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Abstract

Randomized smoothing is one of the most promising frameworks for certifying
the adversarial robustness of machine learning models, including Graph Neural
Networks (GNNs). Yet, existing randomized smoothing certificates for GNNs are
overly pessimistic since they treat the model as a black box, ignoring the underlying
architecture. To remedy this, we propose novel gray-box certificates that exploit
the message-passing principle of GNNs: We randomly intercept messages and
carefully analyze the probability that messages from adversarially controlled nodes
reach their target nodes. Compared to existing certificates, we certify robustness to
much stronger adversaries that control entire nodes in the graph and can arbitrarily
manipulate node features. Our certificates provide stronger guarantees for attacks
at larger distances, as messages from farther-away nodes are more likely to get
intercepted. We demonstrate the effectiveness of our method on various models and
datasets. Since our gray-box certificates consider the underlying graph structure, we
can significantly improve certifiable robustness by applying graph sparsification.1

1 Introduction

The core principle behind the majority of Graph Neural Networks (GNNs) is message passing –
the representation of a node is (recursively) computed based on the representations of its neighbors
(Gilmer et al., 2017). This allows for information to propagate across the graph, e.g. in a k-layer
GNN the prediction for a node depends on the messages received from its k-hop neighborhood. With
such models, if an adversary controls a few nodes in the graph, they can manipulate node features to
craft adversarial messages that in turn change the prediction for a target node.

Such feature-based adversarial attacks are becoming significantly stronger in recent years and pose a
realistic threat (Ma et al., 2020; Zou et al., 2021): Adversaries may arbitrarily manipulate features of
entire nodes in their control, for example in social networks, public knowledge graphs and graphs in
the financial and medical domains. Detecting such adversarial perturbations is a difficult unsolved
task even beyond graphs (Carlini and Wagner, 2017), meaning such attacks may go unnoticed.

How can we limit the influence of such adversarial attacks? We introduce a simple but powerful idea:
intercept adversarial messages. Specifically, we propose message-interception smoothing where
we randomly delete edges and/or randomly ablate (mask) nodes, and analyze the probability that
messages from adversarially controlled nodes reach the target nodes. By transforming any message-
passing GNN into a smoothed GNN, where the prediction is the majority vote under this randomized
message interception, we can provide robustness certificates (see Figure 1).

1Project page: https://www.cs.cit.tum.de/daml/interception-smoothing
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Figure 1: Randomized message-interception smoothing: We model adversaries that can arbitrarily
manipulate features of multiple nodes in their control (red) to alter the predictions for a target node v.
We intercept messages (gray) by randomly deleting edges and/or ablating (mask) all features of entire
nodes. Our certificates are based on the majority vote under this randomized message interception.

Experimentally we obtain significantly better robustness guarantees compared to previous (smoothing)
certificates for GNNs (compare Section 7). This improvement stems from the fact that our certificates
take the underlying architecture of the classifier into account. Unlike previous randomized smoothing
certificates which treat the GNN as a black-box, our certificates are gray-box. By making the
certificate message-passing aware we partially open the black-box and obtain stronger guarantees.

Our approach is also in contrast to white-box certificates that apply only to very specific models.
For example, Zügner and Günnemann (2019) only certify the GCN model (Kipf and Welling, 2017).
While newly introduced GNNs require such certificates to be derived from scratch, our approach is
model-agnostic and flexible enough to accommodate the large family of message-passing GNNs.

We evaluate our certificates on node classification datasets and analyze the robustness of existing GNN
architectures. By applying simple graph sparsification we further increase the certifiable robustness
while retaining high accuracy, as sparsification reduces the number of messages to intercept. In stark
contrast to previous probabilistic smoothing-based certificates for GNNs, our certificates require only
a few Monte-Carlo samples and are more efficient: For example, we can compute certificates on
Cora-ML in just 17 seconds and certify robustness against much stronger adversaries than previous
smoothing certificates (Bojchevski et al., 2020) that take up to 25 minutes.

In short, our main contributions are:

• The first gray-box smoothing-based certificates for GNNs that exploit the underlying
message-passing principle for stronger guarantees.

• Novel randomized smoothing certificates for strong threat models where adversaries can
arbitrarily manipulate features of multiple nodes in their control.

2 Preliminaries and Background

Threat model. We develop certificates for feature perturbations given evasion threat models. Specifi-
cally, we model adversaries that attack GNNs by entirely perturbing attributes of a few ρ nodes in
the graph at inference. Given an attributed graph G = (A,X) ∈ G encoded via adjacency matrix
A ∈ {0, 1}n×n and feature matrix X ∈ Rn×d with n nodes and d features, we formally define the
threat model of feature perturbations as a ball centered at a given graph G = (A,X):

Bρ(G) ≜ {G′ = (A′,X ′) | A = A′, δ(G,G′) ≤ ρ}

where δ(G,G′) ≜
∑n

v=1 1xv ̸=x′
v

denotes the number of nodes whose features differ in at least one
dimension when comparing the clean graph G and the perturbed graph G′. Intuitively, this means
adversaries control up to ρ nodes in the graph and can arbitrarily manipulate their features.

Graph neural networks. We design robustness certificates for GNNs that instantiate the so-called
message-passing framework (Gilmer et al., 2017). The message-passing framework describes a large
family of GNN architectures that are based on the local aggregation of information from neighboring
nodes in the graph. To compute a new representation h

(ℓ)
v of node v, each message-passing layer

Ψ(ℓ) transforms and aggregates the representations h
(ℓ−1)
v and h

(ℓ−1)
u of all nodes u in the local

neighborhood N (v) ≜ {u | Auv = 1} of node v.
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We can formally describe a message-passing layer as follows: h(ℓ)
v ≜ Ψ

(ℓ)
u∈N (v)∪{v}

(
h
(ℓ−1)
v ,h

(ℓ−1)
u

)
.

For node classification, message-passing GNNs with k GNN-layers can be described as parametrized
functions f : G → {1, . . . , C}n that assign each node v in graph G class fv(G) ≜ argmaxc h

(k)
v,c ,

where h
(0)
v ≜ xv ∈ Rd denotes the input and h

(k)
v ∈ RC the final representation of node v.

Randomized smoothing. Our robustness certificates for GNNs build upon the randomized smoothing
framework (Cohen et al., 2019; Lecuyer et al., 2019): Given any base classifier f , for example a
message-passing GNN, we can build a “smoothed” classifier g that classifies randomly perturbed
input samples, and then takes the “majority vote” among all predictions. The goal is to construct a
smoothed classifier that behaves similar to f (for example in terms of accuracy) and for which we
can prove (probabilistic) robustness certificates.

Randomized ablation (Levine and Feizi, 2020b) is a smoothing-based certificate that “ablates” the in-
put: Unlike in randomized smoothing where the input is randomly perturbed (e.g. by adding Gaussian
noise to images), in randomized ablation the input is randomly masked, for example by replacing
parts of the input with a special ablation token that “hides” the original information. If the perturbed
input is masked for the majority of predictions, we can issue certificates for the smoothed classifier g.

3 Randomized Message-Interception Smoothing for Graph Neural Networks

The main idea of our gray-box smoothing certificates is to intercept messages from perturbed nodes by
(1) deleting edges to disconnect nodes, and/or (2) ablating nodes to mask their features (cf. Figure 1).

To implement this we introduce two independent smoothing distributions ϕ1(A) and ϕ2(X) that
randomly apply these changes to the input graph: The first smoothing distribution ϕ1(A) randomly
deletes edges in the adjacency matrix (1→ 0) with probability pd. The second smoothing distribution
ϕ2(X) randomly ablates all features of nodes with probability pa by replacing their feature represen-
tations with a fixed representation token t ∈ Rd for ablated nodes. The ablation representation t is
a trainable parameter of our smoothed classifier and can be optimized during training. Introducing
two independent smoothing distributions is important since our base classifiers f are GNNs, which
behave differently under structural changes in the graph than to feature ablation of nodes in practice.

We use this message-interception smoothing distribution ϕ(G) ≜ (ϕ1(A), ϕ2(X)) to randomly
sample and then classify different graphs with a message-passing GNN f . Finally, our smoothed
classifier g takes the majority vote among the predictions of f for the sampled graphs ϕ(G). We
formally describe our smoothed classifier g as follows:

gv(G) ≜ argmax
y∈{1,...,C}

pv,y(G) pv,y(G) ≜ p(fv(ϕ(G)) = y)

where pv,y(G) denotes the probability that the base GNN f classifies node v in graph G as class y
under the smoothing distribution ϕ(G) = (ϕ1(A), ϕ2(X)).

4 Provable Gray-box Robustness Certificates for Graph Neural Networks

We derive provable certificates for the smoothed classifier g. To this end, we develop a condition
that guarantees gv(G) = gv(G

′) for any graph G′ ∈ Bρ(G): We make the worst-case assumption
that adversaries alter the prediction for a target node whenever it receives at least one message from
perturbed nodes. Let E denote the event that at least one message from perturbed nodes reaches
a target node v. Then the probability ∆ ≜ p(E) quantifies how much probability mass of the
distribution pv,y(G) over classes y is controlled by the worst-case adversary:
Proposition 1. Given target node v in graph G, and adversarial budget ρ. Let E denote the event
that the prediction fv(ϕ(G)) receives at least one message from perturbed nodes. Then the change
in label probability |pv,y(G) − pv,y(G′)| is bounded by the probability ∆ = p(E) for all classes
y ∈ {1, . . . , C} and graphs G′ with G′ ∈ Bρ(G): |pv,y(G)− pv,y(G′)| ≤ ∆.

Proof sketch (Proof in Appendix A). Whenever we intercept all adversarial messages, adversaries
cannot alter the prediction. Thus |pv,y(G)− pv,y(G′)| is bounded by ∆. □

Note that we derive an upper bound on ∆ in Section 5.
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We first consider the special case of node ablation smoothing, discuss its relation to randomized
ablation for image classifiers (Levine and Feizi, 2020b), and then we derive our provably stronger
guarantees for the general case of message-interception smoothing.

Special case of node ablation smoothing. For the special case of node feature ablation smoothing
only (pd = 0), we can directly determine the probability ∆ (Proof in Appendix B):
Proposition 2. For node feature ablation smoothing only (pd = 0), we have ∆ = 1− pρa.

In this special case, our certificates for GNNs are theoretically related to the randomized ablation
certificates for image classifiers (Levine and Feizi, 2020b). We could apply their smoothing distribu-
tion to GNNs by randomly ablating features of entire nodes, instead of pixels in an image. However,
their approach is specifically designed for image classifiers and comes with serious shortcomings
when applied to GNNs. Notably, our robustness cetificates are provably tighter and experimentally
stronger even in this special case without edge deletion smoothing (pd = 0): Given that ∆L denotes
the bounding constant as defined by Levine and Feizi (2020b), we show ∆ < ∆L in Appendix B.
We carefully discuss such differences with more technical details in Appendix B. Most importantly,
their certificate applied to GNNs ignores the underlying graph structure.

General case of message-interception smoothing. In contrast, our message-interception certifi-
cates are specifically designed for graph-structured data, message-passing aware, and consider the
interception of messages via edge deletion as follows:

Consider a fixed target node v in the graph. The formal condition for intercepting messages from a
fixed target node v to itself is ϕ2(xv) = t, since we only intercept messages from the target node to
the target node itself if we ablate its features. To model the interception of messages from perturbed
nodes B other than the target node, we take the graph structure A into account: We consider all simple
paths P k

wv = {(e1, . . . , ei) | i ≤ k} from perturbed nodes w ∈ B to target node v of length at most k
(where k is the number of GNN layers).2 Intuitively, if any edge e on path p ∈ P k

wv is deleted, or the
features of w are ablated, messages via path p get intercepted. If all messages from perturbed nodes
get intercepted, adversaries cannot alter the prediction for the target node (Proof in Appendix A):
Lemma 1. Given a fixed target node v and perturbed nodes B in the graph with v /∈ B. Then
fv(ϕ(G)) = fv(ϕ(G

′)) for any graph G′ ∈ Bρ(G) if

∀w ∈ B :
(
∀p ∈ P k

wv : ∃(i, j) ∈ p : ϕ1(A)ij = 0
)
∨ (ϕ2(xw) = t)

Since k-layer message-passing GNNs aggregate information over local neighborhoods, only features
of nodes in the receptive field affect the prediction for a target node (only via paths with a length of at
most k to v). For any perturbed node w ∈ B outside of the receptive field we have P k

wv = ∅ and the
message-interception condition of Lemma 1 is always fulfilled.

