
Are Defenses for Graph Neural Networks Robust?

Felix Mujkanovic1∗, Simon Geisler1∗, Stephan Günnemann1, Aleksandar Bojchevski2
1Dept. of Computer Science & Munich Data Science Institute, Technical University of Munich

2CISPA Helmholtz Center for Information Security
{f.mujkanovic, s.geisler, s.guennemann}@tum.de | bojchevski@cispa.de

Abstract

A cursory reading of the literature suggests that we have made a lot of progress in de-
signing effective adversarial defenses for Graph Neural Networks (GNNs). Yet, the
standard methodology has a serious flaw – virtually all of the defenses are evaluated
against non-adaptive attacks leading to overly optimistic robustness estimates. We
perform a thorough robustness analysis of 7 of the most popular defenses spanning
the entire spectrum of strategies, i.e., aimed at improving the graph, the architecture,
or the training. The results are sobering – most defenses show no or only marginal
improvement compared to an undefended baseline. We advocate using custom
adaptive attacks as a gold standard and we outline the lessons we learned from
successfully designing such attacks. Moreover, our diverse collection of perturbed
graphs forms a (black-box) unit test offering a first glance at a model’s robustness.1

1 Introduction

The vision community learned a bitter lesson – we need specific carefully crafted attacks to properly
evaluate the adversarial robustness of a defense. Consequently, adaptive attacks are considered the
gold standard [44]. This was not always the case; until recently, most defenses were tested only
against relatively weak static attacks. The turning point was Carlini & Wagner [3]’s work showing
that 10 methods for detecting adversarial attacks can be easily circumvented. Shortly after, Athalye
et al. [1] showed that 7 out of the 9 defenses they studied can be broken since they (implicitly) rely
on obfuscated gradients. So far, this bitter lesson is completely ignored in the graph domain.

72 74 76 78

Adversarial accuracy (%)

Soft-Median-GDC
GRAND
ProGNN

GCN
RGCN

GNNGuard
Jaccard-GCN

SVD-GCN

(a) Global, Poisoning

75 80

Adversarial accuracy (%)

(b) Global, Evasion

0 20 40

Correct predicitons (%)

(c) Local, Poisoning

0 20 40 60

Correct predicitons (%)

Adaptive
attack
Non-
adaptive
attack

(d) Local, Evasion

Figure 1: Adaptive attacks draw a different picture of robustness. All defenses are less robust than
reported, with an undefended GCN [33] outperforming some. We show results on Cora ML for both
poisoning (attack before training) and evasion (attack after training), and both global (attack the test
set jointly) and local (attack individual nodes) setting. The perturbation budget is relative w.r.t. the
#edges for global attacks (5% evasion, 2.5% poisoning) and w.r.t. the degree for local attacks (100%).
In (a)/(b) SVD-GCN is catastrophically broken – our adaptive attacks reach 24%/9% (not visible).
Note that our non-adaptive attacks are already stronger than what is typically used (see § 5).

∗equal contribution 1 Project page: https://www.cs.cit.tum.de/daml/are-gnn-defenses-robust/

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://www.cs.cit.tum.de/daml/are-gnn-defenses-robust/

Virtually no existing work that proposes an allegedly robust Graph Neural Network (GNN) evaluates
against adaptive attacks, leading to overly optimistic robustness estimates. To show the seriousness of
this methodological flaw we categorize 49 works that propose a robust GNN and are published at
major conferences/journals. We then choose one defense per category (usually the most highly cited).
Not surprisingly, we show that none of the assessed models are as robust as originally advertised
in their respective papers. In Fig. 1 we summarize the results for 7 of the most popular defenses,
spanning the entire spectrum of strategies (i.e., aimed at improving the graph, the architecture, or the
training, see Table 1).

We see that in both local and global settings, as well as for both evasion and poisoning, the adversarial
accuracy under our adaptive attacks is significantly smaller compared to the routinely used non-
adaptive attacks. Even more troubling is that many of the defenses perform worse than an undefended
baseline (a vanilla GCN [33]). Importantly, the 7 defenses are not cherry-picked. We report the results
for each defense we assessed and selected each defence before running any experiments.

Adversarial robustness measures the local generalization capabilities of a model, i.e., sensitivity
to (bounded) worst-case perturbations. Certificates typically provide a lower bound on the actual
robustness while attacks provide an upper bound. Since stronger attacks directly translate into tighter
bounds our goal is to design the strongest attack possible. Our adaptive attacks have perfect knowledge
of the model, the parameters, and the data, including all defensive measures. In contrast, non-adaptive
attacks (e.g., transferred from an undefended proxy or an attack lacking knowledge about defense
measures) only show how good the defense is at suppressing a narrow subset of input perturbations.2

Tramer et al. [44] showed that even adaptive attacks can be tricky to design with many subtle
challenges. The graph domain comes with additional challenges since graphs are typically sparse
and discrete and the representation of any node depends on its neighborhood. For this reason, we
describe the recurring themes, the lessons learned, and our systematic methodology for designing
strong adaptive attacks for all examined models. Additionally, we find that defenses are sometimes
sensitive to a common attack vector and transferring attacks can also be successful. Thus, the diverse
collection of perturbed adjacency matrices resulting from our attacks forms a (black-box) unit test
that any truly robust model should pass before moving on to adaptive evaluation. In summary:

• We survey and categorize 49 defenses published across prestigious machine learning venues.
• We design custom attacks for 7 defenses (14%), covering the spectrum of defense techniques. All

examined models forfeit a large fraction of previously reported robustness gains.
• We provide a transparent methodology and guidelines for designing strong adaptive attacks.
• Our collection of perturbed graphs can serve as a robustness unit test for GNNs.

2 Background and preliminaries

We follow the most common setup and assume GNN [20, 33] classifiers fθ(A,X) that operate on a
symmetric binary adjacency matrix A ∈ {0, 1}n×n with binary node features X ∈ {0, 1}n×d and
node labels y ∈ {1, 2, . . . , C}n where C is the number of classes, n is the number of nodes, and m
the number of edges. A poisoning attack perturbs the graph (flips edges) prior to training, optimizing

max
Ã∈Φ(A)

ℓattack(fθ∗(Ã,X),y) s.t. θ∗ = argmin
θ

ℓtrain(fθ(Ã,X),y) (1)

where ℓattack is the attacker’s loss, which is possibly different from ℓtrain (see § 4). In an evasion attack,
θ∗ is kept fixed and obtained by training on the clean graph minθ ℓtrain(fθ(A,X),y). In both cases,
the locality constraint Φ(A) enforces a budget ∆ by limiting the perturbation to an L0-ball around
the clean adjacency matrix: ∥Ã−A∥0 ≤ 2∆. Attacks on X also exist, however, this scenario is not
considered by the vast majority of defenses. For example, only one out of the seven examined ones
also discusses feature perturbations. We refer to § D for more details on adaptive feature attacks.

Threat model. Our attacks aim to either cause misclassification of the entire test set (global) or a
single node (local). To obtain the strongest attack possible (i.e., tightest robustness upper bound),
we use white-box attacks. We do not constrain the attacker beyond a simple budget constraint that
enforces a maximum number of perturbed edges. For our considerations on unnoticeability, see § A.
2 From a security perspective non-adaptive attacks (typically transfer attacks) are also relevant since a real-world
adversary is unlikely to know everything about the model and the data.

2

Greedy attacks. Attacking a GNN typically corresponds to solving a constrained discrete non-
convex optimization problem that – evident by this work – is hard to solve. Commonly, approximate
algorithms are used to to tackle these optimization problems. For example, the single-step Fast
Gradient Attack (FGA) flips the edges whose gradient (i.e., ∇Aℓtrain(fθ∗(A,X),y)) most strongly
indicates so. On the other hand, Nettack [67] and Metattack [66] are greedy multi-step attacks. The
greedy approaches have the nice side-effect that an attack for a high budget ∆ directly gives all
attacks for budgets lower than ∆. On the other hand, they tend to be relatively weaker.

Projected Gradient Descent (PGD). Alternatively, PGD [53] has been applied to GNNs where
the discrete adjacency matrix is relaxed to [0, 1]n×n during the gradient-based optimization and the
resulting weighted change reflects the probability of flipping an edge. After each gradient update, the
changes are projected back such that the budget holds in expectation ∥E[Ã]−A∥0 ≤ 2∆. Finally,
multiple samples are obtained and the strongest perturbation Ã is chosen that obeys the budget ∆.
The biggest caveats while applying L0-PGD are the relaxation gap and limited scalability (see Geisler
et al. [17] for a detailed discussion and a scalable alternative).

Evasion vs. poisoning. Evasion can be considered the easier setting from an attack perspective since
the model is fixed fθ∗ . For poisoning, on the other hand, the adjacency matrix is perturbed before
training (Eq. 1). Two general strategies exist for poisoning attacks: (1) transfer a perturbed adjacency
matrix from an evasion attack [67]; or (2) attack directly by, e.g., unrolling the training procedure
to obtain gradients through training [66]. Xu et al. [53] propose to solve Eq. 1 with alternating
optimization which was shown to be even weaker than the evasion transfer (1). Note that evasion is
particularly of interest for inductive learning and poisoning for transductive learning.

3 Adversarial defenses

We select the defenses s.t. we capture the entire spectrum of methods improving robustness against
structure perturbations. For the selection, we extend the taxonomy proposed in [21]. We selected the
subset without cherry-picking based on the criteria elaborated below before experimentation.

Taxonomy. The top-level categories are improving the graph (e.g., preprocessing), improving the
training (e.g., adversarial training or augmentations), and improving the architecture. Many defenses
for structure perturbations either fall into the category of improving the graph or adaptively weighting
down edges through an improved architecture. Thus, we introduce further subcategories. Similar
to [21]’s discussion, unsupervised improvement of the graph finds clues in the node features and
graph structure, while supervised improvement incorporates gradient information from the learning
objective. Conversely, for adaptive edge weighting, we identify three prevalent approaches: rule-
based (e.g., using a simple metric), probabilistic (e.g., modeling a latent distribution), and robust
aggregations (e.g., with guarantees). We assign each defense to the most fitting taxon (details in § B).

Selected defenses. To evaluate a diverse set of defenses, we select one per leaf taxon.3 We prioritize
highly cited defenses published at renowned venues with publicly available code. We implement
all defenses in one unified pipeline. We present the categorization of defenses and our selection in
Table 1. Similarly to Tramer et al. [44], we exclude defenses in the “robust training” category (see § C
for a discussion). Two of the three models in the “miscellaneous” category report some improvement
in robustness, but they are not explicitly designed for defense purposes so we exclude them from our
study. Some works evaluate only against evasion [48], others only poisoning [12, 15, 58], and the rest
tackle both [17, 30, 63]. In some cases the evaluation setting is not explicitly stated and inferred by us.
For completeness, we consider each defense in all four settings (local/global and evasion/poisoning).
Next, we provide a short summary of the key ideas behind each defense (details in § E).

Improving the graph. The feature-based Jaccard-GCN [48] uses a preprocessing step to remove all
edges between nodes whose features exhibit a Jaccard similarity below a certain threshold. This was
motivated by the homophily assumption which is violated by prior attacks that tend to insert edges
between dissimilar nodes. The structure-based SVD-GCN [12] replaces the adjacency matrix with a
low-rank approximation prior to plugging it into a regular GNN. This defense was motivated by the
observation that the perturbations from Nettack tend to disproportionately affect the high-frequency
spectrum of the adjacency matrix. The key idea in ProGNN [30] is to learn the graph structure by
3 The only exception is unsupervised graph improvement, as it contains two of the most popular approaches,
which rely on orthogonal principles. One filters edges based on the node features [48], the other uses a low-rank
approximation of the adjacency matrix [12].

3

Table 1: Categorization of selected defenses. Our taxonomy extends the one by Günnemann [21].

Taxonomy Selected Defenses Other Defenses

Improving
graph

Unsupervised Jaccard-GCN [48]
SVD-GCN [12] [10, 26, 50, 59, 60]

Supervised ProGNN [30] [51, 43, 56]

Improving
training

Robust training n/a (see § C) [6, 9, 14, 22, 27, 28, 41, 52, 53, 54]

Further training principles GRAND [15] [5, 11, 29, 39, 42, 55, 61, 64, 65]

Improving
architecture

Adaptively
weighting
edges

Rule-based GNNGuard [58] [31, 36, 37, 57]

Probabilistic RGCN [63] [8, 13, 24, 25, 38]

Robust agg. Soft-Median-GDC [17] [7, 16, 47]

Miscellaneous n/a (see above) [40, 46, 49]

alternatingly optimizing the parameters of the GNN and the adjacency matrix (the edge weights).
The loss for the latter includes the standard cross-entropy loss, the distance to the original graph, and
three other objectives designed to promote sparsity, low rank, and feature smoothness.

Improving the training. GRAND [15] relies on random feature augmentations (zeroing features)
coupled with neighbourhood augmentations X̄ = (AX+AAX+ · · ·). All randomly augmented
copies of X̄ are passed through the same MLP that is trained with a consistency regularization loss.

Improving the architecture. GNNGuard [58] filters edges in each message passing aggregation
via cosine-similarity (smoothed over layers). In the first layer of RGCN [63] we learn a Gaussian
distribution over the feature matrix and the subsequent layers then manipulate this distribution (instead
of using point estimates). For the loss we then sample from the resulting distribution. In addition, in
each layer, RGCN assigns higher/lower weights to features with low/high variance. Soft-Median-GDC
[17] replaces the message passing aggregation function in GNNs (typically a weighted mean) with a
more robust alternative by relaxing the median using differentiable sorting.

Common themes. One theme shared by some defenses is to first discover some property that can
discriminate clean from adversarial edges (e.g., high vs. low feature similarity), and then propose
a strategy based on that property (e.g., filter low similarity edges). Often they analyze the edges
from only a single attack such as Nettack [67]. The obvious pitfall of this strategy is that the attacker
can easily adapt by restricting the adversarial search space to edges that will bypass the defense’s
(implicit) filter. Another theme is to add additional loss terms to promote some robustness objectives.
Similarly, the attacker can incorporate the same terms in the attack loss to negate their influence.

4 Methodology: How to design strong adaptive attacks

In this section, we describe our general methodology and the lessons we learned while designing
adaptive attacks. We hope these guidelines can serve as a reference for testing new defenses.

