fashion in unconstrained and
constrained settings. Until now, it is unclear if such attacks could
also apply to other detector designs. In this work, we evaluate
attacks on a wide range of state-of-the-art model-free detectors,
in particular AR models [19], PASAD [4], SFIG [13] and Autoen-
coders [17, 27, 40].

Training and evaluation of anomaly detectors require operational
and attack data [16, 23, 32, 42]. Due to the difficulty in creating
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realistic datasets (requiring practical testbeds with implementations
of attacks, or detailed cyber-physical simulators), the diversity of
attacks represented in them is limited. In particular, the major class
of concealment attacks is insufficiently presented in the datasets. As
result, the evaluationwould cover a subset of threats the systems are
designed to protect against. This leads to unexpected vulnerabilities
as shown for Deep-Learning detectors [39].

In this work, we address three research questions. RQ1: Are
there fundamental properties that are checked by the anomaly detec-
tors in order to identify anomalies? RQ2: How resilient are different
model-free anomaly detection approaches against generic conceal-
ment attacks? andRQ3:How do generic concealment attacks compare
against prior work that targeted neural network-based detectors?

To answer RQ1, we show that manipulations of the physical
process will violate the consistency of the system. In particular, we
differentiate between spatial, temporal, and statistical consistency.
We then consider three classes of generic concealment attacks that
each specifically violate one of those consistencies. For each at-
tack primitive, the goal of the attacker is to evade the detection of
anomalous system states by manipulating selected sensor values.

To answer RQ2, we propose a framework to test process-based
anomaly detection systems against our three distinct concealment
attack primitives. We apply this framework to six prior work model-
free anomaly detection systems.

To answer RQ3, we also evaluate the six anomaly detection
systems against attacks from prior work that specifically targeted
neural network-based detectors [11].

We summarize our main contributions as follows:

• Weprovide the first systematic analysis ofmodel-free process-
based anomaly detectors.

• We introduce the concept of spatial, temporal, and statistical
consistency to describe properties implicitly verified by the
detectors, and how they relate to a state-space representation
of the process.

• We practically implement three generic concealment attacks
that are not so far represented in related public datasets,
and demonstrate the attacks’ efficacy against six model-free
anomaly detectors from literature [4, 13, 17, 19, 27, 40]. We
show that (surprisingly) even very basic attacks are effective
(e.g., leading to a Recall of 0.0). We also evaluate prior work
attacks [11] against the detectors.

In Appendix C, we also show how to construct an ensemble detector
that reliably detects process anomalies and the evaluated conceal-
ment attacks. Our ensemble-based detector is resilient against all
evaluated concealment attack primitives, while also performing
well in detecting the original process anomalies in the dataset. Our
method is inspired by Subspace-based State Space System Identifi-
cation techniques [47] from the domain of control theory.

Our implementation of the concealment attacks (extending pub-
lic datasets), and our ensemble countermeasure are publicly avail-
able at github.com/scy-phy/ICS_Generic_Concealment_Attacks.

Sensor

42.42
Sensor

42.42

Figure 1: An Industrial Control System organized according
to the Purdue EnterpriseReferenceArchitecture (PERA). An
attacker tamperswith the physical process (Level 0), and per-
forms a concealment attack to remain stealthy (Level 3).

2 BACKGROUND
Industrial Control Systems. Industrial Control Systems (ICS) are
widely used to automate processes in production plants and fa-
cilities. ICSs are composed of interconnected Cyber and Physi-
cal components to interact with the physical environment. Cyber
components comprise the hardware and software that are used
to control the process. The Purdue Enterprise Reference Architec-
ture (PERA) [49] is the networking architecture for ICS systems,
adopted in the ANSI/ISA-95 standard. The PERA model divides the
ICS system into six layers, the layers from 0 to 3 constitute the man-
ufacturing zone, while levels 4 and 5 constitute the enterprise zone.
For the purpose of this work, we focus on layers 0 to 3 (Figure 1).

ICS processes are constituted by sub-processes (e.g., electrical
substations). To control the different sub-processes, we can divide
the PERA architecture into areas. Each area is composed of lev-
els 0 to 2. At level 0, the sensors and actuators are deployed to
interact with the physical process. At level 1, Programmable Logic
Controllers (PLC) are deployed to implement the system’s control
logic (e.g., Proportional Integral Derivative (PID) controller). PLCs
observe sensor values and send commands to actuators. At level 2,
local Supervisory Control and Data Acquisition (SCADA) systems
are deployed for Area supervisory purposes. At level 3, the different
areas are aggregated to perform plant monitoring. The aggregation
can happen locally for co-located areas (i.e., through a router), or
via the Internet/WAN for distributed areas. Monitoring can occur
through Human Machine Interfaces (HMIs) and anomaly detectors.
Datasets. Datasets to evaluate detection schemes are collections
of sensor readings and actuator states recorded from ICS testbed or
process simulation [16, 23, 32, 42]. Data are usually organized into
two data captures. The first ‘train dataset’ is recorded during nor-
mal operating conditions, and the second ‘test dataset’ is recorded
while anomalies caused by an intruder occur. Batadal Dataset was
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Table 1: Taxonomy of black-box attacks in CPS. For each at-
tack we report if it was represented in the dataset ( ) or not
(#) and in which research paper it was considered. † indi-
cates the new attack that we have identified for this work.

L0/ L2 Attack Batadal SWaT[32] WaDI[23]

O
ve
rt Random Manipul. [2, 3]    

Linear Transform. [2, 3]    
Stale Data L0 [29] # # #

Ev
as
io
n

Stealthy (L0) Boiling Frog    

Concealment

Full Replay [11, 33] # # #
Constr. Replay [2, 11, 40, 42]  # #
Random Replay† # # #
Stale Data L2 # # #
Learning-based [11]  #  

released as part of the Batadal competition [42]. The dataset is gen-
erated through EpanetCPA [41]. The water distribution network
simulated in the dataset is C-town [35]. Data are divided into three
sets; the first (‘train dataset’) contains 1 year of simulation under
normal operating conditions, the second [5], and the third [6] (test
dataset 1 and test dataset 2) contains 14 attacks (7 attacks each). 43
variables are captured by the dataset, continuous values for sensor
readings and discrete for actuators with a sampling time of 1 hour.
An updated version of the dataset was made available [21] with the
paper [11]. In this work, we refer to this updated version.
Classification of ICS Process Manipulation.

We differentiate attacks between white-box (attacker knows all
details of detectors and/or process) and black-box attacks (attacker
does not have details on detector and/or process). In this work
we focus on generic black-box attacks. White-box attacks were
explored in prior work [11, 45]. A number of black-box attacks on
ICS processes have been proposed in prior work. Unfortunately,
there is no systematic classification of the attacks so far. In this
work, we classify those attacks as follows (see Table 1). Attacks
are either of type Overt or Evasion (i.e., does the attacker attempt
to hide from a detector?). We further differentiate Evasion attacks
as either stealthy or concealment: Manipulated sensor values are
identical at all receivers (stealthy), or they can differ between the
receivers in the process and the SCADA/detector (concealment).
For example, hidden manipulation at L0 requires stealthy attacks –
as both the process and the SCADA observe the manipulation. In
contrast, separate manipulation at L0 and L2 allow concealment
attacks towards the SCADA/detector.

Overt Attacks. In this category we cover ‘Random Manipulation’
attacks in which the attacker changes a sensor/actuator to a differ-
ent value without engineering of the spoofed value [2, 3]. There can
be several reasons for this manipulation, for example, the attacker
plans to destabilize the physical process or break some industrial
equipment. The second category is the ‘Linear Transformation’
attacks [2, 3], where the attacker adds a constant offset or sets the
sensor reading to a specific critical value to destabilize the physical
process and cause the wrong control decision. The last example
in this category is the ‘Stale Data’ attack [29], where the attacker
launches a DoS attack on L0 industrial communications, leading to
receivers falling back to using the last received value, which causes
the system to perform erroneous control actions.