In practice, however, we do not know which nodes in the graph are controlled by the adversary. To
account for this, we assume adversaries control nodes indicated by ρv ∈ {0, 1}n that maximize the
probability of the event E(ρv) that target node v receives perturbed messages:
Theorem 1. The worst-case change in label probability |pv,y(G)− pv,y(G′)| is bounded by

∆ = max
||ρv||0≤ρ

p (E(ρv))

for all classes y ∈ {1, . . . , C} and any graph G′ ∈ Bρ(G).

Proof in Appendix A. Finally, we provide conservative robustness certificates for the smoothed
classifier g by exploiting that perturbed nodes are disconnected and/or ablated and cannot send
messages for the majority of predictions:
Corollary 1 (Multi-class certificate). Given ∆ as defined in Proposition 1. Then we can certify the
robustness gv(G) = gv(G

′) for any graph G′ ∈ Bρ(G) if

pv,y∗(G)−∆ > max
ỹ ̸=y∗

pv,ỹ(G) + ∆

where y∗ ≜ gv(G) denotes the majority class, and ỹ the follow-up (second best) class.

Proof in Appendix A. We also provide a certificate for binary node classification in Appendix A.
2We consider simple paths (all nodes appear only once), since we only receive perturbed messages via more

complex paths iff we receive perturbed messages via the simple part of the complex path.
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Figure 2: Single source bounding constant ∆i for different edge deletion probabilities pd and node
feature ablation probabilities pa. White isolines indicate ∆i = 0.5 and separate the theoretically
certifiable region (∆i < 0.5) from the uncertifiable region (∆i ≥ 0.5). (a) For the target node, pd
does not affect ∆i. (b) Direct neighbor of target node, single edge. (c) Second-hop neighbor, single
path (two edges). (a-c) More distant nodes have larger theoretically certifiable regions.

5 Practical Interception Smoothing Certificates

Message-interception certificates constitute two challenges in practice: (1) computing the bounding
constant ∆ for arbitrary graphs, and (2) computing the label probabilities pv,y∗(G) and pv,ỹ(G).
We address the first problem by providing upper bounds on ∆ (i.e. lower bounds on the certifiable
robustness). For the second problem, we follow existing literature and estimate the smoothed classifier.

Lower bound on certifiable robustness. Computing ∆ of Theorem 1 poses two problems: First,
finding the worst-case nodes in arbitrary graphs involves a challenging optimization over the powerset
of nodes in the receptive field. Second, computing the probability p(E(ρv)) to receive perturbed
messages is challenging even for fixed ρv, since in general, it involves evaluating the inclusion-
exclusion principle (Appendix C). We can compute ∆ exactly only for special cases such as small or
tree-structured receptive fields (Appendix D). Notwithstanding the challenges, we provide practical
upper bounds on ∆. Instead of assuming a fixed ρv , we solve both problems regarding ∆ at once and
directly bound the maximum over all possible ρv by assuming independence between paths. Due to
Corollary 1, any upper bound on ∆ result in lower bounds on the certifiable robustness.

We first derive an upper bound on ∆ for a single perturbed node, and then generalize to multiple nodes.
Let Ew denote the event that the target node v receives messages from node w, and ∆w ≜ p(Ew).
Note in the special case of the target node v = w we just have ∆w = 1− pa, since the features xv of
the target node v are used for the prediction independent of any edges. For any w ̸= v in the receptive
field we can derive the following upper bound for single sources (Proof in Appendix E):
Theorem 2 (Single Source Multiplicative Bound). Given target node v and source node w ̸= v in
the receptive field of a k-layer message-passing GNN f with respect to v. Let P k

wv denote all simple
paths from w to v of length at most k in graph G. Then ∆w ≤ ∆w for:

∆w ≜

1− ∏
q∈Pk

wv

(
1− (1− pd)|q|

) (1− pa)

where |q| denotes the number of edges on the simple path q ∈ P k
wv from w to v.

We visualize ∆w for different pd and pa in Figure 2. The upper bound for single sources is tight for
one- and two-layer GNNs (∆ = ∆w), since then all paths from a single source to the target node are
independent (Appendix E). The single source multiplicative bound on ∆w can only be used to certify
a radius of ρ = 1. For multiple nodes (ρ > 1), we generalize Theorem 2 as follows:
Theorem 3 (Generalized multiplicative bound). Assume an adversarial budget of ρ nodes and let
∆1, . . . ,∆ρ denote the ρ largest ∆i for nodes i in the receptive field. Then we have ∆ ≤ ∆M for

∆M ≜ 1−
ρ∏

i=1

(1−∆i)

Proof in Appendix E. Notably, the multiplicative bound is tighter than a union bound. We specifically
address the approximation error in detail in Appendix F.
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Estimating the smoothed classifier in practice. Computing the probabilities pv,y∗(G) and pv,ỹ(G)
exactly is challenging in practice. We instead estimate them similar to previous work by drawing
Monte-Carlo samples from ϕ (Cohen et al., 2019; Levine and Feizi, 2020b; Bojchevski et al., 2020).
We first identify the majority class y∗ and follow-up class ỹ using a few samples. We then draw more
samples to estimate a lower bound pv,y∗(G) on pv,y∗(G) and an upper bound pv,ỹ(G) on pv,ỹ(G). We
use the Clopper-Pearson Bernoulli confidence interval and apply Bonferroni correction to ensure that
the bounds hold simultaneously with significance level α (with probability of at least 1−α). Moreover,
our smoothed classifier abstains from predicting if pv,y∗(G) ≤ pv,ỹ(G), meaning if the estimated
probabilities are too similar. We experimentally analyze abstained predictions in Appendix H.

Practical robustness certificates. Finally, our robustness certificates also hold when bounding ∆
and the label probabilities as the following Corollary shows (Proof in Appendix A):
Corollary 2. We guarantee gv(G) = gv(G

′) with probability of at least 1− α for any G′ ∈ Bρ(G)

if pv,y∗(G)−∆ > pv,ỹ(G) + ∆, where y∗ denotes the majority class, and ỹ the follow-up class.

6 Discussion

Our certificates require knowledge about the graph structure A and can only account for structure
perturbations if the perturbed adjacency matrix A′ is known. While adversarial edge deletion
potentially increases robustness (due to less messages to intercept), adversaries could arbitrarily
increase the number of messages via edge insertion. Moreover, the number of simple paths in the
graph can be huge. We argue, however, that (1) graphs are usually sparse, (2) the number of paths
can be reduced via sparsification, and (3) we have to compute paths only once for each graph.

Limitations of ablation certificates. Since the probability to receive messages from perturbed nodes
increases the more nodes are adversarial, ∆ is monotonously increasing in ρ. Thus, the certifiable
radius is bounded independent of the label probabilities (uncertifiable region for ∆ ≥ 0.5 due to
Corollary 1). This bound depends on the graph structure and changes for each target node, but in the
case of node feature ablation smoothing, we can directly determine the bound (Proof in Appendix I):

Proposition 3. Given fixed pa > 0 and pd = 0, it is impossible to certify a radius ρ if pa ≤ ρ
√
0.5.

This bound is only determined by the parameters of the smoothing distribution (pd, pa) and does
not depend on the base GNN f . The existence of an upper bound is in contrast to certificates based
on the Neyman-Pearson Lemma (Neyman and Pearson, 1933), where the radius depends on the
inverse Gaussian CDF of the label probabilities (Cohen et al., 2019). Consequently, Neyman-Pearson
certificates are theoretically tighter than ablation certificates: For example, if f classifies all samples
from ϕ the same (pv,y∗ = 1), certificates based on the Neyman-Pearson-Lemma would certify a
radius of∞, whereas the radius of ablation-based certificates is bounded. We leave the development
of Neyman-Pearson-based gray-box certificates for GNNs to future work.

Limitations of probabilistic certificates. Our certificates are probabilistic and hold with significance
level α. Notably, our method still yields strong guarantees for significantly smaller confidence levels
(we show additional experiments for varying α in Appendix H). We found that α has just a minor
effect on the certificate strength, since increasing it cannot increase the largest certifiable radius,
which is theoretically bounded. Recent works also “derandomize” probabilistic certificates, that is
they compute the label probabilities exactly (Levine and Feizi, 2020a, 2021). In Appendix J we
propose the first derandomization technique that leverages message-passing structures. We believe
future work can build upon it towards even more efficient derandomization schemes.

Threat model extensions. Notably, edge-deletion smoothing (pd > 0) also yields guarantees for
adversarial node insertion and deletion, as disconnected nodes cannot alter the prediction.3 As
discussed above, we can only evaluate such certificates with structural information, that is how
inserted/deleted nodes are connected to target nodes: Given clean graphs (as in our evaluation), we
know which nodes adversaries could delete. Given perturbed graphs, we know which nodes could
have been inserted. Note that although we can technically extend our method to certify adversarial
edge deletion, we focus on the novel problem of arbitrary feature manipulations of entire nodes since
there are already certificates against edge-modification attacks (Bojchevski et al., 2020).

3We cannot certify node insertion/deletion with feature ablation smoothing, since e.g. new nodes affect the
smoothed classifier independent of whether features are ablated or not (unless we delete nodes entirely).
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7 Experimental Evaluation

We evaluate our certificates for different GNN architectures trained on node classification datasets.
Our certificates work in standard transductive learning settings used throughout the literature and we
report such results in Appendix H. However, combining transductive learning with an evasion threat
model comes with serious shortcomings for the evaluation of certificates, since no separate test data is
available. For example, we can usually achieve high accuracy by overfitting a Multi-Layer Perceptron
(MLP) to labels predicted by GNNs during training. MLPs do not propagate information through
the graph at test time and are robust to adversarial messages. Instead, we evaluate our certificates in
semi-supervised inductive learning settings with hold-out test nodes:

Experimental setup. As labelled nodes, we draw 20 nodes per class for training and validation, and
10% of the nodes for testing. We use the labelled training nodes and all remaining unlabeled nodes as
training graph, and successively insert (hold-out) validation and test nodes. We train on the training
graph, optimize hyperparameters against validation nodes, assume adversaries control nodes at test
time, and compute certificates for all test nodes. We also delete edges and ablate node features during
training (Appendix G). We use n0 = 1,000 samples for estimating the majority class, n1 = 3,000
samples for certification, and set α = 0.01. We conduct five experiments for random splits and model
initializations, and report averaged results including standard deviation (shaded areas in the plots).
When comparing settings (e.g. architectures), we run 1,000 experiments for each setting and draw
deletion and ablation probabilities from [0, 1] for each experiment (sampling separately for training
and inference). Then, we compute dominating points on the Pareto front for each setting. For brevity,
we only show points with clean accuracy of at most 5% below the maximally achieved performance.

Datasets and models. We train our models on citation datasets: Cora-ML (Bojchevski and Günne-
mann, 2018; McCallum et al., 2000) with 2,810 nodes, 7,981 edges and 7 classes; Citeseer (Sen et al.,
2008) with 2,110 nodes, 3,668 edges and 6 classes; and PubMed (Namata et al., 2012) with 19,717
nodes, 44,324 edges and 3 classes. We implement smoothed classifiers for four architectures with
two message-passing layers: Graph convolutional networks (GCN) (Kipf and Welling, 2017), graph
attention networks (GAT and GATv2) (Velickovic et al., 2018; Brody et al., 2022), and soft medoid
aggregation networks (SMA) (Geisler et al., 2020). More details in Appendix G. We also compute
certificates for the larger graph ogbn-arxiv (Hu et al., 2020) in Appendix H.