Step 1 – Understand how the defense works and categorize it. For example, some defenses rely
on preprocessing which filters out edges that meet certain criteria (e.g., Jaccard-GCN [48]). Others
introduce additional losses during training (e.g., GRAND [15]) or change the architecture (e.g.,
RGCN [63]). Different defenses might need different attacks or impose extra requirements on them.

Step 2 – Probe for obvious weaknesses. Some examples include: (a) transfer adversarial edges from
another (closely related) model (see also § 6); (b) use a gradient-free (black-box) attack. For example,
in our local experiments, we use a Greedy Brute Force attack: in each step, it considers all possible
single edge flips and chooses the one that contributes most to the attack objective (details in § A).

Step 3 – Launch a gradient-based adaptive attack. For rapid prototyping, use a comparably cheap
attack such as FGA, and later advance to stronger attacks like PGD. For poisoning, strongly consider
meta-gradient-based attacks like Metattack [66] that unroll the training procedure, as they almost
always outperform just transferring perturbations from evasion. Unsurprisingly, we find that applying
PGD [53] on the meta gradients often yields even stronger attacks than the greedy Metattack, and we
refer to this new attack as Meta-PGD (details in § A).

4

Step 4 – Address gradient issues. Some defenses contain components that are non-differentiable,
lead to exploding or vanishing gradients, or obfuscate the gradients [1]. To circumvent these issues,
potentially: (a) adjust the defense’s hyperparameters to retain numerical stability; (b) replace the
offending component with a differentiable or stable counterpart, e.g., substitute the low-rank ap-
proximation of SVD-GCN [12] with a suitable differentiable alternative; or (c) remove components,
e.g., drop the “hard” filtering of edges done in the preprocessing of Soft-Median-GDC [17]. These
considerations also include poisoning attacks, where one also needs to pay attention to all components
of the training procedure. For example, we ignore the nuclear norm loss term in the training of
ProGNN [30] to obtain the meta-gradient. Of course, keep the entire defense intact for its final
evaluation on the found perturbations.

Step 5 – Adjust the attack loss. In previous works, the attack loss is often chosen to be the same as
the training loss, i.e., the cross-entropy (CE). This is suboptimal since CE is not consistent according
to the definition by Tramer et al. [44] – higher loss values do not indicate a stronger attack. Thus, we
use a variant of the consistent Carlini-Wagner loss [4] for local attacks, namely the logit margin (LM),
i.e., the logit difference between the ground truth class and most-likely non-true class. However,
as discussed by Geisler et al. [17], for global attacks the mean LM across all target nodes is still
suboptimal since it can “waste” budget on already misclassified nodes. Their tanh logit margin (TLM)
loss resolves this issue. If not indicated otherwise, we either use TLM or the probability margin (PM)
loss – a slight variant of LM that computes the margin after the softmax rather than before.

Step 6 – Tune the attack hyperparameters such as the number of PGD steps, the attack learning
rate, the optimizer, etc. For example, for Metattack we observed that using the Adam optimizer [32]
can weaken the attack and replacing it with SGD can increase the effectiveness.

Lessons learned. We provide a detailed description of each adaptive attack and the necessary actions
to make it as strong as possible in § E. Here, we highlight some important recurring challenges
that should be kept in mind when designing adaptive attacks. (1) Numerical issues, e.g., due to
division by tiny numbers can lead to weak attacks, and we typically resolve them via clamping. (2)
In some cases we observed that for PGD attacks it is beneficial to clip the gradients to stabilize
the adversarial optimization. (3) For a strong attack it is essential to tune its hyperparameters. (4)
Relaxing non-differentiable components and deactivating operations that filter edges/embeddings
based on a threshold in order to obtain gradients for every edge is an effective strategy. (5) If the
success of evasion-poisoning transfer depends on a fixed random initialization (see § J), it helps to
use multiple clean auxiliary models trained with different random seeds for the PGD attack – in each
PGD step we choose one model randomly. (6) Components that make the optimization more difficult
but barely help the defense can be safely deactivated. (7) It is sometimes beneficial to control the
randomness in the training loop of Meta-PGD. (8) For Meta-PGD it can help to initialize the attack
with non-zero perturbations and e.g., use the perturbed graph of a different attack.

Example 1 – SVD-GCN. To illustrate the attack process (especially steps 3 and 4) we present a
case study of how we construct an adaptive attack against SVD-GCN. Gradient-free attacks like
Nettack do not work well here as they waste budget on adversarial edges which are filtered out by
the low-rank approximation (LRA). Moreover, to the demise of gradient-based attacks, the gradients
of the adjacency matrix are very unstable due to the SVD and thus less useful. Still, we start with a
gradient-based attack as it is easier to adapt, specifically FGA, whose quick runtime enables rapid
prototyping as it requires only a single gradient calculation. To replace the LRA with a function whose
gradients are better behaved, we first decompose the perturbed adjacency matrix Ã = A+ δA and,
thus, only need gradients for δA. Next, we notice that the eigenvectors of A usually have few large
components. Perturbations along those principal dimensions are representable by the eigenvectors,
hence most likely are neither filtered out nor impact the eigenvectors. Knowing this, we approximate
the LRA in a tractable manner by element-wise multiplication of δA with weights that quantify how
well an edge aligns with the principal dimensions (details in § E). In short we replace LRA(A+ δA)
with LRA(A)+δA◦Weight(A), which admits useful gradients. This approach carries over to other
attacks such as Nettack – we can incorporate the weights into its score function to avoid selecting
edges that will be filtered out.

Example 2 – ProGNN. While we approached SVD-GCN with a theoretical insight, breaking a
composite defense like ProGNN requires engineering and tinkering. When attacking ProGNN with
PGD and transferring the perturbations to poisoning we observe that the perturbations are only
effective if the model is trained with the same random seed. This over-sensitivity can be avoided by

5

employing lesson (5) in § 4. As ProGNN is very expensive to train due to its nuclear norm regularizer,
we drop that term when training the set of auxiliary models without hurting attack strength. For
unrolling the training we again drop the nuclear norm regularizer since it is non-differentiable.
Sometimes PGD does not find a state with high attack loss, which can be alleviated by random
restarts. As Meta-PGD optimization quickly stalls, we initialize it with a strong perturbation found by
Meta-PGD on GCN. All of these tricks combined are necessary to successfully attack ProGNN.

Effort. Breaking Jaccard-GCN (and SVD-GCN) required around half an hour (resp. three days) of
work for the initial proof of concept. Some other defenses require various adjustments that need to be
developed over time, but reusing those can quickly break even challenging defenses. It is difficult to
quantify this effort, but it can be greatly accelerated by adopting our lessons learned in § 4. In any
case, we argue that authors proposing a new defense must put in reasonable effort to break it.

5 Evaluation of adaptive attacks

First, we provide details on the experimental setup and used metrics. We then report the main results
and findings. We refer to § A for details on the base attacks, including our Greedy Brute Force and
Meta-PGD approaches. We provide the code, configurations, and a collection of perturbed graphs on
the project website linked on the first page.

Setup. We use the two most widely used datasets in the literature, namely Cora ML [2] and Cite-
seer [19] (details in § F). Unfortunately, larger datasets are barely possible since most defenses are
not very scalable. Still, in § N, we discuss scalability and apply an adaptive attack to arXiv (170k
nodes) [23]. We repeat the experiments for five different data splits (10% training, 10% validation,
80% testing) and report the means and variances. We use an internal cluster with Nvidia GTX 1080Ti
GPUs. Most experiments can be reproduced within a few hours. However, the experiments with
ProGNN and GRAND will likely require several GPU days.

Defense hyperparameters. When first attacking the defenses, we observed that many exhibit poor
robustness using the hyperparameters provided by their authors. To not accidentally dismiss a defense
as non-robust, we tune the hyperparameters such that the clean accuracy remains constant but the
robustness w.r.t. adaptive attacks is improved. Still, we run all experiments on the untuned defenses
as well to confirm we achieve this goal. In the same way, we also tune the GCN model, which we
use as a reference to asses whether a defense has merit. We report the configurations and verify the
success of our tuning in § H.

Attacks and budget. In the global setting, we run the experiments for budgets ∆ of up to 15% of the
total number of edges in the dataset. Due to our (R)AUC metric (see below), we effectively focus on
only the lower range of evaluated budgets. We apply FGA and PGD [53] for evasion. For poisoning,
we transfer the found perturbations and also run Metattack [66] and our Meta-PGD. Recall that where
necessary, we adapt the attacks to the defenses as outlined in § 4 and detailed in § E.

In the local setting, we first draw sets of 20 target nodes per split with degrees 1, 2, 3, 5, 8-10, and
15-25 respectively (total of 120 nodes). This enables us to study how the attacks affect different types
of nodes – lower degree nodes are often conjectured to be less robust (see also § K). We then run
the experiments for relative budgets ∆ of up to 200% of the target node’s degree. For example, if
a node has 10 neighbors, and the budget ∆ = 70% then the attacker can change up to 10 · 0.7 = 7
edges. This commonly used setup ensures that we treat both low and high-degree nodes fairly. We
use Nettack [67], FGA, PGD, and our greedy brute force attack for evasion. For poisoning, we only
transfer the found perturbations. Again, we adapt the attacks to the defenses if necessary.

In alignment with our threat model, we evaluate each found perturbation by the test set accuracy it
achieves (global) or the ratio of target nodes that remain correctly classified (local). For each budget,
we choose the strongest attack among all attempts (e.g., PGD, Metattack, Meta-PGD). This gives rise
to an envelope curve as seen in Fig. 3. We also include lower budgets as attempts, i.e., we enforce the
envelope curve to be monotonically decreasing.

We introduce a rich set of attack characteristics by also transferring the perturbations supporting the
envelope curve to every other defense. These transfer attacks then also contribute to the final envelope
curve of each defense, but in most cases their contribution is marginal.

6

0.0 0.1 0.2

RAUC

Soft-Median-GDC
GRAND
ProGNN

GCN
RGCN

GNNGuard
Jaccard-GCN

SVD-GCN

(a) Global, Poisoning

0.2 0.3 0.4

RAUC

(b) Global, Evasion

0.2 0.4

AUC

(c) Local, Poisoning

0.2 0.4

AUC

Adaptive
attack
Non-
adaptive
attack

(d) Local, Evasion

Figure 2: Adaptive vs. non-adaptive attacks with budget-agnostic (R)AUC on Cora ML (c.f. Fig. 1).
SVD-GCN (b) is disastrously broken – our adaptive attacks reach <0.02 (not visible). § F for Citeseer.

Non-adaptive attacks. We can now define that by “non-adaptive attacks” in Fig. 1 and Fig. 2, we
refer to the best transfer attack from the untuned GCN (often Metattack) for the global setting and
Nettack for the local setting, mirroring the attacks used by most defenses.

Area Under the Curve (AUC). An envelope curve gives us a detailed breakdown of the empirical
robustness of a defense for different adversarial budgets. However, it is difficult to compare different
attacks and defenses by only visually comparing their curves in a figure (e.g., see Fig. 4). Therefore,
in addition to this breakdown per budget, we summarize robustness using the Area Under the Curve
(AUC), which is independent of a specific choice of budget ∆ and also punishes defenses that achieve
robustness by trading in too much clean accuracy. Intuitively higher AUCs indicate more robust
models, and conversely, lower AUCs indicate stronger attacks.

0 2 4 6 8

Relative budget ∆
m (%)

60

65

70

75

80

85

A
cc
ur
ac
y
(%

) PGD
Mettack
Meta-PGD
Envelope
MLP
RAUC

Figure 3: The dotted lines show
the test set accuracy per budget af-
ter three global poisoning attacks
against a tuned GCN on Cora ML.
Taking the envelope gives the solid
black robustness curve. The dashed
gray line denotes the accuracy of
an MLP. The shaded area is the
RAUC.

As our local attacks break virtually all target nodes within
our conservative maximum budget (see § F), taking the AUC
over all budgets conveniently measures how quick this occurs.
However, for global attacks, the test set accuracy continues to
decrease for unreasonably large budget, and it is unclear when
to stop. To avoid having to choose a maximum budget, we wish
to stop when discarding the entire tainted graph becomes the
better defense. This is fulfilled by the area between the envelope
curve and the line signifying the accuracy of an MLP – a model
that is oblivious to the graph structure, at the expense of a
substantially lower clean accuracy than a GNN. We call this
metric Relative AUC (RAUC) and illustrate it in Fig. 3. More
formally, RAUC(c) =

∫ b0
0
(c(b) − aMLP)db s.t. b ≶ b0 =⇒

c(b) ≷ aMLP where c(·) is a piecewise linear robustness per
budget curve, and aMLP is the accuracy of the MLP baseline.
We normalize the RAUC s.t. 0% is the performance of an MLP
and 100% is the optimal score (i.e., 100% accuracy).

0 2 4 6

Relative budget ∆
m (%)

−4

−2

0

2

4

A
cc
ur
ac
y
(%

)
re
l.
to

G
C
N

(a) Cora ML, Pois.

0 5 10 15

Relative budget ∆
m (%)

(b) Cora ML, Evas.

0 1 2 3

Relative budget ∆
m (%)

(c) Citeseer, Pois.

0 2 4 6

Relative budget ∆
m (%)

MLP
GCN
Jaccard-GCN
RGCN
ProGNN
GNNGuard
GRAND
Soft-Median-GDC

(d) Citeseer, Evas.

Figure 4: Difference (defense – undefended GCN) of adversarial accuracy for the strongest global
attack per budget. Almost half of the defenses perform worse than the GCN. We exclude SVD-GCN
since it is catastrophically broken and plotting it would make the other defenses illegible (accuracy
<24% already for a budget of 2% on Cora ML). Absolute numbers in § F.

7

0 50 100

Relative budget ∆
degree (%)

−20

0

20

40

C
or
r.

pr
ed

.(
%
)
re
l.
to

G
C
N

(a) Cora ML, Pois.

0 50 100

Relative budget ∆
degree (%)

(b) Cora ML, Evas.

0 50 100

Relative budget ∆
degree (%)

(c) Citeseer, Pois.

0 50 100

Relative budget ∆
degree (%)

GCN
Jaccard-GCN
SVD-GCN
RGCN
ProGNN
GNNGuard
GRAND
Soft-Median-GDC

(d) Citeseer, Evas.

Figure 5: Difference (defense – undefended GCN) of fraction of correct predictions for the strongest
local attack per budget. Most defenses show no or only marginal gain in robustness. The dashed
vertical line shows where 95% of nodes for a GCN are misclassified on average. Abs. numbers in § F.