Evasion Attacks. In this category we consider two subcategories.
The first category contains stealthy attacks, in particular, the ‘Boil-
ing Frog’ attack in which the attacker manipulates the process
characteristics slowly to drive the system to unsafe states without
triggering an alarm. Examples of these attacks can be found in
all the datasets that we analyzed in Table 1. The second category
is concealment attacks, which attempt to hide anomalous sensor
readings to the SCADA/detector by reporting the erroneous sensor
readings. The first representative attack is the ‘Replay’ attack [33],
where the attacker replays recorded sensor readings occurred in
the past. If the attacker can replay all the sensor readings we have
the ‘Full Replay’, otherwise the ‘Constrained Replay’ [42]. Replay
attacks are very challenging to detect as the sensor readings do not
present anomalies. The second category we have ‘Random Replay’
attack that we introduce in this work, see details in Section 3. The
third category is the ‘Stale Data’ attack, where the attacker per-
forms the DoS to L2 devices to make the SCADA blind w.r.t. what
happens on the physical process. Finally, there are Learning-based
attacks [11], in contrast to the other attacks this attack requires
real-time calculations to compute the spoofing samples and was
proposed to specifically evade reconstruction-based detectors.

From Table 1, it is clear that the most widely used datasets in
this domain do not provide examples of all attack classes, and thus
so far not been considered for the evaluation of existing model-free
detectors.

3 RESEARCH QUESTIONS AND
ASSUMPTIONS

3.1 Research Questions and Challenges
Limitations of Prior Work. In prior work, process-based anom-
aly detection schemes have been proposed to detect the effects of
adversarial manipulations of an industrial process. In particular,
model-free anomaly detection schemes aim to achieve this goal
without explicit knowledge of the physical process. Unfortunately,
the datasets used to train those schemes did not contain the im-
portant class of concealment attacks (popularized by Stuxnet [48]),
in which the attacker aims to hide anomalies by manipulating the
reported sensor data (see Section 2). In addition, while it was ob-
served that different detectors appeared to be more suitable towards
detecting specific attacks, no systematic analysis of the abstract
data properties verified by the detectors was performed. Even when
‘temporal and spatial correlations’ were mentioned, they were not
further analysed or specified [11].
Research Questions. To address this gap, in this work we address
the three research question presented in the introduction.

Overall, answering the questions will allow us to a) provide guid-
ance toward the design of future process-aware anomaly detectors,
b) provide more complete datasets for detector design and evalu-
ation, and c) better understand the threat of generic concealment
attacks that target many different detector designs at once.
Challenges. Investigating the aforementioned research questions
is challenging for a number of reasons. i) First, concealment attacks
have not been systematically investigated in prior work. As there is
no prior exhaustive enumeration of attack types, it is also unclear
if datasets used to train and test detectors are comprehensive in
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the types of attacks they cover, and what types of attacks are suc-
cessfully detected by the resulting schemes. In addition, prior work
usually only presents the high-level concepts behind attacks, and
does not provide reference implementations or datasets featuring
the attacks. ii) Second, prior work detectors are often difficult to
replicate, as private datasets are used, source code is not shared
(including, e.g, hyper-parameters), or custom evaluation criteria are
used (see Section 5). That implies that any systematic investigation
of multiple detectors will require the design and implementation of
a common framework that allows to evaluate several detectors over
a set of common datasets, using identical performance metrics.

3.2 System Model
We consider an Industrial Control System as depicted in Figure 1.
The industrial architecture is organized according to the Purdue
Enterprise Reference Architecture [49] (see Section 2). Level 0 con-
sists of a number of sensors and actuators, connected to a controller
in Level 1 (e.g., PLC). The controller reports local sensor data to
Level 2, where the local area SCADA is deployed (the ICS consists
of multiple different areas). At Level 3 the data gathered from the
different Level 2 areas are aggregated and analyzed by a process-
based anomaly detector that uses the sensor data to classify the
system state as anomalous or normal.

3.3 Attacker Model
No Process and Detector Knowledge & Stealth. In contrast to
assumptions in prior work [3, 4, 13, 45], our black-box attacker is
weaker as they do not know process physics, i.e., they are unaware
of the physical properties of the system and the impact they have
on the multivariate temporal series generated by sensor readings
(spatial consistency, temporal evolution, and statistical properties).
Prior work discussed white-box attacks [45], and has already shown
that if the attacker has detailed white-box knowledge, the best
a countermeasure can do is to prolong the time until the attack
succeeds (or reduce the impact, but not fully prevent it). In this
work (see Section 6), we show that even black-box attacks (for
which such detailed knowledge is not required) are successful for
the evaluated prior work detectors. Moreover, the attacker does not
know the inner working of the anomaly detector and cannot access
its parameters and detection scores. Despite these constraints, the
attacker aims to hide an anomaly in the physical process from the
anomaly detector, which would instead lead to an alarm by the
detector. The attacker attempts to perform such a concealment
attack to increase the overall damage caused over time, and cover
the attacker’s traces (see Stuxnet [48]).
Capabilities. As in the prior work detectors summarized in Sec-
tion 5, our attacker is assumed to be capable of i) drop traffic to-
wards the detector, ii) manipulate traffic towards the detector, and
iii) eavesdrop traffic towards the detector. We will also investigate
attacks that do not even require eavesdropping or manipulation
of traffic (i.e., stale data attacks). We note that eavesdropping and
manipulating traffic can be achieved in many ways due to missing
security in industrial protocols, e.g., wireless jamming, packet drop-
ping by attackers controlling forwarding devices, routing and ARP-
based attacks, etc. [34, 37, 46]. According to prior work [18, 25, 38],
the detailed process knowledge of complex systems is commonly

not assumed, and obtaining it is challenging (if not impossible) for
many attackers. We also note that the analyzed model-free detec-
tors were proposed for settings where even the system operators
have insufficient process knowledge to simulate the process fully.
Attack duration. Attacker goal is to conceal ongoing anomalies
on the system, so we assume that the attacker launches the conceal-
ment while there is an ongoing anomaly on the system. As we rely
on datasets with labeled anomalies, the duration of a concealment
attack is determined by the ‘under attack’ label in the dataset.
Manipulation Constraints. As the physical process observed by
the anomaly detector can encompass large areas with multiple
sites (e.g., networks, substations, plants, etc.), we will also evaluate
constraints on the attacker. For example, the attacker might only be
able to manipulate a subset of the sensors as seen by the detector.

4 CONSISTENCIES & THEIR VERIFICATION
While general properties of the physical process sensor data are
often (implicitly or explicitly claimed to be) verified by ICS and
in general CPS anomaly detection systems, no consistent under-
standing or investigation of those properties was proposed in CPS
anomaly detection works. To address this gap (RQ1), we introduce
three types of consistency that hold in the process sensor data
by leveraging the notion of State-space representation to describe
the deterministic behavior that characterizes a CPS. We call the
consistencies temporal, spatial, and statistical consistency. Based
on the identified consistency properties we then provide a high-
level description of the three generic concealment attacks that were
not part of prior work evaluation. Figure 2 provides a simplified
graphical visualization of the three considered concealment attacks.

4.1 State-space representation
Physical systems behavior is deterministically modeled with the
so-called State-space representation [8], Equation 1 represents a
discrete-time system. This representation combines the input, the
system state, and the physical properties of the system to derive
the evolution of the state and the output of the system. This deter-
ministic representation captures the relation between the system’s
physical properties and allows its control.

{𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝑣𝑘
𝑦𝑘 = 𝐶𝑥𝑘 + 𝐷𝑢𝑘 +𝑤𝑘

(1)

Where 𝑘 ∶= 𝑘𝑇 and 𝑇 is the sampling time. 𝑥𝑘 ∈ R𝑛 represents
the state of the system, which is defined as the set of variables
(directly or indirectly measurable) that characterize the physical
system at a given time. This set of variables defines a Euclidean-
space i.e., the State-space, and the state of the system at time 𝑘 ,
i.e., 𝑥𝑘 is a vector in the State-space. 𝑢𝑘 ∈ R𝑝 represents the input
(or control vector) to the system, it influences the state of the system
𝑥𝑘 and its output 𝑦𝑘 . In a feedback control loop, 𝑢𝑘 is the output of
the controller. 𝑦𝑘 ∈ R𝑞 represents the output of the system, and it
can be measured with sensors and it is influenced by the input 𝑢𝑘
and the state 𝑥𝑘 . 𝑣𝑘 ∼𝑊𝑁 (0,𝑉 ) ∈ R𝑛 and𝑤𝑘 ∼𝑊𝑁 (0,𝑊 ) ∈ R𝑞

are white noise disturbances and 𝑉 ∈ R𝑝×𝑝 ,𝑊 ∈ R𝑞×𝑞 are the
noise variance matrices. 𝐴 ∈ R𝑛×𝑛 is the state matrix, it contains
the coefficients of the physical relationship between the state 𝑥𝑘
and its update 𝑥𝑘+1. 𝐵 ∈ R𝑛×𝑝 is the input matrix, it contains
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the coefficients of the physical relation between the system input
𝑢𝑘 and the state update 𝑥𝑘+1. 𝐶 ∈ R𝑞×𝑛 is the output matrix, it
contains the coefficients of the relation between the state 𝑥𝑘 and
the measured output 𝑦𝑘 . 𝐷 ∈ R𝑞×𝑝 is the feed-through matrix, it
contains the coefficients of the dependence between 𝑢𝑘 and 𝑦𝑘 .
Anomalies. In a time-invariant system, 𝐴, 𝐵, 𝐶 , 𝐷 are constants.
In case of an attack on the physical process, at least one of those
matrices is changed (as the matrices represent the physical process).
In other words, the changed process becomes inconsistent with
the normal process. We introduce in detail three different types of
inconsistencies: spatial, temporal, and statistical.

4.2 Spatial Consistency
Spatial consistency refers to the correlation among quantities mea-
sured at the same instant in the physical process (referred to as
attribute correlations by Illiano et al. [22]). This correlation depends
on the physical process and control action. Considering the state-
space representation of a Linear Time-Invariant system, the output
𝑦𝑘 is observed by a set of sensors. Given the system state 𝑥𝑘 , (i.e.,
𝐴𝑥𝑘−1 + 𝐵𝑢𝑘−1) and input 𝑢𝑘 of the physical system, the values of
the output features are correlated according to the equation:

𝑦𝑘 = 𝐶𝑥𝑘 + 𝐷𝑢𝑘 (2)
An anomaly detector should correctly exploit those physical

correlations among features to identify attacks occurring over the
system. For example, if an attacker performs a concealment attack
on a subset of sensors in a system, this can break expected corre-
lation between unmanipulated and manipulated sensors. Even a
stateless detector, that only verifies the current state of the system
could potentially detect such an anomaly. We can explain it with an
intuitive example: consider a public place monitored by two CCTV
devices. The attacker manipulates the images of one of the cam-
eras (e.g., by replaying old images), but not the other one. Thus, an
observer is able to detect a violation of spatial consistency as both
cameras do not show the same scene. The same holds in an ICS, the
same process is measured with multiple correlated sensors and an
attacker replaying the values of few sensors causes inconsistencies.

4.3 Temporal Consistency
Temporal consistency refers to the temporal evolution of a sensor
reading and how it unfolds according to the process physics and
control action. Considering the state-space representation of a Lin-
ear Time-Invariant system (see Section 4.1), the update of the state
𝑥𝑘+1 captures the temporal dependence between 𝑥𝑘+1, 𝑥𝑘 and 𝑢𝑘
according to 𝐴 and 𝐵 matrices. This relation can be used to predict
the output of the system at time 𝑘 + 1, as the output depends on
the estimated state at time 𝑘 .

𝑦𝑘+1 = 𝐶(𝐴𝑥𝑘 + 𝐵𝑢𝑘) + 𝐷𝑢𝑘 (3)
Anomaly detectors should check the temporal evolution of the

sensed value to verify if an anomalous unfolding is occurring over
the system. For example, in a sensor spoofing attack, the temporal
evolution of the spoofed data within might not follow the system’s
physics. Using the CCTV example used before, if only one camera
is monitoring the public place, the start of a replay attack can be
detected due to the sudden change of scenery (e.g., if the replayed

Figure 2: Visualization of attacks’ effects on sensor data as
seen by anomaly detector (simplified, single feature). ‘Origi-
nal Trace’ contains anomalous data that triggers a detector.

video does not match the time of day). Thus, the attacker caused a
temporal inconsistency in the video stream.

4.4 Statistical Properties
Sensor readings in the analyzed multivariate temporal series are
characterized by a statistical distribution. Those properties are
derived from the process that is generating the data, i.e., thematrices
𝐴, 𝐵,𝐶, 𝐷 of the system in State-space representation, control inputs
and disturbances in the process and in the sensors 𝑣𝑘 ,𝑤𝑘 .

Anomaly detection can leverage statistical properties to spot
anomalies. For example, each sensor reading is characterized by a
proper mean and standard deviation, deviation from the expected
distribution can trigger alarms, as the process generating the data
has changed and this can be caused by the manipulation of the phys-
ical process caused by an attacker. In [44], the authors showed that
features in ICS datasets often have different statistical distributions
in train and test data.

4.5 Verification of Consistencies
Given the three consistency properties, we verify if they are lever-
aged by anomaly detection systems. In order to do so, we identify
three representative generic concealment attacks that break (one by
one) the three consistency properties. If the attacks are successfully
evading a detector, the detector is not correctly verifying the tested
consistency property. As the attacks are designed to test the detec-
tors, they are not necessarily optimized for unrelated metrics, e.g.,
minimal effort for the attacker. We note that those attacks are not
present in the original datasets used for the evaluation of detectors.
Constrained Replay Attack. Constrained Replay is a variant of
the full replay attack (e.g., discussed by the authors [11, 33]). Replay
attacks conceal anomalies according to sensor readings observed
in the past (e.g., by signal eavesdropping). This represents a rel-
atively strong attack, as the attacker is required to record sensor
readings for a certain amount of time before starting the attack.
In constrained replay attacks, the attacker has a limited capability
to spoof sensor readings and can replay sensor readings coming
from a subset of PERA Level 2 area SCADA. Notably, also Stuxnet
attack [48] resorted to a replay attack to conceal the true state of the
system and avoid triggering alarms in the target industrial system.
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Table 2: Attacks tested and their expected violation of con-
sistency types. ●violates consistency.

Consistency Tested
Method Spatial Temporal Statistical

Constrained Replay ● - -
Random Replay - ● -

Stale Data - - ●

While full replay attacks do not break any of the three consis-
tency properties, constrained replay attacks are useful to under-
stand if a detector correctly models the spatial consistency among
process sensor readings. When the attacker performs the replay on
a subset of sensors/actuators the attack will break the correlations
among features that hold in the system. Specifically, we apply the
best-case scenario constraints proposed by Erba et al. [11].
Random Replay Attack. Random replay is a second variant of the
full replay attack. It is the same as a full replay attack, except that the
samples in the replayed data are temporally shuffled. E.g., assum-
ing the attackers collected four multivariate samples [𝑦1, 𝑦2, 𝑦3, 𝑦4]
where 𝑦𝑘 ∈ R𝑠 , 𝑘 is the time index, and 𝑠 is the number of sensors
in the network. After shuffling, the attacker replays the samples in
the order [𝑦3, 𝑦1, 𝑦4, 𝑦2]. It requires the same attacker capabilities
of the aforementioned replay attack.