Evaluation metrics. We report the classification accuracy of the smoothed classifier on the test
set (clean accuracy), and the certified ratio, that is the number of test nodes whose predictions are
certifiable robust for a given radius. Since all nodes have different receptive field sizes, we also divide
the certifiable radius by the receptive field size. The resulting normalized robustness better reflects
how much percentage of the “attack surface” (that is the number of nodes the adversary could attack)
can be certified. Moreover, we report the area under this (normalized) certified ratio curve (AUCRC).
For completeness, we also report the certified accuracy in Appendix H, that is the number of test
nodes that are correctly classified (without abstaining) and certifiable robust for a given radius.
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Figure 3: Smoothed GAT on Cora-ML: (a) Robustness at different distances to target nodes (pd=0.31,
pa=0.794, with skip, ACC=0.79). (b) Robustness normalized by receptive field size (“attack surface”).
(c) Naïve baseline comparison (base certificate (Bojchevski et al., 2020), 105 samples, α=0.01).

Message-interception smoothing. In Figure 3 (a,b) we demonstrate our certificates for specific
edge deletion probabilities pd and node feature ablation probabilities pa. By making our certificates
message-passing aware, we can (1) certify robustness against arbitrary feature perturbations of entire
nodes, (2) analyze robustness locally in the receptive fields by incorporating the “attack surface”, and
(3) provide stronger guarantees for attacks against nodes at larger distances to target nodes.
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First certificate for stronger adversaries. Experimentally we obtain significantly better robustness
guarantees compared to previous (smoothing-based) certificates for Graph Neural Networks. Specifi-
cally, existing certificates for GNNs only certify perturbations to a few attributes ρ̃ in the entire graph.
Our certificates are novel as they provide guarantees for much stronger adversaries that can arbitrarily
manipulate features of a few nodes in the graph. To compare these two approaches, consider a naïve
baseline that certifies ρ = ρ̃/d nodes, where d is the number of attributes per node.4 If each node
in the graph had just a single feature, the number of certifiable nodes ρ is high. As the number
of features d per node increases, however, the baseline dramatically deteriorates. In contrast, our
certificates are entirely independent of the dimension d and hold regardless of how high-dimensional
the underlying node data might be. We demonstrate this comparison in Figure 3 (c) for the first
smoothing-based certificate for GNNs (Bojchevski et al., 2020), assuming attribute deletions against
second-hop nodes (p+=0, p−=0.6). However, the superiority of our certificate regarding robustness
against all features of entire nodes holds for any other GNN certificate proposed so far.
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Figure 4: (a,b) Sparsification significantly improves certifiable robustness of our gray-box certificates
to second-hop attacks since sparsification reduces (a) messages to intercept, and (b) receptive field
sizes and thus the “attack surface” (Smoothed GAT, Cora-ML, pd = 0.31, pa = 0.71, with skip-
connection, ACC = 0.8). (c) Our certificate with largest certifiable radius of 4 with varying samples
for certification (Smoothed GAT, Cora-ML, pd = 0, pa = 0.85). Our certificates are more sample
efficient than existing smoothing-based certificates for GNNs.

Sparsification improves certifiable robustness. Notably, our gray-box certificates incorporate
graph structure and become stronger for sparser graphs. This is in contrast to black-box certificates
that ignore the underlying message-passing principles of GNNs. Specifically, graph sparsification
significantly improves robustness while retaining high clean accuracy: First, sparsification reduces
the number of paths in the graph and thus reduces the number of messages to intercept. Second,
sparsification reduces the number of nodes in the receptive fields and thus the “attack surface”, that is
the number of nodes that send messages. We demonstrate this in Figure 4 (a,b), where we apply GDC
preprocessing (Gasteiger et al., 2019) to the Cora-ML graph at test time. Interestingly, evaluating
the model on the sparsified graph yields significantly higher certifiable robustness, although both
approaches show high clean accuracy of 80%. GDC preprocessing yields directed graphs and reduces
the number of edges in the Cora-ML graph from 15,962 to 14,606. In detail, we set the sparsification
threshold of GDC to ϵ = 0.022, and ignore edge attributes resulting from GDC preprocessing.

Efficient message-interception smoothing. Drawing Monte-Carlo samples from ϕ to estimate the
smoothed classifier is usually the most costly part when computing smoothing-based certificates
(Cohen et al., 2019). In Figure 4 (c) we show that our certificates are much more sample efficient as
we do not benefit from more than a few thousand samples from ϕ. This is in stark contrast to existing
smoothing-based certificates for GNNs (Bojchevski et al., 2020). For a fair comparison, we adopt
their transductive setting and compute certificates for pd = 0.3 and pa = 0.85. Bojchevski et al.
(2020) use 106 Monte-Carlo samples for certifying test nodes on Cora-ML, which takes up to 25
minutes. In contrast, our certificates saturate already for 2,000 Monte-Carlo samples in this setting,
which takes only 17 seconds (preprocessing Cora-ML takes 8 additional seconds). Our gray-box
certificates are significantly more sample-efficient while also providing guarantees against much
stronger adversaries. We hypotheise that our certificates saturate much faster since they are not based
on the Neyman-Pearson Lemma, where the certifiable radius depends on the inverse Gaussian CDF
of the label probabilities as discussed in Section 6.

4We are the first to certify such strong adversaries. Thus no baselines exist so far and we compare our method
against existing certificates for GNNs using the naïve baseline we propose above.
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Figure 5: Second-hop attacks on Cora-ML: (a) Robustness-accuracy tradeoffs for different GNN
architectures. (b) Skip-connections yield improved robustness-accuracy tradeoffs for node feature ab-
lation smoothing. (c) Ablating less during training yields better robustness-accuracy tradeoffs (GAT).

Different classifiers. In Figure 5 (a) we compare robustness-accuracy tradeoffs for different GNNs
against second-hop attacks. Attention-based message-passing GNNs (Velickovic et al., 2018) are
dominating. We hypothesize that the degree-normalization of GCN (Kipf and Welling, 2017) may be
problematic for the performance under randomized edge deletion. Our approach may promote novel
message-passing architectures, specifically designed for smoothed classifiers.

Skip-connections. With higher node feature ablation probability, more messages from the target
node itself will be intercepted, which may be detrimental for the accuracy. Assuming adversaries do
not attack target nodes, we can modify the architecture for improved robustness-accuracy tradeoffs
(Figure 5b). To this end, we forward the non-ablated input graph through the GNN without edges,
and add the resulting final representation of each node to the final representation when forwarding the
(ablated) graph with graph structure. We use the same weights of the base GNN, but more complex
skip-connections are straightforward. Such skip-connections yield better robustness-accuracy trade-
offs against second-hop attacks, but we also loose guarantees for the target node itself. To account for
that, future work could deploy existing smoothing methods for features of target nodes separately:
e.g., if nodes represent images, we could deploy Gaussian smoothing (Cohen et al., 2019) on node
features send through the skip-connection and still obtain robustness guarantees for target nodes.

Training-time smoothing parameters. In Figure 5 (c) we show that ablating less during training
can improve the robustness-accuracy tradeoffs. Note that only inference-time smoothing parameters
determine the strength of our certificates, and the probabilities pd, pa during training are just hyperpa-
rameters that we can optimize to improve the robustness-accuracy tradeoffs. In detail, we experiment
with three different settings: Using the same ablation probabilities during training and inference
(pt = pe), ablating 10% more during training (pt = pe+0.1), and ablating 10% less during training
(pt=pe−0.1). Note that we use max(min(pt, 1), 0) to project the training-time parameters into [0, 1].
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Figure 6: Robustness-accuracy tradeoffs for second-hop attacks against smoothed GAT models
(without skip). Edge deletion and node ablation dominates on Cora-ML (a) and Citeseer (b). On
PubMed (c), edge deletion is stronger. Lines connect dominating points on the Pareto front.

Robustness-accuracy. We compare robustness-accuracy tradeoffs of three different settings: (1) edge
deletion and feature ablation (pd > 0, pa > 0), (2) edge deletion only (pd > 0, pa = 0), and
(3) feature ablation only (pd = 0, pa > 0). Our experiments show that edge deletion and feature
ablation smoothing achieves significantly better robustness-accuracy tradeoffs against attribute attacks
to the second-hop neighborhood and dominates on Cora-ML and Citeseer (Figure 6b,c). On PubMed,
edge deletion smoothing dominates. More results (e.g. with skip-connections) in Appendix H.
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8 Related Work

GNN robustness. The vast majority of GNN robustness works focus on heuristic defenses, including
adversarial graph detection (Zhang and Ma, 2020; Zhang et al., 2019a); architecture modifications
(Brody et al., 2022; Zhang et al., 2019b); robust aggregations (Geisler et al., 2020); robust training
procedures (Xu et al., 2019; Zügner and Günnemann, 2019), transfer learning (Tang et al., 2020);
and graph preprocessing techniques such as edge pruning (Zhang and Zitnik, 2020; Wu et al., 2019),
low-rank approximations (Entezari et al., 2020), and graph anomaly detection (Ma et al., 2021).

The effectiveness of such seemingly robust defenses on the adversarial robustness of GNNs can only
be assessed against existing adversarial attacks. Heuristic defenses do not guarantee robustness, and
may even be broken by stronger attacks later on (Mujkanovic et al., 2022). Instead, we are interested
in robustness certificates that provably guarantee the stability of predictions. However, robustness
certificates for GNNs are still in their infancy (Günnemann, 2022):

Certificates for GNNs. Most certificates for GNNs are designed for specific architectures (Zügner
and Günnemann, 2020; Jin et al., 2020; Bojchevski and Günnemann, 2019; Zügner and Günnemann,
2019). Despite providing provable robustness guarantees, their applicability is limited to specific
architectures. Bojchevski et al. (2020) present the first tight and efficient smoothing-based, model-
agnostic certificate for graph-structured data. However, their method comes with crucial limitations:
First, their method cannot certify robustness against arbitrary feature modifications of entire nodes.
Second, their black-box certificate deletes edges but completely ignores the underlying message-
passing principle. Third, their certificate requires an expensive evaluation of the smoothed classifier,
which questions the practicability of their certificate beyond theoretical robustness assessments.

Randomized ablation certificates for image classifiers (Levine and Feizi, 2020b) are another approach
for discrete data. Such certificates have already been applied to point cloud classifiers (Liu et al.,
2021) and even for individual attribute perturbations in GNNs (Bojchevski et al., 2020). However,
Bojchevski et al. (2020) show that their method outperforms such ablation certificates for individual
attributes. In contrast, we propose to certify entire nodes, instead of only a few of their attributes. As
already discussed, applying their ablation certificates for image classifiers directly to GNNs comes
with serious shortcomings that we overcome (Section 4 and details in Appendix B).

Gray-box certificates. Exploiting model knowledge to derive tighter randomized smoothing certifi-
cates constitutes a widely unexplored research problem. The first works derive tighter guarantees
using information about the model’s gradients (Mohapatra et al., 2020; Levine et al., 2020). Recently
proposed collective certificates (Schuchardt et al., 2021) incorporate knowledge about the receptive
fields of GNNs. Their certificates are orthogonal to ours, and our certificates could lead to significant
improvements in such collective settings, as adversaries cannot attack first-hop neighbors of all
nodes simultaneously. Schuchardt and Günnemann (2022) propose tight gray-box certificates for
models that are invariant to spatial transformations.

9 Conclusion

We propose novel gray-box, message-passing aware robustness certificates for GNNs against strong
threat models where adversaries can arbitrarily manipulate all features of multiple nodes in the
graph. The main idea of our certificates is to intercept adversarial messages by randomly deleting
edges and/or masking features of entire nodes. Our certificates are significantly stronger and more
sample-efficient than existing methods. Future enhancements could smooth specific edges and
nodes with different probabilities, for example to intercept messages from central nodes with higher
probability. Our gray-box certificates could lead to novel architectures, training techniques and graph
preprocessing techniques to further strengthen the robustness of GNNs against adversarial examples.
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1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] All claims in abstract and introduction reflect the
contributions and scope of our paper. We also provide a list of our core contributions
directly in our introduction.