Finding 1 – Our adaptive attacks lower robustness by 40% on average. In Fig. 2 we compare
non-adaptive attacks, the current standard to evaluate defenses, with our adaptive attacks which we
propose as a new standard. The achieved (R)AUC in each case drops on average by 40% (similarly
for Citeseer, see § F). In other words, the reported robustness in the original works proposing a
defense is roughly 40% too optimistic. We confirm a statistically significant drop (p < 0.05) with a
one-sided t-test in 85% of all cases. Considering adversarial accuracy for (small) fixed adversarial
budget (Fig. 1) instead of the summary (R)AUC over all budgets tells the same story: non-adaptive
attacks are too weak to be reliable indicators of robustness and adaptive attacks massively shrink the
alleged robustness gains.

Finding 2 – Structural robustness of GCN is not easily improved. In Fig. 4 (global) and Fig. 5
(local) we provide a more detailed view for different adversarial budgets and different graphs. For
easier comparison we show the accuracy relative to the undefended GCN baseline. Overall, the
decline is substantial. Almost half of the examined defenses perform worse than GCN and most
remaining defenses neither meaningfully improve nor lower the robustness (see also Fig. 1 and Fig. 3).
GRAND and Soft-Medoid-GCN retain robustness in some settings, but the gains are smaller than
reported.

Finding 3 – Defense effectiveness depends on dataset. As we can see in Fig. 4 and Fig. 5, our
ability to circumvent specific defenses tends to depend on the dataset. It appears that some defenses
are more suited for different datasets. For example, GRAND seems to be a good choice for Citeseer
while it is not as strong on Cora ML. The results for local attacks (Fig. 5) paint a similar picture, here
we see that Cora ML is more difficult to defend. This points to another potentially problematic pitfall
– most defenses are developed only using these two datasets as benchmarks. Is the robustness even
worse on other graphs? We leave this question for future work.

80.0 82.5 85.0

Clean Accuracy (%)

0.0

0.1

0.2

0.3

R
A
U
C

GCN
Jaccard-GCN
SVD-GCN
RGCN
ProGNN
GNNGuard
GRAND
Soft-Median-GDC
Poisoning
Evasion

Figure 6: Each defense’s clean accuracy
vs. RAUC values of the strongest global
attacks on Cora ML. We do not observe
a robustness accuracy trade-off. Con-
versely, we even find that models with
higher clean accuracy are more robust.

Finding 4 – No trade-off between accuracy and robust-
ness for structure perturbations. Instead, Fig. 6 shows
that defenses with high clean accuracy also exhibit high
RAUC, i.e., are more robust against our attacks. This ap-
pears to be in contrast to the image domain [45]. However,
we cannot exclude that future more powerful defenses
might manifest this trade-off in the graph domain.

Additional analysis. During this project, we generated a
treasure trove of data. We perform a more in-depth anal-
ysis of our attacks in the appendix. First, we study how
node degree affects attacks (see § K). For local attacks,
the required budget to misclassify a node is usually pro-
portional to the node’s degree. Global attacks tend to be
oblivious to degree and uniformly break nodes. Next, we
perform a breakdown of each defense in terms of the sen-
sitivity to different attacks (see § I). In short, global attacks are dominated by PGD for evasion and
Metattack/Meta-PGD for poisoning with the PM or TLM loss. For local, our greedy brute-force is
most effective, rarely beaten by PGD and Nettack. Finally, we analyze the properties of the adversarial
edges in terms of various graph statistics such as edge centrality and frequency spectra (see § L § M).

8

GC
N

Ja
cca

rd
-G
CN

RG
CN

Pr
oG
NN

GN
NG

ua
rd

GR
AN

D

So
ft-
Me

dia
n-G

DC

SV
D-
GC

N

Transfer from

GCN

Jaccard-GCN

RGCN

ProGNN

GNNGuard

GRAND

Soft-Median-GDC

SVD-GCN

T
ra
ns
fe
r
to

.12 .14 .11 .10 .22 .12 .11 .51

.20 .10 .18 .14 .18 .17 .17 .49

.15 .17 .11 .12 .23 .13 .13 .53

.14 .17 .12 .10 .25 .12 .11 .53

.26 .22 .20 .15 .10 .18 .18 .48

.16 .18 .13 .13 .28 .13 .14 .53

.18 .23 .15 .12 .32 .14 .12 .55

.15 .17 .17 .14 .29 .16 .15 .02

(a) Poisoning

GC
N

Ja
cca

rd
-G
CN

RG
CN

Pr
oG
NN

GN
NG

ua
rd

GR
AN

D

So
ft-
Me

dia
n-G

DC

SV
D-
GC

N

Transfer from

.21 .26 .26 .28 .38 .37 .29 .51

.31 .18 .34 .36 .34 .43 .35 .50

.28 .30 .22 .32 .41 .34 .33 .53

.27 .29 .29 .21 .38 .37 .32 .52

.39 .36 .40 .38 .15 .44 .39 .49

.36 .39 .33 .40 .45 .23 .37 .53

.40 .42 .42 .42 .47 .44 .29 .55

.28 .30 .29 .29 .25 .25 .28 .02

(b) Evasion

Figure 7: RAUC for transfer of the strongest global adaptive attacks on Cora ML between mod-
els/defenses. In each column, we have the model for which the adaptive attacks were created and the
rows contain the performance after the transfer. With only two exceptions, adaptive attacks (diagonal)
are most effective.

6 Robustness unit test

Next we systematically study how well the attacks transfer between defenses, as introduced in the
attacks and budget paragraph in § 5. In Fig. 7, we see that in 15 out of 16 cases the adaptive attack is
the most effective strategy (see main diagonal). However for many defenses, there is often a source
model or ensemble of source models (for the latter see § G) which forms a strong transfer attack.

Motivated by the effectiveness of transfer attacks (especially if transferring from ProGNN [30]), we
suggest this set of perturbed graphs to be used as a bare minimum robustness unit test: one can probe
a new defense by testing against these perturbed graphs, and if there exists at least one that diminishes
the robustness gains, we can immediately conclude that the defense is not robust in the worst-case –
without the potentially elaborate process of designing a new adaptive attack. We provide instructions
on how to use this collection in the accompanying code.

Nevertheless, we cannot stress enough that this collection does not replace a properly developed
adaptive attack. For example, if one would come up with SVD-GCN and would use our collection
(excluding the perturbed graphs for SVD-GCN) the unit test would partially pass. However, as we
can see in e.g., Fig. 2, SVD-GCN can be broken with an – admittedly very distinct – adaptive attack.

7 Related work

Excluding attacks on undefended GNNs, previous works studying adaptive attacks in the graph
domain are scarce. The recently proposed graph robustness benchmark [62] also only studies transfer
attacks. Such transfer attacks are so common in the graph domain that their usage is often not even
explicitly stated, and we find that the perturbations are most commonly transferred from Nettack or
Metattack (both use a linearized GCN). Other times, the authors of a defense only state that they
use PGD [53] (aka “topology attack”) without further explanations. In this case, the authors most
certainly refer to a PGD transfer attack on a GCN proxy. They almost never apply PGD to their actual
defense, which would yield an adaptive attack (but possibly weak, see § 4 for guidance).

An exception where the defense authors study an adaptive attack is SVD-GCN [12]. Their attack
collects the edges flipped by Nettack in a difference matrix δA, replaces its most significant singular
values and vectors with those from the clean adajcency matrix A, and finally adds it to A. Notably,
this yields a dense continuous perturbed adjacency matrix. While their SVD-GCN is susceptible to

9

these perturbations, the results however do not appear as catastrophic as with our adaptive attacks,
despite their severe violation of our threat model (see § 2). Geisler et al. [17] are another exception
where gradient-based greedy and PGD attacks are directly applied to their Soft-Median-GDC defense,
making them adaptive. Still, our attacks manage to further reduce their robustness estimate.

8 Discussion

We hope that the adversarial learning community for GNNs will reflect on the bitter lesson that
evaluating adversarial robustness is not trivial. We show that on average adversarial robustness
estimates are overstated by 40%. To ease the transition into a more reliable regime of robustness
evaluation for GNNs we share our recipe for successfully designing strong adaptive attacks.

Using adaptive (white-box) attacks is also interesting from a security perspective. If a model success-
fully defends such strong attacks, it is less likely to have remaining attack vectors for a real-world
adversary. Practitioners can use our methodology to evaluate their models in hope to avoid an arms
race with attackers. Moreover, the white-box assumption lowers the chance that real-world adversaries
can leverage our findings, as it is unlikely that they have perfect knowledge.

We also urge for caution since the attacks only provide an upper bound (which with our attacks is now
40% tighter). Nevertheless, we argue that the burden of proof that a defense is truly effective should
lie with the authors proposing it. Following our methodology, the effort to design a strong adaptive
attack is reduced, so we advocate for adaptive attacks as the gold-standard for future defenses.

Acknowledgments and Disclosure of Funding

This research was supported by the Helmholtz Association under the joint research school “Munich
School for Data Science – MUDS“.

References
[1] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense

of security: Circumventing defenses to adversarial examples. In International Conference on
Machine Learning, ICML, 2018.

[2] Aleksandar Bojchevski and Stephan Günnemann. Deep gaussian embedding of graphs: Unsuper-
vised inductive learning via ranking. In International Conference on Learning Representations,
ICLR, 2018.

[3] Nicholas Carlini and David Wagner. Adversarial examples are not easily detected: Bypassing
ten detection methods. In ACM Workshop on Artificial Intelligence and Security, AISec, 2017.

[4] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In
IEEE Symposium on Security and Privacy, 2017.

[5] Heng Chang, Yu Rong, Tingyang Xu, Yatao Bian, Shiji Zhou, Xin Wang, Junzhou Huang, and
Wenwu Zhu. Not all low-pass filters are robust in graph convolutional networks. In Advances in
Neural Information Processing Systems, NeurIPS, 2021.

[6] J. Chen, X. Lin, H. Xiong, Y. Wu, H. Zheng, and Q. Xuan. Smoothing adversarial training for
GNN. IEEE Transactions on Computational Social Systems, 8(3), 2020.

[7] Liang Chen, Jintang Li, Qibiao Peng, Yang Liu, Zibin Zheng, and Carl Yang. Understanding
structural vulnerability in graph convolutional networks. In International Joint Conference on
Artificial Intelligence, IJCAI, 2021.

[8] Lingwei Chen, Xiaoting Li, and Dinghao Wu. Enhancing robustness of graph convolutional
networks via dropping graph connections. In European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases, ECML PKDD, 2021.

[9] Zhijie Deng, Yinpeng Dong, and Jun Zhu. Batch virtual adversarial training for graph convolu-
tional networks. In Workshop on Learning and Reasoning with Graph-Structured Representa-
tions at the International Conference on Machine Learning, ICML, 2019.

10

[10] Dongsheng Duan, Lingling Tong, Yangxi Li, Jie Lu, Lei Shi, and Cheng Zhang. AANE:
Anomaly aware network embedding for anomalous link detection. In IEEE International
Conference on Data Mining, ICDM, 2020.

[11] Pantelis Elinas, Edwin V. Bonilla, and Louis Tiao. Variational inference for graph convolu-
tional networks in the absence of graph data and adversarial settings. In Advances in Neural
Information Processing Systems, NeurIPS, 2020.

[12] Negin Entezari, Saba A. Al-Sayouri, Amirali Darvishzadeh, and Evangelos E. Papalexakis. All
you need is low (rank): Defending against adversarial attacks on graphs. In ACM International
Conference on Web Search and Data Mining, WSDM, 2020.

[13] Boyuan Feng, Yuke Wang, Z. Wang, and Yufei Ding. Uncertainty-aware attention graph neural
network for defending adversarial attacks. In AAAI Conference on Artificial Intelligence, 2021.

[14] Fuli Feng, Xiangnan He, Jie Tang, and Tat-Seng Chua. Graph adversarial training: Dynamically
regularizing based on graph structure. IEEE Transactions on Knowledge and Data Engineering,
33(6), 2021.

[15] Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu, Qiang Yang, Evgeny
Kharlamov, and Jie Tang. Graph random neural network for semi-supervised learning on graphs.
In International Conference on Machine Learning, ICML, 2021.

[16] Simon Geisler, Daniel Zügner, and Stephan Günnemann. Reliable graph neural networks via
robust aggregation. In Advances in Neural Information Processing Systems, NeurIPS, 2020.

[17] Simon Geisler, Tobias Schmidt, Hakan Sirin, Daniel Zügner, Aleksandar Bojchevski, and
Stephan Günnemann. Robustness of graph neural networks at scale. In Advances in Neural
Information Processing Systems, NeurIPS, 2021.

[18] Simon Geisler, Johanna Sommer, Jan Schuchardt, Aleksandar Bojchevski, and Stephan Günne-
mann. Generalization of neural combinatorial solvers through the lens of adversarial robustness.
In International Conference on Learning Representations (ICLR), 2022.

[19] C. Lee Giles, Kurt D. Bollacker, and Steve Lawrence. CiteSeer: An automatic citation indexing
system. In ACM Conference on Digital Libraries, 1998.

[20] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl.
Neural message passing for quantum chemistry. In International Conference on Machine
Learning, ICML, 2017.

[21] Stephan Günnemann. Graph neural networks: Adversarial robustness. In Lingfei Wu, Peng
Cui, Jian Pei, and Liang Zhao, editors, Graph Neural Networks: Foundations, Frontiers, and
Applications, chapter 8, . Springer, 2021.

[22] Weibo Hu, Chuan Chen, Yaomin Chang, Zibin Zheng, and Yunfei Du. Robust graph convo-
lutional networks with directional graph adversarial training. Applied Intelligence, 51(11),
2021.

[23] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
In Advances in Neural Information Processing Systems, NeurIPS, 2020.

[24] Vassilis N. Ioannidis and Georgios B. Giannakis. Edge dithering for robust adaptive graph
convolutional networks. In AAAI Conference on Artificial Intelligence, 2020.

[25] Vassilis N. Ioannidis, Antonio G. Marques, and Georgios B. Giannakis. Tensor graph con-
volutional networks for multi-relational and robust learning. IEEE Transactions on Signal
Processing, 68, 2020.