This attack is useful to understand if a detection scheme correctly
models the temporal evolution of the sensor values i.e., if detectors
correctly consider the data coming from a Markov Sequence or
consider them Independent and Identically Distributed (i.i.d.).
Stale Data Attack. This attack implements a variant of the stale
data attack discussed by Krotofil et al. [29]. In the stale data attack, a
Denial-of-Service (DoS) attack is launched on the receiver of sensor
data (e.g., the anomaly detector). The attack effectively prevents
new sensor data from arriving. As demonstrated by Krotofil et
al. [29], industrial end devices commonly handle such a loss of
updates by assuming the last reported value is still current (e.g., to
tolerate intermittent faults). As a result, the attacker can force a
sensor reading to a specific value, by starting a DoS attack when
that value is currently reported. The attack is unique in the sense
that it represents a weak attacker in terms of required capabilities,
as the attacker does not need to be able to eavesdrop on traffic or
manipulate industrial protocols. The attacker only needs to perform
a DoS attack, which is less effort to achieve.

This attack is useful to understand if detectors correctly model
the statistical properties of sensor readings, when the attacker
performs the DoS the observed statistical properties of the signal
will change (e.g., variance becomes 0).

4.6 Mapping of Consistency to Attacks
Based on the three consistency types, we classify our three attacks
in Table 2. The constrained replay attack tests spatial consistency
because it changes a subset of the sensor readings without breaking
the consistency with the non-spoofed sensors. The random replay
attack tests the temporal consistency because the value of each
sensor does not evolve according to the sensor process physics.
Finally, the stale data attack tests statistical consistency because it

Figure 3: Overview of our framework for concealment at-
tacks against an anomaly detector. The framework receives
as input eavesdropped data (containing no anomalies) and
anomalous data (containing anomalies). It then applies con-
cealment techniques to the data. Concealment attacks are
evaluated with the anomaly detector.

changes the statistical properties of the sensor signal producing a
signal that has a different mean and no variance.

4.7 Abstract Framework Design
Given a target anomaly detector, our analysis requires eavesdropped
data (with no anomalies) and anomalous data. We then generate
concealment attack data based on the observed process features,
and use this data to conceal the anomalous data. To perform the
evaluation, we assess the performance of the detector over data con-
taining anomalies. Then, we test the different concealment attacks
applied to the anomalous data. If a concealment attack succeeds, the
performance of the detector decreases, and the detector is observed
vulnerable to that concealment technique. Concealment attacks
are designed not only to attack detectors and reduce their Recall
score but also they can be used to understand the properties of the
physical process detectors fail to capture properly.

5 MODEL-FREE ANOMALY DETECTORS
In this section, model-free schemes considered in this work are de-
scribed, for a detailed description please refer to the related papers.
We start describing the univariate models followed by the multi-
variate models. We provide a summary of model-free process-based
anomaly detectors considered in this work in Table 3.
Autoregressive Model (AR). Autoregressive models, Equation 4,
are a representation used to deal with time-series data. Several prior
works [4, 19, 45] considered the AR predictors to perform anomaly
detection (either as a contribution or as a baseline for evaluation).

𝑋𝑡 = 𝑐 +
𝑝

∑
𝑖=1

𝛾𝑖𝑋𝑡−𝑖 + 𝜖𝑡 (4)

The Autoregressive model AR(𝑝) of a time series correlates the
time series value (𝑋 ) at time 𝑡 with previous 𝑡 −𝑝 time series values.
The parameters 𝛾1, . . . , 𝛾𝑝 can be identified with several methods
(e.g., ordinary least squares, or Yule-Walker equations). The gen-
eral idea to use the AR model as an anomaly detector is to fit the
Autoregressive model to time series data under normal operating
conditions of the CPS, compute predictions, and analyze the residu-
als to identify anomalies in the sensor data. Different classification
functions (detection statistics) were used to identify anomalies. The
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Table 3: Taxonomy of the considered model-free process-
based anomaly detection. ○simulated process/data, ●real
process/data, G#simulated and real process/data.

AR PASAD SFIG AE
[4, 19, 45] [4] [13] [17, 27, 40]

Evaluation
SWaT ● ● ● ●
WADI - - ● ●

Batadal - - - ○
Private/Other G# ● - -

Code Public ✗ ✓ ∼ ✓

work by Urbina et al. [45] shows that stateful statistics (e.g., such as
Cumulative Sum (CUSUM)) provide a better detection performance.
PASAD [4]. In this work Aoudi et al. introduce PASAD, a model-
free anomaly detector. The key motivation of this anomaly detector
is to learn and obtain a mathematical representation of the regular
dynamics/deterministic behavior of sensor signals in the ICS and
spot any anomalous deviation. Singular Spectrum Analysis is used
to analyze sensor readings and learn how the process behaves in
normal conditions. Sensor readings are considered a univariate time
series. Training is conducted on a set of lagged sensor readings,
those readings are processed with Singular Value Decomposition,
and projected into a Signal Subspace, where they form a cluster
of points. At test time, test samples are processed with the same
pipeline and compared against the centroid of the training data
cluster in the Signal Subspace. If tested points exceed a distance
threshold from the centroid, the system state is evaluated as anoma-
lous. The MATLAB framework is available as open-source.
Systematic Framework for Invariants Generation (SFIG) [13].
This work by Feng et al. proposes a framework for automatic ex-
traction of process invariants, which are used to build a model-free
anomaly detector. The framework applies data mining techniques
to extract invariants from frequent itemset with multiple mini-
mum supports. The framework consists of predicate generation,
and invariant mining. Predicate generation considers three kinds of
predicates. Categorical predicates are generated according to actu-
ators’ states. Distribution-driven predicates, use Gaussian Mixture
Models to identify the K probability distributions that describe the
sensor value update (done per-sensor). Event-driven predicates are
fitting Lasso regression models to capture the interplay between ac-
tuators’ states and values seen by sensors. Predicates are combined
to create sets of predicates that hold in a certain instant over the
ICS, extracted via the CFP-growth++ [26] algorithm. Evaluation is
conducted over WADI and SWaT datasets [23, 32].
DeepAutoencoders (AE).Autoencoders are a class of deep learning
architectures that were successfully applied in anomaly detection
tasks for industrial control systems. In particular, fully connected
(FC) [40], convolutional neural network (CNN) [27] and long short
term memories (LSTM) [17] architectures were proposed to detect
anomalies in process data. The general idea of those anomaly detec-
tors is to train the Autoencoder model to reproduce sensor readings
occurring in the system during normal operations (i.e., without
attacks) by minimizing the Mean Squared Error (MSE) between

the input and output layer of the network. Then a threshold is set
over the MSE observed during the system validation. At test time
anomalies in the sensor data presented at the input layer will not be
reproduced in the output layer, this will produce a reconstruction
error higher than the threshold and will trigger an alarm. CNN and
LSTM architectures are trained taking into account the temporal
evolution of the signal while the FC is not.

6 EVALUATING THE ANOMALY DETECTORS
In this section, we explain how we used our framework design to
test the six anomaly detectors and present the results. We apply to
each of the six evaluated detectors the identified generic conceal-
ment attacks. We compare the results of the generic concealment
with the detection results on the original (i.e., not enhanced with
concealment attacks) dataset and with prior work Learning-based
concealment attack [11], where the attacker is assumed to manip-
ulate sensor/actuators reading using a neural-network to conceal
the anomalies on the system in real-time.

For two schemes (SFIG [13] and AR [4, 19, 46]), no reference
implementation was available at the time of our experiments. De-
tails about implementation and model performance are presented
in Appendix A. Our re-implementations of detectors are publicly
available.

6.1 Attack Dataset Generation
We generate our attack data traces using a tool we wrote in Python
3, using the Pandas and NumPy libraries. The framework processes
input training data (without anomalies) and test data (containing
anomalies). Data should be organized in .csv format, where every
row contains the sensor readings collected at a certain time step
and every column represents a different sensor value. Test data
is labeled, indicating whether the given row was anomalous or
not. Optionally (in the constrained case) the framework takes the
constraints on which variables can be spoofed. It then applies the
presented concealment techniques to the data, and outputs the
resulting augmented dataset (in .csv format). The framework can
be applied to any similar dataset that meets the requirements.