(b) Did you describe the limitations of your work? [Yes] We discuss the limitations of our
approach in Section 6.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] Without
doubt, adversarial attacks can have negative impacts on the society. Particularly
alarming are recent attacks against GNNs for more realistic threat models (Ma et al.,
2020) and attacks that scale to large graphs (Geisler et al., 2021). Robustness certificates
are tools to assess robustness and help to (1) better understand robustness, (2) build
more robust classifiers, and (3) eventually prevent adversarial attacks including their
negative consequences. Our certificates represent a contribution towards diminishing
and preventing potential negative impacts of adversarial attacks on the society.

(d) Have you read the ethics review guidelines and ensured that your paper conforms
to them? [Yes] We carefully reviewed the ethics guidelines (https://neurips.
cc/public/EthicsGuidelines). Our paper conforms to all ethic guidelines. Our
certificates represent a contribution to prevent negative social impacts of adversarial
attacks, as discussed above.
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A Proofs Main Certificate (Section 4)

Proposition 1. Given target node v in graph G, and adversarial budget ρ. Let E denote the event
that the prediction fv(ϕ(G)) receives at least one message from perturbed nodes. Then the change
in label probability |pv,y(G) − pv,y(G′)| is bounded by the probability ∆ = p(E) for all classes
y ∈ {1, . . . , C} and graphs G′ with G′ ∈ Bρ(G): |pv,y(G)− pv,y(G′)| ≤ ∆.

Proof. For a thorough formal proof in the context of image classifiers see (Levine and Feizi, 2020b).
Here, we show the statement in the context of GNNs: Consider a fixed target node v. We exploit that
whenever we intercept all adversarial messages (i.e. nodes are disconnected or we mask out their
features), the adversary cannot alter the prediction. Let Ē denote the event that v does not receive
any message from perturbed nodes. Then we have for any class y:

p(fv(ϕ(G)) = y | Ē) = p(fv(ϕ(G
′)) = y | Ē)

since all input representations with respect toG andG′, which affect the prediction for v, are the same
if all perturbed nodes are ablated or disconnected (i.e. their messages are intercepted). Multiplying
with p(Ē) yields:

p(fv(ϕ(G)) = y ∧ Ē) = p(fv(ϕ(G
′)) = y ∧ Ē) (1)

Following the arguments of (Levine and Feizi, 2020b):

pv,y(G)− pv,y(G′)
(1)
= p(fv(ϕ(G)) = y ∧ E) + p(fv(ϕ(G)) = y ∧ Ē)− pv,y(G′)

(2)
= p(fv(ϕ(G)) = y ∧ E) + p(fv(ϕ(G

′)) = y ∧ Ē)− pv,y(G′)

(3)
= p(fv(ϕ(G)) = y ∧ E)− p(fv(ϕ(G′)) = y ∧ E)

≤ p(fv(ϕ(G)) = y ∧ E)

(4)

≤ p(E)

where (1) and (3) follow from the law of total probability, (2) is due to inserting Equation 1, and (4)
follows from p(A ∩B) ≤ p(B) for any events A and B.

Analogously, pv,y(G′)− pv,y(G) ≤ p(E). Thus: |pv,y(G)− pv,y(G′)| ≤ p(E) = ∆

Lemma 1. Given a fixed target node v and perturbed nodes B in the graph with v /∈ B. Then
fv(ϕ(G)) = fv(ϕ(G

′)) for any graph G′ ∈ Bρ(G) if

∀w ∈ B :
(
∀p ∈ P k

wv : ∃(i, j) ∈ p : ϕ1(A)ij = 0
)
∨ (ϕ2(xw) = t)

Proof. The prediction fv(ϕ(G)) cannot differ from fv(ϕ(G
′)) if for all perturbed nodes w ∈ B we

have (1)w is disconnected from the target node v, or (2) the features ofw are ablated. If the smoothing
distribution ϕ1 deletes an edge (i, j) (that is ϕ(A)ij = 0), the neighborhood N (j) changes, and thus
messages from i to j get intercepted on all GNN layers. That is, the final hidden representation h

(k)
v

of a target node v can only be changed by some non-ablated perturbed source node w if there is at
least one simple path from w to v of length at most k such that no edge on this path is deleted.

Theorem 1. The worst-case change in label probability |pv,y(G)− pv,y(G′)| is bounded by

∆ = max
||ρv||0≤ρ

p (E(ρv))

for all classes y ∈ {1, . . . , C} and any graph G′ ∈ Bρ(G).

Proof. Note the difference:

• E denotes the event that at least one message from perturbed nodes reaches a target node v

• E(ρv) denotes the event that at least one message from nodes indicated by ρv reaches a
target node v
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Put differently, the maximization amounts to the additional worst-case assumption that the adversary
selects those nodes whose messages have the highest chance of getting to the target node. Importantly,
we have to make this additional worst-case assumption to obtain valid robustness certificates for our
threat model.

Since the probability ∆ bounds the worst-case change |pv,y(G)− pv,y(G′)| for all classes y, we can
utilize ∆ to construct robustness certificates: Intuitively, ∆ bounds how much probability mass of
the distribution pv,y(G) over labels y is compromised by the worst-case adversary: If an adversary
cannot shift enough probability mass to change the majority class, our smoothed classifier is robust:
Corollary 3 (Binary Certificate). Given ∆ as defined in Then we can certify the robustness gv(G) =
gv(G

′) for any graph G′ ∈ Bρ(G) if

pv,y∗(G)−∆ >
1

2

where y∗ ≜ gv(G) denotes the majority class predicted by smoothed classifier g.

Proof. Recall that ∆ bounds how much probability mass of the distribution pv,y(G) over y is
compromised by the adversary. Let y∗ ≜ g(G) denote the majority class, that is pv,y∗(G) > 1

2 in
this binary classification setting. Thus, to change the majority class, the adversary needs to shift
enough probability mass from the majority class y∗ to the other class 1− y∗. This is impossible if
pv,y∗(G) −∆ > 1

2 , meaning the adversary cannot shift enough probability mass for a successful
attack. Put differently, even in the worst-case that the adversary always changes the prediction
whenever adversarial messages reach the target node, the majority class cannot be altered.

Corollary 1 (Multi-class certificate). Given ∆ as defined in Proposition 1. Then we can certify the
robustness gv(G) = gv(G

′) for any graph G′ ∈ Bρ(G) if

pv,y∗(G)−∆ > max
ỹ ̸=y∗

pv,ỹ(G) + ∆

where y∗ ≜ gv(G) denotes the majority class, and ỹ the follow-up (second best) class.

Proof. To prove this, we utilize the same arguments as in the binary setting above. Here, given
pv,y∗(G) −∆ > maxỹ ̸=y∗ pv,ỹ(G) + ∆, the adversary does not control enough probability mass
of pv,y(G) over y to alter the second-best class ỹ into the new majority class when classifying the
perturbed graph G′.

Corollary 2. We guarantee gv(G) = gv(G
′) with probability of at least 1− α for any G′ ∈ Bρ(G)

if pv,y∗(G)−∆ > pv,ỹ(G) + ∆, where y∗ denotes the majority class, and ỹ the follow-up class.

Proof. We have pv,y∗(G)−∆ ≥ pv,y∗(G)−∆ > pv,ỹ(G)+∆ ≥ pv,ỹ(G)+∆ due to the assumption

pv,y∗(G)−∆ > pv,ỹ(G) + ∆. The remaining claim follows from Corollary 1 and from the fact that
both bounds hold with significance level α.
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B Theoretical Connection to Randomized Ablation for Image Classifiers

Our gray-box certificates for GNNs are theoretically related to the randomized ablation black-box
certificates for image classifiers. In this section we thoroughly analyze the differences with more
technical insights and carefully discuss how our certificates go beyond theirs. Specifically, we show
that our gray-box certificates yield stronger guarantees, and are provably tighter even in the special
case without additional edge deletion smoothing. In the following we introduce their certificate again,
discuss the differences to our certificate, and eventually prove that our guarantees are tighter.

Randomized Ablation. Levine and Feizi (2020b) introduce randomized ablation for image clas-
sifiers as follows: They define the space B(n, k) ≜ {M : M ∈ P({1, . . . , n}) ∧ |M | = k} of all
pixel-subsets with exactly k of n total pixels (P denoting the power set here). Then, their smoothing
distribution ablates all but k pixels in a uniformly drawn subset M ∈ B(n, k). They define ∆L as
the probability to keep (not ablate) perturbed pixels in the image under this smoothing distribution.
Assuming ρ perturbed pixels in an image:

∆L = 1−
(
n−ρ
k

)(
n
k

)
Discussion. There are various ways of applying such black-box certificates for image classifiers to
certify the robustness of GNNs. One way is to use them to certify threat models where adversaries
control individual attributes all over the graph (Bojchevski et al., 2020). We are interested in certifying
robustness to adversaries that control all features of entire nodes in the graph instead. However,
applying the smoothing distribution of Levine and Feizi (2020b) for certifying robustness to our threat
model (that is by ablating entire node vectors) comes with several deficiencies, as their smoothing
distribution is specifically designed for image classifiers. Most importantly, applying their certificate
for image classifiers to GNNs results in black-box certificates that completely ignore the underlying
message-passing principle.

In contrast, we propose gray-box certificates – we partially open the black-box and consider the
underlying message-passing principle and paths in the graph, that is A and A2. This comes with
two crucial advantages as we show experimentally in Section 7: First, additionally deleting edges
leads to significantly better robustness guarantees for attacks against more distant nodes. Second, our
certificates become increasingly stronger for sparser graphs (while their certificate applied to GNNs
remains unchanged as it ignores graph structure).

B.1 Special Case of Node Feature Ablation Smoothing

Notably, our certificates are provably tighter even without edge deletion smoothing. Specifically, we
formally show the difference between our ∆ for node feature ablation smoothing and ∆L of Levine
and Feizi (2020b) when naively applying their approach to GNNs by randomly ablating features of
entire nodes (instead of pixels in an image). Specifically, while their smoothing distribution samples
exactly k out of n nodes not to ablate (to keep), our smoothing distribution samples k out of n nodes
in expectation. This eventually leads to ∆ < ∆L. We start by characterizing our certificate for node
ablation smoothing:
Proposition 2. For node feature ablation smoothing only (pd = 0), we have ∆ = 1− pρa.

Proof. Recall the definition of the probability ∆: E denotes the event that at least one perturbed
message reaches a target node v, and ∆ ≜ p(E). When only ablating nodes (pd = 0), all nodes are
equally important for the prediction fv(ϕ(G)), since messages are only intercepted in the input layer,
not during the message-passing itself.

We therefore do not have an optimization problem as in Theorem 1. Instead, the probability ∆ to
receive perturbed messages is just the probability that at least one perturbed node is not ablated.
Further, the complementary event denotes that all ρ perturbed nodes are ablated, whose probability is
just pρa. Thus ∆ = 1− pρa.
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Moreover, the multiplicative bound is tight in the special case of node ablation smoothing:

Proposition 4. For pd = 0, the multiplicative bound is tight ∆M = ∆.

Proof. We have

∆i
(1)
=

1− ∏
q∈Pk

wv

(
1− (1− pd)|q|

) (1− pa)
(2)
= 1− pa

where (1) is by definition, and (2) due to our assumption pd = 0. Therefore:

∆M = 1−
ρ∏

i=1

(1−∆i) = 1−
ρ∏

i=1

pa = 1− pρa = ∆

where the first equality is due to definition again, and the last equality follows from Proposition 2.