[26] Vassilis N. Ioannidis, Dimitris Berberidis, and Georgios B. Giannakis. Unveiling anomalous
nodes via random sampling and consensus on graphs. In IEEE International Conference on
Acoustics, Speech and Signal Processing, ICASSP, 2021.

11

[27] Hongwei Jin and Xinhua Zhang. Latent adversarial training of graph convolution networks. In
Workshop on Learning and Reasoning with Graph-Structured Representations at the Interna-
tional Conference on Machine Learning, ICML, 2019.

[28] Hongwei Jin and Xinhua Zhang. Robust training of graph convolutional networks via latent
perturbation. In European Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases, ECML PKDD, 2021.

[29] Ming Jin, Heng Chang, Wenwu Zhu, and Somayeh Sojoudi. Power up! Robust graph convo-
lutional network against evasion attacks based on graph powering. In AAAI Conference on
Artificial Intelligence, 2021.

[30] Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang. Graph structure
learning for robust graph neural networks. In ACM International Conference on Knowledge
Discovery and Data Mining, SIGKDD, 2020.

[31] Wei Jin, Tyler Derr, Yiqi Wang, Yao Ma, Zitao Liu, and Jiliang Tang. Node similarity preserving
graph convolutional networks. In ACM International Conference on Web Search and Data
Mining, WSDM, 2021.

[32] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Interna-
tional Conference on Learning Representations, ICLR, 2015.

[33] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations, ICLR, 2017.

[34] Jintang Li, Tao Xie, Chen Liang, Fenfang Xie, Xiangnan He, and Zibin Zheng. Adversarial
attack on large scale graph. IEEE Transactions on Knowledge and Data Engineering, 2021.

[35] Yaxin Li, Wei Jin, Han Xu, and Jiliang Tang. Deeprobust: A pytorch library for adversarial
attacks and defenses. arXiv preprint arXiv:2005.06149, 2020.

[36] Xiaorui Liu, Jiayuan Ding, Wei Jin, Han Xu, Yao Ma, Zitao Liu, and Jiliang Tang. Graph
neural networks with adaptive residual. In Advances in Neural Information Processing Systems,
NeurIPS, 2021.

[37] Xiaorui Liu, Wei Jin, Yao Ma, Yaxin Li, Hua Liu, Yiqi Wang, Ming Yan, and Jiliang Tang.
Elastic graph neural networks. In International Conference on Machine Learning, ICML, 2021.

[38] Dongsheng Luo, Wei Cheng, Wenchao Yu, Bo Zong, Jingchao Ni, Haifeng Chen, and Xiang
Zhang. Learning to drop: Robust graph neural network via topological denoising. In ACM
International Conference on Web Search and Data Mining, WSDM, 2021.

[39] Florence Regol, Soumyasundar Pal, Jianing Sun, Yingxue Zhang, Yanhui Geng, and Mark
Coates. Node copying: A random graph model for effective graph sampling. Signal Processing,
192, 2022.

[40] Uday Shankar Shanthamallu, Jayaraman J. Thiagarajan, and Andreas Spanias. Uncertainty-
matching graph neural networks to defend against poisoning attacks. In AAAI Conference on
Artificial Intelligence, 2021.

[41] Ke Sun, Zhouchen Lin, Hantao Guo, and Zhanxing Zhu. Virtual adversarial training on graph
convolutional networks in node classification. In Chinese Conference on Pattern Recognition
and Computer Vision, PRCV, 2019.

[42] Xianfeng Tang, Yandong Li, Yiwei Sun, Huaxiu Yao, Prasenjit Mitra, and Suhang Wang. Trans-
ferring robustness for graph neural network against poisoning attacks. In ACM International
Conference on Web Search and Data Mining, WSDM, 2020.

[43] Shuchang Tao, H. Shen, Q. Cao, L. Hou, and Xueqi Cheng. Adversarial immunization for
certifiable robustness on graphs. In ACM International Conference on Web Search and Data
Mining, WSDM, 2021.

12

[44] Florian Tramer, Nicholas Carlini, Wieland Brendel, and Aleksander Madry. On adaptive attacks
to adversarial example defenses. In Advances in Neural Information Processing Systems,
NeurIPS, 2020.

[45] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander
Madry. Robustness may be at odds with accuracy. In International Conference on Learning
Representations, ICLR, 2019.

[46] Haibo Wang, Chuan Zhou, Xin Chen, Jia Wu, Shirui Pan, and Jilong Wang. Graph stochastic
neural networks for semi-supervised learning. In Advances in Neural Information Processing
Systems, NeurIPS, 2020.

[47] Yiwei Wang, Shenghua Liu, Minji Yoon, Hemank Lamba, Wei Wang, Christos Faloutsos, and
Bryan Hooi. Provably robust node classification via low-pass message passing. In IEEE
International Conference on Data Mining, ICDM, 2020.

[48] Huijun Wu, Chen Wang, Yuriy Tyshetskiy, Andrew Docherty, Kai Lu, and Liming Zhu. Adver-
sarial examples for graph data: Deep insights into attack and defense. In International Joint
Conference on Artificial Intelligence, IJCAI, 2019.

[49] Tailin Wu, Hongyu Ren, Pan Li, and Jure Leskovec. Graph information bottleneck. In Advances
in Neural Information Processing Systems, NeurIPS, 2020.

[50] Yang Xiao, Jie Li, and Wengui Su. A lightweight metric defence strategy for graph neural
networks against poisoning attacks. In International Conference on Information and Communi-
cations Security, ICICS, 2021.

[51] Hui Xu, Liyao Xiang, Jiahao Yu, Anqi Cao, and Xinbing Wang. Speedup robust graph structure
learning with low-rank information. In ACM International Conference on Information &
Knowledge Management, CIKM, 2021.

[52] Jiarong Xu, Yang Yang, Junru Chen, Chunping Wang, Xin Jiang, Jiangang Lu, and Yizhou Sun.
Unsupervised adversarially-robust representation learning on graphs. In AAAI Conference on
Artificial Intelligence, 2022.

[53] Kaidi Xu, Hongge Chen, Sijia Liu, Pin Yu Chen, Tsui Wei Weng, Mingyi Hong, and Xue
Lin. Topology attack and defense for graph neural networks: An optimization perspective. In
International Joint Conference on Artificial Intelligence, IJCAI, 2019.

[54] Kaidi Xu, Sijia Liu, Pin-Yu Chen, Mengshu Sun, Caiwen Ding, Bhavya Kailkhura, and Xue
Lin. Towards an efficient and general framework of robust training for graph neural networks.
In IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP, 2020.

[55] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen.
Graph contrastive learning with augmentations. In Advances in Neural Information Processing
Systems, NeruIPS, 2020.

[56] Baoliang Zhang, Xiaoxin Guo, Zhenchuan Tu, and Jia Zhang. Graph alternate learning for
robust graph neural networks in node classification. Neural Computing and Applications, 34
(11), 2022.

[57] Li Zhang and Haiping Lu. A feature-importance-aware and robust aggregator for gcn. In ACM
International Conference on Information & Knowledge Management, CIKM, 2020.

[58] Xiang Zhang and Marinka Zitnik. GNNGuard: Defending graph neural networks against
adversarial attacks. In Advances in Neural Information Processing Systems, NeurIPS, 2020.

[59] Yingxue Zhang, Sakif Hossain Khan, and Mark Coates. Comparing and detecting adversarial
attacks for graph deep learning. In Workshop on Representation Learning on Graphs and
Manifolds at the International Conference on Learning Representations, ICLR, 2019.

[60] Yingxue Zhang, Florence Regol, Soumyasundar Pal, Sakif Khan, Liheng Ma, and Mark Coates.
Detection and defense of topological adversarial attacks on graphs. In International Conference
on Artificial Intelligence and Statistics, AISTATS, 2021.

13

[61] Cheng Zheng, Bo Zong, Wei Cheng, Dongjin Song, Jingchao Ni, Wenchao Yu, Haifeng Chen,
and Wei Wang. Robust graph representation learning via neural sparsification. In International
Conference on Machine Learning, ICML, 2020.

[62] Qinkai Zheng, Xu Zou, Yuxiao Dong, Yukuo Cen, Da Yin, Jiarong Xu, Yang Yang, and Jie
Tang. Graph robustness benchmark: Benchmarking the adversarial robustness of graph machine
learning. In Advances in Neural Information Processing Systems, NeurIPS, 2021.

[63] Dingyuan Zhu, Peng Cui, Ziwei Zhang, and Wenwu Zhu. Robust graph convolutional networks
against adversarial attacks. In ACM International Conference on Knowledge Discovery and
Data Mining, SIGKDD, 2019.

[64] Jun Zhuang and Mohammad Al Hasan. Defending graph convolutional networks against
dynamic graph perturbations via bayesian self-supervision. In AAAI Conference on Artificial
Intelligence, 2022.

[65] Jun Zhuang and Mohammad Al Hasan. How does bayesian noisy self-supervision defend graph
convolutional networks? Neural Processing Letters, 54(4), 2022.

[66] Daniel Zügner and Stephan Günnemann. Adversarial attacks on graph neural networks via meta
learning. In International Conference on Learning Representations, ICLR, 2019.

[67] Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. Adversarial attacks on neural
networks for graph data. In ACM International Conference on Knowledge Discovery and Data
Mining, SIGKDD, 2018.

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See § 8.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See § 8.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] See § 5.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See § 5, § H and provided code.

(c) Did you report error bars (e.g., with respect to the random seed after running ex-
periments multiple times)? [Yes] All experiments are repeated for five random data
splits.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See beginning of § 5.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [No]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

See beginning of § 5.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]

14

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

15

A Attacks overview

In this section, we make the ensemble of attacks explicit and explain essential details. We then adapt
these attack primitives to circumvent the defense mechanisms (see § E).

Global evasion attacks. The goal of a global attack is to provoke the misclassification of a large
fraction of nodes (i.e., the test set) jointly, crafting a single perturbed adjacency matrix. For evasion,
we use (1) the Fast Gradient Attack (FGA) and (2) Projected Gradient Descent (PGD). In FGA, we
calculate the gradient towards the entries of the clean adjacency matrix ∇Aℓattack(fθ∗(A,X),y) and
then flip the highest-ranked edges at once s.t. we exhaust the budget ∆. In contrast, PGD requires
multiple gradient updates since it uses gradient ascent (see § 2 or explanation below for Meta-PGD).
We deviate from the PGD implementation of Xu et al. [53] is two ways: (I) we adapt the initialization
of the perturbation before the first attack gradient descent step and (II) we adjust the final sampling of
Ã. See below for more details.

Global poisoning attacks. We either (a) transfer the perturbation Ã found by evasion attack (1)
or (2) and use it to poison training, or (b) differentiate through the training procedure by unrolling
it, thereby obtaining a meta gradient. The latter approach is taken by both (3) Metattack [66] and
(4) our Meta-PGD. Metattack greedily flips a single edge in each iteration and then obtains a new
meta gradient at the changed adjacency matrix. In Meta-PGD, we follow the same relaxation as Xu
et al. [53] (see below as well as § 2) and obtain meta gradients at the relaxed adjacency matrices. In
contrast to the greedy approach of Metattack, Meta-PGD is able to revise early decisions later on.

Meta-PGD. Next, we explain the details of Meta-PGD and we present the pseudo code for reference
in Algorithm A.1. Recall that the discrete edges are relaxed {0, 1} → [0, 1] and that the “weight” of
the perturbation reflects the probability of flipping the respective edge.

Algorithm A.1 Meta-PGD
1: Input: Adjacency matrix A, node features X, labels y, GNN fθ(·), loss ℓattack
2: Parameters: Budget ∆, iterations E, learning rates αt

3: Initialize P0 ∈ Rn×n

4: for t ∈ {1, 2, . . . , E} do
5: Step P(t) ← P(t−1) + αt∇P(t−1)

[
ℓattack

(
f
(
A+P(t−1),X; θ = train(A+P(t−1),X,y)

)
,y

)]
6: Projection P(t) ← Π∥E[A+P(t)]−A∥0≤2∆(P(t))

7: Sample Ã s.t. ∥Ã−A∥0 ≤ 2∆

8: Return Ã

In the first step of Meta-PGD, we initialize the perturbation (line 3). In contrast to Xu et al. [53]’s
suggestion, we find that initializing the perturbation with the zero matrix can cause convergence
issues. Hence, we alternatively initialize the perturbation with Ã from an attack on a different model
(see also lesson learned #8 in § 4).

In each attack iteration, a gradient ascent step is performed on the relaxed perturbed adjacency matrix
Ã(t−1) = A + P(t−1) (line 5). For obtaining the meta gradient through the training process, the
training is unrolled. For example, with vanilla gradient descent for training fθ(A,X) = f(A,X; θ),
the meta gradient resolves to

∇P(t−1)

(
ℓattack

[
f
(
A+P(t−1),X; θ = θ0 − η

Etrain∑
k=1

∇θk−1
ℓtrain[f(A+P(t−1),X; θ = θk−1),y]

)
,y

])
(A.1)

with number of training epochs Etrain, fixed training learning rate η, and parameters after (random)
initialization θ0. Notice that to obtain our variant of non-meta PGD, it suffices to replace the gradient
computation in line 5 with ∇P(t−1)

[
ℓattack(fθ∗(A+P(t−1),X),y)

]
.

Thereafter in line 6, the perturbation is projected such that in expectation the budget is obeyed, i.e.,
Π∥E[A+P(t)]−A∥0≤2∆. First, the projection clips A+P(t−1) to be in [0, 1]. If the budget is violated
after clipping, it solves

argmin
P̂(t)

∥P̂(t) −P(t)∥2 s.t. A+ P̂(t) ∈ [0, 1]n×n and
∑

|P̂(t)| ≤ 2∆ (A.2)

After the last iteration (line 7), each element of P(t) is interpreted as a probability and multiple
perturbations are sampled accordingly. The strongest drawn perturbed adjacency matrix (in terms of

16

attack loss) is chosen as Ã. Specifically, in contrast to [53], we sample K = 100 potential solutions
that all obey the budget ∆ and then choose the one that maximizes the attack loss ℓattack.