Starting from the test data, the framework identifies the intervals
in the dataset that are labeled as anomalous. The evasion func-
tion builds the dataset containing concealment attacks. It leaves
the time intervals unchanged where ground truth reports ‘nor-
mal’ and applies the concealment attack to the time steps with
ground truth ‘anomalous’. The different concealment techniques
are implemented as functions that apply the required spoofing to
the given data. Stale Data attack replicates the sensor data as
occurred in the last instance before the attack on the physical pro-
cess started. Replay copies the data as found in the eavesdropped
dataset. Random Replay copies the data as found in the eaves-
dropped dataset and shuffles them temporally.

Specifically, we consider Batadal ‘train dataset’ and ‘test dataset 1’
for our evaluation. We generated 6 types of additional datasets (3
for the unconstrained attacks, and 3 for the constrained attacks).
As we generate a dataset for each constraint value tested, we end
up with 45 datasets for constrained attacks. Runtime for the attack
dataset generation is less than two minutes for all attacks in total.
As this dataset augmentation only has to be performed once for
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the evaluations, we find the runtime overall to be negligible. While
we did not investigate real-time generation of concealment data
(i.e., how an attacker might apply the concealment during an attack),
we do not expect computational challenges.

6.2 Evaluation Results
We now provide the results of our experiments. Our evaluation
is based on the analysis of the Recall score before and after the
concealment attacks. A lower Recall indicates the attack is less
likely to be detected. Note on False Positive Rate fluctuation in
results: anomaly detectors classify instant 𝑡 while aggregating all
𝑡 − 𝑛 sensor readings before 𝑡 . Datasets are composed of attacks
interleaved by normal operations, if we spoof from instant 𝑎 to
instant 𝑏 the classification outcome at time 𝑏 + 1 depends on the
manipulation that occurred between 𝑎, 𝑏, influencing the FPR. More
details on our evaluation metrics are in Appendix B.

6.2.1 AR. We attack the autoregressive (AR) detector with conceal-
ment attacks. An AR predictor is defined as ‘good’ if it generates
residuals (i.e., prediction errors) distributed as white noise [7]. This
anomaly detector uses the CUSUM algorithm to check whether the
residuals are changing their distribution w.r.t. training phase. When
an anomaly occurs, the CUSUM detects a change in the distribution
of the residuals (i.e., no more distributed as white noise (WN): this
is caused by the predictor that is not behaving optimally because
of anomalous data). To succeed in concealment, the attacker has
to modify the sensor signal such that obtained residuals do not
surpass CUSUM control thresholds, i.e., residuals remain WN.

In Table 4 we report the results of concealment attacks. If we
consider the Recall rate, we can notice that stale data attack reduces
it to 0. The stale data approach is hiding the anomalies from the
detector attack changing the value of the process with a constant,
this makes the AR(20) model predicting the constant value that
sends to 0 the CUSUM upper and lower statistics. In the case of the
random replay attack, the spoofed signal causes sudden changes
in the data, causing a change in the distribution of the residuals
observed by CUSUM and triggering the alarms. This observation is
consistent with [19], where it was observed that sudden changes
in the process trigger alarms in AR detectors. In conclusion, the
detector reliably models the temporal consistency of the signal but
fails to model the spatial consistency (as it is univariate) and the
statistical properties (as it does not detect the stale attack).

Comparing the results of the generic attacks w.r.t. learning-based
attack [11], we can observe that the neural-network based attack
reduces the recall from 0.28 to 0.07 of the anomaly detector, but
not as effective as the stale attack. Interestingly, an attack designed
to target neural network based models, transfers to AR models.

6.2.2 PASAD. The detector treats the process data as a set of uni-
variate time series, as in the case of the AR model this detector does
not model spatial consistency. For this reason, we consider again
the Batadal sensor J302, this allows direct comparison of detectors.

Table 5 summarizes the performance of PASAD when targeted
with generic concealment attacks. Random Replay concealment
techniques reduce the detector’s performance. In two out of three
proposed generic concealment attacks, we note that Recall de-
creases to 0.027 (from 0.243). In contrast, the detector performance

Table 4: Concealment attack results onARmodel on Batadal
sensor J302, unconstrained attack. †Note: technicallyNaN as
the metric divides by 0.

Dataset Rec. Prec. F1 Acc. FPR

Original 0.28 0.79 0.41 0.91 0.01
Random Replay 0.29 0.88 0.44 0.92 0.01

Stale 0.00 0.00 (0)† 0.89 0.00
Learning-based [11] 0.07 0.60 0.12 0.90 0.01

Table 5: Concealment attack results on PASAD Batadal
Dataset sensor J302. Threshold = 635.1057.

Dataset Rec. Prec. F1 Acc. FPR

Original 0.243 0.741 0.366 0.910 0.010
Random Replay 0.027 0.530 0.051 0.894 0.003

Stale 0.471 0.779 0.587 0.929 0.016
Learning-based [11] 0.241 0.740 0.364 0.910 0.010

increases for stale data attacks. The recall score decreases when we
spoof the signal with a not physically plausible temporal evolution
of the signal as in the random replay attack. This shows that the
anomaly detector has learned the data distribution and not the
physical process dynamics. This is also the reason why the stale
data attack is detected. The stale data attack does not keep the sta-
tistical properties of the sensor signal, deviating from the expected
statistical behavior. We can also note that if the stale data occurs on
a value close to the process mean, the recall score decreases. Math-
ematically these results can be explained by analyzing Step 3 of
PASAD anomaly detection scheme. PASAD projects training points
in the signal subspace. Those projected points create a cluster in
the projection subspace. Then, PASAD tracks the distance from the
centroid of the cluster to identify anomalies. The centroid is defined
as the sample mean of the lagged vectors. Our random replay attack
fulfills the requirement of being projected within the cluster in the
signal subspace. Despite its dynamics is not plausible, its departure
score is lower than the threshold. At the same time, the stale data
attack surpasses the threshold because produces a different data
distribution. In conclusion, the detector reliably models the statisti-
cal consistency of the signal but fails to model the spatial (as it is
univariate) and temporal consistency.

Comparing the results of the generic attacks w.r.t. learning-based
attack [11], we can observe that the latter attack is not reducing the
recall of the anomaly detector, so this attack does affect PASAD.

6.2.3 SFIG. We tested our attacks against SFIG anomaly detector
trained on Batadal dataset (details in Appendix A). As this anomaly
detector generates invariants aggregating all the sensors, we tested
our framework in constrained and unconstrained settings.
Unconstrained setting.Table 6 reports the results of unconstrained
attacks. Starting from the original detection Recall of 0.47, results
show that the concealment attacks decrease dramatically the Recall
score. When we apply the stale data attack to test the statistical
consistency, Recall drops respectively to 0. This result indicates that
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Table 6: Concealment attacks results on SFIG detector on
Batadal test dataset 1, unconstrained attack. †Note: techni-
cally NaN as the metric divides by 0.

Dataset Rec. Prec. F1 Acc. FPR

Original 0.47 0.75 0.58 0.93 0.02
Random Replay 0.15 0.49 0.23 0.89 0.02

Stale 0.0 0.00 (0)† 0.88 0.02
Learning-based [11] 0.01 0.07 0.02 0.88 0.02
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Figure 4: Impact of constrained concealment attacks on Re-
call score of the SFIG detector. ‘Original’ represents the Re-
call baseline of the model. Recall higher than 1 means that
the detector is observing more anomalies after the conceal-
ment attack is in place.
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Figure 5: Impact of constrained concealment attacks on the
autoencoder detectors. ‘Original’ represents the Recall base-
line of the model. Recall higher than 1 means that the de-
tector is observing more anomalies after the concealment
attack is in place.

this concealment attack was able to conceal the instances of anoma-
lous data. If we consider what is going on in the anomaly detector,
Recall close to 0 means that there are no invariant rules violated by
the attack. Indeed, Distribution Driven predicates are not violated
since during training it often occurs that a sensor reading remains
constant within two instants. At the same time, Event-Driven Predi-
cates cannot be triggered. The spoofed signal reports that no events
are occurring over the system. Hence, the system appears static,
and the invariant-based detector stops checking invariant rules
regardless of the data distribution of the samples. When we apply
the random replay attack, the Recall score goes to 0.14, showing
that the detector can detect (in part) the temporal inconsistencies.