Proposition 5 (Tighter guarantees). Given adversarial budget ρ > 1. Further assume k > 0. Let ∆L

denote the bounding constant for the smoothing distribution proposed by Levine and Feizi (2020b).
Then ∆ < ∆L.

Proof. Recall that due to uniform ablation we have (compare Levine and Feizi (2020b)):

∆L = 1−
(
n−ρ
k

)(
n
k

)
To compare this to our ∆ = 1 − pρa of Proposition 2, we first need to introduce k and n. We note
that pa is the probability to ablate a single node. We thus have pa = 1− k

n , where k
n amounts to the

probability to “keep” (not ablate) a node. In this setting, we keep n k
n = k nodes in expectation. We

therefore have:

∆ = 1− pρa = 1−
(
1− k

n

)ρ

We observe:(
n−ρ
k

)(
n
k

) =
(n− ρ)!(n− k)!
n!(n− ρ− k)!

=

ρ−1∏
i=0

n− k − i
n− i

(1)
<

(
n− k
n

)ρ

=

(
1− k

n

)ρ

where (1) is due to the mediant inequality (ρ > 1 and k > 0):

∀y < x ∀i > 0 :
y − i
x− i

<
y

x

We conclude that ∆ < ∆L.

The difference decreases for larger n, but our smoothing distribution is significantly better for small
graphs/receptive fields: For example, for n = 10 and k = 1 (i.e. pa = 0.9), the largest certifiable
radius with our method is 6, but only 4 using their certificate.

In detail, there are two ways of applying their method for image classifiers to certify robustness of
GNNs against adversaries that control all features of entire nodes in the graph: by ablating all features
of k out of n uniformly chosen nodes (1) in the entire graph, or (2) locally in each receptive field.

Global randomized ablation. Assume we uniformly ablate all features of k out of n nodes in the
entire graph. If the number of nodes n in the graph is large, the difference between ∆ and ∆L is
small. Still, the resulting black-box certificates only hold globally, not locally in the receptive fields.
Such certificates ignore the receptive fields, specifically that most nodes in the graph may not even be
connected to the target node. For example, in the most extreme case of A = 0 (meaning receptive
fields only consist of target nodes), their certificate applied to GNNs remains entirely unchanged
due to the black-box nature. In contrast, our gray-box certificates guarantee robustness for any ρ
(excluding target nodes) in this case (cf. normalized robustness in Section 7).
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Local randomized ablation. To remedy the black-box nature of their approach, one can obtain
local guarantees by ablating all features of k out of the n nodes locally in the receptive field of a
target node. However, our message-interception certificates are significantly tighter even without
edge deletion smoothing as receptive fields are typically small. We demonstrate this in Figure 7
where our approach yields significantly stronger guarantees in practice (since Proposition 2 makes a
significant difference).

Note that when applying their approach to GNNs by ablating nodes locally, one also needs to consider
each receptive field individually and cannot use full-batch training/inference as usually implemented
for GNNs. Our message-interception certificates are easier to implement and more efficient as we
obtain local guarantees without considering and processing all receptive fields separately.
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ours
Levine’s method applied to GNNs

Figure 7: Given pa = 0.72, we compare our certificate against the certificate proposed by Levine and
Feizi (2020b) by applying their smoothing distribution for image classifiers to GNNs (distance ≥ 1,
with skip-connection). We locally choose k = ⌊(n− 1) ∗ pa⌋ nodes not to ablate – where n− 1 is the
number of nodes in each receptive field, excluding the target node. Our certificates are experimentally
stronger even without additional edge deletion.
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C Closed-form via Inclusion-exclusion Principle

Recall that E(ρv) describes the event that v receives messages from any attacked node indicated by
the adversarial budget vector ρv ∈ {0, 1}n. Computing the probability p (E(ρv)) using edge deletion
probability pd and node feature ablation probability pa is challenging as it involves evaluating the
inclusion-exclusion formula. We formalize this expensive closed-form solution in the following: Let
Ew denote the probability to receive a message from node w, and let P indicate all simple paths from
any perturbed w with ρv(w) = 1 to target node v. Further, let Yi denote the probability to receive a
message via path i ∈ P . Then we have:

p (E(ρv)) = p

 ∨
ρv(w)=1

Ew

 = p

(∨
i∈P

Yi

)

since the probability to receive a message from any attacked node equals the probability to receive
a message from any path i from an attacked node to the target node. We now apply the inclusion-
exclusion principle:

p

(∨
i∈P

Yi

)
=

|P|∑
k=1

(−1)k−1
∑
I⊆P
|I|=k

p

(∧
i∈I

Yi

) (2)

The remaining probability can be expressed as follows: The probability to receive messages via all
paths indicated by I is the probability that (1) all edges on those paths are not deleted, and (2) the
corresponding source nodes of the paths are not ablated. Therefore:

p

(∧
i∈I

Yi

)
= (1− pd)a(1− pa)b (3)

where a denotes the number of (unique) edges on all paths indicated by I, and b the number of
(unique) source nodes of the paths indicated by I. Note that the above derivation assumes that the
target node v is not controlled by the adversary. In such a case (ρv(v) = 1), we have p(Ev) = 1− pa
(since we always receive messages from non-ablated target nodes) and:

p (E(ρv)) = p

(∨
i∈P

Yi
∨
Ev

)
p

(∧
i∈I

Yi
∧
Ev

)
(1)
= p

(∧
i∈I

Yi

)
p(Ev)

where (1) is due to independence.

There are different ways that take additional information into account to derive faster ways of
computing p (E(ρv)), for example by exploiting that the receptive fields are trees with the target
node v as root (compare Appendix D). In general, however, computing Equation 2 is expensive since
we have to evaluate Equation 3 exactly 2|P| times.
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D Tree-shaped Receptive Fields

Given fixed ρv ∈ {0, 1}n that indicates nodes controlled by the adversary. Recall that E(ρv)
describes the event that v receives at least one messages from any attacked node indicated by the
adversarial budget vector ρv ∈ {0, 1}n. If the receptive field for target node v is a tree, we can
compute ∆ of Theorem 1 exactly. Specifically, we first provide a recursive formula to compute
p (E(ρv)) and then show that the worst-case selection of nodes by the adversary is straightforward.

We introduce the following random variables to better describe the recursion:

• Let Ri denote the event that root node i receives an adversarial message.

• Let Ai denote the event that the features of node i are ablated.

• Let Di denote the event that root i receives an adversarial message via any of its adjacent
subtrees j ∈ B (“branches”).

• Let Bj further denote the event that we receive an adversarial message via branch j.

The main idea is that branches in a tree are independent:

Theorem 4. We start the recursion with the target node v to compute p(Rv) while following edges
away from the node (j, v) (against their direction). Then the following recursive equation computes
p (E(ρv)) for tree-shaped receptive fields:

p(Ri) ≜

{
1− pa(1− p(Di)) if ρv(i) = 1

p(Di) else

with
p(Di) ≜ 1−

∏
(j,i)

(1− p(Bj)) p(Bj) ≜ (1− pd)p(Rj)

Proof. We show the three equations consecutively:

1. For p(Ri): If root i is not controlled by the adversary, then the probability to receive an
adversarial message is just the probability that we receive such a message via any of its
adjacent subtrees, that is p(Ri) = p(Di). If root i is controlled by the adversary (ρv(i) = 1),
we can exploit independence between edge deletion smoothing ϕ1 and node feature ablation
smoothing ϕ2:

p(Ri) = p(Āi ∨Di) = 1− p(Ai ∧ D̄i)
(1)
= 1− p(Ai)p(D̄i) = 1− p(Ai)(1− p(Di))

where (1) is due to independence. Since the probability that we do not receive any adversarial
message from root i is the probability that the features of root i are ablated: p(Ai) = pa.
We therefore have: p(Ri) = 1− pa(1− p(Di)).

2. For p(Di): For the probability that root i receives an adversarial message via any of its
adjacent branches j ∈ B, we exploit independence between branches (which we can do
since we have trees):

p(Di) = p

∨
j∈B

Bj

 = 1− p

∧
j∈B

B̄j

 (1)
= 1−

∏
j∈B

p(B̄j) = 1−
∏
j∈B

(1− p(Bj))

where (1) is due to independence.

3. For p(Bj): The probability to receive a message via branch j is the probability that the
edge from branch j to root i is not deleted (1− pd) times the probability that we receive a
message via the next root j (recursive call).

For leaves we have B = ∅ and thus the product over j ∈ B is 1, that is p(Di) = 0 for all leaves.
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Figure 8: Comparing multiplicative bound and tight tree bound (distance at least 2). (a) Tree-
certificate only for tree-shaped receptive fields. (b) Sparsifying all receptive fields into trees.

Interestingly, we can reconstruct the following special cases:

Special case of edge deletion smoothing. Assume pa = 0. Then we directly see that p(Ri) = 1 if
root i is controlled by the adversary. This means that the adversary controls the entire sub-tree if the
root node is already attacked. Put differently, the adversary does not need to control more parts of the
tree to change the prediction if the adversary already controls the root.

Special case of node feature ablation smoothing. Assume pd = 0. Then we can directly see
that resolving the recursion just multiplies the node feature ablation probabilities pa and we get
p (E(ρv)) = 1−pρa for ρ = ||ρv||0. This matches the special case already discussed in Proposition 2.

Worst-case selection of nodes. Recall that our certificates are conservative and assume the additional
worst-case that the adversary attacks those nodes in the receptive field that maximize the probability
that the target node receives a message from attacked nodes (maximization in Theorem 1). This
additional assumption is required to obtain valid certificates. Notably, this worst-case adversary is
straightforward for trees: First, an adversary would always prefer closer nodes over more distant
nodes to maximize the probability that messages are getting through. Second, an adversary would
always distribute its budget over different branches to exploit independence between branches, which
also maximizes the probability that messages are getting through (also compare Appendix E).

Experiments. We find that computing ∆ tight for tree-shaped receptive fields can increase the
certifiable radius in practice (compare Figure 8). Interestingly, 25% of nodes in Cora-ML have
receptive fields that are trees (considering 2-layer GNNs). We apply our recursive scheme above
to compute tight certificates in two settings: First, we only compute tight certificates for the nodes
whose receptive fields are trees. Second, we apply sparsification that successively deletes edges in
the graph until the receptive fields of all test nodes are trees. In detail, we train GAT models on
Cora-ML and apply sparsification at test time. We use the skip-connection, train with pa = 0.68,
pd = 0.02 and compute certificates with pa = 0.79, pd = 0.36. Without sparsification we achieve
clean accuracies of 79% on average, and 77% when applying sparsification at test time.

In practice, we found that the gain in computing ∆ exactly may be rather small, as adversaries
typically distribute their budget to different branches to increase the probability that their messages
arrive. This means adversaries maximize independencies between edges. In other words, the
multiplicative bound is already quite strong in practice, and specifically tight until the degree of the
node (given that each first-hop neighbor has at least one child).
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E Proofs of Section 5

Figure 9: Visualization of two dependent (left) and independent paths (right). When randomly
deleting edges with the same edge deletion probability pd, the probability that all messages from
both source nodes are intercepted is lower when the paths are independent (more possibilities for the
message to get through).

We first prove a more general claim that we can use to prove the multiplicative bounds of Theorem 2
and Theorem 3. Let Xi denote the event that target node v receives a message via any path s in a set
of paths Si such that all paths start at an arbitrary source node and end at target node v. Intuitively, it
is more likely to receive at least one messages via Si and one message via Sj when there are shared
edges, compared to when we assume their paths were independent. Put differently, the probability
that all messages from all paths are intercepted is higher when paths are dependent (cf. Figure 9).
More formally:
Theorem 5. For two arbitrary sets Si and Sj of simple paths with the same target node v we have

p(Xi)p(Xj) ≤ p(Xi ∧Xj)

under the smoothing distribution ϕ1 for edge deletion.