Local attacks. For local attacks we only run evasion attacks, and then transfer them to poisoning.
This is common practice (e.g., see Zügner et al. [67] or Li et al. [34]). The attacks we use are (1) FGA,
(2) PGD, (3) Nettack [67], and a (4) Greedy Brute Force attack. Nettack greedily flips the best edges
considering a linearized GCN, whose weights are either specially trained or taken from the attacked
defense. In contrast, in each iteration, our Greedy Brute Force attack flips the current worst-case edge
for the attacked model. It determines the worst-case perturbation by evaluating the model for every
single edge flip. Notice that all examined models use two propagation steps, so we only consider
all potential edges adjoining the target node or its neighbors4. Importantly, Greedy Brute Force is
adaptive for any kind of model. Runtime-wise, the algorithm evaluates the attacked model O(∆nd)
times with the number of nodes n and the degree of the target node d. We provide pseudo code in
Algorithm A.2.

Algorithm A.2 Greedy Brute Force

1: Input: Target node i, adjacency matrix A, node features X, labels y, GNN fθ(·), loss ℓattack
2: Parameter: Budget ∆
3: Initialize Ã(0) = A
4: for t ∈ {1, 2, . . . ,∆} do
5: for potential edge e adjoining i or any of i’s direct neighbors do
6: Flip edge Ã(t) ← Ã(t−1) ± e

7: Remember best Ã(t) in terms of ℓattack(fθ∗(Ã
(t),X),y)

8: if node i is missclassifed then
9: Return Ã(t)

10: Recover best Ã(t)

11: Return Ã∆

Unnoticeability typically serves as a proxy to ensure that the label of an instance (here node) has
not changed. In the image domain, it is widely accepted that a sufficiently small perturbation of the
input image w.r.t. an Lp-norm is unnoticeable (and similarly for other threat models such as rotation).
For graphs the whole subject of unnoticeability is more nuanced. The only constraint we use is the
number of edge insertions/deletion, i.e., an L0-ball around the clean adjacency matrix.

The only additional unnoticeability constraint proposed in the literature compares the clean and
perturbed graph under a power law assumption on the node degrees [67]. However, we do not include
such a constraint since (1) the degree distribution is only one (arbitrary) property to distinguish
two graphs. (2) The degree distribution is a global property with an opaque relationship to the local
class labels in node classification. (3) As demonstrated in Zügner & Günnemann [66], enforcing
an indistinguishable degree distribution only has a negligible influence on attack efficacy, i.e., their
gradient-based/adaptive attack conveniently circumvents this measure. Thus, we argue that enforcing
such a constraint is similar to an additional (weak) defense measure and is not the focus of this
work. Finally, since many defense (and attack) works in the literature considering node-classification
(including the ones we study) also only use an L0-ball constraint as a proxy for unnoticeability,
we do the same for improved consistency. Out of scope are also other domains, like combinatorial
optimization, where unnoticeability is not required since the true label of the perturbed instance is
known [18].

4 Due to GCN-like normalization (see § E), the three-hop neighbors need to be considered to be exhaustive.
However, it is questionable if perturbing a neighbor three hops away is ever the strongest perturbation there is.

17

B Defense taxonomy

Next, we give further details behind our reasoning on how to categorize defenses for GNNs. Our
taxonomy extends and largely follows Günnemann [21]’s. The three main categories are improving
the graph (§ B.1), improving the training (§ B.2), and improving the architecture (§ B.3). We assign
each defense to the category that fits best, even though some defenses additionally include ideas
fitting into other categories as well. For the assignment of defenses see Table 1.

B.1 Improving the graph

With this category, we refer to all kinds of preprocessing of the graph. Alternatively, some approaches
make the graph learnable with the goal of improved robustness. In summary, this category addresses
changes that take place prior to the GNN (i.e., any message passing). We further distinguish (1)
unsupervised and (2) supervised approaches.

Unsupervised. Any improvements that are not entangled with a learning objective, i.e., pure pre-
processing, usually arising from clues found in the node features and graph structure. For example,
Jaccard-GCN [48] filters out edges based on the Jaccard similarity of node features, while SVD-
GCN [12] performs a low-rank approximation to filter out high-frequency perturbations. Most other
approaches from this category exploit clues from features and structure simultaneously.

Supervised. These graph improvements are entangled with the learning objective by making the
adjacency matrix learnable, often accompanied by additional regularization terms that introduce
expert assumptions about robustness. For example, ProGNN [30] treats the adjacency matrix like a
learnable parameter, and adds loss terms s.t. it remains close to the original adjacency matrix and
exhibits properties which are assumed about clean graphs like low-rankness.

B.2 Improving the training

These approaches improve training – without changing the architecture – s.t. the learned parameters
θ∗ of the GNN exhibit improved robustness. In effect, the new training “nudges” a regular GNN
towards being more robust. We distinguish (1) robust training and (2) further training principles.

Robust training. Alternative training schemes and losses which reward the correct classification of
synthetic adversarial perturbations of the training data. With this category, Günnemann [21] targets
both straightforward adversarial training and losses stemming from certificates (i.e., improving
certifiable robustness). Neither approach is interesting to us: the former is discussed in § C, and the
latter targets provable robustness which does not lend itself to empirical evaluation.

Further training principles. This category is distinct from robust training due to the lack of a clear
mathematical definition of the training objective. It mostly captures augmentations [15, 29, 39, 42, 61]
or alternative training schemes [5, 11, 55, 64] that encourage robustness. A simple example for such
an approach is to pre-train the GNN weights on perturbed graphs [42]. Another recurring theme is to
use multiple models during training and then, e.g., enforce consistency among them [5].

B.3 Improving the architecture

Even though there are some exceptions (see sub-category (2) miscellaneous), the recurring theme
in this category is to somehow weight down the influence of some edges adaptively for each layer
or message passing aggregation. We refer to this type of improved architecture with (1) adaptively
weighting edges. We further distinguish between approaches that are (a) rule-based, (b) probabilistic,
or use (c) robust aggregation.

Rule-based approaches typically use some metric [31, 58], alternative message passing [36, 37], or an
auxiliary MLP [57] to filter out alleged adversarial edges. Probabilistic approaches either work with
distributions in the latent space [63], are built upon probabilistic principles like Bayesian uncertainty
quantification [13], or integrate sampling into the architecture and hence apply it also at inference
time [8, 24, 25, 38]. Robust aggregation defenses replace the message passing aggregation (typically
mean) with a more robust equivalent such as a trimmed mean, median, or soft median [7, 17]. In
relation to the trimmed mean, in this category we include also other related approaches that come
with some guarantees based on their aggregation scheme Wang et al. [47].

18

C On adversarial training defenses

The most basic form of adversarial training for structure perturbations aims to solve:

min
θ

max
A′∈Φ(A)

ℓ(fθ(A
′,X),y) (C.1)

Similarly to [44, 1, 4], we exclude defenses that build on adversarial training in our study for three
reasons.

First, we observe that adversarial training requires knowing the clean A. However, for poisoning,
we would need to substitute A with an adversarially perturbed adjacency matrix Ã. In this case,
adversarial training aims to enforce adversarial generalization A′ ∈ Φ(Ã) for the adversarially
perturbed adjacency matrix Ã – potentially even reinforcing the poisoning attack.

Second, an adaptive poisoning attack on adversarial training is very expensive as we need to unfold
many adversarial attacks for a single training. Thus, designing truly adaptive poisoning attacks
requires a considerable amount of resources. Scaling these attacks to such complicated training
schemes is not the main objective of this work.

Third, adversarial training for structure perturbations on GNNs seems to be an unsolved question. So
far, the robustness gains come from additional and orthogonal tricks such as self-training [53]. Hence,
adversarial training for structure perturbations requires an entire paper on its own.

D On defenses against feature perturbations

As introduced in § 2, attacks may perturb the adjacency matrix A, the feature matrix X, or both.
However, during our survey we found that few defenses tackle feature perturbations. Similarly, 6 out
of the 7 defenses chosen by us mainly based on general popularity turn out to not consciously defend
against feature perturbations.

The only exception is SVD-GCN [12], which also applies its low-rank approximation to the binary
feature matrix. However, the authors do not report robustness under feature-only attacks; instead, they
only consider mixed structure and feature attacks found by Nettack. Given the strong bias of Nettack
towards structure perturbations, we argue that their experimental results do not confirm feature
robustness. Correspondingly, in preliminary experiments we were not able to achieve considerable
robustness gains of SVD-GCN compared to an undefended GCN – even with non-adaptive feature
perturbations. If a non-adaptive attack is strong enough, there is not much merit in applying an
adaptive attack.

To reiterate, due to the apparent scarcity of defenses apt against feature attacks, we decided to focus
our efforts on structure attacks and defenses. However, new defenses considering feature perturbations
should study robustness in the face of adaptive attacks – similarly to our work. In the following,
we give some important hints for adaptive attacks using feature perturbations. We leave attacks
that jointly consider feature and structure perturbations for future work due to the manifold open
challenges, e.g., balancing structure and feature perturbations in the budget quantity.

Baseline. To gauge the robustness of defenses w.r.t. global attacks, we introduce the RAUC metric,
which employs the accuracy of an MLP – which is perfectly robust w.r.t. structure perturbations – to
determine the maximally sensible budget to include in the summary. As MLPs are however vulnerable
to feature attacks, a different baseline model is required for this new setting. We propose to resolve
this issue by using a label propagation approach, which is oblivious to the node features and hence
perfectly robust w.r.t. feature perturbations.

Perturbations. The formulation of the set of admissible perturbations depends on what modality
the data represents, which may differ between node features and graph edges. Convenient choices
for continuous features are l-p-norms; in other cases, more complicated formulations are more
appropriate. Accordingly, one has to choose an appropriate constrained optimization scheme.

19

E Examined adversarial defenses

In this section, we portray each defense and how we adapted the base attacks to each one. We refer to
Table H.1 for the used hyperparameter values for each defense. We give the used attack parameters
for a GCN below and refer to the provided code for the other defenses.

GCN. We employ an undefended GCN [33] as our baseline. A GCN first adds self loops to the
adjacency matrix A and subsequently applies GCN-normalization, thereby obtaining A′ = (D +

I)−
1
2 (A + I)(D + I)−

1
2 with the diagonal degree matrix D ∈ Nn×n. Then, in each GCN layer it

updates the hidden states H(l) = dropout(σ(A′H(l−1)W(l−1) + b(l−1))) where H(0) = X. We
use the non-linear ReLU activation for intermediate layers. Dropout is deactivated in the last layer
and we refer to the output before softmax activation as logits. We use Adam [32] to learn the model’s
parameters.

Attack. We do not require special tricks since the GCN is fully differentiable and does not come
with defensive measures to consider. In fact, the off-the-shelf attacks we employ are tailored to a
GCN. For PGD, we use E = 200 iterations, K = 100 samples, and a base learning rate of 0.1. For
Meta-PGD, we only lower the base learning rate to 0.01 and add gradient clipping to 1 (w.r.t. global
L2-norm). For Metattack with SGD instead of Adam for training the GCN, we use an SGD learning
rate of 1 and restrict the training to Etrain = 100 epochs.

E.1 Jaccard-GCN

Defense. Additionally to a GCN, Jaccard-GCN [48] preprocesses the adjacency matrix. It computes
the Jaccard coefficient of the binarized features for the pair of nodes of every edge, i.e., Jij =

XiXj

min{Xi+Xj ,1} . Then edges are dropped where Jij ≤ ϵ.

Adaptive attack. We do not need to adapt gradient-based attacks as the gradient is equal to zero for
dropped edges. Straightforwardly, we adapt Nettack to only consider non-dropped edges. Analogously,
we ignore these edges in the Greedy Brute Force attack for increased efficiency.

E.2 SVD-GCN

Defense. SVD-GCN [12] preprocesses the adjacency matrix with a low-rank approximation (LRA) for
a fixed rank r, utilizing the Singular Value Decomposition (SVD) A = UΣV⊤ ≈ UrΣrV

⊤
r = Ar.

Note that the LRA is performed on A before adding self-loops and GCN-normalization (see above).
Thereafter, the dense Ar is passed to the GCN as usual. Since A is symmetric and positive semi-
definite, we interchangeably refer to the singular values/vectors also as eigenvalues/eigenvectors.

Adaptive attack. Unfortunately, the process of determining the singular vectors Ur and Vr is
highly susceptible to small perturbations, and so is its gradient. Thus, we circumvent the need of
differentiating the LRA.

We now explain the approach from a geometrical perspective. Each row of A (or interchangeably
column as A is symmetric) is interpreted as coordinates of a high-dimensional point. The r most
significant eigenvectors of A span an r-dimensional subspace, onto which the points are projected by
the LRA. Adding or removing an adversarial edge (i, j) corresponds to moving the point Ai along
dimension j, i.e., Ai ± ej (vice-versa for Aj). As hinted at in § 4, the r most significant eigenvectors
of A turn out to usually have few large components. Thus, the relevant subspace is mostly aligned
with only few dimensions.

Changes along the highest-valued eigenvectors are consequently preserved by LRA. To quantify how
much exactly such a movement along a dimension j, i.e., ej , is preserved, we project the movement
itself onto the subspace and extract the projected vector’s j-th component. More formally, we denote
the projection matrix onto the subspace as P =

∑r
k=0 vkv

T
k where vk are the eigenvectors of A.

We now score each dimension j with (Pej)j = Pjj . Since the adjacency matrix is symmetric and
rows and columns are hence exchangeable, we then symmetrize the scores Wij = (Pii + Pjj)/2.

Finally, we decompose the perturbed adjacency matrix Ã = A+ δA and, thus, only need gradients
for δA. Using the approach sketched above, we now replace LRA(A+ δA) ≈ LRA(A)+ δA ◦W.

20

The weights W can also be incorporated into the Greedy Brute Force attack by dropping edges
with weight < 0.2 and, for efficient early stopping, sort edges to try in order of descending weight.
Similarly, Nettack’s score function sstruct(i, j) – which attains positive and negative values, while W
is positive – can be wrapped to s′struct(i, j) = log(exp(sstruct(i, j)) ◦W) = sstruct(i, j) + logW.

Note that we assume that the direction of the eigenvectors remains roughly equal after perturbing
the adjacency matrix. In practice, we find this assumption to be true. Intuitively, a change along the
dominant eigenvectors should even reinforce their significance.