Table 7: Performance of Autoencoders (Batadal).

Dataset Rec. Prec. F1 Acc. FPR

FC
Original 0.631 0.864 0.729 0.950 0.012

Random Replay 0 0.000 (0) 0.883 0.012
Stale 0 0.000 (0) 0.883 0.012

Learning-based [11] 0.151 0.606 0.242 0.899 0.012

LSTM
Original 0.628 0.862 0.727 0.950 0.012

Random Replay 0.366 0.784 0.499 0.922 0.012
Stale 0.003 0.030 0.006 0.883 0.012

Learning-based [11] 0.122 0.550 0.200 0.896 0.012

CNN
Original 0.704 0.875 0.780 0.958 0.012

Random Replay 0.004 0.035 0.006 0.883 0.012
Stale 0.003 0.025 0.005 0.883 0.012

Learning-based [11] 0.188 0.654 0.292 0.903 0.012

Comparing the results of the generic attacks w.r.t. learning-based
attack [11], we can observe that the neural-network based attack
reduces the recall of the anomaly detector, almost as effectively as
the stale attack. Also in this case, it is interesting to notice that the
neural-network based attack transfers to invariant based methods.
Constrained attack. In the constrained case where the attacker
can only spoof a constrained set of sensor readings, i.e., they have
compromised a subset of the PLCs and can spoof only certain
sensors. For our experiments, we consider the Batadal constraints
proposed by Erba et al. [11]. As depicted in Figure 4, this detector
fails to spot the constrained Replay. For example, when the attacker
gains control of 4 out of 43 sensors (coming from at most 3 different
PLCs/areas out of 9 in the network), the detection Recall drops to
0.0137. Comparing the results of the constrained replay attack w.r.t.
constrained learning-based attack [11], we can observe that also in
this case, the neural-network based attack reduces the recall of the
anomaly detector, but not as much as the constrained replay.

In conclusion, this detector fails to model spatial and statistical
properties while it partially detects temporal inconsistencies.

6.2.4 Deep Autoencoders. We tested the generic attacks against
three different autoencoders. As in the previous case the detector
considers the multivariate time series for detection and we perform
unconstrained and constrained attacks. This builds upon and ex-
tends prior work experiments [11] to relate to the consistencies
proposed in this work, which were not considered before.
Unconstrained setting.Table 7 reports the results of unconstrained
attacks applied to the three autoencoder architectures. Starting from
the original detection Recalls (respectively 0.631 for the FC, 0.628
for the LSTM and 0.704 for the CNN), results show that the con-
cealment attacks are capable of evading the detectors. When we
apply the stale data attack to test the statistical consistency, Recall
drops close to 0 for all the three architectures. These results indi-
cate that this concealment attack was able to conceal the instances
of anomalous data and the detectors are not correctly exploiting
the statistical properties of the signal. When we apply the random
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Table 8: Vulnerability to the attacks ✓detected (not vulner-
able), ✗non detected (vulnerable), N.A. not applicable as the
detector considers the univariate time series.

Detected

Detector Constr. Replay Random Replay Stale

AR [4, 19, 46] N.A. ✓ ✗

PASAD [4] N.A. ✗ ✓

SFIG [13] ✗ ✓ ✗

AE FC [40] ✓ ✗ ✗

AE LSTM [17] ✓ ✓ ✗

AE CNN [27] ✓ ✗ ✗

replay attack, the Recall score goes to 0 for the FC and CNN archi-
tectures, showing that those detectors are not detecting temporal
inconsistencies. On the other end, the recall of the LSTM archi-
tecture targeted with the random replay is 0.366, this shows that
correlating the last two sets of sensor readings in the input layer
allows detecting anomalous temporal evolution of the process.

Comparing the results of the generic attacks w.r.t. learning-based
attack, we can observe that the learning-based attack reduces the
recall of the anomaly detector, but not as well as the generic con-
cealment attacks. The only exception is the random replay for the
LSTM, surpassed by the learning-based attack.
Constrained attack. As in the previous section, the second experi-
ment studies the constrained case where the attacker can only spoof
a constrained set of sensor readings i.e., they have compromised
a subset of the PLCs and can spoof only certain sensors. We use
the same constraints also for this model. As depicted in Figure 5,
the detectors identify the spatial inconsistencies introduced by the
replay attack, also when the attacker controls almost all the sensor
readings (i.e., 40 out of 43) the detection recall is around 40% of
the original detection score. In conclusion, all the three autoen-
coders model properly spatial consistency, while they fail to model
statistical properties. FC and CNN also failed to capture temporal
properties of the system in contrast to LSTM. Comparing the results
of the generic attacks and learning-based attack [11], we observe
that the neural-network based attack reduces recall of the anomaly
detector almost as effectively as the stale attack.

6.3 Summary of Findings
With respect to RQ2, results show a varied performance of de-
tectors w.r.t. the three considered attacks and the related consis-
tency properties, none of the detectors is resilient to all the three
considered attacks but at most to two (i.e., AE LSTM resilient to
constrained replay and random replay). Those attacks break the
physical properties of the system and are, in theory, easy to spot.
Model-free detectors fail to exhaustively abstract Spatial, Temporal,
and Statistical consistencies to perform anomaly detection.

With respect to RQ3, results show that neural-network based
attacks [11], can effectively be used to conceal the effects of attacks
on the physical process for AR, SFIG, and Autoencoders, but they
fail to succeed against PASAD detector. On the other hand, the
concealment performance (reduction of the recall score), is always
in favor of one of the generic attacks. Moreover, learning-based

attacks from prior work require real-time computation to adapt
the spoofing pattern to the current sensor readings, while generic
concealment attacks do not need to be adapted in real-time.
Countermeasure. Given the results for RQ2 and RQ3, accurate
attack detectionwithout detailed a priori process models remains an
open issue. In Appendix C, we leverage the consistency properties to
construct and test a data-driven model-based detector that reliably
detects process anomalies and concealment attacks.

7 RELATEDWORK
Adversarial Machine Learning (AML) is the research topic at the
intersection of Machine Learning and System Security, this field
investigates the security properties of machine learning algorithms
when targeted by attacks. Attackers in the AML setting can be
motivated to perform a different type of attack [20]. E.g., classifier
concealment, model poisoning, and model stealing. Classifier eva-
sion in the field of Cyber-Physical System is a rising research topic.
So far, attacks that target Deep Learning-based classifiers have
been proposed. Feng et al. [12] propose the usage of Generative
Adversarial Networks to produce stealthy manipulations for ICS
detectors. Erba et al. [11] proposed two real-time evasion attacks
against reconstruction-based classifiers are proposed. A black-box
and a white-box attack method are presented. This work is the
first that models an attacker in the setting of Adversarial Machine
Learning for ICS. Kravchik et al. [28] proposed an anomaly detector
based on Autoencoders and PCA. The work by Zizzo et al. [51] eval-
uates adversarial examples in ICS by applying white-box attacks
to LSTM detectors. Luo et al. [31], survey Deep-Learning based
detectors for Cyber Physical Systems.