Proof. We are interested in the probability that all messages via all paths are intercepted. Consider
the following two possibilities:

1. The paths in Si and the paths in Sj are (pairwise) independent, meaning there are no edges
that appear on both - on a path si ∈ Si and on a path sj ∈ Sj .
In this case we have p(Xi ∧Xj) = p(Xi)p(Xj) due to independence.

2. Consider the scenario where there are at least two dependent paths that share a common
edge. If we assume they were independent, there would be more possibilities how a message
can get through than there actually are. In other words, assuming independence results in
lower probability that all messages via both sets get intercepted.
Thus p(Xi)p(Xj) < p(Xi ∧Xj). □

Consider the following definition of positively associated random variables (Esary et al., 1967).
Definition 1. We call a random vector x = (X1, . . . , Xn) positively associated if

Cov(ϕ(x), ψ(x))) ≥ 0

for all non-decreasing, element-wise functions ϕ, ψ such that second moments of ψ(x) and ϕ(y) exist.

The concept of positively associated random variables is for example used in physical statistics
(Goldstein and Wiroonsri, 2018). We can use this concept here to prove multiplicative bounds:
Corollary 4. The random vector x = (X1, . . . , Xn) is positively associated.

Proof. Due to Theorem 5 we have p(Xi)p(Xj) ≤ p(Xi ∧Xj) and thus

⇒E[Xi]E[Xj ] ≤ E[XiXj ]

⇒E[XiXj ]− E[Xi]E[Xj ] ≥ 0

⇒Cov(Xi, Xj) ≥ 0

since Xi and Xj are binary random variables.

Thus, the elements of the covariance matrix are non-negative: Cov(x̄, x̄) ≥ 0 (variance is always
non-negative). According to Theorem 4.2 in Esary et al. (1967), x̄ is positively associated. Since x̄ is
positively associated, it follows from (BP1) in Esary et al. (1967) that x is positively associated.
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Proposition 6. Given random variables Xi as defined above. Then:

1− p

(
n∧

i=1

Xi

)
≤ 1−

n∏
i=1

p
(
Xi

)
Proof. Since x and x̄ are positively associated random variables, we can use Theorem 4.1 in (Esary
et al., 1967) and conclude that

p

(
n∧

i=1

Xi

)
≥

n∏
i=1

p
(
Xi

)
⇔ 1− p

(
n∧

i=1

Xi

)
≤ 1−

n∏
i=1

p
(
Xi

)

Theorem 2 (Single Source Multiplicative Bound). Given target node v and source node w ̸= v in
the receptive field of a k-layer message-passing GNN f with respect to v. Let P k

wv denote all simple
paths from w to v of length at most k in graph G. Then ∆w ≤ ∆w for:

∆w ≜

1− ∏
q∈Pk

wv

(
1− (1− pd)|q|

) (1− pa)

where |q| denotes the number of edges on the simple path q ∈ P k
wv from w to v.

Proof. Note in the special case of the target node v = w we just have ∆w = 1 − pa, since the
features xv of the target node v are used for the prediction independent of any edges.

For any w ̸= v in the receptive field: Let Ew denote the event that the target node v receives messages
from node w, and ∆w ≜ p(Ew). We further introduce Aw for the event that the features of node w
are ablated, and Dw for the event that v receives at least one messages from w. Then we have:

∆w = p(Ew) = p(Āw ∧Dw)
(1)
= p(Āw)p(Dw) = (1− pa)p(Dw)

where (1) holds since the two smoothing distributions for node feature ablation and edge deletion are
independent. We continue with p(Dw). Therefore, recall that P ≜ Pk

wv denotes the set of simple
paths from w to v. Further, let p(q) for simple path q ∈ P denote the probability that v receives a
message via path q. Clearly, a message “arrives” only via path q if none of the edges on that path is
deleted, that is when the node is connected via path q. Since the deletion of edges is independent,
p(q) = (1− pd)|q|, where |q| denotes the number of edges on the simple path q. We derive:

p(Di) = p

∨
q∈P

q

 = 1− p

∧
q∈P

q


We can use positive association to conclude

1− p

∧
q∈P

q

 (1)

≤ 1−
∏
q∈P

p (q)

where (1) follows from Proposition 6. Finally, we resolve the remaining terms:

1−
∏
q∈P

p (q) = 1−
∏
q∈P

(1− p (q)) = 1−
∏
q∈P

(
1− (1− pd)|q|

)
Due to (1) above, we finally get ∆w ≤ ∆w, where the inequality becomes an equality if all paths are
independent (that is the paths do not share edges).

Proposition 7. We have ∆w = ∆w for ℓ-layer GNNs with ℓ ≤ 2.

Proof. For ℓ-layer GNNs with ℓ ≤ 2, all paths from a single source to the target node are independent.
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Theorem 3 (Generalized multiplicative bound). Assume an adversarial budget of ρ nodes and let
∆1, . . . ,∆ρ denote the ρ largest ∆i for nodes i in the receptive field. Then we have ∆ ≤ ∆M for

∆M ≜ 1−
ρ∏

i=1

(1−∆i)

Proof. We recall from Theorem 1:

∆ = max
||ρv||1≤ρ

p (E(ρv))

where E(ρv) describes the event that target node v receives messages from any attacked node
indicated by ρv. Recall that Ew denotes the event that the prediction for target node v is based on
information of node w in the receptive field. We further have ∆w ≜ p(Ew). Then:

p (E(ρv)) = p

 ∨
ρv(w)=1

Ew

 = 1− p

 ∧
ρv(w)=1

Ēw


where we can apply Proposition 6 and use the assumption that paths from several source nodes to the
target were independent to obtain an upper bound:

1− p

 ∧
ρv(w)=1

Ēw

 ≤ 1−
∏

ρv(w)=1

p
(
Ēw

)
Further resolving the terms yields:

1−
∏

ρv(w)=1

p
(
Ēw

)
= 1−

∏
ρv(w)=1

(1− p (Ew)) = 1−
∏

ρv(w)=1

(1−∆w)

Since the above equations hold for any fixed ρv:

∆ = max
||ρv||1≤ρ

p (E(ρv)) ≤ max
||ρv||1≤ρ

1−
∏

ρv(w)=1

(1−∆w)

Assume we have ordered ∆w so that ∆i ≥ ∆i+1 for all i ∈ {1, . . . , ρ}. Then:

max
||ρv||1≤ρ

1−
∏

ρv(w)=1

(1−∆w) = 1−
ρ∏

i=1

(1−∆i) = ∆M

Note that instead of ∆w we can alternatively use upper bounds ∆w, which yields an even looser
upper bound on ∆ since

1−
ρ∏

i=1

(1−∆i) ≤ 1−
ρ∏

i=1

(
1−∆i

)
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F Approximation Error

Notably, the multiplicative bound derived above is tighter than the following union bound:
Proposition 8 (Union Bound). Given monotonously decreasing ∆i such that ∆i ≥ ∆i+1. Then we
have ∆ ≤ ∆U for

∆U ≜
ρ∑

i=1

∆i

Proof.

p (E(ρv)) = p

 ∨
ρv(w)=1

Ew

 ≤ ∑
ρv(w)=1

p (Ew) =
∑

ρv(w)=1

∆w

∆ = max
||ρv||1≤ρ

p (E(ρv)) ≤ max
||ρv||1≤ρ

∑
ρv(w)=1

p (Ew) =

ρ∑
i=1

∆i

The union bound is quite loose, not a probability and can even grow larger than 1. We show the
difference in practice Figure 10 (a). We also discuss the approximation error between the upper
bounds ∆U , ∆M and the tight ∆ for the following constructed example where all paths are dependent:
We assume a setting where an adversary attacks only second-hop neighbors that are connected to the
target node via the same direct neighbor of the target node. With pa = 0 we have ∆ = (1−pd)(1−pρd)
since we only receive a message if the bottleneck edge is not ablated, and at least one edge of the
attacked second-hop nodes is not ablated (which is the complementary probability of all second-hop
edges are ablated). In this constructed case, all paths are dependent as they share the bottleneck edge.
We show how the upper bounds compare to the tight ∆ for different edge deletion probabilities pd in
Figure 10 (b). Note that the example is constructed and worst-case adversaries aim at maximizing
independencies by choosing nodes without bottleneck edges (in which case the multiplicative bound
is a strong bound in practice).
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Figure 10: (a) Multiplicative bound is tighter than union bound and provides stronger guarantees
(Smoothed GAT model on Cora-ML with pa = 0.85, pd = 0). (b) Constructed example: All
path share the same bottleneck edge: Comparing the tight ∆ against the union bound ∆U and the
multiplicative bound ∆M for different edge deletion probabilities pd. The multiplicative bound is
tighter than the union bound, which can grow larger than 1.
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G Hyperparameters

We implement certificates for directed and undirected graphs. For our main experiments (Section 7),
however, we follow the standard procedure and prepocess all graphs into undirected graphs, only
consider the largest connected component, and binarize node features. We compute simple paths
using a modified depth first search. All datasets are included in PyTorch Geometric (Fey and Lenssen,
2019).5 We train models full-batch using Adam (learning rate = 0.001, β1 = 0.9, β2 = 0.999,
ϵ = 10−08, weight decay = 5 ∗ 10−04) for 1,000 epochs with early stopping after 50 epochs. We
use a dropout of 0.8 on the feature matrix X and on the attention coefficients. During training, we
sample a different graph from ϕ(G) each epoch. Each sampled graph contains nodes with features
replaced by the ablation representation t. We implement t as a parameter of our models: We initialize
t using Xavier initialization and we optimize t as we optimize the GNN weights during training.

We implement all models for two message-passing layers. We use 8 heads and 8 hidden channels for
GAT and GATv2 (Velickovic et al., 2018; Brody et al., 2022); 64 hidden channels for GCN (Kipf and
Welling, 2017); and we use k = 64 and temperature=1.0 for SMA (Geisler et al., 2021). We use the
ReLU activation function for the skip-connection.

Training-time smoothing parameters. We also delete edges and ablate node features during training
(using different probabilities pd and pa during training and inference). Specifically, we train models
presented in Section 7 as follows: In Figure 3 (a,b) we show results for pd = 0.01, pa = 0.6 during
training (and pd = 0.31, pa = 0.794 during inference and certification). In Figure 4 (a,b) we use
pd = 0, pa = 0.59 during training (and pd = 0.31, pa = 0.71 during inference and certification). In
Figure 4 (c) we use the same probabilities pd, pa during training and inference.

In our experiments (Section 7), we also randomly sample different probabilities for training and
inference to explore the joint parameter space of the training-time and inference-time smoothing
parameters. That is, our search space is [0, 1]4 when sampling different probabilities from [0, 1] for
the Pareto-plots in Figure 6 and Appendix H (we sample separately for training and inference).

H Detailed Results

We report certified accuracies in Figure 16 for the corresponding certified ratios in Figure 3. Moreover,
we provide detailed results for the datasets Cora-ML, Citeseer, and PubMed. We show results for
second-hop attacks against (1) smoothed GAT models in Figure 11, (2) smoothed GATv2 models
in Figure 12, (3) smoothed GCN models in Figure 13, and (4) smoothed SMA models in Figure 14.
We run 1,000 experiments for each combination, drawing random deletion and ablation probabilities
from [0, 1] for each experiment (sampling separately for training and inference). Lines connect
dominating points on the Pareto front. Comparing results with and without skip-connection we
observe that skip-connections allow higher node feature ablation probabilities while retaining high
accuracy, which can yield better robustness-accuracy tradeoffs. Moreover, as discussed in Section 7,
evaluating certificates in transductive settings comes with serious shortcomings. We nevertheless
report such results in Figure 15 for a smoothed GAT model.

Abstained predictions. Our smoothed classifier abstains from predicting if pv,y∗(G) ≤ pv,ỹ(G). We
show the ratio of abstained predictions for smoothed GAT models trained on Cora-ML in Figure 17
for different edge deletion probabilities pd and node feature ablation probabilities pa. We use the
same ablation probability during training and inference for this specific experiment. We observe that
our smoothed classifier abstains for rather large probabilities. Future work could introduce novel
architectures and training techniques to further diminish the effect of abstained predictions.