E.3 RGCN

Defense. The implementations of R(obust)GCN provided by the authors5 and in the widespread
DeepRobust [35] library6 are both consistent, but diverge slightly from the paper [63]. We use and now
present RGCN according to those reference implementations. Principally, RGCN models the hidden
states as Gaussian vectors with diagonal variance instead of sharp vectors. In addition to GCN’s A′,
a second A′′ = (D + I)−1(A + I)(D + I)−1 is prepared to propagate the variances. The mean
and variance of this hidden Gaussian distribution are initialized as M(0) = V(0) = X. Each layer
first computes an intermediate distributions given by M̂(l) = elu(dropout(M(l−1))W

(l−1)
M) and

V̂(l) = relu(dropout(V(l−1))W
(l−1)
V). Then, attention coefficients α(l) = e−γV̂(l)

are calculated
with the aim to subdue high-variance dimensions (where exponentiation is element-wise and γ

is a hyperparameter). The final distributions are obtained with M(l) = A′M̂′(l) ◦ α(l). Note the
absence of bias terms. After the last layer, point estimates are sampled from the distributions via
the reparameterization trick, i.e., scalars are sampled from a standard Gaussian and arranged in a
matrix R. These samples are then used to obtain the logits via M(L) + R ◦ (V(L) + ϵ)

1
2 (where

the square root applies element-wise and ϵ is a hyperparameter). Adam is the default optimizer.
The loss is extended with the regularizer β

∑
i KL(N (M̂

(1)
i ,diag(V̂

(1)
i))∥N (0, I)) (where β is a

hyperparameter).

Adaptive attack. A direct gradient attack suffices for a strong adaptive attack. Only when unrolling
the training procedure for Metattack and Meta-PGD, we increase hyperparameter ϵ from 10−8 to
10−2 to retain numerical stability.

E.4 ProGNN

Defense. We use and present Pro(perty)GNN [30] exactly following the implementation provided by
the authors in their DeepRobust [35] library6. ProGNN learns an alternative adjacency matrix S that is
initialized with A. A regular GCN – which, as usual, adds self-loops and applies GCN-normalization
– is trained using S, which is simultaneously updated in every τ -th epoch. For that, first a gradient
descent step is performed on S with learning rate η and momentum µ towards minimizing the principal
training loss alongside two regularizers that measure deviation β1∥S−A∥2F and feature smoothness
β2

2

∑
i,j Sij∥ Xi√

di
− Xj√

dj

∥2 (where di =
∑

j Sij + 10−3). Next, the singular value decomposition

UΣVT of the updated S is computed, and S is again updated to be Umax(0,Σ − ηβ3)V
T to

promote low-rankness. Thereafter, S is again updated to be sgn(S) ◦max(0, |S| − ηβ4) to promote
sparsity. Finally, the epoch’s resulting S is obtained by clamping its elements between 0 and 1.

Adaptive attack. Designing an adaptive attack for ProGNN proved to be a challenging endeavor. We
describe the collection of tricks in § 4’s Example 2.

E.5 GNNGuard

Defense. We closely follow the authors’ implementation7 as it deviates from the formal definitions in
the paper [58]. GNNGuard adopts a regular GCN and, before each layer, it adaptively weights down
alleged adversarial edges. Thus, each layer has a unique propagation matrix A(l) that is used instead
of A′.

5 https://github.com/ZW-ZHANG/RobustGCN 6 https://github.com/DSE-MSU/DeepRobust
7 https://github.com/mims-harvard/GNNGuard

21

https://github.com/ZW-ZHANG/RobustGCN
https://github.com/DSE-MSU/DeepRobust
https://github.com/mims-harvard/GNNGuard

GNNGuard’s rule-based edge reweighting can be clustered into four consecutive steps: (1) the

edges are reweighted based on the pair-wise cosine similarity C
(l)
ij =

H
(l−1)
i ·H(l−1)

j

∥H(l−1)
i ∥∥H(l−1)

j ∥
according to

S(l) = A ◦C(l) ◦ I[C(l) ≥ 0.1], where edges with too dissimilar node embeddings are removed (see
Iverson bracket I[C(l) ≥ 0.1]). Then, (2) the matrix is rescaled Γ

(l)
ij = S

(l)
ij /s

(l)
i with s

(l)
i =

∑
j S

(l)
ij

For stability, if s(l)i < ϵ, s(l)i is set to 1 (here ϵ is a small constant). Next, (3) self-loops are added and
Γ(l) is non-linarily transformed according to Γ̂(l) = exp̸=0(Γ

(l)+diag 1/1 + d(l)), where exp ̸=0 only

operates on nonzero elements and d
(l)
i = ∥Γ(l)

i ∥0 is the row-wise number of nonzero entries. Last,
(4) the result is smoothed over the layers with Ω(l) = σ(ρ)Ω(l−1) + (1− σ(ρ))Γ̂(l) with learnable
parameter ρ and sigmoid function σ(·).
The resulting reweighted adjacency matrix Ω(l) is then GCN-normalized (without adding self-loops)
and passed on to a GCN layer. Note that steps (1) to (3) are excluded from back-propagation during
training. When comparing with the GNNGuard paper, one notices that among other deviations, we
have omitted learnable edge pruning because it is disabled in the reference implementation.

Adaptive attack. The hyperparameter ϵ must be increased from 10−6 to 10−2 during the attack
to retain numerical stability. In contrast to the reference implementation but as stated above, it is
important to place the hard filtering step I[C(l) ≥ 0.1] for S(l) s.t. the gradient calculation w.r.t. A is
not suppressed for these entries.

E.6 GRAND

Defense. The Graph Random Neural Network (GRAND) [15] model is the only defense from our
selection that is not based on a GCN. First, A is endowed with self-loops and GCN-normalized to
obtain A′. Also, each row of X is l1-normalized, yielding X′. Next, rows from X′ are randomly
dropped with probability δ during training to generate a random augmentation, and X′ is scaled by
1− δ during inference to compensate, thereby obtaining X̂. Those preprocessed node features are
then propagated multiple times along the graph to get X = 1

K+1

∑K
k=0 A

′kX̂. Finally, dropout is
applied once to X, and the result is plugged into a 2-layer MLP with dropout and ReLU activation to
obtain class probabilities Z. The authors also propose an alternative architecture using a GCN instead
of an MLP, however, we do not explore this option since the MLP version is superior according to
their own results.

GRAND is trained with Adam. The training loss comprises the mean of the cross-entropy losses of S
model evaluations, thereby incorporating multiple random augmentations. Additionally, a consistency
regularizer is added to enforce similar class probabilities across all evaluations. More formally, first
the probabilities are averaged across all evaluations: Z = 1

S

∑S
s=1 Z

(s). Next, each node’s categorical
distribution is sharpened according to a temperature hyperparameter T , i.e., Z

′
ij = Z

1
T
ij
/
∑

c Z
1
T
ic . The

final regularizer penalizes the distance between the class probabilities and the sharpened averaged
distributions, namely β

S

∑S
s=1 ∥Z(s) − Z

′∥2F .

Adaptive attack. When unrolling the training procedure for Metattack and Meta-PGD, to reduce
the memory footprint, we reduce the number of random augmentations per epoch to 1, and we use a
manual gradient calculation for the propagation operation. We also initialize Meta-PGD with a strong
perturbation found by Meta-PGD on ProGNN. Otherwise, the attack has issues finding a perturbation
with high loss; it presumably stalls in a local optimum. It is surprising that “only” initializing from
GCN instead of ProGNN does not give a satisfyingly strong attack. Finally, we use the same random
seed for every iteration of Metattack and Meta-PGD, as otherwise the constantly changing random
graph augmentations make the optimization very noisy.

E.7 Soft-Median-GDC

Defense. The Soft-Median-GDC [17] deviates in two ways from a GCN: (1) it uses Personalized
Page Rank (PPR) with restart probability α = 0.15 to further preprocess the adjacency matrix after
adding self-loops and applying GCN-normalization. The result is then sparsified using a row-wise
top-k operation (k = 64). (2) the message passing aggregation is replaced with a robust estimator

22

called Soft-Median. From the perspective of node i, a GCN uses the message passing aggregation
H

(l)
i = AiH

(l−1) which can be interpreted as a weighted mean/sum. In Soft-Median-GDC, the
“weights” Ai are replaced with a scaled version of Ai ◦ softmax (−c/T

√
d). Here the vector c denotes

the distance between hidden embedding of a neighboring node to the neighborhood-specific weighted
dimension-wise median: ci = ∥Median(Ai,H

(l−1))−H
(l−1)
i ∥. To keep the scale, these weights

are scaled s.t. they sum up to
∑

Ai.

Adaptive attack. During gradient-based attacks, we adjust the c of every node s.t. it now captures
the distance to all other nodes, not only neighbors. This of course modifies the values of c, but is
necessary to obtain a nonzero gradient w.r.t. to all candidate edges. We initialize PGD with a strong
perturbation found by a similar attack on GCN, and initialize Meta-PGD with a perturbation from
a similar attack on ProGNN (as with GRAND, using an attack against GCN as a base would be
insufficient here).

F Evaluation of adaptive attacks

In Table F.1, we summarize the variants of the datasets we use, both of which we have precisely
extracted from Nettack’s code8. In Fig. F.1, we complement Fig. 2 and compare the (R)AUC of all
defenses on Citeseer. The robustness estimates for the defenses on Citeseer are also much lower
as originally reported. For completeness, we give absolute envelope curve plots for all settings and
datasets as well as for higher budgets in Fig. F.2 and Fig. F.3 (compare with Fig. 4 and Fig. 5).

Table F.1: Statistics of the datasets we used. We measure homophily as the fraction of edges which
connect nodes of the same class.

Dataset Nodes Undirected Edges Features Classes Avg. Degree Homophily

Cora ML [2] 2485 5069 1433 7 4.08 0.804
Citeseer [19] 2110 3668 3703 6 3.477 0.736

0.00 0.02 0.04

RAUC

Soft-Median-GDC
GRAND
RGCN

ProGNN
GCN

GNNGuard
Jaccard-GCN

SVD-GCN

(a) Global, Poisoning

0.00 0.05 0.10 0.15

RAUC

(b) Global, Evasion

0.2 0.4

AUC

(c) Local, Poisoning

0.2 0.4 0.6

AUC

Adaptive
attack
Non-
adaptive
attack

(d) Local, Evasion

Figure F.1: Variant of Fig. 2 for Citeseer.

8 https://github.com/danielzuegner/nettack

23

https://github.com/danielzuegner/nettack

MLP
GCN

Jaccard-GCN
SVD-GCN

RGCN
ProGNN

GNNGuard
GRAND

Soft-Median-GDC

0 2 4 6 8 10 12 14

Relative budget ∆
m (%)

40

50

60

70

80
A
cc
ur
ac
y
(%

)

(a) Cora ML, Poisoning

0 2 4 6 8 10 12 14

Relative budget ∆
m (%)

60

65

70

75

80

85

A
cc
ur
ac
y
(%

)

(b) Cora ML, Evasion

0 2 4 6 8 10 12 14

Relative budget ∆
m (%)

40

50

60

70

A
cc
ur
ac
y
(%

)

(c) Citeseer, Poisoning

0 2 4 6 8 10 12 14

Relative budget ∆
m (%)

55

60

65

70

75

A
cc
ur
ac
y
(%

)

(d) Citeseer, Evasion

Figure F.2: Absolute variant of Fig. 4, showing relative budgets up to 15%.

GCN
Jaccard-GCN

SVD-GCN
RGCN

ProGNN
GNNGuard

GRAND
Soft-Median-GDC

0 25 50 75 100 125 150 175 200

Relative budget ∆
degree (%)

0

20

40

60

80

C
or
r.

pr
ed

.(
%
)

(a) Cora ML, Poisoning

0 25 50 75 100 125 150 175 200

Relative budget ∆
degree (%)

0

20

40

60

80

C
or
r.

pr
ed

.(
%
)

(b) Cora ML, Evasion

0 25 50 75 100 125 150 175 200

Relative budget ∆
degree (%)

0

20

40

60

80

C
or
r.

pr
ed

.(
%
)

(c) Citeseer, Poisoning

0 25 50 75 100 125 150 175 200

Relative budget ∆
degree (%)

0

20

40

60

80

C
or
r.

pr
ed

.(
%
)

(d) Citeseer, Evasion

Figure F.3: Absolute variant of Fig. 5, showing relative budgets up to 200%.

24

G Ensemble transferability study

In Fig. 7, we transfer attacks found on an individual model to other models. It is natural to also assess
the strength of transfer attacks supplied by ensembles of models. In Fig. G.1, we address this question
for 2-ensembles. For poisoning, the combination of RGCN and ProGNN turns out to be (nearly) the
strongest in all cases, which is reasonable since both already form strong individual transfer attacks
as is evident in Fig. 7. For evasion, the differences are more subtle.

We also investigate 3-ensembles, but omit the plots due to their size. For poisoning, RGCN and
ProGNN now combined with Soft-Median-GDC remain the strongest transfer source, yet the im-
provement over the 2-ensemble is marginal. For evasion, there is still no clear winner.