8 DISCUSSION AND CONCLUSIONS
In this work, we introduced the concepts of spatial, temporal, and
statistical consistency for process-based anomaly detectors (RQ1).
To assess which detectors verify which consistency, we leverage
three general concealment attacks. We then designed and imple-
mented a framework to add those attacks to common datasets, and
evaluated six model-free detectors (RQ2). Our evaluation results
show that the considered attacks are effectively evading prior work
detectors, which demonstrates that detectors are not verifying all
three consistencies. Although our attacks were designed to test con-
sistencies (and were not particularly optimized for performance),
we noted that they were surprisingly effective even compared to
more optimized prior work. Our attacks reduced the Recall of AR
models from prior work from 0.28 to 0.0, of PASAD [4] from 0.24
to 0.02, of SFIG [13] from 0.47 to 0.0 of FC autoencoder 0.631 to
0, of the LSTM autoencoder from 0.628 to 0.003 and of the CNN
autoencoder from 0.704 to 0.003. The weaknesses we demonstrated
in the anomaly detectors show that (despite good detection perfor-
mance of the original schemes), the detectors are not able to detect
adversarially manipulated physical system properties. Our results
also show that generic concealment attacks are possible, in contrast
to prior work that assumed to have a white-box knowledge of the
target system [45]. The analysis and the results in our contribution
highlight the need for more complete datasets and critical analysis
of model-free detectors to evaluate their performance. As such,
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we see our contribution to the discussion about the resiliency of
anomaly detectors when analyzed against targeted manipulations.

We have compared the identified generic concealment attacks
with prior work learning-based attacks (RQ3). The identified generic
attacks are also better than prior work although they do not require
real-time adaptation of the sensor readings. Identified generic at-
tacks focus on one consistency each, and they perform better than
prior work attacks. On the other hand, we show that learning based
attacks transfer to other models.
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A DETECTOR (RE-)IMPLEMENTATION
AR.We implemented the model-free AR detector as considered in
prior work [4, 19, 46] with the CUSUM test. We implemented it in
MATLAB and validated it on the Batadal dataset. The detector is
based on an Auto-Regressive (AR) model trained over a univariate
time series. The residuals of the AR model are used to compute a
Cumulative Sum (CUSUM) statistic whose objective is to reveal a
change in the process generating the data, i.e., spot anomalies in the
system. We implemented this detector in MATLAB, using the Sys-
tem Identification Toolbox. We trained the model over Batadal data,
we performed our experiments on sensor ‘PRESSURE J302’, i.e., the
sensor that (alone) was allowing to detect the highest number of
attacks (8 attacks over 14) with the considered detection method.
We selected the AR model of order 20 with Best Fit criteria and
tuned the CUSUM parameters using grid search and selected con-
trol_limit=5.5 and min_mean_shift_detect=1 obtaining as original

Table 9: Performance of Autoencoders trained on Batadal.

Dataset Acc. F1 Prec. Rec. FPR

FC 0.950 0.729 0.864 0.631 0.012
LSTM 0.950 0.727 0.862 0.628 0.012
CNN 0.958 0.780 0.875 0.704 0.012

detection performance Accuracy = 0.92, F1-score = 0.41, Precision
= 0.79, Recall (TPR) = 0.28, FPR = 0.01.
PASAD. The implementation of PASAD anomaly detector [4] is
available at https://github.com/mikeliturbe/pasad. PASAD analyzes
every sensor univariate temporal series independently, for every
sensor PASAD requires to be trained independently. We trained
PASAD on the Batadal dataset over ‘PRESSURE J302’ sensor, we
performed parameter tuning following the instructions provided in
the original paper. Specifically, we used 𝑁 = 250, 𝐿 = 250, 𝑟 = 18.
The resulting original detection performance with this threshold
over sensor J302 is Accuracy = 0.91, F1-score = 0.37, Precision =
0.74, Recall(TPR) = 0.24, FPR = 0.010.
SFIG. We re-implemented the anomaly detector based on the pa-
per. We used Python 3 with the following libraries: Sklearn, Pan-
das, NumPy, SciPy. In this section, we summarize the parameters,
and the assumptions we had to make to implement the detection
system. Distribution Driven Strategy. We normalized the data
between 0 and 1. We fitted Gaussian Mixture Models with at most
4 components for every sensor and took the one with the lowest
BIC score. Event Driven Strategy. We set the threshold for the
trigger 𝜖 = 0.05, for Lasso we set 𝛼 = 0.1. Invariant Mining. In-
variant mining is done with the CFP-growth++ algorithm. This
algorithm is only available as open-source[14] in a Java library
http://www.philippe-fournier-viger.com/spmf/. We used that li-
brary from our python script. Since the library is generating all
the frequent itemsets that have the allowed minimum support, we
parsed the output to identify the itemsets that do not break the
non-redundant condition.

After re-implementing the detection mechanism, we were able to
achieve a comparable result using the Batadal dataset. The resulting
original detection performance is as follows. Accuracy = 0.93 F1-
score= 0.58 , Precision = 0.75, Recall (TPR) = 0.47, FPR = 0.02.
AE. The implementation of the Autoencoder Based mechanisms
using the three deep architectures (FC, LSTM, CNN) is available
at the repository https://github.com/scy-phy/ICS-Evasion-Attacks.
We leverage this implementation in this work. The input of the FC
architecture is one set of sensor readings (i.e., 43 sensors), while for
the LSTM and CNN the input is represented by the last two sampled
set of sensor readings (i.e., 2x43 sensors). The performances of the
three architectures are detailed in Table 9.

B METHODOLOGY
In order to evaluate the performance of the anomaly detector, we
observe how Accuracy Eq. 5, Precision Eq. 6, Recall Eq. 7, and False
Positive Rate Eq. 9 scores change when the spoofing technique is
applied to the data.

Accuracy =
TP + TN

TP + FP + TN + FN (5)
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Algorithm 1: Rolling window detector training
1 function RollingDetector(trainData, window)
2 features← []

3 percentiles ← []

4 for sensor in listOfSensors do
5 hMatrix← hankel(trainingData[sensor],

window)
// mean of rows

6 slidingMean ← mean(hMatrix)

// std of rows

7 slidingStd← std(hMatrix)

// indexes of windows where variance is

zero

8 indexesZeroStd←
slidingMean[slidingStd==0]

// find the mean of the sliding windows

means with zero variance

9 meanZeroStd ← mean(indexesZeroStd)

10 if meanZeroStd in [0,NaN] then
// find minimum non-null percentile of

the slidingStd vector

11 percentile ← findPercentile(slidingStd)

12 features.append(sensor)

13 percentiles.append(percentile)

14 return features, percentiles

Precision =
TP

TP + FP (6)

Recall =
TP

TP + FN (7)

F1-Score = 2 ×
Precision × Recall
Precision + Recall (8)

FPR =
FP

TN + FP (9)

Given the original classification scores (e.g., when no spoofing
is applied to data), concealment is effective if the Precision and
Recall score reduces substantially. When those two scores reduce,
towards 0, it means that the instances where the concealment was
applied were misclassified moving them from being True Positives
to False Negatives. Looking at the False Positive Rate (FPR) score
we can also verify if the attacks are introducing False Positive in the
Classification. If the FPR remains almost like the original, it means
that the concealment did not induce any wrong classification (as
expected since we are not spoofing data outside the boundaries of
the attacks present in the dataset). Finally, since the datasets are
unbalanced, with more samples of the negative class, the Accuracy
score will not reach zero but at most the baseline where all the
instances are labeled as the negative class.