Experiments on ogbn-arxiv. We run additional experiments and compute certificates for the larger
graph ogbn-arixv with 169,343 nodes, 128 attributes and 40 classes (Hu et al., 2020). We adopt
their transductive setting, implement two-layer smoothed GCNs with skip-connection and compute
certificates for 100 randomly chosen test nodes. In Figure 18 we show results for pd = 0.1, pa = 0.4
during training, and pd = 0.3, pa=0.8 during inference and certification. Notably, we can certify
GNNs for such large graphs. However, our approach only achieves 53% clean accuracy in this setting.
Future work could develop novel architectures and training procedures to improve clean accuracy
under our smoothing distribution.

5https://pytorch-geometric.readthedocs.io
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Experiments with different confidence levels. We conduct additional experiments with varying
confidence levels α and Monte-Carlo samples. We observe strong guarantees for even smaller
confidence levels, requiring little computational efforts. The underlying reason for this is that the
theoretical largest certifiable radius of our certificates is bounded, only determined by the edge
deletion probability pd and node feature ablation probability pa, and therefore cannot increase by
changing α. Our certificates are thus less sensitive to changes in α compared to Neyman-Pearson-
based certificates (Bojchevski et al., 2020).

In fact, the difference in certifiable robustness for α = 0.05 and α = 0.0001 is already extremely
small when drawing just 2, 000 Monte-Carlo samples (Figure 19 a). We only observe differences in
robustness for considerably small amounts of Monte-Carlo samples (Figure 19 b). Drawing 2,000
samples takes only 12 seconds on Cora-ML on average. This is significantly faster compared to
all previous probabilistic certificates for GNNs that use up to 106 Monte-Carlo samples (compare
(Bojchevski et al., 2020)). In additional experiments, we also found that the classification accuracy is
high for just a few thousand Monte-Carlo samples (Figure 20).
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Figure 11: Robustness-accuracy tradeoffs for second-hop attacks against smoothed GAT on Cora-ML,
Citeseer and PubMed (columns). Top row without skip-connection, bottom row with skip-connection.
Lines connect dominating points on the Pareto front.
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Figure 12: Robustness-accuracy tradeoffs for second-hop attacks against smoothed GATv2 on Cora-
ML, Citeseer and PubMed (columns). Top row without skip, bottom row with skip-connection.
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Figure 13: Robustness-accuracy tradeoffs for second-hop attacks against smoothed GCN on Cora-ML,
Citeseer and PubMed (columns). Top row without skip-connection, bottom row with skip-connection.
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Figure 14: Robustness-accuracy tradeoffs for second-hop attacks against smoothed SMA on Cora-ML,
Citeseer and PubMed (columns). Top row without skip-connection, bottom row with skip-connection.
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Figure 15: Transductive learning setting: Robustness-accuracy tradeoffs for second-hop attacks
against smoothed GAT on Cora-ML, Citeseer and PubMed. Experiments without skip-connection.

29



0% 20% 40% 60%
Perturbed nodes

25

50

75

C
er

t.
ac

c
(%

)

(a)
distance ≥ 2
distance ≥ 1

0 1 2 3 4 5 6 7
Perturbed nodes

25

50

75

C
er

tifi
ed

A
cc

ur
ac

y
(%

) (b)
distance ≥ 2
distance ≥ 1

Figure 16: Certified accuracies for the setting of Figure 3 – Smoothed GAT on Cora-ML: (a) Robust-
ness at different distances (pd=0.31, pa=0.794, with skip-connection, ACC=0.79).
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Figure 17: Abstained ratios of smoothed GAT models trained on Cora-ML for different edge deletion
probabilities pd and node feature ablation probabilities pa.
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Figure 18: Certified ratio and accuracy for smoothed two-layer GCN on ogbn-arxiv. We certify 100
randomly selected test nodes in the graph. Certificates for nodes with distance 2 to the target node.
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Figure 19: Certified ratio of smoothed GAT on Cora-ML (pa = 0.84, pd = 0, with skip-connection)
for different confidence levels α and number of Monte-Carlo samples n1. The difference in robustness
is already considerably small for just 2,000 samples.
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Figure 20: Clean accuracy of smoothed GAT on Cora-ML (pa = 0.84, pd = 0, with skip-connection).
for varying number of confidence levels α and Monte-Carlo samples n. For α = 0.05 the clean
accuracy is high for just 1, 000 samples. For smaller α, the certification accuracy decreases only
slightly. Drawing more than 3, 000 samples is not necessary except for extremely small confidence
levels such as α = 0.00001.

31



0.5 0.6 0.7 0.8 0.9 1.0
pa

0

25

50

75

100

R
ad

ii

(a)

0 1 2 3 4 5 6 7 8 9
Perturbed nodes

25

50

75

C
er

tifi
ed

ra
tio

(%
)

(b)

pa= 6√
0.5 + ϵ

pa= 4√
0.5 + ϵ

pa= 2√
0.5 + ϵ

Figure 21: Visualizing Proposition 3. (a) Theoretically maximally certifiable radius for given node
ablation probability pa. (b) Certified ratio of smoothed GAT trained on CoraML for different node
ablation probabilities (pd = 0, ϵ = 0.01). Note: 2

√
0.5 ≈ 0.71, 4

√
0.5 ≈ 0.84 and 6

√
0.5 ≈ 0.89.

I On Neyman-Pearson and Ablation Certificates

There are currently two types of randomized smoothing certificates for discrete data: The certificates
of Lee et al. (2019) and Bojchevski et al. (2020) are based on the Neyman-Pearson Lemma (Neyman
and Pearson, 1933), and we therefore call them Neyman-Pearson-based certificates. The other
certificates are ablation-based (Levine and Feizi, 2020b,a; Liu et al., 2021). We show that largest
certifiable radius of ablation-based certificates is bounded indepdentent of the classifier, which is not
the case for Neyman-Pearson-based certificates (see discussion in Section 6).

In ablation-based certificates, the bounding constant ∆ determines the probability mass of the
distribution pv,y(G) over labels y that the worst-case adversary controls. This probability mass ∆
is independent of the classifier f and distribution pv,y(G) and solely determined by the smoothing
distribution. Although the final certificates still depend on the classifier f , the largest certifiable radius
of such ablation-based certificates is bounded as we show for our interception smoothing certificates:

Note again that ∆ does not depend on the base GNN f : the probability to receive at least one message
from a perturbed node is only characterized by the number of perturbed nodes ρ, and the probabilities
pd for edge deletion and pa for node ablation. Moreover, ∆ is monotonously increasing in ρ, since
the probability to receive messages from perturb nodes increases the more nodes adversaries control.
Interestingly, since ∆ is monotonously increasing in ρ, there exists a largest certifiable radius that
depends on the graph structure and changes for each target node (assuming fixed pd, pa). In the
special case of node ablation smoothing, we can directly determine the largest certifiable radius:

Proposition 3. Given fixed pa > 0 and pd = 0, it is impossible to certify a radius ρ if pa ≤ ρ
√
0.5.

Proof. Due to Corollary 3 and Corollary 1, we only get certificates if ∆ < 1
2 , i.e. the adversary

should not control more than half of the distribution pv,y(G) over y. Thus:

∆ <
1

2

(1)⇔ 1− pρa <
1

2
⇔ pρa >

1

2
⇔ pa >

ρ
√
0.5

since the root is monotonously increasing and pa > 0. Further, (1) stems from Proposition 2. Thus
we need an ablation probability of at least larger than ρ

√
0.5 to certify a radius of ρ.

Proposition 3 allows us to directly determine the largest certifiable radius for given pa. We visualize
this largest radius for different ablation probabilities in Figure 21 (a). Theoretically, we can only
certify large radii for relatively large ablation probabilities: For example, to theoretically certify a
radius of 10, we already need an ablation probability of more than 10

√
0.5 ≈ 0.933. Proposition 3

implies that we cannot certify any radius for ablation probabilities pa ≤ 0.5 (cf. Figure 2). Moreover,
we can certify a radius of only 1 for ablation probabilities between 1

√
0.5 = 0.5 and 2

√
0.5 ≈ 0.707.

Note, however, that this is only a theoretical consideration and that the certificate also depends on
the label probabilities pv,y∗(G) and pv,ỹ(G) in practice (Figure 21 b), where we observe that the
certified ratio drops to zero when the largest certifiable radius is passed.
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J Message-passing-aware Derandomization

As discussed in Section 6, our certificates are probabilistic and hold with a certain confidence level α.
Here we present alternative, deterministic certificates using a simplified smoothing distribution that
just deletes nodes instead of ablating their features. We believe that future work can build upon it
towards even more efficient and scalable derandomization schemes. Specifically, our derandomized
certificates come with the following advantages: First, they are deterministic, exact certificates and
hold independent of a confidence level. Second, the smoothed classifier never abstains from making
a prediction (we resolve draws by whatever index comes first). Third, with more computation time
we obtain more derandomized certificates. This is in continuation to probabilistic certificates that can
be improved using more Monte-Carlo samples (Cohen et al., 2019).

Simplified smoothing distribution. We define a smoothed classifier that classifies node v in G
as follows: Consider a retention constant k ∈ N that represents the number of nodes not deleted
(retained) in the receptive field. Then the smoothed classifier g predicts class y with the largest
probability pv,y(G) that f classifies v as y under uniform deletion of all but k nodes:

gv(G) ≜ argmax
y

pv,y(G) pv,y(G) ≜ pK∼U(d,k)(f(RK) = y)

whereRK encodes the deletion of all nodes in the receptive field of target node v except those indexed
by K, and f(RK) denotes the predicted class of f for target node v given ablated graphRK (omitting
v for conciseness). We further denote the indexing of nodesK as follows: Define the set of all k unique
indices in [d] ≜ {1, . . . , d} including 0 as B(d, k) = {{0}∪M :M ∈ P([d])∧ |M | = k}, where P
denotes the power set (w.l.o.g. we index target nodes as 0). For example, K = {0, 1, 3, 6} ∈ B(d, k)
for retention constant k = 3 and receptive field size d = 10. Note that |K| = k + 1 for K ∈ B(d, k)

but |B(d, k)| =
(
d
k

)
since we never delete the target node. Finally, let U(d, k) denote the uniform

distribution over B(d, k).
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Figure 22: Given a receptive field with 10 nodes, target node 0 and k = 3. (1) If we keep nodes
K = {0, 1, 3, 6} and delete all other nodes, node 6 is disconnected. (2) If we keep nodes K =
{0, 1, 3, 7} and delete all other nodes, node 7 is disconnected. (3) In both cases, only the nodes
S(K) = {0, 1, 3} affect the prediction. (4) In the algorithm: Given S = {0, 1, 3} with neighborhood
NS = {2, 4, 5, 8, 9}. Choosing k + 1 − |S| = 1 further nodes, we find that S is a reduced
representative S(K) since there are |Vv|−|NS |−|S| = 10−5−3 = 2 nodes to choose from (6 and 7).

Computing pv,y∗(G) and pv,ỹ(G) exactly is challenging. One naive approach would be to simply
iterate over the support of the smoothing distribution (all possible node deletions). For small receptive
fields, the number of possible combinations to sample k out of d nodes may be small, allowing us to
enumerate all possibilities. However, this may be infeasible for larger receptive fields. Still, similar
to how we use the message-passing structure for certification, we can also leverage it here to partition
the support of the simplified smoothing distribution into a smaller number of equivalence classes.

Specifically, we observe: First, when uniformly deleting nodes in the receptive field, some of the
remaining nodes K may be disconnected from the target node. Moreover, disconnected nodes will
not affect the prediction for the target node. Second, several possibilities for K may share the same
nodes that are still connected to v (see examples in Figure 22). This means that different possibilities
for K will lead to the same prediction by f , but the full enumeration of all possibilities is suboptimal:
We wish to avoid redundant evaluations since the evaluation of the base classifier f may be costly.