GC
N

Ja
cca

rd
-G
CN

SV
D-
GC

N

RG
CN

Pr
oG
NN

GN
NG

ua
rd

GR
AN

D

So
ft-
Me

dia
n-G

DC
Transfer to

GCN + Jaccard-GCN

GCN + SVD-GCN

GCN + RGCN

GCN + ProGNN

GCN + GNNGuard

GCN + GRAND

GCN + Soft-Median-GDC

Jaccard-GCN + SVD-GCN

Jaccard-GCN + RGCN

Jaccard-GCN + ProGNN

Jaccard-GCN + GNNGuard

Jaccard-GCN + GRAND

Jaccard-GCN + Soft-Median-GDC

SVD-GCN + RGCN

SVD-GCN + ProGNN

SVD-GCN + GNNGuard

SVD-GCN + GRAND

SVD-GCN + Soft-Median-GDC

RGCN + ProGNN

RGCN + GNNGuard

RGCN + GRAND

RGCN + Soft-Median-GDC

ProGNN + GNNGuard

ProGNN + GRAND

ProGNN + Soft-Median-GDC

GNNGuard + GRAND

GNNGuard + Soft-Median-GDC

GRAND + Soft-Median-GDC

T
ra
ns
fe
r
fr
om

.14 .15 .14 .22 .16 .18

.20 .15 .14 .26 .16 .18

.18 .15 .12 .20 .13 .15

.14 .13 .12 .15 .13 .12

.17 .15 .15 .14 .16 .18

.17 .14 .13 .11 .18 .14

.16 .14 .13 .11 .18 .13

.14 .17 .17 .22 .18 .23

.11 .15 .12 .20 .13 .15

.10 .14 .12 .15 .13 .12

.14 .17 .17 .17 .18 .23

.11 .15 .13 .12 .18 .14

.11 .15 .13 .11 .18 .13

.11 .18 .12 .20 .13 .15

.10 .14 .12 .15 .13 .12

.22 .18 .23 .25 .28 .32

.12 .17 .13 .12 .18 .14

.11 .17 .13 .11 .18 .14

.10 .14 .13 .15 .12 .12

.11 .16 .17 .12 .13 .15

.11 .16 .14 .11 .17 .13

.10 .16 .14 .11 .17 .12

.10 .14 .14 .12 .13 .12

.10 .14 .14 .12 .15 .12

.10 .14 .13 .12 .15 .13

.11 .16 .16 .13 .12 .14

.11 .16 .15 .13 .11 .14

.10 .16 .15 .12 .11 .17

(a) Poisoning

GC
N

Ja
cca

rd
-G
CN

SV
D-
GC

N

RG
CN

Pr
oG
NN

GN
NG

ua
rd

GR
AN

D

So
ft-
Me

dia
n-G

DC
Transfer to

.28 .28 .27 .36 .36 .40

.31 .28 .27 .39 .36 .40

.31 .27 .27 .39 .33 .40

.31 .27 .28 .38 .36 .40

.31 .25 .28 .27 .36 .40

.31 .24 .28 .27 .39 .40

.31 .27 .28 .27 .38 .35

.26 .30 .29 .36 .39 .42

.25 .28 .28 .36 .33 .41

.26 .28 .30 .36 .39 .41

.26 .25 .30 .29 .39 .42

.26 .25 .30 .29 .36 .41

.26 .27 .30 .28 .36 .36

.26 .34 .29 .40 .33 .42

.28 .36 .32 .38 .40 .42

.38 .34 .41 .38 .45 .47

.37 .43 .34 .37 .44 .44

.29 .35 .33 .32 .39 .37

.26 .34 .28 .38 .33 .41

.26 .33 .25 .29 .33 .42

.26 .34 .24 .29 .40 .41

.26 .34 .27 .29 .38 .33

.28 .33 .25 .32 .40 .42

.28 .36 .24 .32 .38 .42

.28 .34 .28 .32 .38 .36

.37 .34 .22 .34 .36 .44

.29 .33 .24 .33 .32 .37

.29 .35 .23 .32 .32 .39

(b) Evasion

Figure G.1: Variant of Fig. 7 with ensembles of models as attack transfer sources. The color maps are
not matched across (a) and (b) for improved readability.

25

H GCN and defense hyperparameters: original vs. tuned for adaptive attacks

To allow for the fairest comparison possible, we tuned the hyperparameters for each model (including
GCN) towards maximizing both clean accuracy and adversarial robustness on a single random data
split. In Table H.1, we list all hyperparameter configurations. While we cannot run an exhaustive
search over all hyperparameter settings, we report substantial gains for most defenses and the GCN
in Fig. H.1. The only exceptions are GRAND, Soft-Median-GDC on Cora ML, and GNNGuard. For
GRAND, we do not report results for the default hyperparameters as they did not yield satisfactory
clean accuracy. Moreover, for Soft-Median-GDC on Cora ML and GNNGuard we were not able to
substantially improve over the default hyperparameters.

For the GCN, tuning is important to ensure that we have a fair and equally-well tuned baseline. A
GCN is the natural baseline since most defense methods propose slight modifications of a GCN or
additional steps to improve the robustness. For the defenses, tuning is vital since they were most
originally tuned w.r.t. non-adaptive attacks. In any case, the tuning should counterbalance slight
variations in the setup.

As stated in the introduction, each attack only provides an upper bound for the actual adversarial
robustness of a model (with fixed hyperparameters). A future attack of increased efficacy might lead
to a tighter estimate. Thus, when we empirically compare the defenses to a GCN, we only compare
upper bounds of the respective actual robustness. However, we attack the GCN with state-of-the-art
approaches that were developed by multiple researchers specifically for a GCN. Even though we also
tune the parameters of the adaptive attacks, we argue that the robustness estimate for a GCN is likely
tighter than our robustness estimate for the defenses. In summary, the tuning of hyperparameters
is necessary that we can fairly compare the robustness of multiple models, even though, we only
compare upper bounds of the true robustness.

GCN
Jaccard-GCN

SVD-GCN
RGCN

ProGNN
GNNGuard

GRAND
Soft-Median-GDC

Poisoning
Evasion

78 80 82 84 86

Clean Accuracy (%)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

R
A
U
C

(a) Global, Cora ML

68 70 72 74 76

Clean Accuracy (%)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

(b) Global, Citeseer

78 80 82 84 86

Clean Accuracy (%)

0.10

0.15

0.20

0.25

0.30

0.35

A
U
C

(c) Local, Cora ML

68 70 72 74 76

Clean Accuracy (%)

0.10

0.15

0.20

0.25

0.30

0.35

0.40

(d) Local, Citeseer

Figure H.1: Each defense’s clean accuracy vs. (R)AUC values of the strongest attacks, akin to
Fig. 6. Muted (semi-transparent) colors represent untuned defenses (except for Soft-Median-GDC on
Cora ML and GNNGuard), solid colors denote tuned defenses, and lines connect the two. Our tuned
defenses are almost always better than untuned variants w.r.t. both clean accuracy and robustness.

26

Ta
bl

e
H

.1
:G

C
N

an
d

de
fe

ns
e

hy
pe

rp
ar

am
et

er
s.

G
C

N
Tu

ne
d

H
id

de
n

D
ro

po
ut

M
ax

ep
oc

hs
Pa

tie
nc

e
L

R
L
2

re
g.

×
1
×

16
0.

5
30

00
50

0.
01

0.
00

05
✓

1
×

64
0.

9
30

00
50

0.
01

0.
00

1

Ja
cc

ar
d-

G
C

N
Tu

ne
d

H
id

de
n

D
ro

po
ut

ϵ
M

ax
ep

oc
hs

Pa
tie

nc
e

L
R

L
2

re
g.

×
1
×

16
0.

5
0.

0
30

00
20

0
0.

01
0.

00
05

✓
1
×

64
0.

9
0.

0
30

00
50

0.
01

0.
00

1

SV
D

-G
C

N
Tu

ne
d

H
id

de
n

D
ro

po
ut

R
an

k
M

ax
ep

oc
hs

Pa
tie

nc
e

L
R

L
2

re
g.

×
1
×

16
0.

5
50

30
00

20
0

0.
01

0.
00

05
✓

1
×

64
0.

9
50

30
00

50
0.

01
0.

00
1

R
G

C
N

Tu
ne

d
H

id
de

n
D

ro
po

ut
ϵ

γ
M

ax
ep

oc
hs

Pa
tie

nc
e

L
R

L
2

re
g.

β

×
1
×

16
0.

6
1e

-8
1.

0
30

00
50

0.
01

0.
00

05
0.

00
05

✓
1
×

32
0.

6
1e

-8
1.

0
30

00
50

0.
01

0.
01

0.
00

05

Pr
oG

N
N

Tu
ne

d
H

id
de

n
D

ro
po

ut
M

ax
ep

oc
hs

Pa
tie

nc
e

L
R

L
2

re
g.

τ
η

µ
β
1

β
2

β
3

β
4

×
C

or
a

M
L

1
×

16
0.

5
30

00
50

0.
01

0.
00

05
2

0.
01

0.
9

1.
0

0.
00

1
1.

5
0.

00
05

C
ite

se
er

1
×

16
0.

5
30

00
50

0.
01

0.
00

05
2

0.
01

0.
9

1.
0

0.
00

01
1.

5
0.

00
05

✓
C

or
a

M
L

1
×

16
0.

5
30

00
50

0.
01

0.
00

05
2

0.
01

0.
9

1.
0

0.
1

10
.0

0.
1

C
ite

se
er

1
×

16
0.

5
30

00
50

0.
01

0.
00

05
2

0.
01

0.
9

1.
0

0.
2

20
.0

0.
2

G
N

N
G

ua
rd

Tu
ne

d
H

id
de

n
D

ro
po

ut
Pr

un
in

g
ϵ

M
ax

ep
oc

hs
Pa

tie
nc

e
L

R
L
2

re
g.

×
1
×

16
0.

5
×

1e
-6

81
n/

a
0.

01
0.

00
05

G
R

A
N

D
Tu

ne
d

H
id

de
n

D
ro

po
ut

X
dr

op
ou

t
δ

K
M

ax
ep

oc
hs

Pa
tie

nc
e

L
R

L
2

re
g.

S
β

T

✓
C

or
a

M
L

1
×

32
0.

5
0.

5
0.

5
8

30
00

50
0.

05
0.

00
01

4
1.

0
0.

5
C

ite
se

er
1
×

32
0.

2
0.

0
0.

5
2

30
00

50
0.

05
0.

00
05

2
0.

7
0.

3

So
ft

-M
ed

ia
n-

G
D

C
Tu

ne
d

H
id

de
n

D
ro

po
ut

k
α

T
M

ax
ep

oc
hs

Pa
tie

nc
e

L
R

L
2

re
g.

×
1
×

64
0.

5
64

0.
15

0.
5

30
00

50
0.

01
0.

00
1

✓
C

ite
se

er
1
×

64
0.

5
64

0.
25

0.
5

30
00

50
0.

01
0.

00
1

27

I Comparison of success of attack approaches

In Fig. I.1 we report which of the global attack techniques generate the strongest attacks, and in
Fig. I.3, we break down every global attack attempt. Analogously, in Fig. I.2 and Fig. I.4, we report
which local attack techniques require the smallest budget to misclassify the target nodes. In Fig. I.3,
we additionally compare different loss types for global attacks.

In general, we can say that PGD is the dominating attack for global evasion. For poisoning, Meta-PGD
seems to be the strongest – slightly more successful than Metattack, though not in every case. Greedy
brute force dominates the local attacks, but for some defenses, PGD and Nettack have an edge.

FGA PGD Metattack w/ Adam Metattack w/ SGD Meta-PGD

0 50 100

Cases supp. envelope

Soft-Median-GDC
GRAND

GNNGuard
ProGNN
RGCN

SVD-GCN
Jaccard-GCN

GCN

(a) Cora ML, Pois.

0 50 100

Cases supp. envelope

(b) Citeseer, Pois.

0 50 100

Cases supp. envelope

(c) Cora ML, Evas.

0 50 100

Cases supp. envelope

(d) Citeseer, Evas.

Figure I.1: Number of global attack attempts which support the envelope curve over all attack attempts,
as introduced in Fig. 3. We observe that for evasion, PGD almost always yields the strongest attack,
while for poisoning, either Metattack, Meta-PGD, or both dominate. Using Adam instead of SGD to
train the defense nearly always worsens Metattack’s performance.

FGA PGD Nettack w/ surrogate Nettack w/o surrogate Greedy Brute Force

0 200 400 600

Nodes misclass. first

Soft-Median-GDC
GRAND

GNNGuard
ProGNN
RGCN

SVD-GCN
Jaccard-GCN

GCN

(a) Cora ML, Pois.

0 200 400 600

Nodes misclass. first

(b) Citeseer, Pois.

0 200 400 600

Nodes misclass. first

(c) Cora ML, Evas.

0 200 400 600

Nodes misclass. first

(d) Citeseer, Evas.

Figure I.2: Number of target nodes for which the respective local attack needs the least budget (among
all attacks) to misclassify them. When multiple attacks achieve the same lowest budget, the target
node is counted in parts towards each winning attack and drawn with a muted color. We observe
that greedy brute force is often the strongest attack; only sometimes, PGD and Nettack beat it on
some defenses, especially for poisoning. Using the defense’s weights instead of a surrogate model for
Nettack is rarely an improvement. Still, for the majority of target nodes, multiple attacks are equally
strong in terms of achieving the same lowest budget (tie). We do not run the greedy brute force attack
on Soft-Median-GDC due to the costly PPR calculation.

28

FGA
PGD

Metattack w/ Adam
Metattack w/ SGD

Meta-PGD
TLM loss

PM loss
MCE loss

0.1 0.2 0.3 0.4 0.5

RAUC

Soft-Median-GDC
GRAND

GNNGuard
ProGNN
RGCN

SVD-GCN
Jaccard-GCN

GCN

(a) Cora ML, Poisoning

0.00 0.05 0.10 0.15 0.20

RAUC

Soft-Median-GDC
GRAND

GNNGuard
ProGNN
RGCN

SVD-GCN
Jaccard-GCN

GCN

(b) Citeseer, Poisoning

0.1 0.2 0.3 0.4 0.5 0.6

RAUC

Soft-Median-GDC
GRAND

GNNGuard
ProGNN
RGCN

SVD-GCN
Jaccard-GCN

GCN

(c) Cora ML, Evasion

0.00 0.05 0.10 0.15 0.20 0.25

RAUC

Soft-Median-GDC
GRAND

GNNGuard
ProGNN
RGCN

SVD-GCN
Jaccard-GCN

GCN

(d) Citeseer, Evasion

Figure I.3: The RAUC of every global attack we have conducted. Attacks are color-coded by
principal technique, and markers indicate the attack loss. Muted colors represent attacks without
edge masking (Jaccard-GCN), our edge weighting trick (SVD-GCN), multiple PGD auxiliary models
(ProGNN), Meta-PGD initialization from ProGNN and unlimited unrolled epochs (GRAND), and
PGD initialization from GCN (Soft-Median-GDC). We observe that (1) the TLM and PM losses are
superior in almost all cases; (2) PGD attacks are best for evasion while Metattack and Meta-PGD
are unsuited; (3) Metattack with SGD and Meta-PGD are best for poisoning while Metattack w/
Adam even falls behind the surprisingly strong evasion-poisoning transfer; (4) FGA is weak for each
defense apart from SVD-GCN; (5) the cited adaptions are beneficial as attacks with muted colors are
worse; (6) a strong adaptive attack is necessary to reach a low RAUC.