Algorithm 2: Rolling window detector testing
1 function anomalyDetection(features, percentiles,

window, testData)
2 predictions ← []

3 for sensor in features do
4 hMatrix← hankel(testData[sensor], window)

// mean of rows

5 slidingMean ← mean(hMatrix)

// std of rows

6 slidingStd← std(hMatrix) // for each
window verify if the variance is lower
than the lowest non-null percentile
observed during training

7 for i in len(slidingMean) do
8 if slidingMean[i] > 0 and slidingStd[i]

< percentiles[sensor] then
9 predictions[i]← 1

10 else
11 predictions[i]← 0

12 return predictions

C DATA DRIVEN MODEL-BASED DETECTOR
Given our results in the Section 6, accurate attack detection without
detailed a priori process models remains an open research question.
In the following, we construct and test a data-driven model-based
anomaly detector that leverages the physical properties of the pro-
cess and reliably detects both the process anomalies in the data
and concealment attacks. Like our assessment framework, the pro-
posed ensemble detector code is publicly available. Following our
attacker model and capabilities (Section 3), we consider white-box
attackers (i.e., with process knowledge and detector knowledge)
out of scope in our evaluation. As shown in prior work [11, 45],
that in white-box setting attacks cannot be fully-prevented can
be at most delayed or reduce their impact. Moreover getting this
white-box process/detection knowledge is challenging (if not im-
possible) [18, 25, 38].
Detector Architecture. The detector is based on an ensemble of
two complementary detectors trained on process data collected on
the system in normal operation condition (i.e., without anomalies).
The detectors in the ensemble are designed to detect process anom-
alies and concealment attacks. Figure 6 gives an overview of the
ensemble architecture. The first model in the ensemble is using
an identified Linear Time Invariant (LTI) model of the process to
predict future system behavior, which enables us to compute resid-
uals which we use for a stateful (CUSUM) detector. This part of the
ensemble allows us to identify spatial and temporal inconsistencies
among features. The second model is a sliding-window based sta-
tistical outlier detector, required to detect remaining attacks that
manipulate the signal without inducing physical inconsistencies
(e.g., Stale Data attacks). The predictions are combined using the
OR operator. The anomaly detector benefits from the ensemble
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Figure 6: Overview of the ensemble of detector, LTI model
and sliding window statistics are used to build a detector re-
silient to concealment attacks.

as each component is trained to abstract certain properties of the
physical process (see Figure 7).
NoA-Priori ProcessModel. In contrast to othermodel-based schemes
(e.g. [10, 36]), our data-driven model-based detector does not re-
quire explicit a priori process models or templates to be constructed
and trained. Instead, our two models leverage Subspace-based State
Space System Identification techniques and statistical analysis, re-
spectively.

C.1 Data-driven Stateful LTI Detector
Formulating the precise system equation for a complex CPS is chal-
lenging, requires in-depth process knowledge, and might lead to
deal with complex non-linear equations. This part of the ensemble
uses an LDS-model based stateful detector (see [45]), which effec-
tively requires a system characterization in form of a set of LTI
equations. While such designs were discussed in prior work [45],
no concrete implementations have been released, there was no eval-
uation w.r.t. the attacks of the datasets in this work, or our newly
contributed concealment attacks for those datasets.

In order to not rely on a-priori process characterizations, we
derive an approximation of the LTI representation leveraging the
Subspace-based State Space System Identification techniques (n4sid
algorithm [47]). Through this technique, we approximate the coeffi-
cients of the system model (i.e., matrices𝐴, 𝐵,𝐶, 𝐷 and disturbances
𝐾 ) without explicit knowledge of the system equations. Specifically,
we consider the water tank levels as output values of the system,
while all the other continuous sensor readings as input data.

Once the model is identified, a classification function of the one-
step-ahead prediction residuals (CUSUM, SVM, etc.), can be used to
identify attacks to the spatial and temporal properties. Specifically,
for each output of the LTI model, we use the CUSUM algorithm
with change detection as a classification function for residuals.

C.2 Statistical Outlier Detection
In order to detect the attacks that violate the statistical properties
of the system, we propose a sliding window-based outlier detection
method that identifies changes in sensor statistics. Algorithm 1
shows how the detector is trained, while Algorithm 2 shows how the
detector is used to perform anomaly detection. The intuition is to
detect changes in the process variance (e.g., the changes introduced
by the stale data attack). Using 𝑙 samples of training data, we apply
a sliding window of length𝑤 to each sensor reading in the dataset,
obtaining 𝑘 = 𝑙 −𝑤 traces of data (per sensor). For each trace in 𝑘
we compute its mean and standard deviation. For sensors that have
a variance greater than 0 (or variance 0 when the mean value is 0)
in all the 𝑘 traces (i.e., the sensor updates its value at least once in𝑤
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Figure 7: Contribution of classifiers in the ensemble. Detec-
tion of constrained stale data attack (normalized thresholds
for readability). Some of the attacks are detected exclusively
by one of the two detectors in the ensemble. The OR condi-
tion between the predicted labels of the two models allows
to detect attacks with high precision and recall.

timesteps), we use an approximate binary search algorithm to find
the minimum non-null percentile of the sliding window standard
deviation distribution and use it as a threshold. At test time, we
compute the sliding window statistics for the sensors that satisfy
the conditions in the training set. If the variance of a window is
greater than 0 but lower than the sensor’s threshold an alarm is
raised.

C.3 Classifier Contributions in the Ensemble
Figure 7 shows an example on how the two detectors in the en-
semble complement each other. The attacker launches a Stale Data
attack (i.e, the attack breaks statistical properties of the sensor read-
ings). We note most of the attacks are detected by both the models
in the ensemble, but others are detected by either one of the two
as the spoofed signal might trigger exclusively spatial/temporal or
statistical inconsistencies.

C.4 Results
We train the predictions of the two methods presented in C.1, C.2
tested on the Batadal dataset. The LTI system was modeled using
the 7 water level sensors as output data while all the other 24 contin-
uous sensor readings in the Batadal dataset were used as input. We
identified the model of order 11 using n4sid MATLAB implementa-
tion. The residuals of the model are classified using CUSUM. The
Statistical based detector was trained using all the 31 continuous
sensor readings. Table 10 reports the results of the ensemble of
methods on the Batadal dataset attacked with the unconstrained
concealment attacks. Stale and random replay attacks are detected
with a high recall rate. We can observe how the two components
of the ensemble contribute to the detection, for example in the
random replay attack the temporal inconsistency is triggering the
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Table 10: Contribution of classifiers in the Ensemble tested
on Batadal dataset. For each experiment, the table reports
the performance of each classifier in the ensemble (LTI, Slid-
ing) and their overall performance (Ensemble)

Dataset Acc. F1 Prec. Rec. FPR

Original Attacks
LTI 0.91 0.29 0.74 0.18 0.01

Sliding 0.94 0.62 0.93 0.46 0.00
Ensemble 0.95 0.71 0.86 0.61 0.01

Stale

LTI 0.98 0.91 0.91 0.91 0.01
Sliding 0.99 0.97 0.96 0.99 0.00

Ensemble 0.99 0.94 0.89 1.00 0.01

Random Replay

LTI 0.99 0.96 0.93 1.00 0.01
Sliding 0.89 0.00 0.04 0.00 0.00

Ensemble 0.99 0.95 0.91 1.00 0.01

Learning-based Attack [11]

LTI 0.97 0.88 0.81 0.96 0.03
Sliding 0.89 0.01 0.12 0.00 0.00
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Figure 8: Constrained replay attacks results on our counter-
measure. This plot shows the impact of constrained conceal-
ment attacks over the Recall score. The plot shows the con-
tribution of the classifies in the ensemble

LTI detector but not the Sliding window detector (as expected since
there is no statistical change in the data). Figure 8 reports the results
of the constrained replay attack in Batadal data (same constraints
used in Figure 5), also constrained replay is detected by our coun-
termeasure. The main contribution to the detection, in this case,
is given by the LTI model. The performance of the ensemble in
this scenario is comparable to the autoencoder models (Figure 5),
although the recall of the ensemble model decreases faster when
the attacker controls 30 sensors or more.

C.5 Summary of Findings
We built an ensemble detector that is constructed without lever-
aging process knowledge and outperforms prior model-free detec-
tors. Our proposed ensemble can detect both the original process
anomalies contained in the datasets and the concealment attacks
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Figure 9: Constrained Learning-based [11] attacks results
on our countermeasure. This plot shows the impact of con-
strained concealment attacks over the Recall score. The plot
shows the contribution of the classifies in the ensemble

considered in the work (i.e., both generic concealment attacks and
Learning-based [11]). Our model outperforms prior work model-
free approaches as it is capable of detecting spatial, temporal, and
statistical inconsistencies in the data.
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