We observe that the connectivity explained above induces an equivalence relation: All sampled nodes
K that share the same nodes connected to v can be grouped into equivalence classes [K]. For any
representative K of [K] we denote the nodes still connected to v as S(K). We call S(K) a reduced
representative, since it represents a reduced form of K and only contains the nodes from which the
target node will receive messages. Note that S(K) is unique for all representatives K.
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Formally, given receptive fieldR with d+ 1 nodes and index K ∈ B(d, k) of k + 1 nodes. Consider
the subgraphRK induced byK. We observe that not necessarily all nodes inRK have to be connected
to the target node. Thus, different K ∈ B(d, k) will result in same prediction of the base classifier.
Let S(K) ⊆ K denote all nodes indexed by K without the disconnected nodes. Put differently, S(K)
stands for nodes still connected to the target node (see example in Figure 22). Then:
Proposition 9. The definition of S(K) induces an equivalence relation ∼ over B(d, k) given by
K ∼ K′ ⇔ S(K) = S(K′) and eq. classes [K] := {K′ ∈ B(d, k) : K ∼ K′} for K ∈ B(d, k).

Proof. Reflexivity, symmetry and transitivity hold by the definition of sets.

The equivalence relation ∼ partitions B(d, k) into disjoint equivalence classes, denoted by the
quotient set B(d, k)/ ∼ ≜ {[K] | K ∈ B(d, k)}. The set S(K) is uniquely defined for each
equivalence class [K] in B(d, k)/ ∼. We therefore call S(K) with 1 ≤ |S(K)| ≤ k + 1 the reduced
representative of [K]. Note that we have |S(K)| = k + 1 ⇔ S(K) = K and |[K]| = 1. We
further call S = {S(K) | K ∈ B(d, k)} the complete set of reduced representatives. Note that
S ∼= B(d, k)/ ∼ and thus |S| = |B(d, k)/ ∼ |.
To efficiently derandomize our certificates, we can leverage the fact that we only need a complete set
of reduced representatives S to compute the label probabilities pv,y(G). Given S, we only have to
evaluate f once for each reduced representative S(K) ∈ S:
Corollary 5. Given the complete set of reduced representatives S, the label probabilities are:

pv,y(G) =

(
d

k

)−1∑
S∈S

I[f (RS) = y] · βS

where I[f (RS) = c] indicates whether f classifies the target node v in subgraphRS as class c, and
βS is the size of an equivalence class, βS = |[K]|. We write S ≜ S(K) and omit v for conciseness.

Proof. For all K,K′ ∈ B(d, k) with K ∼ K′ we have fv(Rv
K) = fv(Rv

K′) = fv(Rv
S(K)) as only

information from nodes of the reduced representative S(K) can be passed to the target node (other
nodes are disconnected). Thus, instead of evaluating fv(Rv

K(G)) for all K ∈ B(d, k) we only have
to evaluate fv(Rv

S(K)(G)) for each S(K) ∈ S. To do so we have to count fv(Rv
S(K)(G)) = i exactly

βS = |[K]| times. Further, as we uniformly sample K from U(d, k) over B(d, k), we have to scale
the possibilities by |B(d, k)|−1, which corresponds to the inverse binomial coefficient above.

Hence, we can compute the label probabilities pv,y(G) exactly for larger receptive fields if the number
of equivalence classes |S| is small and we have an efficient algorithm to compute S and βS . We
propose such algorithm by exploiting the sparsity of graphs as follows:

We successively enumerate all possible connected subgraphs of the receptive fieldR indexed by S
that contain the target node and at most k further nodes. Let S denote indices of such subgraph ofR
andNS the neighborhood of S inR. If S contains k+1 nodes, then all k+1 nodes will be connected
to the target node and S is already a representative with βS = 1. If S contains less than k + 1 nodes,
then S corresponds to a reduced representative if we can choose the remaining k + 1− |S| nodes
such that they are disconnected. Therefore, the main idea of our algorithm is that the size βS is just a
binomial coefficient: The number of disconnected nodes is given by |Vv| − |NS | − |S|, out of which
we have to choose k + 1− |S| nodes to augment S to set of k + 1 nodes (where Vv denote nodes in
the receptive field):

βS =

(
|Vv| − |NS | − |S|
k + 1− |S|

)
If βS > 0, there must exist a representative K such that the reduced representative S(K) corresponds
to S , that is S = S(K) (compare (4) in Figure 22 for an example). Finally, our algorithm enumerates
all possible S by recursively augmenting S with nodes from the neighborhood of S (compare
algorithm 1). This way, we exploit the sparsity of graphs to find all reduced representatives S that
avoid disconnected nodes.
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Algorithm 1: Compute complete set of reduced representatives S and equivalence class sizes βS
Input: Index 0 of target node v, Receptive fieldRv = (Vv, Ev), Retention constant k
S ← {0}
Output: EQCGeneration(S, Vv , Ev , k)

Function EQCGeneration(S, Vv , Ev , k):
R← {}
if |S| = k + 1 then

return {(S, 1)}
end
NS ← {w ∈ Vv \ S | ∃u ∈ S : (w, u) ∈ Ev} // O(|Vv|)
βS ← binom(|Vv| − |NS | − |S|, k + 1− |S|)
if βS > 0 then

R← {(S, βS)}
end
for w ∈ NS do // O(|Vv|)

R← R∪ EQCGeneration(S ∪ {w}, Vv , Ev , k)
end
return R

Note that in algorithm 1, Vv denotes nodes in the receptive field of classifier f with respect to target
node v, and Ev the edges in the receptive field.
Lemma 2 (Correctness of algorithm 1). Let S with 0 ∈ S ⊆ Vv be a set of at most k + 1 nodes
1 ≤ |S| ≤ k + 1 such that all nodes indexed by S are connected to the target node inR. We denote
the neighbors of S in R as NS ≜ {w ∈ Vv \ S | ∃u ∈ S : (w, u) ∈ Ev}. When we define the
following binomial coefficient as

βS ≜

(
|Vv| − |NS | − |S|
k + 1− |S|

)
∈ N.

then there exists a representative K ∈ B(d, k) such that S is a reduced representative for the
equivalence class [K] if βS > 0. Then we have βS = |[K]|.

Proof. First note that for a given set S as defined above we can partition Vv into three disjoint sets
Vv = S⊎NS⊎Nr with S andNS defined as above, and the disconnected nodesNr ≜ Vv \(S∪NS).
We thus have |Nr| = |Vv| − |NS | − |S|. Now we distinguish the following cases:

Case 1: |S| = k + 1

We have |Vv| − |NS | − |S| ∈ N0 and βS = 1 > 0. Thus for |S| = k + 1 the condition is trivially
fulfilled and we have that K ≜ S is already a representative with |[K]| = 1 as discussed before.
Note that this does not mean that all sets with k + 1 nodes are representatives, as we still have the
connectivity constraint for nodes in S.

Case 2: |S| < k + 1

We have βS > 0⇔ |Vv| − |NS | − |S| ≥ k + 1− |S| ⇔ |Nr| ≥ k + 1− |S| where the latter means
that we can choose the remaining k + 1− |S| nodes from Nr to augment S to representative K of
the equivalence class [K] since then |K| = |S|+ k + 1− |S| = k + 1. The corresponding size |[K]|
is given by βS .

Finally, note that the equivalence classes and the algorithm are independent of the classifier f .
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Discussion. In the worst case, we have |S| = |B(d, k)| =
(
d
k

)
, but we enumerate

∑k
i=0

(
d
i

)
≥
(
d
k

)
possibilities, as there are

∑k
i=0

(
d
i

)
candidates for reduced representatives in a fully connected graph.

Therefore, in the worst case of fully connected graphs, directly enumerating all
(
d
k

)
possibilities

would be faster. In practice, however, we rather observe sparse graphs with |S| ≪ |B(d, k)|. The
more sparse the receptive field, the less equivalence classes exist and the larger each equivalence
class. Thus we exploit the sparsity of graphs to efficiently compute S and the corresponding sizes
|[K]| for all equivalence classes [K].
Moreover, as our algorithm recursively enumerates all possible pairs (S, βS), we can determine a
stopping criterion at which we back off to Monte-Carlo sampling for estimating the label probabilities.
To this end, if R denotes the current set of (S, βS) pairs with βS > 0, we know that |R| is a lower
bound on the number of equivalence classes, |R| ≤ |S|. By summing up βS for all (S, βS) ∈ R we
can determine the percentage of |B(d, k)| that we already cover with R:∑

(S,βS)∈R

βS ≤
∑

S(K)∈S

|[K]| =
(
d

k

)
= |B(d, k)|

This allows us to use the condition
∑

(S,βS)∈R βS > τ ′ with threshold τ ′ ∈ N as a stopping criterion.
Using thresholds this way, our algorithm will always find more solutions in S given more time via
larger thresholds. Note that we use

(
d
k

)
> τ in practice, since the binomial coefficient provides a fast

upper bound for the number of equivalence classes |S|.

J.1 Evaluating Message-passing-aware Derandomization

Table 1: Smoothed classifier results for GCN trained on Cora-ML for different relative retention
constants. Der.: Ratio of nodes with derandomized certificates. Eq.: Mean of unique receptive fields
over all derandomized certificates. Acc.: Clean accuracy.

GCN on Cora-ML GCN on Citeseer GCN on PubMed

krel Der. Eq. Abstained Acc. Der. Eq. Abstained Acc. Der. Eq. Abstained Acc.

0.01 0.87 0.22 6.27e-04 0.73 1.00 0.41 0.00e+00 0.65 0.94 0.15 0.00e+00 0.73
0.03 0.72 0.23 5.69e-04 0.73 0.94 0.42 0.00e+00 0.66 0.81 0.16 1.56e-03 0.73
0.10 0.50 0.28 5.02e-03 0.74 0.87 0.42 1.63e-03 0.65 0.61 0.19 4.24e-03 0.74
0.30 0.31 0.46 1.42e-02 0.80 0.73 0.53 7.61e-03 0.68 0.37 0.38 6.23e-03 0.77

Relative retention constant. Consider a small retention constant k = 1 for a node v with deg(v) <
dv−deg(v), where dv denotes the receptive field size (excluding the target node). Then the probability
for selecting a direct neighbor of v is low and the prediction of the smoothed classifier is merely
based on the target node v itself, which amounts to traditional i.i.d. prediction. Thus, for non-trivial
robustness guarantees we use retention constants k that are relative to the receptive field size: Given a
fixed relative retention constant krel ∈ [0, 1], our smoothed classifier keeps k = ⌈dv ·krel⌉ ∈ N nodes
in the receptive fieldR.6 The ceiling operation ensures that we keep at least one additional node.

Derandomization results. Our certificates are deterministic for small receptive fields, and proba-
bilistic for large receptive fields: we derandomize certificates if

(
d
k

)
is smaller than a threshold τ . If

the number of possibilities to choose k out of d nodes is small, we can enumerate all possibilities and
use f to predict the class of v for all possibilities. In our experiments we set τ = 100,000. There
are more possibilities to sample k out of d nodes for larger krel and thus the ratio of deterministic
certificates decreases (compare Table 1). For example, we can derandomize around 50% of the
certificates for Cora-ML given krel = 0.1. We further derandomize more certificates for Citeseer
than for Cora-ML, which can be explained by the fact that two-layer GNNs have larger receptive
fields on Cora-ML. Note that the average degree in Cora-ML is 6, in Citeseer 3 and PubMed 4. Due
to the derandomization we also hardly observe that the smoothed classifier abstains.

As discussed above, we avoid evaluating the base classifier f for equivalent receptive fields. To
represent the computations we avoid on average, we compute the mean of unique receptive fields
|S|/|B(d, k)| for all derandomized certificates. For example, out of all derandomized certificates for
krel = 0.1 on Cora-ML, we only have to evaluate 28% of all possibilities on average.

6As a disadvantage of this method, we have to process all receptive fields separately.
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