29

FGA PGD Nettack w/ surrogate Nettack w/o surrogate Greedy Brute Force

0.2 0.3 0.4 0.5 0.6 0.7

AUC

Soft-Median-GDC
GRAND

GNNGuard
ProGNN
RGCN

SVD-GCN
Jaccard-GCN

GCN

(a) Cora ML, Poisoning

0.2 0.3 0.4 0.5 0.6 0.7

AUC

Soft-Median-GDC
GRAND

GNNGuard
ProGNN
RGCN

SVD-GCN
Jaccard-GCN

GCN

(b) Citeseer, Poisoning

0.2 0.3 0.4 0.5 0.6 0.7

AUC

Soft-Median-GDC
GRAND

GNNGuard
ProGNN
RGCN

SVD-GCN
Jaccard-GCN

GCN

(c) Cora ML, Evasion

0.2 0.3 0.4 0.5 0.6 0.7

AUC

Soft-Median-GDC
GRAND

GNNGuard
ProGNN
RGCN

SVD-GCN
Jaccard-GCN

GCN

(d) Citeseer, Evasion

Figure I.4: The AUC of every local attack we have conducted. Attacks are color-coded by principal
technique. Muted colors have the same signification as in Fig. I.3. We observe that (1) greedy brute
force is often the best attack, closely followed by PGD, while FGA is not as strong; (2) Nettack can
rarely be made stronger by utilizing the target model’s weights instead of a surrogate model (red); (3)
many defenses successfully defend against Nettack; (4) against those defenses for which we have
adapted Nettack, it becomes much stronger (muted vs. normal green); (5) the adaptions are also
beneficial for other attacks, as those with muted colors are worse.

30

J Sensitivity to random seed

0.15 0.20 0.25 0.30

RAUC

ProGNN Untuned

ProGNN

GCN Untuned

GCN

Same seed
Different seed w/ mul. aux.
Different seed

Figure J.1: Lowest RAUC achieved by global
evasion-poisoning transfer attacks on Cora
ML under the premise that the random seed
used by the victim is known respectively un-
known to the attacker. While not knowing
the seed is disadvantageous especially on
ProGNN, our attack using multiple auxiliary
models successfully compensates this issue.

When transferring perturbations from evasion to poi-
soning, a different random seed is used for training
the poisoned model than was used for the evasion
one. In Fig. J.1, we study using the example of GCN
and ProGNN whether poisoning success improves
when we instead assume the same seed is used. This
is indeed the case and turns out particularly strong
on tuned ProGNN. However, by using multiple aux-
iliary models during evasion as detailed in § 4 under
the ProGNN example subheading, we can substan-
tially reduce the dependence of the attack upon a
particular random seed and thereby improve attack
performance.

K Robustness over node degree

We explore the behavior of nodes under attack de-
pending on their degree. In Fig. K.1, we show the
probability that a successfully misclassified node falls
into a certain degree range, broken down by relativ budget.

We cannot confirm the prevalent conjecture that global attacks tend to target low-degree nodes, as
they are easier to break. Our results show that all degree groups are misclassified uniformly over all
budgets. There is no clear preference for lower-degree nodes.

For local attacks, on the other hand, we indeed observe that the success rate of changing the predicted
class is independent of the node degree if and only if using a relative budget. For example, when
allowing a certain relative budget, e.g., 100% of the target node’s degree, we manage to misclassify
the same fraction of 1-degree target nodes (with absolute budget of 1) as 5-degree ones (with absolute
budget of 5).

1
2

3
4

5
6

7
8

9
≥ 10

1
2

3
5

8-10
15-25

0 5 10

Rel. budget ∆
m (%)

0.0

0.2

0.4

0.6

0.8

1.0

P
(d
eg
re
e
|m

is
cl
as
s.

)

(a) Global, Cora ML

0 5 10

Rel. budget ∆
m (%)

(b) Global, Citeseer

0 100 200

Rel. budget ∆
degree (%)

0.0

0.2

0.4

0.6

0.8

1.0

P
(d
eg
re
e
|m

is
cl
as
s.

)

(c) Local, Cora ML

0 100 200

Rel. budget ∆
degree (%)

(d) Local, Citeseer

Figure K.1: The probability that a misclassified node is in a certain degree range. More specifically,
for global attacks, that is which ratios of test set nodes from subsets with degree 1, 2, 3, ... , 9, ≥ 10
are misclassified per budget, normalized s.t. the stacked results sum to 1 everywhere. For local attacks,
we show the amount of nodes from each target node set misclassified per budget, again normalized
s.t. the stack sums to 1. Results are averaged over all experiments conducted (including evasion and
poisoning) on tuned models. The dotted lines indicate standard deviation. We observe no substantial
systematic bias towards the misclassification of low-degree nodes.

31

L Attack characteristics

Next, we present interesting patterns of the adversarial perturbations for each model/defense. We show
the (1) node degree, (2) closeness centrality, (3) homophily, (4) Jaccard similarity of node attributes,
and (5) the ratio of removed edges over the strongest edge perturbations in Fig. L.1. For statistics 1-4,
we consider the pairs of nodes that were affected by an adversarial edge flip (i.e., insertion or removal).
Here we average over the strongest attack found for each budget (without transferring attacks between
defenses). Thus, the values indicate what characteristics are important for strong, adaptive attacks.

GC
N

Ja
cca

rd
-G
CN

SV
D-
GC

N

RG
CN

Pr
oG
NN

GN
NG

ua
rd

GR
AN

D

So
ft-
Me

dia
n-G

DC

Global

Local

1.98 2.10 19.9 1.87 2.03 3.18 2.03 2.26

4.26 4.33 19.9 4.26 4.19 5.56 4.35 4.78

(a) Node degree

Global

Local

.126 .129 .142 .126 .127 .134 .128 .131

.131 .131 .151 .132 .131 .139 .133 .134

(b) Closeness centrality

Global

Local

.023 .024 .061 .014 .043 .068 .021 .121

.027 .031 .041 .030 .016 .142 .056 .181

(c) Homophily

Global

Local

.028 .037 .025 .026 .032 .095 .022 .034

.030 .038 .028 .028 .026 .081 .024 .045

(d) Jaccard similarity

Global

Local

.001 .001 .001 .001 .006 .012 .003 .016

.023 .026 .020 .029 .010 .139 .056 .173

(e) Ratio of removed edges

Figure L.1: Various metrics characterizing the nature
of the adversarial edges from our strongest attacks,
which are those visible in Fig. I.1 and Fig. I.2, as
well as the nature of the nodes connected respectively
disconnected by them.

(1) Node degree. For global attacks, the de-
gree tends to be lower than the average degree
of the dataset as given in Table F.1. The higher
average degree for local attacks might be influ-
enced by the node selection. Interestingly, on
SVD-GCN attacks connect very high-degree
nodes, most likely because high-degree nodes
correspond to dimensions represented by the
most significant eigenvectors of A (see § 4
Example 1 and § E.2). The attacks exploit the
sensitivity of SVD-GCN to perturbations of
high-degree nodes. This could hint towards
how adaptive attacks catastrophically break
SVD-GCN.

(2) Closeness centrality. The closeness cen-
trality of a particular node v is one over the
sum of distances from v to all other nodes in
the graph, multiplied by the total number of
nodes in the graph. Attacks against SVD-GCN
connect very central nodes, which probably
correlates with them having high degrees. In-
terestingly, also the perturbations for GNN-
Guard seem to be of slightly increased central-
ity.

(3) Homophily refers here to the fraction
of pairs of nodes that share the same class.
Successful adaptive attacks on Jaccard-GCN
share the same homophily as those on GCN,
indicating that the Jaccard coefficient is not
suited to filter heterophil edges. Attacks on
SVD-GCN, GNNGuard, and Soft-Median-
GDC have higher homophily than those on
GCN, hinting that these defenses successfully
filter some heterogeneous edges, forcing some
attacks to adapt.

(4) Jaccard similarity. As expected, attacks
on Jaccard-GCN have to compensate its filter
by picking edges with nonzero coefficient. Attacks against GNNGuard connect nodes with very
similar features, presumably to get past its cosine distance-based edge weighting. Curiously, attacks
against Soft-Median-GDC behave similarly, yet only in the local setting and less pronounced. This
is probably necessary to avoid that the new edges are weighted down as outliers by the robust
aggregation, which becomes less of an issue when perturbing a large amount of edges in the global
setting and thereby shifting what it means to be an outlier. Other defenses and especially GRAND
admit connecting nodes as or more dissimilar than is the case on GCN.

(5) Ratio of removed edges. It is clear to see that for all models, the adversarial attack mostly adds
new edges. This indicates that edge insertion is stronger than edge deletion. Strong adaptive attacks
on GNNGuard and Soft-Median-GDC seem to require the most edge deletions. Moreover, deletions
are of much greater importance for local attacks.

32

M Spectral properties of adaptive attacks

Previous studies have shown that adversarial attacks tend to focus the high-frequency (i.e., less
significant) singular values of the adjacency matrix, both in the local [12] and global [30] setting. In
consequence, defenses that exploit this observation to subdue attacks have been proposed (including
SVD-GCN and ProGNN). This is a prime example of where (1) defenses were designed to circumvent
specific attack characteristics and (2) an intuitive explanation exists of why the defense should improve
robustness. However, our adaptive attacks have shown that neither (1) nor (2) entail actual robustness.
In the case of SVD-GCN, it seems like the model becomes even less robust. It is only natural to ask
whether our attacks exhibit spectral properties different from the high-frequency observation upon
which SVD-GCN is built.

In Fig. M.1, we show the spectra of adjacency matrices before and after attacking GCN and SVD-GCN
in various settings. Indeed, our adaptive attacks on SVD-GCN perturb more of the low frequencies
and less of the high frequencies compared to attacks on GCN. Even though such low frequency-heavy
perturbations are hypothesized to be “noticeable” [12, 30], it is unclear how this can be exploited in
practice without knowing the clean graph or the underlying distribution of the spectrum. In § A, we
give additional reasons why we disregard constraints beyond the L0 difference.

Fig. M.1 also shows that, in contrast to previous beliefs, effective attacks on a GCN may lie in the low-
frequency spectrum (see subplots a and c). This questions the strategy of dampening high-frequency
singular values to defend against attacks in the first place.

0

5

10

15

Si
ng

ul
ar

V
al
ue

Clean
GCN
SVD-GCN

100 101 102 103

Order

0

1

2

3

4

Si
ng

ul
ar

V
al
ue

C
ha

ng
e

(a) Cora ML, FGA/PGD

100 101 102 103

Order

(b) Cora ML, Meta

100 101 102 103

Order

(c) Citeseer, FGA/PGD

100 101 102 103

Order

(d) Citeseer, Meta

Figure M.1: Singular value spectra of the adjacency matrix before and after perturbation via global
adaptive attacks with relative budget of 7.5% against GCN and SVD-GCN. Results are split into
native evasion attacks (via FGA and PGD) and native poisoning attacks (via Metattack and Meta-
PGD), and averaged in each group. The top row shows the absolute spectrum, and the bottom row the
difference to the clean spectrum. The order is plotted logarithmically. We observe that attacks against
SVD-GCN strongly perturb the low-order singular values, and it is evident from the relative plots
that high-order singular values are perturbed less compared to attacks against GCN.

33

N On the scalability of adaptive attacks

In our main paper, we do not study adversarial robustness on larger graphs as (a) most defenses do
not scale well and (b) we do not want to distract from our finding that structure defense evaluations
are overly optimistic. Nevertheless, we consider scalability to be an important aspect for robustness
as it is relevant for many applications. As mentioned in § 7, Geisler et al. [17] already study adaptive
attacks scaled to large graphs. However, their work is focused on their own defense, and they only
consider evasion. For these reasons, we now briefly discuss adaptive attacks on larger graphs.

In Fig. N.1, we show an adaptive attack against “Cosine-GCN” on arXiv from the Open Graph
Benchmark [23] (169k nodes). Our Cosine-GCN defense is a natural equivalent of Jaccard-GCN [48]
for continuous features. Similarly to Jaccard-GCN on the smaller graphs, Cosine-GCN also comes
with some robustness w.r.t. a non-adaptive attack. However, once we apply an adaptive attack, it
performs actually slightly worse than the GCN baseline.

Scaling first order attacks. The biggest challenge is certainly that the number of elements in the
adjacency matrix scales quadratically with the number of nodes. One way to circumvent this “curse
of dimensionality” is to use randomization. For our adaptive attack, we adopt Projected Randomized
Block Coordinate Descent (PRBCD) [17]. PRBCD uses the same relaxation as PGD (see § 2 and
§ A). In each iteration of the attack, it considers only a random subset of edges for gradient update
and subsequent projection. Then, for the next iteration, PRBCD keeps edges of high weight and
randomly re-samples the edges of low weight. This way, the overhead remains constant in the block
size. Since PRBCD is a first-order attack, it is natively adaptive for differentiable models.

0.0 0.5 1.0 1.5

Relative budget ∆
m (%)

50

55

60

65

70

A
cc
ur
ac
y
(%

)

(a) Poisoning

0.0 0.5 1.0 1.5

Relative budget ∆
m (%)

MLP
GCN
Cosine-GCN
Adaptive
Cosine-GCN
Non-Adaptive

(b) Evasion

Figure N.1: Adversarial accuracy on the large arXiv dataset per budget for the scalable PRBCD attack
against a regular GCN and our Cosine-GCN (single random seed). We use a block size of 1 million
edges and run the attack for 200 epochs. Thereafter, we keep the best block for another 50 epochs
fixed. Poisoning is conducted by transferring perturbations from evasion.

Evasion vs. poisoning. Gradient-based poisoning attacks seem inherently more challenging since
we need to unroll the training. Nevertheless, as long as we can run an evasion attack, there is the
possibility to transfer the perturbed adjacency matrix to the poisoning setting. Here, we chose this
approach. Still, Zügner & Günnemann [66] show in their appendix that only very few training steps
are actually required for Metattack to be effective. Using a low number of training steps is therefore
something to consider to scale direct poisoning attacks on larger graphs.

34

	Introduction
	Background and preliminaries
	Adversarial defenses
	Methodology: How to design strong adaptive attacks
	Evaluation of adaptive attacks
	Robustness unit test
	Related work
	Discussion
	Attacks overview
	Defense taxonomy
	Improving the graph
	Improving the training
	Improving the architecture

	On adversarial training defenses
	On defenses against feature perturbations
	Examined adversarial defenses
	Jaccard-GCN
	SVD-GCN
	RGCN
	ProGNN
	GNNGuard
	GRAND
	Soft-Median-GDC

	Evaluation of adaptive attacks
	Ensemble transferability study
	GCN and defense hyperparameters: original vs. tuned for adaptive attacks
	Comparison of success of attack approaches
	Sensitivity to random seed
	Robustness over node degree
	Attack characteristics
	Spectral properties of adaptive attacks
	On the scalability of adaptive attacks

